WorldWideScience

Sample records for ultrasonic testing device

  1. Ultrasonic testing device

    International Nuclear Information System (INIS)

    Lawrie, W.E.

    1978-01-01

    The ultrasonic transmitter made of polarized ferroelectric ceramic material (lead zirconate titanate) is arranged in a strip carrier which allows it to be introduced between the fuel elements of a fuel subassembly in a water cooled nuclear reactor. The ultrasonic transmitter is insulated relative to the carrier. The echo of the ra dal ultrasonic pulse is recorded which changes as faulty water filled fuel elements are detected. (RW) [de

  2. Ultrasonic testing device having an adjustable water column

    Science.gov (United States)

    Roach, Dennis P.; Neidigk, Stephen O.; Rackow, Kirk A.; Duvall, Randy L.

    2015-09-01

    An ultrasonic testing device having a variable fluid column height is disclosed. An operator is able to adjust the fluid column height in real time during an inspection to to produce optimum ultrasonic focus and separate extraneous, unwanted UT signals from those stemming from the area of interest.

  3. Device for ultrasonic and eddy current testing of bolts

    International Nuclear Information System (INIS)

    Hromek, J.; Kaspar, P.

    1989-01-01

    The device provides pivoting fitting of the bolt of a WWER reactor steam generator while ultrasonic and eddy current probes are brought near. The bolt under study is clamped between a drive funnel and a securing cone. The eddy current probes are adjusted using guide arms to the point requested and are fitted over the bolt such as for their thread segments to engage the bolt thread. The ultrasonic transducers are then adjusted to the required point. The device can be used for testing bolts of a thread size from M54x5 and a maximum length of 600 mm. (J.B.). 1 fig

  4. Ultrasonic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Jun; Kuk, Jeong Han

    2002-02-15

    This book introduces ultrasonic testing, which tells of outline of ultrasonic testing, principle of ultrasonic testing, prosperities of ultrasonic waves, radiographic test and ultrasonic test, basic theory on ultrasonic testing, mode conversion, transmission and diffraction, ultrasonic flaw detection and probe, standard test piece and reference test piece, like KS(JIS) ASME and ASTM, classification and properties of ultrasonic testing, straight beam method, angle beam method, ASME SEC.V.Art.5 ASTMA 388 and KS B 0817 Korean industrial standard.

  5. Ultrasonic testing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin [Sungkwunkwan Univ., Seoul (Korea, Republic of); Jeong, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of)

    2004-02-15

    For the proper performance of ultrasonic testing of steel welded joints, and anisotropic material it is necessary to have sound understanding on the underlying physics. To provide such an understanding, it is beneficial to have simulation tools for ultrasonic testing. In order to address such a need, we develop effective approaches to simulate angle beam ultrasonic testing with a personal computer. The simulation is performed using ultrasonic measurement models based on the computationally efficient multi-Gaussian beams. This reach will describe the developed ultrasonic testing models together with the experimental verification of their accuracy.

  6. Ultrasonic viewing device

    International Nuclear Information System (INIS)

    Ito, Juro.

    1979-01-01

    Purpose: To improve the safety of reactor operation by enabling to detect the states and positions of fuel assemblies over a wide range with a set of ultrasonic viewing device comprising a rotatable ultrasonic transmitter-receiver and a reflector mounted with an adjustable angle. Constitution: A driving portion for a ultrasonic viewing device is provided to a rotary plug closing the opening of a reactor vessel and a guide pipe suspending below the coolant level is provided to the driving portion. An ultrasonic transmitter-receiver is provided at the end of the holder tube in the guide pipe. A reflector is provided at the upper position of the reactor core so as to correspond to the ultrasonic transmitter-receiver. The ultrasonic transmitter-receiver, positioned by the driving portion, performs horizontal movement for scanning the entire surface of the top of the reactor core, as well as vertical movement covering the gap between the upper mechanism on the reactor and the reactor core, whereby the confirmation for the separation of the control rod and the detection for the states of the reactor core can be conducted by the reflection waves from the reflector. (Moriyama, K.)

  7. Inspection device for external examination of pressure vessels, preferably for ultrasonic testing of reactor vessels

    International Nuclear Information System (INIS)

    Figlhuber, D.; Gallwas, J.; Weber, R.; Weber, J.

    1978-01-01

    The inspection device is placed in the annular gap between pressure vessel and biological shield of the BWR. In the annulus there is arranged at least one longitudinal rail which has got vertical guideways. Along it there can be moved on testing paths a manipulator with the ultrasonic search unit. The manipulator drive is outside of the inspection annulus. It is coupled to the manipulator by means of a tension member being guided over a reversing unit mounted at the upper end of the longitudinal rail. As a tension member there may be used a drag chain; the drive and the reversing unit are provided with corresponding chain wheels. (DG) [de

  8. Digitising of ultrasonic pulse echo devices as a means for automation of ultrasonic testing

    International Nuclear Information System (INIS)

    Rosenberg, R.

    1989-01-01

    A universal multi-purpose test equipment - EPOCH 2002 - with a 12.5 cm picture tube and a digitally generated echo pulse representation with a format of 80x57 mm is introduced. The content of the screen and the equipment adjustment data can be passed on to external units via a video or RS 232 interface. These parameters favour the use of equipment in part-automated test systems, such as, for example, level monitoring with difficult geometries, continuous testing of shrinkage during profile extrusion and testing for cracks around bolts and rivets with a rotor scanner in aircraft construction. (orig./MM) [de

  9. Ultrasonic testing X gammagraphy

    International Nuclear Information System (INIS)

    Mello Campos, A.M. de

    1989-01-01

    The experience of 10 years for substituting gammagraphy tests by ultrasonic tests is related. A comparative evaluation of data obtained from both techniques applied to welded butt joints is presented. (author)

  10. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g., the...

  11. Ultrasonic weld testing.

    Science.gov (United States)

    1970-12-01

    The study was broken down into two phases. Phase I consisted of a laboratory investigation of test specimens to determine the reliability of the ultrasonic equipment and testing procedure. Phase II was a field study where the knowledge, skills and ab...

  12. Ultrasonic tests. Pt. 2

    International Nuclear Information System (INIS)

    Goebbels, K.

    1980-01-01

    After a basic treatment of ultrasonic wave propagation, of the state-of-the-art methods and the technical background in the preceeding part, advanced ultrasonic NDT techniques are presented here. The discussion of new development includes - manipulation systems, - automation of ultrasonic testing methods, documentation and evaluation. In the middle of this part the main problem areas will be discussed: - detection of defects (e.g. in coarse grained structures and welds), - classification of defects (e.g. discrimination between crack-like and volumetric faults), - sizing of defects. Research in the field of acoustical holography, development of probes and phased arrays, electromagnetic acoustic transducers and signal enhancement are the main contributing parts to the report. (orig./RW)

  13. Track type ultrasonic inspection device

    International Nuclear Information System (INIS)

    Kajiyama, Shigeru; Sasaki, Tsukasa; Takahisa, Kazuo.

    1993-01-01

    The present invention concerns an improvement of a scanning device disposed near an object to be inspected such as a nuclear pressure vessel and having an ultrasonic probe, mounted thereon that travel along a running track. Specifically, one of wheel supports on both sides is attached being secured to the scanning device. The other of the supports is capable of fixing and releasing, as well as providing and releasing pressure to and from wheels upon mounting and detachment. This enables to provide a structure capable of pressing the wheels of the running device to the plane of the track and release thereof. Accordingly, it is possible to improve the running performance, reduce the size and weight and shorten the time for mounting and detachment of the running inspection device. (I.S.)

  14. Integrated Ultrasonic-Photonic Devices

    DEFF Research Database (Denmark)

    Barretto, Elaine Cristina Saraiva

    in channel waveguides and Mach-Zehnder interferometers. Numerical models are developed based on the finite element method, and applied to several scenarios, such as optimization of the geometrical parameters of waveguides, use of slow light in photonic crystal waveguides and use of Lamb waves in membranized......This thesis deals with the modeling, design, fabrication and characterization of integrated ultrasonic-photonic devices, with particular focus on the use of standard semiconductor materials such as GaAs and silicon. The devices are based on the use of guided acoustic waves to modulate the light...... investigated. Comparisons are made with the numerical and experimental results, and they validate the obtained response of the acoustic and photonic components of the device. Finally, a new design for an optical frequency shifter is proposed, posing several advantages over existing devices in terms of size...

  15. Development of injection moulded, ultrasonically welded immiscible phase filtration devices

    DEFF Research Database (Denmark)

    Kistrup, Kasper

    for ultrasonic welding, suitable for microfluidic systems. A methodology has been established where energy directors can be quickly added to existing mould inserts, using laser micromachining. The produced device was performance tested by isolating methicillin-resistant Staphylococcus aureus from bovine whole....... The device appliesmagnetic bead-based solid-phase extraction for nucleic acid extraction from biological samples, using the immiscible phase filtration (IPF) approach. Device development has employed injection moulding for part fabrication and ultrasonic welding for bonding. Rapid prototyping...

  16. Proposed new ultrasonic test bed

    International Nuclear Information System (INIS)

    Maxfield, B.W.

    1978-01-01

    Within the last four or five years, a great deal of progress has been made both here and in a number of other laboratories in developing techniques that will enable considerably more information to be obtained from the ultrasonic examination of an object. Some of these recent developments relate to information contained within the diffracted beam which does not return along the incident path. An ultrasonic examination based upon an evaluation of diffracted energy must use at least two transducers, one for transmission and the other for reception. Current indications are that even more reliable test results will be achieved using a receiving transducer that can scan a significant portion of the diffracted field including that portion which is back-reflected. In general, this scan can be interpreted most accurately if it follows a path related to the surface shape. If more than one region within the object is to be interrogated, then the transmitting transducer must also be scanned, again along a path related to the surface shape. The large quantity of information obtained as the result of such an examination must be subjected to sophisticated computer analysis in order to be displayed in a meaningful and intelligible manner. Although one motivation for building such an instrument is to explore new ultrasonic test procedures that are evolving from current laboratory research, this is neither the sole motivation nor the only use for this instrument. Such a mechanical and electronic device would permit conventional ultrasonic tests to be performed on parts of complex geometry without the expensive and time-consuming special fixturing that is currently required. May possible test geometries could be explored in practice prior to the construction of a specialized test apparatus. Hence, it would be necessary to design much, if any, flexibility into the special test apparatus

  17. Ultrasonic-testing method

    International Nuclear Information System (INIS)

    Thome, Paul.

    1973-01-01

    Description is given of a device adapted to the detection, by means of ultrasonic waves, of all the flaws and defects included in workpieces when only one face of the latter is accessible. A beam is directed towards the rear-face of the workpiece (e.g. a plate) on which it is reflected. The image thus reflected is fed into a receiver. The latter is under the control of the displacement of that image; simultaneously a transducer checks the condition of the mirror at the places where the beam is reflected. Whenever a flow or defect comes between, a silent zone is formed. By recording the silent zones with respect to the positions of several emitters, it is possible to locates a flaw and to define the outline thereof. The apparatus comprises several ''emitter-receiver'' groups intersecting over the emitter used in order to check the good conditions of the mirror. The invention can be used for searching and identifying flaws and defects in buildings which have to be of top quality (e.g., cofferdams, nuclear devices, shipbuilding yards, aeronautics) [fr

  18. Imaging techniques for ultrasonic testing

    International Nuclear Information System (INIS)

    2013-01-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [de

  19. Irradiation Testing of Ultrasonic Transducers

    International Nuclear Information System (INIS)

    Daw, J.; Rempe, J.; Palmer, J.; Tittmann, B.; Reinhardt, B.; Kohse, G.; Ramuhalli, P.; Montgomery, R.; Chien, H.T.; Villard, J.F.

    2013-06-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of numerous parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10 21 n/cm 2 (E> 0.1 MeV). This test will be an instrumented lead test; and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. By characterizing magnetostrictive and piezoelectric transducer survivability during irradiation, test results will enable the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. (authors)

  20. Case studies in ultrasonic testing

    International Nuclear Information System (INIS)

    Prasad, V.; Satheesh, C.; Varde, P.V.

    2015-01-01

    Ultrasonic testing is widely used Non Destructive Testing (NDT) method and forms the essential part of In-service inspection programme of nuclear reactors. Main application of ultrasonic testing is for volumetric scanning of weld joints followed by thickness gauging of pipelines and pressure vessels. Research reactor Dhruva has completed the first In Service Inspection programme in which about 325 weld joints have been volumetrically scanned, in addition to thickness gauging of 300 meters of pipe lines of various sizes and about 24 nos of pressure vessels. Ultrasonic testing is also used for level measurements, distance measurements and cleaning and decontamination of tools. Two case studies are brought out in this paper in which ultrasonic testing is used successfully for identification of butterfly valve opening status and extent of choking in pipe lines in Dhruva reactor systems

  1. Ultrasonic wave damage detecting device

    International Nuclear Information System (INIS)

    Miura, Yuichi; Nagao, Tetsuya; Nishi, Yuji; Kubota, Keisuke; Maruyama, Takayuki.

    1994-01-01

    Upon detecting a damage for a joint between a connecting nozzle at the outer circumference of a reactor pressure vessel and pipelines, the present invention greatly shortens the operation time. That is, it is noted that the connecting nozzle has a tapered portion and a small-diameter portion in view of strength. A main magnetic wheel supported on a base of a running vehicle is attracted to the small-diameter portion and an auxiliary magnet wheel is attracted to the tapered portion respectively and they are rolled. This regulate the deviation of the position of the base of the running vehicle in axial direction of the nozzle by the small-diameter portion and the tapered portion. Accordingly, the running vehicle can be circulated along a predetermined course on the outer circumference of the connecting nozzle without using tracks such as an existent ring track. The test can be performed conveniently only by placing the damage detecting device on the connecting nozzle. As a result, preparation time required before the test can remarkably be shortened. (I.S.)

  2. Ultrasonic sensor for sodium perspective device

    International Nuclear Information System (INIS)

    Ogawa, Fujio; Onuki, Koji.

    1995-01-01

    The present invention concerns an ultrasonic wave sensor for a sodium perspective device disposed in an FBR type reactor, which can change the directing angle of the ultrasonic sensor irrespective of the external conditions in liquid sodium. Namely, the sensor comprises (1) a sensor main body, (2) a diaphragm disposed on an oscillating surface of ultrasonic waves generated from the sensor main body, (3) a pressurizing and depressurizing nozzle connected to the sensor main body, and (4) a pressure detector disposed to these nozzles. A gas is charged/discharged to and from the sensor main body to control a gas pressure in the main body. If the gas pressure is made higher, the diaphragm is deformed convexly. If the gas pressure is lowered, the diaphragm is deformed concavely. The directing angle is greater when it is deformed a convexly, and it is smaller when it is deformed concavely. Accordingly, ultrasonic wave receiving/sending range in the sodium can be varied optionally by controlling the gas pressure in the main body. (I.S.)

  3. Reproducibility of ultrasonic testing

    International Nuclear Information System (INIS)

    Lecomte, J.-C.; Thomas, Andre; Launay, J.-P.; Martin, Pierre

    The reproducibility of amplitude quotations for both artificial and natural reflectors was studied for several combinations of instrument/search unit, all being of the same type. This study shows that in industrial inspection if a range of standardized equipment is used, a margin of error of about 6 decibels has to be taken into account (confidence interval of 95%). This margin is about 4 to 5 dB for natural or artificial defects located in the central area and about 6 to 7 dB for artificial defects located on the back surface. This lack of reproducibility seems to be attributable first to the search unit and then to the instrument and operator. These results were confirmed by analysis of calibration data obtained from 250 tests performed by 25 operators under shop conditions. The margin of error was higher than the 6 dB obtained in the study [fr

  4. Reproducibility of the results in ultrasonic testing

    International Nuclear Information System (INIS)

    Chalaye, M.; Launay, J.P.; Thomas, A.

    1980-12-01

    This memorandum reports on the conclusions of the tests carried out in order to evaluate the reproducibility of ultrasonic tests made on welded joints. FRAMATOME have started a study to assess the dispersion of results afforded by the test line and to characterize its behaviour. The tests covered sensors and ultrasonic generators said to be identical to each other (same commercial batch) [fr

  5. Development of an innovative device for ultrasonic elliptical vibration cutting.

    Science.gov (United States)

    Zhou, Ming; Hu, Linhua

    2015-07-01

    An innovative ultrasonic elliptical vibration cutting (UEVC) device with 1st resonant mode of longitudinal vibration and 3rd resonant mode of bending vibration was proposed in this paper, which can deliver higher output power compared to previous UEVC devices. Using finite element method (FEM), resonance frequencies of the longitudinal and bending vibrations were tuned to be as close as possible in order to excite these two vibrations using two-phase driving voltages at a single frequency, while wave nodes of the longitudinal and bending vibrations were also adjusted to be as coincident as possible for mounting the device at a single fixed point. Based on the simulation analysis results a prototype device was fabricated, then its vibration characteristics were evaluated by an impedance analyzer and a laser displacement sensor. With two-phase sinusoidal driving voltages both of 480 V(p-p) at an ultrasonic frequency of 20.1 kHz, the developed prototype device achieved an elliptical vibration with a longitudinal amplitude of 8.9 μm and a bending amplitude of 11.3 μm. The performance of the developed UEVC device is assessed by the cutting tests of hardened steel using single crystal diamond tools. Experimental results indicate that compared to ordinary cutting process, the tool wear is reduced significantly by using the proposed device. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Design and Functional Validation of a Complex Impedance Measurement Device for Characterization of Ultrasonic Transducers

    International Nuclear Information System (INIS)

    De-Cock, Wouter; Cools, Jan; Leroux, Paul

    2013-06-01

    This paper presents the design and practical implementation of a complex impedance measurement device capable of characterization of ultrasonic transducers. The device works in the frequency range used by industrial ultrasonic transducers which is below the measurement range of modern high end network analyzers. The device uses the Goertzel algorithm instead of the more common FFT algorithm to calculate the magnitude and phase component of the impedance under test. A theoretical overview is given followed by a practical approach and measurement results. (authors)

  7. A laboratory device for evaluation and study in the filed of ultrasonic transducers

    International Nuclear Information System (INIS)

    Vasiliu, S.

    1978-12-01

    A laboratory device for evaluation of the ultrasonic transducers, in view of adequate selection according to the testing requirements is presented. Recordings of ultrasonic beam of some transducers delivered as being of the same type are presented, showing important departures from specifications of the characteristics. Some of transducers evaluated have not been found acceptable for NDT in the nuclear field. (author)

  8. Internal ultrasonic testing of steam generator tubes

    International Nuclear Information System (INIS)

    Furlan, J.; Soleille, G.; Chalaye, H.

    1983-01-01

    The ''in situ'' inspection of steam generator tubes uses generally Foucault currents before starting and along its life. This inspection aims at searching cracks and corrosion defects. The Foucault current method is quite badly adapted to ''closed crack'' detection, for it doesn't introduce neither resistivity or magnetic permeability variation, or lack of matter. More, it is sensible to the magnetic properties of the tube itself and to its environment (tubular or support plates). It is why, this first systematic inspection has to be completed by an ultrasonic one allowing to bring new elements in the uncertain cases. A device with an internal probe has been developed. It ''lights'' the tube wall with the aid of a transducer of which beam reflects on a mirror. Operating conditions are the same as for Foucault current testing, that is to say the probe moves inside the tube without rotation of the device (bent parts are excluded) [fr

  9. Process and device for the ultrasonic testing of slotted screws screwed into a head of a nuclear reactor fuel element for cracks

    International Nuclear Information System (INIS)

    Scharpenberg, R.

    1986-01-01

    To achieve correct echo signals, a test head is set separately on each area limited by a slot of the top of the slotted screw and the screw head is ultrasonically sounded in the direction of the suspected cracks. (orig./HP) [de

  10. Ultrasonic tests on materials with protective coatings

    International Nuclear Information System (INIS)

    Whaley, H.L.

    1977-01-01

    Protective coatings are applied to some nuclear components such as reactor vessels to inhibit surface corrosion. Since in-service ultrasonic inspection is required for such components, a study was performed to determine whether the use of protective coatings can affect ultrasonic tests. Two 2 in. thick steel plates were uniformly machined, sandblasted, and used as bases for two types of protective coatings. The type and thickness of the coating and the presence of contamination, such as fingerprints or mild oxidation under the paint, were the independent variables associated with the coating. Tests were run to determine the effects of the protective coatings on ultrasonic tests conducted on the steel plates. Significant variations in ultrasonic test sensitivity occurred as a function of the type and thickness of protective coating, couplant (material that conducts the ultrasound from the transducer into the test part, normally water or some type of oil), transducer wear plate, and ultrasonic test frequency. Ultrasonic tests can be strongly affected by a protective coating on the component to be inspected. As compared to the test sensitivity for an uncoated reference sample, the sensitivity may be dramatically shifted up or down on the coated surface. In certain coating thickness ranges, the sensitivity can fluctuate widely with small changes in coating thickness. If a coating is chosen properly, however, components with protective coatings can be tested ultrasonically with valid results. These results are for the case of ultrasonic input on the coated surface. It is not expected that an ultrasonic test conducted from the front surface would be appreciably affected by a coating on the rear surface

  11. Ultrasonic testing of materials at level 2

    International Nuclear Information System (INIS)

    1988-06-01

    Ultrasonic inspection is a nondestructive method in which high frequency sound waves are introduced into the material being inspected. Ultrasonic testing has a superior penetrating power to radiography and can detect flaws deep in the test specimen (say up to about 6 to 7 meters of steel). It is quite sensitive to small flaws and allows the precise determination of the location and size of the flaws. Basic ultrasonic test methods such as the through transmission method and the resonance method, sensors and testing techniques are described. Pulse echo type flaw detectors and their applications for inspection of welds are surveyed. Ultrasonic standards, calibration of the equipment and evaluation methods are presented. Examples of practical applications in welding, casting and forging processes are given. Figs and tabs

  12. Nondestructive control of materials by ultrasonic tests

    International Nuclear Information System (INIS)

    Mercier, Noelle.

    1974-01-01

    A bibliographic study of nondestructive control methods of solids by ultrasonic tests, and of the ultrasonic emission of a transducer of finite dimension, is first presented. The principle of two of these methods is verified experimentally; they should permit the measurement of various physical parameters of solids, and the detection of local inhomogeneities. The first method calls upon the analysis of the ultrasonic signal (amplitude and phase), after it has crossed a constant thickness of a metallic specimen. This analysis reveals variations of attenuation and of ultrasonic propagation velocity within the specimen. A good spatial resolution is obtained by using 1mm-diameter probes. The second method leads, thanks to a test rig equipped with broad frequency band electrostatic transducers, to the knowledge of the attenuation law of the specimens as a function of frequency (present range: 5 to 15MHz); from this a classification of these specimens as regards their granulometry is deduced [fr

  13. An advanced system for automated ultrasonic testing

    International Nuclear Information System (INIS)

    Dressler, K.

    1989-01-01

    As the main component of the AUP system, an ALOK ultrasonic unit has been chosen as it allows for testing of large component areas both search for defects and description of defect geometries. All data required for fault analysis can be obtained by one measuring run. For inspection of primary circuit components in nuclear power stations, the manipulator control and the ultrasonic probe are installed behind the first sufficient shielding. (orig./HP) [de

  14. Focused ultrasonic wave testing, in immersion of spent fuel cans

    International Nuclear Information System (INIS)

    Poinboeuf, P.; Furlan, J.

    1984-10-01

    To detect weak and very weak damage of the fuel can, ultrasonic testing has been used. For that, a simple mechanical device, allowing to maintain an optimal ultrasonic focussing on irradiated cans, is presented. Its aim is to correct the variation of the incidence angle due to the possible ovalization of pins. After a description of the device, the results obtained with tests carried out on non-irradiated cans, including artificial ovalized regions, standard defects, are presented. After the description of the adaptation of this mechanism on a test bench which allows an helicoidal exploration of pins, some results obtained in hot cell during examinations experimental pins and previously tested by Foucault current [fr

  15. Mid-IR laser ultrasonic testing for fiber reinforced plastics

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Oguchi, Kanae; Yamawaki, Hisashi; Watanabe, Makoto; Enoki, Manabu

    2018-04-01

    Ultrasonic testing is the most common method to detect defects in materials and evaluate their sizes and locations. Since piezo-electric transducers are manually handled from point to point, it takes more costs for huge products such as airplanes. Laser ultrasonic testing (LUT) is a breakthrough technique. A pulsed laser generates ultrasonic waves on a material surface due to thermoelastic effect or ablation. The ultrasonic waves can be detected by another laser with an interferometer. Thus, LUT can realize instantaneous inspection without contacting a sample. A pulse laser with around 3.2 μm wavelength (in the mid-IR range) is more suitable to generate ultrasonic waves for fiber reinforced plastics (FRPs) because the light is well absorbed by the polymeric matrix. On the other hand, such a laser is not available in the market. In order to emit the mid-IR laser pulse, we came up with the application of an optical parametric oscillator and developed an efficient wavelength conversion device by pumping a compact Nd:YAG solid-state laser. Our mid-IR LUT system is most suitable for inspection of FRPs. The signal-to-noise ratio of ultrasonic waves generated by the mid-IR laser is higher than that by the Nd:YAG laser. The purpose of the present study is to evaluate the performance of the mid-IR LUT system in reflection mode. We investigated the effects of the material properties and the laser properties on the generated ultrasonic waves. In addition, C-scan images by the system were also presented.

  16. System for ultrasonic testing of welded seams. Einrichtung zur Ultraschallpruefung von Schweissnaehten

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, J K; Troizkij, V A; Agronskaja, E V; Vasiliev, L N; Orel, V G; Naida, V L; Baldakov, V F; Ustjusanin, J V; Litvinenko, V A; Petrovskij, S N

    1984-07-12

    The invention concerns a device for the ultrasonic testing of welded joints which can be used in particular for quality control of multi-layer weldments. The testing equipment consists of probe, material testing device, amplitude discriminator, recording device, up and down counters and threshold value stages. (GSCH).

  17. Nonlinear Characterization of Half and Full Wavelength Power Ultrasonic Devices

    Science.gov (United States)

    Mathieson, Andrew; Cerisola, Niccolò; Cardoni, Andrea

    It is well known that power ultrasonic devices whilst driven under elevated excitation levels exhibit nonlinear behaviors. If no attempt is made to understand and subsequently control these behaviors, these devices can exhibit poor performance or even suffer premature failure. This paper presents an experimental method for the dynamic characterization of a commercial ultrasonic transducer for bone cutting applications (Piezosurgery® Device) operated together with a variety of rod horns that are tuned to operate in a longitudinal mode of vibration. Near resonance responses, excited via a burst sine sweep method were used to identify nonlinear responses exhibited by the devices, while experimental modal analysis was performed to identify the modal parameters of the longitudinal modes of vibration of the assemblies between 0-80 kHz. This study tries to provide an understanding of the effects that geometry and material choices may have on the nonlinear behavior of a tuned device.

  18. Analysis of a Non-resonant Ultrasonic Levitation Device

    Science.gov (United States)

    Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.

    In this study, a non-resonant configuration of ultrasonic levitation device is presented, which is formed by a small diameter ultrasonic transducer and a concave reflector. The influence of different levitator parameters on the levitation performance is investigated by using a numerical model that combines the Gor'kov theory with a matrix method based on the Rayleigh integral. In contrast with traditional acoustic levitators, the non-resonant ultrasonic levitation device allows the separation distance between the transducer and the reflector to be adjusted continually, without requiring the separation distance to be set to a multiple of half-wavelength. It is also demonstrated, both numerically and experimentally, that the levitating particle can be manipulated by maintaining the transducer in a fixed position in space and moving the reflector in respect to the transducer.

  19. Characterization methods for ultrasonic test systems

    International Nuclear Information System (INIS)

    Busse, L.J.; Becker, F.L.; Bowey, R.E.; Doctor, S.R.; Gribble, R.P.; Posakony, G.J.

    1982-07-01

    Methods for the characterization of ultrasonic transducers (search units) and instruments are presented. The instrument system is considered as three separate components consisting of a transducer, a receiver-display, and a pulser. The operation of each component is assessed independently. The methods presented were chosen because they provide the greatest amount of information about component operation and were not chosen based upon such conditions as cost, ease of operation, field implementation, etc. The results of evaluating a number of commercially available ultrasonic test instruments are presented

  20. The digital ultrasonic test unit for automatic equipment

    International Nuclear Information System (INIS)

    Hiraoka, T.; Matsuyama, H.

    1976-01-01

    The operations and features of the ultrasonic test unit used and the digital data processing techniques employed are described. This unit is used for a few hundred multi-channel automatic ultrasonic test equipment

  1. Ultrasonic testing technique for users in practical application. Pt. 8

    International Nuclear Information System (INIS)

    Corsepius, H.W.

    1978-01-01

    In the present, eighth part of ultrasonic testing technique for users in practical application, the two methods 1) testing by gap coupling and 2) testing by the dipping technique are treated. By the first method the probe is clamped in a holding device in such manner that a water-filled gap remains between probe and surface. Through this gap the sonic signal gets into the specimen without mechanical contact between probe and specimen taking place. By the dipping technique testing is performed in a tank filled with water, the probe being guided over the specimen under water. (RW) [de

  2. Ultrasonic flow-meter test in sodium

    International Nuclear Information System (INIS)

    Ishii, Y.; Uno, O.; Kamei, M.

    1978-01-01

    As a part of the R and D programme for the prototype fast breeder reactor MONJU, an ultrasonic flow-meter (USFM) test is being carried out in sodium in the O-Arai Engineering Center of PNC. Prior to the present test, an in-water test was done at the manufacturer's as a preliminary investigation. The results reported here are the results up to the present. Calibration tests using the actual fluid were conducted on a 12-inch ultrasonic flow-meter with guide rods fabricated for sodium flow measurement. The test conditions in sodium were a temperature of 200 approximately 400 0 C and flow-rates of 0 approximately 6m/s. The main results are: (1) The linearity of output signal was good and accuracy was within 1%; (2) The alternating type of the USFM was much better than the fixed type in temperature change; (3) 2MHz of transducer frequency was better than 3MHz in sodium; (4) The S/N ratio of the ultrasonic signal and the length/diameter effect in a wide range in sodium surpassed the in-water test. (author)

  3. Ultrasonic testing of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Nishino, Shunichi; Hida, Yoshio; Yamamoto, Michio; Ando, Tomozumi; Shirai, Tasuku.

    1982-05-01

    Ultrasonic testing of austenitic stainless steel welds has been considered difficult because of the high noise level and remarkable attenuation of ultrasonic waves. To improve flaw detectability in this kind of steel, various inspection techniques have been studied. A series of tests indicated: (1) The longitudinal angle beam transducers newly developed during this study can detect 4.8 mm dia. side drilled holes in dissimilar metal welds (refraction angle: 55 0 from SUS side, 45 0 from CS side) and in cast stainless steel welds (refraction angle: 45 0 , inspection frequency: 1 MHz). (2) Cracks more than 5% t in depth in the heat affected zones of fine-grain stainless steel pipe welds can be detected by the 45 0 shear wave angle beam method (inspection frequency: 2 MHz). (3) The pattern recognition method using frequency analysis technology was presumed useful for discriminating crack signals from spurious echoes. (author)

  4. A feasiblity study of an ultrasonic test phantom arm

    Science.gov (United States)

    Schneider, Philip

    This thesis is a feasibility study for the creation of a test phantom that replicates the physiological features, from an acoustic and mechanical standpoint, of that of a human arm. Physiological feature set includes; Heart, Arteries, Veins, Bone, Muscle, Fat, Skin, and Dermotographic Features (finger prints). Mechanical Aspects include, vascular compression and distention, elasticity of tissue layers, mechanics of human heart. The end goal of which to have a working understanding of each component in order to create a controllable, real time, physiologically accurate, test phantom for a wide range of ultrasonic based applications. These applications can range from devices like wearable technologies to medical training, to biometric "Liveness" detection methods. The proposed phantom would allow for a number of natural bodily functions to be measured including but not limited to vascular mapping, blood pressure, heart rate, subdermal imaging, and general ultrasonic imaging.

  5. Updated Results of Ultrasonic Transducer Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua; Palmer, Joe [Idaho National Laboratory, P.O. Box 1625, MS 4112, Idaho Falls, ID, 38415-3840 (United States); Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert [Pacific Northwest National Laboratory, 902 Battelle Blvd. Richland, WA, 99354 (United States); Chien, Hual-Te [Argonne National Laboratory, 9700 S. Cass Avenue Argonne, IL, 60439 (United States); Tittmann, Bernhard; Reinhardt, Brian [Pennsylvania State University, 212 Earth and Engr. Sciences Building, University Park, PA, 16802 (United States); Kohse, Gordon [Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139 (United States); Rempe, Joy [Rempe and Associates, LLC, 360 Stillwater, Idaho Falls, ID 83404 (United States); Villard, J.F. [Commissariat a l' energie atomique et aux energies alternatives, Centre d' etudes de Cadarache, 13108 Saint-Paul-lez-Durance (France)

    2015-07-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10{sup 21} n/cm{sup 2}. A multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET-ASI) program also provided initial support for this effort. This irradiation, which started in February 2014, is an instrumented lead test and real-time transducer performance data are collected along with temperature and neutron and gamma flux data. The irradiation is ongoing and will continue to approximately mid-2015. To date, very encouraging results have been attained as several transducers continue to operate under irradiation. (authors)

  6. Computer automation of ultrasonic testing. [inspection of ultrasonic welding

    Science.gov (United States)

    Yee, B. G. W.; Kerlin, E. E.; Gardner, A. H.; Dunmyer, D.; Wells, T. G.; Robinson, A. R.; Kunselman, J. S.; Walker, T. C.

    1974-01-01

    Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded.

  7. Mechanisation of ultrasonic testing in nuclear power plants

    International Nuclear Information System (INIS)

    Seifert, W.

    1979-01-01

    Mechanical ultrasonic testing devices should meet the following requirements: Remote-controlled or automatic guidance of the US test systems at the test site according to given test parameters; exact positioning of the test system at the test site; high start-up accuracy and reproducibility; access to test regions that are hardly accessible or inaccessible for manual inspection; reduction of the radiation exposure of the operating personnel, and short assembling and testing time. The manipulators developed according to these requirements permit meandering test courses of the US test system on the pressure vessel surface or circular or semicircular courses around the nozzles or pipes in order to test welds and pipe joints. Every movement of the test system is taken up by a transmitting apparatus. (orig./HP) [de

  8. Contact-free ultrasonic testing: applications to metrology and NDT

    International Nuclear Information System (INIS)

    Le Brun, A.

    1988-01-01

    In some cases classical ultrasonic testing is impossible because of adverse environment (high temperature, ionizing radiations, etc). Ultrasonic waves are created by laser impact and detected by electromagneto-acoustic transducers or laser interferometry. Association of ultrasonics generation by photoacoustic effect and reception by heterodyne interferometer is promising for the future [fr

  9. A study on Computer-controlled Ultrasonic Scanning Device

    International Nuclear Information System (INIS)

    Huh, H.; Park, C. S.; Hong, S. S.; Park, J. H.

    1989-01-01

    Since the nuclear power plants in Korea have been operated in 1979, the nondestructive testing (NDT) of pressure vessels and/or piping welds plays an important role for maintaining the safety and integrity of the plants. Ultrasonic method is superior to the other NDT method in the viewpoint of the detectability of small flaw and accuracy to determine the locations, sizes, orientations, and shapes. As the service time of the nuclear power plants is increased, the radiation level from the components is getting higher. In order to get more quantitative and reliable results and secure the inspector from the exposure to high radiation level, automation of the ultrasonic equipment has been one of the important research and development(R and D) subject. In this research, it was attempted to visualize the shape of flaws presented inside the specimen using a Modified C-Scan technique. In order to develop Modified C-Scan technique, an automatic ultrasonic scanner and a module to control the scanner were designed and fabricated. IBM-PC/XT was interfaced to the module to control the scanner. Analog signals from the SONIC MARK II were digitized by Analog-Digital Converter(ADC 0800) for Modified C-Scan display. A computer program has been developed and has capability of automatic data acquisition and processing from the digital data, which consist of maximum amplitudes in each gate range and locations. The data from Modified C-Scan results was compared with shape from artificial defects using the developed system. Focal length of focused transducer was measured. The automatic ultrasonic equipment developed through this study is essential for more accurate, reliable, and repeatable ultrasonic experiments. If the scanner are modified to meet to appropriate purposes, it can be applied to automation of ultrasonic examination of nuclear power plants and helpful to the research on ultrasonic characterization of the materials

  10. Research of the ultrasonic testing parts reconditioned by welding

    Directory of Open Access Journals (Sweden)

    C. Petriceanu

    2016-07-01

    Full Text Available The paper presents the results obtained following the nondestructive ultrasonic testing of crankpin shaft of a crankshaft that were reconditioned by welding. After the ultrasonic testing, the reconditioned samples were cut and subjected to visual testing and microstructure examination. When the results obtained following the nondestructive tests were analyzed, it was observed that the ultrasonic nondestructive testing method is an efficient way to determine the conformity of the areas that were reconditioned by welding.

  11. The effectiveness of chemical denture cleansers and ultrasonic device in biofilm removal from complete dentures

    Directory of Open Access Journals (Sweden)

    Patrícia Costa Cruz

    2011-12-01

    Full Text Available Adequate denture hygiene can prevent and treat infection in edentulous patients. They are usually elderly and have difficulty for brushing their teeth. OBJECTIVE: This study evaluated the efficacy of complete denture biofilm removal using chemical (alkaline peroxide-effervescent tablets, mechanical (ultrasonic and combined (association of the effervescent and ultrasonic methods. MATERIAL AND METHODS: Eighty complete denture wearers participated in the experiment for 21 days. They were distributed into 4 groups (n=20: (1 Brushing with water (Control; (2 Effervescent tablets (Corega Tabs; (3 Ultrasonic device (Ultrasonic Cleaner, model 2840 D; (4 Association of effervescent tablets and ultrasonic device. All groups brushed their dentures with a specific brush (Bitufo and water, 3 times a day, before applying their treatments. Denture biofilm was collected at baseline and after 21 days. To quantify the biofilm, the internal surfaces of the maxillary complete dentures were stained and photographed at 45º. The photographs were processed and the areas (total internal surface stained with biofilm quantified (Image Tool 2.02. The percentage of the biofilm was calculated by the ratio between the biofilm area multiplied by 100 and the total area of the internal surface of the maxillary complete denture. RESULTS: The Kruskal-Wallis test was used for comparison among groups followed by the Dunn multiple-comparison test. All tests were performed respecting a significance level of 0.05. Significant difference was found among the treatments (KW=21.18; P<0.001, the mean ranks for the treatments and results for Dunn multiple comparison test were: Control (60.9; Chemical (37.2; Mechanical (35.2 and Combined (29.1. CONCLUSION: The experimental methods were equally effective regarding the ability to remove biofilm and were superior to the control method (brushing with water. Immersion in alkaline peroxide and ultrasonic vibration can be used as auxiliary agents

  12. Ultrasonic testing of electron beam closure weld on pressure vessel

    International Nuclear Information System (INIS)

    Andrews, R.W.

    1975-01-01

    One of the special products manufactured at the General Electric Neutron Devices Department (GEND) is a small stainless steel vessel designed to hold a component under high pressure for long periods. The vessel is a thick-walled cylinder with a threaded receptacle into which a plug is screwed and welded after receiving the unit to be tested. The test cavity is then pressurized through a small diameter opening in the bottom and that opening is welded closed. When x-ray inspection techniques did not reveal defective welds at the threaded plug in a pressured vessel, occasional ''leakers'' occurred. With normal equipment tolerances, the electron beam spike tends to wander from the desired path, particularly at the root of the weld. Ultrasonic techniques were used to successfully inspect the weld. The testing technique is based on the observation that ultrasonic energy is reflected from the unwelded screw threads and not from the regions where the threads are completely fused together by welding. Any gas pore or any threaded region outside the weld bead can produce an echo. The units are rotated while the ultrasonic transducer travels in a direction parallel to the axis of rotation and toward the welded end. This produces a helical scan which is converted to a two-dimensional presentation in which incomplete welds can be noted. (U.S.)

  13. Mid-infrared pulsed laser ultrasonic testing for carbon fiber reinforced plastics.

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Watanabe, Makoto; Takekawa, Shunji; Yamawaki, Hisashi; Oguchi, Kanae; Enoki, Manabu

    2018-03-01

    Laser ultrasonic testing (LUT) can realize contactless and instantaneous non-destructive testing, but its signal-to-noise ratio must be improved in order to measure carbon fiber reinforced plastics (CFRPs). We have developed a mid-infrared (mid-IR) laser source optimal for generating ultrasonic waves in CFRPs by using a wavelength conversion device based on an optical parametric oscillator. This paper reports a comparison of the ultrasonic generation behavior between the mid-IR laser and the Nd:YAG laser. The mid-IR laser generated a significantly larger ultrasonic amplitude in CFRP laminates than a conventional Nd:YAG laser. In addition, our study revealed that the surface epoxy matrix of CFRPs plays an important role in laser ultrasonic generation. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Evaluation of Suitability of Non-Standardized Test Block for Ultrasonic Testing

    International Nuclear Information System (INIS)

    Kwon, Ho Young; Lim, Jong Ho; Kang, Sei Sun

    2000-01-01

    Standard Test Block(STB) for UT(Ultrasonic Testing) is a block approved by authoritative for material, shape and quality. STB is used for characteristic tests, sensitivity calibration and control of the time base range of UT inspection devices. The material, size and chemical components of STB should be strictly controlled to meet the related standards such as ASTM and JIS because it has an effect upon sensitivity, resolution and reproductivity of UT. The STBs which are not approved are sometimes used because the qualified STBs are very expensive. So, the purpose of this study is to survey the characteristics, quality and usability of Non-Standardized Test Blocks. Non-Standardized Test Blocks did not meet the standard requirements in size or chemical components, and ultrasonic characteristics. Therefore if the Non-Standardized Test Blocks are used without being tested, it's likely to cause errors in detecting the location and measuring the size of the defects

  15. Computer simulation of ultrasonic testing for aerospace vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, H [National Institute for Materials Science, 1-2-1, Sengen, 305-0047 Tsukuba (Japan); Moriya, S; Masuoka, T [Japan Aerospace Exploration Agency, 1 Koganesawa, Kimigawa, 981-1525 Kakuda (Japan); Takatsubo, J, E-mail: yamawaki.hisashi@nims.go.jp [Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1-1-1 Umezono, 305-8568 Tsukuba (Japan)

    2011-01-01

    Non-destructive testing techniques are developed to secure reliability of aerospace vehicles used repetitively. In the case of cracks caused by thermal stress on walls in combustion chambers of liquid-fuel rockets, it is examined by ultrasonic waves visualization technique developed in AIST. The technique is composed with non-contact ultrasonic generation by pulsed-laser scanning, piezoelectric transducer for the ultrasonic detection, and image reconstruction processing. It enables detection of defects by visualization of ultrasonic waves scattered by the defects. In NIMS, the condition of the detection by the visualization is investigated using computer simulation for ultrasonic propagation that has capability of fast 3-D calculation. The simulation technique is based on finite-difference method and two-step elastic wave equations. It is reported about the investigation by the calculation, and shows availability of the simulation for the ultrasonic testing technique of the wall cracks.

  16. Methodic recommendations on ultrasonic testing of pipeline austenitic butt joints

    International Nuclear Information System (INIS)

    Grebennik, V.S.; Lantukh, V.M.; Tajts, M.Z.; Ermolov, I.N.; Volkov, A.S.; Vyatskov, I.A.; Kesler, N.A.; Shchedrin, I.F.

    1989-01-01

    Recommendations for the application of ultrasonic testing of austenitic welded joints of the Du 500 pipelines with the walls 32-34 mm thick made of steel Kh18N10T are developed. The optimal values of the main parameters of ultrasonic testing are determined experimentally. Principles of calculation of the optimal parameters are considered. 1 ref.; 4 figs

  17. Automated ultrasonic testing--capabilities, limitations and methods

    International Nuclear Information System (INIS)

    Beller, L.S.; Mikesell, C.R.

    1977-01-01

    The requirements for precision and reproducibility of ultrasonic testing during inservice inspection of nuclear reactors are both quantitatively and qualitatively more severe than most current practice in the field can provide. An automated ultrasonic testing (AUT) system, which provides a significant advancement in field examination capabilities, is described. Properties of the system, its application, and typical results are discussed

  18. Development of phased-array ultrasonic testing probe

    International Nuclear Information System (INIS)

    Kawanami, Seiichi; Kurokawa, Masaaki; Taniguchi, Masaru; Tada, Yoshihisa

    2001-01-01

    Phased-array ultrasonic testing was developed for nondestructive evaluation of power plants. Phased-array UT scans and focuses an ultrasonic beam to inspect areas difficult to inspect by conventional UT. We developed a highly sensitive piezoelectric composite, and designed optimized phased-array UT probes. We are applying our phased-array UT to different areas of power plants. (author)

  19. Development of automatic ultrasonic testing system and its application

    International Nuclear Information System (INIS)

    Oh, Sang Hong; Matsuura, Toshihiko; Iwata, Ryusuke; Nakagawa, Michio; Horikawa, Kohsuke; Kim, You Chul

    1997-01-01

    The radiographic testing (RT) has been usually applied to a nondestructive testing, which is carried out on purpose to detect internal defects at welded joints of a penstock. In the case that RT could not be applied to, the ultrasonic testing (UT) was performed. UT was generally carried out by manual scanning and the inspections data were recorded by the inspector in a site. So, as a weak point, there was no objective inspection records correspond to films of RT. It was expected that the automatic ultrasonic testing system by which automatic scanning and automatic recording are possible was developed. In this respect, the automatic ultrasonic testing system was developed. Using newly developed the automatic ultrasonic testing system, test results to the circumferential welded joints of the penstock at a site were shown in this paper.

  20. Steady reconstruction process - development, testing and comparison in ultrasonic testing

    International Nuclear Information System (INIS)

    Langenberg, K.J.; Schmitz, V.

    1986-01-01

    The fault parameters can be extracted from a few data of high quality in steady test procedures. The boundary conditions for the successful use of such a process were researched and found, so that by using theoretical models for the elasto-dynamic interaction of fault and ultrasonics, a concentration of wavefronts instead of resonances and a wide band careful collection of data makes a physical interpretation in the form of specific geometry torques possible. Models of the interaction of ultrasonics and faults for two fault geometries (cracks and pores) were developed which permit the calculation of A scans of any bandwidth and with any angle of scatter for the direct and mode converted parts of the elastic ultrasonic scatter wave. The curved pressure and shear waves including the mode converted bending fields over an angular range of 360deg were experimentally recorded. Their agreement including the additional wavefronts caused by the close field of the crack bending field is close. Classification of torques is done on two examples (crack, cylinder) for evaluation purposes. It was found that a classification was possible according to the sign of the a 1 polynomial coefficient. (orig./HP) [de

  1. Rail flaw sizing using conventional and phased array ultrasonic testing.

    Science.gov (United States)

    2012-12-01

    An approach to detecting and characterizing internal defects in rail through the use of phased array ultrasonic testing has shown the potential to reduce the risk of missed defects and improve transverse defect characterization. : Transportation Tech...

  2. Ultrasonic inspection for testing the PWR fuel rod endplug welds

    International Nuclear Information System (INIS)

    Pillet, C.; Destribats, M.T.; Papezyk, F.

    1976-01-01

    A method of ultrasonic testing with local immersion and transversal waves was developed. It is possible to detect defects as the lacks of fusion and penetration and porosity in the PWR fuel rod endplug welds [fr

  3. Investigation of energy dissipation in meat with an experimental ultrasonic device

    International Nuclear Information System (INIS)

    Stasiak, D.M.; Dolatowski, Z.

    2000-01-01

    The phenomena concomitant with acoustic energy dissipation in meat were studied. An experimental ultrasonic device (25-37 kHz, 2 W/square cm) was applied. Measurements of meat temperature in ultrasonic field showed the temperature rise significant for technological reasons. In this respect the changes in water absorption ability and acidity of meat were also examined

  4. Ultrasonic testing using time of flight diffraction technique (TOFD)

    International Nuclear Information System (INIS)

    Khurram Shahzad; Ahmad Mirza Safeer Ahmad; Muhammad Asif Khan

    2009-04-01

    This paper describes the ultrasonic testing using Time Flight Diffraction (TOFD) Technique for welded samples having different types and sizes of defects. TOFD is a computerized ultrasonic system, able to scan, store and evaluate indications in terms of location, through thickness and length in a more easy and convenient. Time of Flight Diffraction Technique (TOFD) is more fast and easy technique for ultrasonic testing as we can examine a weld i a single scan along the length of the weld with two probes known as D-scan. It shows the image of the complete weld with the defect information. The examinations were performed on carbon steel samples used for ultrasonic testing using 70 degree probes. The images for different type of defects were obtained. (author)

  5. Reproducibility problems of in-service ultrasonic testing results

    International Nuclear Information System (INIS)

    Honcu, E.

    1974-01-01

    The reproducibility of the results of ultrasonic testing is the basic precondition for its successful application in in-service inspection of changes in the quality of components of nuclear power installations. The results of periodic ultrasonic inspections are not satisfactory from the point of view of reproducibility. Regardless, the ultrasonic pulse-type method is suitable for evaluating the quality of most components of nuclear installations and often the sole method which may be recommended for inspection with regard to its technical and economic aspects. (J.B.)

  6. A study on the repeatability of ultrasonic testing data

    International Nuclear Information System (INIS)

    Yoshimura, Seiichi; Fukumoto, Hiroshi

    1980-01-01

    Reliability improvement of ultrasonic testing data is strongly desired in ultrasonic testing working of nuclear power plants. This paper deals with the problems of the testing by the manual and the remote control apparatus, and with the factors which influence the repeatability of ultrasonic testing data. Following results are found in it. (1) In the testing by the manual, working time and posture influence the repeatability of testing data. (2) Glycerin in suitable for the couplant in the respect of the repeatability of testing data. In the case of using machine oil, the pressure to the probe necessitates to be over 0.2 kg/cm 2 . (3) In the testing by the remote control apparatus, working time, working environment and defect position does not influence the repeatability of testing data. (author)

  7. Performance demonstration experience for reactor pressure vessel shell ultrasonic testing

    International Nuclear Information System (INIS)

    Zado, V.

    1998-01-01

    The most ultrasonic testing techniques used by many vendors for pressurized water reactor (PWR) examinations were based on American Society of Mechanical Engineers 'Boiler and Pressurized Vessel Code' (ASME B and PV Code) Sections XI and V. The Addenda of ASME B and PV Code Section XI, Edition 1989 introduced Appendix VIII - 'Performance Demonstration for Ultrasonic Examination Systems'. In an effort to increase confidence in performance of ultrasonic testing of the operating nuclear power plants in United States, the ultrasonic testing performance demonstration examination of reactor vessel welds is performed in accordance with Performance Demonstration Initiative (PDI) program which is based on ASME Code Section XI, Appendix VIII requirements. This article provides information regarding extensive qualification preparation works performed prior EPRI guided performance demonstration exam of reactor vessel shell welds accomplished in January 1997 for the scope of Appendix VIII, Supplements IV and VI. Additionally, an overview of the procedures based on requirements of ASME Code Section XI and V in comparison to procedure prepared for Appendix VIII examination is given and discussed. The samples of ultrasonic signals obtained from artificial flaws implanted in vessel material are presented and results of ultrasonic testing are compared to actual flaw sizes. (author)

  8. Ultrasonic NDE and mechanical testing of fiber placement composites

    Science.gov (United States)

    Liu, Zhanjie; Fei, Dong; Hsu, David K.; Dayal, Vinay; Hale, Richard D.

    2002-05-01

    A fiber placed composite, especially with fiber steering, has considerably more complex internal structure than a laminate laid up from unidirectional prepreg tapes. In this work, we performed ultrasonic imaging of ply interfaces of fiber placed composite laminates, with an eye toward developing a tool for evaluating their quality. Mechanical short-beam shear tests were also conducted on both nonsteered and steered specimens to examine their failure behavior and its relationship to the structural defects indicated by ultrasonic imaging.

  9. Use of an ultrasonic device for the determination of elastic modulus of dentin.

    Science.gov (United States)

    Miyazaki, Masashi; Inage, Hirohiko; Onose, Hideo

    2002-03-01

    The mechanical properties of dentin substrate are one of the important factors in determining bond strength of dentin bonding systems. The purpose of this study was to determine the elastic modulus of dentin substrate with the use of an ultrasonic device. The dentin disks of about 1 mm thickness were obtaining from freshly extracted human third molars, and the dentin disk was shaped in a rectangular form with a line diamond point. The size and weight of each specimen was measured to calculate the density of the specimen. The ultrasonic equipment employed in this study was composed of a Pulser-Receiver (Model 5900PR, Panametrics), transducers (V155, V156, Panametrics) and an oscilloscope. The measured two-way transit time through the dentin disk was divided by two to account for the down-and-back travel path, and then multiplied by the velocity of sound in the test material. Measuring the longitudinal and share wave sound velocity determine elastic modulus. The mean elastic modulus of horizontally sectioned specimens was 21.8 GPa and 18.5 GPa for the vertically sectioned specimens, and a significant difference was found between the two groups. The ultrasonic method used in this study shows considerable promise for determination of the elastic modulus of the tooth substrate.

  10. Considerations for ultrasonic testing application for on-orbit NDE

    Science.gov (United States)

    Koshti, Ajay M.

    2015-04-01

    The paper addresses some on-orbit nondestructive evaluation (NDE) needs of NASA for International Space Station (ISS). The presentation gives NDE requirements for inspecting suspect damage due to micro-meteoroids and orbital debris (MMOD) impact on the pressure wall of the ISS. This inspection is meant to be conducted from inside of the ISS module. The metallic wall of the module has a fixed wall thickness but also has integral orthogrid ribs for reinforcement. Typically, a single MMOD hit causes localized damage in a small area causing loss of material similar to pitting corrosion, but cracks may be present too. The impact may cause bulging of the wall. Results of the ultrasonic and eddy current demonstration scans on test samples are provided. The ultrasonic technique uses shear wave scans to interrogate the localized damage area from the surrounding undamaged area. The scanning protocol results in multiple scans, each with multiple "vee" paths. A superimposition and mosaic of the three-dimensional ultrasonic data from individual scans is desired to create C-scan images of the damage. This is a new data reduction process which is not currently implemented in state-of-art ultrasonic instruments. Results of ultrasonic scans on the simulated MMOD damage test plates are provided. The individual C-scans are superimposed manually creating mosaic of the inspection. The resulting image is compared with visibly detected damage boundaries, X-ray images, and localized ultrasonic and eddy current scans for locating crack tips to assess effectiveness of the ultrasonic scanning. The paper also discusses developments needed in improving ergonomics of the ultrasonic testing for on-orbit applications.

  11. Ultrasonic creeping wave test technique for dissimilar metal weld

    International Nuclear Information System (INIS)

    Yuan Jianzhong; Shang Junmin; Yan Zhi; Yuan Guanghua; Zhang Guofeng

    2009-01-01

    To solve the problem encountered in the defect inspection of the surface and near-surface of dissimilar metal weld effectively, a new ultrasonic creeping wave test technique is developed. In this paper, the test technique and its experimental verification are mainly described. The verification results show that linear defect, which is similar to the defect found in liquid penetrant test, on the surface and near-surface of dissimilar metal weld can be detected effectively, by using ultrasonic creeping wave test technique. And the depth, length and height of the defect can be determined easily. The effective covering depth of ultrasonic creeping wave test technique will reach 0-9 mm. Meanwhile, the planar defect, with equivalent area more than 3 mm 2 , existed in welds can be detected efficiently. So, accurate measurement, which self height dimension of planar defect is above 2 mm, will be realized. (authors)

  12. Appearance test device

    International Nuclear Information System (INIS)

    Watanabe, Tadao.

    1995-01-01

    The device of the present invention photographs glass solidification products of high level radioactive wastes by a camera to inspect the state for the surface of the glass solidification products. Namely, illumination light is irradiated to the surface of a material to be tested containing radioactive substances to photograph the surface to be tested and the photographed images are displayed. A photographing unit enhousing an illumination light source and the camera for photographing the surface to be detected is movable in the longitudinal direction of the object to be detected. A first reflector is disposed for reflecting the illumination light from the light source in a horizontal direction intersecting the longitudinal direction described above and reflecting the reflection light from the object to be tested to the camera. A second reflector is disposed to a position opposing to the end face of the object to be detected for entering the illumination light from the first reflector to the end face of the object to be tested and reflecting the reflection light from the end face of the object to be detected to the first reflector. In a device thus composed, the upper and lower end faces of the object to be tested can be illuminated and photographed without facing the photographing unit to the object to be inspected. (I.S.)

