WorldWideScience

Sample records for ultrasonic nondestructive examination

  1. Assessing ultrasonic examination results

    International Nuclear Information System (INIS)

    Deutsch, V.; Vogt, M.

    1977-01-01

    Amongst nondestructive examination methods, the ultrasonic examination plays an important role. The reason why its scope of application is so wide is because the sound conducting capacity is the only property the material of a test specimen has to have. As the fields are so manifold, only main aspects can be described briefly. The list of references, however, is very extensive and gives plenty of information of all the problems concerning the assessment of ultrasonic examination results. (orig./RW) [de

  2. Ultrasonic and advanced methods for nondestructive testing and material characterization

    National Research Council Canada - National Science Library

    Chen, C. H

    2007-01-01

    ... and physics among others. There are at least two dozen NDT methods in use. In fact any sensor that can examine the inside of material nondestructively is useful for NDT. However the ultrasonic methods are still most popular because of its capability, flexibility, and relative cost effectiveness. For this reason this book places a heavy emphasis...

  3. Nondestructive evaluation ultrasonic methods for construction materials

    International Nuclear Information System (INIS)

    Chilibon, I.; Zisu, T.; Raetchi, V.

    2002-01-01

    The paper presents some ultrasonic methods for evaluation of physical-mechanical properties of construction materials (bricks, concrete, BCA), such as: pulse method, examination methods, and direct measurement of the propagation velocity and impact-echo method. Utilizing these nondestructive evaluation ultrasonic methods it can be determined the main material parameters and material characteristics (elasticity coefficients, density, propagation velocity, ultrasound attenuation, etc.) of construction materials. These method are suitable for construction materials because the defectoscopy methods for metallic materials cannot be utilized, due to its rugged and non-homogeneous structures and grate attenuation coefficients of ultrasound propagation through materials. Also, the impact-echo method is a technique for flaw detection in concrete based on stress wave propagation. Studies have shown that the impact-echo method is effective for locating voids, honeycombing, delaminating, depth of surface opening cracks, and measuring member thickness

  4. Wavelet Analysis of Ultrasonic Echo Waveform and Application to Nondestructive Evaluation

    International Nuclear Information System (INIS)

    Park, Ik Keun; Park, Un Su; Ahn, Hyung Keun; Kwun, Sook In; Byeon, Jai Won

    2000-01-01

    Recently, advanced signal analysis which is called 'time-frequency analysis' has been used widely in nondestructive evaluation applications. Wavelet transform(WT) and Wigner Distribution are the most advanced techniques for processing signals with time-varying spectra. Wavelet analysis method is an attractive technique for evaluation of material characterization nondestructively. Wavelet transform is applied to the time-frequency analysis of ultrasonic echo waveform obtained by an ultrasonic pulse-echo technique. In this study, the feasibility of noise suppression of ultrasonic flaw signal and frequency-dependent ultrasonic group velocity and attenuation coefficient using wavelet analysis of ultrasonic echo waveform have been verified experimentally. The Gabor function is adopted the analyzing wavelet. The wavelet analysis shows that the variations of ultrasonic group velocity and attenuation coefficient due to the change of material characterization can be evaluated at each frequency. Furthermore, to assure the enhancement of detectability and new sizing performance, both computer simulated results and experimental measurements using wavelet signal processing are used to demonstrate the effectiveness of the noise suppression of ultrasonic flaw signal obtained from austenitic stainless steel weld including EDM notch

  5. Nondestructive control of materials by ultrasonic tests

    International Nuclear Information System (INIS)

    Mercier, Noelle.

    1974-01-01

    A bibliographic study of nondestructive control methods of solids by ultrasonic tests, and of the ultrasonic emission of a transducer of finite dimension, is first presented. The principle of two of these methods is verified experimentally; they should permit the measurement of various physical parameters of solids, and the detection of local inhomogeneities. The first method calls upon the analysis of the ultrasonic signal (amplitude and phase), after it has crossed a constant thickness of a metallic specimen. This analysis reveals variations of attenuation and of ultrasonic propagation velocity within the specimen. A good spatial resolution is obtained by using 1mm-diameter probes. The second method leads, thanks to a test rig equipped with broad frequency band electrostatic transducers, to the knowledge of the attenuation law of the specimens as a function of frequency (present range: 5 to 15MHz); from this a classification of these specimens as regards their granulometry is deduced [fr

  6. Mathematical modelling of ultrasonic non-destructive evaluation

    Directory of Open Access Journals (Sweden)

    Larissa Ju Fradkin

    2001-01-01

    Full Text Available High-frequency asymptotics have been used at our Centre to develop codes for modelling pulse propagation and scattering in the near-field of the ultrasonic transducers used in NDE (Non-Destructive Evaluation, particularly of walls of nuclear reactors. The codes are hundreds of times faster than the direct numerical codes but no less accurate.

  7. Technical plan for nondestructive examination technology development

    International Nuclear Information System (INIS)

    Anderson, B.C.

    1982-12-01

    This report provides a description of the development of the nondestructive examination (NDE) equipment to be used in the Stored Waste Examination Pilot Plant (SWEPP) for certifying transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP). NDE equipment is being developed for waste identification and container integrity. Real-time x-ray radiography is the basic method being used for waste identification. Acoustic (ultrasonic) testing is being used to obtain measurements to verify container integrity. This report describes the decisions made to date, the decisions to be made, and the activities planned for FY 1983 through FY 1985

  8. Training methods in non-destructive examination with ultrasonic testing

    International Nuclear Information System (INIS)

    Walte, F.

    1986-01-01

    German concept for inspection of LWR, leak before break, basic safety; General inspection methods; Ultrasonic inspection - basic principle, generation of ultrasound, bulk and surface waves, piezo electric and electromagnetic transducers, energy balance, scattering and adsorption, divergence; Ultra techniques in compliance with KTA-rules - pulse-echo, tandem, throughtransmission; Valuation of ultrasonic indications; Pre- and in-service inspection; Practical part - ultrasonic equipment, ultrasonic piezo electric transducers, wall thickness measurement, crack depth measurement with potential drop technique. (orig.)

  9. Determination of Flaw Type and Location Using an Expert Module in Ultrasonic Nondestructive Testing for Weld Inspection

    Science.gov (United States)

    Shahriari, D.; Zolfaghari, A.; Masoumi, F.

    2011-01-01

    Nondestructive evaluation is explained as nondestructive testing, nondestructive inspection, and nondestructive examination. It is a desire to determine some characteristic of the object or to determine whether the object contains irregularities, discontinuities, or flaws. Ultrasound based inspection techniques are used extensively throughout industry for detection of flaws in engineering materials. The range and variety of imperfections encountered is large, and critical assessment of location, size, orientation and type is often difficult. In addition, increasing quality requirements of new standards and codes of practice relating to fitness for purpose are placing higher demands on operators. Applying of an expert knowledge-based analysis in ultrasonic examination is a powerful tool that can help assure safety, quality, and reliability; increase productivity; decrease liability; and save money. In this research, an expert module system is coupled with ultrasonic examination (A-Scan Procedure) to determine and evaluate type and location of flaws that embedded during welding parts. The processing module of this expert system is implemented based on EN standard to classify welding defects, acceptance condition and measuring of their location via echo static pattern and image processing. The designed module introduces new system that can automate evaluating of the results of A-scan method according to EN standard. It can simultaneously recognize the number and type of defects, and determine flaw position during each scan.

  10. Interactive ultrasonic field simulations for complex non-destructive testing configurations

    International Nuclear Information System (INIS)

    Chouh, Hamza

    2016-01-01

    In order to fulfill increasing reliability and safety requirements, non-destructive testing techniques are constantly evolving and so does their complexity. Consequently, simulation is an essential part of their design. We developed a tool for the simulation of the ultrasonic field radiated by any planar probes into non-destructive testing configurations involving meshed geometries without prominent edges, isotropic and anisotropic, homogeneous and heterogeneous materials, and wave trajectories that can include reflections and transmissions. We approximate the ultrasonic wave fronts by using polynomial interpolators that are local to ultrasonic ray pencils. They are obtained using a surface research algorithm based on pencil tracing and successive subdivisions. Their interpolators enable the computation of the necessary quantities for the impulse responses on each point of a sampling of the transducer surface that fulfills the Shannon criterion. By doing so, we can compute a global impulse response which, when convolved with the excitation signal of the transducer, results in the ultrasonic field. The usage of task parallelism and of SIMD instructions on the most computationally expensive steps yields an important performance boost. Finally, we developed a tool for progressive visualization of field images. It benefits from an image reconstruction technique and schedules field computations in order to accelerate convergence towards the final image. (author) [fr

  11. Newly developed non-destructive testing method for evaluation of irradiation brittleness of structural materials using ultrasonic

    International Nuclear Information System (INIS)

    Ishii, Toshimitsu; Ooka, Norikazu; Kato, Yoshiaki; Saito, Junichi; Hoshiya, Taiji; Shibata, Saburo; Kobayashi, Hideo

    1999-01-01

    Surveillance testing is important to evaluate neutron irradiation embrittlement of reactor pressure vessel material for long life operation. An alternative test method for evaluating the irradiation embrittlement of the pressure vessel material will have to be proposed to support the limited number of surveillance test specimens in order to manage the plant life to be extended. In this study, ultrasonic testing for irradiated A533B-1 steel and weld metal was applied to examine material degradation nondestructively. With increasing the shift of Charpy 41 J transition temperature, ultrasonic velocity decreased and attenuation coefficient of ultrasonic wave increased. Especially, the difference of ultrasonic velocity for 5 MHz shear wave between as-received and irradiated material is corresponding to the shift of transition temperature showing material degradation. (author)

  12. Ultrasonic Examination of Double-Shell Tank 241-AY-101 Examination Completed August 2003

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2003-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-AY-101. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the secondary tank. The requirements for the ultrasonic examination of Tank 241-AY-101 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning or pitting that might be present in the wall of the secondary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP--11832 (Jensen 2002) and summarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA ultrasonic examinations

  13. Ultrasonic Examination of Double-Shell Tank 241-AP-104. Examination Completed August 2004

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2004-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-AP-104. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-AP-104 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-17750 (Jensen 2003) and summarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA ultrasonic examinations

  14. Ultrasonic Examination of Double-Shell Tank 241-SY-103. Examination completed February 2004

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2004-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-SY-103. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-SY-103 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-17750 (Jensen 2003) and summarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA ultrasonic examinations

  15. Ultrasonic Examination of Double-Shell Tank 241-AZ-102 Examination Completed August 2003

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2003-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-AZ-102. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-AZ-102 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plat (ETP), RPP-11832 (Jensen 2002) and summarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA ultrasonic examinations

  16. 46 CFR 151.03-38 - Nondestructive testing.