  13. Relationship between ultrasonic pulse velocity test result and ...

    African Journals Online (AJOL)

    Ultrasonic Pulse Velocity test result showed an inverse relationship (of -0.935) with the crushed concrete compressive strength. Correlation test, multiple regression analysis, graphs and visual inspection were used to analyze the results. The conclusion drawn is that there exists a relationship between UPV test results and ...

  14. A study on the couplant effects in contact ultrasonic testing

    International Nuclear Information System (INIS)

    Lee, J. K.; Kim, H. C.; Lee, S. S.; Kim, Young H.

    1997-01-01

    The amplitude of the back-wall echoes depend on the reflection coefficient on the interface between transducer and test material in the contact pulse-echo ultrasonic testing. The couplant is used to transmit the ultrasonic energy through the interface, and has an influence on the amplitude of the pulse-echo signal. To investigate the couplant effect on the pulse-echo ultrasonic testing, the back-wall echoes are measured by using various couplants made of water and glycerine in a carbon and an austenitic stainless steel specimens. The amplitude of the first back-wall echo and the apparent attenuation coefficient increase with the acoustic impedance of couplant. The couplant having higher value of transmission coefficient is more effective for flaws detection, and the reflection coefficient should be known to measure the attenuation coefficient of test material.

  15. A 3-DOF SOI MEMS ultrasonic energy harvester for implanted devices

    International Nuclear Information System (INIS)

    Fowler, A G; Moheimani, S O R; Behrens, S

    2013-01-01

    This paper reports the design and testing of a microelectromechanical systems (MEMS) energy harvester that is designed to harvest electrical energy from an external source of ultrasonic waves. This mechanism is potentially suited to applications including the powering of implanted devices for biomedical applications. The harvester employs a novel 3-degree of freedom design, with electrical energy being generated from displacements of a proof mass via electrostatic transducers. A silicon-on-insulator MEMS process was used to fabricate the device, with experimental characterization showing that the harvester can generate 24.7 nW, 19.8 nW, and 14.5 nW of electrical power respectively through its x-, y-, and z-axis vibrational modes

  16. Imperfection detection probability at ultrasonic testing of reactor vessels

    International Nuclear Information System (INIS)

    Kazinczy, F. de; Koernvik, L.Aa.

    1980-02-01

    The report is a lecture given at a symposium organized by the Swedish nuclear power inspectorate on February 1980. Equipments, calibration and testing procedures are reported. The estimation of defect detection probability for ultrasonic tests and the reliability of literature data are discussed. Practical testing of reactor vessels and welded joints are described. Swedish test procedures are compared with other countries. Series of test data for welded joints of the OKG-2 reactor are presented. Future recommendations for testing procedures are made. (GBn)

  17. Testing of electron beam welding by ultrasonic transducers

    International Nuclear Information System (INIS)

    Touffait, A.-M.; Roule, M.; Destribats, M.-T.

    1978-01-01

    Focalized ultrasonic testing is well adapted to the study of electron beam welding. This type of welding leads to narrow weld beads and to small dimension testing zones. Focalized transducers can be used enabling very small defects to be detected [fr

  18. Development status of ultrasonic test techniques for cast stainless steel

    International Nuclear Information System (INIS)

    Nishikawa, Yoshito

    2015-01-01

    Ultrasonic testing has been thought to be difficult to apply to cast stainless steel which is used as the material for the main coolant pipes in pressurized water reactors (PWRs). An ultrasonic testing technique using large aperture twin crystal transducers was developed in INSS for application to inspection of the main coolant pipes. The method was evaluated in an application to detect circumferential and axial defects in the cast stainless steel pipes. It was found that (1) the defects could be detected which had a depth that was so small that their evaluation was not required; and (2) depth sizing and length sizing of detected defects were also possible. (author)

  19. Phased array ultrasonic testing of dissimilar metal pipe weld joints

    International Nuclear Information System (INIS)

    Rajeev, J.; Sankaranarayanan, R.; Sharma, Govind K; Joseph, A.; Purnachandra Rao, B.

    2015-01-01

    Dissimilar metal weld (DMW) joints made of stainless steel and ferritic steel is used in nuclear industries as well as oil and gas industries. These joints are prone to frequent failures which makes the non-destructive testing of dissimilar metal weld joints utmost important for reliable and safe operation of nuclear power plants and oil and gas industries. Ultrasonic inspection of dissimilar metal weld joints is still challenging due to the inherent anisotropic and highly scattering nature. Phased array ultrasonic testing (PAUT) is an advanced technique and its capability has not been fully explored for the inspection of dissimilar metal welds

  20. Signal Compression in Automatic Ultrasonic testing of Rails

    Directory of Open Access Journals (Sweden)

    Tomasz Ciszewski

    2007-01-01

    Full Text Available Full recording of the most important information carried by the ultrasonic signals allows realizing statistical analysis of measurement data. Statistical analysis of the results gathered during automatic ultrasonic tests gives data which lead, together with use of features of measuring method, differential lossy coding and traditional method of lossless data compression (Huffman’s coding, dictionary coding, to a comprehensive, efficient data compression algorithm. The subject of the article is to present the algorithm and the benefits got by using it in comparison to alternative compression methods. Storage of large amount  of data allows to create an electronic catalogue of ultrasonic defects. If it is created, the future qualification system training in the new solutions of the automat for test in rails will be possible.

  1. Method and system having ultrasonic sensor movable by translation device for ultrasonic profiling of weld samples

    Science.gov (United States)

    Panyard, James; Potter, Timothy; Charron, William; Hopkins, Deborah; Reverdy, Frederic

    2010-04-06

    A system for ultrasonic profiling of a weld sample includes a carriage movable in opposite first and second directions. An ultrasonic sensor is coupled to the carriage to move over the sample as the carriage moves. An encoder determines the position of the carriage to determine the position of the sensor. A spring is connected at one end of the carriage. Upon the carriage being moved in the first direction toward the spring such that the carriage and the sensor are at a beginning position and the spring is compressed the spring decompresses to push the carriage back along the second direction to move the carriage and the sensor from the beginning position to an ending position. The encoder triggers the sensor to take the ultrasonic measurements of the sample when the sensor is at predetermined positions while the sensor moves over the sample between the beginning and positions.

  2. Automation of ultrasonic testing of turbine disk billets

    International Nuclear Information System (INIS)

    Gorodkov, V.E.; Domashevskij, B.N.; Pron', N.I.; Tkachenko, V.A.

    1984-01-01

    cations of ultrasonic facility for automation of testing turbine disk billets of 25Kh2PMFA and 34KhM1A steels are considered. The operating principle and the design of ''Disk-1'' facility are described, its test results are presented. It is shown that the facility increases the test efficiency five times, enables to estimate dimensions of revealed defect with regard to the quality of acoustic contact, thus facilitating the work of personnel and improving the test quality

  3. Benefits of the Multiple Echo Technique for Ultrasonic Thickness Testing

    Energy Technology Data Exchange (ETDEWEB)

    Elder, J.; Vandekamp, R.

    2011-02-10

    Much effort has been put into determining methods to make accurate thickness measurements, especially at elevated temperatures. An accuracy of +/- 0.001 inches is typically noted for commercial ultrasonic thickness gauges and ultrasonic thickness techniques. Codes and standards put limitations on many inspection factors including equipment, calibration tolerance and temperature variations. These factors are important and should be controlled, but unfortunately do not guarantee accurate and repeatable measurements in the field. Most technicians long for a single technique that is best for every situation, unfortunately, there are no 'silver bullets' when it comes to nondestructive testing. This paper will describe and discuss some of the major contributors to measurement error as well as some advantages and limitations of multiple echo techniques and why multiple echo techniques should be more widely utilized for ultrasonic thickness measurements.

  4. Ultrasonic testing of pre-turned contours for large components made of ductile iron

    International Nuclear Information System (INIS)

    Schmitte, Till; Chichkov, Nikolai; Nemitz, Oliver; Orth, Thomas; Hocks, Heinrich Jr.; Rusche, Sascha; Opalla, Dirk; Frank, Joerg

    2015-01-01

    In the ultrasonic testing of large, thick-walled components made of ductile iron partial acoustic paths of several meters are needed. Considered here are cylindrical components such as the body of CASTOR containers with diameters 2-3 m, a height of up to 6 m and a wall thickness of 500 mm. So far, an automated technique for this is not available, therefore such components are checked in a complex and lengthy process by manual ultrasonic testing. The development and design of the testing by means of simulations and the realization as a mobile testing device are topics of this paper. Measurements on a reference body with test reflectors in different depths are presented and discussed. [de

  5. Imaging techniques for ultrasonic testing; Bildgebende Verfahren fuer die Ultraschallpruefung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [German] Dieser Seminarband enthaelt 16 Vortraege mit folgenden Themen: 1. Von der Bildgebung bis zur Quantifizierung - Ultraschallverfahren in der medizinischen Diagnostik; 2. SAFT, TOFD, Phased Array

  6. Through Thickness Ultrasonic Testing and Its Use in Characterising ...

    African Journals Online (AJOL)

    The stiffness coefficients of different types of limestone were determined using the through thickness ultrasonic test and measurements of size and weight, and the results obtained verified using aluminium specimens of known mechanical properties. The values of density and stiffness coefficients obtained for the various ...

  7. Ultrasonic Testing of NIF Amplifier FAU Top Plates

    International Nuclear Information System (INIS)

    Chinn, D.J.; Huber, R.D.; Haskins, J.J.; Rodriguez, J.A.; Souza, P.R.; Le, T.V.

    2002-01-01

    A key component in the National Ignition Facility (NIF) laser optic system is the amplifier frame assembly unit (FAU). The cast aluminum top plate that supports the FAU is required to withstand loads that would occur during an earthquake with a recurrence period of 1000 years. The stringent seismic requirements placed on the FAU top plate induced a study of the cast aluminum material used in the top plate. Ultrasonic testing was used to aid in characterizing the aluminum material used in the plates. This report documents the work performed using contact ultrasonic testing to characterize the FAU top plate material. The ultrasonic work reported here had 3 objectives: (1) inspect the plate material before cyclic testing conducted at the Pacific Earthquake Engineering Research Center (PEER); (2) determine the overall quality of individual plates; and (3) detect large defects in critical areas of individual plates. Section III, ''Pre-cyclic test inspection'', describes work performed in support of Objective 1. Section IV, ''Ultrasonic field measurements'', describes work performed in support of Objectives 2 and 3

  8. Optimization of ultrasonic tube testing with concentric transducers

    International Nuclear Information System (INIS)

    Dufayet, J.-P.; Gambin, Raymond.

    1978-01-01

    In order to test tubes by ultrasonics without rotation, concentric transducers can be used with conical mirrors to detect transverse defects and with helical shaped mirrors to detect longitudinal defects. Further optimization studies have been carried out in order to bring the system highly operational. The respective advantages brought by the rotating screen or by our especially designed sectorial transducers are discussed [fr

  9. New generation of digitized electronics in ultrasonic testing

    International Nuclear Information System (INIS)

    Rauschev, R.

    1985-01-01

    A fully digitized system of ultrasonic test electronics is described. Directly behind the transducer itself the instrumentation is operating completely digitally in order to obtain both higher accuracy and reproducibility and easier handling by the operator. Parameters can be stored and recalled for testing under equal conditions at a later date. As an example the application for high quality nuclear tube testing is explained in detail

  10. Design and analysis of ultrasonic monaural audio guiding device for the visually impaired.

    Science.gov (United States)

    Kim, Keonwook; Kim, Hyunjai; Yun, Gihun; Kim, Myungsoo

    2009-01-01

    The novel Audio Guiding Device (AGD) based on the ultrasonic, which is named as SonicID, has been developed in order to localize point of interest for the visually impaired. The SonicID requires the infrastructure of the transmitters for broadcasting the location information over the ultrasonic carrier. The user with ultrasonic headset receives the information with variable amplitude upon the location and direction of the user due to the ultrasonic characteristic and modulation method. This paper proposes the monaural headset form factor of the SonicID which improves the daily life of the beneficiary compare to the previous version which uses the both ears. Experimental results from SonicID, Bluetooth, and audible sound show that the SonicID demonstrates comparable localization performance to the audible sound with silence to others.

  11. Determination of elastic modulus of ceramics using ultrasonic testing

    Science.gov (United States)

    Sasmita, Firmansyah; Wibisono, Gatot; Judawisastra, Hermawan; Priambodo, Toni Agung

    2018-04-01

    Elastic modulus is important material property on structural ceramics application. However, bending test as a common method for determining this property require particular specimen preparation. Furthermore, elastic modulus of ceramics could vary because it depends on porosity content. For structural ceramics industry, such as ceramic tiles, this property is very important. This drives the development of new method to improve effectivity or verification method as well. In this research, ultrasonic testing was conducted to determine elastic modulus of soda lime glass and ceramic tiles. The experiment parameter was frequency of probe (1, 2, 4 MHz). Characterization of density and porosity were also done for analysis. Results from ultrasonic testing were compared with elastic modulus resulted from bending test. Elastic modulus of soda-lime glass based on ultrasonic testing showed excellent result with error 2.69% for 2 MHz probe relative to bending test result. Testing on red and white ceramic tiles were still contained error up to 41% and 158%, respectively. The results for red ceramic tile showed trend that 1 MHz probe gave better accuracy in determining elastic modulus. However, testing on white ceramic tile showed different trend. It was due to the presence of porosity and near field effect.

  12. Development of Hardware and Software for Automated Ultrasonic Testing

    International Nuclear Information System (INIS)

    Choi, Sung Nam; Lee, Hee Jong; Yang, Seung Ok

    2012-01-01

    Nondestructive testing (NDT) for the construction and operating of NPPs plays an important role in confirming the integrity of the NPPs. Especially, Automated ultrasonic testing (AUT) is one of the primary nondestructive examination methods for in-service inspection of the welding parts in major components in NPPs. AUT is a reliable nondestructive testing because the data of AUT are saved and reviewed with other examiners. Korea Hydro and Nuclear Power-Central Research Institute (KHNP-CRI) has developed an automated ultrasonic testing (AUT) system based on a high speed pulser-receiver. In combination with the designed software and hardware architecture, this new system permits user configurations for a wide range of user-specific applications through fully automated inspections using compact portable systems with up to eight channels. This paper gives an overview of hardware (H/W) and software (S/W) for the AUT system to inspect welds in NPPs

  13. Very high cycle fatigue testing of concrete using ultrasonic cycling

    Energy Technology Data Exchange (ETDEWEB)

    Karr, Ulrike; Schuller, Reinhard; Fitzka, Michael; Mayer, Herwig [Univ. of Natural Resources and Life Sciences, Vienna (Austria). Inst. of Physics and Materials Science; Denk, Andreas; Strauss, Alfred [Univ. of Natural Resources and Life Sciences, Vienna (Austria)

    2017-06-01

    The ultrasonic fatigue testing method has been further developed to perform cyclic compression tests with concrete. Cylindrical specimens vibrate in resonance at a frequency of approximately 20 kHz with superimposed compressive static loads. The high testing frequency allows time-saving investigations in the very high cycle fatigue regime. Fatigue tests were carried out on ''Concrete 1'' (compressive strength f{sub c} = 80 MPa) and ''Concrete 2'' (f{sub c} = 107 MPa) under purely compressive loading conditions. Experiments at maximum compressive stresses of 0.44 f{sub c} (Concrete 1) and 0.38 f{sub c} (Concrete 2) delivered specimen failures above 109 cycles, indicating that no fatigue limit exists for concrete below one billion load cycles. Resonance frequency, power required to resonate the specimen and second order harmonics of the vibration are used to monitor fatigue damage in situ. Specimens were scanned by X-ray computed tomography prior to and after testing. Fatigue cracks were produced by ultrasonic cycling in the very high cycle fatigue regime at interfaces of grains as well as in cement. The possibilities as well as limitations of ultrasonic fatigue testing of concrete are discussed.

  14. Stand for visual ultrasonic testing of spent fuel

    International Nuclear Information System (INIS)

    Czajkowski, W.; Borek-Kruszewska, E.

    2001-01-01

    A stand for visual and ultrasonic testing of spent fuel, constructed under Strategic Governmental Programme for management of spent fuel and radioactive waste, is presented in the paper. The stand, named 'STEND-1', built up at the Institute of Atomic Energy in Swjerk, is appointed for underwater visual testing of spent fuel elements type MR6 and WWR by means of TV-CCD camera and image processing system and for ultrasonic scanning of external surface of these elements by means of video scan immersion transducer and straight UHT connector. 'STEND-1' is built using flexible in use, high-tensile, anodized aluminum profiles. All the profiles feature longitudinal grooves to accommodate connecting elements and for the attachment of accessories at any position. They are also characterised by straight-through core bores for use with standard fastening elements and to accommodate accessory components. Stand, equipped with automatic control and processing system based on personal computer, may be manually or automatically controlled. Control system of movements of the camera in the vertical axis and rotational movement of spent fuel element permits to fix chosen location of fuel element with accuracy better than 0.1 mm. High resolution of ultrasonic method allows to record damages of outer surface of order 0.1 mm. The results of visual testing of spent fuel are recorded on video tape and then may be stored on the hard disc of the personal computer and presented in shape of photo or picture. Only selected damage surfaces of spent fuel elements are tested by means of ultrasonic scanning. All possibilities of the stand and results of visual testing of spent fuel type WWR are presented in the paper. (author)

  15. Assessment of Aluminum FSW Joints Using Ultrasonic Testing

    Directory of Open Access Journals (Sweden)

    Adamus K.

    2017-12-01

    Full Text Available The paper concerns aluminum joints made using friction stir welding. Although in the aerospace industry there is a tendency to replace metal components with composites, aluminum continues to be a valuable material. Its share in the aircraft structures is the biggest among all structural metals. Lots of aluminum components are made of sheets and most of them require joining. Friction stir welding is a relatively new joining technology, particularly with regard to the sheets having a thickness of 1 mm or lower. The paper is dedicated to non-destructive testing of such joints using ultrasonic inspection. It was found that ultrasonic testing allows for distinguishing between joints without material discontinuities, joint with material discontinuities at the advancing side and joint with discontinuities extending through the whole width of the stir zone. During research only horizontally aligned defects were taken into account.

  16. Cordless ultrasonic dissector versus advanced bipolar vessel sealing device for laparoscopic ovariectomy in dogs

    NARCIS (Netherlands)

    Spillebeen, Anneleen L; Janssens, Sara S D S; Thomas, Rachel E; Kirpensteijn, Jolle; van Nimwegen, Sebastiaan A

    OBJECTIVE: To compare Sonicision cordless ultrasonic dissector (SCUD) to LigaSure vessel sealing device (LVSD) for laparoscopic ovariectomy (Lap OVE) in dogs. STUDY DESIGN: Randomized, paired prospective clinical trial. ANIMALS: Client-owned dogs (n = 22) presented for elective Lap OVE. METHODS:

  17. Characterization of the ultrasonic welding process in the production of women's health devices

    International Nuclear Information System (INIS)

    Morales Elizondo, Jenniffer

    2014-01-01

    The characterization of the ultrasonic welding process in the area of women's health is performed to determine appropriate levels for the critical variables of the process to guarantee the quality specifications of the devices. The handle of the product A is detached. The assembly was made under pressure. Available technologies have been studied to comply with the regulations of medical industry to propose a change in process to a product B. The ultrasonic technology is used to weld the handle of the device to prevent the release of the two parts of the handle of the medical device. A variable characterization process was performed to determine which variables are critical to the process and define the operation parameters of ultrasonic welding. A number of designs of experiments is carried out, first the parameters behavior of the equipment is evaluated to analyze which have greater influence on the quality of the weld. A full factorial design was developed with all process input variables and input variables that are significant was performed another series of designs of experiments to determine the parameters of the process.The conclusion for the ultrasonic welding process in the product B has been that the critical variables or that have had a greater influence on the quality and appearance in experienced designs are: pressure and soldier collapse. The process of ultrasonic welded cycle has started to arrive at the value of driving force that tells the computer. The input variable is recommended to be the lowest possible to weld components using the ordering of particles product of ultrasonic welded avoiding compression component. (author) [es

  18. Standard-free Pressure Measurement by Ultrasonic Interferometry in a Multi-Anvil Device

    Science.gov (United States)

    Mueller, H. J.; Lathe, C.; Schilling, F. R.; Lauterjung, J.

    2002-12-01

    A key question to all high pressure research arises from the reliability of pressure standards. There is some indication and discussion of an uncertainty of 10-20% for higher pressures in all standards. Simultaneous and independent investigation of the dynamical (ultrasonic interferometry of elastic wave velocities) and static (XRD-measurement of the pressure-induced volume decline) compressibility on a sample reveal the possibility of a standard-free pressure calibration (see Getting, 1998) and, consequently an absolute pressure measurement. Ultrasonic interferometry is used to measure velocities of elastic compressional and shear waves in the multi-anvil high pressure device MAX80 at HASYLAB Hamburg enabling simultaneous XRD and ultrasonic experiments. Two of the six anvils were equipped with overtone polished lithium niobate transducers of 33.3 MHz natural frequency, for generation and detection of ultrasonic waves with a frequency sweep between 5 and 55 MHz. Different buffer - reflector combinations were tested to optimize the critical interference between both sample echoes. NaCl powder of 99.5 % purity (analytical grade by Merck) was used as starting material for manufacturing the samples used as pressure calibrant after Decker (1971). The medium grain size was 50 μm. The powder was pressed to a crude sample cylinder of 10 mm diameter and a length of 20 mm using a load of 6 tons resulting in an effective pressure of 0.25 to 0.3 GPa. The millimeter sized samples (diameter 2.4 mm and 1.6 mm length for 6 mm anvil truncation and diameter 3.1 mm and 1.1 mm length for 3.5 mm anvil truncation) for the high pressure experiments were shaped with a high-precision (+/- 0.5 μm) cylindrical grinding machine and polished at the front faces. From the ultrasonic wave velocity data we calculated the compressibility of NaCl. This requires in situ density data. Therefore the sample deformation during the high pressure experiments was analyzed in detail and the results were

  19. Ultrasonic test of highly stressed gear shafts

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, T. [Siemens AG, Power Generation, KWU, Muelheim (Germany); Heinrich, W. [Siemens AG, Power Generation, KWU, Berlin (Germany); Achtzehn, J. [Siemens AG, Power Generation, ICVW, Erlangen (Germany); Hensley, H. [Siemens Power Generation (Germany)

    1998-12-31

    In the power plant industry, gears are used for increasingly higher turbine capacities. Efficiency enhancements, particularly for the combined gas and steam turbine process, lead to an increase in stresses, even for high-performance gears. Consequently, the requirements for non-destructive material testing are on the increase as well. At Siemens KWU, high-performance gears are used so far only for gas turbines with lower rating (65 MW) to adapt the gas turbine speed (5413 rpm) to the generator speed (3000 rpm/ 50 Hz or 3600 rpm/60 Hz). The gear train consists of a forged and case-hardened wheel shaft and pinion shaft made of material 17 CrNiMo 6, where the wheel shaft can be either a solid or a hollow shaft. Dimensions are typically 2.3 m length and 1 m diameter. As a rule, pinion shafts are solid. The gear design, calling for an additional torsion shaft turning inside the hollow wheel shaft, can absorb more torsional load surges and is more tolerant of deviations during gear train alignment. This design requires two additional forgings (torsion shaft and hub) and an additional bearing 2 refs.

  20. Ultrasonic test of highly stressed gear shafts

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, T [Siemens AG, Power Generation, KWU, Muelheim (Germany); Heinrich, W [Siemens AG, Power Generation, KWU, Berlin (Germany); Achtzehn, J [Siemens AG, Power Generation, ICVW, Erlangen (Germany); Hensley, H [Siemens Power Generation (Germany)

    1999-12-31

    In the power plant industry, gears are used for increasingly higher turbine capacities. Efficiency enhancements, particularly for the combined gas and steam turbine process, lead to an increase in stresses, even for high-performance gears. Consequently, the requirements for non-destructive material testing are on the increase as well. At Siemens KWU, high-performance gears are used so far only for gas turbines with lower rating (65 MW) to adapt the gas turbine speed (5413 rpm) to the generator speed (3000 rpm/ 50 Hz or 3600 rpm/60 Hz). The gear train consists of a forged and case-hardened wheel shaft and pinion shaft made of material 17 CrNiMo 6, where the wheel shaft can be either a solid or a hollow shaft. Dimensions are typically 2.3 m length and 1 m diameter. As a rule, pinion shafts are solid. The gear design, calling for an additional torsion shaft turning inside the hollow wheel shaft, can absorb more torsional load surges and is more tolerant of deviations during gear train alignment. This design requires two additional forgings (torsion shaft and hub) and an additional bearing 2 refs.

  1. An intelligent stand-alone ultrasonic device for monitoring local structural damage: implementation and preliminary experiments

    International Nuclear Information System (INIS)

    Pertsch, Alexander; Kim, Jin-Yeon; Wang, Yang; Jacobs, Laurence J

    2011-01-01

    Continuous structural health monitoring has the potential to significantly improve the safety management of aged, in-service civil structures. In particular, monitoring of local damage growth at hot-spot areas can help to prevent disastrous structural failures. Although ultrasonic nondestructive evaluation (NDE) has proved to be effective in monitoring local damage growth, conventional equipment and devices are usually bulky and only suitable for scheduled human inspections. The objective of this research is to harness the latest developments in embedded hardware and wireless communication for developing a stand-alone, compact ultrasonic device. The device is directed at the continuous structural health monitoring of civil structures. Relying on battery power, the device possesses the functionalities of high-speed actuation, sensing, signal processing, and wireless communication. Integrated with contact ultrasonic transducers, the device can generate 1 MHz Rayleigh surface waves in a steel specimen and measure response waves. An envelope detection algorithm based on the Hilbert transform is presented for efficiently determining the peak values of the response signals, from which small surface cracks are successfully identified

  2. Contribution of phased array technique to automation in ultrasonic testing

    International Nuclear Information System (INIS)

    Erhard, A.; Schenk, G.; Moehrle, W.; Wuestenberg, H.; Rathgeb, W.

    1989-01-01

    Ultrasonic tests on complicated geometries often require expensive manipulator technique. To guarantee certain information from tests, the control of the manipulator must be matched to the acoustic boundary conditions. In the past and today, complex manipulators were and are being developed and used with tests on such geometries. The results of the measurements with group radiator technique in the bottom hole area or on ducts, showed that the manipulators can be simplified, particularly with regard to their degrees of freedom, e.g.: doing without the axis of rotation to set the angle of squint in testing ducts, without thereby narrowing the test area. In the bottom hole test, it was found that by using the group radiator technique, the test area is expanded, evaluation is simplified and coupling can be ensured. (orig.) [de

  3. Technique for ultrasonic testing of austenitic steel weldments of NPP components

    International Nuclear Information System (INIS)

    Lantukh, V.M.; Grebennik, V.S.; Kordinov, E.V.; Kesler, N.A.; Shchedrin, I.F.

    1987-01-01

    Special literature on ultrasonic testing of weldments of austenitic steel is analysed. Technique for ultrasonic testing of the ring and longitudinal butt welded joints of NPP components without reinforcing bead removal is described. Special converter design and fabrication practice are described. Results of experimental check of the developed testing technology and its application during NNPs' mounting and operation are presented. Results of ultrasonic and X-ray testing are compared

  4. C-Scan Performance Test of Under-Sodium ultrasonic Waveguide Sensor in Sodium

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2011-01-01

    Reactor core and in-vessel structures of a sodium-cooled fast (SFR) are submerged in opaque liquid sodium in the reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors have developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In previous studies, the ultrasonic waveguide sensor module was designed and manufactured, and the feasibility study of the ultrasonic waveguide sensor was performed. To improve the performance of the ultrasonic waveguide sensor in the under-sodium application, a new concept of ultrasonic waveguide sensors with a Be coated SS304 plate is suggested for the effective generation of a leaky wave in liquid sodium and the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor. In this study, the C-scan performance of the under-sodium ultrasonic waveguide sensor in sodium has been investigated by the experimental test in sodium. The under-sodium ultrasonic waveguide sensor and the sodium test facility with a glove box system and a sodium tank are designed and manufactured to carry out the performance test of under-sodium ultrasonic waveguide sensor in sodium environment condition

  5. Development of a Multi-Channel Ultrasonic Testing System for Automated Ultrasonic Pipe Inspection of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lee, Hee Jong; Cho, Chan Hee; Cho, Hyun Joon

    2009-01-01

    Currently almost all in-service-inspection techniques, applied in domestic nuclear power plants, are partial to field inspection technique. These kinds of techniques are related to managing nuclear power plants by the operation of foreign-produced inspection devices. There have been so many needs for development of native in-service-inspection device because there is no native diagnosis device for nuclear power plant inspection yet in Korea. In this research, we developed several core techniques to make an automated ultrasonic pipe inspection system for nuclear power plants. A high performance multi-channel ultrasonic pulser/receiver module, an A/D converter module and a digital main CPU module were developed and the performance of the developed modules was verified. The S/N ratio, noise level and signal acquisition performance of the developed modules showed proper level as we designed in the beginning.

  6. Phased array UT (Ultrasonic Testing) used in electricity production plants

    International Nuclear Information System (INIS)

    Kodaira, Takeshi

    2012-01-01

    Phased Array-Ultrasonic testing techniques widely used for detection and quantitative determination of the lattice defects which have been formed from fatigues or stress corrosion cracking in the materials used in the electricity production plants are presented with particular focus on the accurate determination of the defects depth (sizing) and defects discrimination applicable to weld metals of austenite stainless steels and Ni base alloys. The principle of this non-destructive analysis is briefly explained, followed by point and matrix focus phased array methods developed by Mitsubishi Heavy Industries, Ltd are explained rather in detail with illustration and the evaluated results. (S. Ohno)

  7. Maintenance of immersion ultrasonic testing on the water tube boiler

    International Nuclear Information System (INIS)

    Ishiyama, Toru; Kawasaki, Ichio; Miura, Hirohito

    2014-01-01

    There are 4-boiler in nuclear fuel cycle engineering laboratories (NCL). These boilers have been operated in the long term over 20 years. One of them, the leakage of boiler water was found at one of the generating tubes, and 2 adjoining generating tubes were corroded in Dec, 2011. These generating tubes were investigated by immersion ultrasonic testing (UT) for measure thickness of the tube. As a result, thinner tube was found in a part of a bend and near the water drum. These parts are covered with sulfide deposit, it seems that the generating tubes were corroded by sulfide. (author)

  8. Training methods in non-destructive examination with ultrasonic testing

    International Nuclear Information System (INIS)

    Walte, F.

    1986-01-01

    German concept for inspection of LWR, leak before break, basic safety; General inspection methods; Ultrasonic inspection - basic principle, generation of ultrasound, bulk and surface waves, piezo electric and electromagnetic transducers, energy balance, scattering and adsorption, divergence; Ultra techniques in compliance with KTA-rules - pulse-echo, tandem, throughtransmission; Valuation of ultrasonic indications; Pre- and in-service inspection; Practical part - ultrasonic equipment, ultrasonic piezo electric transducers, wall thickness measurement, crack depth measurement with potential drop technique. (orig.)

  9. Studies of the ultrasonic testing scheme on bonding quality in shield blanket of ITER

    International Nuclear Information System (INIS)

    Shi Sichao; Shen Jingling; He Fengqi; Jin Wanping

    2007-01-01

    International Thermonuclear Experimental Reactor (ITER) is an international cooperative item. One of its components, the First Wall (FW) functioning as neutron shielding and cooling, is an important part. According to the component materials, structural features, testing requirements of the FW, and the ultrasonic propagation characteristics, it is suggested that Broad-band ultrasonic can be used to test the bonding quality of the FW. According to the case mentioned above, the Broad-band Ultrasonic Testing scheme was presented, and the ultrasonic testing feasibility was analyzed theoretically in this paper. (authors)

  10. Reliability of measuring pelvic floor elevation with a diagnostic ultrasonic imaging device

    OpenAIRE

    Ubukata, Hitomi; Maruyama, Hitoshi; Huo, Ming

    2015-01-01

    [Purpose] The purpose of this study was to investigate the reliability of measuring the amount of pelvic floor elevation during pelvic and abdominal muscle contraction with a diagnostic ultrasonic imaging device. [Subjects] The study group comprised 11 healthy women without urinary incontinence or previous birth experience. [Methods] We measured the displacement elevation of the bladder base during contraction of the abdominal and pelvic floor muscles was measured using a diagnostic ultrasoni...

  11. Development of automatic ultrasonic testing equipment for reactor pressure vessel

    International Nuclear Information System (INIS)

    Jang, Kee Ok; Park, Dae Yung; Park, Moon Hoh; Koo, Kil Mo; Park, Kwang Heui; Kang, Sang Sin; Bang, Heui Song; Noh, Heui Choong; Kong, Woon Sik

    1994-08-01

    The selected weld areas of reactor pressure vessel and adjacent piping are examined by remote mechanized ultrasonic testing(MUT) equipment. Since the MUT equipment was purchased from Southwest Research Institute (SwRI) in April 1985, we have performed 15 inservice inspections and 5 preservice inspections. However, the reliability of examination was recently decreased rapidly as the problems which results from the old age of equipment and the frequent movement to plant site to site have occurred frequently. Therefore, the 3-axis control system hardware in occurring many problems among the equipments of mechanized ultrasonic testing (MUT) was designed and developed to cover the examination areas of nozzle-shell weld as specified in ASME Code Section XI and to improve the examination reliability. The new 3-axis control system hardware with the performance of this project was developed to be compatible with the old one and it was used as dual system or spare parts of the old system. Furthermore, the established technologies are expected to be applied to the similar control systems in nuclear power plant. 17 figs, 2 pix, 2 tabs, 10 refs. (Author)

  12. Development of automatic ultrasonic testing equipment for reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Kee Ok; Park, Dae Yung; Park, Moon Hoh; Koo, Kil Mo; Park, Kwang Heui; Kang, Sang Sin; Bang, Heui Song; Noh, Heui Choong; Kong, Woon Sik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-08-01

    The selected weld areas of reactor pressure vessel and adjacent piping are examined by remote mechanized ultrasonic testing(MUT) equipment. Since the MUT equipment was purchased from Southwest Research Institute (SwRI) in April 1985, we have performed 15 inservice inspections and 5 preservice inspections. However, the reliability of examination was recently decreased rapidly as the problems which results from the old age of equipment and the frequent movement to plant site to site have occurred frequently. Therefore, the 3-axis control system hardware in occurring many problems among the equipments of mechanized ultrasonic testing (MUT) was designed and developed to cover the examination areas of nozzle-shell weld as specified in ASME Code Section XI and to improve the examination reliability. The new 3-axis control system hardware with the performance of this project was developed to be compatible with the old one and it was used as dual system or spare parts of the old system. Furthermore, the established technologies are expected to be applied to the similar control systems in nuclear power plant. 17 figs, 2 pix, 2 tabs, 10 refs. (Author).

  13. Parallelization of ultrasonic field simulations for non destructive testing

    International Nuclear Information System (INIS)

    Lambert, Jason

    2015-01-01

    The Non Destructive Testing field increasingly uses simulation. It is used at every step of the whole control process of an industrial part, from speeding up control development to helping experts understand results. During this thesis, a fast ultrasonic field simulation tool dedicated to the computation of an ultrasonic field radiated by a phase array probe in an isotropic specimen has been developed. During this thesis, a simulation tool dedicated to the fast computation of an ultrasonic field radiated by a phased array probe in an isotropic specimen has been developed. Its performance enables an interactive usage. To benefit from the commonly available parallel architectures, a regular model (aimed at removing divergent branching) derived from the generic CIVA model has been developed. First, a reference implementation was developed to validate this model against CIVA results, and to analyze its performance behaviour before optimization. The resulting code has been optimized for three kinds of parallel architectures commonly available in workstations: general purpose processors (GPP), many-core co-processors (Intel MIC) and graphics processing units (nVidia GPU). On the GPP and the MIC, the algorithm was reorganized and implemented to benefit from both parallelism levels, multithreading and vector instructions. On the GPU, the multiple steps of field computing have been divided in multiple successive CUDA kernels. Moreover, libraries dedicated to each architecture were used to speedup Fast Fourier Transforms, Intel MKL on GPP and MIC and nVidia cuFFT on GPU. Performance and hardware adequation of the produced codes were thoroughly studied for each architecture. On multiple realistic control configurations, interactive performance was reached. Perspectives to address more complex configurations were drawn. Finally, the integration and the industrialization of this code in the commercial NDT platform CIVA is discussed. (author) [fr

  14. New contributions to granite characterization by ultrasonic testing.

    Science.gov (United States)

    Cerrillo, C; Jiménez, A; Rufo, M; Paniagua, J; Pachón, F T

    2014-01-01

    Ultrasound evaluation permits the state of rocks to be determined quickly and cheaply, satisfying the demands faced by today's producers of ornamental stone, such as environmental sustainability, durability and safety of use. The basic objective of the present work is to analyse and develop the usefulness of ultrasound testing in estimating the physico-mechanical properties of granite. Various parameters related to Fast Fourier Transform (FFTs) and attenuation have been extracted from some of the studies conducted (parameters which have not previously been considered in work on this topic, unlike the ultrasonic pulse velocity). The experimental study was carried out on cubic specimens of 30 cm edges using longitudinal and shear wave transducers and equipment which extended the normally used natural resonance frequency range up to 500 kHz. Additionally, a validation study of the laboratory data has been conducted and some methodological improvements have been implemented. The main contribution of the work is the analysis of linear statistical correlations between the aforementioned new ultrasound parameters and physico-mechanical properties of the granites that had not previously been studied, i.e., resistance to salt crystallization and breaking load for anchors. Being properties that directly affect the durability and safety of use of granites, these correlations consolidate ultrasonics as a nondestructive method well suited to this type of material. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Accelerated ultrasonic fatigue testing applications and research trends

    Energy Technology Data Exchange (ETDEWEB)

    Cho, In Sik; Shin, Choongshig; Kim, Jong Yup; Jeon, Yongho [Ajou Univ., Gyeonggi (Somalia)

    2012-06-15

    Very high cycle fatigue (VHCF) behavior of aerospace components has emerged much attention due to their long service life. In this study, a piezoelectric ultrasonic fatigue testing (UFT) system has been developed by Mbrosiatec Co., Ltd. to study the high cycle fatigue (HCF) strength of Ti 6Al 4V alloy. Hourglass shaped specimens have been investigated in the range from 10'6' to 10'9' cycles at room temperature under completely reversed R=-1 loading conditions, Scanning electron microscopy (SEM) analysis revealed that failures occurred in the entire range up to the gigacycle regime, and the fractures have been found to be initiated from the surface, unlike in steels. However, it was found from the SEM microgprahs that microcracks transformed into intergranular fractures. Thus, it can be concluded from according to the results that this test method can be applicable to commercialized automotive and railroad parts that require high cycle fatigue strength.

  16. Accelerated ultrasonic fatigue testing applications and research trends

    International Nuclear Information System (INIS)

    Cho, In Sik; Shin, Choongshig; Kim, Jong Yup; Jeon, Yongho

    2012-01-01

    Very high cycle fatigue (VHCF) behavior of aerospace components has emerged much attention due to their long service life. In this study, a piezoelectric ultrasonic fatigue testing (UFT) system has been developed by Mbrosiatec Co., Ltd. to study the high cycle fatigue (HCF) strength of Ti 6Al 4V alloy. Hourglass shaped specimens have been investigated in the range from 10'6' to 10'9' cycles at room temperature under completely reversed R=-1 loading conditions, Scanning electron microscopy (SEM) analysis revealed that failures occurred in the entire range up to the gigacycle regime, and the fractures have been found to be initiated from the surface, unlike in steels. However, it was found from the SEM microgprahs that microcracks transformed into intergranular fractures. Thus, it can be concluded from according to the results that this test method can be applicable to commercialized automotive and railroad parts that require high cycle fatigue strength

  17. Penetration testing using mobile devices

    CSIR Research Space (South Africa)

    Shelembe, S

    2012-10-01

    Full Text Available et.al, 2006) ? An attempt to compromise the security of the mechanism undergoing the test, it can be host or network based (Fiocca, 2009) Difference: pen-testing and hacking is permission Its purpose is to find system vulnerabilities ? CSIR 2012... is not enough, cell-phones can hack too ? Pocket sized device is more convenient, since it is easy to carry around at anytime ? A power plug is not innocent, need to look for activity other than just traditional PCs / devices ? CSIR 2012 Slide 6 Mobile...

  18. Electromedical devices test laboratories accreditation

    International Nuclear Information System (INIS)

    Murad, C; Rubio, D; Ponce, S; Alvarez Abri, A; Terron, A; Vicencio, D; Fascioli, E

    2007-01-01

    In the last years, the technology and equipment at hospitals have been increase in a great way as the risks of their implementation. Safety in medical equipment must be considered an important issue to protect patients and their users. For this reason, test and calibrations laboratories must verify the correct performance of this kind of devices under national and international standards. Is an essential mission for laboratories to develop their measurement activities taking into account a quality management system. In this article, we intend to transmit our experience working to achieve an accredited Test Laboratories for medical devices in National technological University

  19. Compensating for Tissue Changes in an Ultrasonic Power Link for Implanted Medical Devices.

    Science.gov (United States)

    Vihvelin, Hugo; Leadbetter, Jeff; Bance, Manohar; Brown, Jeremy A; Adamson, Robert B A

    2016-04-01

    Ultrasonic power transfer using piezoelectric devices is a promising wireless power transfer technology for biomedical implants. However, for sub-dermal implants where the separation between the transmitter and receiver is on the order of several acoustic wavelengths, the ultrasonic power transfer efficiency (PTE) is highly sensitive to the distance between the transmitter and receiver. This sensitivity can cause large swings in efficiency and presents a serious limitation on battery life and overall performance. A practical ultrasonic transcutaneous energy transfer (UTET) system design must accommodate different implant depths and unpredictable acoustic changes caused by tissue growth, hydration, ambient temperature, and movement. This paper describes a method used to compensate for acoustic separation distance by varying the transmit (Tx) frequency in a UTET system. In a benchtop UTET system we experimentally show that without compensation, power transfer efficiency can range from 9% to 25% as a 5 mm porcine tissue sample is manipulated to simulate in situ implant conditions. Using an active frequency compensation method, we show that the power transfer efficiency can be kept uniformly high, ranging from 20% to 27%. The frequency compensation strategy we propose is low-power, non-invasive, and uses only transmit-side measurements, making it suitable for active implanted medical device applications.

  20. Monitoring of PHWR end cap weld quality by ultrasonic testing

    International Nuclear Information System (INIS)

    Laxminarayana, B.

    1996-01-01

    In Pressurized Heavy Water Reactor fuel fabrication, the end cap welding is an important process. Till date about 16,000 welds have been studied ultrasonically. This paper discusses the experimental results and the design of a semi automatic ultrasonic equipment incorporating features for both backward and forward integration. (author)

  1. Double-shell tank integrity assessments ultrasonic test equipment performance test

    Energy Technology Data Exchange (ETDEWEB)

    Pfluger, D.C.

    1996-09-26

    A double-shell tank (DST) inspection (DSTI) system was performance tested over three months until August 1995 at Pittsburgh, Pennsylvania, completing a contract initiated in February 1993 to design, fabricate, and test an ultrasonic inspection system intended to provide ultrasonic test (UT) and visual data to determine the integrity of 28 DSTs at Hanford. The DSTs are approximately one-million-gallon underground radioactive-waste storage tanks. The test was performed in accordance with a procedure (Jensen 1995) that included requirements described in the contract specification (Pfluger 1995). This report documents the results of tests conducted to evaluate the performance of the DSTI system against the requirements of the contract specification. The test of the DSTI system also reflects the performance of qualified personnel and operating procedures.

  2. A Combined Structural and Electromechanical FE Approach for Industrial Ultrasonic Devices Design

    Science.gov (United States)

    Schorderet, Alain; Prenleloup, Alain; Colla, Enrico

    2011-05-01

    Ultrasonic assistance is widely used in manufacturing, both for conventional (e.g. grinding, drilling) and non-conventional (e.g. EDM) processes. Ultrasonic machining is also used as a stand alone process for instance for micro-drilling. Industrial application of these processes requires increasingly efficient and accurate development tools to predict the performance of the ultrasonic device: the so-called sonotrode and the piezo-transducer. This electromechanical system consists of a structural part and of a piezo-electrical part (actuator). In this paper, we show how to combine two simulation softwares—for stuctures and electromechanical devices—to perform a complete design analysis and optimization of a sonotrode for ultrasonic drilling applications. The usual design criteria are the eigenfrequencies of the desired vibrational modes. In addition, during the optimization phase, one also needs to consider the maximum achievable displacement for a given applied voltage. Therefore, one must be able to predict the electromechanical behavior of the integrated piezo-structure system, in order to define, adapt and optimize the electric power supply as well as the control strategy (search, tracking of the eigenfrequency). In this procedure, numerical modelling follows a two-step approach, by means of a solid mechanics FE code (ABAQUS) and of an electromechanical simulation software (ATILA). The example presented illustrates the approach and describes the obtained results for the development of an industrial sonotrode system dedicated to ultrasonic micro-drilling of ceramics. The 3D model of the sonotrode serves as input for generating the FE mesh in ABAQUS and this mesh is then translated into an input file for ATILA. ABAQUS results are used to perform the first optimization step in order to obtain a sonotrode design leading to the requested modal behaviour—eigen-frequency and corresponding dynamic amplification. The second step aims at evaluating the dynamic

  3. Acceptance Test Report for the 241-AZ-101 Ultrasonic Interface Level Analyzer

    International Nuclear Information System (INIS)

    ANDREWS, J.E.

    2000-01-01

    This document comprises the Acceptance Test Report for the 241-AZ-101 Ultrasonic Interface Level Analyzer. This document presents the results of Acceptance Testing of the 241-AZ-101 Ultrasonic Interface Level Analyzers (URSILLAs). Testing of the URSILLAs was performed in accordance with ATP-260-001, ''URSILLA Pre-installation Acceptance Test Procedure''. The objective of the testing was to verify that all equipment and components function in accordance with design specifications and original equipment manufacturer's specifications

  4. Analysis of an ultrasonic level device for in-core Pressurized Water Reactor coolant detection

    International Nuclear Information System (INIS)

    Johnson, K.R.

    1981-01-01

    A rigorous semi-empirical approach was undertaken to model the response of an ultrasonic level device (ULD) for application to in-core coolant detection in Pressurized Water Reactors (PWRs). An equation is derived for the torsional wave velocity v/sub t phi/ in the ULD. Existing data reduction techniques were analyzed and compared to results from use of the derived equation. Both methods yield liquid level measurements with errors of approx. 5%. A sensitivity study on probe performance at reactor conditions predicts reduced level responsivity from data at lower temperatures

  5. Short Lingual Osteotomy Using a Piezosurgery Ultrasonic Bone-Cutting Device During Sagittal Split Ramus Osteotomy.

    Science.gov (United States)

    Kawase-Koga, Yoko; Mori, Yoshiyuki; Kanno, Yuki; Hoshi, Kazuto; Takato, Tsuyoshi

    2015-10-01

    Short lingual osteotomy is a useful method for the performance of sagittal split ramus osteotomy involving interference between the proximal and distal bone fragments when lateral differences exist in the setback distance. However, this procedure occasionally results in abnormal fracture and nerve injury; expert surgical skill is thus required. We herein describe a novel technique involving the use of an ultrasonic bone-cutting device (Piezosurgery; Mectron Medical Technology, Carasco, Italy) for vertical osteotomy posterior to the mandibular foramen. Successful short lingual osteotomy was performed using this technique with avoidance of abnormal fracture and neurovascular bundle damage.

  6. A novel reflex cough testing device.

    Science.gov (United States)

    Fujiwara, Kazunori; Kawamoto, Katsuyuki; Shimizu, Yoko; Fukuhara, Takahiro; Koyama, Satoshi; Kataoka, Hideyuki; Kitano, Hiroya; Takeuchi, Hiromi

    2017-01-18

    The reflex cough test is useful for detecting silent aspiration, a risk factor for aspiration pneumonia. However, assessing the risk of aspiration pneumonia requires measuring not only the cough reflex but also cough strength. Currently, no reflex cough testing device is available that can directly measure reflex cough strength. We therefore developed a new testing device that can easily and simultaneously measure cough strength and the time until the cough reflex, and verified whether screening with this new instrument is feasible for evaluating the risk of aspiration pneumonia. This device consists of a special pipe with a double lumen, a nebulizer, and an electronic spirometer. We used a solution of prescription-grade L-tartaric acid to initiate the cough reflex. The solution was inhaled through a mouthpiece as a microaerosol produced by an ultrasonic nebulizer. The peak cough flow (PCF) of the induced cough was measured with the spirometer. The 70 patients who participated in this study comprised 49 patients without a history of pneumonia (group A), 21 patients with a history of pneumonia (group B), and 10 healthy volunteers (control group). With the novel device, PCF and time until cough reflex could be measured without adverse effects. The PCF values were 118.3 ± 64.0 L/min, 47.7 ± 38.5 L/min, and 254.9 ± 83.8 L/min in group A, group B, and the control group, respectively. The PCF of group B was significantly lower than that of group A and the control group (p reflex was 4.2 ± 5.9 s, 7.0 ± 7.0 s, and 1 s in group A, group B, and the control group, respectively. This duration was significantly longer for groups A and B than for the control group (A: p reflex and the strength of involuntary coughs for assessment of patients at risk of aspiration pneumonia.

  7. Ultrasonic sectional imaging for crack identification. Part 1. Confirmation test of essential factors for ultrasonic imaging

    International Nuclear Information System (INIS)

    Sasahara, Toshihiko

    2008-01-01

    Since the first reports of inter-granular stress corrosion crack (IGSCC) in boiling water reactor (BWR) pipe in the 1970s, nuclear power industry has focused considerable attention on service induced crack detection and sizing using ultrasonic examination. In recent years, phased array systems, those reconstruct high quality flaw images at real time are getting to apply for crack detection and sizing. But because the price of phased array systems are expensive for inspection vendors, field application of phased array systems are limited and reliable ultrasonic imaging systems with reasonable price are expected. This paper will discuss cost effective ultrasonic equipment with sectional image (B-scan) presentation as the simplified imaging system for assisting ultrasonic examination personnel. To develop the simplified B-scan imaging system, the frequency characteristics of IGSCC echoes and neighboring geometry echoes such as base-metal to weld interface and inner surface of a pipe are studied. The experimental study confirmed the reflectors have different frequency characteristics and 2MHz is suitable to visualize IGSCC and 5MHz and higher frequency are suitable to reconstruct geometry images. The other study is the amplifier selection for the imaging system. To reconstruct images of IGSCC and geometry echoes, the ultrasonic imaging instrument with linear amplifier has to adjust gain setting to the target. On the other hand, the ultrasonic imaging instrument with logarithmic amplifier can collect and display wider dynamic range on a screen and this wider dynamic range are effective to visualize IGSCC and geometry echoes on a B-scan presentation at a time. (author)

  8. Development of prototype virtual testing system for ultrasonic examination engineers

    International Nuclear Information System (INIS)

    Shohji, Hajime; Hide, Koichiro

    2015-01-01

    The reliability of inspection results is affected by the skill of examination personnel, particularly with regard to manual ultrasonic testing (UT). The number and design of test specimens are among the most important points to be considered during training or assessing the qualification of UT examination personnel. For training, a simulated UT training system using a computer mouse or touch sensor was proposed. However, this system proved to be inadequate as a replacement with for actual UT work. In this study, we have developed a novel virtual UT system that simulates actual UT work for piping welds. This system (Tool for Realistic UltraSound Testing) consists of a dummy UT probe, dummy piping, a computer system, and a 3D position detection system. It can detect the state of the dummy probe (3D position, skewing angle), and displays recorded A-scan data corresponding to the dummy probe status with random noise. Furthermore, it does not display A-scan data if the dummy probe is not in contact with the pipe. Thus, in this way, the system simulates actual UT work. Using this system, it is possible to significantly reduce the number of test specimens being utilized for training or assessing the qualification of UT examination personnel. Additionally, highly efficient training and certification will be achieved through this system. (author)

  9. Further Experiments with Lok-Test and Ultrasonic Test in Relation to Fresh and Hardened Concrete

    DEFF Research Database (Denmark)

    Jensen, Jens Kristian Jehrbo

    Lok-test is mainly a non-destructive pull-out test for determination of concrete strength. The method is deseribed in (l) and it is detailed discussed in theory (2). The method is welknown in practice. Ultrasonic is commonly used for investigations of several materials, especially concrete. In a ....... In a project (3) about non-destructive testing of concrete different methods and the relations to concrete are discussed in theory and practice. This paper point out some interesting results from further experiments in this area.......Lok-test is mainly a non-destructive pull-out test for determination of concrete strength. The method is deseribed in (l) and it is detailed discussed in theory (2). The method is welknown in practice. Ultrasonic is commonly used for investigations of several materials, especially concrete...

  10. Ultrasonic immersion probes characterization for use in nondestructive testing according to EN 12668-2:2001

    International Nuclear Information System (INIS)

    Silva, C E R; Alvarenga, A V; Costa-Felix, R P B

    2011-01-01

    Ultrasound is often used as a Non-Destructive Testing (NDT) technique to analyze components and structures to detect internal and surface flaws. To guarantee reliable measurements, it is necessary to calibrate instruments and properly assess related uncertainties. An important device of an ultrasonic instrument system is its probe, which characterization should be performed according to EN 12668-2. Concerning immersion probes beam profile, the parameters to be assessed are beam divergence, focal distance, width, and zone length. Such parameters are determined by scanning a reflector or a hydrophone throughout the transducer beam. Within the present work, a methodology developed at Inmetro's Laboratory of Ultrasound to evaluate relevant beam parameters is presented, based on hydrophone scan. Water bath and positioning system to move the hydrophone were used to perform the scan. Studied probes were excited by a signal generator, and the waterborne signals were detected by the hydrophone and acquired using an oscilloscope. A user-friendly virtual instrument was developed in LabVIEW to automate the system. The initial tests were performed using 1 and 2.25 MHz-ultrasonic unfocused probes (Oe 1.27 cm), and results were consistent with the manufacturer's specifications. Moreover, expanded uncertainties were lower than 6% for all parameters under consideration.

  11. Ultrasonic immersion probes characterization for use in nondestructive testing according to EN 12668-2:2001

    Science.gov (United States)

    Silva, C. E. R.; Alvarenga, A. V.; Costa-Felix, R. P. B.

    2011-02-01

    Ultrasound is often used as a Non-Destructive Testing (NDT) technique to analyze components and structures to detect internal and surface flaws. To guarantee reliable measurements, it is necessary to calibrate instruments and properly assess related uncertainties. An important device of an ultrasonic instrument system is its probe, which characterization should be performed according to EN 12668-2. Concerning immersion probes beam profile, the parameters to be assessed are beam divergence, focal distance, width, and zone length. Such parameters are determined by scanning a reflector or a hydrophone throughout the transducer beam. Within the present work, a methodology developed at Inmetro's Laboratory of Ultrasound to evaluate relevant beam parameters is presented, based on hydrophone scan. Water bath and positioning system to move the hydrophone were used to perform the scan. Studied probes were excited by a signal generator, and the waterborne signals were detected by the hydrophone and acquired using an oscilloscope. A user-friendly virtual instrument was developed in LabVIEW to automate the system. The initial tests were performed using 1 and 2.25 MHz-ultrasonic unfocused probes (Ø 1.27 cm), and results were consistent with the manufacturer's specifications. Moreover, expanded uncertainties were lower than 6% for all parameters under consideration.

  12. Uncertainty management in knowledge based systems for nondestructive testing-an example from ultrasonic testing

    International Nuclear Information System (INIS)

    Rajagopalan, C.; Kalyanasundaram, P.; Baldev Raj

    1996-01-01

    The use of fuzzy logic, as a framework for uncertainty management, in a knowledge-based system (KBS) for ultrasonic testing of austenitic stainless steels is described. Parameters that may contain uncertain values are identified. Methodologies to handle uncertainty in these parameters using fuzzy logic are detailed. The overall improvement in the performance of the knowledge-based system after incorporating fuzzy logic is discussed. The methodology developed being universal, its extension to other KBS for nondestructive testing and evaluation is highlighted. (author)

  13. Development of ultrasonic testing equipment incorporating electromagnetic acoustic transducer

    International Nuclear Information System (INIS)

    Sato, Michio; Kimura, Motohiko; Okano, Hideharu; Miyazawa, Tatsuo; Nagase, Koichi; Ishikawa, Masaaki

    1989-01-01

    An ultrasonic testing equipment for use in in-service inspection of nuclear power plant piping has been developed, which comprises an angle-beam electromagnetic acoustic transducer mounted on a vehicle for scanning the piping surface to be inspected. The transducer functions without direct contact with the piping surface through couplant, and the vehicle does not require a guide track installed on the piping surface, being equipped with magnetic wheels that adhere to the piping material, permitting it to travel along the circumferential weld joint of a carbon steel pipe. The equipment thus dispenses with the laborious manual work involved in preparing the piping for inspection, such as removal of protective coating, surface polishing and installation of guide track and thereby considerably reduces the duration of inspection. The functioning principle and structural features of the transducer and vehicle are described, together with the results of trial operation of a prototype unit, which proved a 1mm deep notch cut on a test piece of 25mm thick carbon steel plate to be locatable with an accuracy of ±2mm. (author)

  14. Frequency-domain imaging algorithm for ultrasonic testing by application of matrix phased arrays

    Directory of Open Access Journals (Sweden)

    Dolmatov Dmitry

    2017-01-01

    Full Text Available Constantly increasing demand for high-performance materials and systems in aerospace industry requires advanced methods of nondestructive testing. One of the most promising methods is ultrasonic imaging by using matrix phased arrays. This technique allows to create three-dimensional ultrasonic imaging with high lateral resolution. Further progress in matrix phased array ultrasonic testing is determined by the development of fast imaging algorithms. In this article imaging algorithm based on frequency domain calculations is proposed. This approach is computationally efficient in comparison with time domain algorithms. Performance of the proposed algorithm was tested via computer simulations for planar specimen with flat bottom holes.

  15. Ultrasonic device for real-time sewage velocity and suspended particles concentration measurements.

    Science.gov (United States)

    Abda, F; Azbaid, A; Ensminger, D; Fischer, S; François, P; Schmitt, P; Pallarès, A

    2009-01-01

    In the frame of a technological research and innovation network in water and environment technologies (RITEAU, Réseau de Recherche et d'Innovation Technologique Eau et Environnement), our research group, in collaboration with industrial partners and other research institutions, has been in charge of the development of a suitable flowmeter: an ultrasonic device measuring simultaneously the water flow and the concentration of size classes of suspended particles. Working on the pulsed ultrasound principle, our multi-frequency device (1 to 14 MHz) allows flow velocity and water height measurement and estimation of suspended solids concentration. Velocity measurements rely on the coherent Doppler principle. A self developed frequency estimator, so called Spectral Identification method, was used and compared to the classical Pulse-Pair method. Several measurements campaigns on one wastewater collector of the French city of Strasbourg gave very satisfactory results and showed smaller standard deviation values for the Doppler frequency extracted by the Spectral Identification method. A specific algorithm was also developed for the water height measurements. It relies on the water surface acoustic impedance rupture and its peak localisation and behaviour in the collected backscattering data. This algorithm was positively tested on long time measurements on the same wastewater collector. A large part of the article is devoted to the measurements of the suspended solids concentrations. Our data analysis consists in the adaptation of the well described acoustic behaviour of sand to the behaviour of wastewater particles. Both acoustic attenuation and acoustic backscattering data over multiple frequencies are analyzed for the extrapolation of size classes and respective concentrations. Under dry weather conditions, the massic backscattering coefficient and the overall size distribution showed similar evolution whatever the measurement site was and were suggesting a global

  16. Rapid bonding enhancement by auxiliary ultrasonic actuation for the fabrication of cyclic olefin copolymer (COC) microfluidic devices

    International Nuclear Information System (INIS)

    Yu, H; Tor, S B; Loh, N H

    2014-01-01

    Thermal compression bonding is a straightforward, inexpensive and widely used method for enclosing open microchannels in thermoplastic microfluidic devices. It is advantageous over adhesive, solvent and grafting bonding methods in retaining material homogeneity. However, the trade-off between high bond strength and low microchannel deformation is always a crucial consideration in thermal compression bonding. In this study, an effective method for improving bond strength while retaining the microchannel integrity with negligible distortion is proposed and analyzed. Longitudinal ultrasonic actuation was applied to the preheated cyclic olefin copolymer (COC) substrates to achieve accelerated and enhanced bonding with an ultrasonic welding system. Intimate contact between the bonding surfaces before the ultrasonic actuation was found to be an important prior condition. With improper contact, several bonding defects would occur, such as voids, localized spot melting and edge melting. Under auxiliary ultrasonic vibration, within 10 s, the bond strength developed at the bonding interface could be dramatically improved compared with those achieved without ultrasonic actuation. The enhanced bond strength obtained at a preheating temperature of 20 °C lower than its T g could be comparable to the strength for pure thermal compression at 5 °C higher than its T g . It is believed that the ultrasonic energy introduced could elevate the interfacial temperature and facilitate the interdiffusion of molecular chain segments at the interface, consequently resulting in rapidly enhanced bonding. Also, the microchannel distortion after ultrasonic actuation was found to be satisfactory—another important requirement. From dynamic mechanical analysis, the glass transition temperature of COC was found to increase with increasing frequency, and the temperature of the bulk polymer under ultrasonic actuation was still well under T g ; therefore the deformation is minor under ultrasonic

  17. Quantitative sensing of corroded steel rebar embedded in cement mortar specimens using ultrasonic testing

    Science.gov (United States)

    Owusu Twumasi, Jones; Le, Viet; Tang, Qixiang; Yu, Tzuyang

    2016-04-01

    Corrosion of steel reinforcing bars (rebars) is the primary cause for the deterioration of reinforced concrete structures. Traditional corrosion monitoring methods such as half-cell potential and linear polarization resistance can only detect the presence of corrosion but cannot quantify it. This study presents an experimental investigation of quantifying degree of corrosion of steel rebar inside cement mortar specimens using ultrasonic testing (UT). A UT device with two 54 kHz transducers was used to measure ultrasonic pulse velocity (UPV) of cement mortar, uncorroded and corroded reinforced cement mortar specimens, utilizing the direct transmission method. The results obtained from the study show that UPV decreases linearly with increase in degree of corrosion and corrosion-induced cracks (surface cracks). With respect to quantifying the degree of corrosion, a model was developed by simultaneously fitting UPV and surface crack width measurements to a two-parameter linear model. The proposed model can be used for predicting the degree of corrosion of steel rebar embedded in cement mortar under similar conditions used in this study up to 3.03%. Furthermore, the modeling approach can be applied to corroded reinforced concrete specimens with additional modification. The findings from this study show that UT has the potential of quantifying the degree of corrosion inside reinforced cement mortar specimens.

  18. Sizing of cracks by ultrasonic testing - Diffraction methods

    International Nuclear Information System (INIS)

    Hoegberg, K.; Sattari-Far, I.; Pers-Anderson, E.B.

    1989-01-01

    The work has been concentrated on manual ultrasonic testing of plates in carbon and austenitic steel with thicknesses of 10-40 mm. Evaluation of data was performed by studying the amplitude, accuracy (crack depth) and visibility. The experience from the project showed that identification of the weak signals from the crack tips requires well-trained personnel. Besides that, the following can be recommended: Estimate if the crack has compressive stresses. Especially shallow cracks are exposed for compressive stresses. Chose a refraction angle ≥ 60 degrees if the crack is deep. Try both low (approx equivalent to 2MHz) and high (approx equivalent to 4-5MHz) frequency. Lower frequencies often increase amplitude response. Avoid the combination of refraction angle greater than 60 degrees and low frequency. Inspect with half as well as full skip. Sometimes a stronger signal is received for full skip, because the amplitude of the diffracted signal is higher from the cracked side. Use complementary measurements with mode conversion techniques. Focused probes can improve the results, especially for complicated geometries. Do not use reference reflectors of EDM-notch type for verification of signal amplitude. No correlation between amplitude from an EDM-notch tip and a crack tip exists. Reference reflectors of EDM-notch type can be used to verify the resolution of the system. A shallow EDM-notch can show if the probe can separate the tip and corner. It is our experience that general solutions does not exist, and each case needs an individual solution

  19. Development of automatic Ultrasonic testing equipment for reactor pressure vessel

    International Nuclear Information System (INIS)

    Kim, Kor R.; Kim, Jae H.; Lee, Jae C.

    1996-06-01

    The selected weld areas of a reactor pressure vessel and adjacent piping are examined by the remote mechanized ultrasonic testing (MUT) equipment. Since the MUT equipment was purchased from southwest Research Institute (SwRI) in April 1985, 15 inservice inspections and 5 preservice inspections are performed with this MUT equipment. However due to the old age of the equipment and frequent movements to plant sites, the reliability of examination was recently decreased rapidly and it is very difficult to keep spare parts. In order to resolve these problems and to meet the strong request from plant sites, we intend to develop a new 3-axis control system including hardware and software. With this control system, we expect more efficient and reliable examination of the nozzle to shell weld areas, which is specified in ASME Code Section XI. The new 3-axis control system hardware and software were designed and development of our own control system, the advanced technologies of computer control mechanism were established and examination reliability of the nozzle to shell weld area was improved. With the development of our 3-axis control system for PaR ISI-2 computer control system, the reliability of nozzle to shell weld area examination has been improved. The established technologies from the development and detailed analysis of existing control system, are expected to be applied to the similar control systems in nuclear power plants. (author). 12 refs., 4 tabs., 33 figs

  20. Development of automatic Ultrasonic testing equipment for reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kor R.; Kim, Jae H.; Lee, Jae C.

    1996-06-01

    The selected weld areas of a reactor pressure vessel and adjacent piping are examined by the remote mechanized ultrasonic testing (MUT) equipment. Since the MUT equipment was purchased from southwest Research Institute (SwRI) in April 1985, 15 inservice inspections and 5 preservice inspections are performed with this MUT equipment. However due to the old age of the equipment and frequent movements to plant sites, the reliability of examination was recently decreased rapidly and it is very difficult to keep spare parts. In order to resolve these problems and to meet the strong request from plant sites, we intend to develop a new 3-axis control system including hardware and software. With this control system, we expect more efficient and reliable examination of the nozzle to shell weld areas, which is specified in ASME Code Section XI. The new 3-axis control system hardware and software were designed and development of our own control system, the advanced technologies of computer control mechanism were established and examination reliability of the nozzle to shell weld area was improved. With the development of our 3-axis control system for PaR ISI-2 computer control system, the reliability of nozzle to shell weld area examination has been improved. The established technologies from the development and detailed analysis of existing control system, are expected to be applied to the similar control systems in nuclear power plants. (author). 12 refs., 4 tabs., 33 figs.

  1. Ultrasonic testing of installed low-pressure turbine shafts

    International Nuclear Information System (INIS)

    Hildmann, I.; Voelker, J.; Ewald, J.

    1987-01-01

    Transverse defects in the admission area of double-flow LP turbine shafts with shrink-on wheel disks can be detected during the onset of crack growth by means of a newly developed test concept with slightly oblique longitudinal US wave incidence, and crack size estimates can be made. For process development and system adjustment a large reference specimen with circular and circular segment-type test reflectors was used. The results of comparative measurements with different types of devices and probes of different transducer size, test frequency and pulse length are presented, and the choice of the technical testing details is substantiated. (orig./DG) [de

  2. Development of automated ultrasonic device for in-service inspection of ABWR pressure vessel bottom head

    International Nuclear Information System (INIS)

    Kojima, Y.; Matsuyama, A.

    1995-01-01

    An automated device and its controller have been developed for the bottom head weld examination of pressure vessel of Advanced Boiling Water Reactor (ABWR). The internal pump casings and the housings of control rod prevent a conventional ultrasonic device from scanning the required inspection zone. With this reason, it is required to develop a new device to examine the bottom head area of ABWR. The developed device is characterized by the following features. (1) Composed of a mother vehicle and a compact inspection vehicle. They are connected only by an electric wire without using the conventional arm mechanism. (2) The mother vehicle travels on a track and lift up the inspection vehicle to the vessel. (3) The mother vehicle can automatically attach the inspection vehicle to the bottom head, and detach the inspection vehicle from it. (4) Collision avoidance control function with a touch sensor is installed at the front of the inspection vehicle. The device was successfully demonstrated using a mock-up of reactor pressure vessel

  3. Redesigning axial-axial (biaxial) cruciform specimens for very high cycle fatigue ultrasonic testing machines.

    Science.gov (United States)

    Montalvão, Diogo; Wren, Andrew

    2017-11-01

    The necessity to increase performances in terms of lifetime and security in mechanical components or structures is the motivation for intense research in fatigue. Applications range from aeronautics to medical devices. With the development of new materials, there is no longer a fatigue limit in the classical sense, where it was accepted that the fatigue limit is the stress level such that there is no fracture up to 1E7 cycles. The recent development of ultrasonic testing machines where frequencies can go as high as 20 kHz or over enabled tests to be extended to ranges larger than 1E9 in just a few days. This area of studies is now known as Very High Cycle Fatigue (VHCF). On the other hand, most of the existing test equipment in the market for both classical and VHCF are uniaxial test machines. However, critical components used in Engineering applications are usually subjected to complex multi-axial loading conditions. In this paper, it is presented the methodology to redesigning existing cruciform test specimens that can be used to create an in-plane biaxial state of stress when used in 'uniaxial' VHCF ultrasonic testing machines (in this case, the term 'uniaxial' is used not because of the state of stress created at the centre of the specimen, but because of the direction at which the load is applied). The methodology is explained in such a way that it can be expanded to other existing designs, namely cruciform designs, that are not yet used in VHCF. Also, although the approach is presented in simple and logical terms, it may not be that obvious for those who have a more focused approach on fatigue rather than on modal analysis. It is expected that by contributing to bridging the gap between the sciences of modal analysis and fatigue, this research will help and encourage others exploiting new capabilities in VHCF.

  4. More recent developments for the ultrasonic testing of light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Seiger, H.; Engl, G.

    1976-01-01

    The development of an ultrasonic testing method for the inspection from the outside of the areas close to the cladding of the spherical fields of holes of light water reactor pressure vessels is described

  5. Enhancing reliability of ultrasonic testing of welds of nuclear power plant equipment

    International Nuclear Information System (INIS)

    Shcherbinskij, V.G.

    1981-01-01

    Results of investigation of factors influencing the reliability of manual ultrasonic testing of welded joints and weld deposited metal power-generating equipment are presented. Recommendations on the enhancing of reliability are given [ru

  6. Laser-Ultrasonic Testing and its Applications to Nuclear Reactor Internals

    Science.gov (United States)

    Ochiai, M.; Miura, T.; Yamamoto, S.

    2008-02-01

    A new nondestructive testing technique for surface-breaking microcracks in nuclear reactor components based on laser-ultrasonics is developed. Surface acoustic wave generated by Q-switched Nd:YAG laser and detected by frequency-stabilized long pulse laser coupled with confocal Fabry-Perot interferometer is used to detect and size the cracks. A frequency-domain signal processing is developed to realize accurate sizing capability. The laser-ultrasonic testing allows the detection of surface-breaking microcrack having a depth of less than 0.1 mm, and the measurement of their depth with an accuracy of 0.2 mm when the depth exceeds 0.5 mm including stress corrosion cracking. The laser-ultrasonic testing system combined with laser peening system, which is another laser-based maintenance technology to improve surface stress, for inner surface of small diameter tube is developed. The generation laser in the laser-ultrasonic testing system can be identical to the laser source of the laser peening. As an example operation of the system, the system firstly works as the laser-ultrasonic testing mode and tests the inner surface of the tube. If no cracks are detected, the system then changes its work mode to the laser peening and improves surface stress to prevent crack initiation. The first nuclear industrial application of the laser-ultrasonic testing system combined with the laser peening was completed in Japanese nuclear power plant in December 2004.

  7. Reliability of recordings of subgingival calculus detected using an ultrasonic device.

    Science.gov (United States)

    Corraini, Priscila; López, Rodrigo

    2015-04-01

    To assess the intra-examiner reliability of recordings of subgingival calculus detected using an ultrasonic device, and to investigate the influence of subject-, tooth- and site-level factors on the reliability of these subgingival calculus recordings. On two occasions, within a 1-week interval, 147 adult periodontitis patients received a full-mouth clinical periodontal examination by a single trained examiner. Duplicate subgingival calculus recordings, in six sites per tooth, were obtained using an ultrasonic device for calculus detection and removal. Agreement was observed in 65 % of the 22,584 duplicate subgingival calculus recordings, ranging 45 % to 83 % according to subject. Using hierarchical modeling, disagreements in the subgingival calculus duplicate recordings were more likely in all other sites than the mid-buccal, and in sites harboring supragingival calculus. Disagreements were less likely in sites with PD ≥  4 mm and with furcation involvement  ≥  degree 2. Bleeding on probing or suppuration did not influence the reliability of subgingival calculus. At the subject-level, disagreements were less likely in patients presenting with the highest and lowest extent categories of the covariate subgingival calculus. The reliability of subgingival calculus recordings using the ultrasound technology is reasonable. The results of the present study suggest that the reliability of subgingival calculus recordings is not influenced by the presence of inflammation. Moreover, subgingival calculus can be more reliably detected using the ultrasound device at sites with higher need for periodontal therapy, i.e., sites presenting with deep pockets and premolars and molars with furcation involvement.

  8. Artificial intelligence and ultrasonic tests in detection of defects

    International Nuclear Information System (INIS)

    Barrera Cardiel, G.; Fabian Alvarez, M. a.; Velez Martinez, M.; Villasenor, L.

    2001-01-01

    One of the most serious problems in the quality control of welded unions is the location, identification and classification of defects. As a solution to this problem, a technique for classification, applicable to welded unions done by electric arc welding as well as by friction, is proposed; it is based on ultrasonic signals. The neuronal networks proposed are Kohonen and Multilayer Percept ron, all in a virtual instrument environment. Currently the techniques most used in this field are: radiological analysis (X-rays) and ultrasonic analysis (ultrasonic waves). The X-ray technique in addition to being dangerous requires highly specialized personnel and equipment, therefore its use is restricted. The ultrasonic technique, in spite of being one of the most used for detection of discontinuities, requires personnel with wide experience in the interpretation of ultrasonic signals, this is a time-consuming process which necessarily increases its operation cost. The classification techniques that we propose turn out to be safe, reliable, inexpensive and easy to implement for the solution of this important problem. (Author) 8 refs

  9. Automated ultrasonic testing of nuclear reactor welds and overlays in pre-service and in-service inspections

    International Nuclear Information System (INIS)

    Sladky, J.

    1988-01-01

    Since 1982, automatic pre-service and in-service checks are being made of welded joints and overlays on pressure vessels of WWER-440 nuclear reactors in Czechoslovakia. This is being done using the SKODA REACTORTEST TRC facility which is used for checking peripheral welded joints on the pressure vessel, neck joints, overlays in other selected areas of the cylindrical section of the pressure vessel, on radius transitions of the pressure vessel and of necks, and on the cylindrical part of necks, and also for checking the base material in selected parts of the pressure vessel and the base material of the neck extension piece. The tests are of two types, namely tests of peripheral welds and overlays of the cylindrical parts of the pressure vessel, and tests of the necks. Different ultrasonic probe holders are used for the tests, with totally different design. Ultrasonic probes which were initially used were of foreign make while at present, those of Czechoslovak make are used. For each pressure vessel a set of ultrasonic probes is used which should suffice for the life of the vessel. Experience gained so far is being used in work on the project of a new device for testing nuclear reactor presure vessels from the inside. (Z.M.)

  10. Progress and Challenges of Ultrasonic Testing for Stress in Remanufacturing Laser Cladding Coating

    Directory of Open Access Journals (Sweden)

    Xiao-Ling Yan

    2018-02-01

    Full Text Available Stress in laser cladding coating is an important factor affecting the safe operation of remanufacturing components. Ultrasonic testing has become a popular approach in the nondestructive evaluation of stress, because it has the advantages of safety, nondestructiveness, and online detection. This paper provides a review of ultrasonic testing for stress in remanufacturing laser cladding coating. It summarizes the recent research outcomes on ultrasonic testing for stress, and analyzes the mechanism of ultrasonic testing for stress. Remanufacturing laser cladding coating shows typical anisotropic behaviors. The ultrasonic testing signal in laser cladding coating is influenced by many complex factors, such as microstructure, defect, temperature, and surface roughness, among others. At present, ultrasonic testing for stress in laser cladding coating can only be done roughly. This paper discusses the active mechanism of micro/macro factors in the reliability of stress measurement, as well as the impact of stress measurement on the quality and safety of remanufacturing components. Based on the discussion, this paper proposes strategies to nondestructively, rapidly, and accurately measure stress in remanufacturing laser cladding coating.

  11. Development of transfer standard devices for ensuring the accurate calibration of ultrasonic physical therapy machines in clinical use

    International Nuclear Information System (INIS)

    Hekkenberg, R T; Richards, A; Beissner, K; Zeqiri, B; Prout, G; Cantrall, Ch; Bezemer, R A; Koch, Ch; Hodnett, M

    2004-01-01

    Physical therapy ultrasound is widely applied to patients. However, many devices do not comply with the relevant standard stating that the actual power output shall be within ±20% of the device indication. Extreme cases have been reported: from delivering effectively no ultrasound or operating at maximum power at all powers indicated. This can potentially lead to patient injury as well as mistreatment. The present European (EC) project is an ongoing attempt to improve the quality of the treatment of patients being treated with ultrasonic physical-therapy. A Portable ultrasound Power Standard (PPS) is being developed and accurately calibrated. The PPS includes: Ultrasound transducers (including one exhibiting an unusual output) and a driver for the ultrasound transducers that has calibration and proficiency test functions. Also included with the PPS is a Cavitation Detector to determine the onset of cavitation occurring within the propagation medium. The PPS will be suitable for conducting in-the-field accreditation (proficiency testing and calibration). In order to be accredited it will be important to be able to show traceability of the calibration, the calibration process and qualification of testing staff. The clinical user will benefit from traceability because treatments will be performed more reliably

  12. Method of case hardening depth testing by using multifunctional ultrasonic testing instrument

    International Nuclear Information System (INIS)

    Salchak, Y A; Sednev, D A; Ardashkin, I B; Kroening, M

    2015-01-01

    The paper describes usability of ultrasonic case hardening depth control applying standard instrument of ultrasonic inspections. The ultrasonic method of measuring the depth of the hardened layer is proposed. Experimental series within the specified and multifunctional ultrasonic equipment are performed. The obtained results are compared with the results of a referent method of analysis. (paper)

  13. Automatic ultrasonic testing and the LOFT in-service inspection program

    International Nuclear Information System (INIS)

    Hunter, J.A.

    1980-01-01

    An automatic ultrasonic testing system has been developed which significantly improves the flaw indication detection and characterization capability over the capability of conventional volumetric examination techniques. The system utilizes an accurately located ultrasonic sensor to generate the examination data. A small computer performs and integrates control and data input/output functions. Computer software has been developed to provide a rigorous method for data analysis and ultrasonic image interpretation. The system has been used as part of an in-service inspection program to examine welds in thich austenitic stainless steel pipes in a small experimental nuclear reactor

  14. Effect of the simulated periodontal ligament on cast post-and-core removal using an ultrasonic device

    Directory of Open Access Journals (Sweden)

    Manoel Brito-Junior

    2010-10-01

    Full Text Available ABSTRACT OBJECTIVE: The aim of this study was to evaluate the effect of simulated periodontal ligament (SPDL on custom cast dowel and core removal by ultrasonic vibration. MATERIAL AND METHODS: Thirty-two human maxillary canines were included in resin cylinders with or without SPDL made from polyether impression material. In order to allow tensile testing, the roots included in resin cylinders with SPDL were fixed to cylinders with two stainless steel wires. Post-holes were prepared by standardizing the length at 8 mm and root canal impressions were made with self-cured resin acrylic. Cast dowel and core sets were fabricated and luted with Panavia F resin cement. Half of the samples were submitted to ultrasonic vibration before the tensile test. Data were analyzed statistically by two-way ANOVA and Tukey's post-hoc tests (p<0.05. RESULTS: The ultrasonic vibration reduced the tensile strength of the samples directly included in resin cylinders. There was no difference between the values, whether or not ultrasonic vibration was used, when the PDL was simulated. However, the presence of SPDL affected the tensile strength values even when no ultrasonic vibration was applied. CONCLUSION: Simulation of PDL has an effect on both ultrasonic vibration and tensile testing.

  15. Modelling of ultrasonic nondestructive testing in anisotropic materials - Rectangular crack

    International Nuclear Information System (INIS)

    Bostroem, A.

    2001-12-01

    Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry when searching for defects, in particular cracks. To develop and qualify testing procedures extensive experimental work on test blocks is usually required. This can take a lot of time and therefore be quite costly. A good mathematical model of the testing situation is therefore of great value as it can reduce the experimental work to a great extent. A good model can be very useful for parametric studies and as a pedagogical tool. A further use of a model is as a tool in the qualification of personnel. In anisotropic materials, e.g. austenitic welds, the propagation of ultrasound becomes much more complicated as compared to isotropic materials. Therefore, modelling is even more useful for anisotropic materials, and it in particular has a greater pedagogical value. The present project has been concerned with a further development of the anisotropic capabilities of the computer program UTDefect, which has so far only contained a strip-like crack as the single defect type for anisotropic materials. To be more specific, the scattering by a rectangular crack in an anisotropic component has been studied and the result is adapted to include transmitting and receiving ultrasonic probes. The component under study is assumed to be anisotropic with arbitrary anisotropy. On the other hand, it is assumed to be homogeneous, and this in particular excludes most welds, where it is seldom an adequate approximation to assume homogeneity. The anisotropy may be arbitrarily oriented and the same is true of the rectangular crack. The crack may also be located near a backside of the component. To solve the scattering problem for the crack an integral equation method is used. The probe model has been developed in an earlier project and to compute the signal response in the receiving probe an electromechanical reciprocity argument is employed. As a rectangle is a truly 3D scatterer the sizes of the

  16. Ultrasonic and advanced methods for nondestructive testing and material characterization

    National Research Council Canada - National Science Library

    Chen, C. H

    2007-01-01

    ... and physics among others. There are at least two dozen NDT methods in use. In fact any sensor that can examine the inside of material nondestructively is useful for NDT. However the ultrasonic methods are still most popular because of its capability, flexibility, and relative cost effectiveness. For this reason this book places a heavy emphasis...

  17. Recording length criteria as applied in ultrasonic testing

    International Nuclear Information System (INIS)

    Fischer, E.; Kroening, M.; Schober, H.; Fischdick, H.

    1983-01-01

    An appreciable method used to assess the quality and integrity of safety-related components in light water reactors is the ultrasonic examination, in which case great importance is attributed to the criteria pertaining to recording length and permissible defect size. The development of the recording length criteria as applied when employing this method of examination is portrayed, the latter being based on the criteria which have proven themselves throughout long years of practice in the examination of conventional components. When taking these criteria into account the application of conventional ultrasonic techniques often leads to problems in the case of thick-walled components the reason being that indications are overrated. Taking the design of reactor components as the basic point of consideration, modified criteria are derived particularly when the size of discontinuities calculated by fracture mechanics analyses is taken into account. The introduction of new ultrasonic examination techniques such as, for example, focussed probes revealed that a considerably more realistic assessment is possible and consequently results in a reduction of unnecessary repairs. A comparison of the size of indications determined using conventional and analytical technqiues renders possible the anchoring of an intermediate stage in the evaluation of indications which is encompassed in the consideration of the bundle divergence. Thus a new concept is realized for the evaluation of ultrasonic indications detected in reactor components, which in the meantime has found its way into the associated regulatory guides. (orig.)

  18. Ultrasonic testing with the phased array method at the pipe connection inner edges in pipings

    International Nuclear Information System (INIS)

    Brekow, G.; Wuestenberg, H.; Hesselmann, H.; Rathgeb, W.

    1991-01-01

    Ultrasonic testing with the phased array method at the pipe connection inner edges in pipings. The pipe connection inner corner tests in feedwater lines to the main coolant pipe were carried out by Preussen-Elektra in cooperation with Siemens KWU and the BAM with the ultrasonic phased array method. The testing plan was developed by means of a computed model. For a trial of the testing plan, numerous ultrasonic measurements with the phased array method were carried out using a pipe test piece with TH-type inner edges, which was a 1:1 model of the reactor component to be tested. The data measured at several test notches in the pipe connection inner edge area covered by a plating of 6 mm were analyzed. (orig./MM) [de

  19. Performance testing of a system for remote ultrasonic examination of the Hanford double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Pfluger, D.C.; Somers, T.; Berger, A.D.

    1995-02-01

    A mobile robotic inspection system is being developed for remote ultrasonic examination of the double wall waste storage tanks at Hanford. Performance testing of the system includes demonstrating robot mobility within the tank annulus, evaluating the accuracy of the vision based navigation process, and verifying ultrasonic and video system performance. This paper briefly describes the system and presents a summary of the plan for performance testing of the ultrasonic testing system. Performance test results will be presented at the conference

  20. Acceptance Test Report for the 241-AZ-101 Ultrasonic Interface Level Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    ANDREWS, J.E.

    2000-01-27

    This document comprises the Acceptance Test Report for the 241-AZ-101 Ultrasonic Interface Level Analyzer. This document presents the results of Acceptance Testing of the 241-AZ-101 Ultrasonic Interface Level Analyzers (URSILLAs). Testing of the URSILLAs was performed in accordance with ATP-260-001, ''URSILLA Pre-installation Acceptance Test Procedure''. The objective of the testing was to verify that all equipment and components function in accordance with design specifications and original equipment manufacturer's specifications.

  1. Nonlinear NDT: A Route to Conventional Ultrasonic Testing

    OpenAIRE

    Igor Solodov

    2016-01-01

    The bottleneck problem of nonlinear NDT is a low efficiency of conversion from fundamental frequency to nonlinear frequency components. In this paper, it is proposed to use a combination of nonlinearity with Local Defect Resonance (LDR) to enhance substantially the input-output conversion. Since LDR is an efficient resonance “amplifier” of the local vibrations, it manifests a profound nonlinearity even at moderate ultrasonic excitation level. As the driving frequency matches the LDR-frequency...

  2. Modelling of ultrasonic nondestructive testing of cracks in claddings

    International Nuclear Information System (INIS)

    Bostroem, Anders; Zagbai, Theo

    2006-05-01

    noted that this is treated as an internal crack that approaches the surface. This means that the crack mouth remains closed in the limit, contrary to what is to be expected of a real surface-breaking crack. At least in pulse-echo testing and not too low frequencies (a crack that is smaller than a wavelength), the experience from previous projects is that the difference between the cracks with closed and open mouths is very minor, so that the crack with closed mouth can be used as a good approximation for a real surface-breaking crack. In two dimensions there is a decoupling of ultrasonic waves in SH and coupled P-SV waves with polarization out of the plane or in the plane, respectively. These two subproblems have both been investigated with a hypersingular integral equation technique. In this method the integral equation contains a Green's function that takes care of all the structure except the crack. This Green's function is determined with the null field approach, which in itself is a type of integral method. Probe modelling is performed in the usual way by prescribing its traction vector on the component and the action as a receiver is modelled by a reciprocity argument. Some numerical results are given for a case with an isotropic ferritic base material and an anisotropic austenitic cladding. Only a pulse-echo situation is considered with a line scan showing the amplitude at a fixed frequency. The presence of the cladding and the interface corrugation has a strong influence in most cases. The amplitude can both increase and decrease due to the corrugations and the peak response can be moved sideways

  3. Modelling of ultrasonic nondestructive testing of cracks in claddings

    Energy Technology Data Exchange (ETDEWEB)

    Bostroem, Anders; Zagbai, Theo [Calmers Univ. of Technology, Goeteborg (Sweden). Dept. of Applied Mechanics

    2006-05-15

    noted that this is treated as an internal crack that approaches the surface. This means that the crack mouth remains closed in the limit, contrary to what is to be expected of a real surface-breaking crack. At least in pulse-echo testing and not too low frequencies (a crack that is smaller than a wavelength), the experience from previous projects is that the difference between the cracks with closed and open mouths is very minor, so that the crack with closed mouth can be used as a good approximation for a real surface-breaking crack. In two dimensions there is a decoupling of ultrasonic waves in SH and coupled P-SV waves with polarization out of the plane or in the plane, respectively. These two subproblems have both been investigated with a hypersingular integral equation technique. In this method the integral equation contains a Green's function that takes care of all the structure except the crack. This Green's function is determined with the null field approach, which in itself is a type of integral method. Probe modelling is performed in the usual way by prescribing its traction vector on the component and the action as a receiver is modelled by a reciprocity argument. Some numerical results are given for a case with an isotropic ferritic base material and an anisotropic austenitic cladding. Only a pulse-echo situation is considered with a line scan showing the amplitude at a fixed frequency. The presence of the cladding and the interface corrugation has a strong influence in most cases. The amplitude can both increase and decrease due to the corrugations and the peak response can be moved sideways.

  4. Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types.

    Science.gov (United States)

    Meisberger, Eric W; Bakker, Sjoerd J G; Cune, Marco S

    2015-12-01

    Ultrasonic instrumentation under magnification may facilitate mobilization of screw remnants but may induce heat trauma to surrounding bone. An increase of 5°C is considered detrimental to osseointegration. The objective of this investigation was to examine the rise in temperature of the outer implant body after 30 s of ultrasonic instrumentation to the inner part, in relation to implant type, type of ultrasonic equipment, and the use of coolants in vitro. Two ultrasonic devices (Satelec Suprasson T Max and Electro Medical Systems (EMS) miniMaster) were used on five different implant types that were provided with a thermo couple (Astra 3.5 mm, bone level Regular CrossFit (RC) 4.1 mm, bone level Narrow CrossFit (NC) 3.3 mm, Straumann tissue level regular body regular neck 3.3 mm, and Straumann tissue level wide body regular neck 4.8 mm), either with or without cooling during 30 s. Temperature rise at this point in time is the primary outcome measure. In addition, the mean maximum rise in temperature (all implants combined) was assessed and statistically compared among devices, implant systems, and cooling mode (independent t-tests, ANOVA, and post hoc analysis). The Satelec device without cooling induces the highest temperature change of up to 13°C, particularly in both bone level implants (p < 0.05) but appears safe for approximately 10 s of continuous instrumentation, after which a cooling down period is rational. Cooling is effective for both devices. However, when the Satelec device is used with coolant for a longer period of time, a rise in temperature must be anticipated after cessation of instrumentation, and post-operational cooling is advised. The in vitro setup used in this experiment implies that care should be taken when translating the observations to clinical recommendations, but it is carefully suggested that the EMS device causes limited rise in temperature, even without coolant.

  5. The ultrasonic testing of austenitic welds and claddings as described in the handbooks of the IIW

    International Nuclear Information System (INIS)

    Neumann, E.; Wuestenberg, H.

    1991-01-01

    The handbooks of the International Institute of Welding (IIW) are to give guidance in the use of ultrasonic testing techniques developed for austenitic welded joints and platings, and serve as a pattern for working out testing instructions for these special tests. Basically these handbooks consist of the metallurgical description of the test subjects; sound propagation in acoustically anisotropic structures; description of testing techniques, and guidance in preparing testing instructions. (orig./DG) [de

  6. Experience with automatic ultrasonic testing with the P-scan system

    International Nuclear Information System (INIS)

    Edelmann, X.; Pfister, O.; Allidi, F.

    1989-01-01

    In this contribution, there is a report on experience in the automated ultrasonic testing of Austenitic components with the P-scan system. Examples of testing Austenitic joints and mixed joints on pipeline systems in the primary circuit of nuclear powerstations are discussed. Further, the mechanised measurement of wall thickness of pipelines endangered by erosion and corrosion is dealt with. (MM) [de

  7. Standard practice for ultrasonic testing of wrought products

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2013-01-01

    1.1 Purpose—This practice establishes the minimum requirements for ultrasonic examination of wrought products. Note 1—This standard was adopted to replace MIL-STD-2154, 30 Sept. 1982. This standard is intended to be used for the same applications as the document which it replaced. Users should carefully review its requirements when considering its use for new, or different applications, or both. 1.2 Application—This practice is applicable for examination of materials such as, wrought metals and wrought metal products. 1.2.1 Wrought Aluminum Alloy Products—Examination shall be in accordance with Practice B 594. 1.3 Acceptance Class—When examination is performed in accordance with this practice, engineering drawings, specifications, or other applicable documents shall indicate the acceptance criteria. Five ultrasonic acceptance classes are defined in Table 1. One or more of these classes may be used to establish the acceptance criteria or additional or alternate criteria may be specified. 1.4 Ord...

  8. Improvement of defect characterization in ultrasonic testing by adaptative learning network

    International Nuclear Information System (INIS)

    Bieth, M.; Adamonis, D.C.; Jusino, A.

    1982-01-01

    Numerous methods exist now for signal analysis in ultrasonic testing. These methods give more or less accurate information for defects characterization. In this paper is presented the development of a particular system based on a computer Signal processing: the Adaptative Learning Network (ALN) allowing the discrimination of defects in function of their nature. The ultrasonic signal is sampled and characterized by parameters amplitude-time and amplitude-frequency. The method was tested on stainless steel tubes welds showing fatigue cracks. The ALN model developed allows, under certain conditions, the discrimination of cracks from other defects [fr

  9. Requirements Relating To Manufacturing Constructions In The Aspect Of Conducting Ultrasonic Testing

    Directory of Open Access Journals (Sweden)

    Kaczmarek R.

    2015-09-01

    Full Text Available Basic factors which have an influence on conducting manual ultrasonic testing of joints in the welded constructions are presented in the following article. These factors are specified on the base of the guidelines referring to conditions and methods of carrying out examinations which are currently in force in the following standards PN-EN ISO 17640 and PN-EN ISO 22825. Due to the vastness of subject of ultrasonic testing the main aim of the following article is to collect all important information which relates to design and manufacture of constructions and has a key influence on the following examinations.

  10. An efficient ultrasonic SAFT imaging for pulse-echo immersion testing

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hong Wei [Changsha University of Science and Technology, Changsha (China); Jeong, Hyun Jo [Div. of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2017-04-15

    An ultrasonic synthetic aperture focusing technique (SAFT) using a root mean square (RMS) velocity model is proposed for pulse-echo immersion testing to improve the computational efficiency. Considering the immersion ultrasonic testing of a steel block as an example, three kinds of imaging were studied (B-Scan, SAFT imaging based on ray tracing technology and RMS velocity). The experimental results show that two kinds of SAFT imaging have almost the same imaging performance, while the efficiency of RMS velocity SAFT imaging is almost 25 times greater than the SAFT based on Snell's law.

  11. An efficient ultrasonic SAFT imaging for pulse-echo immersion testing

    International Nuclear Information System (INIS)

    Hu, Hong Wei; Jeong, Hyun Jo

    2017-01-01

    An ultrasonic synthetic aperture focusing technique (SAFT) using a root mean square (RMS) velocity model is proposed for pulse-echo immersion testing to improve the computational efficiency. Considering the immersion ultrasonic testing of a steel block as an example, three kinds of imaging were studied (B-Scan, SAFT imaging based on ray tracing technology and RMS velocity). The experimental results show that two kinds of SAFT imaging have almost the same imaging performance, while the efficiency of RMS velocity SAFT imaging is almost 25 times greater than the SAFT based on Snell's law

  12. Design and performance testing of an ultrasonic linear motor with dual piezoelectric actuators.

    Science.gov (United States)

    Smithmaitrie, Pruittikorn; Suybangdum, Panumas; Laoratanakul, Pitak; Muensit, Nantakan

    2012-05-01

    In this work, design and performance testing of an ultrasonic linear motor with dual piezoelectric actuator patches are studied. The motor system consists of a linear stator, a pre-load weight, and two piezoelectric actuator patches. The piezoelectric actuators are bonded with the linear elastic stator at specific locations. The stator generates propagating waves when the piezoelectric actuators are subjected to harmonic excitations. Vibration characteristics of the linear stator are analyzed and compared with finite element and experimental results. The analytical, finite element, and experimental results show agreement. In the experiments, performance of the ultrasonic linear motor is tested. Relationships between velocity and pre-load weight, velocity and applied voltage, driving force and applied voltage, and velocity and driving force are reported. The design of the dual piezoelectric actuators yields a simpler structure with a smaller number of actuators and lower stator stiffness compared with a conventional design of an ultrasonic linear motor with fully laminated piezoelectric actuators.

  13. Development of the Automated Ultrasonic Testing System for Inspection of the flaw in the Socket Weldment

    International Nuclear Information System (INIS)

    Lee, Jeong Ki; Park, Moon Ho; Park, Ki Sung; Lee, Jae Ho; Lim, Sung Jin

    2004-01-01

    Socket weldment used to change the flow direction of fluid nay have flaws such as lack of fusion and cracks. Liquid penetrant testing or Radiography testing have been applied as NDT methods for flaw detection of the socket weldment. But it is difficult to detect the flaw inside of the socket weldment with these methods. In order to inspect the flaws inside the socket weldment, a ultrasonic testing method is established and a ultrasonic transducer and automated ultrasonic testing system are developed for the inspection. The automated ultrasonic testing system is based on the portable personal computer and operated by the program based Windows 98 or 2000. The system has a pulser/receiver, 100MHz high speed A/D board, and basic functions of ultrasonic flaw detector using the program. For the automated testing, motion controller board of ISA interface type is developed to control the 4-axis scanner and a real time iC-scan image of the automated testing is displayed on the monitor. A flaws with the size of less than 1mm in depth are evaluated smaller than its actual site in the testing, but the flaws larger than 1mm appear larger than its actual size on the contrary. This tendency is shown to be increasing as the flaw size increases. h reliable and objective testing results are obtained with the developed system, so that it is expected that it can contribute to safety management and detection of repair position of pipe lines of nuclear power plants and chemical plants

  14. Ultrasonic testing of fatigue cracks under various conditions

    International Nuclear Information System (INIS)

    Jessop, T.J.; Cameron, A.G.B.

    1983-01-01

    Reliable detection of the fatigue cracks was possible under all conditions studied. Applied load affected the ultrasonic response in a variety of ways but never more than by 20dB and generally considerably less. Material variations affected the response under applied load by up to 20dB. Oxide in the crack and crack morphology affected the response by up to 9dB (12dB under load). Crack size variations and presence of water had little effect. Sizing accuracy was generally within 2mm although there was a tendency to undersize. The time of flight sizing technique gave the best accuracy if a tensile load was applied

  15. Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection.

    Science.gov (United States)

    Casavola, Caterina; Palano, Fania; De Cillis, Francesco; Tati, Angelo; Terzi, Roberto; Luprano, Vincenza

    2018-04-18

    Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT) on T-pull samples made by carbon fiber reinforced polymers (CFRP) and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode.

  16. Radiographic and ultrasonic testings of welded joints of 6063 aluminium alloy

    International Nuclear Information System (INIS)

    Oliveira e Silva Mury, A.G. de.

    1980-05-01

    A study on evaluation of weld defects in aluminium butt joints was made in a comparative way through the radiographic and ultrasonic testing. This work was conducted with pipes 5 IPS (6,35 mm thickness) of 6063 aluminium alloy, circumferential TIG welded, due to the difficulty on performing non-destructive testing with this schedule. It was concluded thta ultrasonic testing has adequate sensitivity when setting gain adjustment is made with aid of a reference curve constructed by using a Reference Block (among others studied) with 1,5 mm dia. Hole as reference reflector, and a 5 MHz angle beam search-unit. In this case the ultrasonic testing is more accurate than radiographic testing to detect planar defects like lack of fusion and lack of penetration. Defect sizing by ultrasonic methods employed were 6 and 20 dB drop methods. In spite of your observed limitations concerning the establishment of the real size of defects, the procedure applied was precise for locate and define the weld defects that where found in this study. (author) [pt

  17. Comparison of three flaw-location methods for automated ultrasonic testing

    International Nuclear Information System (INIS)

    Seiger, H.

    1982-01-01

    Two well-known methods for locating flaws by measurement of the transit time of ultrasonic pulses are examined theoretically. It is shown that neither is sufficiently reliable for use in automated ultrasonic testing. A third method, which takes into account the shape of the sound field from the probe and the uncertainty in measurement of probe-flaw distance and probe position, is introduced. An experimental comparison of the three methods indicates that use of the advanced method results in more accurate location of flaws. (author)

  18. Design, fabrication, and testing of an ultrasonic de-icing system for helicopter rotor blades

    Science.gov (United States)

    Palacios, Jose Luis

    A low-power, non-thermal ultrasonic de-icing system is introduced as a possible substitute for current electro-thermal systems. The system generates delaminating ultrasonic transverse shear stresses at the interface of accreted ice. A PZT-4 disk driven at 28.5 KHz (radial resonance of the disk) instantaneously de-bonds 2 mm thick freezer ice layers. The ice layers are accreted to a 0.7 mm thick, 30.4 cm x 30.4 cm steel plate at an environment temperature of -20°C. A power input of 50 Watts is applied to the actuator (50 V, 19.6 KV/m), which translates to a de-icing power of 0.07 W/cm2. A finite element model of the actuator bonded to the isotropic plate is used to guide the design of the system, and predicts the transverse shear stresses at the ice interface. Wind tunnel icing tests were conducted to demonstrate the potential use of the proposed system under impact icing conditions. Both glaze ice and rime ice were generated on steel and composite plates by changing the cloud conditions of the wind tunnel. Continuous ultrasonic vibration prevented impact ice formation around the actuator location at an input power not exceeding 0.18 W/cm 2 (1.2 W/in2). As ice thickness reached a critical thickness of approximately 1.2 mm, shedding occurred on those locations where ultrasonic transverse shear stresses exceeded the shear adhesion strength of the ice. Finite element transverse shear stress predictions correlate with observed experimental impact ice de-bonding behavior. To increase the traveling distance of propagating ultrasonic waves, ultrasonic shear horizontal wave modes are studied. Wave modes providing large modal interface transverse shear stress concentration coefficients (ISCC) between the host structure (0.7 mm thick steel plate) and accreted ice (2.5 mm thick ice layer) are identified and investigated for a potential increase in the wave propagation distance. Ultrasonic actuators able to trigger these optimum wave modes are designed and fabricated. Despite

  19. Applicability of gamma radiography and ultrasonic testing in welds and castings

    International Nuclear Information System (INIS)

    Krishnamurthy, K.; Wamorkar, R.R.; Jayakumar, T.K.

    1977-01-01

    Technical limitations and advantages of gamma radiography and ultrasonic techniques for flow detection in welds and castings, have been discussed. Limitations of both the testing methods due to orientation, shape and location of defects have been analysed and a few experimental results are presented. Dependence of inspection sensitivity of both the techniques for different types of targets and defects has been indicated. (author)

  20. NDE reliability gains from combining eddy-current and ultrasonic testing

    International Nuclear Information System (INIS)

    Horn, D.; Mayo, W.R.

    1999-01-01

    We investigate statistical methods for combining the results of two complementary inspection techniques, eddy-current and ultrasonic testing. The reliability of rejection/acceptance decisions based on combined information is compared with that based on each inspection technique individually. The measured reliability increases with the amount of information incorporated in the decision. (author)

  1. Contribution of the ultrasonic simulation to the testing methods qualification process

    International Nuclear Information System (INIS)

    Le Ber, L.; Calmon, P.; Abittan, E.

    2001-01-01

    The CEA and EDF have started a study concerning the simulation interest in the qualification of nuclear components control by ultrasonic methods. In this framework, the simulation tools of the CEA, as CIVA, have been tested on real control. The method and the results obtained on some examples are presented. (A.L.B.)

  2. Babcock experience of automated ultrasonic non-destructive testing of PWR pressure vessels during manufacture

    International Nuclear Information System (INIS)

    Dikstra, B.J.; Farley, J.M.; Scruton, G.

    1990-01-01

    Major developments in ultrasonic techniques, equipment and systems for automated inspection have lead, over a period of about ten years, to the regular application of sophisticated computer-controlled systems during the manufacture of nuclear reactor pressure vessels. Ten years ago the use of procedures defined in a code such as ASME XI might have been considered sufficient, but it is now necessary, as was demonstrated by the results of the UKAEA defect detection trials and the PISC II trials, to apply more comprehensive arrays of probes and higher test sensitivities. The ultrasonic techniques selected are demonstrated to be adequate by modelling or test-block exercises, the automated systems applied are subject to stringent quality assurance testing, and very rigorous inspection procedures are used in conjunction with a high degree of automation to ensure reproducibility of inspection quality. The state-of-the-art in automated ultrasonic testing of pressure vessels by Babcock is described. Current developments by the company, including automated flaw recognition, integrated modelling of inspection capability, and the use of electronically scanned variable-angle probes are reviewed. Examples quoted include the automated ultrasonic inspections of the Sizewell B pressurized water reactor vessel. (author)

  3. Virtual Turbine Engine Test Bench Using MGET Test Device

    Science.gov (United States)

    Kho, Seonghee; Kong, Changduk; Ki, Jayoung

    2015-05-01

    Test device using virtual engine simulator can help reduce the number of engine tests through tests similar to the actual engine tests and repeat the test under the same condition, and thus reduce the engine maintenance and operating costs [1]. Also, as it is possible to easily implement extreme conditions in which it is hard to conduct actual tests, it can prevent engine damages that may happen during the actual engine test under such conditions. In this study, an upgraded MGET test device was developed that can conduct both real and virtual engine test by applying real-time engine model to the existing MGET test device that was developed and has been sold by the Company. This newly developed multi-purpose MGET test device is expected to be used for various educational and research purposes.

  4. Examples for simple solutions in using manual ultrasonic testing with partial mechanisation

    International Nuclear Information System (INIS)

    Prestel, W.; Meyer, H.J.; Weiss, M.

    1989-01-01

    Fully automatic ultrasonic testing regarding test technique, manipulation and evaluation can only be used economically if one is either testing large number of parts or if manual testing of safety-related components is impossible because of inaccessibility, e.g.: for primary circuit components of nuclear powerstations. The described examples (multi-layer ceramic condensers, turbine rotors, cast steel components, central holes in forged shafts, weld seams and piston bolts) show that by individually designed and, where necessary, computer-aided part-mechanisation, ultrasonic testing is able to combine high probability of finding faults in the interests of the greatest possible operating safety and the requirement for the description or documentation of the fault suitable for the required case with the necessity for economical testing. (orig./MM) [de

  5. Measurement and analysis. Ultrasonic testing. Study of the attenuation of ultrasonic beams through steels

    International Nuclear Information System (INIS)

    Canella, G.

    1977-01-01

    Anisotropy, inclusions, segregations and grain size are factors affecting the mechanical properties of steel and determining, at the same time, attenuation of an untrasonic beam crossing it. A system was developed, which offers guarantees of good reproducibility (within 5%) obtained with a device applying a constant and uniform pressure on the probe and using oil with very low viscosity and surface tension as couplant liquid. This oil, generally used as penetrant, is excellent by the rapidity of its constant response and by the thin layer formed which is free from air bubbles between probe and piece. Measurements of reflection loss were also carried out and investigated about the influence on such loss of: couplant liquid; type of transducer; type of piezoelectric protection. For transducers whose surface is protected by an hard coat loss by reflection (about 1 dB) varies within the measuring error, for the different couplant liquids. For transducers with unprotected sensitive surface, loss depends on the type of crystal and is significantly reduced (from 3 dB to 0,5 dB approximately) with an appropriate rubber layer. In both cases; loss proved to be independent of frequency. The samples were subjected to different heat treatments and, for each measurement of amplitude and frequency attenuation and structure micrographies were carried out. These methods of inspections can be applied in industry without any great difficulty

  6. Advanced ultrasonic techniques for nondestructive testing of austenitic and dissimilar welds in nuclear facilities

    Science.gov (United States)

    Juengert, Anne; Dugan, Sandra; Homann, Tobias; Mitzscherling, Steffen; Prager, Jens; Pudovikov, Sergey; Schwender, Thomas

    2018-04-01

    Austenitic stainless steel welds as well as dissimilar metal welds with nickel alloy filler material, used in safety relevant parts of nuclear power plants, still challenge the ultrasonic inspection. The weld material forms large oriented grains that lead, on the one hand, to high sound scattering and, on the other hand, to inhomogeneity and to the acoustic anisotropy of the weld structure. The ultrasonic wave fronts do not propagate linearly, as in ferritic weld joints, but along the curves, which depend on the specific grain structure of the weld. Due to the influence of these phenomena, it is difficult to analyze the inspection results and to classify the ultrasonic indications, which could be both from the weld geometry and from the material defects. A correct flaw sizing is not possible. In an ongoing research project, different techniques to improve the reliability of ultrasonic testing at these kinds of welds are investigated. In a first step (in the previous research project) two ultrasonic inspection techniques were developed and validated on plane test specimens with artificial and realistic flaws. In the ongoing project, these techniques are applied to circumferential pipe welds with longitudinal and transverse flaws. The technique developed at the Federal Institute for Materials Research and Testing (BAM) in Germany uses a combination of ray tracing and synthetic aperture focusing technique (SAFT). To investigate the unknown grain structure, the velocity distribution of weld-transmitting ultrasound waves is measured and used to model the weld by ray tracing. The second technique, developed at the Fraunhofer Institute for Nondestructive Testing (IZFP) in Germany, uses Sampling Phased Array (Full Matrix Capture) combined with the reverse phase matching (RPM) and the gradient elastic constant descent algorithm (GECDM). This inspection method is able to estimate the elastic constants of the columnar grains in the weld and offers an improvement of the

  7. Updating of actual technique for ultrasonic testing of austenitic stainless materials and welds

    International Nuclear Information System (INIS)

    Lindholm, P.O.; Pers-Anderson, E.B.

    1982-01-01

    The technique for ultrasonic testing of stainless austenitic steels and weldings has been studied and it has been brought to the latest standard. Many problems exist when testing, the most serious being the occurence of false indications and the damping of energy. Laboratory tests show that the detectors with transversal sound waves should be used for plane defects. Best results were achieved with a 45 degrees detector. (GB)

  8. Development of ultrasonic testing scanner for NPP steam generator tubes (I)

    International Nuclear Information System (INIS)

    Shin, J. I.; Huh, H.

    1998-12-01

    Testing tubes are designed and fabricated to investigate the optimum test conditions through the various experiments. The proto-type P/C-controlled automatic rotating scanner is fabricated to obtain the ultrasonic data automatically from test tubes. It was attempted to visualize the shape of defects presented inside the specimen using peak amplitude at each point. However, further research works will be needed to be applied at the plant site as a more reliable technology

  9. Performance test of wet type decontamination device

    International Nuclear Information System (INIS)

    Lee, E. P.; Kim, E. G.; Min, D. K.; Jun, Y. B.; Lee, H. K.; Seu, H. S.; Kwon, H. M.; Hong, K.P.

    2003-01-01

    The intervention area located at rear hot cell can be contaminated by hot cell maintenance work. For effective decontamination of the intervention floor a wet type decontamination device was developed. The device was assembled with a brush rotating part, a washing liquid supplying part, an intake part for recovering contaminated liquid and a device moving cart part. The device was made of stainless steel for easy decontamination and corrosion resistance. The function test carried out at intervention area of the PIE facility showed good performance

  10. Light-emitting device test systems

    Science.gov (United States)

    McCord, Mark; Brodie, Alan; George, James; Guan, Yu; Nyffenegger, Ralph

    2018-01-23

    Light-emitting devices, such as LEDs, are tested using a photometric unit. The photometric unit, which may be an integrating sphere, can measure flux, color, or other properties of the devices. The photometric unit may have a single port or both an inlet and outlet. Light loss through the port, inlet, or outlet can be reduced or calibrated for. These testing systems can provide increased reliability, improved throughput, and/or improved measurement accuracy.

  11. Interactive ultrasonic field simulations for complex non-destructive testing configurations

    International Nuclear Information System (INIS)

    Chouh, Hamza

    2016-01-01

    In order to fulfill increasing reliability and safety requirements, non-destructive testing techniques are constantly evolving and so does their complexity. Consequently, simulation is an essential part of their design. We developed a tool for the simulation of the ultrasonic field radiated by any planar probes into non-destructive testing configurations involving meshed geometries without prominent edges, isotropic and anisotropic, homogeneous and heterogeneous materials, and wave trajectories that can include reflections and transmissions. We approximate the ultrasonic wave fronts by using polynomial interpolators that are local to ultrasonic ray pencils. They are obtained using a surface research algorithm based on pencil tracing and successive subdivisions. Their interpolators enable the computation of the necessary quantities for the impulse responses on each point of a sampling of the transducer surface that fulfills the Shannon criterion. By doing so, we can compute a global impulse response which, when convolved with the excitation signal of the transducer, results in the ultrasonic field. The usage of task parallelism and of SIMD instructions on the most computationally expensive steps yields an important performance boost. Finally, we developed a tool for progressive visualization of field images. It benefits from an image reconstruction technique and schedules field computations in order to accelerate convergence towards the final image. (author) [fr

  12. Radiometric and ultrasonic testing of vibrating roller compacting effects

    International Nuclear Information System (INIS)

    Prikryl, F.; Habarta, J.; Kovarikova, E.