    Science.gov (United States)

    2010-10-01

    ... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-38 Nondestructive testing. Nondestructive testing includes ultrasonic examination, liquid penetrant examination, magnetic particle... 46 Shipping 5 2010-10-01 2010-10-01 false Nondestructive testing. 151.03-38 Section 151.03-38...

  17. Evaluation of Ultrasonic and Thermal Nondestructive Evaluation for the Characterization of Aging Degradation in Braided Composite Materials

    Science.gov (United States)

    Martin, Richard E.

    2010-01-01

    This paper examines the ability of traditional nondestructive evaluation (NDE) techniques to measure the degradation of braided polymer composite materials subjected to thermal-humidity cycling to simulate aging. A series of braided composite coupons were examined using immersion ultrasonic and pulsed thermography techniques in the as received condition. These same specimens were then examined following extended thermal-humidity cycling. Results of this examination did not show a significant change in the resulting (NDE) signals.

  18. A Monte Carlo approach applied to ultrasonic non-destructive testing

    Science.gov (United States)

    Mosca, I.; Bilgili, F.; Meier, T.; Sigloch, K.

    2012-04-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and architectural structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to combine non-destructive testing with a theoretical data analysis and hence to contribute to conservation strategies of archaeological and architectural structures. We analyze ultrasonic waveforms measured at the surface of a variety of samples, and define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface

  19. Research on nondestructive examination methods for CANDU fuel channel inspection

    International Nuclear Information System (INIS)

    Soare, M.; Petriu, F.; Toma, V.; Revenco, V.; Calinescu, A.; Ciocan, R.; Iordache, C.; Popescu, L.; Mihalache, M.; Murgescu, C.

    1995-01-01

    The requirements of the 1994 edition of CAN/CSA-N285.4 Periodic Inspection Standard, which address all known and postulated degradation mechanisms and introduce material surveillance demands, involve a growing need for improved nondestructive examination (NDE) methods and technologies. In order to have a proper technical support in its decisions concerning fuel channel inspections at Cernavoda NPP, the Romanian Power Authority (RENEL) initiated a Research Program regarding the nondestructive characterization of the fuel channels structural integrity. The paper presents the most significant results obtained on this Research Program: the ENDUS experimental system for Laboratory simulation of the fuel channel inspection, ultrasonic Rayleigh-Lamb waves technique for pressure tubes examination, phase analysis technique for near-surface flaws, influence of the metallurgical state of the pressure tube material on the eddy current defectoscopic signals, characterization of plastic deformation and fracture of zirconium alloys by acoustic emission. (author)

  20. Ultrasonic Examination of Double-Shell Tank 214-AW-102 Knuckle Region. Examination completed February 2003

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2003-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic examination of the knuckle region of Double-Shell Tank 241-AW-102 utilizing the Remotely Operated Nondestructive Examination (RONDE) system. The purpose of this examination was to provide information that could be used to evaluate the integrity of the knuckle region of the primary tank. The requirements for the ultrasonic examination of Tank 241-AW-102 were to detect, characterize (identify, size, and locate), and record measurements made of any circumferentially oriented cracks that might be present in the knuckle area of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-7869, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided t o PNNL for third-party evaluation. PNNL is responsible for preparing a report(s) that describes the results of the COGEMA ultrasonic examinations

  1. Nondestructive Determination of Reinforcement Volume Fractions in Particulate Composites : Ultrasonic Method

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo

    1998-01-01

    A nondestructive ultrasonic technique is presented for estimating the reinforcement volume fractions of particulate composites. The proposed technique employs a theoretical model which accounts for composite microstructures, together with a measurement of ultrasonic velocity to determine the reinforcement volume fractions. The approach is used for a wide range of SiC particulate reinforced Al matrix (SiC p /AI) composites. The method is considered to be reliable in determining the reinforcement volume fractions. The technique could be adopted in a production unit for the quality assessment of the metal matrix particulate composite extrusions

  2. Ultrasonic C-scan Technique for Nondestructive Evaluation of Spot Weld Quality

    International Nuclear Information System (INIS)

    Park, Ik Gun

    1994-01-01

    This paper discusses the feasibility of ultrasonic C-scan technique for nondestructive evaluation of spot weld quality. Ultrasonic evaluation for spot weld quality was performed by immersion method with the mechanical and the electronic scanning of point-focussed ultrasonic beam(25 MHz). For the sake of the approach to the quantitative measurement of nugget diameter and the discrimination of the corona bond from nugget, preliminary infinitesimal gap experiment by newton ring is tried in order to set up the optimum ultrasonic test condition. Ultrasonic image data obtained were confirmed and compared by optical microscope and SAM(Scanning Acoustic Microscope) observation of the spot-weld cross section. The results show that the nugget diameter can be measured with the accuracy of 1.0mm, and voids included in nugget can be detected to 10μm extent with simplicity and accuracy. Finally, it was found that it is necessary to make a profound study of definite discrimination of corona bond from nugget and the approach of quantitative evaluation of nugget diameter by utilizing the various image processing techniques

  3. Integration of nondestructive examination reliability and fracture mechanics

    International Nuclear Information System (INIS)

    Doctor, S.R.; Bates, D.J.; Charlot, L.A.

    1985-01-01

    The primary pressure boundaries (pressure vessels and piping) of nuclear power plants are in-service inspected (ISI) according to the rules of ASME Boiler and Pressure Vessel Code, Section XI. Ultrasonic techniques are normally used for these inspections, which are periodically performed on a sampling of welds. The Integration of Nondestructive Examination (NDE) Reliability and Fracture Mechanics (FM) Program at Pacific Northwest Laboratory was established to determine the reliability of current ISI techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this NRC program are to: 1) determine the reliability of ultrasonic ISI performed on commercial light-water reactor primary systems; 2) using probabilistic FM analysis, determine the impact of NDE unreliability on system safety and determine the level of inspection reliability required to ensure a suitably low failure probability; 3) evaluate the degree of reliability improvement that could be achieved using improved and advanced NDE techniques; and 4) based on material properties, service conditions, and NDE uncertainties, formulate recommended revisions to ASME Code, Section XI, and Regulatory Requirements needed to ensure suitably low failure probabilities

  4. Research of the ultrasonic testing parts reconditioned by welding

    Directory of Open Access Journals (Sweden)

    C. Petriceanu

    2016-07-01

    Full Text Available The paper presents the results obtained following the nondestructive ultrasonic testing of crankpin shaft of a crankshaft that were reconditioned by welding. After the ultrasonic testing, the reconditioned samples were cut and subjected to visual testing and microstructure examination. When the results obtained following the nondestructive tests were analyzed, it was observed that the ultrasonic nondestructive testing method is an efficient way to determine the conformity of the areas that were reconditioned by welding.

  5. Physical Principles Pertaining to Ultrasonic and Mechanical Properties of Anisotropic Media and Their Application to Nondestructive Evaluation of Fiber-Reinforced Composite Materials

    Science.gov (United States)

    Handley, Scott Michael

    The central theme of this thesis is to contribute to the physics underlying the mechanical properties of highly anisotropic materials. Our hypothesis is that a fundamental understanding of the physics involved in the interaction of interrogating ultrasonic waves with anisotropic media will provide useful information applicable to quantitative ultrasonic measurement techniques employed for the determination of material properties. Fiber-reinforced plastics represent a class of advanced composite materials that exhibit substantial anisotropy. The desired characteristics of practical fiber -reinforced composites depend on average mechanical properties achieved by placing fibers at specific angles relative to the external surfaces of the finished part. We examine the physics underlying the use of ultrasound as an interrogation probe for determination of ultrasonic and mechanical properties of anisotropic materials such as fiber-reinforced composites. Fundamental constituent parameters, such as elastic stiffness coefficients (c_{rm IJ}), are experimentally determined from ultrasonic time-of-flight measurements. Mechanical moduli (Poisson's ratio, Young's and shear modulus) descriptive of the anisotropic mechanical properties of unidirectional graphite/epoxy composites are obtained from the ultrasonically determined stiffness coefficients. Three-dimensional visualizations of the anisotropic ultrasonic and mechanical properties of unidirectional graphite/epoxy composites are generated. A related goal of the research is to strengthen the connection-between practical ultrasonic nondestructive evaluation methods and the physics underlying quantitative ultrasonic measurements for the assessment of manufactured fiber-reinforced composites. Production defects such as porosity have proven to be of substantial concern in the manufacturing of composites. We investigate the applicability of ultrasonic interrogation techniques for the detection and characterization of porosity in

  6. Basic Principles and Utilization Possibilities’ of Ultrasonic Phased Array in Material Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Dagmar Faktorova

    2004-01-01

    Full Text Available The paper deals with the basic principles of operation and with the utilization possibilities of phased array (PA in materials nondestructive testing (NDT. The first part deals with description of PA arrangement modes, which enable to generate, focus and steer the ultrasonic beem. The second part deals with the description of electromagnetic acoustic transducer PA operation. The last part deals with the description of the utilization of PA in nondestructive testing of conductive materials and the advantages of PA utilization in inhomogeneous materials NDT.