    1977-01-01

    A hole was filled with two layers of concrete mixture. Each layer was compacted using a Dynapac CA 25 vibrating roller 10,000 kg in weight, operating with a frequency of 30 Hz. A concrete block thus produced had dimensions of 11.0x2.5 m and a height of 1.6 m. After the concrete block hardening (roughly 120 days) drill cores were bored and bulk density was determined using nondestructive methods. Bulk density determination of the concrete between the drill cores was conducted using a 137 Cs emitter of an activity of 89 GBq, a FHZ-88b Geiger-Mueller counter was used as the detector. The emitter and detector were placed to touch the bore wall and were lowered to different depths in 10 cm increments. 10 count rate values were measured in each depth. The measurement time was chosen such that the decay statistical error did not exceed 1;. Bulk density of the individual segments of the drill cores was determined using 60 Co of an activitBy of 55 Mq as the radiation source and a TESLA 20/100 GWl GM counter as the detector. The detector operating voltage was 1240 V. Ultrasonic measurements were conducted using the USME-5 instrument. The measured bulk density values show that the compacting of a concrete layer 80 cm in thickness using a vibrating roller is sufficiently efficient. Both nondestructive methods were well proven, the results show that bulk density values in different depths differ due to concrete moisture content. (J.P.)

  13. Visualization of flaws within heavy section ultrasonic test blocks using high energy computed tomography

    International Nuclear Information System (INIS)

    House, M.B.; Ross, D.M.; Janucik, F.X.; Friedman, W.D.; Yancey, R.N.

    1996-05-01

    The feasibility of high energy computed tomography (9 MeV) to detect volumetric and planar discontinuities in large pressure vessel mock-up blocks was studied. The data supplied by the manufacturer of the test blocks on the intended flaw geometry were compared to manual, contact ultrasonic test and computed tomography test data. Subsequently, a visualization program was used to construct fully three-dimensional morphological information enabling interactive data analysis on the detected flaws. Density isosurfaces show the relative shape and location of the volumetric defects within the mock-up blocks. Such a technique may be used to qualify personnel or newly developed ultrasonic test methods without the associated high cost of destructive evaluation. Data is presented showing the capability of the volumetric data analysis program to overlay the computed tomography and destructive evaluation (serial metallography) data for a direct, three-dimensional comparison

  14. Remote inspection of a buried pipeline using a mobile ultrasonic testing system

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, S; Ghosh, J K [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.; Rajendran, S; Ramakumar, M S [Bhabha Atomic Research Centre, Mumbai (India). Division of Remote Handling and Robotics

    1994-12-31

    The nuclear reactor, Cirus, has now been in operation for three decades. As part of a programme to ascertain the integrity and safety of the various reactor parts in-service inspection of the embedded portion of the main coolant pipeline will be carried out. A mobile ultrasonic testing system has been developed and tested in the laboratory to measure the wall thickness of an underground pipe from the inner corroded surface using a water-bubbler technique. 3 figs.

  15. Apparatus for testing semiconductor devices and capacitors

    International Nuclear Information System (INIS)

    York, R.A.

    1984-01-01

    An apparatus is provided for testing semiconductor devices. The apparatus tests the impedance of the semiconductor devices in both conducting and non-conducting states to detect semiconductors whose impedance in the conducting state is too high or whose impedance in the non-conducting state is too low. The apparatus uses a battery source for low voltage d.c. The circuitry for detecting when the impedance is too high in the conducting state includes a lamp in series with the battery source and the semiconductor device, whereby the impedance of the semiconductor device determines whether sufficient current will flow through the lamp to cause the lamp to illuminate. A d.c. to d.c. converter is provided to boost the voltage from the battery source to a relatively high voltage d.c. The relatively high voltage d.c. can be connected by a switch to circuitry for detecting when the impedance of the semiconductor device in the non-conducting state is too low. The circuitry for detecting when the impedance of the semiconductor device is too low includes a resistor which senses the current flowing in the device and converts the current into a voltage proportional to the leakage current. This voltage is then compared against a fixed reference. Further circuitry is provided for providing a visual indication when the voltage representative of leakage in relation to the reference signal indicates that there is excessive current flow through the semiconductor device

  16. Performance Tests for Bubble Blockage Device

    International Nuclear Information System (INIS)

    Ha, Kwang Soon; Wi, Kyung Jin; Park, Rae Joon; Wan, Han Seong

    2014-01-01

    Postulated severe core damage accidents have a high threat risk for the safety of human health and jeopardize the environment. Versatile measures have been suggested and applied to mitigate severe accidents in nuclear power plants. To improve the thermal margin for the severe accident measures in high-power reactors, engineered corium cooling systems involving boiling-induced two-phase natural circulation have been proposed for decay heat removal. A boiling-induced natural circulation flow is generated in a coolant path between a hot vessel wall and cold coolant reservoir. In general, it is possible for some bubbles to be entrained in the natural circulation loop. If some bubbles entrain in the liquid phase flow passage, flow instability may occur, that is, the natural circulation mass flow rate may be oscillated. A new device to block the entraining bubbles is proposed and verified using air-water test loop. To avoid bubbles entrained in the natural circulation flow loop, a new device was proposed and verified using an air-water test loop. The air injection and liquid circulation loop was prepared, and the tests for the bubble blockage devices were performed by varying the geometry and shape of the devices. The performance of the bubble blockage device was more effective as the area ratio of the inlet to the down-comer increased, and the device height decreased. If the device has a rim to generate a vortex zone, the bubbles will be most effectively blocked

  17. Anthropometric comparison of Anthropometric Test Device (ATD ...

    African Journals Online (AJOL)

    Anthropometric test device (ATD) is surrogate used in automotive crash testing. Female ATDs used worldwide in the evaluation of vehicle safety performance was produced based on anthropometry of U.S. population. This work is aimed at assessing the difference between the anthropometric dimensions of Nigerian female ...

  18. Focussed probes ultrasonic follow-up of actual flaw growth during fatigue testing

    International Nuclear Information System (INIS)

    Cinotti, C.; Dufresne, J.; Prot, A.C.; Touffait, A.M.; Saglio, R.

    1979-01-01

    A programme was undertaken to follow-up the growth of actual flaws purposely introduced during the welding process of five test specimens. The aim of this programme is to measure the actual size of the cracks which develop from the known defects during the fatigue testing. The sizing method is based on the use of focussed probes, which allow good accuracy and repeatability, as well as good sensitivity. Examples are given of the first results: sizing before testing, then step by step during the fatigue testing and also under compression. This last point is very important in view of the ultrasonic testing during periodic in-service inspection

  19. Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection

    Directory of Open Access Journals (Sweden)

    Caterina Casavola

    2018-04-01

    Full Text Available Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT on T-pull samples made by carbon fiber reinforced polymers (CFRP and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode.

  20. Tests of the Royce ultrasonic interface level analyzer

    International Nuclear Information System (INIS)

    WITWER, K.S.

    1999-01-01

    This document describes testing carried out in 1995 on the Royce Interface Level Analyzer. The testing was carried out in the 305 Bldg., Engineering Testing Laboratory, 300 Area. The Level Analyzer was shown to be able to effectively locate the solid liquid interface layer of two different simulants under various conditions and was able to do so after being irradiated with over 5 million RADS gamma from a Cobalt 60 source

  1. Measurements of the acoustic field on austenitic welds: a way to higher reliability in ultrasonic tests

    International Nuclear Information System (INIS)

    Kemnitz, P.; Richter, U.; Klueber, H.

    1997-01-01

    In nuclear power plants many of the welds in austenitic tubes have to be inspected by means of ultrasonic techniques. If component-identical test pieces are available, they are used to qualify the ultrasonic test technology. Acoustic field measurements on such test blocks give information whether the beam of the ultrasonic transducer reaches all critical parts of the weld region and which transducer type is best suited. Acoustic fields have been measured at a bimetallic, a V-shaped and a narrow gap weld in test pieces of wall thickness 33, 25 and 17 mm, respectively. Compression wave transducers 45, 60 and 70 and 45 shear wave transducers have been included in the investigation. The results are presented: (1) as acoustic C-scans for one definite probe position, (2) as series of C-scans for the probe moving on a track perpendicular to the weld, (3) as scan along the weld and (4) as effective beam profile. The influence of the scanning electrodynamic probe is also discussed. (orig.)

  2. Application of Phased Array Ultrasonic Testing (PAUT) on Single V-Butt Weld Integrity Determination

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohd Kamal Shah Shamsudin; Norhazleena Azaman

    2015-01-01

    Phased Array Ultrasonic Testing (PAUT) utilizes arrays of piezoelectric elements that are embedded in an epoxy base. The benefit of having such kind of array is that beam forming such as steering and focusing the beam front possible. This enables scanning patterns such as linear scan, sectorial scan and depth focusing scan to be performed. Ultrasonic phased array systems can potentially be employed in almost any test where conventional ultrasonic flaw detectors have traditionally been used. Weld inspection and crack detection are the most important applications, and these tests are done across a wide range of industries including aerospace, power generation, petrochemical, metal billet and tubular goods suppliers, pipeline construction and maintenance, structural metals, and general manufacturing. Phased arrays can also be effectively used to profile remaining wall thickness in corrosion survey applications. The benefits of PAUT are simplifying inspection of components of complex geometry, inspection of components with limited access, testing of welds with multiple angles from a single probe and increasing the probability of detection while improving signal-to-noise ratio. This paper compares the result of inspection on several specimens using PAUT as to digital radiography. The specimens are welded plates with single V-butt weld made of carbon steel. Digital radiography is done using blue imaging plate with x-ray source. PAUT is done using Olympus MX2 with 5 MHz probe consisting of 64 elements. The location, size and length of defect is compared. (author)

  3. Certain strength test of concrete with ultrasonic waves by better evaluation

    International Nuclear Information System (INIS)

    Roethig, H.

    1978-01-01

    As a result of the increasing demands put to the quality control of buildings and concrete assembly units, ultrasonic testing has found an internationally ever wider application in building industries and facilities in recent years. The ultrasonic method is in its nature analogous to the application with metallic materials, particularly suitable for recognizing defects and poor quality concrete and an increased application in this direction is most promising. However, it is equally important for concrete plants and building sites to certify the specified concrete quality or a required degree of hardness which can be determined by the pressure resistance of a test cube according to the valid specifications. Therefore the non-destructive pressure resistance determination of concrete is of great practical interest and ultrasonic testing is at present, above all being used for this purpose. It is very suitable in many cases for calibration on cubes of the same concrete as the assembly units or buildings to be tested. The quality of the calibration gives a ruling determination of the accuracy and reliability of the non-destructively determined pressure resistance values. (orig./RW) [de

  4. Research on Fatigue Damage of Compressor Blade Steel KMN-I Using Nonlinear Ultrasonic Testing

    Directory of Open Access Journals (Sweden)

    Pengfei Wang

    2017-01-01

    Full Text Available The fatigue damage of compressor blade steel KMN-I was investigated using nonlinear ultrasonic testing and the relation curve between the material nonlinearity parameter β and the fatigue life was obtained. The results showed that the nonlinearity parameter increased first and then decreased with the increase of the fatigue cycles. The microstructures were observed by scanning electron microscopy (SEM. It was found that some small defects like holes and pits appeared in the material matrix with the increase of the fatigue cycles, and the nonlinearity parameter increased correspondingly. The nonlinearity parameter reached the peak value when the microcracks initiated, and the nonlinearity parameter began to decrease when the microcracks further propagated to macrocracks. Therefore, it is proved that the nonlinearity parameter can be used to characterize the initiation of microcracks at the early stage of fatigue, and a method of evaluating the fatigue life of materials by nonlinear ultrasonic testing is proposed.

  5. Application of acoustical holography for construction shadow images in ultrasonic testing

    International Nuclear Information System (INIS)

    Kutzner, J.; Zimpfer, J.

    1977-01-01

    The full-scale, three-dimensional presentation of material defects by means of acoustical holography is limited on the one hand by an insufficient resolving power in depth of the procedure and, on the other hand, by the fact that the defects of the material to be examined often reflect mirror-like. Examined is the possible range of reducing these limitations by means of constructing shadow images of defects in ultrasonic testing without - as it is usually done - reconstructing the sonic field reflected by the flow but reconstructing the sonic field diffracted at the flow by means of acoustical holography. It has been shown that acoustical holography, during which the amplitude information is always analyzed as well as - on principle - the phase information, improves the efficiency of ultrasonic testing to a large extent. (orig.) [de

  6. Characterization of Heat Treated Titanium-Based Implants by Nondestructive Eddy Current and Ultrasonic Tests

    Science.gov (United States)

    Mutlu, Ilven; Ekinci, Sinasi; Oktay, Enver

    2014-06-01

    This study presents nondestructive characterization of microstructure and mechanical properties of heat treated Ti, Ti-Cu, and Ti-6Al-4V titanium-based alloys and 17-4 PH stainless steel alloy for biomedical implant applications. Ti, Ti-Cu, and 17-4 PH stainless steel based implants were produced by powder metallurgy. Ti-6Al-4V alloy was investigated as bulk wrought specimens. Effects of sintering temperature, aging, and grain size on mechanical properties were investigated by nondestructive and destructive tests comparatively. Ultrasonic velocity in specimens was measured by using pulse-echo and transmission methods. Electrical conductivity of specimens was determined by eddy current tests. Determination of Young's modulus and strength is important in biomedical implants. Young's modulus of specimens was calculated by using ultrasonic velocities. Calculated Young's modulus values were compared and correlated with experimental values.

  7. Seminar of the expert committee ultrasonic testing. Abstracts

    International Nuclear Information System (INIS)

    2017-01-01

    This seminar volume contains 13 papers focusing on the following topics: 1. Test methods in the automotive sector, 2. Characterization of metallic and non-metallic materials, 3. Industrial test approaches, 4. Fiber composite materials and structures, and 5. Defect characterization using imaging techniques. One paper was separately analyzed for this database. [de

  8. Electronic voltage and current transformers testing device.

    Science.gov (United States)

    Pan, Feng; Chen, Ruimin; Xiao, Yong; Sun, Weiming

    2012-01-01

    A method for testing electronic instrument transformers is described, including electronic voltage and current transformers (EVTs, ECTs) with both analog and digital outputs. A testing device prototype is developed. It is based on digital signal processing of the signals that are measured at the secondary outputs of the tested transformer and the reference transformer when the same excitation signal is fed to their primaries. The test that estimates the performance of the prototype has been carried out at the National Centre for High Voltage Measurement and the prototype is approved for testing transformers with precision class up to 0.2 at the industrial frequency (50 Hz or 60 Hz). The device is suitable for on-site testing due to its high accuracy, simple structure and low-cost hardware.

  9. Development of ultrasonic testing technique to inspect containment liners embedded in concrete on nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, H.; Kurozumi, Y. [Inst. of Nuclear Safety System, Incorporated, Mihama, Fukui (Japan); Kaneshima, Y. [The Kansai Electric Power Company, Inc., Mihama, Fukui (Japan)

    2004-07-01

    The purpose of this study is development of ultrasonic testing technique to inspect containment liners embedded in concrete on nuclear power plants. Integrity of containment liners on nuclear power plants can be secured by suitable present operation and maintenance. Furthermore, non-destructive testing technique to inspect embedded liners will ensure the integrity of the containment further. In order to develop the non-destructive testing technique, ultrasonic transducers were made newly and ultrasonic testing data acquisition and evaluation were carried out by using a mock-up. We adopted the surface shear horizontal (SH) wave, low frequency (0.3-0.5MHz), to be able to detect an echo from a defect against attenuation of ultrasonic waves due to long propagation in the liners and dispersion into concrete. We made transducers with three large active elements (40mm x 40mm) in a line which were equivalent to a 120mm width active element. Artificial hollows, {phi}200mm - 19mm depth (1/2thickness) and {phi}200mm - 9.5mm depth (1/4thickness), were made on a surface of a mock-up: carbon steel plate, 38mm thickness, 2,000mm length, 1000mm width. The surfaces of the plate were covered with concrete in order to simulate liners embedded in concrete. As a result of the examinations, the surface SH transducers could detect clearly the echo from the hollows at a distance of 1500mm. We evaluate that the newly made surface SH transducers with three elements have ability of detection of defects such as corrosion on the liners embedded in concrete. (author)

  10. Improved ultrasonic nondestructive testing of pressure vessels. Annual progress report, August 1, 1975--July 31, 1976

    International Nuclear Information System (INIS)

    Frederick, J.R.; Fairchild, R.C.; Anderson, B.H.

    1977-07-01

    A synthetic aperture focusing technique for ultrasonic testing (SAFT UT) is described. The technique employs a single scanned transducer operating in pulse-echo mode with digital data acquisition and synthetic aperture post-processing to provide high lateral and longitudinal resolution. The extension of previously developed algorithms to provide volumetric processing and display is described. The design of a refreshed grey-scale display to provide interactive display of SAFT UT data is described

  11. Quality evaluation of PHWR fuel element end cap weld joints by ultrasonic testing technique

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J L; Nair, V R; Ramadasan, E; Majumdar, S; Sahoo, K C [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.; Kumar, Arun [Atomic Fuel Fabrication Facility, Tarapur (India)

    1994-12-31

    An ultrasonic testing technique has been developed for effective quality evaluation of Pressurised Heavy Water Reactor (PHWR) fuel end plug welds. A focused high frequency shear wave is directed to the weld zone from half skip distance to detect lack of fusion, porosities and wall cracks in the weld zone. A tentative select/reject level has been evolved to sort out the defective weld by examining more than 700 PHWR fuel pin welds. (author). 5 refs., 5 figs.

  12. Ultrasonic testing of large blocks for prestressed cast iron pressure vessels

    International Nuclear Information System (INIS)

    Stelling, H.A.

    1979-01-01

    Ultrasonic tests were made on plate specimen and large blocks of perlit cast iron with lamellar graphite. Aims of the investigations were the control of material porperties, the flaw detection and flaw classification. The material properties were classified by sound velocity and attenuation measurements. Flaw detection and flaw size estimation methods were modified with regard to the acoustic properties, the microstructure and the reflectivity of typical flaws in castings. Special localisation and flaw size estimation techniques are discussed. (orig.)

  13. Newly developed non-destructive testing method for evaluation of irradiation brittleness of structural materials using ultrasonic

    International Nuclear Information System (INIS)

    Ishii, Toshimitsu; Ooka, Norikazu; Kato, Yoshiaki; Saito, Junichi; Hoshiya, Taiji; Shibata, Saburo; Kobayashi, Hideo

    1999-01-01

    Surveillance testing is important to evaluate neutron irradiation embrittlement of reactor pressure vessel material for long life operation. An alternative test method for evaluating the irradiation embrittlement of the pressure vessel material will have to be proposed to support the limited number of surveillance test specimens in order to manage the plant life to be extended. In this study, ultrasonic testing for irradiated A533B-1 steel and weld metal was applied to examine material degradation nondestructively. With increasing the shift of Charpy 41 J transition temperature, ultrasonic velocity decreased and attenuation coefficient of ultrasonic wave increased. Especially, the difference of ultrasonic velocity for 5 MHz shear wave between as-received and irradiated material is corresponding to the shift of transition temperature showing material degradation. (author)

  14. Five years of testing using the simi-automated ultrasonic time of flight diffraction system

    International Nuclear Information System (INIS)

    Webber, S.A.

    2002-01-01

    This paper provides a brief description of the Time of Flight Diffraction (TOFD) test system and also describes a couple of case histories where the system has been successfully applied. The T.O.F.D. system has been contrasted with the conventional manual ultrasonic technique. Whilst the T.O.F.D. system has proven potential, and is without doubt a valuable tool that will continue to gain market share in the inspection industry, conventional manual ultrasonics still has its part to play and will survive for some time to come. One of the outstanding issues facing the T.O.F.D. systems is the question of acceptance testing which is still the predominant convention specified in most standards. Training for a T.O.F.D. system technician is particularly important and the author suggests there are more traps for the unwary than with the conventional manual ultrasonic systems. The overall judgement of the T.O.F.D. system is that it is a most welcome and powerful tool in the hands of the right operator and will do much to boost the prominence of Non-Destructive Testing

  15. Gating techniques for ultrasonic thickness testing using flaw detectors

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, P., E-mail: paul@hollowayndt.com [Holloway NDT & Engineering Inc., Georgetown, Ontario (Canada)

    2016-05-15

    The purpose of this article is to provide guidance on settings and methods, in particular the careful use of gating, to ensure accuracy of thickness testing on corroded steel and other metallic components. Specific applications include boiler tubes, tank floors, piping and vessels where the testing is performed from the OD or top surfaces, inspecting for metal loss due to corrosion on the opposite side. (author)

  16. Manufacturing technologies for ultrasonic transducers in a broad frequency range

    OpenAIRE

    Gebhardt, Sylvia; Hohlfeld, Kai; Günther, Paul; Neubert, Holger

    2018-01-01

    According to the application field, working frequency of ultrasonic transducers needs to be tailored to a certain value. Low frequency ultrasonic transducers with working frequencies of 1 kHz to 1 MHz are especially interesting for sonar applications, whereas high frequency ultrasonic transducers with working frequencies higher than 15 MHz are favorable for high-resolution imaging in biomedical and non-destructive evaluation. Conventional non-destructive testing devices and clinical ultrasoun...

  17. A Monte Carlo approach applied to ultrasonic non-destructive testing

    Science.gov (United States)

    Mosca, I.; Bilgili, F.; Meier, T.; Sigloch, K.

    2012-04-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and architectural structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to combine non-destructive testing with a theoretical data analysis and hence to contribute to conservation strategies of archaeological and architectural structures. We analyze ultrasonic waveforms measured at the surface of a variety of samples, and define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface

  18. Improvement of ultrasonic testing by use of phased arrays

    International Nuclear Information System (INIS)

    Gebhardt, W; Bonitz, F.; Woll, H.

    1983-01-01

    The paper examines the applicability of phased-array technology in non-destructive material testing for quality control, basic inspection and in-service inspections of the primary containment of nuclear power plants. Initial experiments on sonic aigrette control, defect margin reconstruction and the classification of defects have been carried out using medical equipment as commercially available which had been modified for non-destructive applications. At the same time, a for more flexible microcomputer-controlled phased-array system was developed, particularly designed for material testing. (orig./RW) [de

  19. Advancements in the technologies for mechanized ultrasonic testing

    International Nuclear Information System (INIS)

    Sterke, A. de.

    1976-01-01

    Review is given of the techniques applied, with an accent on weld testing and examination of nuclear pressure vessels during fabrication and periodically. The use of multiprobe systems, the merits of data recording, the present restrictions, the requirements and the trends are examined

  20. Study of different ultrasonic focusing methods applied to non destructive testing

    International Nuclear Information System (INIS)

    El Amrani, M.

    1995-01-01

    The work presented in this thesis concerns the study of different ultrasonic focusing techniques applied to Nondestructive Testing (mechanical focusing and electronic focusing) and compares their capabilities. We have developed a model to predict the ultrasonic field radiated into a solid by water-coupled transducers. The model is based upon the Rayleigh integral formulation, modified to take account the refraction at the liquid-solid interface. The model has been validated by numerous experiments in various configurations. Running this model and the associated software, we have developed new methods to optimize focused transducers and studied the characteristics of the beam generated by transducers using various focusing techniques. (author). 120 refs., 95 figs., 4 appends

  1. Laser ultrasonics for civil engineering : some applications in development for concrete non destructive testing

    International Nuclear Information System (INIS)

    Abraham, O; Cottineau, L-M; Durand, O; Popovics, J S

    2011-01-01

    Non destructive testing of civil engineering infrastructures is becoming of primary importance for their diagnosis, residual time life estimation and/or structural health monitoring. A particularity of civil engineering application is the large size of the survey zones and the expected low cost of inspection. In this context non contact ultrasonics may offer the possibility to built robots that can automatically scan large areas (or eventually be integrated in moving vehicles) to recover mechanical properties of material or to perform imagery for geometrical information recovery. In this paper we present two possible applications of in situ laser ultrasonics : one is the detection of voids in tendon duct with the impact echo method, the other is the use of surface waves to recover mechanical properties of the first centimetres of concrete structures (here after called cover concrete).

  2. Field testing and applications of the Ultrasonic Ranging and Data (USRAD) System

    International Nuclear Information System (INIS)

    Dickerson, K.S.; Pickering, D.A.; Blair, M.S.; Espegren, M.L.; Nyquist, J.E.

    1989-01-01

    The Ultrasonic Ranging and Data (USRAD) System is a patented, computerized data acquisition system developed to relate the radiological surveyor's precise physical location to instantaneous radiation data taken during walk-on surveys. The USRAD System incorporates three technologies: radio frequency communications, ultrasonics, and microcomputers. Initial field testing of the USRAD System has resulted in several improvements to walk-on radiological surveys including real-time position data, reproducible survey results, on-site verification of survey coverage, on-site data reduction and graphics, and permanent data storage on magnetic media. Although the USRAD System was developed specifically for use with a gamma-ray detector, it is adaptable to other instruments. Applications of the USRAD System may include verification of remediated and uncontaminated areas, emergency response in mapping pollutant locations after accidents, and characterization of hazardous waste areas. 2 refs., 8 figs

  3. Image based EFIT simulation for nondestructive ultrasonic testing of austenitic steel

    International Nuclear Information System (INIS)

    Nakahata, Kazuyuki; Hirose, Sohichi; Schubert, Frank; Koehler, Bernd

    2009-01-01

    The ultrasonic testing (UT) of an austenitic steel with welds is difficult due to the acoustic anisotropy and local heterogeneity. The ultrasonic wave in the austenitic steel is skewed along crystallographic directions and scattered by weld boundaries. For reliable UT, a straightforward simulation tool to predict the wave propagation is desired. Here a combined method of elastodynamic finite integration technique (EFIT) and digital image processing is developed as a wave simulation tool for UT. The EFIT is a grid-based explicit numerical method and easily treats different boundary conditions which are essential to model wave propagation in heterogeneous materials. In this study, the EFIT formulation in anisotropic and heterogeneous materials is briefly described and an example of a two dimensional simulation of a phased array UT in an austenitic steel bar is demonstrated. In our simulation, a picture of the surface of the steel bar with a V-groove weld is scanned and fed into the image based EFIT modeling. (author)

  4. A versatile magnetic refrigeration test device

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Petersen, Thomas Frank; Pryds, Nini

    2008-01-01

    of the applied magnetic field. An advanced two-dimensional numerical model has previously been implemented in order to help in the optimization of the design of a refrigeration test device. Qualitative agreement between the results from model and the experimental results is demonstrated for each of the four...... different parameter variations mentioned above. (C) 2008 American Institute of Physics....

  5. APR1400 Fluidic Device Sensitivity Test

    International Nuclear Information System (INIS)

    Choi, Nam Hyun; Chu, In Cheol; Min, Kyong Ho; Song, Chul Hwa

    2005-12-01

    In the safety injection tank at the emergency core cooling system of APR1400, a new safety design feature, passive fluidic device is equipped which includes no active driving system. It is essential to evaluate the new design feature with various experiments. For this reason, three categories of sensitivity tests have been performed in the present study. As the first sensitivity experiment, the effect of the height of the stand pipe was investigated. The second sensitivity test was conducted with removing the insert plate gasket to examine its effect. The effect of the expansion of the control nozzle width was ascertained from the third sensitivity test. The results of each test showed that the passive fluidic device which will be equipped in the SIT tank of APR1400 has great integrity and repeatability

  6. Photostress Testing Device for Diagnosing Retinal Disease

    Directory of Open Access Journals (Sweden)

    Elizabeth Swan

    2014-08-01

    Full Text Available Retinal diseases such as Age-Related Macular Degeneration (ARMD affect nearly one in three elderly patients. ARMD damages the central vision photoreceptors in the fovea. The Photostress Test is a simple technique for testing for the early effects of ARMD. Here, the illumination sources in a novel self-administered Photostress Testing device were modeled for safety and distribution in illumination software. After satisfying the design constraints in the model, a prototype of the illumination system was fabricated and tested to confirm the modeling results. The resultant prototype can be used to aid in the diagnosis of retinal disease and is well within retinal safety levels.

  7. Experimental testing facilities for ultrasonic measurements in heavy liquid metal

    International Nuclear Information System (INIS)

    Cojocaru, V.; Ionescu, V.; Nicolescu, D.; Nitu, A.

    2016-01-01

    The thermo-physical properties of Heavy Liquid Metals (HLM), like lead or its alloy, Lead Bismuth Eutectic (LBE), makes them attractive as coolant candidates in advanced nuclear systems. The opaqueness, that is common to all liquid metals, disables all optical methods. For this reason ultrasound waves are used in different applications in heavy liquid metal technology, for example for flow and velocity measurements and for inspection techniques. The practical use of ultrasound in heavy liquid metals still needs to be demonstrated by experiments. This goal requires heavy liquid metal technology facility especially adapted to this task. In this paper is presented an experimental testing facility for investigations of Heavy Liquid Metals acoustic properties, designed and constructed in RATEN ICN. (authors)

  8. Characterization of water absorption by CFRP using air-coupled ultrasonic testing

    International Nuclear Information System (INIS)

    Lee, Joo Min; Lee, Joo Sung; Park, Ik Keun; Kim, Yong Kwon

    2014-01-01

    Carbon-fiber-reinforced plastic (CFRP) composites are increasingly being used in a variety of industry applications, such as aircraft, automobiles, and ships because of their high specific stiffness and high specific strength. Aircraft are exposed to high temperatures and high humidity for a long duration during flights. CFRP materials of the aircraft can absorb water, which could decrease the adhesion strength of these materials and cause their volumes to change with variation in internal stress. Therefore, it is necessary to estimate the characteristics of CFRP composites under actual conditions from the viewpoint of aircraft safety. In this study air-coupled ultrasonic testing (ACUT) was applied to the evaluation of water absorption properties of CFRP composites. CFRP specimens were fabricated and immersed in distilled water at 75 degree C for 30, 60, and 120 days, after which their ultrasonic images were obtained by ACUT. The water absorption properties were determined by quantitatively analyzing the changes in ultrasonic signals. Further, shear strength was applied to the specimens to verify the changes in their mechanical properties for water absorption.

  9. Application of Neuro-Wavelet Algorithm in Ultrasonic-Phased Array Nondestructive Testing of Polyethylene Pipelines

    Directory of Open Access Journals (Sweden)

    Reza Bohlouli

    2012-01-01

    Full Text Available Polyethylene (PE pipelines with electrofusion (EF joining is an essential method of transportation of gas energy. EF joints are weak points for leakage and therefore, Nondestructive testing (NDT methods including ultrasonic array technology are necessary. This paper presents a practical NDT method of fusion joints of polyethylene piping using intelligent ultrasonic image processing techniques. In the proposed method, to detect the defects of electrofusion joints, the NDT is applied based on an ANN-Wavelet method as a digital image processing technique. The proposed approach includes four steps. First an ultrasonic-phased array technique is used to provide real time images of high resolution. In the second step, the images are preprocessed by digital image processing techniques for noise reduction and detection of ROI (Region of Interest. Furthermore, to make more improvement on the images, mathematical morphology techniques such as dilation and erosion are applied. In the 3rd step, a wavelet transform is used to develop a feature vector containing 3-dimensional information on various types of defects. In the final step, all the feature vectors are classified through a backpropagation-based ANN algorithm. The obtained results show that the proposed algorithms are highly reliable and also precise for NDT monitoring.

  10. Characterization of water absorption by CFRP using air-coupled ultrasonic testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Min; Lee, Joo Sung; Park, Ik Keun [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Kim, Yong Kwon [Technology Research and Development Institute, KEPCO Plant Service and Engineering Co., Ltd, Naju (Korea, Republic of)

    2014-04-15

    Carbon-fiber-reinforced plastic (CFRP) composites are increasingly being used in a variety of industry applications, such as aircraft, automobiles, and ships because of their high specific stiffness and high specific strength. Aircraft are exposed to high temperatures and high humidity for a long duration during flights. CFRP materials of the aircraft can absorb water, which could decrease the adhesion strength of these materials and cause their volumes to change with variation in internal stress. Therefore, it is necessary to estimate the characteristics of CFRP composites under actual conditions from the viewpoint of aircraft safety. In this study air-coupled ultrasonic testing (ACUT) was applied to the evaluation of water absorption properties of CFRP composites. CFRP specimens were fabricated and immersed in distilled water at 75 degree C for 30, 60, and 120 days, after which their ultrasonic images were obtained by ACUT. The water absorption properties were determined by quantitatively analyzing the changes in ultrasonic signals. Further, shear strength was applied to the specimens to verify the changes in their mechanical properties for water absorption.

  11. Dynamic tensile tests with superimposed ultrasonic oscillations for stainless steel type 321 at room temperature

    International Nuclear Information System (INIS)

    Schinke, B.; Malmberg, T.

    1987-01-01

    In recent years various containment codes for Fast Breeder Reactor accidents have been assessed by comparison with explosion tests in water-filled vessels (COVA experiments). Common to the various codes, a systematic underestimation of the circumferential vessel strains was found. In the COVA tests high frequency pressure oscillations in the ultrasonic range were observed and thus it has been conjectured that the phenomenon of ''acoustic softening'' might be relevant in explaining the discrepancies in the strains. To validate this conjecture a hydro-pneumatic tensile test apparatus was developed which allows dynamic tensile testing at room temperature with and without superimposed ultrasonic oscillations. The dynamic tensile tests on the COVA sheet material (stainless steel AISI 321) without ultrasonic insonation show a linear dependence of the flow stress on the logarithm of the strain rate. The results at low strain rates (10 -3 s -1 ) agree favourably with previous measurements but at high rates (50 s -1 ) at 20% lower flow stress is observed. The dynamic tensile tests with continuous and intermittent insonation show the phenomenon of ''acoustic softening'': The average flow stress is reduced by an amount of about half the oscillating amplitude. At high strain rates the reduction is less. A severe ''acoustic softening'' observed by several authors for various metals at low strain rates was not observed. The experimental results were compared with the theory of the superpositon mechanism assuming a rate-independent elastic-plastic and an elastic-viscoplastic constitutive model. Although the rate-independent model is capable to predict qualitatively some of the observed effects, a better description is obtained with the viscoplastic model. The conclusion is that the ''acoustic softening'' of the COVA material is far too small to explain the discrepancies between measured and computed strains found in the containment code validation studies. (orig.)

  12. Development and applications of a computer-aided phased array assembly for ultrasonic testing

    International Nuclear Information System (INIS)

    Schenk, G.; Montag, H.J.; Wuestenberg, H.; Erhard, A.

    1985-01-01

    The use of modern electronic equipment for programmable signal delay increasingly allows transit-time controlled phased arrays to be applied in non-destructive, ultrasonic materials testing. A phased-array assembly is described permitting fast variation of incident angle of acoustic wave and of sonic beam focus, together with numerical evaluation of measured data. Phased arrays can be optimized by adding programmable electronic equipment so that the quality of conventional designs can be achieved. Applications of the new technical improvement are explained, referring to stress corrosion cracking, turbine testing, echo tomography of welded joints. (orig./HP) [de

  13. Ultra-sonic testing for brittle-ductile transition temperature of ferritic steels

    International Nuclear Information System (INIS)

    Nomakuchi, Michiyoshi

    1979-01-01

    The ultra-sonic testing for the brittle-ductile transition temperature, the USTB test for short, of ferritic steels is proposed in the present paper. And also the application of the USTB test into the nuclear pressure vessel surveillance is discussed. The USTB test is based upon the experimental results in the present work that the ultrasonic pressure attenuation coefficient of a ferritic steel has the evident transition property with its temperature due to the nature from which the brittle-ductile fracture transition property of the steel come and for four ferritic steels the upper boundary temperatute of the region in which the transition of the attenuation coefficient of a steel takes place is 4 to 5 0 C higher than the sub(D)T sub(E), i.e. the transition temperature of the fracture absorption energy of the steel by the DWTT test. The USTB test estimates the crack arrest temperature which is defined to be the fracture transition elastic temperature by the upper boundary temperature. (author)

  14. Device for positioning ultrasonic probes and/or television cameras on the outer surface of reactor pressure vessels

    International Nuclear Information System (INIS)

    Zipser, R.; Dose, G.F.

    1977-01-01

    The device makes possible periodical in-service inspections of welding seams and material of a reactor pressure vessel without local human presence. A 'support ring' encloses the pressure vessel in a horizontal plane with free space. It is vertically moved up and down in the space between pressure vessel and thermal shield by means of tackles. At a control desk placed in a protected area its movement is controlled and its vertical position is indicated. A 'rotating track' with its own drive is rotating remote-controlled on the 'support ring'. By a combination of the vertical with the rotating movement, an ultrasonic probe placed removably on the 'rotating hack', or a television camera will be brought to any position on the cylindrical circumference of the pressure vessel. Special devices extend the radius of action, in upward direction for inspecting the welding seams of the coolant nozzles, and in downward direction for the inspection of welds on the hemispherical bottom of the pressure vessel or on the outlet pipe nozzle placed there. The device remains installed during reactor operation, but is moved down to the lower horizontal surface of the thermal shield. Parts which are sensible to radiation like probes or television cameras and special devices will then be removed respectively mounted before beginning an inspection compaign. This position may be reached by the lower access in the biological shield and through an opening in the horizontal surface of the thermal shield. (HP) [de

  15. Development of a Very High Cycle Fatigue (VHCF multiaxial testing device

    Directory of Open Access Journals (Sweden)

    M. Vieira

    2016-07-01

    Full Text Available The very high cycle region of the S-N fatigue curve has been the subject of intensive research on the last years, with special focus on axial, bending, torsional and fretting fatigue tests. Very high cycle fatigue can be achieved using ultrasonic exciters which allow for frequency testing of up to 30 kHz. Still, the multiaxial fatigue analysis is not yet developed for this type of fatigue analyses, mainly due to conceptual limitations of these testing devices. In this paper, a device designed to produce biaxial fatigue testing using a single piezoelectric axial exciter is presented, as well as the preliminary testing of this device. The device is comprised of a horn and a specimen, which are both attached to the piezoelectric exciter. The steps taken towards the final geometry of the device are presented. Preliminary experimental testing of the developed device is made using thermographic imaging, strain measurements and vibration speeds and indicates good behaviour of the tested specimen.

  16. Testing Framework for Mobile Device Forensics Tools

    Directory of Open Access Journals (Sweden)

    Maxwell Anobah

    2014-09-01

    Full Text Available The proliferation of mobile communication and computing devices, in particular smart mobile phones, is almost paralleled with the increasing number of mobile device forensics tools in the market. Each mobile forensics tool vendor, on one hand claims to have a tool that is best in terms of performance, while on the other hand each tool vendor seems to be using different standards for testing their tools and thereby defining what support means differently. To overcome this problem, a testing framework based on a series of tests ranging from basic forensics tasks such as file system reconstruction up to more complex ones countering antiforensic techniques is proposed. The framework, which is an extension of an existing effort done in 2010, prescribes a method to clearly circumscribe the term support into precise levels. It also gives an idea of the standard to be developed and accepted by the forensic community that will make it easier for forensics investigators to quickly select the most appropriate tool for a particular mobile device.

  17. Aerosol can puncture device operational test plan

    International Nuclear Information System (INIS)

    Leist, K.J.

    1994-01-01

    Puncturing of aerosol cans is performed in the Waste Receiving and Processing Facility Module 1 (WRAP 1) process as a requirement of the waste disposal acceptance criteria for both transuranic (TRU) waste and low-level waste (LLW). These cans have contained such things as paints, lubricating oils, paint removers, insecticides, and cleaning supplies which were used in radioactive facilities. Due to Westinghouse Hanford Company (WHC) Fire Protection concerns of the baseline system's fire/explosion proof characteristics, a study was undertaken to compare the baseline system's design to commercially available puncturing devices. While the study found no areas which might indicate a risk of fire or explosion, WHC Fire Protection determined that the puncturing system must have a demonstrated record of safe operation. This could be obtained either by testing the baseline design by an independent laboratory, or by substituting a commercially available device. As a result of these efforts, the commercially available Aerosolv can puncturing device was chosen to replace the baseline design. Two concerns were raised with the system. Premature blinding of the coalescing/carbon filter, due to its proximity to the puncture and draining operation; and overpressurization of the collection bottle due to its small volume and by blinding of the filter assembly. As a result of these concerns, testing was deemed necessary. The objective of this report is to outline test procedures for the Aerosolv

  18. RESONANCE COMPATIBILITY BETWEEN ENDOSONIC TIPS AND ULTRASONIC DEVICES OF DIFFERENT BRANDS.

    Directory of Open Access Journals (Sweden)

    Kalin K. Shiyakov

    2014-11-01

    Full Text Available The aim of the study was to determine the compatibility of 6 piezoelectric scalers - Mini Piezon (EMS, Pyon 2 LED (W&H, Woodpecker HW-3H (GWMI, Varios 550 (NSK, P5 Newtron (Satelec-Acteon and DTE HD-7H (GWMI with 8 types of endosonic tips for separated instruments removal - K-files # 20 and 25 (EMS, ET25 (Satelec, Redo 2 (VDW, CPR-tips 6,7,8 (Obtura Spartan, Proultra Endo tips 6,7,8 (Dentsply-Maillefer, RT3 (EMS, Endo E3 (W&H, E7 (NSK. Methods: Examined and measured was the change in the tips’ displacement amplitude with the power increase of the scalers under total magnification 80x with an optical microscope (Leica MZ6 and an image-measuring software (Klonk Image Measurement. Results: Ultrasonic devices’ compatibility with the examined tips was as follows: Woodpecker – 76,9%, Mini Piezon – 61,5%, Pyon 2 LED - 30,7%, Varios 550 – 83,3%, P5 Newtron – 83,3%, DTE – 33,3%. Lack of compatibility was found in 40,35% of all cases. In 29,82% of the cases of lack of compatibility it was demonstrated as a non-effective vibration, and in the rest of the cases – 10,53% - uncontrolled over-powerful vibration, which was dangerous to use. Conclusion: Endosonic tips should be carefully chosen in accordance with the ultrasonic scaler used.

  19. Research on Automatic Positioning System of Ultrasonic Testing of Wind Turbine Blade Flaws

    Science.gov (United States)

    Liu, Q. X.; Wang, Z. H.; Long, S. G.; Cai, M.; Cai, M.; Wang, X.; Chen, X. Y.; Bu, J. L.

    2017-11-01

    Ultrasonic testing technology has been used essentially in non-destructive testing of wind turbine blades. However, it is fact that the ultrasonic flaw detection method has inefficiently employed in recent years. This is because the testing result will illustrate a small deviation due to the artificial, environmental and technical factors. Therefore, it is an urgent technical demand for engineers to test the various flaws efficiently and quickly. An automatic positioning system has been designed in this paper to record the moving coordinates and the target distance in real time. Simultaneously, it could launch and acquire the sonic wave automatically. The ADNS-3080 optoelectronic chip is manufactured by Agilent Technologies Inc, which is also utilized in the system. With the combination of the chip, the power conversion module and the USB transmission module, the collected data can be transmitted from the upper monitor to the hardware that could process and control the data through software programming. An experiment has been designed to prove the reliability of automotive positioning system. The result has been validated by comparing the result collected form LABVIEW and actual plots on Perspex plane, it concludes that the system possesses high accuracy and magnificent meanings in practical engineering.

  20. Crack initiation and propagation on the polymeric material ABS (Acrylonitrile Butadiene Styrene, under ultrasonic fatigue testing

    Directory of Open Access Journals (Sweden)

    G. M. Domínguez Almaraz

    2015-10-01

    Full Text Available Crack initiation and propagation have been investigated on the polymeric material ABS (Acrylonitrile Butadiene Styrene, under ultrasonic fatigue testing. Three controlled actions were implemented in order to carry out fatigue tests at very high frequency on this material of low thermal conductivity, they are: a The applying load was low to limit heat dissipation at the specimen neck section, b The dimensions of testing specimen were small (but fitting the resonance condition, in order to restraint the temperature gradient at the specimen narrow section, c Temperature at the specimen neck section was restrained by immersion in water or oil during ultrasonic fatigue testing. Experimental results are discussed on the basis of thermo-mechanical behaviour: the tail phenomenon at the initial stage of fatigue, initial shear yielding deformation, crazed development on the later stage, plastic strain on the fracture surface and the transition from low to high crack growth rate. In addition, a numerical analysis is developed to evaluate the J integral of energy dissipation and the stress intensity factor K, with the crack length

  1. Optical Production and Detection of Ultrasonic Waves in Metals for Nondestructive Testing

    Science.gov (United States)

    Morrison, R. A.

    1972-01-01

    Ultrasonic waves were produced by striking the surface of a metal with the focused one-joule pulse of a Q-switched ruby laser. Rayleigh (surface) waves and longitudinal waves were detected with conventional transducers. Optical methods of detection were tested and developed. Rayleigh waves were produced with an oscillator and transducer. They were optically detected on curved polished surfaces, and on unpolished surfaces. The technique uses a knife edge to detect small angle changes of the surface as the wave pulse passes the illuminated spot. Optical flaw detection using pulse echo and attenuation is demonstrated.

  2. Realtime identification of the propagation direction of received echoes in long range ultrasonic testing

    International Nuclear Information System (INIS)

    Choi, Myoung Seon; Heo, Won Nyoung

    2013-01-01

    In long range ultrasonic testing, a phased array probe composed of multiple identical transducers with an uniform interval of one quarter wavelength is usually used for the transmission or reception directivity control. This paper shows that the propagation directions of individual echoes can be identified in real time by displaying the inputs of a process for summing the constitution reception signals after compensating the phase difference due to the transducer interval, together with the output of the process. A constructive interference of the constitution echoes indicates a forward direction echo propagating along an intended direction while a destructive interference implies a reverse direction echo propagating along the direction opposite to the intended one

  3. Ultrasonic mammography

    International Nuclear Information System (INIS)

    Hueneke, B.

    1982-01-01

    608 women are examined by means of ultrasonic mammography during the period of 1 year. 432 patients were examined with the compound method with the U.I. Octoson, a water tank scanner, and 176 patients with the real time method with a directly connected linear-array-scanner. The following results were obtained at the end of the examination period: In the ultrasonic and also in the X-ray mammogram tumour diameters can be determined with an error rate of +- 30%. In the diagnosing of carcinomas, a significant dependence of the exactness on the sice of the tumour is found for the combination of the five methods tested (clinical examination, X-ray mammography, ultrasonic mammography, thermography, cytology). Classifying the individual methods with regard to their exactness, X-ray mammography ranks in front of ultrasonic mammography. Mastopathic changes in the breast can be screened by means of ultrasonic mammography. The structure of the changes can be determined more exactly than with an X-ray picture which is due to the possibility of differentiating solid and cystic structures. In diagnosing fibro-adenomas and establishing diagnoses on young women with dense gland bodies, ultrasonic mammography is superior to radiology both in the ability of screening a finding of a fibro-adenoma (US=88%, X-ray=75%) and in the possibility of classifying it as ''more benign than malignant''. (orig./MG) [de

  4. Device for welding components using ultrasonics, particularly for solar cell contacts and solar cell connections. Vorrichtung zum Verschweissen von Bauteilen unter Verwendung von Ultraschall, insbesondere von Solarzellenkontakten und Solarzellenverbindern

    Energy Technology Data Exchange (ETDEWEB)

    Gochermann, H.

    1983-06-23

    This is a device for welding components, particularly solar cell contacts and solar cell connections, using an ultrasonic welding device. The ultrasonic welding device has a high frequency generator, an ultrasonic emitter, a transmitter, a sonotrode, a device for accommodating the components and controls. The sonotrode is provided with a circumferential beading acting as the welding disc, which, together with the sonotrode, is rolled over the components by a relative movement. The part of the beading which is tangential to the component introduces ultrasonic energy into the component. The relative movement is made possible by the system of the ultrasonic emitter, transmitter and sonotrode with the surrounding beading being mounted so that it can rotate in a vibration node of the transmitter. (orig.).

  5. Testing device for control rod drives

    International Nuclear Information System (INIS)

    Hayakawa, Toshifumi.

    1992-01-01

    A testing device for control rod drives comprises a logic measuring means for measuring an output signal from a control rod drive logic generation circuit, a control means for judging the operation state of a control rod and a man machine interface means for outputting the result of the judgement. A driving instruction outputted from the control rod operation device is always monitored by the control means, and if the operation instruction is stopped, a testing signal is outputted to the control rod control device to simulate a control rod operation. In this case, the output signal of the control rod drive logic generation circuit is held in a control rod drive memory means and intaken into a logic analysis means for measurement and an abnormality is judged by the control means. The stopping of the control rod drive instruction is monitored and the operation abnormality of the control rod is judged, to mitigate the burden of an operator. Further, the operation of the control rod drive logic generation circuit can be confirmed even during a nuclear plant operation by holding the control rod drive instruction thereby enabling to improve maintenance efficiency. (N.H.)

  6. Ultrasonic test of carbon composite/copper joints in the ITER divertor

    International Nuclear Information System (INIS)

    Roccella, S.; Cacciotti, E.; Candura, D.; Mancini, A.; Pizzuto, A.; Reale, A.; Tatì, A.; Visca, E.

    2013-01-01

    Highlights: • ENEA developed and tested a specimen for the simulation of defects at the interface between CFC and copper. • The use of an ultrasonic technique properly set permitted to highlight and size with high accuracy the defects. • The technology developed could be employed successfully in the production of these components for high heat flux applications. -- Abstract: The vertical targets of the ITER divertor consist of high flux units (HFU) actively cooled: CuCrZr tubes armoured by tungsten and carbon/carbon fibre composite (CFC). The armour is obtained with holed parallelepiped blocks, called monoblocks, previously prepared and welded onto the tubes by means diffusion bonding. The monoblock preparation consists in the casting of a layer of copper oxygen free (Cu OFHC) inside the monoblock hole. Each HFU is covered with more than 100 monoblocks that have to be joined simultaneously to the tube. Therefore, it is very important to individuate any defects present in the casting of Cu OFHC or at the interface with the CFC before the monoblocks are installed on the units. This paper discusses the application of non-destructive testing by ultrasound (US) method for the control of the joining interfaces between CFC monoblocks and Cu OFHC, before the brazing on the CrCrZr tube. In ENEA laboratory an ultrasonic technique (UT) suitable for the control of these joints with size and geometry according to the ITER specifications has been developed and widely tested. Real defects in this type of joints are, however, still hardly detected by UT. The CFC surface has to be machined to improve the mechanical strength of the joint. This results in a surface not perpendicular to the ultrasonic wave. Moreover, CFC is characterized by high acoustic attenuation of the ultrasonic wave and then it is not easy to get information regarding the Cu/CFC bonding. Nevertheless, the UT sharpness and simplicity pushes to perform some further study. With this purpose, a sample with

  7. Ultrasonic test of carbon composite/copper joints in the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Roccella, S., E-mail: selanna.roccella@enea.it [Associazione ENEA-Euratom sulla Fusione, C.R. Frascati, 00044 Frascati, RM (Italy); Cacciotti, E. [Associazione ENEA-Euratom sulla Fusione, C.R. Frascati, 00044 Frascati, RM (Italy); Candura, D. [Ansaldo Nucleare S.p.A., C. so F.M. Perrone 25, 16152 Genoa (Italy); Mancini, A.; Pizzuto, A.; Reale, A. [Associazione ENEA-Euratom sulla Fusione, C.R. Frascati, 00044 Frascati, RM (Italy); Tatì, A. [Associazione Euratom-ENEA sulla Fusione, C.R. Casaccia, Via Anguillarese 301, 00123 Santa Maria di Galeria, RM (Italy); Visca, E. [Associazione ENEA-Euratom sulla Fusione, C.R. Frascati, 00044 Frascati, RM (Italy)

    2013-10-15

    Highlights: • ENEA developed and tested a specimen for the simulation of defects at the interface between CFC and copper. • The use of an ultrasonic technique properly set permitted to highlight and size with high accuracy the defects. • The technology developed could be employed successfully in the production of these components for high heat flux applications. -- Abstract: The vertical targets of the ITER divertor consist of high flux units (HFU) actively cooled: CuCrZr tubes armoured by tungsten and carbon/carbon fibre composite (CFC). The armour is obtained with holed parallelepiped blocks, called monoblocks, previously prepared and welded onto the tubes by means diffusion bonding. The monoblock preparation consists in the casting of a layer of copper oxygen free (Cu OFHC) inside the monoblock hole. Each HFU is covered with more than 100 monoblocks that have to be joined simultaneously to the tube. Therefore, it is very important to individuate any defects present in the casting of Cu OFHC or at the interface with the CFC before the monoblocks are installed on the units. This paper discusses the application of non-destructive testing by ultrasound (US) method for the control of the joining interfaces between CFC monoblocks and Cu OFHC, before the brazing on the CrCrZr tube. In ENEA laboratory an ultrasonic technique (UT) suitable for the control of these joints with size and geometry according to the ITER specifications has been developed and widely tested. Real defects in this type of joints are, however, still hardly detected by UT. The CFC surface has to be machined to improve the mechanical strength of the joint. This results in a surface not perpendicular to the ultrasonic wave. Moreover, CFC is characterized by high acoustic attenuation of the ultrasonic wave and then it is not easy to get information regarding the Cu/CFC bonding. Nevertheless, the UT sharpness and simplicity pushes to perform some further study. With this purpose, a sample with

  8. Identification of the Quality Spot Welding used Non Destructive Test-Ultrasonic Testing: (Effect of Welding Time)

    Science.gov (United States)

    Sifa, A.; Endramawan, T.; Badruzzaman

    2017-03-01

    Resistance Spot Welding (RSW) is frequently used as one way of welding is used in the manufacturing process, especially in the automotive industry [4][5][6][7]. Several parameters influence the process of welding points. To determine the quality of a welding job needs to be tested, either by damaging or testing without damage, in this study conducted experimental testing the quality of welding or identify quality of the nugget by using Non-Destructive Test (NDT) -Ultrasonic Testing (UT), in which the identification of the quality of the welding is done with parameter thickness of worksheet after welding using NDT-UT with use same material worksheet and have more thickness of worksheet, the thickness of the worksheet single plate 1mm, with the capability of propagation Ultrasonic Testing (UT) standard limited> 3 mm [1], welding process parameters such as the time difference between 1-10s and the welding current of 8 KV, visually Heat Affected Zone ( HAZ ) have different results due to the length of time of welding. UT uses a probe that is used with a frequency of 4 MHz, diameter 10 mm, range 100 and the couplant used is oil. Identification techniques using drop 6dB, with sound velocity 2267 m / s of Fe, with the result that the effect of the Welding time affect the size of the HAZ, identification with the lowest time 1s show results capable identified joined through NDT - UT.

  9. Ultrasonic non-destructive testing of pieces of complex geometry with a flexible phased array transducer

    Science.gov (United States)

    Chatillon; Cattiaux; Serre; Roy

    2000-03-01

    Ultrasonic non-destructive testing of components of complex geometry in the nuclear industry faces several difficulties: sensitivity variations due to unmatched contact, inaccurate localization of defects due to variations of transducer orientation, and uncovered area of the component. To improve the performances of such testing and defect characterization, we propose a new concept of ultrasonic contact phased array transducer. The phased array transducer has a flexible radiating surface able to fit the actual surface of the piece to optimize the contact and thus the sensitivity of the test. To control the transmitted field, and therefore to improve the defect characterization, a delay law optimizing algorithm is developed. To assess the capability of such a transducer, the Champ-Sons model, developed at the French Atomic Energy Commission for predicting field radiated by arbitrary transducers into pieces, has to be extended to sources directly in contact with pieces of complex geometry. The good behavior of this new type of probe predicted by computations is experimentally validated with a jointed transducer positioned on pieces of various profiles.

  10. Ultrasonic in-service testing of pressure vessel bodies of nuclear power reactors

    International Nuclear Information System (INIS)

    Obraz, J.

    1978-01-01

    In-service ultrasonic testing of reactor pressure vessels is described using a system of probes for simultaneous testing of material or weld joint thicknesses. The signal is transmitted from a common output via a 30 m long cable to electronic evaluation equipment. The methods are described of ultrasonic detection of fatigue cracks. The static calculation of the dependence of echo amplitudes on crack orientation and the dynamic calculation of the crack orientation effect are described for the indirect reflection technique. In testing, angular probes with gap-type acoustic coupling operating at a frequency of 2 MHz were preferably used. For detecting planar defects of more than 10 mm in size inclined by more than +-10deg probes operating at a frequency of 1 MHz were more advantageous. The direct reflection technique is suitable for detecting defects near the surface (10 to 20 mm) and for cases when the indirect reflection technique cannot be used. For this technique a focusing probe operating at a frequency of 2 MHz is suitable. The strong dependence of the echo amplitude on the crack depth is a disadvantage of the technique. Defects near the surface, i.e., immediately under cladding are best detected by means of a double probe transmitting transversal waves at an angle of 60deg. Experimental measurements were carried out on materials with artificial defects of the type of bores with flat bottom. (J.P.)

  11. Ultrasonic Bat Deterrent Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kinzie, Kevin; Rominger, Kathryn M.

    2017-12-14

    turbines. Additionally, a unique 3D bat flight path visualization system was utilized to monitor for and identify any changes in bat activity caused by the operation of the deterrent system. Both the carcass search and flight path visualization data indicated that the pulsed deterrent system was effective, but not more effective, than the steady system tested in prior years. The pulsed deterrent system was effective at reducing bat fatalities by 38% for all species and 54% effective at reducing fatalities if Eastern Red bats were excluded from the data. However, an unanticipated byproduct of the pulsing system was the emission of intermittent water vapor from the deterrent devices due to the air compression process that powered the devices. This water vapor may have altered the ultrasonic signal and obscured the results in an unknown way. While a qualitative analysis of the effect of the water vapor on the deterrent signal had indicated there was not dramatic change in the expected ultrasonic signal, it was not possible to conclusively determine if the pulse signal would have been more effective in the absence of the water vapor.

  12. Testing device for pipeline groups and control method for testing device

    International Nuclear Information System (INIS)

    Naito, Shinji; Kajiyama, Shigeru; Takahashi, Fuminobu; Tsuchida, Kenji; Tachibana, Yukio; Shigehiro, Katsuya; Mahara, Yoichi.

    1995-01-01

    The device of the present invention comprises a testing device main body disposed to a rail, a movable mechanism positioning from a reference point, a circumferential direction scanning mechanism, an axial direction scanning mechanism, a posture control mechanism, and a testing probe. Upon testing of pipelines, the detection device main body and auxiliary members are moved from a reference point previously set on a rail for numerical control toward pipelines to be tested in a state where the axial direction scanning mechanism and the testing probe are suspended in the axial direction. The testing is conducted by controlling the position of the testing probe in the axial direction of the pipeline by means of the axial direction scanning mechanism, and scanning the testing probe to the outer circumference of the pipeline along the circumferential track by way of the circumferential direction scanning mechanism. The device can be extremely reduced in the thickness, and can be moved with no interference with pipelines and other obstacles by remote operation even under such undesired condition as the pipelines being crowded, so that non-destructive testing can be conducted accurately. (N.H.)

  13. Ultrasonic testing of austenitic welds and its dependency on the welding process

    International Nuclear Information System (INIS)

    Tabatabaeipour, S.M.; Honarvar, F.

    2009-01-01

    This paper describes the ultrasonic testing of austenitic welds prepared by two different welding processes. The tests were carried out by the ultrasonic Time-of-Flight Diffraction (ToFD) technique. Shielded Metal Arc Welding (SMAW) and Gas Tungsten Arc Welding (GTAW) are the welding processes used for preparing the specimens. Identical artificial defects were implanted in both welds during the welding process. Both specimens were examined by the ToFD technique under similar conditions. Metallographic images were also obtained from the cross sectional plane of both the SMA and GTA welds. These images show that the grain orientation in the two welded specimens are different. D-scan images obtained by the ToFD technique from these welds indicates that inspecting the specimens prepared by the SMAW process is easier than the one made by the GTAW process. The results also show that the D-scan images cannot reveal the small vertical drilled holes implanted in the specimens. (author)

  14. Ultrasonic, Molecular and Mechanical Testing Diagnostics in Natural Fibre Reinforced, Polymer-Stabilized Earth Blocks

    Directory of Open Access Journals (Sweden)

    C. Galán-Marín

    2013-01-01

    Full Text Available The aim of this research study was to evaluate the influence of utilising natural polymers as a form of soil stabilization, in order to assess their potential for use in building applications. Mixtures were stabilized with a natural polymer (alginate and reinforced with wool fibres in order to improve the overall compressive and flexural strength of a series of composite materials. Ultrasonic pulse velocity (UPV and mechanical strength testing techniques were then used to measure the porous properties of the manufactured natural polymer-soil composites, which were formed into earth blocks. Mechanical tests were carried out for three different clays which showed that the polymer increased the mechanical resistance of the samples to varying degrees, depending on the plasticity index of each soil. Variation in soil grain size distributions and Atterberg limits were assessed and chemical compositions were studied and compared. X-ray diffraction (XRD, X-ray fluorescence spectroscopy (XRF, and energy dispersive X-ray fluorescence (EDXRF techniques were all used in conjunction with qualitative identification of the aggregates. Ultrasonic wave propagation was found to be a useful technique for assisting in the determination of soil shrinkage characteristics and fibre-soil adherence capacity and UPV results correlated well with the measured mechanical properties.

  15. Effects of operator time pressure and noise on manual ultrasonic testing

    International Nuclear Information System (INIS)

    Enkvist, J.; Edland, A.; Svenson, O.

    2002-01-01

    In earlier studies of manual ultrasonic testing, great variations have been found in operator performance, often attributed to operator fatigue. However, no conclusive findings have been reported. In the present study, twenty operators performed manual ultrasonic inspections of six test-pieces with manufactured flaws. The operators performed the inspections under stress (high arousal - time pressure and noise) and no-stress conditions; one condition the first day and the other the second and last day. According to the Yerkes-Dodson Law there is an optimal arousal level where performance is highest. It was hypothesised that the stress condition led to a level of arousal so high that it would affect the results negatively. However, contrary to the hypotheses it was found that the manipulation increased operator performance. Operators with the stress condition day 1 performed better than the other operators (under the no-stress condition). This was interpreted as the 'stress first' (group 1) operators had established efficient performance patterns the first day - affecting also the second day. Operators beginning with stress condition also tended to be more motivated. It was concluded that operator performance is affected by arousal. (author)

  16. 21 CFR 872.4850 - Ultrasonic scaler.

    Science.gov (United States)

    2010-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  17. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures.

    Science.gov (United States)

    Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng

    2018-05-01

    The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.

  18. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures

    Science.gov (United States)

    Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng

    2018-05-01

    The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.

  19. Pipeline defect prediction using long range ultrasonic testing and intelligent processing

    International Nuclear Information System (INIS)

    Dino Isa; Rajprasad Rajkumar

    2009-01-01

    This paper deals with efforts to improve nondestructive testing (NDT) techniques by using artificial intelligence in detecting and predicting pipeline defects such as cracks and wall thinning. The main emphasis here will be on the prediction of corrosion type defects rather than just detection after the fact. Long range ultrasonic testing will be employed, where a ring of piezoelectric transducers are used to generate torsional guided waves. Various defects such as cracks as well as corrosion under insulation (CUI) will be simulated on a test pipe. The machine learning algorithm known as the Support Vector Machine (SVM) will be used to predict and classify transducer signals using regression and large margin classification. Regression results show that the SVM is able to accurately predict future defects based on trends of previous defect. The classification performance was also exceptional showing a facility to detect defects at different depths as well as for distinguishing closely spaced defects. (author)

  20. Experimental POD measurement using ultrasonic phased arrays for incorporating nondestructive testes in probabilistic failure analyses

    International Nuclear Information System (INIS)

    Kurz, Jochen H.; Dobmann, Gerd; Juengert, Anne; Dugan, Sandra; Roos, Eberhard

    2011-01-01

    In nuclear facilities, nondestructive tests are carried out during construction and during inspections. The type and extent of the tests are specified in the KTA rules. All tests must be qualified. In the past, the qualifications were made by extensive performance demonstrations of the test teams and equipment, which were judged by experts. This provided primarily pragmatic information on fault detection performance. In the USA, qualification of EPRI test teams also includes testing of test pieces with hidden (unknown) defects, of which a certain percentage must be detected. There is still a lack of information on the probability of detection (POD), in the form of POD curves, of specific defects in given test situations, using specifically selected testing techniques. Quantification of POD and the integration of relevant data in the probabilistic evaluation chain is one of the key goals of a research project whose first results are presented here. The concept of the project and first results of ultrasonic tests are presented. Defect distributions in the test pieces, experiment planning, and test specifications are gone into more closely. One of the most important goals is the specification of the residual uncertainty of components failure on the basis of the investigations. An outlook is presented for this.

  1. Leak test method and test device for iodine filter

    International Nuclear Information System (INIS)

    Fukasawa, Tetsuo; Funabashi, Kiyomi; Miura, Noboru; Miura, Eiichi.

    1995-01-01

    An air introduction device which can change a humidity is disposed upstream of an iodine filter to be tested, and a humidity measuring device is disposed downstream of the iodine filter respectively. At first, dried air reduced with humidity is flown from the air introduction device to the iodine filter, to remove moisture content from an iodine adsorber in the iodine filter. Next, air at an increased humidity is supplied to the iodine filter. The difference between the time starting the supply of the highly humid air and the time detecting the high humidity at the humidity measuring device is measured. When the time difference is smaller than the time difference measured previously in a normal iodine filter, it shows the presence of leak in the iodine filter to be tested. With such procedures, leakage in the iodine filter which removes radioactive iodine from off-gases discharged from the radioactive material handling facilities can be detected easily by using water (steams), namely, a naturally present material. (I.N.)

  2. Modelling welded material for ultrasonic testing using MINA: Theory and applications

    Science.gov (United States)

    Moysan, J.; Corneloup, G.; Chassignole, B.; Gueudré, C.; Ploix, M. A.

    2012-05-01

    Austenitic steel multi-pass welds exhibit a heterogeneous and anisotropic structure that causes difficulties in the ultrasonic testing. Increasing the material knowledge is a long term research field for LCND laboratory and EDF Les Renardières in France. A specific model has been developed: the MINA model (Modelling an Isotropy from Notebook of Arc welding). Welded material is described in 2D for flat position arc welding with shielded electrode (SMAW) at a functional scale for UT modeling. The grain growth is the result of three physical phenomena: epitaxial growth, influence of temperature gradient, and competition between the grains. The model uses phenomenological rules to combine these three phenomena. A limited number of parameters is used to make the modelling possible from the information written down in a notebook of arc welding. We present all these principles with 10 years' hindsight. To illustrate the model's use, we present conclusions obtained with two recent applications. In conclusion we give also insights on other research topics around this model : inverse problem using a F.E.M. code simulating the ultrasonic propagation, in position welding, 3D prospects, GTAW.

  3. Nondestructive evaluation of adhesive joints by C-scan ultrasonic testing

    International Nuclear Information System (INIS)

    Zeighami, Mehdi; Honarvar, Farhang

    2009-01-01

    Evaluation of the quality of adhesive bonding is an important issue in many industries who incorporate adhesive joints in their products. Over the past few decades, numerous acoustical techniques have been developed for nondestructive testing (NDT) of adhesively bonded joints. Among these techniques, the ultrasonic pulse-echo method is the most promising means for inspection of adhesive bonds. In practice, due to low impedance matching between adhesive and metal, the discrimination of a good bond from a bad bond is difficult. The low impedance matching also results in low contrast between perfect and disbanded zone in a C-scan image. In this paper, the quality of the interface between aluminum and epoxy is investigated by using an in-house built ultrasonic C-scan system. Two adhesion indices are proposed for producing C-scan images. To verify the capability of these indices, an adhesively bonded sample was fabricated using aluminum plates and epoxy. An artificial defect was implanted in the first interface of the specimens. The C-scan measurement prepared based on the proposed indices was able to reveal the defect much better than the C-scan image prepared by conventional approach. (author)

  4. Timelapse ultrasonic tomography for measuring damage localization in geomechanics laboratory tests.

    Science.gov (United States)

    Tudisco, Erika; Roux, Philippe; Hall, Stephen A; Viggiani, Giulia M B; Viggiani, Gioacchino

    2015-03-01

    Variation of mechanical properties in materials can be detected non-destructively using ultrasonic measurements. In particular, changes in elastic wave velocity can occur due to damage, i.e., micro-cracking and particles debonding. Here the challenge of characterizing damage in geomaterials, i.e., rocks and soils, is addressed. Geomaterials are naturally heterogeneous media in which the deformation can localize, so that few measurements of acoustic velocity across the sample are not sufficient to capture the heterogeneities. Therefore, an ultrasonic tomography procedure has been implemented to map the spatial and temporal variations in propagation velocity, which provides information on the damage process. Moreover, double beamforming has been successfully applied to identify and isolate multiple arrivals that are caused by strong heterogeneities (natural or induced by the deformation process). The applicability of the developed experimental technique to laboratory geomechanics testing is illustrated using data acquired on a sample of natural rock before and after being deformed under triaxial compression. The approach is then validated and extended to time-lapse monitoring using data acquired during plane strain compression of a sample including a well defined layer with different mechanical properties than the matrix.

  5. The Design Of The Ultrasonic Nondestructive Testing System Based On The EMAT

    Directory of Open Access Journals (Sweden)

    Cheng Huan Xin

    2016-01-01

    Full Text Available This paper introduces a kind of based on the electromagnetic acoustic transducer (EMAT metal pipeline detection system, fusion of two dimensional orientation, shape unique technological innovation, implementation of various metal pipe wall corrosion situation of rapid, accurate, fully automated non-destructive testing.In the aspect of hardware design, single-chip microcomputer control was achieved by C language programming the launch of the pulse signal. Pulse signal was sent to launch circuit, ultrasonic signal. Design of preamplifier, controllable gain amplifier two-stage amplifier circuit for receiving signal is amplified. Including data acquisition circuit detection circuit and A/D conversion circuit, single chip microcomputer and the LabVIEW platform via A serial port communication agreement. In the aspect of software design, the design of the EMAT pipe nondestructive testing system based on LabVIEW human-computer interaction interface.

  6. Ultrasonic testing of pre-turned contours for large components made of ductile iron; Ultraschallpruefung an Vordrehkonturen fuer grosse Bauteile aus Gusseisen mit Kugelgraphit

    Energy Technology Data Exchange (ETDEWEB)

    Schmitte, Till; Chichkov, Nikolai; Nemitz, Oliver; Orth, Thomas [Salzgitter Mannesmann Forschung GmbH, Duisburg (Germany); Hocks, Heinrich Jr.; Rusche, Sascha; Opalla, Dirk; Frank, Joerg [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany)

    2015-07-01

    In the ultrasonic testing of large, thick-walled components made of ductile iron partial acoustic paths of several meters are needed. Considered here are cylindrical components such as the body of CASTOR containers with diameters 2-3 m, a height of up to 6 m and a wall thickness of 500 mm. So far, an automated technique for this is not available, therefore such components are checked in a complex and lengthy process by manual ultrasonic testing. The development and design of the testing by means of simulations and the realization as a mobile testing device are topics of this paper. Measurements on a reference body with test reflectors in different depths are presented and discussed. [German] Bei der Ultraschall-Pruefung von grossen, dickwandigen Bauteilen aus Gusseisen mit Kugelgraphit werden teilweise Schallwege von mehreren Metern noetig. Betrachtet werden hier zylinderfoermige Bauteile, wie die Koerper von CASTOR-Behaeltern, mit Durchmessern zwischen 2 und 3 m, einer Hoehe von bis zu 6 m und Wanddicken von ca. 500 mm. Bisher ist eine automatisierte Technik hierfuer nicht verfuegbar, daher werden derartige Bauteile in einem aufwaendigen und langwierigen Prozess mittels manueller Schallung geprueft. Zur Erhoehung der Nachweissicherheit und zur Steigerung der Effizienz im Pruefablauf sollen nun senkrecht zur Achse des zylinderfoermigen Bauteils liegende unzulaessige Anzeigen im gesamten Mantelvolumen durch eine teilautomatisierte Pruefung ausgeschlossen werden. Die Entwicklung und Auslegung der Prueftechnik mittels Simulationen und die Realisierung als mobile Pruefvorrichtung sind Themen dieses Beitrags. Messungen an einem Referenzkoerper mit Testreflektoren in verschiedenen Tiefen werden vorgestellt und diskutiert.

  7. Ultrasonic flowmeters

    International Nuclear Information System (INIS)

    Wittekind, W.D.

    1979-01-01

    A prototype ultrasonic flowmeter was assembled and tested. The theoretical basis of this prototype ultrasonic flowmeter is reviewed; the equipment requirements for a portable unit are discussed; the individual electronic modules contained in the prototype are described; the operating procedures and configuration are explained; and the data from preliminary calibrations are presented. The calibration data confirm that the prototype operates according to theoretical predictions and can indeed provide nonintrusive flow measurements to predicted accuracies for pipes larger than two inches, under single phase stable flow conditions

  8. The state of the art in non destructive testing of nuclear fuel cladding tubes using ultrasonic rotary systems; on line computer and statistics

    International Nuclear Information System (INIS)

    Rauscher, Rudolf

    Nondestructive evaluation of nuclear fuel cladding by ultrasonic tests is described. Ultrasonic transducers for detection of flaws and dimensions are built in a rotary system with a speed of 8000 rpm. The testing system is adapted to a configuration consisting of two microcomputers connected to each other

  9. Ultrasonic test application in geothermal heat exchangers and civil works to monitor the grout integrity (TUC)

    Science.gov (United States)

    Mandrone, Giuseppe; Comina, Cesare; Giuliani, Andrea

    2013-04-01

    The working of a vertical geothermal probe, realized with a pipe U-tubes of high-density-polyethylene (HDPE) inserted in a grouted boreholes, is linked to the possibility to exchange heat with the surrounding soil. The concrete material useful for the borehole heat exchangers allows to satisfy a double purpose: sealing the polyethylene pipes from groundwater in the event of loss and increasing the thermal properties of the whole probe to provide a greater interaction with the underground. If this operation is not performed properly, the complete system may not satisfy the required heat demand, even with a well dimensioned installation, wasting the value of the entire carried out work. This paper offers to a wide group of professional actors a possible ultrasonic method of a draft and economically sustainable investigation for the identification of defects that could be present in the cementation realized inside a geothermal probe, but also in the realization of sonic piles. The instrument used for this type of test (TUC - Test Ultrasonic Cementation) has been designed and tested by the technicians of AG3, a Spin Off Company of Torino University, in collaboration with 3DM Electric and PASI companies, then subjected to patenting procedure (Patent Pending TO2011A000036). The main innovative feature of this approach has been the miniaturization of the equipment, able to investigate the geothermal probes with U-tubes with standard dimension (the maximum overall dimensions of the instruments detectors is 26 mm), maintaining a sampling rate appropriate to investigate the cementation and the early centimetres of the surrounding soil. The processing of the recorded data was performed by a dedicated Matlab software. In the first part of the article is presented the calibration process, that it was carried out through ad hoc creation of two situations likely to be investigated, while in the second part the paper reports the results obtained by the application of the TUC

  10. Ultrasonic testing of a sealing construction made of salt concrete in an underground disposal facility for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Martin; Effner, Ute Antonie; Milmann, Boris; Voelker, Christoph; Wiggenhauser, Herbert [Federal Institute for Materials Research and Testing (BAM), Berlin (Germany); Mauke, Ralf [The Federal Office for Radiation Protection, Salzgitter (Germany)

    2015-07-01

    For the closure of radioactive waste disposal facilities engineered barriers- so called ''drift seals'' are used. The purpose of these barriers is to constrain the possible infiltration of brine and to prevent the migration of radionuclides into the biosphere. In a rock salt mine a large scale in-situ experiment of a sealing construction made of salt concrete was set up to prove the technical feasibility and operability of such barriers. In order to investigate the integrity of this structure, non-destructive ultrasonic measurements were carried out. Therefore two different methods were applied at the front side of the test-barrier: 1 Reflection measurements from boreholes 2 Ultrasonic imaging by means of scanning ultrasonic echo methods This extended abstract is a short version of an article to be published in a special edition of ASCE Journal that will briefly describe the sealing construction, the application of the non-destructive ultrasonic measurement methods and their adaptation to the onsite conditions -as well as parts of the obtained results. From this a concept for the systematic investigation of possible contribution of ultrasonic methods for quality assurance of sealing structures may be deduced.

  11. Test device for measuring permeability of a barrier material

    Science.gov (United States)

    Reese, Matthew; Dameron, Arrelaine; Kempe, Michael

    2014-03-04

    A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.

  12. The SAFT-UT (synthetic aperture focusing technique for ultrasonic testing) real-time inspection system: Operational principles and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Hall, T. E.; Reid, L. D.; Doctor, S. R.

    1988-06-01

    This document provides a technical description of the real-time imaging system developed for rapid flaw detection and characterization utilizing the synthetic aperture focusing technique for ultrasonic testing (SAFT-UT). The complete fieldable system has been designed to perform inservice inspection of light-water reactor components. Software was written on a DEC LSI 11/23 computer system to control data collection. The unprocessed data is transferred to a VAX 11/730 host computer to perform data processing and image display tasks. A parallel architecture peripheral to the host computer, referred to as the Real-Time SAFT Processor, rapidly performs the SAFT processing function. From the host's point of view, this device operates on the SAFT data in such a way that one may consider it to be a specialized or SAFT array processor. A guide to SAFT-UT theory and conventions is included, along with a detailed description of the operation of the software, how to install the software, and a detailed hardware description.

  13. Resolution improvement of ultrasonic echography methods in non destructive testing by adaptative deconvolution

    International Nuclear Information System (INIS)

    Vivet, L.

    1989-01-01

    The ultrasonic echography has a lot of advantages which make it attractive for nondestructive testing. But the important acoustic energy useful to go through very attenuating materials can be got only with resonant translators, that is a limit for the resolution on measured echograms. This resolution can be improved by deconvolution. But this method is a problem for austenitic steel. Here is developed a method of time deconvolution which allows to take in account the characteristics of the wave. A first step of phase correction and a second step of spectral equalization which gives back the spectral contents of ideal reflectivity. The two steps use fast Kalman filters which reduce the cost of the method

  14. Ultrasonic signal processing and B-SCAN imaging for nondestructive testing. Application to under - cladding - cracks

    International Nuclear Information System (INIS)

    Theron, G.

    1988-02-01

    Crack propagation under the stainless steel cladding of nuclear reactor vessels is monitored by ultrasonic testing. This work study signal processing to improve detection and sizing of defects. Two possibilities are examined: processing of each individual signal and simultaneous processing of all the signals giving a B-SCAN image. The bibliographic study of time-frequency methods shows that they are not suitable for pulses. Then decomposition in instantaneous frequency and envelope is used. Effect of interference of 2 close echoes on instantaneous frequency is studies. The deconvolution of B-SCAN images is obtained by the transducer field. A point-by-point deconvolution method, less noise sensitive, is developed. B-SCAN images are processed in 2 phases: interface signal processing and deconvolution. These calculations improve image accuracy and dynamics. Water-stell interface and ferritic-austenitic interface are separated. Echoes of crack top are visualized and crack-hole differentiation is improved [fr

  15. Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for ultrasonic test methods

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice facilitates the interoperability of ultrasonic imaging equipment by specifying image data transfer and archival storage methods in commonly accepted terms. This document is intended to be used in conjunction with Practice E 2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E 2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, transfer and archival storage. The goal of Practice E 2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE test results on any system conforming to the DICONDE standard. Toward that end, Practice E 2339 provides a data dictionary and set of information modules that are applicable to all NDE modalities. This practice supplements Practice E 2339 by providing information object definitions, information ...

  16. Nuclide transfer test device in soil

    International Nuclear Information System (INIS)

    Sakata, Yoshiyuki.

    1994-01-01

    The device comprises a pressure-proof vessel having a perforated port, a compression vessel having a sample-containing chamber with circumferential walls having a plurality of small holes being gastightly engaged to the perforated port, a mechanically pressurizing means for vertically compressing the compression chamber, a pressurizing gas supply system for supplying a pressurizing gas to compress the soil specimen in a lateral direction and a sample water-supply system for supplying sample water to the sample containing chamber. The soil sample is pressurized so that the sample water is caused to permeate by isotropic pressure due to equilibrium of vertical compression by mechanical force and lateral compression by the pressurizing gas. The transfer state of radioactive nuclides in the soil can be tested easily in a state where the sample water is caused to permeate in a vertical direction in parallel, to simulate an actual processing circumstance. Namely, since the sample water is caused to permeate to the soil sample in the pressure-proof vessel, a desired test can easily be conducted in a restricted space without undergoing influences of the kind and the dose rate of the radioactive nuclides. (N.H.)

  17. Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices.

    Science.gov (United States)

    Lei, Junjun; Glynne-Jones, Peter; Hill, Martyn

    2013-06-07

    In acoustofluidic manipulation and sorting devices, Rayleigh streaming flows are typically found in addition to the acoustic radiation forces. However, experimental work from various groups has described acoustic streaming that occurs in planar devices in a plane parallel to the transducer face. This is typically a four-quadrant streaming pattern with the circulation parallel to the transducer. Understanding its origins is essential for creating designs that limit or control this phenomenon. The cause of this kind of streaming pattern has not been previously explained as it is different from the well-known classical streaming patterns such as Rayleigh streaming and Eckart streaming, whose circulation planes are generally perpendicular to the face of the acoustic transducer. In order to gain insight into these patterns we present a numerical method based on Nyborg's limiting velocity boundary condition that includes terms ignored in the Rayleigh analysis, and verify its predictions against experimental PIV results in a simple device. The results show that the modelled particle trajectories match those found experimentally. Analysis of the dominant terms in the driving equations shows that the origin of this kind of streaming pattern is related to the circulation of the acoustic intensity.

  18. Ultrasonic testing and inspection of steel castings for use in elevated temperatures acc. to DIN 17245

    International Nuclear Information System (INIS)

    Christianus, D.; Fischer, K.H.

    1978-01-01

    Up to present, the non-destructive testing in german steel castings and delivery conditions has hardly been described. DIN 17245 was an exception for heat-resistant ferrite cast steel (July 1967 version) which for the first time contained data on maximum permissible defects in irradiation testing. The US (ultrasonic) method to find internal defects was named together with irradiation, the error limits however were also valid for this method according to the reference picture series of ASTM (American Society for Testing and Materials). It is clear to every practician that especially in the case of steel, due to the numerous possible defects and their unpredictable orientation, it is not always possible to determine the true type of defects based on reflection behaviour of an inhomogenity. In any case one cannot directly compare two physically different methods. If one considers foreign cast steel norms, then one finds somewhat more about non-destructive testing. The set standard measures mostly however take after the irradiation testing guidelines according to ASTM. A Westinghouse regulation, norm ASTM-A-609 and the ASME (Am. Soc. of Mech. Engineers) regulations for components of nuclear reactors are the exception. (orig.) [de

  19. Investigation of PVC physical ageing in field test specimens using ultrasonic and dielectric measurements

    NARCIS (Netherlands)

    Demcenko, A.; Ravanan, M.; Visser, Roy; Loendersloot, Richard; Akkerman, Remko

    2013-01-01

    Physical ageing in PVC is studied using two techniques: a) non-linear ultrasonic measurements based on the non-collinear wave interaction theory and b) dielectric measurements. The ultrasonic measurement results are compared with dielectric measurement results. The comparison shows that the used

  20. Test and Evaluation of Ultrasonic Additive Manufacturing (UAM) for a Large Aircraft Maintenance Shelter (LAMS) Baseplate

    Science.gov (United States)

    2015-03-26

    37  Figure 16. Offsetting Grain Orientation ............................................................................ 46  Figure 17. LAMS...selectively dispensed through a nozzle or orifice (ASTM International, 2012: 1). Fused deposition modeling (FDM) is an example of material extrusion and...gains as a result of ultrasonic welding. Proper ultrasonic welding results in uniformity, reduction in void space, and optimal grain orientation

  1. Hacking and penetration testing with low power devices

    CERN Document Server

    Polstra, Philip

    2014-01-01

    Hacking and Penetration Testing with Low Power Devices shows you how to perform penetration tests using small, low-powered devices that are easily hidden and may be battery-powered. It shows how to use an army of devices, costing less than you might spend on a laptop, from distances of a mile or more. Hacking and Penetration Testing with Low Power Devices shows how to use devices running a version of The Deck, a full-featured penetration testing and forensics Linux distribution, and can run for days or weeks on batteries due to their low power consumption. Author Philip Polstra shows how to

  2. Beryllium mock-ups development and ultrasonic testing for ITER divertor conditions

    International Nuclear Information System (INIS)

    Barabash, V.R.; Bykov, V.A.; Giniyatulin, R.N.; Gervash, A.A.; Gurieva, T.M.; Egorov, K.E.; Komarov, V.L.; Korolkov, M.D.; Mazul, I.V.; Gitarsky, L.S.; Strulia, I.L.; Sizenev, V.S.; Pronyakin, V.T.

    1995-01-01

    At the present time beryllium is considered as the most suitable armour material for the ITER divertor application. Different types of Be-divertor mock-up construction are compared in the report. Two different technologies of beryllium tiles joining to a heat sink body are analysed: high temperature brazing and thermodiffusion bonding. The comparative analysis of different constructions has been performed on the basis of 2-D finite element calculation for temperatures and stresses. The main parameters and diagnostic capabilities of electron beam facility for HHF testing of beryllium mock-ups are described. The first results of HHF tests of ''beryllium-copper saddle-MAGT tube'' and ''beryllium-copper plate-SS body'' mock-ups are presented. The reasons of the damages during the HHF are analysed. The technique of ultrasonic testing of the thermodifussion bonding and brazing quality for beryllium-copper joints is presented. The recorded results are prepared in the form of ultrasound grams. The testing results are compared with the metallographic analysis. (orig.)

  3. Round robin performance testing of organic photovoltaic devices

    DEFF Research Database (Denmark)

    Gevorgyan, Suren; Zubillaga, Oihana; de Seoane, José María Vega

    2014-01-01

    This study addresses the issue of poor intercomparability of measurements of organic photovoltaic (OPV) devices among different laboratories. We present a round robin performance testing of novel OPV devices among 16 laboratories, organized within the framework of European Research Infrastructure...

  4. Modelling the attenuation in the ATHENA finite elements code for the ultrasonic testing of austenitic stainless steel welds.

    Science.gov (United States)

    Chassignole, B; Duwig, V; Ploix, M-A; Guy, P; El Guerjouma, R

    2009-12-01

    Multipass welds made in austenitic stainless steel, in the primary circuit of nuclear power plants with pressurized water reactors, are characterized by an anisotropic and heterogeneous structure that disturbs the ultrasonic propagation and makes ultrasonic non-destructive testing difficult. The ATHENA 2D finite element simulation code was developed to help understand the various physical phenomena at play. In this paper, we shall describe the attenuation model implemented in this code to give an account of wave scattering phenomenon through polycrystalline materials. This model is in particular based on the optimization of two tensors that characterize this material on the basis of experimental values of ultrasonic velocities attenuation coefficients. Three experimental configurations, two of which are representative of the industrial welds assessment case, are studied in view of validating the model through comparison with the simulation results. We shall thus provide a quantitative proof that taking into account the attenuation in the ATHENA code dramatically improves the results in terms of the amplitude of the echoes. The association of the code and detailed characterization of a weld's structure constitutes a remarkable breakthrough in the interpretation of the ultrasonic testing on this type of component.

  5. Mathematical modelling of ultrasonic testing of components with defects close to a non-planar surface

    International Nuclear Information System (INIS)

    Westlund, Jonathan; Bostroem, Anders

    2011-05-01

    Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry. To develop and qualify the methods extensive experimental work with test blocks is usually required. This can be very time-consuming and costly and it also requires a good physical intuition of the situation. A reliable mathematical model of the testing situation can, therefore, be very valuable and cost-effective as it can reduce experimental work significantly. A good mathematical model enhances the physical intuition and is very useful for parametric studies, as a pedagogical tool, and for the qualification of procedures and personnel. The aim of the present report is to describe work that has been performed to model ultrasonic testing of components that contain a defect close to a nonplanar surface. For nuclear power applications this may be a crack or other defect on the inside of a pipe with a diameter change or connection. This is an extension of the computer program UTDefect, which previously only admits a planar back surface (which is often applicable also to pipes if the pipe diameter is large enough). The problems are investigated in both 2D and 3D, and in 2D both the simpler anti-plane (SH) and the in-plane (P-SV) problem are studied. The 2D investigations are primarily solved to get a 'feeling' for the solution procedure, the discretizations, etc. In all cases an integral equation approach with a Green's function in the kernel is taken. The nonplanar surface is treated by the boundary element method (BEM) where a division of the surface is made in small elements. The defects are mainly cracks, strip-like (in 2D) or rectangular (in 3D), and these are treated with more analytical methods. In 2D also more general defects are treated with the help of their transition (T) matrix. As in other parts of UTDefect the ultrasonic probes in transmission and reception are included in the model. In 3D normalization by a side drilled hole is possible. Some numerical results

  6. Analysis of the particle stability in a new designed ultrasonic levitation device.

    Science.gov (United States)

    Baer, Sebastian; Andrade, Marco A B; Esen, Cemal; Adamowski, Julio Cezar; Schweiger, Gustav; Ostendorf, Andreas

    2011-10-01

    The use of acoustic levitation in the fields of analytical chemistry and in the containerless processing of materials requires a good stability of the levitated particle. However, spontaneous oscillations and rotation of the levitated particle have been reported in literature, which can reduce the applicability of the acoustic levitation technique. Aiming to reduce the particle oscillations, this paper presents the analysis of the particle stability in a new acoustic levitator device. The new acoustic levitator consists of a piezoelectric transducer with a concave radiating surface and a concave reflector. The analysis is conducted by determining numerically the axial and lateral forces that act on the levitated object and by measuring the oscillations of a sphere particle by a laser Doppler vibrometer. It is shown that the new levitator design allows to increase the lateral forces and reduce significantly the lateral oscillations of the levitated object.

  7. A new multiple channel data recording system for mechanised ultrasonic testing of pipes and nozzles by A-scan processing

    International Nuclear Information System (INIS)

    Heumueller, R.; Rathgeb, W.; Szafarska, E.; Bertus, N.; Erhard, A.; Montag, H.J.; Wuestenberg, H.

    1989-01-01

    A system of equipment for ultrasonic testing in nuclear technique is introduced. This is a four channel ultrasonic equipment, which consists of a manipulator suitable for components, up to four conventional test heads, a test head connection box connected with them via 20 metres of coaxial cable, a documentation unit for signal detection and conversion, a data collection computer for parametricising the equipment, measurement display and representation and a disc memory. The advantages of this test system lie in its easy use because of the compact equipment dimensions, in the data collection of the complete A picture by the documentation unit and in the flexible evaluation of the collected data by the computer. (MM) [de

  8. Non-contact test of coating by means of laser-induced ultrasonic excitation and holographic sound representation

    International Nuclear Information System (INIS)

    Crostack, H.A.; Pohl, K.Y.; Radtke, U.

    1991-01-01

    In order to circumvent the problems of introducing and picking off sound, which occur in conventional ultrasonic testing, a completely non-contact test process was developed. The ultrasonic surface wave required for the test is generated without contact by absorption of laser beams. The recording of the ultrasound also occurs by a non-contact holographic interferometry technique, which permits a large scale representation of the sound. Using the example of MCrAlY and ZrO 2 layers, the suitability of the process for testing thermally sprayed coatings on metal substrates is identified. The possibilities and limits of the process for the detection and description of delamination and cracks are shown. (orig.) [de

  9. Ultrasonic non-destructive testing on CFC monoblock divertor mock-up

    International Nuclear Information System (INIS)

    Ezato, K.; Taniguchi, M.; Sato, K.; Araki, M.; Akiba, M.

    2001-01-01

    Non-destructive ultrasonic testing has been applied for the characterization of joints by means of a polymer transducer. One of the advantages of the polymer transducer is flexibility in its shape and the possibility to install multiple transducers in one probe, which can reduce the time for inspection. As a first step, the size effect of the transducer on the resolution and sensitivity was examined to detect the joint flaw. Transducers with circumferential angles of 5 , 10 and 30 were tested. For this test a small divertor element with a driller hole was prepared, which simulates a joint defect. The transducers with angles of 30 could not characterize the size of the artificial joint flaw. On the contrary, the size of the artificial defect was successfully detected with an accuracy of 90% by means of the transducers with angles of 5 and 10 . From the viewpoint of the sensitivity of the detection of the joint flaw, the transducer with the angle of 10 is appropriate because it could detect the largest intensity of the reflected signal caused by the same artificial defect of the joint interface. (orig.)

  10. High temperature aqueous stress corrosion testing device

    International Nuclear Information System (INIS)

    Bornstein, A.N.; Indig, M.E.

    1975-01-01

    A description is given of a device for stressing tensile samples contained within a high temperature, high pressure aqueous environment, thereby permitting determination of stress corrosion susceptibility of materials in a simple way. The stressing device couples an external piston to an internal tensile sample via a pull rod, with stresses being applied to the sample by pressurizing the piston. The device contains a fitting/seal arrangement including Teflon and weld seals which allow sealing of the internal system pressure and the external piston pressure. The fitting/seal arrangement allows free movement of the pull rod and the piston

  11. Evaluation of Effect by Internal Flow on Ultrasonic Testing Flaw Sizing in Piping

    International Nuclear Information System (INIS)

    Lee, Jeong Seok; Yoon, Byung Sik; Kim, Yong Sik

    2013-01-01

    In this study, the ultrasonic amplitude difference between air filled and water filled piping in nuclear power plant is compared by modeling approach. In this study, ultrasonic amplitude differences between air and water filled pipe are evaluated by modeling approach. Consequently, we propose the following results. The ultrasonic amplitude difference between air and water filled condition is measured by lower than 1 dB in modeling calculation. The flaw length sizing error between air and water filled condition shows same results based on 12 dB drop method even thought the amplitude difference is 1 dB. Most of the piping welds in nuclear power plants are inspected periodically using ultrasonic techniques to detect service-induced flaws such as IGSCC cracking. The inspection results provide information such as location, maximum amplitude response, ultrasonic length, height and finally the nature or flaw pattern. The founded flaw in ultrasonic inspection is accepted or rejected based on these information. Specially, the amplitude of flaw response is very important to estimate the flaw size. Currently the ultrasonic inspections in nuclear power plant components are performed by specific inspection procedure which describing inspection technique include inspection system, calibration methodology and flaw characterizing methodology. To perform ultrasonic inspection during in-service inspection, reference gain should be established before starting ultrasonic inspection by requirement of ASME code. This reference gain used as basic criteria to evaluate flaw sizing. Sometimes, a little difference in establishing reference gain between calibration and field condition can lead to deviation in flaw sizing. Due to this difference, the inspection result may cause flaw sizing error

  12. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.

    Science.gov (United States)

    Villegas, Irene F; Palardy, Genevieve

    2016-02-11

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints.

  13. The influence of tested body size upon longitudinal ultrasonic pulse velocity

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-01-01

    Low ultrasonic frequencies are used in nondestructive testing of heterogeneous materials,such as concrete,rocks and timber.When frequencies are low enough,size and shape of tested bodies may influence measured longitudinal pulse velocities(geometric dispersion).A simplified mathematical model is developed from known experimental and theoretical results obtained for elastic wave propagation in rods of uniform circular cross section.Wave propagation is described by a spatial averaged dilatational field in an approach which is named quasi fluid.A formula is obtained which relates group velocity with an effective lateral size of the body,with transducers a frequency,with a non-dimensional parameter and with asymptotic P-wave velocity.In principle it can be applied to bars of any uniform cross section.The limitations of this formula are discussed in relation to path length,threshold of detection,patterns of radiation and reception and other variables.A more general formula is proposed.Practical application of this formula is briefly exemplified using some experimental data obtained by the author.The problem of longitudinal pulse propagation in reinforcing steel bars embedded in concrete is briefly considered

  14. High repetition ration solid state switched CO2 TEA laser employed in industrial ultrasonic testing of aircraft parts

    Science.gov (United States)

    von Bergmann, Hubertus; Morkel, Francois; Stehmann, Timo

    2015-02-01

    Laser Ultrasonic Testing (UT) is an important technique for the non-destructive inspection of composite parts in the aerospace industry. In laser UT a high power, short pulse probe laser is scanned across the material surface, generating ultrasound waves which can be detected by a second low power laser system and are used to draw a defect map of the part. We report on the design and testing of a transversely excited atmospheric pressure (TEA) CO2 laser system specifically optimised for laser UT. The laser is excited by a novel solid-state switched pulsing system and utilises either spark or corona preionisation. It provides short output pulses of less than 100 ns at repetition rates of up to 1 kHz, optimised for efficient ultrasonic wave generation. The system has been designed for highly reliable operation under industrial conditions and a long term test with total pulse counts in excess of 5 billion laser pulses is reported.

  15. Design and fabrication of liner-arroy ultrasonic transducer using KLM and FEM simulation for non-destructive testing

    International Nuclear Information System (INIS)

    Park, Chan Yuk; Sung, Jin Ho; Jeong, Jong Seob

    2015-01-01

    In this paper, a linear-array transducer capable of overcoming the faults of a single element and phased array transducers with convex shape for non-destructive ultrasonic testing was designed and fabricated. A 5.5 MHz linear-array transducer was designed using the PiezoCAD program based on the KLM analysis and the PZFlex program based on the FEM analysis. A 2-2 composite structure was employed to achieve broad-band characteristics. A 128 element linear-array transducer was fabricated and its performance was compared with the simulation results. The center frequency of the fabricated transducer was 5.5 Mhzand the -6 dB frequency bandwidth was 70 %. Thus, we expect that the designed transducer can provide an effective inner image of the test material during non-destructive ultrasonic testing.

  16. Design and fabrication of liner-arroy ultrasonic transducer using KLM and FEM simulation for non-destructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Yuk; Sung, Jin Ho; Jeong, Jong Seob [Dept. of Medical Biotechnology, Dongguk University Biomedi Campus, Goyang (Korea, Republic of)

    2015-04-15

    In this paper, a linear-array transducer capable of overcoming the faults of a single element and phased array transducers with convex shape for non-destructive ultrasonic testing was designed and fabricated. A 5.5 MHz linear-array transducer was designed using the PiezoCAD program based on the KLM analysis and the PZFlex program based on the FEM analysis. A 2-2 composite structure was employed to achieve broad-band characteristics. A 128 element linear-array transducer was fabricated and its performance was compared with the simulation results. The center frequency of the fabricated transducer was 5.5 Mhzand the -6 dB frequency bandwidth was 70 %. Thus, we expect that the designed transducer can provide an effective inner image of the test material during non-destructive ultrasonic testing.

  17. Computer control in nondestructive testing illustrated by an automatic ultrasonic tube inspection system

    International Nuclear Information System (INIS)

    Gundtoft, H.E.; Nielsen, N.

    1976-06-01

    In Risoe's automatic tube inspection system, data (more than half a million per tube) from ultrasonic dimension measurements and defect inspections are fed into a computer that simultaneously calculates and evaluates the results. (author)

  18. Numeric ultrasonic image processing method: application to non-destructive testing of stainless austenitic steel welds

    International Nuclear Information System (INIS)

    Corneloup, G.

    1988-09-01

    A bibliographic research on the means used to improve the ultrasonic inspection of heterogeneous materials such as stainless austenitic steel welds has shown, taking into account the first analysis, a signal assembly in the form of an image (space, time) which carries an original solution to fault detection in highly noisy environments. A numeric grey-level ultrasonic image processing detection method is proposed based on the research of a certain determinism, in the way which the ultrasonic image evolves in space and time in the presence of a defect: the first criterion studies the horizontal stability of the gradients in the image and the second takes into account the time-transient nature of the defect echo. A very important rise in the signal-to-noise ratio obtained in welding inspections evidencing defects (real and artificial) is shown with the help of a computerized ultrasonic image processing/management system, developed for this application [fr

  19. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  20. Design and manufacture of an ultrasonic inspection device for the friction welds in reactor vessel control rod drive mechanism housings

    International Nuclear Information System (INIS)

    Cieslav, C.; Peteuil, M.

    1985-01-01

    The control rod drive mechanism housings of a PWR reactor vessel consist of a stainless steel flange and a Ni-Cr-Fe alloy tube, assembled by friction welding. The properties of the interface and the nature of the adjacent materials require the development of a specific ultrasonic inspection technique which could be easily automated, considering the number of parts involved (77 parts per 1300 MWe reactor vessel). The part has the general shape of a tube (inside diameter: 70 mm, outside diameter: 103 mm). The transition between both forged parent materials (stainless steel/Ni-Cr-Fe alloy) is obtained by a very thin interface, whose general orientation is normal to the tube centerline. The heat affected zone has generally a coarser and more irregular structure than that observed in the parent materials. The design and development were carried out using a prototype machine on test-pieces representative of a control rod drive mechanism housing, and containing the following artificial reflectors: notches obtained by electro-discharge machining on the inside and outside surfaces, on each side of the interface; planar artificial defects, parallel to the interface. These defects, obtained from 2 flat bottomed holes, drilled into the mock-up constituent parts, were conveyed to the interface during friction welding

  1. Applications of the automatic ultrasonic testing system ALOK combined with a phased array system

    International Nuclear Information System (INIS)

    Stanger, H.K.; Kappes, W.; Licht, R.; Bohn, H.; Barbian, O.A.

    1987-01-01

    The combination of the automatic testing system ALOK with a controlled probe in the form of a phased array device is a possibility to meet the high requirements on the test method with regard to the statements of the test as well as the requirements on the reduction of operation and preparation times. The system's applications are not limited to the testing of reactors in nuclear technology (basic tests and recurring tests of the RPV and other primary circuit components); they are also of great importance in the non-nuclear sector e.g. the testing of pipelines, of reactors in the chemical field and of offshore structures as well as tests of components in the field of production. The modularity of the system permits an adaptation to the particular testing task with the possibility of using different manipulation and hardware systems. (orig./DG) [de

  2. Comparison between sensitivities of quality control methods using ultrasonic waves, radiography and acoustic emission for the thick welded joint testing

    International Nuclear Information System (INIS)

    Asty, Michel; Birac, Claude

    1981-09-01

    The testing of the thick welded joints of the nuclear industry is carried out by radiography and ultrasonics on completion of welding. When a fault is found, its repair requires a sometimes deep cut down to the position of the fault, then filling in of the cut by hand welding with a coated electrode. This very costly operation also involves the risk of causing new defects when building up by hand. Listening to the acoustic emission during the welding has been considered in order to seek the possibility of detecting defects when they appear, or soon after. The industrial use of this method would make an instant repair of the defective areas possible at less cost and with greater reliability. The study presented concerns the comparison between the results of the various non-destructive testing methods: radiography, ultrasonics and acoustic emission, for a thick welded joint in which the defects have been brought about [fr

  3. Standard practice for ultrasonic testing of the Weld Zone of welded pipe and tubing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice describes general ultrasonic testing procedures for the detection of discontinuities in the weld and adjacent heat affected zones of welded pipe and tubing by scanning with relative motion between the search unit and pipe or tube. When contact or unfocused immersion search units are employed, this practice is intended for tubular products having specified outside diameters ≥2 in. (≥50 mm) and specified wall thicknesses of 1/8to 11/16 in. (3 to 27 mm). When properly focused immersion search units are employed, this practice may also be applied to material of smaller diameter and thinner wall. Note 1—When contact or unfocused immersion search units are used, precautions should be exercised when examining pipes or tubes near the lower specified limits. Certain combinations of search unit size, frequency, thin–wall thicknesses, and small diameters could cause generation of unwanted sound waves that may produce erroneous examination results. 1.2 All surfaces of material to be examined in ...

  4. Nondestructive testing of thin films using surface acoustic waves and laser ultrasonics

    Science.gov (United States)

    Jenot, Frédéric; Fourez, Sabrina; Ouaftouh, Mohammadi; Duquennoy, Marc

    2018-04-01

    Thin films are widely used in many fields such as electronics, optics or materials science. For example, they find applications in thermal or mechanical sensors design. They are also very useful as protective or reinforcement layers for many structures. However, some coating defects such as thickness variations, microfissuring or poor adhesion are common problems. Therefore, nondestructive testing of these structures using acoustic waves generated and detected by lasers represents a major interest. Indeed, in comparison with conventional methods based on the use of piezoelectric transducers, laser ultrasonics leads to non-contact investigations with a large bandwidth. Usually, bulk acoustic waves are used and a pulse-echo technique is considered that needs high frequencies and implies local measurements. In order to avoid this limitation, we propose to use surface acoustic waves in a frequency range up to 45 MHz. The samples consist of a micrometric gold layer deposited on silicon substrates. In a first part, using dispersion analysis, theoretical and experimental results clearly reveal that the first Rayleigh mode allows the detection of film thickness variations and open cracks. In a second part, a localized adhesion defect is introduced in a similar sample. The effects of such a flaw on the Rayleigh modes dispersion curves are theoretically described. Finally, we experimentally show that the first Rayleigh mode allows the defect detection only under specific conditions.

  5. Community survey on reference blocks and transducers for non-destructive ultrasonic testing

    International Nuclear Information System (INIS)

    Vinche, C.; Borloo, E.; Jehenson, P.

    1978-01-01

    In the frame of the European programmes 'Standards and Reference Substances' and 'Reference Materials and Methods' (BCR) the Commission of the European Communities, in conjunction with National experts launched in 1975 an inquiry on reference blocks and transducers for non-destructive ultrasonic testing. This inquiry which is complementary to a general survey made in 1971-1972 by the Commission on Reference Materials (Ref. EUR Report 1973. EUR 4886. d,f,i,n,e) was felt necessary and prepared by a specialists group from the Community Countries and the Joint Research Centre (JRC), Ispra Establishment (the list of these specialists is indicated on p. 2 of the questionnaire). The results of this survey, collated by the JRC Ispra Members have been discussed by the group of specialists and form the subject of this report. On bases of mailing lists submitted by national specialists, 215 organizations have been contacted; the fields of activity of these organizations are mainly: metallurgy, machine parts, technical assistance, aeronautics, power stations and research, 73 organizations have replied to the questionnaire. Most answers were obained from organizations dealing with metallurgy, machine parts manufacturers and technical consultants. The annexes supply a detailed analysis of the results given, on a national basis

  6. Ultrasonic test results for the reactor pressure vessel of the HTTR. Longitudinal welding line of bottom dome

    International Nuclear Information System (INIS)

    Nojiri, Naoki; Ohwada, Hiroyuki; Kato, Yasushi

    2008-06-01

    This paper describes the inspection method, the measured area, etc. of the ultrasonic test of the in-service inspection (ISI) for welding lines of the reactor pressure vessel of the HTTR and the inspection results of the longitudinal welding line of the bottom dome. The pre-service inspection (PSI) results for estimation of occurrence and progression of defects to compare the ISI results is described also. (author)

  7. Innovative Ultrasonic Testing (UT) of nuclear components by sampling phased array with 3D visualization of inspection results

    OpenAIRE

    Pudovikov, Sergey; Bulavinov, Andrey; Pinchuk, Roman

    2011-01-01

    Unlike other industrial branches, nuclear industry - when performing UT- is not only asking for a reliable detection, but also for an exact sizing of material defects. Under these objectives ultrasonic imaging plays an important role in practical testing of nuclear components in the data evaluation process as well as for documentation of the inspection results. 2D and 3D sound-field steering by means of phased array technology offers great opportunities for spatially correct visualization of ...

  8. An evaluation of detection ability of ultrasonic testing with a large aperture transducer for axial cracks in cast stainless steel pipe welds

    International Nuclear Information System (INIS)

    Nishikawa, Yoshito; Ishida, Hitoshi; Kurozumi, Yasuo

    2013-01-01

    Ultrasonic testing is difficult to apply to cast stainless steel which is the material of the main coolant pipes in pressurized water reactors, because of the large attenuation and scattering of ultrasonic waves caused by its macro structure. In this study, ultrasonic testing for progression of axial fatigue cracks of a welded area in the test piece of cast stainless steel pipe was performed using double big-size ultrasonic probes which were formerly developed in INSS. It was found that detection of defects that were over 6% of the target depth for the specimen thickness of 69mm is possible, and detection of defects with over 10% of the target depth is possible for all test conditions. (author)

  9. Device for the automatic X-ray testing of welded joints of pipes

    International Nuclear Information System (INIS)

    Ries, K.; Hannoschieck, K.; Rozic, K.M.; Basler, G.

    1979-01-01

    The notification flows of the tested pipes determined by the ultrasonic inspection are transmitted to the X-ray film automatic charger in the X-ray test room. The roll table for the pipes from the ultrasonic inspection to the X-ray test room is provided with an arrangement for weld detection and tube lathe, so that the X-ray films can be set on the corresponding spot by means of a cantilever. (RW) [de

  10. Design of Ablation Test Device for Brick Coating of Gun

    Science.gov (United States)

    shirui, YAO; yongcai, CHEN; fei, WANG; jianxin, ZHAO

    2018-03-01

    As a result of the live ammunition test conditions, the barrel resistance of the barrel coating has high cost, time consuming, low efficiency and high test site requirements. This article designed a simple, convenient and efficient test device. Through the internal trajectory calculation by Matlab, the ablation environment produced by the ablation test device has achieved the expected effect, which is consistent with the working condition of the tube in the launching state, which can better reflect the ablation of the coating.

  11. Resolution enhancement for ultrasonic echographic technique in non destructive testing with an adaptive deconvolution method

    International Nuclear Information System (INIS)

    Vivet, L.

    1989-01-01

    The ultrasonic echographic technique has specific advantages which makes it essential in a lot of Non Destructive Testing (NDT) investigations. However, the high acoustic power necessary to propagate through highly attenuating media can only be transmitted by resonant transducers, which induces severe limitations of the resolution on the received echograms. This resolution may be improved with deconvolution methods. But one-dimensional deconvolution methods come up against problems in non destructive testing when the investigated medium is highly anisotropic and inhomogeneous (i.e. austenitic steel). Numerous deconvolution techniques are well documented in the NDT literature. But they often come from other application fields (biomedical engineering, geophysics) and we show they do not apply well to specific NDT problems: frequency-dependent attenuation and non-minimum phase of the emitted wavelet. We therefore introduce a new time-domain approach which takes into account the wavelet features. Our method solves the deconvolution problem as an estimation one and is performed in two steps: (i) A phase correction step which takes into account the phase of the wavelet and estimates a phase-corrected echogram. The phase of the wavelet is only due to the transducer and is assumed time-invariant during the propagation. (ii) A band equalization step which restores the spectral content of the ideal reflectivity. The two steps of the method are performed using fast Kalman filters which allow a significant reduction of the computational effort. Synthetic and actual results are given to prove that this is a good approach for resolution improvement in attenuating media [fr

  12. Development and Certification of Ultrasonic Background Noise Test (UBNT) System for use on the International Space Station (ISS)

    Science.gov (United States)

    Prosser, William H.; Madaras, Eric I.

    2011-01-01

    As a next step in the development and implementation of an on-board leak detection and localization system on the International Space Station (ISS), there is a documented need to obtain measurements of the ultrasonic background noise levels that exist within the ISS. This need is documented in the ISS Integrated Risk Management System (IRMA), Watch Item #4669. To address this, scientists and engineers from the Langley Research Center (LaRC) and the Johnson Space Center (JSC), proposed to the NASA Engineering and Safety Center (NESC) and the ISS Vehicle Office a joint assessment to develop a flight package as a Station Development Test Objective (SDTO) that would perform ultrasonic background noise measurements within the United States (US) controlled ISS structure. This document contains the results of the assessment

  13. Head waves in ultrasonic testing. Physical principle and application to welded joint testing

    International Nuclear Information System (INIS)

    Wustenberg, H.; Erhard, A.

    1984-01-01

    A head wave sensor is developed from distinct emitter and receiver sensors using longitudinal waves under a 70 0 incidence. These heat wave sensors present a high sensitivity for underlying cracks and are not influenced by surface accidents like liquid drops or welding projection. They are multi mode sensors emitting simultaneously longitudinal head waves, a main longitudinal lobe and a transverse wave with a maximum at about 38 0 . This wave combination can be used for automatic testing of welded joints even with austenitic materials for defect detection near internal or external surfaces. This process can substitute or complete liquid penetrant inspection or magnetic inspection for testing pipes (13 references are given) [fr

  14. Standard guide for evaluating performance characteristics of phased-Array ultrasonic testing instruments and systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This guide describes procedures for evaluating some performance characteristics of phased-array ultrasonic examination instruments and systems. 1.2 Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this guide are expressed in terms that relate to their potential usefulness for ultrasonic examinations. Other electronic instrument characteristics in phased-array units are similar to non-phased-array units and may be measured as described in E 1065 or E 1324. 1.3 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be evaluated. 1.4 This guide establishes no performance limits for examination systems; if such acceptance criteria ar...

  15. Ultrasonic test data acquisition and defect verification of stainless-steel welds at 4000F

    International Nuclear Information System (INIS)

    Mech, S.J.