  7. Ultrasonic Examination of Double-Shell Tank 241-SY-102. Examination Completed June 2004

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2004-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-SY-102. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-SY-102 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-17750 (Jensen 2003) and/SUMmarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA

  8. Characterization of Heat Treated Titanium-Based Implants by Nondestructive Eddy Current and Ultrasonic Tests

    Science.gov (United States)

    Mutlu, Ilven; Ekinci, Sinasi; Oktay, Enver

    2014-06-01

    This study presents nondestructive characterization of microstructure and mechanical properties of heat treated Ti, Ti-Cu, and Ti-6Al-4V titanium-based alloys and 17-4 PH stainless steel alloy for biomedical implant applications. Ti, Ti-Cu, and 17-4 PH stainless steel based implants were produced by powder metallurgy. Ti-6Al-4V alloy was investigated as bulk wrought specimens. Effects of sintering temperature, aging, and grain size on mechanical properties were investigated by nondestructive and destructive tests comparatively. Ultrasonic velocity in specimens was measured by using pulse-echo and transmission methods. Electrical conductivity of specimens was determined by eddy current tests. Determination of Young's modulus and strength is important in biomedical implants. Young's modulus of specimens was calculated by using ultrasonic velocities. Calculated Young's modulus values were compared and correlated with experimental values.

  9. Advanced non-destructive methods for an efficient service performance

    International Nuclear Information System (INIS)

    Rauschenbach, H.; Clossen-von Lanken Schulz, M.; Oberlin, R.

    2015-01-01

    Due to the power generation industry's desire to decrease outage time and extend inspection intervals for highly stressed turbine parts, advanced and reliable Non-destructive methods were developed by Siemens Non-destructive laboratory. Effective outage performance requires the optimized planning of all outage activities as well as modern Non-destructive examination methods, in order to examine the highly stressed components (turbine rotor, casings, valves, generator rotor) reliably and in short periods of access. This paper describes the experience of Siemens Energy with an ultrasonic Phased Array inspection technique for the inspection of radial entry pinned turbine blade roots. The developed inspection technique allows the ultrasonic inspection of steam turbine blades without blade removal. Furthermore advanced Non-destructive examination methods for joint bolts will be described, which offer a significant reduction of outage duration in comparison to conventional inspection techniques. (authors)

  10. Measurement of void swelling in thick non-uniformly irradiated 304 stainless steel blocks using nondestructive ultrasonic techniques

    International Nuclear Information System (INIS)

    Garner, F.A.; Okita, T.; Isobe, Y.; Etoh, J.; Sagisaka, M.; Matsunaga, T.; Freyer, P.D.; Huang, Y.; Wiezorek, J.M.K.; Porter, D.L.

    2015-01-01

    Void swelling is of potential importance in PWR austenitic internals, especially in components that will see higher doses during plant lives beyond 40 years. Proactive surveillance of void swelling is required to identify its emergence before swelling reaches levels that cause high levels of embrittlement and distortion. Non-destructive measurements of ultrasonic velocity can measure swelling at fractions of a percent. To demonstrate the feasibility of this technique for PWR application we have investigated five blocks of 304 stainless steel that were irradiated in the EBR-II fast reactor. These blocks were of hexagonal cross-section, with thickness of about 50 mm and lengths of about 218-245 mm. They were subjected to significant axial and radial gradients in gamma heating, temperature and dpa rate, producing complex internal distributions of swelling, reaching about 3.5% maximum at an off-center mid-core position. Swelling decreases both the density and the elastic moduli, thereby impacting the ultrasonic velocity. Concurrently, carbide precipitates form, producing increases in density and decreases in elastic moduli. Using blocks from both low and high dpa levels it was possible to separate the ultrasonic contributions of voids and carbides. Time-of-flight ultrasonic measurements were used to non-destructively measure the internal distribution of void swelling. These distributions were confirmed using non-destructive profilometry followed by destructive cutting to provide density change and electron microscopy data. It was demonstrated that the four measurement types produce remarkably consistent results. Therefore ultrasonic measurements offer great promise for in-situ surveillance of voids in PWR core internals. (authors)

  11. The Elastic Constants Measurement of Metal Alloy by Using Ultrasonic Nondestructive Method at Different Temperature

    Directory of Open Access Journals (Sweden)

    Eryi Hu

    2016-01-01

    Full Text Available The ultrasonic nondestructive method is introduced into the elastic constants measurement of metal material. The extraction principle of Poisson’s ratio, elastic modulus, and shear modulus is deduced from the ultrasonic propagating equations with two kinds of vibration model of the elastic medium named ultrasonic longitudinal wave and transverse wave, respectively. The ultrasonic propagating velocity is measured by using the digital correlation technique between the ultrasonic original signal and the echo signal from the bottom surface, and then the elastic constants of the metal material are calculated. The feasibility of the correlation algorithm is verified by a simulation procedure. Finally, in order to obtain the stability of the elastic properties of different metal materials in a variable engineering application environment, the elastic constants of two kinds of metal materials in different temperature environment are measured by the proposed ultrasonic method.

  12. A study on the nondestructive evaluation of carbon/carbon disk using ultrasonics

    International Nuclear Information System (INIS)

    Im, Kwang Hee; Yang, In Young; Jeong, Hyun Jo

    1998-01-01

    It is useful to perform nondestructive evaluation (NDE) to assess material properties and part homogeneity for carbon/carbon (C/C) composites because the manufacturing of C/C brake disks requires complicated and costly processes. In this work several ultrasonic techniques were applied to attributable to the manufacturing process. In a carbon/carbon brake disk manufactured by a combination of pitch impregnation and CVI(Vapor infiltration method), the spatial variation of ultrasonic velocity was measured and found to be consistent with the nonuniform densification behavior in the manufacturing process. Low frequency(5 MHz) through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. These results were compared with those obtained by dry-coupling ultrasonics. A good correlation was found between ultrasonic velocity and material density on a set of small blocks cut out of the disk. Pulse-echo C-scans at higher frequency (25 MHz) were used to image near-sulfate material property anomalies associated with certain steps in the manufacturing process, such as the placement of spacers between disks during the final CVI.

  13. Non-destructive evaluation of concrete using ultrasonic pulse velocity

    International Nuclear Information System (INIS)

    Lawson, I.

    2008-06-01

    Ultrasonic pulse velocity is one of the most popular non-destructive techniques used in the assessment of concrete properties. This thesis investigates the relationship between using ultrasonic pulse velocity (UPV) and the conventional compressive strength tests to determine concrete uniformity. The specimens used in the studies were made of concrete with a paste content of 18% and the constituents of the specimens varied in different water-cement ratios (w/c). The UPV measurement and compressive strength tests were carried out at the concrete age of 2, 7, 15 and 28 days. The UPV and the compressive strength of concrete increase with age, but the growth rate varies with mixture proportion. A relationship curve is drawn between UPV and compressive strength for concrete having different w/c from 0.35 to 0.7. Tests were also performed using Ultrasonic Pulse Velocity Method (UPVM) in detecting discontinuity and determining its depth during the early age of concrete. The test results indicate that the UPVM can be used to assess the in-situ properties of concrete or for quality control on site. The accuracy of the UPVM in detecting discontinuities ranges from 55.75 to 98.70% for ages 3 to 28 (full strength) respectively. (au)

  14. Status report on the destructive and non-destructive examinations of U-bends removed from Trojan steam generator D

    International Nuclear Information System (INIS)

    Aspden, R.G.

    1981-01-01

    The last status report on the non-destructive examination of U-bends removed from Trojan steam generator D was dated July 7, 1980. As part of this activity, the measurement of wall thicknesses on selected U-bends was planned using an ultrasonic gage. These readings were not made because reproducible results could not be obtained using water as the coupling fluid which was necessary to avoid contamination. Three tubes from the same heat were selected for destructive examination at Westinghouse: one leaking U-bend (R1-C6) and two tubes with no indications (R1-C10 and R1-C22). Results of the examination procedure are presented. The non-destructive examination results from the July 7, 1980 report for 29 U-bends are included

  15. Quality assurance of brazed copper plates through advanced ultrasonic NDE

    OpenAIRE

    Segreto, T.; Caggiano, A.; Teti, R.

    2016-01-01

    Ultrasonic non-destructive methods have demonstrated great potential for the detection of flaws in a material under examination. In particular, discontinuities produced by welding, brazing, and soldering are regularly inspected through ultrasonic techniques. In this paper, an advanced ultrasonic non-destructive evaluation technique is applied for the quality control of brazed copper cells in order to realize an accelerometer prototype for cancer proton therapy. The cells are composed of two h...

  16. Comparisons of non-destructive examination standards in the framework of fracture mechanics approach

    International Nuclear Information System (INIS)

    Reale, S.; Corvi, A.

    1993-01-01

    One of the aims of the various Engineering Standards related to Non-destructive Examination (NDE) is to identify and limit some characteristics of defects in a structure, since the degree of damage of a structure can be associated with these defect characteristics. One way that the damage level can be evaluated is by means of Fracture Mechanics. The objective of the present paper is to compare and identify the differences in the flaw acceptance criteria of national NDE Standards so as to suggest some guidelines for a future common European Standard. This paper examines the Standards adopted in France (RCC-MR), Germany (DIN), Italy (ASME) and the UK (BSI). It concentrates on both ultrasonic and radiographic inspection methods. The flaw acceptance criteria in these standards relating to non-destructive tests performed on a component during manufacturing are compared and evaluated by the Fracture Mechanics CEGB R6 procedure. General guidelines and results supporting the significance of the Fracture Mechanics approach are given. (Author)

  17. Nondestructive characterization of metal-matrix-composites by ultrasonic technique

    International Nuclear Information System (INIS)

    Lee, Joon Hyun

    1992-01-01

    Nondestructive characterizations using ultrasonic technique were conducted systematically on Al 2 O 3 short fiber reinforced pure Al and AC8A aluminium metal-matrix composites. In order to determine the elastic moduli of metal-matrix composites(MMCs), Al 2 O 3 /AC8A composites with volume fraction of Al 2 O 3 short fiber varying up to 30% were fabricated by squeeze casting technique. Pure Al and AC8A reinforced with Al 2 O 3 short fiber were also fabricated by changing the fabrication parameters such as the applied pressure, the volume fraction of fiber. The Influences of texture change associated with change of fabrication parameters were investigated using the sophisticated LFB acoustic microscope with the frequency of 225 MHz. Ultrasonic velocities of longitudinal, shear and Rayleigh waves of the composites were measured by pulse-echo method and line-focus-beam(LBF) acoustic microscope. Ultrasonic velocities of the longitudinal, the shear and Rayleigh waves were found to correlate primarily with the volume fraction of Al 2 O 3 . The elastic constants of composites including Young's Modulus, Shear Modulus, Bulk Modulus and Poisson's ratio were determined on the basis of the longitudinal and the shear wave velocities measured by an ultrasonic pulse-echo method. The Young's Modulus of the composites obtained by ultrasonic technique were slightly lower than those measured by 4-point-bend test and also showed relatively good agreements with the calculated results derived from the equal stress condition. The applicability of LFB acoustic microscope on material characterization of the MMCs was discussed on the basis of the relationships between Rayleigh wave velocity as a function of rotated angle of specimen and fabrication parameters of the MMCs.

  18. Catalogue of test specimens for non-destructive examination

    International Nuclear Information System (INIS)

    1985-05-01

    One of the key elements in assuring the integrity of reactor primary circuits is the availability of trustworthy non-destructive methods for detecting dangerous defects that may be present. Various approaches to making such examinations are being developed, including the use of ultrasonic and radiographic techniques. To demonstrate their capability and reliability, they must be tested on steel specimens reproducing the various types of faults which may arise in real primary circuit vessels and piping. Such specimens are costly to fabricate. It is therefore clearly desirable that existing specimens should be made accessible to as many organisations as possible for testing. This catalogue contains detailed Information on forty-odd deliberately flawed plates, blocks, vessels, etc. which have been produced in OECD countries, along with the name of a contact person to whom inquiries should be directed in each case

  19. Review of progress in quantitative nondestructive evaluation

    International Nuclear Information System (INIS)

    Thompson, D.O.; Chimenti, D.E.

    1983-01-01

    A comprehensive review of the current state of quantitative nondestructive evaluation (NDE), this volume brings together papers by researchers working in government, private industry, and university laboratories. Their papers cover a wide range of interests and concerns for researchers involved in theoretical and applied aspects of quantitative NDE. Specific topics examined include reliability probability of detection--ultrasonics and eddy currents weldments closure effects in fatigue cracks technology transfer ultrasonic scattering theory acoustic emission ultrasonic scattering, reliability and penetrating radiation metal matrix composites ultrasonic scattering from near-surface flaws ultrasonic multiple scattering

  20. Nondestructive testing method

    International Nuclear Information System (INIS)

    Porter, J.F.

    1996-01-01

    Nondestructive testing (NDT) is the use of physical and chemical methods for evaluating material integrity without impairing its intended usefulness or continuing service. Nondestructive tests are used by manufaturer's for the following reasons: 1) to ensure product reliability; 2) to prevent accidents and save human lives; 3) to aid in better product design; 4) to control manufacturing processes; and 5) to maintain a uniform quality level. Nondestructive testing is used extensively on power plants, oil and chemical refineries, offshore oil rigs and pipeline (NDT can even be conducted underwater), welds on tanks, boilers, pressure vessels and heat exchengers. NDT is now being used for testing concrete and composite materials. Because of the criticality of its application, NDT should be performed and the results evaluated by qualified personnel. There are five basic nondestructive examination methods: 1) liquid penetrant testing - method used for detecting surface flaws in materials. This method can be used for metallic and nonmetallic materials, portable and relatively inexpensive. 2) magnetic particle testing - method used to detect surface and subsurface flaws in ferromagnetic materials; 3) radiographic testing - method used to detect internal flaws and significant variation in material composition and thickness; 4) ultrasonic testing - method used to detect internal and external flaws in materials. This method uses ultrasonics to measure thickness of a material or to examine the internal structure for discontinuities. 5) eddy current testing - method used to detect surface and subsurface flaws in conductive materials. Not one nondestructive examination method can find all discontinuities in all of the materials capable of being tested. The most important consideration is for the specifier of the test to be familiar with the test method and its applicability to the type and geometry of the material and the flaws to be detected

  1. Construction appraisal team inspection results on welding and nondestructive examination activities

    International Nuclear Information System (INIS)

    Wu, P.C.S.; Shaaban, H.I.

    1987-09-01

    This report summarizes data and findings on deficiencies and discrepancies in welding and nondestructive examination (NDE) activities identified by the US Nuclear Regulatory Commission Construction Appraisal Team (CAT) during its inspection of 11 plants. The CAT reviewed selected welds and NDE packages in its inspection of the following plant areas: piping and pipe supports and/or restraints; modification and installation of reactor internals; electrical installations and electrical supports; instrumentation tubing and supports; heating, ventilation, and air conditioning (HVAC) systems and supports; fabrication and erection of structural steel; fabrication of refueling cavity and spent fuel pool liner; containment liner and containment penetrations; and fire protection systems. The CAT inspected both structural welds and pressure-retaining welds and reviewed welder qualification test records and welding procedure documents for code compliance. The NDE activities that were evaluated included visual examination, magnetic particle examination, liquid penetrant examination, ultrasonic examination, and radiographic examination of welds. 4 refs., 14 figs., 15 tabs

  2. Design and fabrication of liner-arroy ultrasonic transducer using KLM and FEM simulation for non-destructive testing

    International Nuclear Information System (INIS)

    Park, Chan Yuk; Sung, Jin Ho; Jeong, Jong Seob

    2015-01-01

    In this paper, a linear-array transducer capable of overcoming the faults of a single element and phased array transducers with convex shape for non-destructive ultrasonic testing was designed and fabricated. A 5.5 MHz linear-array transducer was designed using the PiezoCAD program based on the KLM analysis and the PZFlex program based on the FEM analysis. A 2-2 composite structure was employed to achieve broad-band characteristics. A 128 element linear-array transducer was fabricated and its performance was compared with the simulation results. The center frequency of the fabricated transducer was 5.5 Mhzand the -6 dB frequency bandwidth was 70 %. Thus, we expect that the designed transducer can provide an effective inner image of the test material during non-destructive ultrasonic testing.

  3. Design and fabrication of liner-arroy ultrasonic transducer using KLM and FEM simulation for non-destructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Yuk; Sung, Jin Ho; Jeong, Jong Seob [Dept. of Medical Biotechnology, Dongguk University Biomedi Campus, Goyang (Korea, Republic of)

    2015-04-15

    In this paper, a linear-array transducer capable of overcoming the faults of a single element and phased array transducers with convex shape for non-destructive ultrasonic testing was designed and fabricated. A 5.5 MHz linear-array transducer was designed using the PiezoCAD program based on the KLM analysis and the PZFlex program based on the FEM analysis. A 2-2 composite structure was employed to achieve broad-band characteristics. A 128 element linear-array transducer was fabricated and its performance was compared with the simulation results. The center frequency of the fabricated transducer was 5.5 Mhzand the -6 dB frequency bandwidth was 70 %. Thus, we expect that the designed transducer can provide an effective inner image of the test material during non-destructive ultrasonic testing.

  4. Research program plan. Non-destructive examination. Volume 4

    International Nuclear Information System (INIS)

    Muscara, J.