    1983-01-01

    This paper describes techniques developed to characterize the features found during ultrasonic examination of stainless steel welds which are indicative of defects. Feature inspection technology allows reliable discrimination weld signals and other noise under remote, automatic, high temperature conditions. Ultrasonic feature inspection techniques have been successfully implemented under 400 0 F (200 0 C) flowing sodium pipe welds. The challenge is to develop techniques which find defects, but ignore variations associated with the normal cast type microstructure of the weld zone. This study was directed at gathering data on a welded pipe section with notches used to simulate defects and is an example of computer acquisition and analysis techniques of ultrasonic data. Various analysis methods were compared to find signal analysis algorithms sensitive to these simulated defects

  16. Utilization of radiographic and ultrasonic testing for an evaluation of plate type fuel elements during manufacturing stages

    International Nuclear Information System (INIS)

    Brito, Mucio Jose Drummond de; Silva Junior, Silverio Ferreira da; Messias, Jose Marcos; Braga, Daniel Martins; Paula, Joao Bosco de

    2005-01-01

    Structural discontinuities can be introduced in the plate type fuel elements during the manufacturing stages due to mechanical processing conditions. The use of nondestructive testing methods to monitoring the fuel elements during the manufacturing stages presents a significant importance, contributing for manufacturing process improvement and cost reducing. This paper describes a procedure to be used detection and evaluation of structural discontinuities in plate type fuel elements during the manufacturing stages using the ultrasonic testing method and the radiographic testing method. The main results obtained are presented and discussed. (author)

  17. Ensemble Empirical Mode Decomposition based methodology for ultrasonic testing of coarse grain austenitic stainless steels.

    Science.gov (United States)

    Sharma, Govind K; Kumar, Anish; Jayakumar, T; Purnachandra Rao, B; Mariyappa, N

    2015-03-01

    A signal processing methodology is proposed in this paper for effective reconstruction of ultrasonic signals in coarse grained high scattering austenitic stainless steel. The proposed methodology is comprised of the Ensemble Empirical Mode Decomposition (EEMD) processing of ultrasonic signals and application of signal minimisation algorithm on selected Intrinsic Mode Functions (IMFs) obtained by EEMD. The methodology is applied to ultrasonic signals obtained from austenitic stainless steel specimens of different grain size, with and without defects. The influence of probe frequency and data length of a signal on EEMD decomposition is also investigated. For a particular sampling rate and probe frequency, the same range of IMFs can be used to reconstruct the ultrasonic signal, irrespective of the grain size in the range of 30-210 μm investigated in this study. This methodology is successfully employed for detection of defects in a 50mm thick coarse grain austenitic stainless steel specimens. Signal to noise ratio improvement of better than 15 dB is observed for the ultrasonic signal obtained from a 25 mm deep flat bottom hole in 200 μm grain size specimen. For ultrasonic signals obtained from defects at different depths, a minimum of 7 dB extra enhancement in SNR is achieved as compared to the sum of selected IMF approach. The application of minimisation algorithm with EEMD processed signal in the proposed methodology proves to be effective for adaptive signal reconstruction with improved signal to noise ratio. This methodology was further employed for successful imaging of defects in a B-scan. Copyright © 2014. Published by Elsevier B.V.

  18. Medical Devices; Clinical Chemistry and Clinical Toxicology Devices; Classification of the Organophosphate Test System. Final order.

    Science.gov (United States)

    2017-10-18

    The Food and Drug Administration (FDA or we) is classifying the organophosphate test system into class II (special controls). The special controls that apply to the device type are identified in this order and will be part of the codified language for the organophosphate test system's classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.

  19. Medical Devices; Hematology and Pathology Devices; Classification of a Cervical Intraepithelial Neoplasia Test System. Final order.

    Science.gov (United States)

    2018-01-03

    The Food and Drug Administration (FDA or we) is classifying the cervical intraepithelial neoplasia (CIN) test system into class II (special controls). The special controls that apply to the device type are identified in this order and will be part of the codified language for the CIN test system's classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.

  20. Ultrasonic testing of canning tubes in stainless steel of the EL 4 reactor

    International Nuclear Information System (INIS)

    Prot, A.; Monnier, P.

    1964-01-01

    From all the methods possible for controlling thin cans the one chosen, for numerous reasons, vas that making use of ultrasonic techniques. A method has been developed which should make it possible to carry out a rapid and efficient industrial control of canning tubes, The reasons for the choice of the ultrasonic method are given in detail, together with the principles of the method and the actual control parameters. In the present state of our research, it should be possible to control at least 50 000 tubes a year. Improvements brought about in the details of the control technique itself should make it possible to increase this rate considerably. (authors) [fr

  1. Handheld and automated ultrasonic spray deposition of conductive PEDOT:PSS films and their application in AC EL devices

    NARCIS (Netherlands)

    Ely, Fernando; Matsumoto, Agatha; Zoetebier, Bram; Peressinotto, Valdirene S.; Hirata, Marcelo Kioshi; de Sousa, Douglas A.; Maciel, Rubens

    2014-01-01

    In this contribution we explore the spray deposition technique to achieve smooth films based on the conductive polymer PEDOT:PSS. Two different spray systems were used and compared namely: (a) handheld airbrush and (b) automated ultrasonic spray system. For each system a number of parameters were

  2. Eddy current testing device using unbalance bridge

    International Nuclear Information System (INIS)

    Hoshikawa, H.; Koido, J.; Ishibashi, Y.

    1976-01-01

    An easily readjustable unbalance bridge has been invented and in utilizing the same, an eddy current testing equipment excellent in suppression of the lift-off effect and high in the detection sensitivity has been developed

  3. INTERFACE DEVICE FOR NONDESTRUCTIVE TESTING OF RESIDUAL SURFACE STRESSES

    Directory of Open Access Journals (Sweden)

    Gennady A. Perepelkin

    2016-01-01

    Full Text Available The paper considers the organization of connection of a personal computer with a device for nondestructive testing of residual surface stresses. The device works is based on the phenomenon of diffraction of ionizing radiation from the crystal lattice near the surface of the crystallites. Proposed software interface to the organization for each type of user: the device developers, administrators, users. Some aspects of the organization of communication microcontroller to a PC via USB-port

  4. Testing of wooden construction elements with ultrasonic echo technique and x-ray

    International Nuclear Information System (INIS)

    Hasenstab, A.; Krause, M.; Osterloh, K.

    2008-01-01

    Damages inside of wooden construction components (e.g. interior rot) or at inaccessible surfaces represent a special problem, since they are difficult to recognize from the outside, they can even cause a sudden failure of the component. As a result the research, it could be proved that ultrasonic echo technique can be used on wood both with longitudinal and transverse waves. Further more the different influences of the wood fibres on the sound velocity of the longitudinal and transverse waves is pointed out on the basis results of measurements. The efficiency of the ultrasonic echo technique is shown on wooden specimens. The combination of ultrasonic echo technique and radiography resulted in a very substantial reduction of possible misinterpretations of damage. There it is possible to detect the damage from the undamaged side of the specimen by ultrasound echo. The spread of the damage can be obtained with mobile x-ray measurements. Finally the results show, that ultrasonic methods are more sensitive starting decay and cracks parallel to the surface.

  5. Evaluation of Creep-Fatigue Damage in 304 Stainless Steel using Ultrasonic Non-Destructive Test

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Sik [Safetech Co. Ltd., Kimhae (Korea, Republic of); Oh, Yong Jun [Hanbat National Univ., Daejon (Korea, Republic of); Nam, Soo Woo [KISTI ReSEAT Program, Seoul (Korea, Republic of)

    2011-12-15

    It is well known that grain boundary cavitation is the main failure mechanism in austenitic stainless steel under tensile hold creep-fatigue interaction conditions. The cavities are nucleated at the grain boundary during cyclic loading and grow to become grain boundary cracks. The attenuation of ultrasound depends on scattering and absorption in polycrystalline materials. Scattering occurs when a propagation wave encounters microstructural discontinuities, such as internal voids or cavities. Since the density of the creepfatigue cavities increases with the fatigue cycles, the attenuation of ultrasound will also be increased with the fatigue cycles and this attenuation can be detected nondestructively. In this study, it is found that individual grain boundary cavities are formed and grow up to about 100 cycles and then, these cavities coalesce to become cracks. The measured ultrasonic attenuation increased with the cycles up to cycle 100, where it reached a maximum value and then decreased with further cycles. These experimental measurements strongly indicate that the open pores of cavities contribute to the attenuation of ultrasonic waves. However, when the cavities develop, at the grain boundary cracks whose crack surfaces are in contact with each other, there is no longer any open space and the ultrasonic wave may propagate across the cracks. Therefore, the attenuation of ultrasonic waves will be decreased. This phenomenon of maximum attenuation is very important to judge the stage of grain boundary crack development, which is the indication of the dangerous stage of the structures.

  6. Glass solidification material confinement test device

    International Nuclear Information System (INIS)

    Namiki, Shigekazu.

    1997-01-01

    In a device for confining glass solidification materials, a pipeline connecting a detection vessel and a detector is formed to have a double walled structure, and air blowing holes are formed on the wall of the inner pipe, and an air supply mechanism is connected to inner and outer pipes for supplying blowing air thereby preventing deposition on the inner pipe wall. The air blowing holes are formed by constituting the pipe by using a porous sintered material and porous portions thereof are defined as the air blowing holes, or holes are formed on the pipe wall made of a metal by machining. A blowing boundary layer is formed by blowing the supplied air along the pipe wall of the inner pipe, by which deposition of the sucked materials to the inner wall of the inner pipe is prevented, and all of the materials sucked from the detection vessel are collected to the detector. In addition, an air exit pipe is formed into a double walled structure so as to be supplied blowing air from the air supply mechanism thereby enabling to prevent deposition of sucked materials more reliably. (N.H.)

  7. Leak testing and repair of fusion devices

    International Nuclear Information System (INIS)

    Kozman, T.A.

    1983-01-01

    The leak testing, reporting and vacuum leak repair techniques of the MFTF yin-yang number one magnet system, the world's largest superconducting magnet system, are discussed. Based on this experience, techniques will be developed for testing and repairing leaks on the 42 MFTF-B magnets. The leak-hunting techniques for the yin-yang magnet systems were applied to two helium circuits (the coil bundle and guard vacuum; both require helium flow for magnet cooldown), their associated piping, liquid nitrogen radiation shields, and piping. Additionally, during MFTF-B operation there will be warm water plasma shields and piping that require leak checking

  8. Semi-continuous ultrasonic sounding and changes of ultrasonic signal characteristics as a sensitive tool for the evaluation of ongoing microstructural changes of experimental mortar bars tested for their ASR potential

    Czech Academy of Sciences Publication Activity Database

    Lokajíček, Tomáš; Kuchařová, A.; Petružálek, Matěj; Šachlová, Š.; Svitek, Tomáš; Přikryl, R.

    2016-01-01

    Roč. 71, September (2016), s. 40-50 ISSN 0041-624X R&D Projects: GA ČR(CZ) GAP104/12/0915 Institutional support: RVO:67985831 Keywords : alkali-silica reaction * accelerated test * thermal heating * mortar bar * ultrasonic sounding Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.327, year: 2016

  9. New spark test device for material characterization

    CERN Document Server

    Kildemo, Morten

    2004-01-01

    An automated spark test system based on combining field emission and spark measurements, exploiting a discharging capacitor is investigated. In particular, the remaining charge on the capacitor is analytically solved assuming the field emitted current to follow the Fowler Nordheim expression. The latter allows for field emission measurements from pA to A currents, and spark detection by complete discharge of the capacitor. The measurement theory and experiments on Cu and W are discussed.

  10. Software test attacks to break mobile and embedded devices

    CERN Document Server

    Hagar, Jon Duncan

    2013-01-01

    Address Errors before Users Find Them Using a mix-and-match approach, Software Test Attacks to Break Mobile and Embedded Devices presents an attack basis for testing mobile and embedded systems. Designed for testers working in the ever-expanding world of ""smart"" devices driven by software, the book focuses on attack-based testing that can be used by individuals and teams. The numerous test attacks show you when a software product does not work (i.e., has bugs) and provide you with information about the software product under test. The book guides you step by step starting with the basics. It

  11. Micro-Combined Heat and Power Device Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has developed a test facility for micro-combined heat and power (micro-CHP) devices to measure their performance over a range of different operating strategies...

  12. Accelerated life testing and temperature dependence of device characteristics in GaAs CHFET devices

    Science.gov (United States)

    Gallegos, M.; Leon, R.; Vu, D. T.; Okuno, J.; Johnson, A. S.

    2002-01-01

    Accelerated life testing of GaAs complementary heterojunction field effect transistors (CHFET) was carried out. Temperature dependence of single and synchronous rectifier CHFET device characteristics were also obtained.

  13. Development and testing of hydrogen ignition devices

    International Nuclear Information System (INIS)

    Renfro, D.; Smith, L.; Thompson, L.; Clever, R.

    1982-01-01

    Controlled ignition systems for the mitigation of hydrogen produced during degraded core accidents have been installed recently in several light water reactor (LWR) containments. This paper relates the background of the thermal igniter approach and its application to LWR controlled ignition systems. The process used by the Tennessee Valley Authority (TVA) to select a hydrogen mitigation system in general and an igniter type in particular is described. Descriptions of both the Interim Distributed Ignition System and the Permanent Hydrogen Mitigation System installed by TVA are included as examples. Testing of igniter durability at TVA's Singleton Materials Engineering Laboratory and of igniter performance at Atomic Energy of Canada's Whiteshell Nuclear Research Establishment is presented

  14. Devices for fatigue testing of electroplated nickel (MEMS)

    DEFF Research Database (Denmark)

    Larsen, Kristian Pontoppidan; Ravnkilde, J. T.; Ginnerup, Morten

    2002-01-01

    μm and an effective length from 4μm to 27μm. Maximum stresses of the test beam were calculated to be 500MPa to 2100MPa by use of FEM tools. The test results indicate very promising fatigue properties of nano-nickel, as none of the test devices have shown fatigue failure or even initiation of cracks......In-situ fatigue test devices with integrated electrostatic actuator were fabricated in electroplated nanocrystalline nickel (nano-nickel). The devices feature in-plane approximately pure bending with fixed displacement of the test specimen of the dimensions: widths from 2μm to 3.7μm, a height of 7...... after 108 cycles. The combination of high strength and toughness, which is known for nanocrystalline materials, together with very small test specimens and low surface roughness could be the explanation for the good fatigue properties....

  15. A test device for premixed gas turbine combustion oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Richards, G.A.; Gemmen, R.S.; Yip, M.J.

    1996-03-01

    This report discusses design and operation of a single-nozzle test combustor for studying lean, premixed combustion oscillations from gas turbine fuel nozzles. It was used to study oscillations from a prototype fuel nozzle that produced oscillations during testing in a commercial engine. Similar, but not identical, oscillations were recorded in the test device. Basic requirements of the device design were that the flame geometry be maintained and acoustic losses be minimized; this was achieved by using a Helmholtz resonator as the combustor geometry. Surprisingly, the combustor oscillated strongly at several frequencies, without modification of the resonator. Brief survey of operating conditions suggests that it may be helpful to characterize oscillating behavior in terms of reference velocity and inlet air temperature with the rig backpressure playing a smaller role. The preliminary results do not guarantee that the single-nozzle test device will reproduce arbitrary oscillations that occur on a complete engine test. Nozzle/nozzle interactions may complicate the response, and oscillations controlled by acoustic velocities transverse to the nozzle axis may not be reproduced in a test device that relies on a bulk Helmholtz mode. Nevertheless, some oscillations can be reproduced, and the single-nozzle test device allows both active and passive control strategies to be tested relatively inexpensively.

  16. Spatially resolved ultrasonic attenuation in resistance spot welds: implications for nondestructive testing.

    Science.gov (United States)

    Mozurkewich, George; Ghaffari, Bita; Potter, Timothy J

    2008-09-01

    Spatial variation of ultrasonic attenuation and velocity has been measured in plane parallel specimens extracted from resistance spot welds. In a strong weld, attenuation is larger in the nugget than in the parent material, and the region of increased attenuation is surrounded by a ring of decreased attenuation. In the center of a stick weld, attenuation is even larger than in a strong weld, and the low-attenuation ring is absent. These spatial variations are interpreted in terms of differences in grain size and martensite formation. Measured frequency dependences indicate the presence of an additional attenuation mechanism besides grain scattering. The observed attenuations do not vary as commonly presumed with weld quality, suggesting that the common practice of using ultrasonic attenuation to indicate weld quality is not a reliable methodology.

  17. Determination of Focal Laws for Ultrasonic Phased Array Testing of Dissimilar Metal Welds

    International Nuclear Information System (INIS)

    Jing, Ye; Kim, Hak Joon; Song, Sung Jin; Song, Myung Ho; Kang, Suk Chull; Kang, Sung Sik; Kim, Kyung Cho

    2008-01-01

    Inspection of dissimilar metal welds using phased array ultrasound is not easy at all, because crystalline structure of dissimilar metal welds cause deviation and splitting of the ultrasonic beams. Thus, in order to have focusing and/or steering phased array beams in dissimilar metal welds, proper time delays should be determined by ray tracing. In this paper, we proposed an effective approach to solve this difficult problem. Specifically, we modify the Oglivy's model parameters to describe the crystalline structure of real dissimilar metal welds in a fabricated specimen. And then, we calculate the proper time delay and incident angle of linear phased array transducer in the anisotropic and inhomogeneous material for focusing and/or steering phased array ultrasonic beams on the desired position

  18. Applications research in ultrasonic testing of carbon fiber composite based on an optical fiber F-p sensor

    Science.gov (United States)

    Shan, Ning

    2016-10-01

    Carbon fiber composite is widely applied to the field of aerospace engineering because of its excellent performance. But it will be able to form more defects in the process of manufacturing inevitably on account of unique manufacturing process. Meanwhile it has sophisticated structure and services in the bad environment long time. The existence of defects will be able to cause the sharp decline in component's performance when the defect accumulates to a certain degree. So the reliability and safety test demand of carbon fiber composite is higher and higher. Ultrasonic testing technology is the important means used for characteristics of component inspection of composite materials. Ultrasonic information detection uses acoustic transducer generally. It need coupling agent and is higher demand for the surface of sample. It has narrow frequency band and low test precision. The extrinsic type optical fiber F-P interference cavity structure is designed to this problem. Its optical interference model is studied. The initial length of F-P cavity is designed. The realtime online detection system of carbon fiber composite is established based on optical fiber F-P Ultrasound sensing technology. Finally, the testing experiment study is conducted. The results show that the system can realize real-time online detection of carbon fiber composite's defect effectively. It operates simply and realizes easily. It has low cost and is easy to practical engineering.

  19. Ultrasonic signature

    International Nuclear Information System (INIS)

    Borloo, E.; Crutzen, S.

    1974-12-01

    The unique and tamperproof identification technique developed at Ispra is based on ultrasonic Non-Destructive-Techniques. Reading fingerprints with ultrasonic requires high reproducibility of standard apparatus and transducers. The present report gives an exhaustive description of the ultrasonic technique developed for identification purposes. Different applications of the method are described

  20. Laser ultrasonic receivers based on photorefractive materials in non-destructive testing

    International Nuclear Information System (INIS)

    Zamiri Hosseinzadeh, S.

    2014-01-01

    The field of laser ultrasonics is one of the most interesting topics in which laser light is used for the generation and the detection of ultrasound waves in materials. This contactless method is extremely useful for materials inspection being nondestructive and contactless, especially for hazardous environments. In this method a pulsed laser with a short pulse length of e.g. nano- or even picoseconds is focused on the surface of a specimen and then ultrasonic waves, nanometer vibrations, such as surface and bulk waves are generated and propagate in all directions on to the material. For contactless detection of ultrasonic waves several interferometers such as confocal Fabry-Perot, Michelson, and long path difference interferometers have been applied. Each of them has its individual advantages and disadvantages concerning, e.g., frequency responses and sensitivity. However, most of these interferometers work best on mirror-like surfaces and exhibit reduced sensitivity on rough surfaces. Also these kinds of interferometer are sensible to external noise as air fluctuations, sample vibrations or thermal deformations, thus requiring relatively complex stabilization techniques. This hinders their applicability in industrial applications with harsh environmental conditions. As an alternative to the before mentioned techniques interferometers based on photorefractive materials (PR) have been established. A typical two wave mixing interferometer (TWMI) configuration enables broadband ultrasonic measurements on rough surfaces. These types of interferometers have a good sensitivity up to 3e-7 nm(W/Hz) 1/2 spatially for samples with a high rough surface unlike the Michelson interferometer. By using ferroelectric photorefractive crystals such as LiNbO:Fe+2, sensitivity even is enhanced to 4e-8 nm(W/Hz) 1/2 but response time in these crystals is slower. In this work, contactless interferometer set ups based on photorefractive materials such as BSO (Bismuth Silicon Oxide: Bi 12

  1. Wearable device for skin contact thermography: design, construction and testing

    International Nuclear Information System (INIS)

    Giansanti, D.; Maccioni, G.

    2008-01-01

    The need for wearable devices for thermal monitoring is rising. These devices could be used to continuously monitor patients for breast cancer investigation or vascular, dermatological and rheumatic disorders, in viability studies, or during physical exercise. We designed and constructed a wearable device for skin-contact thermography that uses integrated silicon sensors. The device was validated using a phantom with a dynamic bench test. The thermal resolution was greater than 0.030'C, and the spatial resolution was equal to 1.6x10-5 m'2. We also investigated the device's performance on five clinical subjects. Results of these studies showed a maximal error of less than 0.10'C in each evaluation [it

  2. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices.

    Science.gov (United States)

    Eslamian, Morteza; Zabihi, Fatemeh

    2015-12-01

    A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few similar reports by others, confirm that imposing ultrasonic vibration on the substrate can simply convert the uncontrollable drop casting method into a controllable coating technique. Therefore, the SVADC may be used to fabricate an array of emerging thin-film solar cells, such as polymer, perovskite, and quantum-dot solar cells, as well as other small thin-film devices, in a roll-to-roll and automated fabrication process. The preliminary results demonstrate a ten-fold increase in electrical conductivity of PSS made by SVADC compared with the film made by conventional drop casting. Also, simple planar perovskite solar cells made here using SVADC show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.

  3. BIG - a binary generator for testing digital devices

    International Nuclear Information System (INIS)

    Annuziata, M.; Sechi, G.

    1988-01-01

    This paper presents an unusual approach to the testing of digital devices. In order to test real time systems, we have designed, built, and used a digital generator able to send 2047 quadruples of 12-bit words, with a frequency range of up to 0.7 MHz. (orig.)

  4. Microcomputer based test system for charge coupled devices

    International Nuclear Information System (INIS)

    Sidman, S.

    1981-02-01

    A microcomputer based system for testing analog charge coupled integrated circuits has been developed. It measures device performance for three parameters: dynamic range, baseline shift due to leakage current, and transfer efficiency. A companion board tester has also been developed. The software consists of a collection of BASIC and assembly language routines developed on the test system microcomputer

  5. A test device for premixed gas turbine combustion oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Richards, G.A.; Gemmen, R.S.; Yip, M.J.

    1996-09-01

    This paper discusses the design and operation of a test combustor suitable for studying combustion oscillations caused by a commercial-scale gas turbine fuel nozzle. Aside from the need to be conducted at elevated pressures and temperatures, it is desirable for the experimental device to be flexible in its geometry so as to provide an acoustic environment representative of the commercial device. The combustor design, capabilities, and relevant instrumentation for such a device are presented, along with initial operating experience and preliminary data that suggests the importance of nozzle reference velocity and air temperature.

  6. Ultrasonic stir welding process and apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2009-01-01

    An ultrasonic stir welding device provides a method and apparatus for elevating the temperature of a work piece utilizing at least one ultrasonic heater. Instead of relying on a rotating shoulder to provide heat to a workpiece an ultrasonic heater is utilized to provide ultrasonic energy to the workpiece. A rotating pin driven by a motor assembly performs the weld on the workpiece. A handheld version can be constructed as well as a fixedly mounted embodiment.

  7. Ultrasonic testing of canning tubes in stainless steel of the EL 4 reactor; Controle par ultrasons des tubes de gaine en acier inoxydable du reacteur EL 4

    Energy Technology Data Exchange (ETDEWEB)

    Prot, A; Monnier, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    From all the methods possible for controlling thin cans the one chosen, for numerous reasons, vas that making use of ultrasonic techniques. A method has been developed which should make it possible to carry out a rapid and efficient industrial control of canning tubes, The reasons for the choice of the ultrasonic method are given in detail, together with the principles of the method and the actual control parameters. In the present state of our research, it should be possible to control at least 50 000 tubes a year. Improvements brought about in the details of the control technique itself should make it possible to increase this rate considerably. (authors) [French] Parmi toutes les methodes possibles de controle des gaines minces, le procede retenu pour de multiples raisons a ete celui faisant appel a la technique des ultrasons. Une methode a ete mise au point qui doit permettre un controle industriel rapide et efficace des tubes de gaine. Sont exposes en detail, les raisons du choix de la methode par ultrasons, les principes de cette methode et les parametres du controle proprement dit. Dans l'etat actuel de nos etudes la cadence devrait permettre le controle de 50000 tubes par an au minimum. Des ameliorations de detail portant sur la technique de controle elle-meme, doivent permettre d'accelerer tres notablement cette cadence. (auteurs)

  8. Development Of Ultrasonic Testing Based On Delphi Program As A Learning Media In The Welding Material Study Of Detection And Welding Disables In The Environment Of Vocational Education

    Science.gov (United States)

    Dwi Cahyono, Bagus; Ainur, Chandra

    2018-04-01

    The development of science and technology has a direct impact on the preparation of qualified workers, including the preparation of vocational high school graduates. Law Number 20 the Year 2003 on National Education System explains that the purpose of vocational education is to prepare learners to be ready to work in certain fields. One of the learning materials in Vocational High School is welding and detecting welding defects. Introduction of welding and detecting welding defects, one way that can be done is by ultrasonic testing will be very difficult if only capitalize the book only. Therefore this study aims to adopt ultrasonic testing in a computer system. This system is called Delphi Program-based Ultrasonic Testing Expert System. This system is used to determine the classification and type of welding defects of the welded defect indicator knew. In addition to the system, there is a brief explanation of the notion of ultrasonic testing, calibration procedures and inspection procedures ultrasonic testing. In this system, ultrasonic input data testing that shows defects entered into the computer manually. This system is built using Delphi 7 software and Into Set Up Compiler as an installer. The method used in this research is Research and Development (R & D), with the following stages: (1) preliminary research; (2) manufacture of software design; (3) materials collection; (4) early product development; (5) validation of instructional media experts; (6) product analysis and revision; (8) media trials in learning; And (9) result of end product of instructional media. The result of the research shows that: (1) the result of feasibility test according to ultrasonic material testing expert that the system is feasible to be used as instructional media in welding material subject and welding defect detection in vocational education environment, because it contains an explanation about detection method of welding defect using method Ultrasonic testing in detail; (2

  9. Investigation with automatic ultrasonic equipment to trace flaws in a large test piece, and experience gained in carrying out inspections

    International Nuclear Information System (INIS)

    Lindner, J.P.

    1975-01-01

    Based on the FRG codes providing guide lines for the Reactor Safety Commission regarding the size and location of flaws to be detected during in-service inspections, investigations were carried out into the possibility of detecting defects in thick-walled reactor pressure vessel components with the aid of ultrasonic inspection systems. A large test rig was used and, in a similar manner to the in-service inspections on a reactor, the tests were carried out with remote-controlled, automatically guided inspection equipment. For this purpose, a test specimen weighing about 10 tons was produced and provided with two weld seams having a large number of artificial defects. Essential parameters for the various reflectors in the test specimen were the size, location, angle and roughness or structure of the reflecting surfaces. As it is known that austenitic cladding has a considerable influence on flaw detection, the tests were undertaken first without cladding and then with cladding. A manipulator was designed for automatic remote-controlled inspection with which the inspection system travels on a meandering route over the area to be inspected. The inspection system employed was of the same type as the one used for baseline tests during external inspections of reactor vessel walls with parallel surfaces. Digital data collection was by a magnetic tape recorder designed to store both the data of the ultrasonic inspection system as well as the allied position data. The data stored on the tape are evaluated with electronic data processing programmes especially developed for this purpose. These programmes allow locally coherent indication patterns to be prepared, thus simplifying the interpretation of the data obtained. The author initially describes the equipment with the aid of which the studies were undertaken. A detailed discussion is then presented on the design of the test specimen and the inspection systems employed. Following this, the results obtained are explained and

  10. The use of simulation in the development of ultrasonic testing; Simuloinnin hyoedyntaeminen ultraaeaenitestauksen kehittaemisessae

    Energy Technology Data Exchange (ETDEWEB)

    Sandlin, S. [VTT Manufacturing Technology, Espoo (Finland)

    1997-12-01

    The report focuses on the principles of modelling the ultrasonic inspection, the possibilities of modelling and the its limitations. Some of the existing models have been extensively validated and are in routine use. Efforts has also been put on modelling the inspection of anisotropic media, such as austenitic welds, but these models presuppose that the texture of the weld is known and this is usually not the case in practice. This fact restricts the usefulness of modelling to a more qualitative description of the beam bending phenomena in the case of austenitic welds. 23 refs.

  11. Ultrasonic Technology in Duress Alarms.

    Science.gov (United States)

    Lee, Martha A.

    2000-01-01

    Provides the pros and cons of the most commonly used technologies in personal duress alarm systems in the school environment. Discussed are radio frequency devices, infrared systems, and ultrasonic technology. (GR)

  12. Consensus stability testing protocols for organic photovoltaic materials and devices

    DEFF Research Database (Denmark)

    Reese, Matthew O.; Gevorgyan, Suren; Jørgensen, Mikkel

    2011-01-01

    Procedures for testing organic solar cell devices and modules with respect to stability and operational lifetime are described. The descriptions represent a consensus of the discussion and conclusions reached during the first 3 years of the international summit on OPV stability (ISOS). The proced......Procedures for testing organic solar cell devices and modules with respect to stability and operational lifetime are described. The descriptions represent a consensus of the discussion and conclusions reached during the first 3 years of the international summit on OPV stability (ISOS...

  13. Estimation of the defect detection probability for ultrasonic tests on thick sections steel weldments. Technical report

    International Nuclear Information System (INIS)

    Johnson, D.P.; Toomay, T.L.; Davis, C.S.

    1979-02-01

    An inspection uncertainty analysis of published PVRC Specimen 201 data is reported to obtain an estimate of the probability of recording an indication as a function of imperfection height for ASME Section XI Code ultrasonic inspections of the nuclear reactor vessel plate seams and to demonstrate the advantages of inspection uncertainty analysis over conventional detection/nondetection counting analysis. This analysis found the probability of recording a significant defect with an ASME Section XI Code ultrasonic inspection to be very high, if such a defect should exist in the plate seams of a nuclear reactor vessel. For a one-inch high crack, for example, this analysis gives a best estimate recording probability of .985 and a 90% lower confidence bound recording probabilty of .937. It is also shown that inspection uncertainty analysis gives more accurate estimates and gives estimates over a much greater flaw size range than is possible with conventional analysis. There is reason to believe that the estimation procedure used is conservative, the estimation is based on data generated several years ago, on very small defects, in an environment that is different from the actual in-service inspection environment

  14. Determination of Flaw Type and Location Using an Expert Module in Ultrasonic Nondestructive Testing for Weld Inspection

    Science.gov (United States)

    Shahriari, D.; Zolfaghari, A.; Masoumi, F.

    2011-01-01

    Nondestructive evaluation is explained as nondestructive testing, nondestructive inspection, and nondestructive examination. It is a desire to determine some characteristic of the object or to determine whether the object contains irregularities, discontinuities, or flaws. Ultrasound based inspection techniques are used extensively throughout industry for detection of flaws in engineering materials. The range and variety of imperfections encountered is large, and critical assessment of location, size, orientation and type is often difficult. In addition, increasing quality requirements of new standards and codes of practice relating to fitness for purpose are placing higher demands on operators. Applying of an expert knowledge-based analysis in ultrasonic examination is a powerful tool that can help assure safety, quality, and reliability; increase productivity; decrease liability; and save money. In this research, an expert module system is coupled with ultrasonic examination (A-Scan Procedure) to determine and evaluate type and location of flaws that embedded during welding parts. The processing module of this expert system is implemented based on EN standard to classify welding defects, acceptance condition and measuring of their location via echo static pattern and image processing. The designed module introduces new system that can automate evaluating of the results of A-scan method according to EN standard. It can simultaneously recognize the number and type of defects, and determine flaw position during each scan.

  15. Modeling the ultrasonic testing echoes by a combination of particle swarm optimization and Levenberg–Marquardt algorithms

    International Nuclear Information System (INIS)

    Gholami, Ali; Honarvar, Farhang; Moghaddam, Hamid Abrishami

    2017-01-01

    This paper presents an accurate and easy-to-implement algorithm for estimating the parameters of the asymmetric Gaussian chirplet model (AGCM) used for modeling echoes measured in ultrasonic nondestructive testing (NDT) of materials. The proposed algorithm is a combination of particle swarm optimization (PSO) and Levenberg–Marquardt (LM) algorithms. PSO does not need an accurate initial guess and quickly converges to a reasonable output while LM needs a good initial guess in order to provide an accurate output. In the combined algorithm, PSO is run first to provide a rough estimate of the output and this result is consequently inputted to the LM algorithm for more accurate estimation of parameters. To apply the algorithm to signals with multiple echoes, the space alternating generalized expectation maximization (SAGE) is used. The proposed combined algorithm is robust and accurate. To examine the performance of the proposed algorithm, it is applied to a number of simulated echoes having various signal to noise ratios. The combined algorithm is also applied to a number of experimental ultrasonic signals. The results corroborate the accuracy and reliability of the proposed combined algorithm. (paper)

  16. Linear Array Ultrasonic Testing Of A Thick Concrete Specimens For Non-Destructive Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Khazanovich, Lev [Univ. of Minnesota, Minneapolis, MN (United States); Zammerachi, Mattia [Univ. of Minnesota, Minneapolis, MN (United States); Ezell, N. Dianne Bull [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    The University of Minnesota and Oak Ridge National Laboratory are collaborating on the design and construction of a concrete specimen with sufficient reinforcement density and cross-sectional size to represent a light water reactor (LWR) containment wall with various defects. The preliminary analysis of the collected data using extended synthetic aperture focussin technique (SAFT) reconstruction indicated a great potential of the ultrasound array technology for locating relatively shallow distresses. However, the resolution and reliability of the analysis is inversely proportional to the defect depth and the amount of reinforcement between the measurement point and the defect location. The objective of this round of testing is to evaluate repeatability of the obtained reconstructions from measurements with different frequencies as well as to examine the effect of the duration of the sending ultrasound signal on the resulting reconstructions. Two series of testing are performed in this study. The objective of the first series is to evaluate repeatability of the measurements and resulting reconstructed images. The measurements use three center frequencies. Five measurements are performed at each location with and without lifting the device. The analysis of the collected data suggested that a linear array ultrasound system can produce reliably repeatable reconstructions using 50 kHz signals for relatively shallow depths (less than 0.5 m). However, for reconstructions at the greater depths the use of lower frequency and/or signal filtering to reduce the effect of signal noise may be required. The objective of the second series of testing is to obtain measurements with various impulse signal durations. The entire grid on the smooth surface is tested with four different various impulse signal durations. An analysis of the resulting extended SAFT reconstructions suggested that Kirchhoff-based migration leads to easier interpreting reconstructions when shorter duration

  17. Biometric identification devices -- Laboratory testing vs. real life

    International Nuclear Information System (INIS)

    Ahrens, J.S.

    1997-01-01

    For over fifteen years Sandia National Laboratories has been involved in laboratory testing of biometric identification devices. The key concept of biometric identification devices is the ability for the system to identify some unique aspect of the individual rather than some object a person may be carrying or some password they are required to know. Tests were conducted to verify manufacturer's performance claims, to determine strengths/weaknesses of devices, and to determine devices that meet the US Department of energy's needs. However, during recent field installation, significantly different performance was observed than was predicted by laboratory tests. Although most people using the device believed it operated adequately, the performance observed was over an order of magnitude worse than predicted. The search for reasons behind this gap between the predicted and the actual performance has revealed many possible contributing factors. As engineers, the most valuable lesson to be learned from this experience is the value of scientists and engineers with (1) common sense, (2) knowledge of human behavior, (3) the ability to observe the real world, and (4) the capability to realize the significant differences between controlled experiments and actual installations

  18. Optical tests for using smartphones inside medical devices

    Science.gov (United States)

    Bernat, Amir S.; Acobas, Jennifer K.; Phang, Ye Shang; Hassan, David; Bolton, Frank J.; Levitz, David

    2018-02-01

    Smartphones are currently used in many medical applications and are more frequently being integrated into medical imaging devices. The regulatory requirements in existence today however, particularly the standardization of smartphone imaging through validation and verification testing, only partially cover imaging characteristics with a smartphone. Specifically, it has been shown that smartphone camera specifications are of sufficient quality for medical imaging, and there are devices which comply with the FDA's regulatory requirements for a medical device such as a device's field of view, direction of viewing and optical resolution and optical distortion. However, these regulatory requirements do not call specifically for color testing. Images of the same object using automatic settings or different light sources can show different color composition. Experimental results showing such differences are presented. Under some circumstances, such differences in color composition could potentially lead to incorrect diagnoses. It is therefore critical to control the smartphone camera and illumination parameters properly. This paper examines different smartphone camera settings that affect image quality and color composition. To test and select the correct settings, a test methodology is proposed. It aims at evaluating and testing image color correctness and white balance settings for mobile phones and LED light sources. Emphasis is placed on color consistency and deviation from gray values, specifically by evaluating the ΔC values based on the CIEL*a*b* color space. Results show that such standardization minimizes differences in color composition and thus could reduce the risk of a wrong diagnosis.

  19. In-service ultrasonic inspection of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Prepechal, J.; Sulc, J.

    1982-01-01

    Ultrasonic tests of pressure vessels for WWER 440 reactors, type 213 V, are carried out partly manually and partly by test equipment. The inner surface of the pressure vessel is tested using device REACTORTEST TRC which is fully mobile. The outer surface of the cylindrical parts and bottoms of the body is tested using handling equipment permanently in-built under the pressure vessel and dismountable testing heads. A set of these heads may be used for two reactor units. The testing equipment REACTORTEST TRC is equipped with a TRC 800 ultrasound device. The equipment for testing the outer surface of the vessel operates with the UDAR 16 ultrasound apparatus to which may be simultaneously connected 10 ultrasound probes and six probes for acoustic feedback. The whole system of ultrasonic tests makes possible a first-rate and reliable volume control of the whole pressure vessel and all points where cracks may originate and grow. (Z.M.)

  20. Generic testability and test methods guidelines for ASIC devices

    International Nuclear Information System (INIS)

    Puri, K.; Takeda, H.

    1996-04-01

    Many industries are switching from analog equipment to digital equipment. This change has become desirable because digital devices have become cost-effective, easily available, highly reliable, easy to qualify and easy to test and replace when needed. The nuclear power industry is beginning to upgrade some of its instrumentation and control equipment from an analog design to digital design. A digital application specific integrated circuit (ASIC) device can be designed to perform the same functions as performed by analog modules. However, the ASIC must be designed for cost-effective testability and qualification. This report provides generic guidelines for designing cost-effective methods for testing and characterizing ASIC devices to accomplish qualification

  1. Abrasion Testing of Critical Components of Hydrokinetic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Worthington, Monty [ORPC Alaska; Ali, Muhammad [Ohio University; Ravens, Tom [University of Alaska Anchorage

    2013-12-06

    The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment – information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

  2. Assessing ultrasonic examination results

    International Nuclear Information System (INIS)

    Deutsch, V.; Vogt, M.

    1977-01-01

    Amongst nondestructive examination methods, the ultrasonic examination plays an important role. The reason why its scope of application is so wide is because the sound conducting capacity is the only property the material of a test specimen has to have. As the fields are so manifold, only main aspects can be described briefly. The list of references, however, is very extensive and gives plenty of information of all the problems concerning the assessment of ultrasonic examination results. (orig./RW) [de

  3. Ultrasonic physics

    CERN Document Server

    Richardson, E G

    1962-01-01

    Ultrasonic Physics, Second Edition, provides an introduction to the fundamental principles of ultrasonic physics. The book opens with a discussion of the sources of ultrasound. This is followed by separate chapters on the properties and detection of ultrasonic radiation; measurement of propagation constants, i.e., the velocity and absorption, of ultrasound; ultrasound propagation in gases, liquids, and solids; and ultrasound propagation in aerosols, suspensions, and emulsions. The final chapter covers miscellaneous physical and physico-chemical actions, including dispersion and coagulation of

  4. 33 CFR 159.126 - Coliform test: Type II devices.

    Science.gov (United States)

    2010-07-01

    ... follows: During each of the 10 test days, one sample must be taken at the beginning, middle and end of an 8-consecutive hour period with one additional sample taken immediately following the peak capacity...: Type II devices. (a) The arithmetic mean of the fecal coliform bacteria in 38 of 40 samples of effluent...

  5. 33 CFR 159.123 - Coliform test: Type I devices.

    Science.gov (United States)

    2010-07-01

    ... as follows: During each of the 10-test days, one sample must be taken at the beginning, middle, and end of an 8-consecutive hour period with one additional sample taken immediately following the peak...: Type I devices. (a) The arithmetic mean of the fecal coliform bacteria in 38 of 40 samples of effluent...

  6. Development of ultrasonic testing DSP inspection technique for class 1 system piping in nuclear power plants

    International Nuclear Information System (INIS)

    Ku, Kil Mo; Lee, Ik Whan; Jeong, Hyun Kyu; Park, Moon Ho; Heo, Hyung; Kong, Un Sik

    1996-01-01

    The purpose of this study is to explore the utilization of new constant-Q SSP in ultrasonic NDE. Various engineering problems are reviewed, and suggestions for implementation of the technique are provided. The filters of new Constant-Q SSP centered on frequency points, and normalized type of the filtered signals was not nromalized. The new Constant-Q SSP uses the frequency-dependant response of the interfering coherent noise produced by unresolvable scatters in the resolution range cell of a transducer. It is implemented by splitting the frequency spectrum of the received signal with gaussian bandpass filters. The principles of the SSP and the various optimization algorithms are recalled, and the conventional decomposition method for the SSP was presented

  7. Development of ultrasonic testing DSP inspection technique for class 1 system piping in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Kil Mo; Lee, Ik Whan; Jeong, Hyun Kyu; Park, Moon Ho; Heo, Hyung; Kong, Un Sik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-01-01

    The purpose of this study is to explore the utilization of new constant-Q SSP in ultrasonic NDE. Various engineering problems are reviewed, and suggestions for implementation of the technique are provided. The filters of new Constant-Q SSP centered on frequency points, and normalized type of the filtered signals was not nromalized. The new Constant-Q SSP uses the frequency-dependant response of the interfering coherent noise produced by unresolvable scatters in the resolution range cell of a transducer. It is implemented by splitting the frequency spectrum of the received signal with gaussian bandpass filters. The principles of the SSP and the various optimization algorithms are recalled, and the conventional decomposition method for the SSP was presented.

  8. Using bedding in a test environment critically affects 50-kHz ultrasonic vocalizations in laboratory rats.

    Science.gov (United States)

    Natusch, C; Schwarting, R K W

    2010-09-01

    Rats utter distinct classes of ultrasonic vocalizations depending on their developmental stage, current state, and situational factors. One class, comprising the so-called 50-kHz calls, is typical for situations where rats are anticipating or actually experiencing rewarding stimuli, like being tickled by an experimenter, or when treated with drugs of abuse, such as the psychostimulant amphetamine. Furthermore, rats emit 50-kHz calls when exposed to a clean housing cage. Here, we show that such vocalization effects can depend on subtle details of the testing situation, namely the presence of fresh rodent bedding. Actually, we found that adult males vocalize more in bedded cages than in bare ones. Also, two experiments showed that adult rats emitted more 50-kHz calls when tickled on fresh bedding. Furthermore, ip amphetamine led to more 50-kHz vocalization in activity boxes containing such bedding as compared to bare ones. The analysis of psychomotor activation did not yield such group differences in case of locomotion and centre time, except for rearing duration in rats tested on bedding. Also, the temporal profile of vocalization did not parallel that of behavioural activation, since the effects on vocalization peaked and started to decline again before those of psychomotor activation. Therefore, 50-kHz calls are not a simple correlate of psychomotor activation. A final experiment with a choice procedure showed that rats prefer bedded conditions. Overall, we assume that bedded environments induce a positive affective state, which increases the likelihood of 50-kHz calling. Based on these findings, we recommend that contextual factors, like bedding, should receive more research attention, since they can apparently decrease the aversiveness of a testing situation. Also, we recommend to more routinely measure rat ultrasonic vocalization, especially when studying emotion and motivation, since this analysis can provide information about the subject's status, which may

  9. Signal processing for ultrasonic testing of stainless steel with coarse structure

    International Nuclear Information System (INIS)

    Dahlgren, Sven; Ericsson, Lars

    2000-03-01

    Ultrasonic testing of materials with coarse grains often gives poor signal-to-noise-ratio due to backscattering from the grain boundaries. The influence of the back-scattering, being strongly dependent on the size of the grains and the wavelength used, can be reduced by suitable choice of inspection frequencies used. The actual choice can be made flexible using broad band probes in combination with digital signal processing. Furthermore, with such an approach it might be possible both to detect and size defects from the same scan. One well-known signal processing method is Split Spectrum Processing (SSP). This method can significantly reduce grain noise, but finding the optimal choice of parameters involved is difficult. The introduction of the Consecutive Polarity Coincidence (CPC) as SSP target extraction algorithm more or less solved this problem but other draw-backs such as reduced temporal resolution is inherent in SSP. Based on the experiences with SSP a new approach to grain noise reduction, based on non coherent detection (NCD), was developed at Uppsala University. The technique is evaluated, in this investigation. The NCD algorithm has for a long time been used within the field of telecommunication and is based upon detection of bandpass signals in additive Gaussian noise. To adapt the algorithm for use in NDE a two parameter transient model is used. The construction of an NCD filter includes three steps: estimation of the autocorrelation of the noise; specification of the two parameters, lower and upper frequency, of the signal prototype; computation of the filter. During the project two algorithms, based on signal entropy and signal-to-noise-ratio enhancement (SNRE), have been developed to determine the two parameters in an automated procedure. UTdata to evaluate the NCD algorithm were collected in three phases: Phase 1: Manual scanning was performed on CSS-block with ideal reflectors (laboratory environment). Tuning of the two NCD parameters was done

  10. Standard practice for torque calibration of testing machines and devices

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice covers procedures and requirements for the calibration of torque for static and quasi-static torque capable testing machines or devices. These may, or may not, have torque indicating systems and include those devices used for the calibration of hand torque tools. Testing machines may be calibrated by one of the three following methods or combination thereof: 1.1.1 Use of standard weights and lever arms. 1.1.2 Use of elastic torque measuring devices. 1.1.3 Use of elastic force measuring devices and lever arms. 1.1.4 Any of the methods require a specific uncertainty of measurement and a traceability derived from national standards of mass and length. 1.2 The procedures of 1.1.1, 1.1.2, and 1.1.3 apply to the calibration of the torque-indicating systems associated with the testing machine, such as a scale, dial, marked or unmarked recorder chart, digital display, etc. In all cases the buyer/owner/user must designate the torque-indicating system(s) to be calibrated and included in the repor...

  11. Standard practice for evaluating performance characteristics of ultrasonic Pulse-Echo testing instruments and systems without the use of electronic measurement instruments

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice describes procedures for evaluating the following performance characteristics of ultrasonic pulse-echo examination instruments and systems: Horizontal Limit and Linearity; Vertical Limit and Linearity; Resolution - Entry Surface and Far Surface; Sensitivity and Noise; Accuracy of Calibrated Gain Controls. Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this practice are expressed in terms that relate to their potential usefulness for ultrasonic testing. Instrument characteristics expressed in purely electronic terms may be measured as described in E1324. 1.2 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be ev...

  12. Material characterization and non destructive testing by ultrasounds; modelling, simulation and experimental validation; Caracterisation des materiaux et controle non destructif par ultrasons; modelisation, simulation et validation experimentale

    Energy Technology Data Exchange (ETDEWEB)

    Noroy-Nadal, M H

    2002-06-15

    This memory presents the research concerning the characterization of materials and the Non Destructive Testing (N.D.T) by ultrasonics. The different topics include three steps: modeling, computations and experimental validation. The studied materials concern mainly metals. The memory is divided in four parts. The first one concerns the characterization of materials versus temperature. The determination of the shear modulus G(T) is especially studied for a large temperature range, and around the melting point. The second part is devoted to studies by photothermal devices essentially focused on the modeling of the mechanical displacement and the stress field in coated materials. In this particular field of interest, applications concern either the mechanical characterization of the coating, the defect detection in the structure and finally the evaluation of the coating adhesion. The third section is dedicated to microstructural characterization using acoustic microscopy. The evaluation of crystallographic texture is especially approached, for metallic objects obtained by forming. Before concluding and pointing out some perspectives to this work, the last section concerns the introduction of optimization techniques, applied to the material characterization by acoustic microscopy. (author)

  13. Biaxial testing for fabrics and foils optimizing devices and procedures

    CERN Document Server

    Beccarelli, Paolo

    2015-01-01

    This book offers a well-structured, critical review of current design practice for tensioned membrane structures, including a detailed analysis of the experimental data required and critical issues relating to the lack of a set of design codes and testing procedures. The technical requirements for biaxial testing equipment are analyzed in detail, and aspects that need to be considered when developing biaxial testing procedures are emphasized. The analysis is supported by the results of a round-robin exercise comparing biaxial testing machines that involved four of the main research laboratories in the field. The biaxial testing devices and procedures presently used in Europe are extensively discussed, and information is provided on the design and implementation of a biaxial testing rig for architectural fabrics at Politecnico di Milano, which represents a benchmark in the field. The significance of the most recent developments in biaxial testing is also explored.

  14. Development of Automatic Ultrasonic Testing Equipment for Pressure-Retaining Studs and Bolts in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Suh, D. M.; Park, M. H.; Hong, S. S.

    1989-01-01

    Bolting degradation problems in primary coolant pressure boundary applications have become a major concern in the nuclear industry. In the bolts concerned, the failure mechanism was either corrosion wastage(loss of bolt diameter) or stress-corrosion cracking. Here the manual ultrasonic testing of RPV(Reactor Pressure Vessel) and RCP(Reactor Coolant Pump) stud has been performed. But it is difficult to detect indications because examiner can not exactly control the rotation angle and can not distinguish the indication from signals of bolt. In many cases, the critical sizes of damage depth are very small(1-2 mm order). At critical size, the crack tends to propagatecompletly through the bolt under stress, Resulting in total fracture. Automatic stud scanner for studs(bolts) was developed because the precise measurement of bolt diameter is required in this circumstance. By use of this scanner, the rotation angle of probe was exactly controlled and the exposure time of radiations was reduced

  15. Review and discussion of the development of synthetic aperture focusing technique for ultrasonic testing (SAFT-UT)

    International Nuclear Information System (INIS)

    Busse, L.J.; Collins, H.D.; Doctor, S.R.

    1984-03-01

    The development and capabilities of synthetic aperture focusing techniques for ultrasonic testing (SAFT-UT) are presented. The purpose of SAFT-UT is to produce high-resolution images of the interior of opaque objects. The goal of this work is to develop and implement methods which can be used to detect and to quantify the extent of defects and cracks in critical components of nuclear reactors (pressure vessels, primary piping systems, and nozzles). This report places particular emphasis upon the practical experimental results that have been obtained using SAFT-UT as well as the theoretical background that underlies synthetic aperture focusing. A discussion regarding high-speed and real-time implementations of two- and three-dimensional synthetic aperture focusing is also presented

  16. MODELLING OF RING-SHAPED ULTRASONIC WAVEGUIDES FOR TESTING OF MECHANICAL PROPERTIES AND THERAPEUTIC TREATMENT OF BIOLOGICAL TISSUES

    Directory of Open Access Journals (Sweden)

    V. T. Minchenya

    2011-01-01

    Full Text Available The article presents results of modelling of ring-shaped waveguide tool for ultrasonic treatment of biological materials, particularly malignant tumours, and testing of their mechanical properties. Harmonic analysis of forced flexural vibration of the waveguide using ANSYS software and APDL programming language was implemented for determination of waveguide geometric parameters providing its resonance for the given excitation frequency. The developed finite element model accounts for interaction between the waveguide and tumour tissue as well as initial prestressing of tissue radially compressed by the waveguide. Resonant curves of the waveguide in terms of its thickness and diameter are calculated and presented. Principle of application of the developed modeling technique for extraction of diagnostic data on mechanical properties of biological tissues is described.

  17. Ultrasonic testing of core baffle former bolts of the core tanks of pressurised water reactors; Ultraschallpruefung von Kernumfassungsschrauben der Kernbehaelter von Druckwasserreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Bies, Christian M.; Alaerts, Louis; Bonitz, Frank W. [Westinghouse Electric Germany GmbH, Mannheim (Germany); Devlin, Russell S.; Minogue, Patrick [WesDyne International, Madison, PA (United States)

    2013-07-01

    This article presents the MIDAS VI testing robot used by Westinghouse / WesDyne. This is a remotely operated underwater vehicle which positions ultrasonic probes under camera control. This vehicle makes it possible to substantially reduce the time required for setting up and preparing ultrasonic tests on core baffle former bolts. It has also accelerated the test procedure itself. Test methods have also been developed for bolt types which were hitherto considered incapable of being tested. One of these methods is based on a phased array probe. The article also reports on experiences gained over the course of years in testing core baffle former bolts in European nuclear power plants using the SUPREEM testing robot.

  18. Contribution to the improved ultrasonic testing of glass fiber-reinforced polymers based on analytic modeling; Beitrag zur Verbesserung der Ultraschallpruefung glasfaserverstaerkter Polymere auf der Grundlage analytischer Modellierung

    Energy Technology Data Exchange (ETDEWEB)

    Gripp, S.

    2001-04-01

    The non-destructive testing of acoustic anisotropic materials like fiber composites has been evaluated. Modelling enabled predictions about wave deflection, direction of wave propagation, and refractive angle of ultrasonic waves in these media. Thus, measurements could be carried out using unidirectional glass-fiber composites.

  19. Contribution of the ultrasonic simulation to the testing methods qualification process; Contribution de la modelisation ultrasonore au processus de qualification des methodes de controle

    Energy Technology Data Exchange (ETDEWEB)

    Le Ber, L.; Calmon, P. [CEA/Saclay, STA, 91 - Gif-sur-Yvette (France); Abittan, E. [Electricite de France (EDF-GDL), 93 - Saint-Denis (France)

    2001-07-01

    The CEA and EDF have started a study concerning the simulation interest in the qualification of nuclear components control by ultrasonic methods. In this framework, the simulation tools of the CEA, as CIVA, have been tested on real control. The method and the results obtained on some examples are presented. (A.L.B.)

  20. Tamper-indicating devices and safeguards seals evaluation test report

    International Nuclear Information System (INIS)

    Horton, P.R.V.; Waddoups, I.G.

    1993-12-01

    Sandia National Laboratories was asked to evaluate the seals used as tamper-indicating devices (TIDs) at DOE facilities. Initially, a survey determined what seal manufacturers were being used and what similar seal types were available. Once the required specifications for TIDs were defined, a test plan measured the currently available seals against the requirements. Environmental and physical type tests stressed the seals under two broad categories: (1) handling durability and (2) tamper resistance. Results of the testing provide comparative ratings for the various seals, recommendations for using currently available seals, and a new tamper-indicating technology

  1. Pressure-Application Device for Testing Pressure Sensors

    Science.gov (United States)

    2002-01-01

    A portable pressure-application device has been designed and built for use in testing and calibrating piezoelectric pressure transducers in the field. The device generates pressure pulses of known amplitude. A pressure pulse (in contradistinction to a steady pressure) is needed because in the presence of a steady pressure, the electrical output of a piezoelectric pressure transducer decays rapidly with time. The device includes a stainless- steel compressed-air-storage cylinder of 500 cu cm volume. A manual hand pump with check valves and a pressure gauge are located at one end of the cylinder. A three-way solenoid valve that controls the release of pressurized air is located at the other end of the cylinder. Power for the device is provided by a 3.7-V cordless-telephone battery. The valve is controlled by means of a pushbutton switch, which activates a 5 V to +/-15 V DC-to-DC converter that powers the solenoid. The outlet of the solenoid valve is connected to the pressure transducer to be tested. Before the solenoid is energized, the transducer to be tested is at atmospheric pressure. When the solenoid is actuated by the push button, pressurized air from inside the cylinder is applied to the transducer. Once the pushbutton is released, the cylinder pressure is removed from the transducer and the pressurized air applied to the transducer is vented, bringing the transducer back to atmospheric pressure. Before this device was used for actual calibration, its accuracy was checked with a NIST (National Institute of Standards and Technology) traceable calibrator and commercially calibrated pressure transducers. This work was done by Wanda Solano of Stennis Space Center and Greg Richardson of Lockheed Martin Corp.

  2. Type testing of devices with inserted radioactive sources

    International Nuclear Information System (INIS)

    Rolle, A.; Droste, B.; Dombrowski, H.