    1985-07-01

    Nondestructive examination/evaluation (NDE) of nuclear reactor components is required during fabrication, before service, and at regularly scheduled shutdowns for periodic inservice inspection (ISI). Any flaws produced during fabrication should be detected by the fabrication and preservice baseline examinations and components containing rejectable flaws should be repaired before the reactor enters service. The purpose of ISI is to ensure that any flaws which develop during service can be detected and evaluated and that unacceptable components are repaired or replaced to maintain safety, as well as to identify possible generic-type defects that may be present or developing in the remainder of the system or other similar systems so that timely corrective actions can be taken. The major thrusts of the research in ultrasonic testing for ISI are (1) to define the influence of inspection variables and procedures on inspection reliability and to determine the impact of inspection unreliability on system safety and (2) to study and evaluate improved techniques for reliable and accurate flaw detection and characterization. This research, therefore, has direct impact on evaluations of and improvements in reactor safety

  5. Pattern recognition approach to nondestructive evaluation of materials

    International Nuclear Information System (INIS)

    Chen, C.H.

    1987-01-01

    In this paper, a pattern recognition approach to the ultrasonic nondestructive evaluation of materials is examined. Emphasis is placed on identifying effective features from time and frequency domains, correlation functions and impulse responses to classify aluminum plate specimens into three major defect geometry categories: flat, angular cut and circular hole defects. A multi-stage classification procedure is developed which can further determine the angles and sizes for defect characterization and classification. The research clearly demonstrates that the pattern recognition approach can significantly improve the nondestructive material evaluation capability of the ultrasonic methods without resorting to the solution of highly complex mathematical inverse problems

  6. Non-destructive Engineering

    International Nuclear Information System (INIS)

    Ko, Jin Hyeon; Ryu, Taek In; Ko, Jun Bin; Hwang, Yong Hwa

    2006-08-01

    This book gives descriptions of non-destructive engineering on outline of non-destructive test, weld defects, radiographic inspection radiography, ultrasonic inspection, magnetic particle testing, liquid penetrant testing, eddy current inspection method, strain measurement, acoustic emission inspection method, other non-destructive testing like leakage inspection method, and non-destructive mechanics for fault analysis such as Griffiths creaking theory, and stress analysis of creaking.

  7. The Design Of The Ultrasonic Nondestructive Testing System Based On The EMAT

    Directory of Open Access Journals (Sweden)

    Cheng Huan Xin

    2016-01-01

    Full Text Available This paper introduces a kind of based on the electromagnetic acoustic transducer (EMAT metal pipeline detection system, fusion of two dimensional orientation, shape unique technological innovation, implementation of various metal pipe wall corrosion situation of rapid, accurate, fully automated non-destructive testing.In the aspect of hardware design, single-chip microcomputer control was achieved by C language programming the launch of the pulse signal. Pulse signal was sent to launch circuit, ultrasonic signal. Design of preamplifier, controllable gain amplifier two-stage amplifier circuit for receiving signal is amplified. Including data acquisition circuit detection circuit and A/D conversion circuit, single chip microcomputer and the LabVIEW platform via A serial port communication agreement. In the aspect of software design, the design of the EMAT pipe nondestructive testing system based on LabVIEW human-computer interaction interface.

  8. A review of nondestructive examination technology for polyethylene pipe in nuclear power plant

    Science.gov (United States)

    Zheng, Jinyang; Zhang, Yue; Hou, Dongsheng; Qin, Yinkang; Guo, Weican; Zhang, Chuck; Shi, Jianfeng

    2018-05-01

    Polyethylene (PE) pipe, particularly high-density polyethylene (HDPE) pipe, has been successfully utilized to transport cooling water for both non-safety- and safety-related applications in nuclear power plant (NPP). Though ASME Code Case N755, which is the first code case related to NPP HDPE pipe, requires a thorough nondestructive examination (NDE) of HDPE joints. However, no executable regulations presently exist because of the lack of a feasible NDE technique for HDPE pipe in NPP. This work presents a review of current developments in NDE technology for both HDPE pipe in NPP with a diameter of less than 400 mm and that of a larger size. For the former category, phased array ultrasonic technique is proven effective for inspecting typical defects in HDPE pipe, and is thus used in Chinese national standards GB/T 29460 and GB/T 29461. A defect-recognition technique is developed based on pattern recognition, and a safety assessment principle is summarized from the database of destructive testing. On the other hand, recent research and practical studies reveal that in current ultrasonic-inspection technology, the absence of effective ultrasonic inspection for large size was lack of consideration of the viscoelasticity effect of PE on acoustic wave propagation in current ultrasonic inspection technology. Furthermore, main technical problems were analyzed in the paper to achieve an effective ultrasonic test method in accordance to the safety and efficiency requirements of related regulations and standards. Finally, the development trend and challenges of NDE test technology for HDPE in NPP are discussed.

  9. Ultrasonic non-destructive testing on CFC monoblock divertor mock-up

    International Nuclear Information System (INIS)

    Ezato, K.; Taniguchi, M.; Sato, K.; Araki, M.; Akiba, M.

    2001-01-01

    Non-destructive ultrasonic testing has been applied for the characterization of joints by means of a polymer transducer. One of the advantages of the polymer transducer is flexibility in its shape and the possibility to install multiple transducers in one probe, which can reduce the time for inspection. As a first step, the size effect of the transducer on the resolution and sensitivity was examined to detect the joint flaw. Transducers with circumferential angles of 5 , 10 and 30 were tested. For this test a small divertor element with a driller hole was prepared, which simulates a joint defect. The transducers with angles of 30 could not characterize the size of the artificial joint flaw. On the contrary, the size of the artificial defect was successfully detected with an accuracy of 90% by means of the transducers with angles of 5 and 10 . From the viewpoint of the sensitivity of the detection of the joint flaw, the transducer with the angle of 10 is appropriate because it could detect the largest intensity of the reflected signal caused by the same artificial defect of the joint interface. (orig.)

  10. Nondestructive evaluation of adhesive joints by C-scan ultrasonic testing

    International Nuclear Information System (INIS)

    Zeighami, Mehdi; Honarvar, Farhang

    2009-01-01

    Evaluation of the quality of adhesive bonding is an important issue in many industries who incorporate adhesive joints in their products. Over the past few decades, numerous acoustical techniques have been developed for nondestructive testing (NDT) of adhesively bonded joints. Among these techniques, the ultrasonic pulse-echo method is the most promising means for inspection of adhesive bonds. In practice, due to low impedance matching between adhesive and metal, the discrimination of a good bond from a bad bond is difficult. The low impedance matching also results in low contrast between perfect and disbanded zone in a C-scan image. In this paper, the quality of the interface between aluminum and epoxy is investigated by using an in-house built ultrasonic C-scan system. Two adhesion indices are proposed for producing C-scan images. To verify the capability of these indices, an adhesively bonded sample was fabricated using aluminum plates and epoxy. An artificial defect was implanted in the first interface of the specimens. The C-scan measurement prepared based on the proposed indices was able to reveal the defect much better than the C-scan image prepared by conventional approach. (author)

  11. Non-destructive Inspection of Top-Down Construction Joints of Column in SRC Structure using Ultrasonic Method

    International Nuclear Information System (INIS)

    Park, Seok Kyun; Baek, Un Chan; Lee, Han Bum; Kim, Myoung Mo

    2000-01-01

    The joint treatment of concrete is one of the technical problems in top down construction method. Joints created with the top down construction result in serious weakness from the aspects of both structural and water-barrier function. Ultrasonic method was used for the inspection of top down construction joints of a various column in SRC structure in this study. The advantages and limitations of this method for non-destructive inspection in top down construction joints are investigated. As a result, it has been verified that the semi-direct measurement method is more effective than the other methods for detecting the voids of construction joints using ultrasonic method

  12. Ultrasonic nondestructive materials characterization

    Science.gov (United States)

    Green, R. E., Jr.

    1986-01-01

    A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.

  13. Effect of decision making on ultrasonic examination performance

    International Nuclear Information System (INIS)

    Harris, D.H.

    1992-05-01

    A decision aid was developed to overcome examiner limitations in information processing and decision making during ultrasonic examinations. The aid provided a means of noting signal characteristics as they were observed during the examination, and of presenting them simultaneously for decision making. The aid also served as a way of providing detailed feedback on examination performance during training. The aid was incorporated into worksheets used for the conduct of practice examinations during ultrasonic examination training. To support the introduction and use of the decision aid, one hour of supplementary training was inserted in an existing 64-hour training course on ultrasonic detection of defects. This study represented a modest step in improving the performance of ultrasonic examinations in nuclear power plants. Findings indicated that aided decision making supported by limited training can significantly improve ultrasonic detection performance

  14. Ultrasonic Imaging Technology Helps American Manufacturer of Nondestructive Evaluation Equipment Become More Competitive in the Global Market

    Science.gov (United States)

    1995-01-01

    Sonix, Inc., of Springfield, Virginia, has implemented ultrasonic imaging methods developed at the NASA Lewis Research Center. These methods have heretofore been unavailable on commercial ultrasonic imaging systems and provide significantly more sensitive material characterization than conventional high-resolution ultrasonic c-scanning. The technology transfer is being implemented under a cooperative agreement between NASA and Sonix, and several invention disclosures have been submitted by Dr. Roth to protect Lewis interests. Sonix has developed ultrasonic imaging systems used worldwide for microelectronics, materials research, and commercial nondestructive evaluation (NDE). In 1993, Sonix won the U.S. Department of Commerce "Excellence in Exporting" award. Lewis chose to work with Sonix for two main reasons: (1) Sonix is an innovative leader in ultrasonic imaging systems, and (2) Sonix was willing to apply the improvements we developed with our in-house Sonix equipment. This symbiotic joint effort has produced mutual benefits. Sonix recognized the market potential of our new and highly sensitive methods for ultrasonic assessment of material quality. We, in turn, see the cooperative effort as an effective means for transferring our technology while helping to improve the product of a domestic firm.

  15. Metal composite as backing for ultrasonic transducers dedicated to non-destructive measurements in hostile

    International Nuclear Information System (INIS)

    Boubenia, R; Rosenkrantz, E; P, P; Ferrandis, J-Y; Despetis, F

    2016-01-01

    Our team is specialized in ultrasonic measurements in hostile environment especially under high temperatures. There is a need for acoustic transducers capable of continuous measurement at temperatures up to 700°C. To improve the performances of acoustic sensors we focus our works on the realisation and characterisation of transducer backings able to operate under very high temperature. Commercially, they are produced by the incorporation of tungsten powder in a plastic matrix, which limits the working temperature. The realisation of ultrasonic transducers for non-destructive measures at high temperatures requires adequate materials, manufacturing and assembly processes. To produce the backings, composites were made using very ductile metals such as tin and tungsten. These composites are manufactured by uniaxial hot pressing. First, we studied the influence of temperature and pressure on the densification of tin pellets. Then, several specimens made of tin/W were made and characterised by measuring the specific weight, speed and attenuation of sound. The acoustic measures were realised by ultrasonic spectroscopy. This test-bench was designed and tested on control samples of PMMA and on standard backings (epoxy / tungsten). (paper)

  16. Nondestructive characterization of austenitic stainless steels

    International Nuclear Information System (INIS)

    Jayakumar, T.; Kumar, Anish

    2010-01-01

    The paper presents an overview of the non-destructive methodologies developed at the authors' laboratory for characterization of various microstructural features, residual stresses and corrosion in austenitic stainless steels. Various non-destructive evaluation (NDE) parameters such as ultrasonic velocity, ultrasonic attenuation, spectral analysis of the ultrasonic signals, magnetic hysteresis parameters and eddy current amplitude have been used for characterization of grain size, precipitation behaviour, texture, recrystallization, thermomechanical processing, degree of sensitization, formation of martensite from metastable austenite, assessment of residual stresses, degree of sensitization and propensity for intergranular corrosion in different austenitic steels. (author)

  17. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  18. Nondestructive examination development and demonstration plan

    International Nuclear Information System (INIS)

    Weber, J.R.

    1991-01-01

    Nondestructive examination (NDE) of waste matrices using penetrating radiation is by nature very subjective. Two candidate systems of examination have been identified for use in WRAP 1. This test plan describes a method for a comparative evaluation of different x-ray examination systems and techniques

  19. Proceedings for the nondestructive assay and nondestructive examination waste characterization conference. No. 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report contains paper presented at the 5th Nondestructive Assay and nondestructive Examination Waste Characterization conference. Topics included compliance, neutron NDA techniques, gamma NDA techniques, tomographic methods, and NDA modality and information combination techniques. Individual reports have been processed separately for the United States Department of Energy databases.

  20. Proceedings for the nondestructive assay and nondestructive examination waste characterization conference. No. 5

    International Nuclear Information System (INIS)

    1997-01-01

    This report contains paper presented at the 5th Nondestructive Assay and nondestructive Examination Waste Characterization conference. Topics included compliance, neutron NDA techniques, gamma NDA techniques, tomographic methods, and NDA modality and information combination techniques. Individual reports have been processed separately for the United States Department of Energy databases

  1. Uncertainty management in knowledge based systems for nondestructive testing-an example from ultrasonic testing

    International Nuclear Information System (INIS)

    Rajagopalan, C.; Kalyanasundaram, P.; Baldev Raj

    1996-01-01

    The use of fuzzy logic, as a framework for uncertainty management, in a knowledge-based system (KBS) for ultrasonic testing of austenitic stainless steels is described. Parameters that may contain uncertain values are identified. Methodologies to handle uncertainty in these parameters using fuzzy logic are detailed. The overall improvement in the performance of the knowledge-based system after incorporating fuzzy logic is discussed. The methodology developed being universal, its extension to other KBS for nondestructive testing and evaluation is highlighted. (author)

  2. Feasibility on Ultrasonic Velocity using Contact and Non-Contact Nondestructive Techniques for Carbon/Carbon Composites

    Science.gov (United States)

    Im, K. H.; Chang, M.; Hsu, D. K.; Song, S. J.; Cho, H.; Park, J. W.; Kweon, Y. S.; Sim, J. K.; Yang, I. Y.

    2007-03-01

    Advanced materials are to be required to have specific functions associated with extremely environments. One of them is carbon/carbon(C/C) composite material, which has obvious advantages over conventional materials. The C/Cs have become to be utilized as parts of aerospace applications and its low density, high thermal conductivity and excellent mechanical properties at elevated temperatures make it an ideal material for aircraft brake disks. Because of permeation of coupling medium such as water, it is desirable to perform contact-less nondestructive evaluation to assess material properties and part homogeneity. In this work, a C/C composite material was characterized with non-contact and contact ultrasonic methods using a scanner with automatic-data acquisition function. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. Especially ultrasonic images and velocities for C/C composite disk brake were compared and found to be consistent to some degree with the non-contact and contact ultrasonic measurement methods. Low frequency through-transmission scans based on both amplitude of the ultrasonic pulse was used for mapping out the material property inhomogeneity. Measured results were compared with those obtained by the dry-coupling ultrasonic UT system and through transmission method in immersion. Finally, feasibility has been found to measure and compare ultrasonic velocities of C/C composites with using the contact/noncontact peak-delay measurement method based on the pulse overlap method.

  3. Development of Hardware and Software for Automated Ultrasonic Testing

    International Nuclear Information System (INIS)

    Choi, Sung Nam; Lee, Hee Jong; Yang, Seung Ok

    2012-01-01

    Nondestructive testing (NDT) for the construction and operating of NPPs plays an important role in confirming the integrity of the NPPs. Especially, Automated ultrasonic testing (AUT) is one of the primary nondestructive examination methods for in-service inspection of the welding parts in major components in NPPs. AUT is a reliable nondestructive testing because the data of AUT are saved and reviewed with other examiners. Korea Hydro and Nuclear Power-Central Research Institute (KHNP-CRI) has developed an automated ultrasonic testing (AUT) system based on a high speed pulser-receiver. In combination with the designed software and hardware architecture, this new system permits user configurations for a wide range of user-specific applications through fully automated inspections using compact portable systems with up to eight channels. This paper gives an overview of hardware (H/W) and software (S/W) for the AUT system to inspect welds in NPPs

  4. Non-destructive controls

    International Nuclear Information System (INIS)

    Nouvet, A.

    1978-01-01

    The non-destructive controls permit, while respecting their integrity, the direct and individual examination of parts or complete objects as they are manufactured, as well as to follow the evolution of their eventual defects while in operation. The choice of control methods depends on the manufacturing process and shapes of parts, on the physical properties of their components as well as the nature, position and size of the defects which are likely to be detected. Whether it is a question of controls by means of ionizing radiation, flux of neutrons, ultrasons, acoustic source, sweating, magnetoscopy. Foucault currents, thermography, detection of leaks or non-destructive metallography, each has a limited field of application such that they are less competitive than complementary [fr

  5. Design - manufacturing and characterization of specific ultrasonic probes

    International Nuclear Information System (INIS)

    Petit, J.

    1985-01-01

    Optimization of ultrasonic examinations requires essentially to determine precisely parameters used for manufacturing of probes and to check characteristics of beams used. The system presented permits an automatic determination of dimensions of beams in conditions which are totally representative of those of their use. In the field of ultrasonic examinations a good estimate or knowledge of sound beams is of great help to solve difficult examination problems. The FRAMATOME's Centre d'Etude et de Recherche en Essais Non Destructifs (CEREND) : (Study and Research Center in Non-Destructive Testing) has developed and elaborated various techniques in order to improve ultrasonic examinations with specific probes. These techniques concern design, manufacturing and characterization of these probes

  6. Development of hotcell non-destructive examination techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Uhn; Yu, S. C.; Kang, B. S.; Byun, K. S. [Chungbuk National University, Chungju (Korea)

    2002-01-01

    The purpose of this project is to establish non-destructive examination techniques which needs to determine the status of spent nuclear fuel and/or bundles. Through the project, we will establish an image reconstruction tomography which is a kind of non-destructive techniques in Hotcell. The tomography technique can be used to identify the 2-dimensional density distribution of fission products in the spent fuel rods and/or bundles. And form results of the measurement and analysis of magnetic properties of neutron irradiated material in the press vessel and reactor, we will develop some techniques to test its hardness and defects. In 2001, the first year, we have established mathematical background and necessary data and informations to develop the techniques. We will try to find some experimental results that are necessary in developing the Hotcell non-destructive examination techniques in the coming year. 14 refs., 65 figs., 5 tabs. (Author)

  7. Final results of double-shell tank 241-AZ-101 ultrasonic inspection

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AZ-101. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AZ-101 primary tank wall and welds. The inspection found one reportable indication of thinning and no reportable pitting, corrosion, or cracking

  8. Fatigue strength reduction factors for welds based on nondestructive examination

    International Nuclear Information System (INIS)

    Hechmer, J.L.; Kuhn, E.J. III

    1999-01-01

    Based on the author's hypothesis that nondestructive examination (NDE) has a major role in predicting the fatigue life of pressure vessels, a project was initiated to develop a defined relationship between NDE and fatigue strength reduction factors (FSRF). Even though a relationship should apply to both base metal and weld metal, the project was limited to weld metal because NDE for base metal is reasonably well established, whereas NDE for weld metal is more variable, depending on application. A matrix of FSRF was developed based on weld type (full penetration, partial penetration, and fillet weld) versus the NDE that is applied. The NDE methods that are included are radiographic testing (RT), ultrasonic testing (UT), magnetic particle testing (MT), dye penetrant testing (PT), and visual testing (VT). The first two methods (RT and UT) are volumetric examinations, and the remaining three are surface examinations. Seven combinations of volumetric and surface examinations were defined; thus, seven levels of FSRF are defined. Following the initial development of the project, a PVRC (Pressure Vessel Research Council) grant was obtained for the purpose of having a broad review. The report (Hechmer, 1998) has been accepted by PVRC. This paper presents the final matrix, the basis for the FSRF, and key definitions for accurate application of the FSRF matrix. A substantial amount of additional information is presented in the PVRC report (Hechmer, 1998)

  9. Technical regulation of nondestructive inspection

    International Nuclear Information System (INIS)

    1995-01-01

    It starts with the explanation of definition of nondestructive inspection and qualifications for a inspection. It lists the technical regulations of nondestructive inspections which are radiographic testing, ultrasonic flaw detecting test, liquid penetrant test, magnetic particle inspection, eddy current test visual inspection and leakage test.