    2006-01-01

    In Germany devices with inserted radioactive sources can get a type approval if they comply with specific requirements. Whoever operates a device whose type has been approved in accordance with the German Radiation Protection Ordinance does not need an individual authorization. Such type approvals for free use are granted by the Federal Office for Radiation Protection (B.f.S.) on the basis of type testing performed by the Physikalisch-Technische Bundesanstalt (P.T.B.), the national metrology institute, and the Bundesanstalt fur Materialforschung und -prufung (B.A.M.), the Federal Institute for Materials Research and Testing. Main aspects of the assessment are the activity of the radioactive sources, the dose equivalent rate near the devices, the tamper-proofness and leak-tightness of the sources and the safety of the construction of the devices. With the new Radiation Protection Ordinance in 2001, more stringent requirements for a type approval were established. Experiences with the new regulations and the relevant assessment criteria applied by P.T.B. and B.A.M. will be presented. (authors)

  3. Comparative testing of radiographic testing, ultrasonic testing and phased array advanced ultrasonic testing non destructive testing techniques in accordance with the AWS D1.5 bridge welding code.

    Science.gov (United States)

    2014-02-01

    A comprehensive body of non-destructive testing data was collected from steel bridge welds under real-world conditions in a fabricators shop. Three different non-destructive testing (NDT) techniques were used on each weld inspection, these being R...

  4. Evaluation of endcap welds in thin walled fuel elements of pressurised heavy water reactor by ultrasonic testing

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Thavasimuthu, M.; Kalyansundaram, P.; Bhattacharya, D.K.; Raj, Baldev

    1992-01-01

    In the pressurised heavy water reactor systems of India, the fuel is encapsulated in thin-walled tubes (0.342 mm) closed with endcaps by resistance welding. The integrity of these fuel elements should be such that no fission gas leakage takes place during reactor operation. The quality control of the endcap welds needed to satisfy this requirement includes helium leak test and destructive metallographic test (on sample basis). This paper discusses the feasibility study that has been carried out in the author's laboratory to develop an immersion ultrasonic test method for evaluating the integrity of the endcap weld region. Through holes of various sizes (0.15mm, 0.2mm, 0.4mm diameter and 0.185mm and 0.342mm deep) were machined by spark erosion machining at the weld joints to simulate defects of various sizes. Line focussed probe of 10 MHz frequency was used for the testing. It was possible to detect clearly all the machined holes. Based on the above standardised procedure, further testing was done on endcap welds which were rejected during fabrication on account of showing leak rate of 3 x 10 -6 std. c.c/sec. or more during helium leak test. Though it was possible to get echoes from the natural defects in the rejected tubes with echo amplitude of 70%, the signal was accompanied by the geometrical reflection (noise) giving an amplitude of 20% from the weld region, giving rise to the problem of resolving the defect indication from the geometric indications. Therefore, signal analysis approach was adopted. The signal obtained from the weld zone were subjected to various analysis procedures like a) autopower spectrum, b) total energy content and c) demodulated auto correlation function. It was possible by all the three methods to differentiate the defect signal from those due to weld geometry or due to noise. Subsequently, metallography was carried out to characterise the type of defects observed during the ultrasonic testing. (author). 4 figs

  5. The Round robin test of the PISC-2 programme: plates and ultrasonic procedures used PISC 2 report N.2. Final issue

    International Nuclear Information System (INIS)

    1986-09-01

    Ultrasonic testing is widely used for detecting, locating and sizing defects in primary circuit elements at various stages of plant life. The successive PISC projects have together made up a most notable sustained international effort to assess the effectiveness of these inspection techniques. The Plate Inspection Steering Committee (PISC-I) programme (1976-1980) was intended to establish the capabilities of manual ultrasonic procedure based on the 1974 ASME Code Section XI Procedure. The Programme for the Inspection of Steel Components (PISC-II, 1981-1986) constitutes a broader based evaluation of the best performance obtainable by modern ultrasonic techniques under optimal conditions. The present paper is the second in a series of reports currently being issued which describe the results of the PISC-II studies. Included are descriptions of the four round robin test plates and of the ultrasonic procedures applied to them by the participating inspection teams. The report also lists the participating organisations and gives the time schedule of the tests and an indication of the costs incurred

  6. Geometrical Feature Extraction from Ultrasonic Time Frequency Responses: An Application to Nondestructive Testing of Materials

    Directory of Open Access Journals (Sweden)

    Naranjo Valery

    2010-01-01

    Full Text Available Signal processing is an essential tool in nondestructive material characterization. Pulse-echo inspection with ultrasonic energy provides signals (A-scans that can be processed in order to obtain parameters which are related to physical properties of inspected materials. Conventional techniques are based on the use of a short-term frequency analysis of the A-scan, obtaining a time-frequency response (TFR, to isolate the evolution of the different frequency-dependent parameters. The application of geometrical estimators to TFRs provides an innovative way to complement conventional techniques based on the one-dimensional evolution of an A-scan extracted parameter (central or centroid frequency, bandwidth, etc.. This technique also provides an alternative method of obtaining similar meaning and less variance estimators. A comparative study of conventional versus new proposed techniques is presented in this paper. The comparative study shows that working with binarized TFRs and the use of shape descriptors provide estimates with lower bias and variance than conventional techniques. Real scattering materials, with different scatterer sizes, have been measured in order to demonstrate the usefulness of the proposed estimators to distinguish among scattering soft tissues. Superior results, using the proposed estimators in real measures, were obtained when classifying according to mean scatterer size.

  7. Device-independent parallel self-testing of two singlets

    Science.gov (United States)

    Wu, Xingyao; Bancal, Jean-Daniel; McKague, Matthew; Scarani, Valerio

    2016-06-01

    Device-independent self-testing offers the possibility of certifying the quantum state and measurements, up to local isometries, using only the statistics observed by querying uncharacterized local devices. In this paper we study parallel self-testing of two maximally entangled pairs of qubits; in particular, the local tensor product structure is not assumed but derived. We prove two criteria that achieve the desired result: a double use of the Clauser-Horne-Shimony-Holt inequality and the 3 ×3 magic square game. This demonstrate that the magic square game can only be perfectly won by measuring a two-singlet state. The tolerance to noise is well within reach of state-of-the-art experiments.

  8. CERN tests reveal security flaws with industrial network devices

    CERN Document Server

    Lüders, Stefan

    2006-01-01

    The CERN high energy particle physics facility at Geneva, Switzerland will incorporate a wide range of COTS industrial control systems within its next generation particle collider, the LHC. In particular, the Internet will be used to facilitate the remote access for accelerator and particle physicists and system experts based at several hundred locations around the globe. The integration of Industrial Ethernet and COTS PLCs within the LHC program focuses extreme attention on the industrial network cyber-security requirement. CERN's response has been to conduct operational research on the security resilience of networked industrial devices. As test team lead Stefan Lüders reports here, industrial networked devices put through the organisation's test procedures have generally shown up unexpected vulnerabilities.

  9. Impact of cavitron ultrasonic surgical aspirator (CUSA) and bipolar radiofrequency device (Habib-4X) based hepatectomy for hepatocellular carcinoma on tumour recurrence and disease-free survival.

    Science.gov (United States)

    Huang, Kai-Wen; Lee, Po-Huang; Kusano, Tomokazu; Reccia, Isabella; Jayant, Kumar; Habib, Nagy

    2017-11-07

    The aim of this study was to evaluate the oncological outcomes of hepatocellular carcinoma patients undergoing liver resection using cavitron ultrasonic surgical aspirator (CUSA) or radiofrequency (RF) based device Habib-4X.
. We prospectively analyzed the data of 280 patients who underwent liver resection for hepatocellular carcinoma at our institution from 2010-2012 with follow up till August 2016. The CUSA was used in the 163 patients whilst Habib-4X in 117 patients. The end points of analysis were oncological outcomes as disease recurrence, disease-free survival (DFS) and overall survival (OS) were estimated by the Kaplan-Meier method, which has been compared with all other existing literature on the survival study. Compared with CUSA the reported incidence of recurrence was significantly lower, in Habib-4X group; p Habib-4X group than CUSA group (50.80 vs 45.87 months, p = 0.03). The median OS was better in Habib-4X group than CUSA group (60.57 vs 57.17 months, p = 0.12) though the lesser difference in OS between the groups might be explained by the use of palliative therapies as TACE, percutaneous RFA, etc. in case of recurrence. RF based device Habib-4X, is safe and effective device for resection of hepatocellular carcinoma, in comparison to CUSA with better oncological outcomes, i.e., significantly lesser tumour recurrence and better DFS. This could be explained on the basis of systemic and local immunomodulatory effect involving induction of kupffer cells and effector CD-8 T cells that help in minimizing postoperative complications and bring more advantageous oncological outcomes.

  10. Reproduction of Realistic Background Noise for Testing Telecommunications Devices

    DEFF Research Database (Denmark)

    Gil Corrales, Juan David; Song, Wookeun; MacDonald, Ewen

    2015-01-01

    A method for reproduction of sound, based on crosstalk cancellation using inverse filters, was implemented in the context of testing telecommunications devices. The effect of the regularization parameter, number of loudspeakers, type of background noise, and a technique to attenuate audible......, the performance was equally good when using eight or four loudspeakers, and the reproduction method was shown to be robust for different program materials. The proposed technique to reduce audible artifacts increased the perceived similarity....

  11. Radiological dispersal device outdoor simulation test: Cesium chloride particle characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Don, E-mail: lee.sangdon@epa.gov [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Snyder, Emily G.; Willis, Robert [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Fischer, Robert; Gates-Anderson, Dianne; Sutton, Mark [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Viani, Brian [Simbol Mining Corp., Pleasanton, CA 94566 (United States); Drake, John [U.S. Environmental Protection Agency, Cincinnati, OH 45268 (United States); MacKinney, John [U.S. Department of Homeland Security, Washington, DC 20528 (United States)

    2010-04-15

    Particles were generated from the detonation of simulated radiological dispersal devices (RDDs) using non-radioactive CsCl powder and explosive C4. The physical and chemical properties of the resulting particles were characterized. Two RDD simulation tests were conducted at Lawrence Livermore National Laboratory: one of the simulated RDDs was positioned 1 m above a steel plate and the other was partially buried in soil. Particles were collected with filters at a distance of 150 m from the origin of the RDD device, and particle mass concentrations were monitored to identify the particle plume intensity using real time particle samplers. Particles collected on filters were analyzed via computer-controlled scanning electron microscopy coupled with energy dispersive X-ray spectrometry (CCSEM/EDX) to determine their size distribution, morphology, and chemical constituents. This analysis showed that particles generated by the detonation of explosives can be associated with other materials (e.g., soil) that are in close proximity to the RDD device and that the morphology and chemical makeup of the particles change depending on the interactions of the RDD device with the surrounding materials.

  12. Radiological dispersal device outdoor simulation test: Cesium chloride particle characteristics

    International Nuclear Information System (INIS)

    Lee, Sang Don; Snyder, Emily G.; Willis, Robert; Fischer, Robert; Gates-Anderson, Dianne; Sutton, Mark; Viani, Brian; Drake, John; MacKinney, John

    2010-01-01

    Particles were generated from the detonation of simulated radiological dispersal devices (RDDs) using non-radioactive CsCl powder and explosive C4. The physical and chemical properties of the resulting particles were characterized. Two RDD simulation tests were conducted at Lawrence Livermore National Laboratory: one of the simulated RDDs was positioned 1 m above a steel plate and the other was partially buried in soil. Particles were collected with filters at a distance of 150 m from the origin of the RDD device, and particle mass concentrations were monitored to identify the particle plume intensity using real time particle samplers. Particles collected on filters were analyzed via computer-controlled scanning electron microscopy coupled with energy dispersive X-ray spectrometry (CCSEM/EDX) to determine their size distribution, morphology, and chemical constituents. This analysis showed that particles generated by the detonation of explosives can be associated with other materials (e.g., soil) that are in close proximity to the RDD device and that the morphology and chemical makeup of the particles change depending on the interactions of the RDD device with the surrounding materials.

  13. Interrupter and hybrid-switch testing for fusion devices

    International Nuclear Information System (INIS)

    Parsons, W.M.; Warren, R.W.; Honig, E.M.; Lindsay, J.D.G.; Bellamo, P.; Cassel, R.L.

    1979-01-01

    This paper discusses recent and ongoing switch testing for fusion devices. The first part describes testing for the TFTR ohmic-heating circuit. In this set of tests, which simulated the stresses produced during a plasma initiation pulse, circuit breakers were required to interrupt a current of 24 kA with an associated recovery voltage of 25 kV. Two interrupter systems were tested for over 1000 operations each, and both appear to satisfy TFTR requirements. The second part discusses hybrid-switch development for superconducting coil protection. These switching systems must be capable of carrying large currents on a continuous basis as well as performing interruption duties. The third part presents preliminary results on an early-counterpulse technique applied to vacuum interrupters. Implementation of this technique has resulted in large increases in interruptible current as well as a marked reduction in contact erosion

  14. Non-contact test of coating by means of laser-induced ultrasonic excitation and holographic sound representation. Beruehrungslose Pruefung von Beschichtungen mittels laserinduzierter Ultraschallanregung und holographischer Schallabbildung

    Energy Technology Data Exchange (ETDEWEB)

    Crostack, H A; Pohl, K Y [QZ-DO Qualitaetszentrum Dortmund GmbH und Co. KG (Germany); Radtke, U [Dortmund Univ. (Germany). Fachgebiet Qualitaetskontrolle

    1991-01-01

    In order to circumvent the problems of introducing and picking off sound, which occur in conventional ultrasonic testing, a completely non-contact test process was developed. The ultrasonic surface wave required for the test is generated without contact by absorption of laser beams. The recording of the ultrasound also occurs by a non-contact holographic interferometry technique, which permits a large scale representation of the sound. Using the example of MCrAlY and ZrO[sub 2] layers, the suitability of the process for testing thermally sprayed coatings on metal substrates is identified. The possibilities and limits of the process for the detection and description of delamination and cracks are shown. (orig.).

  15. Design and development of an ultrasonic pulser-receiver unit for non-destructive testing of materials

    International Nuclear Information System (INIS)

    Patankar, V.H.; Joshi, V.M.

    2002-11-01

    The pulser/receiver constitutes the most vital part of an ultrasonic flaw detector or an ultrasonic imaging system used for inspection of materials. The ultrasonic properties of the material and resolution requirements govern the choice of the frequency of ultrasound that can be optimally used. The pulser/receiver in turn decides the efficiency of excitation of the transducer and the overall signal to noise ratio of the system for best sensitivity and resolution. A variety of pulsers are used in the ultrasonic instruments employed for materials inspection. This report describes a square wave type of an ultrasonic pulser-receiver unit developed at Ultrasonic Instrumentation Section, Electronics Division, BARC. It has been primarily designed for excitation of the transducer that is used with a multi-channel ultrasonic imaging system ULTIMA 100M targeted for inspection of SS403 billets, which are in turn used as the base material for fabrication of end fittings for coolant channels of pressurized heavy water nuclear reactors (PHWRs). The design of the pulser is based upon very fast MOSFETs, configured as electronic switches. The pulser is operated with a linear bipolar H.V. supply (+/- 500V max.). The receiver provides a 60 dB gain with a -3 dB BW of 40 MHz. This pulser/receiver unit has been successfully interfaced with a 4 channel ULTIMA 100 M4 multichannel ultrasonic C-scan imaging system, also designed and developed by the authors at Ultrasonic Instrumentation Section (Electronics Division, BARC) and supplied to Centre for Design and Manufacturer - CDM, BARC. This system is being regularly used in C-scan imaging mode for volumetric inspection of SS403 billets for end fittings of 500 MWe PHWRs. (author)

  16. Ultrasonic inspection

    International Nuclear Information System (INIS)

    Satittada, Gannaga

    1984-01-01

    Ultrasonic inspection is one of the most widely used methods for nondestructive inspection. The beam of high-frequency sound wave, ultrasonic wave, is introduced into the material. It travels through the material with some attendant loss of energy and can be reflected at interfaces. The reflected beam is detected and analyzed. Ultrasonic inspection is used to detect flaws in metal parts as well as in welded, brazed and bonded joints during research work and developing production and service. It is also used to detect and locate porosity, pipe, and flakes. In addition, it can be used for the measurement of metal thickness. Ultrasonic inspection is therefore used for quality control and material inspection in all major industries

  17. Construction of a dog training device with high frequency and high power pulses

    International Nuclear Information System (INIS)

    Viaud Trejos, Rafael Alfonso

    2013-01-01

    An electronic device is built to produce high frequency and high power sound. The device is used in training and control of dogs. Commercial ultrasonic devices used for dog training are analyzed. The best strategies and components of the design are determined from an electronic device to produce sounds in frequency from 15kHz to 50Khz. Effectiveness tests are performed to establish the adequate design of the ultrasonic electronic device. The test results are analyzed to find opportunities of improvement in the design or construction of the device [es

  18. Tritium Systems Test Assembly: design for major device fabrication review

    International Nuclear Information System (INIS)

    Anderson, J.L.; Sherman, R.H.

    1977-06-01

    This document has been prepared for the Major Device Fabrication Review for the Tritium Systems Test Assembly (TSTA). The TSTA is dedicated to the development, demonstration, and interfacing of technologies related to the deuterium-tritium fuel cycle for fusion reactor systems. The principal objectives for TSTA are: (a) demonstrate the fuel cycle for fusion reactor systems; (b) develop test and qualify equipment for tritium service in the fusion program; (c) develop and test environmental and personnel protective systems; (d) evaluate long-term reliability of components; (e) demonstrate long-term safe handling of tritium with no major releases or incidents; and (f) investigate and evaluate the response of the fuel cycle and environmental packages to normal, off-normal, and emergency situations. This document presents the current status of a conceptual design and cost estimate for TSTA. The total cost to design, construct, and operate TSTA through FY-1981 is estimated to be approximately $12.2 M

  19. Ultrasonic testing of materials at level 2. Manual for the syllabi contained in IAEA-TECDOC-628, training guidelines in non-destructive testing techniques

    International Nuclear Information System (INIS)

    1999-01-01

    updated version of the older document. An effort has been made to bring it as close as possible to the syllabus requirements of IAEA-TECDOC-628. This has been done by putting in additional material wherever needed and then rearranging the whole in accordance with the format of Level 2 Ultrasonic Testing syllabus in IAEA-TECDOC-628. A new Section on Special Techniques has been added in which the present status of development of various new techniques of ultrasonic testing, automated ultrasonic inspection and the basic concepts of data processing have been introduced. An extensive bibliography at the end covers all the references which have been used in the compilation as well as those which can be consulted for further information on ultrasonic testing of materials

  20. Integration of ground-penetrating radar, ultrasonic tests and infrared thermography for the analysis of a precious medieval rose window

    Science.gov (United States)

    Nuzzo, L.; Calia, A.; Liberatore, D.; Masini, N.; Rizzo, E.

    2010-04-01

    The integration of high-resolution, non-invasive geophysical techniques (such as ground-penetrating radar or GPR) with emerging sensing techniques (acoustics, thermography) can complement limited destructive tests to provide a suitable methodology for a multi-scale assessment of the state of preservation, material and construction components of monuments. This paper presents the results of the application of GPR, infrared thermography (IRT) and ultrasonic tests to the 13th century rose window of Troia Cathedral (Apulia, Italy), affected by widespread decay and instability problems caused by the 1731 earthquake and reactivated by recent seismic activity. This integrated approach provided a wide amount of complementary information at different scales, ranging from the sub-centimetre size of the metallic joints between the various architectural elements, narrow fractures and thin mortar fillings, up to the sub-metre scale of the internal masonry structure of the circular ashlar curb linking the rose window to the façade, which was essential to understand the original building technique and to design an effective restoration strategy.

  1. GRI testing facility available for pipeline inspection devices

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    As part of a program to help improve detection and characterization of defects that may occur in pipelines, the Gas Research Institute has announced the completion of the first phase of a testing facility for the evaluation of new and existing pipeline inspection technologies. GRI is a private, not-for-profit membership organization based in Chicago. The first phase of the facility consists of a pull rig which includes four 300-foot lengths of pipe with diameters of 12, 24, 30, and 36 inches. NDE inspection devices can be pulled through these pipe segments by a winch at speeds up to 25 miles per hour

  2. CAMAC based Test Signal Generator using Re-configurable device

    International Nuclear Information System (INIS)

    Sharma, Atish; Raval, Tushar; Srivastava, Amit K; Reddy, D Chenna

    2010-01-01

    There are many different types of signal generators, with different purposes and applications (and at varying levels of expense). In general, no device is suitable for all possible applications. Hence the selection of signal generator is as per requirements. For SST-1 Data Acquisition System requirements, we have developed a CAMAC based Test Signal Generator module using Re-configurable device (CPLD). This module is based on CAMAC interface but can be used for testing both CAMAC and PXI Data Acquisition Systems in SST-1 tokamak. It can also be used for other similar applications. Unlike traditional signal generators, which are embedded hardware, it is a flexible hardware unit, programmable through Graphical User Interface (GUI) developed in LabVIEW application development tool. The main aim of this work is to develop a signal generator for testing our data acquisition interface for a large number of channels simultaneously. The module front panel has various connectors like LEMO and D type connectors for signal interface. The module can be operated either in continuous signal generation mode or in triggered mode depending upon application. This can be done either by front panel switch or through CAMAC software commands (for remote operation). Similarly module reset and trigger generation operation can be performed either through front panel push button switch or through software CAMAC commands. The module has the facility to accept external TTL level trigger and clock through LEMO connectors. The module can also generate trigger and the clock signal, which can be delivered to other devices through LEMO connectors. The module generates two types of signals: Analog and digital (TTL level). The analog output (single channel) is generated from Digital to Analog Converter through CPLD for various types of waveforms like Sine, Square, Triangular and other wave shape that can vary in amplitude as well as in frequency. The module is quite useful to test up to 32 channels

  3. Augmented reality application for training in pipe defects ultrasonic investigation

    Directory of Open Access Journals (Sweden)

    Amza Cătălin Gheorghe

    2017-01-01

    Full Text Available The paper presents the development process of an Augmented Reality (AR application used for training operators in using ultrasonic equipment for non-destructive testing (NDT of pipework. The application provides workers useful information regarding the process steps, the main components of ultrasonic equipment and the proper modality of placing, aligning and moving it on pipe and weld. Using tablet or mobile phone device, an operator can see on screen written details and images on standardized working method, thus offering assistance during the training process. Allowing 3D augmented visualization of ultrasonic equipment overlaid on the real-world environment consisting in pipes and welds, the AR application makes the NDT process easier to understand and learn, as the initial evaluation results showed.

  4. Preliminary Test on Hydraulic Rotation Device for Neutron Transmutation Doping

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Kang, Han-Ok; Kim, Seong Hoon; Park, Cheol

    2014-01-01

    The Korea Atomic Energy Research Institute (KAERI) is developing a new Research Reactor (KJRR) which will be located at KIJANG in the south-eastern province of Korea. The KJRR will be mainly utilized for isotope production, NTD production, and the related research activities. During the NTD process, the irradiation rig containing the silicon ingot rotates at the constant speed to ensure precisely defined homogeneity of the irradiation. A new NTD Hydraulic Rotation Device (NTDHRD) is being developed to rotate the irradiation rigs at the required speed. In this study, the preliminary test and the analysis for the rotation characteristic of the NTDHRD, which is developed through the conceptual design, are described. A new NTD hydraulic rotation device is being developed for the purpose of application to the KIJANG research reactor (KJRR). The preliminary test and analysis for the rotation characteristic of the NTDHRD, which is developed through the conceptual design, are conducted in experimental apparatus. The film thickness by the thrust bearing is measured and the minimum required mass flow rate for stable rotation is determined

  5. Flaw acceptance criteria taking into consideration the NDT: radiographic and ultrasonic testing. Analysis through the fracture mechanics methods

    International Nuclear Information System (INIS)

    Capurro, E.; Alicino, F.; Corvi, A.

    1993-01-01

    The present study compares and evaluates the flaw acceptance criteria of the non-destructive inspections meeting European Community standards, through the application of the fracture mechanics methods that were determined and verified by the previous activity. Some choices were made; these, however, do not change the general validity of the conclusions. Shaved full-penetration butt welds of Class 1 components making up the primary circuit were considered and the following parameters varied: standards: French, German, Italian (ASME III) and UK; material: AISI 316 and low alloy steel A 533; base material and weld metal; temperature: RT, 370 deg C for the austenitic and 260 deg C for the ferritic steel; ultrasonic and radiographic methods; defect position: surface and internal; stress condition: situations with different primary and secondary stresses. From a preliminary examination of this study it is evident that the large quantity of results available and the abundance of information contained therein make a simple and exhaustive synthesis difficult. In fact, different analyses are possible and we have, therefore, limited the research to activities to perform a comparison and a general evaluation of the acceptance criteria of the non-destructive testing. (authors). 57 refs., 25 figs., 11 tabs

  6. Development and improvement of synthetic imaging methods for non-destructive ultrasonic testing of complex industrial components

    International Nuclear Information System (INIS)

    Bannouf, S.

    2013-01-01

    The goal of this thesis was, initially, to evaluate phased array methods for ultrasonic Non Destructive Testing (NDT) in order to propose optimizations, or to develop new alternative methods. In particular, this works deals with the detection of defects in complex geometries and/or materials parts. The TFM (Total Focusing Method) algorithm provides high resolution images and several representations of a same defect thanks to different reconstruction modes. These properties have been exploited judiciously in order to propose an adaptive imaging method in immersion configuration. We showed that TFM imaging can be used to characterize more precisely the defects. However, this method presents two major drawbacks: the large amount of data to be processed and a low signal-to-noise ratio (SNR), especially in noisy materials. We developed solutions to these two problems. To overcome the limitation caused by the large number of signals to be processed, we propose an algorithm that defines the sparse array to activate. As for the low SNR, it can be now improved by use of virtual sources and a new filtering method based on the DORT method (Decomposition of the Time Reversal Operator). (author) [fr

  7. Application of ultrasonic testing technique to detect gas accumulation in important pipings for pressurized water reactors safety

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, Yasuyuki [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    Since 1988, the USNRC has pointed out that gas-binding events might occur at high head safety injection (HHSI) pumps of pressurized water reactors (PWRs). In Japanese PWR plants, corrective actions were taken in response to gas-binding events that occurred on HHSI pumps in the USA, so no gas accumulation event has been reported so far. However, when venting frequency is prolonged with operating cycle extension, the probability of gas accumulation in pipings may increase as in the USA. The purpose of this study was to establish a technique to identify gas accumulation and to measure the gas volume accurately. Taking dominant causes of the gas-binding events in the USA into consideration, we pointed out the following sections in the Japanese PWRs where gas srtipping and/or gas accumulation might occur: residual heat removal system pipings and charging/safety injection pump minimum flow line. Then an ultrasonic testing technique, adopted to identify gas accumulation in the USA, was applied to those sections of the typical Japanese PWR. Consequently, no gas accumulation was found in those pipings. (author)

  8. Methods for sorting out the defects according to size in automated ultrasonic testing of large-diameter thin-walled tubes

    International Nuclear Information System (INIS)

    Golovkin, A.M.; Matveev, A.S

    1977-01-01

    Two methods have been considered of identifying defects according to their size in the course of an automated ultrasonic testing, namely, according to the echo-signal amplitude, and according to the conventional depth of a defect. The peculiar features of the second method are analyzed, and its equivalence to the first one is proved. For the purpose of identifying defects according to their conventional width, a technique is suggested of standartizing flaw detectors according to the control reflectors of two sizes

  9. Reduction of the number of defect signals in pressure vessel welds by a phased array ultrasonic test technology qualified beforehand in a blind test according to PDI specifications

    International Nuclear Information System (INIS)

    Mohr, F.

    2007-01-01

    In German-language countries, ultrasonic testing of reactor pressure vessel welds in the context of recurrent inspection is based on the KTA rules. This test philosophy is based on the recording of all data of a test section and repeated comparison of these data at regular intervals. Each and every change during operation is displayed. There are many components in which no changes are observed over longer periods of time. Optimisation of the test procedure and test periods requires accurate knowledge of the component condition. This necessitates accurate data of available defects. However, current techniques only provide data for comparative analysis on the basis of reflectivity. Data on the length and depth of a relevant defect can only be obtained by qualified sizing techniques. The PDI programme provides exact rules for qualification of techniques for a given application. Using a PDI qualification with personal blind tests for all data evaluators, one obtains a basis for accurate defect dimensioning and thus for optimisation. In cooperation with KKL, IntelligeNDT AREVA in 2006 successfully underwent the PDI qualification process for phased array testing of longitudinal and circumferential welds in reactor pressure vessels. In addition to this qualification, a comparison was made with the results of the conventionally applied, KTA-oriented test procedure. One of the key elements of qualification is the characterisation of defects, i.e. the distinction between relevant and non-relevant data, which will help to reduce the displayed data. The contribution presents the results and experience of the qualification as well as a comparison of standard testing with a tandem function with the results of phased array testing. (orig.)

  10. Ultrasonic testing standard of fusion joint for polythylene(PE) pipeline

    International Nuclear Information System (INIS)

    Lee, Euy Jong; Hur, Sam Suk; Chae, Gug Byeong

    2006-01-01

    The polyethylene(PE) pipes are widely used to transport city gas worldwide with steel pipes. Generally, Steel pipe are used for high pressure line and PE pipe for low pressure line whose pressure is less than 4 kg/m 2 . The steel pipe line are subject to 100 percent Radiographic Testing(RT) during installation stage, on the contrary, there has been no the established testing method for the welding fusion joint of polyethylene pipes, so all quality control is limited only Visual Testing(VT) or management of Fusion welding equipment. Even though PE pipeline is exposed to lower pressure than steel pipeline, the gas leakage from PE pipe may result in almost the same serious consequence from steel pipeline. So, it is necessary to develop the reliable testing standard for PE pipeline from the point of view of NDT engineers.

  11. Development of a Device for a Material Irradiation Test in the OR Test Hole

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Man Soon; Kang, Y. H.; Kim, B. G.; Choo, K. N.; Sohn, J. M.; Shin, Y. T.; Park, S. J.; Seo, C. K

    2008-05-15

    To develop a technology and a device for the irradiation test for utilization of the OR/IP holes according to the various requirements of users, the properties of the OR/IP holes were investigated and an irradiation device for the OR hole was designed and fabricated. The OR-4, 5 and the IP-9, 10, 11 holes were selected as those suitable to irradiation tests among the test holes located in the out core area. The conceptual design was performed to design a device to irradiate materials using the OR and IP holes. The capsule for the OR holes is fixed by pressing the protection tube using a clamping device, on the other hand the IP capsule is inserted in the hole without a special clamping device. In the basic design of the irradiation device for the OR hole, the capsules having the outside diameter of 50, 52, 54, 56mm were reviewed theoretically to investigate if they meet the hydraulic and vibration conditions required in the HANARO. The results of the pressure drop test showed that the 3 kinds of capsules having diameter of 52, 54, 56mm satisfied the requirement for the pressure difference and flow rate in HANARO. The capsule of {phi}56mm out of the above three satisfied the vibration condition and was finally selected giving consideration of a capacity of specimens. The capsule having a diameter of {phi}56mm was fabricated and the flow rate was measured. Using the velocity data measured at the out-core facility, the heat transfer coefficient, and the temperature on the surface of the capsule was evaluated to confirm it less than the ONB temperature. As a result, the capsule of {phi}56mm was selected for the irradiation test at the OR holes.

  12. Building Of Training Program Of Non-Destructive Testing For Concrete Structures (Part 1: Radiographic testing; Ultrasonic pulse velocity measurement; Nuclear moisture-density gauge)

    International Nuclear Information System (INIS)

    Nguyen Le Son; Phan Chanh Vu; Pham The Hung; Vu Huy Thuc

    2007-01-01

    Non-destructive testing methods (NDT) have been identified as a strong candidate for remote sensing of concrete structures over recent years. This has accelerated the powerful development of the NDT techniques in Vietnam. Hence, there is an urgent need to promote the awareness of NDT methods which could give an improved estimate of the condition concrete. Building of training program of non-destructive testing for concrete structures is a necessary duty, in aiming to build a unified training program, possibly satisfying the requirements on training as well as researching. Under the framework of the basic VAEC project (CS/07/02-03), a training program for the first 03 NDT methods: 1. Radiographic testing; 2. Ultrasonic pulse velocity measurement; 3. Nuclear moisture- density gauge was prepared. The main products of this project include: 1. Set out 03 training notes for 03 methods; 2. Set out the practical exercises to train for 03 methods; 3. Editing a set of examination questions in aiming to familiarize with various questions in 03 trained methods; 4. Fabricating practical test specimens to demonstrate for 03 techniques. (author)

  13. Ultrasonic neuromodulation

    Science.gov (United States)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  14. Improvement and qualification of ultrasonic testing of dissimilar welds in the primary circuit of NPPs

    International Nuclear Information System (INIS)

    Mitzscherling, Steffen; Barth, Enrico; Homann, Tobias; Prager, Jens; Goetschel, Sebastian; Weiser, Martin

    2017-01-01

    The austenitic and dissimilar welds found in the primary circuit of nuclear power plants are not only extremely relevant to safety but also place very high demands on material testing. In addition to limited accessibility, the macroscopic structure of the weld seam is of paramount importance for ultrasound testing. In order to reliably determine material errors in position and size, the grain orientations and the elastic constants of the anisotropic weld bead structure must be known. The following work steps are used for the imaging representation of possible material defects: First, the weld seam is sounded in order to be able to determine important weld seam parameters, such as, for example, the grain orientation, using an inverse method. On the basis of these parameters, the sound paths are simulated in the next step by means of raytracing (RT). Finally, this RT simulation is assigned the measurement data (A-scans) from different transmitter and receiver positions and superimposed according to the Synthetic Aperature Focusing Technique (SAFT) method. The combination of inverse process, RT and SAFT also ensures a correct visualization of the faults in anisotropic materials. We explain these three methods and present the test arrangement of test specimens with artificial test errors. Measurement data as well as their evaluation are compared with the results of a CIVA simulation. [de

  15. Use of modeling and simulation in the planning, analysis and interpretation of ultrasonic testing

    International Nuclear Information System (INIS)

    Algernon, Daniel; Grosse, Christian U.

    2016-01-01

    Acoustic testing methods such as ultrasound and impact echo are an important tool in building diagnostics. The range includes thickness measurements, the representation of the internal component geometry as well as the detection of voids (gravel pockets), delaminations or possibly locating grouting faults in the interior of metallic cladding tubes of tendon ducts. Basically acoustic method for non-destructive testing (NDT) is based on the excitation of elastic waves that interact with the target object (e.g. to detect discontinuity in the component) at the acoustic interface. From the signal received at the component surface this interaction shall be detected and interpreted to draw conclusions about the presence of the target object, and optionally to determine its size and position (approximately). Although the basic underlying physical principles of the application of elastic waves in NDT are known, it can be complicated by complex relationships in the form of restricted access, component geometries, or the type and form of reflectors. To estimate the chances of success of a test is already often not trivial. These circumstances highlight the importance of using simulations that allow a theoretically sound basis for testing and allow easy optimizing test systems. The deployable simulation methods are varied. Common are in particular the finite element method, the Elasto Finite Integration Technique and semi-analytical calculation methods. [de

  16. Artificial intelligence and ultrasonic tests in detection of defects; Inteligencias artificiales y ensayos ultrasonicos para la deteccion de defectos

    Energy Technology Data Exchange (ETDEWEB)

    Barrera Cardiel, G.; Fabian Alvarez, M. a.; Velez Martinez, M.; Villasenor, L.

    2001-07-01

    One of the most serious problems in the quality control of welded unions is the location, identification and classification of defects. As a solution to this problem, a technique for classification, applicable to welded unions done by electric arc welding as well as by friction, is proposed; it is based on ultrasonic signals. The neuronal networks proposed are Kohonen and Multilayer Percept ron, all in a virtual instrument environment. Currently the techniques most used in this field are: radiological analysis (X-rays) and ultrasonic analysis (ultrasonic waves). The X-ray technique in addition to being dangerous requires highly specialized personnel and equipment, therefore its use is restricted. The ultrasonic technique, in spite of being one of the most used for detection of discontinuities, requires personnel with wide experience in the interpretation of ultrasonic signals, this is a time-consuming process which necessarily increases its operation cost. The classification techniques that we propose turn out to be safe, reliable, inexpensive and easy to implement for the solution of this important problem. (Author) 8 refs.

  17. Ultrasonic transverse velocity calibration of standard blocks for use in non-destructive testing

    International Nuclear Information System (INIS)

    Silva, C E R; Braz, D S; Maggi, L E; Felix, R P B Costa

    2015-01-01

    Standard blocks are employed in the verification of the equipment used in Ultrasound Non-Destructive Testing. To assure the metrology reliability of all the measurement process, it is necessary to calibrate or certify these Standard blocks. In this work, the transverse wave velocity and main dimensions were assessed according to the specifications ISO Standards. For transverse wave velocity measurement, a 5 MHz transverse wave transducer, a waveform generator, an oscilloscope and a computer with a program developed in LabVIEW TM were used. Concerning the transverse wave velocity calibration, only two Standard blocks of the 4 tested is in accordance with the standard

  18. Seminar of the expert committee ultrasonic testing. Abstracts; Seminar des Fachausschusses Ultraschallpruefung. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-07-01

    This seminar volume contains 13 papers focusing on the following topics: 1. Test methods in the automotive sector, 2. Characterization of metallic and non-metallic materials, 3. Industrial test approaches, 4. Fiber composite materials and structures, and 5. Defect characterization using imaging techniques. One paper was separately analyzed for this database. [German] Dieser Seminarband enthaelt 13 Beitraege mit folgenden Themenschwerpunkten: 1. Pruefansaetze im Automobilbereich, 2. Charakterisierung metallischer und nicht-metallischer Materialien, 3. Pruefansaetze im industriellen Umfeld, 4. Faserverbundwerkstoffe und -strukturen, und 5. Fehlercharakterisierung mittels bildgebender Verfahren.

  19. Ultrasonic data acquisition installation for basis and in-service testing of nuclear pressure vessels

    International Nuclear Information System (INIS)

    Gutmann, G.; Engl, G.

    1976-01-01

    The safety of nuclear installations requires continuous safety inspections during construction and operation. Essential parts of this safety inspection are the basis and in-line inspections. For this purpose installation systems are used which allow an optimal statement to be made regarding the conditions of tested components

  20. Development of the ultrasonic fatigue testing machine due to study on giga-cycle fatigue at elevated temperature. 2001 annual report. Document on collaborative study

    International Nuclear Information System (INIS)

    Hattori, Shuji; Itoh, Takamoto

    2002-03-01

    An ultrasonic fatigue testing machine was developed to obtain the giga-cycle fatigue life at elevated temperature for safety and reliability of structural components in the faster breeder reactor (FBR). This testing machine consists of an amplifier, booster, horn and the equipments such as a system controller and data acquisition. The test specimen is attached at the end of the horn. The electric power generated in the amplifier is transformed into the mechanical vibration in the converter and is magnified in the booster and horn. The vibration was enough to fatigue the specimen. Since the test frequency is set at a resonant frequency, the shape and dimensions of specimen were designed so as to vibrate itself resonantly. However, the maximum amplitudes of stress and strain in the specimen can be calculated easily by measuring the amplitude of displacement at the end of the specimen. The developed ultrasonic fatigue testing machine enables to carry out the fatigue tests at 20 kHz so that it can perform the giga-cycle fatigue test within a very short time as compared with the regular fatigue testing machines such as a hydraulic fatigue testing machine. By clarifying the material strength characteristics in giga-cycle region, the life evaluation, design and examination of components will be more suitable than ever. This study will contribute to improve the safety and reliability of components in FBR. In this technical report, the specification and characteristics of the testing machine were described along with the several experimental results. (author)

  1. NASDA technician test real-time radiation monitoring device

    Science.gov (United States)

    1997-01-01

    A technician from the National Space Development Agency of Japan (NASDA) tests the real-time radiation monitoring device on SPACEHAB at Kennedy Space Center in preparation for the STS-89 mission, slated to be the first Shuttle launch of 1998. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven-member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A.

  2. Device for remote inspection and testing of a structure

    International Nuclear Information System (INIS)

    Blanc, B.; Boudou, J.; Castaing, A.; Clasquin, J.; Gallet, B.; Saglio, R.; Samoel, A.

    1976-01-01

    A self-propelled carriage for inspecting the primary vessel of a fast reactor is capable of displacement within the interspace between the primary vessel and the containment vessel in order to inspect and test any predetermined zone of the primary vessel, the carriage being associated with a drive mechanism and applied against the oppositely facing wall of the containment vessel. The carriage is suspended from a composite cable actuated by a handling apparatus for introducing the carriage into the interspace and withdrawing it therefrom. The composite cable supplies electric power as well as the different fluids required for positioning and operation of the inspection devices which are mounted on the carriage. 9 claims, 6 drawing figures

  3. ELECTROCHEMICAL CORROSION TESTING OF TANKS 241-AN-102 & 241-AP-107 & 241-AP-108 IN SUPPORT OF ULTRASONIC TESTING

    Energy Technology Data Exchange (ETDEWEB)

    WYRWAS RB; DUNCAN JB

    2008-11-20

    This report presents the results of the corrosion rates that were measured using electrochemical methods for tanks 241-AN-102 (AN-102), 241-AP-107 (AP 107), and 241-AP-108 (AP-108) performed under test plant RPP-PLAN-38215. The steel used as materials of construction for AN and AP tank farms was A537 Class 1. Test coupons of A537 Class 1 carbon steel were used for corrosion testing in the AN-107, AP-107, and AP-108 tank waste. Supernate will be tested from AN-102, AP-107, and Ap-108. Saltcake testing was performed on AP-108 only.

  4. Study of different ultrasonic focusing methods applied to non destructive testing; Etude de differentes methodes de focalisation ultrasonore appliquees au controle non destructif

    Energy Technology Data Exchange (ETDEWEB)

    El Amrani, M.

    1995-11-17

    The work presented in this thesis concerns the study of different ultrasonic focusing techniques applied to Nondestructive Testing (mechanical focusing and electronic focusing) and compares their capabilities. We have developed a model to predict the ultrasonic field radiated into a solid by water-coupled transducers. The model is based upon the Rayleigh integral formulation, modified to take account the refraction at the liquid-solid interface. The model has been validated by numerous experiments in various configurations. Running this model and the associated software, we have developed new methods to optimize focused transducers and studied the characteristics of the beam generated by transducers using various focusing techniques. (author). 120 refs., 95 figs., 4 appends.

  5. Ultrasonic Resonance Spectroscopy of Composite Rims for Flywheel Rotors

    Science.gov (United States)

    Harmon, Laura M.; Baaklini, George Y.

    2002-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The ultrasonic system employs a continuous swept-sine waveform and performs a fast Fourier transform (FFT) on the frequency response spectrum. In addition, the system is capable of equalizing the amount of energy at each frequency. Equalization of the frequency spectrum, along with interpretation of the second FFT, aids in the evaluation of the fundamental frequency. The frequency responses from multilayered material samples, with and without known defects, were analyzed to assess the capabilities and limitations of this nondestructive evaluation technique for material characterization and defect detection. Amplitude and frequency changes were studied from ultrasonic responses of thick composite rings and a multiring composite rim. A composite ring varying in thickness was evaluated to investigate the full thickness resonance. The frequency response characteristics from naturally occurring voids in a composite ring were investigated. Ultrasonic responses were compared from regions with and without machined voids in a composite ring and a multiring composite rim. Finally, ultrasonic responses from the multiring composite rim were compared before and after proof spin testing to 63,000 rpm.

  6. Theoretical determination of transit time locus curves for ultrasonic pulse echo testing - ALOK. Pt. 4

    International Nuclear Information System (INIS)

    Grohs, B.

    1983-01-01

    The ALOK-technique allows the simultaneous detection of flaws and their evaluation with respect to type, location and dimension by interpretation of the transit time behaviour during scanning of the reflector. The accuracy of information obtained by means of this technique can be further improved both during interference elimination and reconstruction owing to the ability of exact calculation of possible transit time locus curves of given reflectors. The mathematical solution of transit time locus curve calculations refers here to pulse echo testing in consideration of the refraction of sound on the forward wedge/test object - interface. The method of solving the problem is equivalent to the Fermat's principle in optics. (orig.) [de

  7. The Design Of The Ultrasonic Nondestructive Testing System Based On The EMAT

    OpenAIRE

    Cheng Huan Xin; Meng Xiang Yong; Li Jing; Cheng Li

    2016-01-01

    This paper introduces a kind of based on the electromagnetic acoustic transducer (EMAT) metal pipeline detection system, fusion of two dimensional orientation, shape unique technological innovation, implementation of various metal pipe wall corrosion situation of rapid, accurate, fully automated non-destructive testing.In the aspect of hardware design, single-chip microcomputer control was achieved by C language programming the launch of the pulse signal. Pulse signal was sent to launch circu...

  8. Ultrasonic Guided Waves-Based Monitoring of Rail Head: Laboratory and Field Tests

    Directory of Open Access Journals (Sweden)

    Piervincenzo Rizzo

    2010-01-01

    The first part of the paper shows the prototype in action on a railroad track mock-up built at the University of California, San Diego. The mock-up contained surface and internal defects. The results from three experiments are presented. The importance of feature selection to maximize the sensitivity of the inspection system is demonstrated here. The second part of the paper shows the results of field testing conducted in south east Pennsylvania under the auspices of the U.S. Federal Railroad Administration.

  9. Tone burst generator for a Non-Destructive Testing system based on ultrasonic guided waves

    OpenAIRE

    Jiménez Sánchez, Daniel

    2011-01-01

    English: This PFC provides a design of a tested and specific tone-burst generator circuit for a Non-Destructive System based on ultrasonid guided waves. This circuit includes a complementary protection circuit for the NDT system working in a pulse-echo configuration. In this paper, a brief state f art about different driving circuits employed in distinct NDE systems is presented. Castellano: El PFC proporciona un diseño electrónico específico y probado de un circuito excitador de salvas (C...

  10. Linear Array Ultrasonic Test Results from Alkali-Silica Reaction (ASR) Specimens

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Khazanovich, Dr. Lev [Univ. of Minnesota, Minneapolis, MN (United States); Salles, Lucio [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-04-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations.This report presents results of the ultrasound evaluation of four concrete slabs with varying levels of ASR damage present. This included an investigation of the experimental results, as well as a supplemental simulation considering the effect of ASR damage by elasto-dynamic wave propagation using a finite integration technique method. It was found that the Hilbert Transform Indicator (HTI), developed for quantification of freeze/thaw damage in concrete structures, could also be successfully utilized for quantification of ASR damage. internal microstructure flaws, and reinforcement locations.

  11. Interactive ultrasonic field simulations for complex non-destructive testing configurations

    International Nuclear Information System (INIS)

    Bhatia, Navnina

    2016-01-01

    Cone tomography is a well established inspection technique for industrial inspection purposes. The generation of scattering noise is inherent to the physical phenomena involved, and occurs both inside the material and the detector. This leads to the apparition of various blurring effects in 2D projections and to reconstruction errors when this effect is not properly taken into account. This works proposes an evolution of the scattering kernel superposition method, aiming at correcting these scattering effect directly in the 2D projections, before the reconstruction process. It consists in fitting analytical kernels that are used to generate realistic scattering contributions, which are in turn subtracted from the 2D projections. The proposed method has been tested using experimental data in cases involving complex materials and different levels of energy. Finally, a joint use of simulated and experimental data is described in the last chapter, in order to enhance the scattering kernels estimation. (author) [fr

  12. Uncertainty Margin of Void Packet Determination for Ultrasonic Test in NPP

    International Nuclear Information System (INIS)

    Lee, Seungchan; Sung, Jejung; Lee, Jongchan; Kim, Jonguk

    2014-01-01

    In this study, the uncertainty of the void packet determination is estimated and the conservatism is reviewed by comparing with realistic uncertainty of Heckle's uncertainty. The methodology of ISO GUM is fully applied to calculate uncertainty, combined uncertainty and effective degree of freedom. Here some results are achieved as below: Combined uncertainty(UT) : 4.98%, Combined uncertainty(Heckle) : 1.44%, Degree of freedom: 5 ∼ 15, Effective degree of freedom(UT): 24.11, Effective degree of freedom(Heckle): 28.54, K value of t-distribution(UT): 2.042, K value of t-distribution(Heckle): 2.04, The uncertainty of this study using UT is enough in the case of achieving conservatism when the void packet determination of the safety related system is determined. As result of this study, UT uncertainty is more conservative than the Heckle's realistic uncertainty. From these results, it is shown that UT method has the great safety margin in determining the void packet. In comparing UT uncertainty with realistic uncertainty, this study (UT) has the conservatism of more than 3.4 times. UT method is good method to determine the void packet of ECCS pipe and to achieve the safety margin. In a safety related system, a void packet determination is issued by US NRC through the Generic Letter 2008-01. In case of the safety function, ECCS, CSS, and RHR systems are affected by the void packet. The related study has been being carried out by KHNP since 2012. In this study, the void packet determination using a ultra sonic test method has been carried out in some sites. This paper shows the uncertainty of the method using the ultra sonic test. The key parameters are introduced and estimated. Specially, the measurement conservatism for NPP is introduced to show the uncertainty margin

  13. Uncertainty Margin of Void Packet Determination for Ultrasonic Test in NPP

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungchan; Sung, Jejung [Korea Hydro Nuclear Power Electricity Co., Daejeon (Korea, Republic of); Lee, Jongchan; Kim, Jonguk [FNC Technology Co., LTD., Yongin (Korea, Republic of)

    2014-05-15

    In this study, the uncertainty of the void packet determination is estimated and the conservatism is reviewed by comparing with realistic uncertainty of Heckle's uncertainty. The methodology of ISO GUM is fully applied to calculate uncertainty, combined uncertainty and effective degree of freedom. Here some results are achieved as below: Combined uncertainty(UT) : 4.98%, Combined uncertainty(Heckle) : 1.44%, Degree of freedom: 5 ∼ 15, Effective degree of freedom(UT): 24.11, Effective degree of freedom(Heckle): 28.54, K value of t-distribution(UT): 2.042, K value of t-distribution(Heckle): 2.04, The uncertainty of this study using UT is enough in the case of achieving conservatism when the void packet determination of the safety related system is determined. As result of this study, UT uncertainty is more conservative than the Heckle's realistic uncertainty. From these results, it is shown that UT method has the great safety margin in determining the void packet. In comparing UT uncertainty with realistic uncertainty, this study (UT) has the conservatism of more than 3.4 times. UT method is good method to determine the void packet of ECCS pipe and to achieve the safety margin. In a safety related system, a void packet determination is issued by US NRC through the Generic Letter 2008-01. In case of the safety function, ECCS, CSS, and RHR systems are affected by the void packet. The related study has been being carried out by KHNP since 2012. In this study, the void packet determination using a ultra sonic test method has been carried out in some sites. This paper shows the uncertainty of the method using the ultra sonic test. The key parameters are introduced and estimated. Specially, the measurement conservatism for NPP is introduced to show the uncertainty margin.

  14. Screen Channel Liquid Acquisition Device Outflow Tests in Liquid Hydrogen

    Science.gov (United States)

    Hartwig, Jason W.; Chato, David J.; McQuillen, J. B.; Vera, J.; Kudlac, M. T.; Quinn, F. D.

    2013-01-01

    This paper presents experimental design and test results of the recently concluded 1-g inverted vertical outflow testing of two 325x2300 full scale liquid acquisition device (LAD) channels in liquid hydrogen (LH2). One of the channels had a perforated plate and internal cooling from a thermodynamic vent system (TVS) to enhance performance. The LADs were mounted in a tank to simulate 1-g outflow over a wide range of LH2 temperatures (20.3 - 24.2 K), pressures (100 - 350 kPa), and flow rates (0.010 - 0.055 kg/s). Results indicate that the breakdown point is dominated by liquid temperature, with a second order dependence on mass flow rate through the LAD. The best performance is always achieved in the coldest liquid states for both channels, consistent with bubble point theory. Higher flow rates cause the standard channel to break down relatively earlier than the TVS cooled channel. Both the internal TVS heat exchanger and subcooling the liquid in the propellant tank are shown to significantly improve LAD performance.

  15. Suitability and repeatability of a photostress recovery test device, the macular test device, macular degeneration TEST DEVICE, detector (MDD-2), for diabetes and diabetic retinopathy assessment

    LENUS (Irish Health Repository)

    Loughman, James

    2013-10-16

    Diabetic retinopathy can result in impaired photostress recovery time despite normal visual acuity and fundoscopic appearance. The Macular Degeneration Detector (MDD-2) is a novel flash photostress recovery time device. In this study, we examine the repeatability of the MDD-2 in normal and diabetic subjects.

  16. Test measurements on the RF charge breeder device BRIC

    International Nuclear Information System (INIS)

    Variale, Vincenzo; Boggia, Antonio; Clauser, Tarcisio; Raino, Antonio; Valentino, Vincenzo; Verrone, Grazia; Bak, Petr; Kustenzov, Gennady; Skarbo, Boris; Tiunov, Michael

    2004-01-01

    The 'charge state breeder' BRIC (BReeding Ion Charge) is based on an EBIS source and it is designed to accept Radioactive Ion Beam (RIB) with charge state +1, in a slow injection mode, to increase their charge state up to +n. BRIC has been developed at the INFN section of Bari (Italy) during these last 3 years with very limited funds. Now, it has been assembled at the LNL (Italy) where are in progress the first tests as stand alone source and where, in the future, with some implementation, it will be tested as charge breeder at ISOL/TS facility of that laboratory. BRIC could be considered as a solution for the charge state breeder of the SPES project under study also at the LNL. The new feature of BRIC, with respect to the classical EBIS, is given by the insertion, in the ion drift chamber, of a radio frequency (RF) - quadrupole aiming to filter the unwanted masses and then making a more efficient containment of the wanted ions. In this paper, the first ion charge state measurements and analysis and the effect of the RF field applied on the ion chamber will be reported and discussed. The first RF test measurements seem confirm, as foreseen by simulation results carried out previously, that a selective containment can be obtained. However, most accurate measurements needed to study with more details the effect. For this reason, few implementations of the system are in order to improve the accuracy of the measurements. The proposed modifications of the BRIC device, then, will be also presented and shortly discussed

  17. Extended device profiles and testing procedures for the approval process of integrated medical devices using the IEEE 11073 communication standard.

    Science.gov (United States)

    Janß, Armin; Thorn, Johannes; Schmitz, Malte; Mildner, Alexander; Dell'Anna-Pudlik, Jasmin; Leucker, Martin; Radermacher, Klaus

    2018-02-23

    Nowadays, only closed and proprietary integrated operating room systems (IORS) from big manufacturers are available on the market. Hence, the interconnection of components from third-party vendors is only possible with increased time and costs. In the context of the German Federal Ministry of Education and Research (BMBF)-funded project OR.NET (2012-2016), the open integration of medical devices from different manufacturers was addressed. An integrated operating theater based on the open communication standard IEEE 11073 shall give clinical operators the opportunity to choose medical devices independently of the manufacturer. This approach would be advantageous especially for hospital operators and small- and medium-sized enterprises (SME) of medical devices. Actual standards and concepts regarding technical feasibility and the approval process do not cope with the requirements for a modular integration of medical devices in the operating room (OR), based on an open communication standard. Therefore, innovative approval strategies and corresponding certification and test procedures, which cover actual legal and normative standards, have to be developed in order to support the future risk management and the usability engineering process of open integrated medical devices in the OR. The use of standardized device and service profiles and a three-step testing procedure, including conformity, interoperability and integration tests are described in this paper and shall support the manufacturers to integrate their medical devices without disclosing the medical devices' risk analysis and related confidential expertise or proprietary information.