  10. Non-destructive examination system of vitreous body

    Science.gov (United States)

    Shibata, Takuma; Gong, Jin; Watanabe, Yosuke; Kabir, M. Hasnat; Masato, Makino; Furukawa, Hidemitsu; Nishitsuka, Koichi

    2014-04-01

    Eyeball plays a quite important role in acquiring the vision. Vitreous body occupies the largest part of the eyeball and consists of biological, elastic, transparent, gel materials. In the present medical examination, the non-destructive examination method of the vitreous body has not been well established. Here, we focus on an application of dynamic light scattering to this topic. We tried to apply our lab-made apparatus, scanning microscopic light scattering (SMILS), which was specially designed for observing the nanometer-scale network structure in gel materials. In order to examine the vitreous body using SMILS method, a commercial apparatus, nano Partica (Horiba Co. Ltd.) was also customized. We analyzed vitreous body using both the SMILS and the customized nano Partica. We successfully examined the vitreous bodies of healthy pigs in non-destructive way.

  11. Image processing applied to automatic detection of defects during ultrasonic examination

    International Nuclear Information System (INIS)

    Moysan, J.

    1992-10-01

    This work is a study about image processing applied to ultrasonic BSCAN images which are obtained in the field of non destructive testing of weld. The goal is to define what image processing techniques can bring to ameliorate the exploitation of the data collected and, more precisely, what image processing can do to extract the meaningful echoes which enable to characterize and to size the defects. The report presents non destructive testing by ultrasounds in the nuclear field and it indicates specificities of the propagation of ultrasonic waves in austenitic weld. It gives a state of the art of the data processing applied to ultrasonic images in nondestructive evaluation. A new image analysis is then developed. It is based on a powerful tool, the co-occurrence matrix. This matrix enables to represent, in a whole representation, relations between amplitudes of couples of pixels. From the matrix analysis, a new complete and automatic method has been set down in order to define a threshold which separates echoes from noise. An automatic interpretation of the ultrasonic echoes is then possible. Complete validation has been done with standard pieces

  12. Non-destructive controls in the steel tube industry

    International Nuclear Information System (INIS)

    Mondot, J.

    1978-01-01

    The main non-destructive control methods in the tube industry are reviewed: eddy currents, particularly well adapted to small tubes; magnetoscopic testing for weldless tubes; ultrasonic waves widely used for thick weldless tubes and weldings; radiography, to examine tube ends and the known questionable zones; measure of diameters by laser [fr

  13. Evaluation of Creep-Fatigue Damage in 304 Stainless Steel using Ultrasonic Non-Destructive Test

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Sik [Safetech Co. Ltd., Kimhae (Korea, Republic of); Oh, Yong Jun [Hanbat National Univ., Daejon (Korea, Republic of); Nam, Soo Woo [KISTI ReSEAT Program, Seoul (Korea, Republic of)

    2011-12-15

    It is well known that grain boundary cavitation is the main failure mechanism in austenitic stainless steel under tensile hold creep-fatigue interaction conditions. The cavities are nucleated at the grain boundary during cyclic loading and grow to become grain boundary cracks. The attenuation of ultrasound depends on scattering and absorption in polycrystalline materials. Scattering occurs when a propagation wave encounters microstructural discontinuities, such as internal voids or cavities. Since the density of the creepfatigue cavities increases with the fatigue cycles, the attenuation of ultrasound will also be increased with the fatigue cycles and this attenuation can be detected nondestructively. In this study, it is found that individual grain boundary cavities are formed and grow up to about 100 cycles and then, these cavities coalesce to become cracks. The measured ultrasonic attenuation increased with the cycles up to cycle 100, where it reached a maximum value and then decreased with further cycles. These experimental measurements strongly indicate that the open pores of cavities contribute to the attenuation of ultrasonic waves. However, when the cavities develop, at the grain boundary cracks whose crack surfaces are in contact with each other, there is no longer any open space and the ultrasonic wave may propagate across the cracks. Therefore, the attenuation of ultrasonic waves will be decreased. This phenomenon of maximum attenuation is very important to judge the stage of grain boundary crack development, which is the indication of the dangerous stage of the structures.

  14. Nondestructive testing 89

    International Nuclear Information System (INIS)

    1989-01-01

    The proceedings contain 24 contributions, out of which 14 have been inputted in INIS. These deal with materials for nondestructive testing and various nondestructive testing systems, with the evaluation of radiograms and with the application of radiographic, ultrasonic and eddy current methods to the detection of defects in materials, to the inspection of nuclear reactor components and in other fields of technology. (B.S.)

  15. Ultrasonic imaging algorithms with limited transmission cycles for rapid nondestructive evaluation.

    Science.gov (United States)

    Moreau, Ludovic; Drinkwater, Bruce W; Wilcox, Paul D

    2009-09-01

    Imaging algorithms recently developed in ultrasonic nondestructive testing (NDT) have shown good potential for defect characterization. Many of them are based on the concept of collecting the full matrix of data, obtained by firing each element of an ultrasonic phased array independently, while collecting the data with all elements. Because of the finite sound velocity in the test structure, 2 consecutive firings must be separated by a minimum time interval. Depending on the number of elements in a given array, this may become problematic if data must be collected within a short time, as it is often the case, for example, in an industrial context. An obvious way to decrease the duration of data capture is to use a sparse transmit aperture, in which only a restricted number of elements are used to transmit ultrasonic waves. This paper compares 2 approaches aimed at producing an image on the basis of restricted data: the common source method and the effective aperture technique. The effective aperture technique is based on the far-field approximation, and no similar approach exists for the near-field. This paper investigates the performance of this technique in near-field conditions, where most NDT applications are made. First, these methods are described and their point spread functions are compared with that of the Total Focusing Method (TFM), which consists of focusing the array at every point in the image. Then, a map of efficiency is given for the different algorithms in the near-field. The map can be used to select the most appropriate algorithm. Finally, this map is validated by testing the different algorithms on experimental data.

  16. Italian developments in the ultrasonic examination of pressure vessels

    International Nuclear Information System (INIS)

    Regis, V.

    1987-01-01

    A review of developments being pursued in Italy in ultrasonics for application to pressure vessels is presented. Although nuclear construction in Italy has suffered heavy delays, R and D activities promoted by the Italian Electricity Board in the mid 1970s on advanced UT for non-destructive inspection of thick welded sections made it possible to obtain significant results scored by CISE Laboratories, mainly through the design, construction and qualification of the manual UT spectroscopy and signal processing computerized ARICE system and of the mechanized multifrequency acoustic holography HADIS system. Meanwhile theoretical ultrasonic modelling is actively studied in order to implement software applications and the overall reliability of UT inspections with regard to flaw detection, location and sizing. Selected contributions from manufacturers and service companies with a view to improving UT practice are acknowledged, and still wider technology transfers may be expected in the future, also under ENEA industrial promotion programmes. (author)

  17. Application of Neuro-Wavelet Algorithm in Ultrasonic-Phased Array Nondestructive Testing of Polyethylene Pipelines

    Directory of Open Access Journals (Sweden)

    Reza Bohlouli

    2012-01-01

    Full Text Available Polyethylene (PE pipelines with electrofusion (EF joining is an essential method of transportation of gas energy. EF joints are weak points for leakage and therefore, Nondestructive testing (NDT methods including ultrasonic array technology are necessary. This paper presents a practical NDT method of fusion joints of polyethylene piping using intelligent ultrasonic image processing techniques. In the proposed method, to detect the defects of electrofusion joints, the NDT is applied based on an ANN-Wavelet method as a digital image processing technique. The proposed approach includes four steps. First an ultrasonic-phased array technique is used to provide real time images of high resolution. In the second step, the images are preprocessed by digital image processing techniques for noise reduction and detection of ROI (Region of Interest. Furthermore, to make more improvement on the images, mathematical morphology techniques such as dilation and erosion are applied. In the 3rd step, a wavelet transform is used to develop a feature vector containing 3-dimensional information on various types of defects. In the final step, all the feature vectors are classified through a backpropagation-based ANN algorithm. The obtained results show that the proposed algorithms are highly reliable and also precise for NDT monitoring.