  18. Testing limits to airflow perturbation device (APD measurements

    Directory of Open Access Journals (Sweden)

    Jamshidi Shaya

    2008-10-01

    Full Text Available Abstract Background The Airflow Perturbation Device (APD is a lightweight, portable device that can be used to measure total respiratory resistance as well as inhalation and exhalation resistances. There is a need to determine limits to the accuracy of APD measurements for different conditions likely to occur: leaks around the mouthpiece, use of an oronasal mask, and the addition of resistance in the respiratory system. Also, there is a need for resistance measurements in patients who are ventilated. Method Ten subjects between the ages of 18 and 35 were tested for each station in the experiment. The first station involved testing the effects of leaks of known sizes on APD measurements. The second station tested the use of an oronasal mask used in conjunction with the APD during nose and mouth breathing. The third station tested the effects of two different resistances added in series with the APD mouthpiece. The fourth station tested the usage of a flexible ventilator tube in conjunction with the APD. Results All leaks reduced APD resistance measurement values. Leaks represented by two 3.2 mm diameter tubes reduced measured resistance by about 10% (4.2 cmH2O·sec/L for control and 3.9 cm H2O·sec/L for the leak. This was not statistically significant. Larger leaks given by 4.8 and 6.4 mm tubes reduced measurements significantly (3.4 and 3.0 cm cmH2O·sec/L, respectively. Mouth resistance measured with a cardboard mouthpiece gave an APD measurement of 4.2 cm H2O·sec/L and mouth resistance measured with an oronasal mask was 4.5 cm H2O·sec/L; the two were not significantly different. Nose resistance measured with the oronasal mask was 7.6 cm H2O·sec/L. Adding airflow resistances of 1.12 and 2.10 cm H2O·sec/L to the breathing circuit between the mouth and APD yielded respiratory resistance values higher than the control by 0.7 and 2.0 cm H2O·sec/L. Although breathing through a 52 cm length of flexible ventilator tubing reduced the APD

  19. A study of weld quality in ultrasonic spot welding of similar and dissimilar metals

    International Nuclear Information System (INIS)

    Al-Sarraf, Z; Lucas, M

    2012-01-01

    Several difficulties are faced in joining thinner sheets of similar and dissimilar materials from fusion welding processes such as resistance welding and laser welding. Ultrasonic metal welding overcomes many of these difficulties by using high frequency vibration and applied pressure to create a solid-state weld. Ultrasonic metal welding is an effective technique in joining small components, such as in wire bonding, but is also capable of joining thicker sheet, depending on the control of welding conditions. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal welding device. The ultrasonic welding horn is modelled using finite element analysis and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. Control of the vibration amplitude profile through the weld cycle is used to enhance weld strength and quality, providing an opportunity to reduce part marking. Optical microscopic examination and scanning electron microscopy (SEM) were employed to investigate the weld quality. The results show how the weld quality is particularly sensitive to the combination of clamping force and vibration amplitude of the welding tip.

  20. The role of ultrasonic velocity and Schmidt hammer hardness - The simple and economical non-destructive test for the evaluation of mechanical properties of weathered granite

    Science.gov (United States)

    Jobli, Ahmad Fadzil; Hampden, Ahmad Zaidi; Tawie, Rudy

    2017-08-01

    One of the most significant techniques for evaluation of rock strength is by using the simple and economical non-destructive test (NDT). Previous literatures confirm that there were good correlations between NDTs to the strength properties of granite rocks. The present work deals with the use of Ultrasonic Pulse Velocity and Schmidt Hammer Hardness test to predict the mechanical properties of weathered granite. Cylindrical specimens with the length to diameter ratio of two were prepared for this study and were characterized based on different weathering states. Each of the rock specimens was tested under non-destructive test and then followed by uniaxial compression test to assess the mechanical properties. It was found that good correlations established between the NDTs and the uniaxial compressive strength. The correlation between uniaxial compressive strength and rebound hardness number was demonstrated by exponential form; UCS = 6.31e0.057N, while linear correlations was obtained between the uniaxial compressive strength and the ultrasonic pulse velocity; UCS = 0.023Vp - 21.43. It was also noticed that the increase of uniaxial compression strength was parallel to the increase of elastic modulus and can be presented by a linear equation; UCS = 1.039Et50 + 4.252. Based on the reported results, it is clear that the mechanical properties or weathered granite can be estimated by means of non-destructive test.

  1. Ultrasonic Nondestructive Evaluation of Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) During Large-Scale Load Testing and Rod Push-Out Testing

    Science.gov (United States)

    Johnston, Patrick H.; Juarez, Peter D.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept developed by the Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body (HWB) aircraft configuration. The HWB has long been a focus of NASA's environmentally responsible aviation (ERA) project, following a building block approach to structures development, culminating with the testing of a nearly full-scale multi-bay box (MBB), representing a segment of the pressurized, non-circular fuselage portion of the HWB. PRSEUS is an integral structural concept wherein skins, frames, stringers and tear straps made of variable number of layers of dry warp-knit carbon-fiber stacks are stitched together, then resin-infused and cured in an out-of-autoclave process. The PRSEUS concept has the potential for reducing the weight and cost and increasing the structural efficiency of transport aircraft structures. A key feature of PRSEUS is the damage-arresting nature of the stitches, which enables the use of fail-safe design principles. During the load testing of the MBB, ultrasonic nondestructive evaluation (NDE) was used to monitor several sites of intentional barely-visible impact damage (BVID) as well as to survey the areas surrounding the failure cracks after final loading to catastrophic failure. The damage-arresting ability of PRSEUS was confirmed by the results of NDE. In parallel with the large-scale structural testing of the MBB, mechanical tests were conducted of the PRSEUS rod-to-overwrap bonds, as measured by pushing the rod axially from a short length of stringer.

  2. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    Energy Technology Data Exchange (ETDEWEB)

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30

    studied the effect of x-rays and γ-rays, on thin film chalcogenide glasses and applied them in conjunction with film incorporating a silver source in a new type of radiation sensor for which we have an US patent application [3]. In this report, we give data about our studies regarding our designed radiation sensor along with the testing and performance at various radiation doses. These studies have been preceded by materials characterization research related to the compositional and structural characteristics of the active materials used in the radiation sensor design. During the work on the project, we collected a large volume of material since every experiment was repeated many times to verify the results. We conducted a comprehensive material research, analysis and discussion with the aim to understand the nature of the occurring effects, design different structures to harness these effects, generated models to aid in the understanding the effects, built different device structures and collected data to quantify device performance. These various aspects of our investigation have been detailed in previous quarterly reports. In this report, we present our main results and emphasize on the results pertaining to the core project goals materials development, sensor design and testing and with an emphasis on classifying the appropriate material and design for the optimal application. The report has three main parts: (i) Presentation of the main data; (ii) Bulleted summary of the most important results; (iii) List of the patent, journal publications, conference proceedings and conferences participation, occurring as a result of working on the project.

  3. Accident situations tests HTR fuel with the device Kufa

    International Nuclear Information System (INIS)

    Kellerbauer, A. I.; Freis, D.

    2010-01-01

    The ceramic and ceramic-like coating materials in modern high-temperature reactor fuel are designed to ensure mechanical stability and retention of fission products under normal and transient conditions, regardless of the radiation damage sustained in-pile. In hypothetical depressurization and loss-of-forced-circulation (D LOFC) accidents, fuel elements of modular high-temperate reactors are exposed to temperatures several hundred degrees higher than during normal operation, causing increased thermo-mechanical stress on the coating layers. At the Institute for Transuranium Elements of the European Commission, a vigorous experimental program is being pursued with the aim of characterizing the performance of irradiated HTR fuel under such accident conditions. A cold finger device (Kufa), operational in ITUs hot cells since 2006, has been used to perform heating experiments on eight irradiated HTR fuel pebbles from the AVR experimental reactor and from dedicated irradiation campaigns at the High-Flux Reactor in Petten, the Netherlands. Gaseous fission products are collected in a cryogenic charcoal trap, while volatiles,are plated out on a water-cooled condensate plate. A quantitative measurement of the release is obtained by gamma spectroscopy. We highlight experimental results from the Kufa testing as well as the on-going development of new experimental facilities. (Author) 9 refs.

  4. Permeated defect detecting test method and device in reactor

    International Nuclear Information System (INIS)

    Sakurai, Yoshishige.

    1996-01-01

    The present invention provides a method of and a device capable of performing a test for entire inner surfaces of the reactor upon periodical inspection of a BWR type reactor while sufficiently taking countermeasures for radiation rays into consideration. Namely, the present invention comprises following steps. (1) A provisional step for taking a shroud head of a reactor core shroud and incore structural components above and below the shroud out of the reactor, discharging reactor water and water tightly closing openings such as reactor wall perforation holes, (2) a pretreatment step for washing exposed inner surfaces of the reactor and peeling deteriorated materials, (3) a first drying step for drying portions washed and peeled in the step (2), (4) a permeation step for applying a permeation liquid of a defect detecting medium on the exposed inner surfaces of the reactor, (5) a permeation liquid removing step for removing the an excess permeation liquid in the step (4), (6) a second drying step for drying corresponding portions after performing the step (5), and (7) a flaw detecting step for optically observing the corresponding portions after performing the step (6) and detecting flaws. (I.S.)

  5. Nondestructive test for assembly relationship of initiating explosive device

    International Nuclear Information System (INIS)

    Wang Xiangang; Zhang Chaozong; Guo Zhiping

    2009-01-01

    A 3D computed tomography (CT) method to inspect assembly relationship of initiating explosive device and to nondestructively evaluate assembly relationship by building geometric model from CT images was described. The experiment result proves that this method accurately inspects assembly relationship of initiating explosive device. (authors)

  6. Underwater Sound Levels at a Wave Energy Device Testing Facility in Falmouth Bay, UK.

    Science.gov (United States)

    Garrett, Joanne K; Witt, Matthew J; Johanning, Lars

    2016-01-01

    Passive acoustic monitoring devices were deployed at FaBTest in Falmouth Bay, UK, a marine renewable energy device testing facility during trials of a wave energy device. The area supports considerable commercial shipping and recreational boating along with diverse marine fauna. Noise monitoring occurred during (1) a baseline period, (2) installation activity, (3) the device in situ with inactive power status, and (4) the device in situ with active power status. This paper discusses the preliminary findings of the sound recording at FabTest during these different activity periods of a wave energy device trial.

  7. Evaluation of Internal Cracks and Collapse in Poplar Wood (Populus nigra during a Conventional Drying Process with Ultrasonic Inspection

    Directory of Open Access Journals (Sweden)

    Saeid ESHAGHI

    2012-05-01

    Full Text Available In this research, internal cracks and collapse of wood, formed during drying process, were measured using ultrasonic inspection. For this purpose, seven poplar (Populus nigra small blocks were dried, according to a time-based schedule. Ultrasonic waves� propagation velocity was measured at both parallel and perpendicular to grain directions, using Sylvatest ultrasound device, during kiln drying process. Results showed that in all dried blocks, waves� propagation velocity in the parallel direction was higher than in the perpendicular direction to grain. Ultrasonic waves� propagation test for non-destructive identification of internal cracks, which occurs in wood during drying process in the parallel direction, was more successful compared to the perpendicular direction. Using ultrasonic waves� propagation test for detection of collapse that occurs in wood during drying process was not useful.

  8. Evaluation of Internal Cracks and Collapse in Poplar Wood (Populus nigra during a Conventional Drying Process with Ultrasonic Inspection

    Directory of Open Access Journals (Sweden)

    Saeid ESHAGHI

    2012-05-01

    Full Text Available In this research, internal cracks and collapse of wood, formed during drying process, were measured using ultrasonic inspection. For this purpose, seven poplar (Populus nigra small blocks were dried, according to a time-based schedule. Ultrasonic waves propagation velocity was measured at both parallel and perpendicular to grain directions, using Sylvatest ultrasound device, during kiln drying process. Results showed that in all dried blocks, waves propagation velocity in the parallel direction was higher than in the perpendicular direction to grain. Ultrasonic waves propagation test for non-destructive identification of internal cracks, which occurs in wood during drying process in the parallel direction, was more successful compared to the perpendicular direction. Using ultrasonic waves propagation test for detection of collapse that occurs in wood during drying process was not useful.

  9. Dynamic acousto-elastic testing of concrete with a coda-wave probe: comparison with standard linear and nonlinear ultrasonic techniques.

    Science.gov (United States)

    Shokouhi, Parisa; Rivière, Jacques; Lake, Colton R; Le Bas, Pierre-Yves; Ulrich, T J

    2017-11-01

    The use of nonlinear acoustic techniques in solids consists in measuring wave distortion arising from compliant features such as cracks, soft intergrain bonds and dislocations. As such, they provide very powerful nondestructive tools to monitor the onset of damage within materials. In particular, a recent technique called dynamic acousto-elasticity testing (DAET) gives unprecedented details on the nonlinear elastic response of materials (classical and non-classical nonlinear features including hysteresis, transient elastic softening and slow relaxation). Here, we provide a comprehensive set of linear and nonlinear acoustic responses on two prismatic concrete specimens; one intact and one pre-compressed to about 70% of its ultimate strength. The two linear techniques used are Ultrasonic Pulse Velocity (UPV) and Resonance Ultrasound Spectroscopy (RUS), while the nonlinear ones include DAET (fast and slow dynamics) as well as Nonlinear Resonance Ultrasound Spectroscopy (NRUS). In addition, the DAET results correspond to a configuration where the (incoherent) coda portion of the ultrasonic record is used to probe the samples, as opposed to a (coherent) first arrival wave in standard DAET tests. We find that the two visually identical specimens are indistinguishable based on parameters measured by linear techniques (UPV and RUS). On the contrary, the extracted nonlinear parameters from NRUS and DAET are consistent and orders of magnitude greater for the damaged specimen than those for the intact one. This compiled set of linear and nonlinear ultrasonic testing data including the most advanced technique (DAET) provides a benchmark comparison for their use in the field of material characterization. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Procedure Development and Qualification of the Phased Array Ultrasonic Testing for the Nuclear Power Plant Piping Weld

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Kim, Yong Sik; Lee, Hee Jong

    2010-01-01

    The manual ultrasonic examination for the nuclear power plant piping welds has been demonstrated by using KPD(Korean Performance Demonstration) generic procedure. For automated ultrasonic examination, there is no generic procedure and it should be qualified by using applicable automated equipment. Until now, most of qualified procedures used pulse-echo technique and there is no qualified procedure using phased array technique. In this study, data acquisition and analysis software were developed and phased-array transducer and wedge were designed to implement phased array technique for nuclear power plant in-service inspection. The developed procedure are qualified for performance demonstration for the flaw detection, length sizing and depth sizing. The qualified procedure will be applied for the field examination in the nuclear power plant piping weld inspection

  11. Pilot tests in enhanced ultrasonic disintegration of sewage sludge; Pilotversuche zur Intensivierung der Schlammfaulung durch Klaerschlammdesintegration mit Ultraschall

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, K.; Tiehm, A.; Neis, U. [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Arbeitsbereich Abwasserwirtschaft

    1999-07-01

    The work has the objective to optimize ultrasonic disintegration of sewage sludge in permant routine operation. Anaerobic degradation of disintegrated crude and excess sludge was investigated on a pilot scale at a municipal sewage treatment plant. (orig.) [German] Ziel dieser Arbeit ist die Optimierung der Klaerschlammdesintegration mit Ultraschall im praktischen Dauerbetrieb. Der anaerobe Abbau von desintegriertem Roh- und Ueberschussschlamm wurde im Pilotmassstab vor Ort auf einer kommunalen Klaeranlage untersucht. (orig.)

  12. Automated electronic intruder simulator for evaluation of ultrasonic intrusion detectors

    International Nuclear Information System (INIS)

    1979-01-01

    An automated electronic intruder simulator for testing ultrasonic intrusion detectors is described. This simulator is primarily intended for use in environmental chambers to determine the effects of temperature and humidity on the operation of ultrasonic intrusion detectors

  13. Experiences in using ultrasonic holography with numerical and optical reconstruction

    International Nuclear Information System (INIS)

    Schmitz, V.; Wosnitza, M.

    1978-01-01

    At present, ultrasonic holography can resolve and image faults of 1 mm and more and with distances of one ultrasonic wavelength. The main field of application is for thick-walled structural components. Depending on the expected orientation, test probe arrangements as in standard ultrasonic testing are chosen. (orig./RW) [de

  14. The current situation and development of medical device testing institutes in China.

    Science.gov (United States)

    Yang, Xiaofang; Mu, Ruihong; Fan, Yubo; Wang, Chunren; Li, Deyu

    2017-04-01

    This article analyses the current situation and development of Chinese medical device testing institutes from the perspectives of the two most important functions - testing functions and medical device standardization functions. Areas Covered: The objective of the Chinese government regulations for medical device industry is to ensure the safety and effectiveness of medical devices for Chinese patients. To support the regulation system, the Chinese government has established medical device testing institutes at different levels for example, the national, provincial, and municipal levels. These testing institutes also play an important role in technical support during medical device premarket registration and post market surveillance, they are also the vital practitioners of Chinese medical device standardization. Expert Commentary: Chinese medical device testing institutes are technical departments established by government, and serve the regulatory functions of government agency. In recent years, with the rapid development of medical device industry as well as constantly increasing international and domestic medical device market, the importance of medical device testing institute is more prominent, However, there are still some problems unsolved, such as their overall capacity remains to be improved, construction of standardization is to be strengthened, etc.

  15. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project a... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed echo imaging system. 892.1560... receiver. This generic type of device may include signal analysis and display equipment, patient and...

  16. Feasibility test on green energy harvesting from physical exercise devices

    Science.gov (United States)

    Mustafi, Nirendra N.; Mourshed, M.; Masud, M. H.; Hossain, M. S.; Kamal, M. R.

    2017-06-01

    The demand of power is increasing day by day due to the increase of world population as well as the industrialization and modernization. Depletion of the world's fossil fuel reserves and the adverse effects of their uses on the environment insist the researchers to find out some means of efficient and cost effective alternative energy sources from small to large scales. In a gymnasium the human metabolism power is used to drive the physical exercise devices. However there are a number of exercise device which can have the potential to generate electricity during physical exercise. By converting the available mechanical energy from these exercise devices into kinetic energy, electric power can be produced. In this work, energy was harvested from the most commonly used physical exercise devices used in the gymnasium - paddling and chin up. The paddle pulley and the chin up pulley were connected to the couple pulley which in turn coupled to an alternator by a V-belt to produce electrical energy and a rechargeable battery was used to store electrical energy. The power generation from the device depends upon the speed at which the alternator runs and the age limit. The electrical energy output was observed 83.6 watt at 1300 rpm and 62.5 watt at1150 rpm alternator speed for the paddling and chin up respectively recorded for an average adult. The device was designed for a constant 49N load on the alternator for both paddling and chin up operation. By running each of these devices for about 12 hours in a day, any gymnasium can avoid burning of almost 23.67 kg and 31.6 kg of diesel fuel per year for chin up and paddling respectively. Also it can cut off the CO2 emission to the environment which reveals itself a standalone green micro gym.

  17. MEMS device for bending test: measurements of fatigue and creep of electroplated nickel

    DEFF Research Database (Denmark)

    Larsen, Kristian Pontoppidan; Rasmussen, Anette Alsted; Ravnkilde, Jan Tue

    2003-01-01

    In situ bending test devices with integrated electrostatic actuator were fabricated in electroplated nanocrystalline nickel. The device features approximately pure in-plane bending of the test beam. The excitation of the test beam has fixed displacement amplitude as the actuation electrodes...

  18. A fully automated system for ultrasonic power measurement and simulation accordingly to IEC 61161:2006

    International Nuclear Information System (INIS)

    Costa-Felix, Rodrigo P B; Alvarenga, Andre V; Hekkenberg, Rob

    2011-01-01

    The ultrasonic power measurement, worldwide accepted, standard is the IEC 61161, presently in its 2nd edition (2006), but under review. To fulfil its requirements, considering that a radiation force balance is to be used as ultrasonic power detector, a large amount of raw data (mass measurement) shall be collected as function of time to perform all necessary calculations and corrections. Uncertainty determination demands calculation effort of raw and processed data. Although it is possible to be undertaken in an old-fashion way, using spread sheets and manual data collection, automation software are often used in metrology to provide a virtually error free environment concerning data acquisition and repetitive calculations and corrections. Considering that, a fully automate ultrasonic power measurement system was developed and comprehensively tested. A 0,1 mg of precision balance model CP224S (Sartorius, Germany) was used as measuring device and a calibrated continuous wave ultrasound check source (Precision Acoustics, UK) was the device under test. A 150 ml container filled with degassed water and containing an absorbing target at the bottom was placed on the balance pan. Besides the feature of automation software, a routine of power measurement simulation was implemented. It was idealized as a teaching tool of how ultrasonic power emission behaviour is with a radiation force balance equipped with an absorbing target. Automation software was considered as an effective tool for speeding up ultrasonic power measurement, while allowing accurate calculation and attractive graphical partial and final results.

  19. Contact method or automated immersion technique: possible application and limitations of ultrasonic testing in the fusion reactor; Kontakttechnik oder automatisierte Tauchtechnik. Einsatzmoeglichkeiten und Beschraenkungen der Ultraschallpruefung im Fusionsreaktor

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Tatiana; Knaak, Stefan; Aktaa, Jarir [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Angewandte Materialien Werkstoff- und Biomechanik (IAM-WBM); Rey, Joerg; Neuberger, Heiko [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Neutronenphysik und Reaktortechnik (INR); Krueger, Friedhelm [Krueger Erodiertechnik GmbH und Co.KG, Biedenkopf (Germany); Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany)

    2014-11-01

    The tritium breeding blanket is the most important component of a thermonuclear reactor combining the protective function against plasma impact and heat exchange. The breeding blanket concept is based on the use of helium as coolant and beryllium pebbles as neutron multiplier. As structural material the low-activation ferritic-martensitic steel EUROFER (9Cr-W-V-T) is used. For quality assurance the components of the breeding blankets are tested using different non-destructive testing methods. The contact methodology applies the testing equipment VEO in combination of the 10 MHz array-wheel sensor of the ultrasonic phased array series. Immersion testing is performed using the automated facility KC 200 from GE Inspection technologies.

  20. LANL12-RS-108J Report on Device Modeler Testing of the Device Modeler Tool Kit. DMTK in FY14

    Energy Technology Data Exchange (ETDEWEB)

    Temple, Brian Allen [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Pimentel, David A. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2014-09-28

    This document covers the various testing and modifications of the Device Modeler Tool Kit (DMTK) for project LANL12-RS-108J in FY14. The testing has been comprised of different device modelers and trainees for device modeling using DMTK on the secure network for a few test problems. Most of these problems have been synthetic data problems. There has been a local secure network training drill where one of the trainees has used DMTK for real data. DMTK has also been used on a laptop for a deployed real data training drill. Once DMTK gets into the home team, it will be used for more training drills (TDs) which will contain real data in the future.

  1. Efficiency evaluation test of waste non-destructive analysis device

    International Nuclear Information System (INIS)

    Maeda, Kouichi; Ogasawara, Kensuke; Nisizawa, Ichio

    2000-03-01

    A device for non-destructive analysis of plutonium in alpha solid waste has been installed in NUCEF; Nuclear Fuel Cycle Safety Engineering Research Facility. The device has been designed to determine the amount of radioisotopes in carton-boxes, 45 l steel cans and 200 l steel cans containing relatively low density waste. Considering the waste density and the heterogeneity of radio-sources, the proper distance between the detector and the waste, and the open degree of the collimator have been settled, because real waste may contain several kinds of material and the heterogeneity of radioactivity. It has been confirmed from the evaluation of the detect limit that plutonium of about 8 MBq can be determined with the accuracy of 10% and the device may be proper for the practical application. (author)

  2. Reliability data collection on IC and VLSI devices tested under accelerated life conditions

    International Nuclear Information System (INIS)

    Barry, D.M.; Meniconi, M.

    1986-01-01

    As part of a more general investigation into the reliability and failure causes of semiconductor devices, statistical samples of integrated circuit devices (LM741C) and dynamic random access memory devices (TMS4116) were tested destructively to failure using elevated temperature as the accelerating stress. The devices were operated during the life test and the failure data generated were collected automatically using a multiple question-and-answer program and a process control computer. The failure data were modelled from the lognormal, inverse Gaussian and Weibull distribution using an Arrhenius reaction rate model. The failed devices were later decapsulated for failure cause determination. (orig./DG)

  3. Development of simulation tools for improvement of measurement accuracy and efficiency in ultrasonic testing. Part 2. Development of fast simulator based on analytical approach

    International Nuclear Information System (INIS)

    Yamada, Hisao; Fukutomi, Hiroyuki; Lin, Shan; Ogata, Takashi

    2008-01-01

    CRIEPI developed a high speed simulation method to predict B scope images for crack-like defects under ultrasonic testing. This method is based on the geometrical theory of diffraction (GTD) to follow ultrasonic waves transmitted from the angle probe and with the aid of reciprocity relations to find analytical equations to express echoes received by the probe. The tip and mirror echoes from a slit with an arbitrary angle in the direction of thickness of test article and an arbitrary depth can be calculated by this method. Main object of the study is to develop a high speed simulation tool to gain B scope displays from the crack-like defect. This was achieved for the simple slits in geometry change regions by the prototype software based on the method. Fairy complete B scope images for slits could be obtained by about a minute on a current personal computer. The numerical predictions related to the surface opening slits were in excellent agreement with the relative experimental measurements. (author)

  4. Error Analysis in a Device to Test Optical Systems by Using Ronchi Test and Phase Shifting

    International Nuclear Information System (INIS)

    Cabrera-Perez, Brasilia; Castro-Ramos, Jorge; Gordiano-Alvarado, Gabriel; Vazquez y Montiel, Sergio

    2008-01-01

    In optical workshops, Ronchi test is used to determine the optical quality of any concave surface, while it is in the polishing process its quality is verified. The Ronchi test is one of the simplest and most effective methods used for evaluating and measuring aberrations. In this work, we describe a device to test converging mirrors and lenses either with small F/numbers or large F/numbers, using LED (Light-Emitting Diode) that has been adapted in the Ronchi testing as source of illumination. With LED used the radiation angle is bigger than common LED. It uses external power supplies to have well stability intensity to avoid error during the phase shift. The setup also has the advantage to receive automatic input and output data, this is possible because phase shifting interferometry and a square Ronchi ruling with a variable intensity LED were used. Error analysis of the different parameters involved in the test of Ronchi was made. For example, we analyze the error in the shifting of phase, the error introduced by the movement of the motor, misalignments of x-axis, y-axis and z-axis of the surface under test, error in the period of the grid used

  5. Device to test the leak-tightness of a container

    International Nuclear Information System (INIS)

    Mills, A.E.; Davey, P.G.

    1978-01-01

    A device is described by which the sensitivity and exactness leak detectors with flow meters may be increased. For this, the flow meter is equipped with two thermal flow sensers and one heating element acting on the two sensors. (RW) [de

  6. GPS Device Testing Based on User Performance Metrics

    Science.gov (United States)

    2015-10-02

    1. Rationale for a Test Program Based on User Performance Metrics ; 2. Roberson and Associates Test Program ; 3. Status of, and Revisions to, the Roberson and Associates Test Program ; 4. Comparison of Roberson and DOT/Volpe Programs

  7. Ultrasonic inspection development at HEDL

    International Nuclear Information System (INIS)

    Day, C.K.; Mech, S.J.; Michaels, T.E.; Dixon, N.E.

    1978-01-01

    Ultrasonic testing methods and equipment are being developed to support preservice and in-service inspection of selected FFTF welds. A digital computer system is employed in the analysis of both simulated FFTF pipe sections and plate specimens containing fatigue cracks. It is anticipated that test evaluation standards containing fatigue cracks will partially eliminate questions formerly associated with weld test calibration producers by providing natural cracks which follow grain boundaries and stress patterns resembling piping situ conditions. Studies have revealed that commercial transducers may satisfy LMFBR ultrasonic pipe inspection applications: The test system evaluation included transducers and wedge coupling and fluid coupling materials which exhibited acceptable performance at temperatures to 2300C. Results are presented that demonstrate the feasibility of ultrasonic inspection of components immersed in sodium at temperatures to 2600C. (UK)

  8. Ultrasonic hydrometer

    Science.gov (United States)

    Swoboda, Carl A.

    1984-01-01

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time "t" between the initial and returning impulses. Considering the distance "d" between the spaced sonic surfaces and the measured time "t", the sonic velocity "V" is calculated with the equation "V=2d/t". The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0.degree. and 40.degree. C. and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation. The disclosed modified battery has a hollow spacer nub on the battery side wall, the sonic surfaces being on the inside of the nub and the electrolyte filling between the surfaces to the exclusion of intervening structure. An accessible pad exposed on the nub wall opposite one sonic surface allows the reliable placement thereagainst of the transducer.

  9. The development of an enhanced strain measurement device to support testing of radioactive material packages

    International Nuclear Information System (INIS)

    Uncapkher, W.L.; Arviso, M.

    1995-01-01

    Radioactive material package designers use structural testing to verify and demonstrate package performance. A major part of evaluating structural response is the collection of reliable instrumentation measurement data. Over the last four decades, Sandia National Laboratories (SNL) has been actively involved in the development, testing, and evaluation of measurement devices for a broad range of applications, resulting in the commercialization of several measurement devices commonly used today. SNL maintains an ongoing program sponsored by the US Department of Energy (DOE) to develop and evaluate measurement devices to support testing of packages used to transport radioactive or hazardous materials. The development of the enhanced strain measurement device is part of this program

  10. Design of device for testing in the gamma irradiator

    International Nuclear Information System (INIS)

    Mariano H, E.

    1991-02-01

    In eves of the recharge of the Gamma Irradiator, JS-6500 it was detected, that there was contamination in the container that housed the pencils of Co-60, coming from Argentina, country to which the ININ buys it recharges. It was determined that the contamination in the container was it interns and after discussing several solution options it was determined to manufacture a device to make a washing of the pencils. It was touch to the Management of Radiological Safety to determine the conceptual design of the device to make the washing and the way of operation of the same one. The Management of Prototypes and Models was responsibility of the mechanical design and its production. (Author)

  11. The Analysis of the Field Application Methodology of Electromagnetic Ultrasonic Testing for Piping in Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chi Seung; Joo, Keum Jong; Choi, Jung Kweun; Um, Byung Kook; Park, Jea Suk [Korea Advanced Ispection Technology Co., Daejeon (Korea, Republic of)

    2008-08-15

    Nuclear plant piping is classified as the safety class and non-safety class piping in usual. Safety class piping has been examined in accordance with ASME Section XI and V during PSI/ISI using RT, UT, PT, ECT, etc and evaluated periodically for integrity. But failures in piping had reported at non-welded parts and non-safety class pipings as well as the safety class pipings. The existing NDT methods are suitable for the specific parts for instance weldments to inspect but difficult to examine all parts (total coverage) of pipe line and very expensive in cost and consume the time. And also inspection using those methods is difficult and limited for the parts which are complex configuration, embedded under ground and installed at high radiation area in nuclear power plants. In order to inspect all parts of long range piping systems and reduce the inspection time and cost, the electromagnetic ultrasonic inspection technology is suitable and effective. The electromagnetic ultrasonic method can cover more than 50 m apart from sensor at one time without moving the sensor and examined the parts which are in difficulties for accessibility, for example, high radiation area, insulated components and embedded under ground.

  12. Test plan for K Basin Sludge Canister and Floor Sampling Device

    International Nuclear Information System (INIS)

    Meling, T.A.

    1995-01-01

    This document provides the test plan and procedure forms for conducting the functional and operational acceptance testing of the K Basin Sludge Canister and Floor Sampling Device(s). These samplers samples sludge off the floor of the 100K Basins and out of 100K fuel storage canisters

  13. [Vision test device: possibilities and limits of LCD technique].

    Science.gov (United States)

    Ettelt; Brandl, H; Zrenner, E; Lund, O E

    1991-01-01

    An automatic visual acuity test examining visual acuity at 5 m distance is presented. An LCD screen with 400 x 640 pixel is used for graphic display. The Landolt rings are selected randomly. The test presented here complies well with the criteria of DIN 58220. Accuracy estimates for representation of the Landolt rings in raster graphics are discussed. With the method suggested, the testing of visual acuity, one of the most important tests in ophthalmological practice, is simplified and its reliability and results are improved. The method allows tests at short time intervals to trace the time dependency of visual acuity. Furthermore, the test may be delegated to support personnel.

  14. System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584

    Energy Technology Data Exchange (ETDEWEB)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy W.J.; Hopkins, Derek F. [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A. [Washington River Protection Solutions, Richland, Washington 99354 (United States)

    2013-07-01

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of =14 micrometers (μm). In 2012 the PulseEcho instrument was further evaluated under WRPS' System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP. (authors)

  15. Development of ultrasonic testing technique with the large transducer to inspect the containment vessel plates of nuclear power plant embedded in concrete

    International Nuclear Information System (INIS)

    Ishida, Hitoshi; Kurozumi, Yasuo; Kaneshima, Yoshiari

    2004-01-01

    The containment vessel plates embedded in concrete on Pressurized Water Reactors are inaccessible to inspect directly. Therefore, it is advisable to prepare inspection technology to detect existence and a location of corrosion on the embedded plates indirectly. In order to establish ultrasonic testing technique to be able to inspect the containment vessel plates embedded in concrete widely at the accessible point, experiments to detect artificial hollows simulating corrosion on a surface of a carbon steel plate mock-up covered with concrete simulating the embedded containment vessel plates were carried out with newly made ultrasonic transducers. We made newly low frequency (0.3 MHz and 0.5 MHz) surface shear horizontal (SH) wave transducers combined with three large active elements, which were equivalent to a 120mm width element. As a result of the experiments, the surface SH transducers could detect clearly the echo from the hollows with a depth of 9.5 mm and 19 mm at a distance of 1500mm from the transducers on the surface of the mock-up covered with concrete. Therefore, we evaluate that it is possible to detect the defects such as corrosion on the plates embedded in concrete with the newly made low frequency surface SH transducers with large elements. (author)

  16. Defect detection and sizing in ultrasonic imaging

    International Nuclear Information System (INIS)

    Moysan, J.; Benoist, P.; Chapuis, N.; Magnin, I.

    1991-01-01

    This paper introduces imaging processing developed with the SPARTACUS system in the field of ultrasonic testing. The aim of the imaging processing is to detect and to separate defects echoes from background noise. Image segmentation and particularities of ultrasonic images are the base of studied methods. 4 figs.; 6 refs [fr

  17. Analysis of dynamic accumulative damage about the lining structure of high speed railway’s tunnel based on ultrasonic testing technology

    Science.gov (United States)

    Wang, Xiang-qiu; Zhang, Huojun; Xie, Wen-xi

    2017-08-01

    Based on the similar material model test of full tunnel, the theory of elastic wave propagation and the testing technology of intelligent ultrasonic wave had been used to research the dynamic accumulative damage characteristics of tunnel’s lining structure under the dynamic loads of high speed train. For the more, the dynamic damage variable of lining structure of high speed railway’s tunnel was obtained. The results shown that the dynamic cumulative damage of lining structure increases nonlinearly with the times of cumulative vibration, the weakest part of dynamic cumulative damage is the arch foot of tunnel. Much more attention should be paid to the design and operation management of high speed railway’s tunnel.

  18. Ultrasonic imaging in liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Lubeigt, E. [CEA Cadarache, DEN/DTN/STCP/LIET, 13108 Saint-Paul-Lez-Durance Cedex (France); Laboratoire de Mecanique et d' Acoustique, CNRS UPR 7051, 13402 Marseille Cedex 20 (France); Mensah, S.; Chaix, J.F.; Rakotonarivo, S. [Laboratoire de Mecanique et d' Acoustique, CNRS UPR 7051, 13402 Marseille Cedex 20 (France); Gobillot, G. [CEA Cadarache, DEN/DTN/STCP/LIET, 13108 Saint-Paul-Lez-Durance Cedex (France)

    2015-07-01

    The fourth generation of nuclear reactor can use liquid sodium as the core coolant. When the reactor is operating, sodium temperatures can reach up to 600 deg. C. During maintenance periods, when the reactor is shut down, the coolant temperature is reduced to 200 deg. C. Because molten sodium is optically opaque, ultrasonic imaging techniques are developed for maintenance activities. Under-sodium imaging aims at i) checking the health of immersed structures. It should also allow ii) to assess component degradation or damage as cracks and shape defects as well as iii) the detection of lost objects. The under-sodium imaging system has to sustain high temperature (up to 300 deg. C) and hostility of the sodium environment. Furthermore, specific constraints such as transducers characteristics or the limited sensor mobility in the reactor vessel have to be considered. This work focuses on developing a methodology for detecting damages such as crack defects with ultrasound devices. Surface-breaking cracks or deep cracks are sought in the weld area, as welds are more subject to defects. Traditional methods enabled us to detect emerging cracks of submillimeter size with sodium-compatible high-temperature transducer. The presented approach relies on making use of prior knowledge about the environment through the implementation of differential imaging and time-reversal techniques. Indeed, this approach allows to detect a change by comparison with a reference measurement and by focusing back to any change in the environment. It is a means of analysis and understanding of the physical phenomena making it possible to design more effective inspection strategies. Difference between the measured signals reveals the acoustic field scattered by a perturbation (a crack for instance), which may occur between periodical measurements. The imaging method relies on the adequate combination of two computed ultrasonic fields, one forward and one adjoint. The adjoint field, which carries the

  19. Ultrasonic imaging in liquid sodium

    International Nuclear Information System (INIS)

    Lubeigt, E.; Mensah, S.; Chaix, J.F.; Rakotonarivo, S.; Gobillot, G.

    2015-01-01

    The fourth generation of nuclear reactor can use liquid sodium as the core coolant. When the reactor is operating, sodium temperatures can reach up to 600 deg. C. During maintenance periods, when the reactor is shut down, the coolant temperature is reduced to 200 deg. C. Because molten sodium is optically opaque, ultrasonic imaging techniques are developed for maintenance activities. Under-sodium imaging aims at i) checking the health of immersed structures. It should also allow ii) to assess component degradation or damage as cracks and shape defects as well as iii) the detection of lost objects. The under-sodium imaging system has to sustain high temperature (up to 300 deg. C) and hostility of the sodium environment. Furthermore, specific constraints such as transducers characteristics or the limited sensor mobility in the reactor vessel have to be considered. This work focuses on developing a methodology for detecting damages such as crack defects with ultrasound devices. Surface-breaking cracks or deep cracks are sought in the weld area, as welds are more subject to defects. Traditional methods enabled us to detect emerging cracks of submillimeter size with sodium-compatible high-temperature transducer. The presented approach relies on making use of prior knowledge about the environment through the implementation of differential imaging and time-reversal techniques. Indeed, this approach allows to detect a change by comparison with a reference measurement and by focusing back to any change in the environment. It is a means of analysis and understanding of the physical phenomena making it possible to design more effective inspection strategies. Difference between the measured signals reveals the acoustic field scattered by a perturbation (a crack for instance), which may occur between periodical measurements. The imaging method relies on the adequate combination of two computed ultrasonic fields, one forward and one adjoint. The adjoint field, which carries the

  20. Under sodium ultrasonic imaging system for PFBR

    International Nuclear Information System (INIS)

    Patankar, V.H.; Lalwani, S.K.; Agashe, A.A.

    2014-01-01

    Under Sodium UltraSonic Scanner (USUSS) has been developed to detect the growth and protrusion of fuel sub-assemblies of PFBR, submerged in liquid sodium by using the ultrasonic imaging technique during reactor shut-down when liquid sodium is at 180 ℃. The imaging is carried out prior to every Fuel handling operation. Electronics Division, BARC has designed and developed an 8-Channel Ultrasonic Imaging System (UIS) which consists of 4 downward viewing and 4 side viewing ultrasonic transducers alongwith pulser-receiver, signal processing electronics hardware and software. An automated mechanical scanner developed by IGCAR houses sodium immersible transducers to image the fuel sub assemblies. The system has been successfully tested with dummy protruding and grown FSAs, submerged under liquid sodium. Such ultrasonic imaging systems are not available to India from international market. The USUSS developed indigenously has all the features available in similar systems developed by other countries. After every imaging campaign, the mechanical scanner containing ultrasonic transducers is stored in the Argon filled storage-pit. Before every campaign of USUSS, it is necessary to check the healthiness of the sodium immersible and contaminated ultrasonic transducers, as the under-sodium scanner is decontaminated once in five years. For this purpose, a novel Non Contact Ultrasonic Inspection System (NCUIS) has been designed and developed by Electronics Division, BARC to check the functionality of the high-temperature and contaminated transducers of USUSS, using air-coupled ultrasonic technique. (author)

  1. Ultrasonic scanner for stainless steel weld inspections. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kupperman, D. S.; Reimann, K. J.

    1978-09-01

    The large grain size and anisotropic nature of stainless steel weld metal make conventional ultrasonic testing very difficult. A technique is evaluated for minimizing the coherent ultrasonic noise in stainless steel weld metal. The method involves digitizing conventional ''A-scan'' traces and averaging them with a minicomputer. Results are presented for an ultrasonic scanner which interrogates a small volume of the weld metal while averaging the coherent ultrasonic noise.

  2. Patients' perception of pain during ultrasonic debridement: a comparison between piezoelectric and magnetostrictive scalers.

    Science.gov (United States)

    Muhney, Kelly A; Dechow, Paul C

    2010-01-01

    To compare patients' perception of discomfort, vibration and noise levels between piezoelectric and the magnetostrictive ultrasonic units during periodontal debridement. Periodontal debridement was performed on 75 subjects using a split-mouth design. Two quadrants on the same side were instrumented with a piezoelectric ultrasonic device (EMS Swiss Mini Master® Piezon) and the remaining 2 quadrants were instrumented with a magnetostrictive ultrasonic device (Dentsply Cavitron® SPS™). Subjects marked between 0 and 100 along a visual analog scale (VAS) for each of the 3 variables immediately after treatment of each half of the dentition. Scores of the VAS were compared using a nonparametric test for paired data, the Wilcoxon Signed-Rank test. The level of significance was set at ptypes were almost equal. The results show that, on average, patients in this study prefer instrumentation with the piezoelectric as it relates to awareness of associated discomfort and vibration. The results of this study may assist the clinician in the decision over which ultrasonic device may prove more beneficial in decreasing patient discomfort and increasing patient compliance.

  3. Ultrasonic flowmeters. Progress report II

    International Nuclear Information System (INIS)

    Wittekind, W.D.

    1980-01-01

    This progress report presents results of in-plant testing of the prototype ultrasonic flowmeter and describes modifications to the prototype as a result of these tests. The modified prototype, designated MOD-I, is described in detail including the principle of operation, equipment used and the results of both laboratory and in-plant demonstrations

  4. Experimental development of an ultrasonic linear motor

    CSIR Research Space (South Africa)

    M'Boungui, G

    2010-01-01

    Full Text Available the stator structure. In contrast to traditional travelling wave ultrasonic motors, which require two modes to be driven 90° out of phase, only one amplifier is required to drive the proposed device. A prototype device was characterised experimentally...

  5. Microbiological testing of devices used in maintaining peripheral venous catheters

    Directory of Open Access Journals (Sweden)

    Fernanda de Paula Rossini

    Full Text Available ABSTRACT Objective: to evaluate the use of peripheral venous catheters based on microbiological analysis of devices (dressing and three-way stopcocks and thus contribute to the prevention and infection control. Methods: this was a prospective study of microbiological analysis of 30 three-way stopcocks (external surfaces and lumens and 30 dressing used in maintaining the peripheral venous catheters of hospitalized adult patients. Results: all external surfaces, 40% of lumens, and 86.7% of dressing presented bacterial growth. The main species isolated in the lumen were 50% coagulase-negative Staphylococcus, 14.3% Staphylococcus aureus, and 14.3% Pseudomonas aeruginosa. Fifty nine percent of multidrug-resistant bacteria were isolated of the three-way stopcocks, 42% of the lumens, and 44% of the dressing with a predominance of coagulase-negative Staphylococcus resistant to methicillin. Besides, 18% gram-negative bacteria with resistance to carbapenems were identified from multidrug-resistant bacteria on the external surfaces of the three-way stopcocks. Conclusion: it is important to emphasize the isolation of coagulase-negative Staphylococcus and gram-negative bacteria resistant to methicillin and carbapenems in samples of devices, respectively, which reinforces the importance of nursing care in the maintenance of the biologically safe environment as well as prevention and infection control practices.

  6. The testing of a steam-water separating device used for vertical steam generators

    International Nuclear Information System (INIS)

    Ding Xunshen; Cui Baoyuan; Xue Yunkui; Liu Shixun

    1989-01-01

    The air-water screening tests of a steam-water separating device used for vertical steam generators at low pressure are introduced. The article puts emphasis on the qualification test of the steam-water separating device at hot conditions in a high temperature and pressure water test rig. The performance of the comprehensive test of the steam-water separating device indicates that the humidity of the steam at the drier exit is much less than the specified amount of 0.25%

  7. A nondestructive testing device for determining 235U enrichment in power reactor fuel elements

    International Nuclear Information System (INIS)

    Liu Lanhua; Liu Nangai

    1990-07-01

    The development and application of a nondestructive testing device are presented, which is used for determining the 235 U enrichment in the mixed fuel of fuel elements with UO 2 pellets. The testing efficiency is improved because the passive gamma ray method and a hole-bored NaI crystal and four channel multichannel analyzer are used. The false discrimination rate is reduced as the average comparing method is taken. This device is simple in structure and easy in operation. It has provided a new testing tool for the fuel elements production in China. This device has successfully been used in Qinshan Nuclear Power Plant in testing its fuel elements

  8. Device for testing continuity and/or short circuits in a cable

    Science.gov (United States)

    Hayhurst, Arthur R. (Inventor)

    1995-01-01

    A device for testing current paths is attachable to a conductor. The device automatically checks the current paths of the conductor for continuity of a center conductor, continuity of a shield and a short circuit between the shield and the center conductor. The device includes a pair of connectors and a circuit to provide for testing of the conductive paths of the cable. The pair of connectors electrically connects the conductive paths of a cable to be tested with the circuit paths of the circuit. The circuit paths in the circuit include indicators to simultaneously indicate the results of the testing.

  9. Procedure for the creation of reproducible acoustic coupling using the ultrasonic contact method for nondestructive testing of materials

    International Nuclear Information System (INIS)

    Tomilov, B.V.

    1979-01-01

    The transducer is pressed to the specimen, a lubricating coating being applied as an intermediate layer. By means of a vibrator belonging to the transducer there are generated vibrations, the growth rate of the amplitude of the reflected signal picked up being observed. This growth rate is monotonously decreasing. If the growth rate is abruptly decreasing or if the amplitude of the measured signal remains constant the vibrator is turned off, because now good acoustic contact is established. After a short time of waiting for the residual stress of the transducer to decay, recording of the ultrasonic parameters may then be taken up. The method can be applied to thickness measurements and inhomogeneous materials with low surface quality. (RW) [de

  10. Constancy tests radiography X-ray devices with CR system

    International Nuclear Information System (INIS)

    Durdikova, M.; Zakova, M.

    2005-01-01

    The paper presents the changes in QAP (Quality Assurance Program) as consequence of digitalisation of medical facilities. Digitalisation brings many advantages - more comfort for personal use, images are easy achievable and transferable to workstation, fine quality images by postprocessing are easily achievable. But it must be taken into account that due to simplicity of image make it is sometimes taken more images then necessary .There are two possible ways of digitalisation in radiography: to exchange conventional developer machine by Computer Radiography (CR), that means to use CR reader and cassette with phosphor plate - un-direct digitalisation or to use special radiography X-ray devices with flat-panel detector -direct radiography. (authors)

  11. Design and Testing of Electronic Devices for Harsh Environments

    CERN Document Server

    Nico, Costantino

    This thesis reports an overview and the main results of the research activity carried out within the PhD programme in Information Engineering of the University of Pisa (2010-2012). The research activity has been focused on different fields, including Automotive and High Energy Physics experiments, according to a common denominator: the development of electroni c devices and systems operating in harsh environments. There are many applications that forc e the adoption of design methodologies and strategies focused on this type of envir onments: military, biom edical, automotive, industrial and space. The development of solutions fulfilling specific operational requirements, therefore represents an interesting field of research. The first research activity has been framed within the ATHENIS project, funded by the CORDIS Commission of the European Community, and aiming at the development of a System-on-Chip, a r egulator for alternators employed on vehicles, presenting both configurability an d t...

  12. Development and Application of an Ultrasonic Gas Flowmeter

    International Nuclear Information System (INIS)

    Hwang, Won Ho; Jeong, Hee Don; Park, Sang Gug; Jhang, Kyung Young

    2002-01-01

    This paper describes the development and the field application of the ultrasonic gas flowmeter for accurate measurement of the volumetric flow rate of gases in a harsh environmental conditions in iron and steel making company. This ultrasonic flowmeter is especially suited for measuring LDG, COG, BFG gases produced in iron and steel making process. This is a transit time type ultrasonic flowmeter. We have developed the transmitting and receiving algorithm of ultrasonic wave and the ultrasonic signal processing algorithm to develope a transit time type ultrasonic flowmeter. We have evaluated the performance of ultrasonic flowmeter by the calibration system with Venturi type standard flowmeter. We has confirmed its reliability by extensive field tests for a year in POSCO, iron and steel making company. Now we have developed the commercial model of ultrasonic flowmeter and applied to the POSCO gas line

  13. Study on electrical impedance matching for broadband ultrasonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Ki Bok [Korea Research Institute of Standards and Science, Center for Safety Measurement, Daejeon (Korea, Republic of); Baek, Kwang Sae [Elache Co., Busan (Korea, Republic of)

    2017-02-15

    Ultrasonic transducers with high resolution and resonant frequency are required to detect small defects (less than hundreds of μm) by ultrasonic testing. The resonance frequency and resolution of an ultrasonic transducer are closely related to the thickness of piezo-electric materials, backing materials, and the electric impedance matching technique. Among these factors, electrical impedance matching plays an important role because it can reduce the loss and reflection of ultrasonic energy differences in electrical impedance between an ultrasonic transducer and an ultrasonic defects detecting system. An LC matching circuit is the most frequently used electric matching method. It is necessary for the electrical impedance of an ultrasonic transducer to correspond to approximately 50 Ω to compensate the difference in electrical impedance between both connections. In this study, a 15 MHz immersion ultrasonic transducer was fabricated and an LC electrical impedance circuit was applied to that for having broad-band frequency characteristic.

  14. Radiation Isotope Identification Device (RIIDs) Field Test and Evaluation Campaign

    International Nuclear Information System (INIS)

    Christopher Hodge, Raymond Keegan

    2007-01-01

    Handheld, backpack, and mobile sensors are elements of the Global Nuclear Detection System for the interdiction and control of illicit radiological and nuclear materials. They are used by the U.S. Department of Homeland Security (DHS) and other government agencies and organizations in various roles for border protection, law enforcement, and nonproliferation monitoring. In order to systematically document the operational performance of the common commercial off-the-shelf portable radiation detection systems, the DHS Domestic Nuclear Detection Office conducted a test and evaluation campaign conducted at the Nevada Test Site from January 18 to February 27, 2006. Named 'Anole', it was the first test of its kind in terms of technical design and test complexities. The Anole test results offer users information for selecting appropriate mission-specific portable radiation detection systems. The campaign also offered manufacturers the opportunity to submit their equipment for independent operationally relevant testing to subsequently improve their detector performance. This paper will present the design, execution, and methodologies of the DHS Anole portable radiation detection system test campaign

  15. Hand Gesture Recognition Using Ultrasonic Waves

    KAUST Repository

    AlSharif, Mohammed Hussain

    2016-04-01

    Gesturing is a natural way of communication between people and is used in our everyday conversations. Hand gesture recognition systems are used in many applications in a wide variety of fields, such as mobile phone applications, smart TVs, video gaming, etc. With the advances in human-computer interaction technology, gesture recognition is becoming an active research area. There are two types of devices to detect gestures; contact based devices and contactless devices. Using ultrasonic waves for determining gestures is one of the ways that is employed in contactless devices. Hand gesture recognition utilizing ultrasonic waves will be the focus of this thesis work. This thesis presents a new method for detecting and classifying a predefined set of hand gestures using a single ultrasonic transmitter and a single ultrasonic receiver. This method uses a linear frequency modulated ultrasonic signal. The ultrasonic signal is designed to meet the project requirements such as the update rate, the range of detection, etc. Also, it needs to overcome hardware limitations such as the limited output power, transmitter, and receiver bandwidth, etc. The method can be adapted to other hardware setups. Gestures are identified based on two main features; range estimation of the moving hand and received signal strength (RSS). These two factors are estimated using two simple methods; channel impulse response (CIR) and cross correlation (CC) of the reflected ultrasonic signal from the gesturing hand. A customized simple hardware setup was used to classify a set of hand gestures with high accuracy. The detection and classification were done using methods of low computational cost. This makes the proposed method to have a great potential for the implementation in many devices including laptops and mobile phones. The predefined set of gestures can be used for many control applications.

  16. Application of complex programmable logic devices in memory radiation effects test system

    International Nuclear Information System (INIS)

    Li Yonghong; He Chaohui; Yang Hailiang; He Baoping

    2005-01-01

    The application of the complex programmable logic device (CPLD) in electronics is emphatically discussed. The method of using software MAX + plus II and CPLD are introduced. A new test system for memory radiation effects is established by using CPLD devices-EPM7128C84-15. The old test system's function are realized and, moreover, a number of small scale integrated circuits are reduced and the test system's reliability is improved. (authors)

  17. Testing of low Z coated limiters in tokamak fusion devices

    International Nuclear Information System (INIS)

    Whitely, J.B.; Mullendore, A.W.; Langley, R.A.

    1980-01-01

    Extensive testing on a laboratory scale has been used to select those coatings most suitable for this environment. From this testing which included pulsed electron beam heating, low energy ion bombardment and arcing, chemical vapor deposited coating of TiB 2 and TiC on Poco graphite substrates have been selected and tested as limiters in ISX. Both limiter materials gave clean, stable, reproducible tokamak discharges the first day of operation. After one weeks exposure, the TiC limiter showed only superficial damage with no coating failure. The TiB 2 limiter had some small areas of coating failure. TiC coated graphite limiters have also been briefly tested in the tokamaks Alcator and PDX with favorable results

  18. Miniaturized and general purpose fiber optic ultrasonic sources

    International Nuclear Information System (INIS)

    Biagi, E.; Fontani, S.; Masotti, L.; Pieraccini, M.

    1997-01-01

    Innovative photoacoustic sources for ultrasonic NDE, smart structure, and clinical diagnosis are proposed. The working principle is based on thermal conversion of laser pulses into a metallic film evaporated directly onto the tip of a fiber optic. Unique features of the proposed transducers are very high miniaturization and potential easy embedding in smart structure. Additional advantages, high bedding in smart structure. Additional advantages, high ultrasonic frequency, large and flat bandwidth. All these characteristics make the proposed device an ideal ultrasonic source

  19. Performance and Pain Tolerability of Current Diagnostic Allergy Skin Prick Test Devices.

    Science.gov (United States)

    Tversky, Jody R; Chelladurai, Yohalakshmi; McGready, John; Hamilton, Robert G

    2015-01-01

    Allergen skin prick testing remains an essential tool for diagnosing atopic disease and guiding treatment. Sensitivity needs to be defined for newly introduced devices. Our aim was to compare the performance of 10 current allergy skin prick test devices. Single- and multiheaded skin test devices (n = 10) were applied by a single operator in a prospective randomized manner. Histamine (1 and 6 mg/mL) and control diluent were introduced at 6 randomized locations onto the upper and lower arms of healthy subjects. Wheal and flare reactions were measured independently by 2 masked technicians. Twenty-four subjects provided consent, and 768 skin tests were placed. Mean wheal diameter among devices differed from 3.0 mm (ComforTen; Hollister-Stier, Spokane, Wash) to 6.8 mm (UniTest PC; Lincoln Diagnostics, Decatur, Ill) using 1 mg/mL histamine (P Diagnostics, Decatur, Ill; and Sharp-Test; Panatrex, Placentia, Calif) using 6 mg/mL histamine (P pain score of less than 4 on a 10-point visual analog scale. Pain scores were higher among women, but this did not reach statistical significance. The Multi-Test PC and the UniTest PC had the lowest pain scores compared with the other devices. All 10 skin prick test devices displayed good analytical sensitivity and specificity; however, 3 mm cannot arbitrarily be used as a positive threshold. The use of histamine at 1 mg/mL is unacceptable for certain devices but may be preferable for the most sensitive devices. On average, there was no pain score difference between multiheaded and single-head devices. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  20. A Test Device Module of the Step Motor Driver for HANARO CAR Operation

    Energy Technology Data Exchange (ETDEWEB)

    Im, Yun-Taek; Doo, Seung-Gyu; Shin, Jin-Won; Kim, Ki-Hyun; Choi, Young-San; Lee, Jung-Hee; Kim, Hyung-Kyoo; Lee, Choong-Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The brand-new control system is reliable and has advantages compared with the old control system, and the installed system covers all functional operations of old system. Nevertheless, packaged RTP systems do not include a step motor or driver, and it is necessary to develop a proper test device to check the step motor and driver without using the RTP system. In particular, the operation of a CAR (Control Absorber Rod) requires many complicated procedures. Occasionally, it takes significant time to prepare for a field test. In this work, a test device module for a step motor diver is shown to emulate a HANARO CAR operation, and the test device system architecture, operational principle, and experiment results are presented. A commercial 8-bit μ-processor is applied to implement the device. A portable test device for HANARO CAR operation is presented. An 8-bit μ-controller is used to emulate a HANARO CAR operation. The digital interface, as well as the functional operation, of the test device module matches that of the currently used driver. This device can be used to check the functional validity of the step motor and driver.