  18. Final results of double-shell tank 241-AY-102 ultrasonic inspection

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AY-102. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AY-102 primary tank wall and welds. The inspection found some indication of insignificant general and local wall thinning with no cracks detected

  19. Final results of double-shell tank 241-AN-105 ultrasonic inspection

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AN-105. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AN-105 primary tank wall primary knuckle, and secondary tank bottom. The inspection found some indication of general and local wall thinning with no cracks detected

  20. Nondestructive examination techniques on Candu fuel elements

    International Nuclear Information System (INIS)

    Gheorghe, G.; Man, I.

    2013-01-01

    During irradiation in nuclear reactor, fuel elements undergo dimensional and structural changes, and changes of surface conditions sheath as well, which can lead to damages and even loss of integrity. Visual examination and photography of Candu fuel elements are among the non-destructive examination techniques, next to dimensional measurements that include profiling (diameter, bending, camber) and length, sheath integrity control with eddy currents, measurement of the oxide layer thickness by eddy current techniques. Unirradiated Zircaloy-4 tubes were used for calibration purposes, whereas irradiated Zircaloy-4 tubes were actually subjected to visual inspection and dimensional measurements. We present results of measurements done by eddy current techniques on Zircaloy- 4 tubes, unirradiated, but oxidized in an autoclave prior to examinations. The purpose of these nondestructive examination techniques is to determine those parameters that characterize the behavior and performance of nuclear fuel operation. (authors)

  1. Improvement of the reliability on nondestructive inspection

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Young H.; Lee, Hyang Beom; Shin, Young Kil; Jung, Hyun Jo; Park, Ik Keun; Park, Eun Soo

    2002-03-01

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of Nuclear Power Plant. The nondestructive testing methods which are frequently used in the Nuclear Power Plant are eddy current testing for the inspection of steam generator tubes and ultrasonic testing for the inspection of weldments. In order to improve reliabilities of ultrasonic testing and eddy current testing, the subjects carried out in this study are as follows : development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field, evaluation of statistical reliability of PD-RR test of ultrasonic testing and development of multi-Gaussian beam modeling technique to predict accurate signal of signal beam ultrasonic testing with the efficiency in calculation time

  2. Improvement of the reliability on nondestructive inspection

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin; Kim, Young H. [Sungkyunkwan Univ., Suwon (Korea, Republic of); Lee, Hyang Beom [Soongsil Univ., Seoul (Korea, Republic of); Shin, Young Kil [Kunsan National Univ., Gunsan (Korea, Republic of); Jung, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of); Park, Ik Keun; Park, Eun Soo [Seoul Nationl Univ., Seoul (Korea, Republic of)

    2002-03-15

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of Nuclear Power Plant. The nondestructive testing methods which are frequently used in the Nuclear Power Plant are eddy current testing for the inspection of steam generator tubes and ultrasonic testing for the inspection of weldments. In order to improve reliabilities of ultrasonic testing and eddy current testing, the subjects carried out in this study are as follows : development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field, evaluation of statistical reliability of PD-RR test of ultrasonic testing and development of multi-Gaussian beam modeling technique to predict accurate signal of signal beam ultrasonic testing with the efficiency in calculation time.

  3. A PC-based expert system for nondestructive testing

    International Nuclear Information System (INIS)

    Shankar, R.; Williams, R.; Smith, C.; Selby, G.

    1991-01-01

    Rule-based decision logic which can emulate problem-solving expertise of humans is being explored for power plant nondestructive evaluation (NDE) applications. This paper describes an effort underway at the EPRI NDE Center to assist in the interpretation of NDE data acquired by automatic systems during ultrasonic weld examination of boiling-water reactors (BWRs). A personal computer (PC) -based expert system shell was used to encode rules and assemble knowledge to address the discrimination of intergranular stress corrosion cracking (IGSCC) from benign reflectors in the inspection of pipe-to-component welds. The rules attempt to factor in plant inspection history, ultrasonic examination data nd, if available, radiography testing data; a majority of them deal with specific ultrasonic signal temporal and spatial behavior during automatic scanning. The paper describes the efforts in the development of the expert system

  4. Integrate models of ultrasonics examination for NDT expertise

    International Nuclear Information System (INIS)

    Calmon, P.; Lhemery, A.; Lecoeur-Taibi, I.; Raillon, R.

    1996-01-01

    For several years, the French Atomic Energy Commission (CEA) has developed a system called CIVA for multiple-technique NDE data acquisition and processing. Modeling tools for ultrasonic non-destructive testing have been developed and implemented within this allowing direct comparison between measured and predicted results. These models are not only devoted to laboratory uses bus also must be usable by ultrasonic operators without special training in simulation techniques. Therefore, emphasis has been on finding the best compromise between as accurate as possible quantitative predictions and ease, simplicity and speed, crucial requirements in the industrial context. This approach has led us to develop approximate models for the different phenomena involved in ultrasonic inspections: radiation, transmission through interfaces, propagation, scattering by defects and boundaries, reception etc. Two main models have been implemented, covering the most commonly encountered NDT configurations. At first, these two models are shortly described. Then, two examples of their applications are shown. Based on the same underlying theories, specific modeling tools are proposed to industrial partners to answer special requirements. To illustrate this, an example is given of a software used a tool to help experts's interpretation during on-site french PWR vessel inspections. Other models can be implemented in CIVA when some assumptions made in the previous models Champ-Sons and Mephisto are not fulfilled, e. g., when less-conventional testing configurations are concerned. We briefly presents as an example a modeling study of echoes arising from cladded steel surfaces achieved in the laboratory. (authors)

  5. Non-Destructive Inspection Lab (NDI)

    Data.gov (United States)

    Federal Laboratory Consortium — The NDI specializes in applied research, development and performance of nondestructive inspection procedures (flourescent penetrant, magnetic particle, ultrasonics,...

  6. Experimental electro-thermal method for nondestructively testing welds in stainless steel pipes

    International Nuclear Information System (INIS)

    Green, D.R.

    1979-01-01

    Welds in austenitic stainless steel pipes are notoriously difficult to nondestructively examine using conventional ultrasonic and eddy current methods. Survace irregularities and microscopic variations in magnetic permeability cause false eddy current signal variations. Ultrasonic methods have been developed which use computer processing of the data to overcome some of the problems. Electro-thermal nondestructive testing shows promise for detecting flaws that are difficult to detect using other NDT methods. Results of a project completed to develop and demonstrate the potential of an electro-thermal method for nondestructively testing stainless steel pipe welds are presented. Electro-thermal NDT uses a brief pulse of electrical current injected into the pipe. Defects at any depth within the weld cause small differences in surface electrical current distribution. These cause short-lived transient temperature differences on the pipe's surface that are mapped using an infrared scanning camera. Localized microstructural differences and normal surface roughness in the welds have little effect on the surface temperatures

  7. Ultrasonic guided wave for monitoring corrosion of steel bar

    Science.gov (United States)

    Liu, Xi; Qin, Lei; Huang, Bosheng

    2018-01-01

    Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.

  8. Nondestructive examination of irradiated fuel rods by pulsed eddy current techniques

    International Nuclear Information System (INIS)

    Francis, W.C.; Quapp, W.J.; Martin, M.R.; Gibson, G.W.

    1976-02-01

    A number of fuel rods and unfueled zircaloy cladding tubes which had been irradiated in the Saxton reactor have undergone extensive nondestructive and corroborative destructive examinations by Aerojet Nuclear Company as part of the Water Reactor Safety Research Program, Irradiation Effects Test Series. This report discusses the pulsed eddy current (PEC) nondestructive examinations on the fuel rods and tubing and the metallography results on two fuel rods and one irradiated zircaloy tube. The PEC equipment, designed jointly by Argonne National Laboratory and Aerojet, performed very satisfactorily the functions of diameter, profile, and wall thickness measurements and OD and ID surface defect detection. The destructive examination provided reasonably good confirmation of ''defects'' detected in the nondestructive examination

  9. Nondestructive examination requirements for PWR vessel internals

    International Nuclear Information System (INIS)

    Spanner, J.

    2015-01-01

    This paper describes the requirements for the nondestructive examination of pressurized water reactor (PWR) vessel internals in accordance with the requirements of the EPRI Material Reliability Program (MRP) inspection standard for PWR internals (MRP-228) and the American Society of Mechanical Engineers Section XI In-service Inspection. The MRP vessel internals examinations have been performed at nuclear plants in the USA since 2009. The objective of the inspection standard is to provide the requirements for the nondestructive examination (NDE) methods implemented to support the inspection and evaluation of the internals. The inspection standard contains requirements specific to the inspection methodologies involved as well as requirements for qualification of the NDE procedures, equipment and personnel used to perform the vessel internals inspections. The qualification requirements for the NDE systems will be summarized. Six PWR plants in the USA have completed inspections of their internals using the Inspection and Evaluation Guideline (MRP-227) and the Inspection Standard (MRP-228). Examination results show few instances of service-induced degradation flaws, as expected. The few instances of degradation have mostly occurred in bolting

  10. Correlation of mechanical properties with nondestructive evaluation of babbitt metal/bronze composite interface

    Science.gov (United States)

    Ijiri, Y.; Liaw, P. K.; Taszarek, B. J.; Frohlich, S.; Gungor, M. N.

    1988-09-01

    Interfaces of the babbitt metal-bronze composite were examined ultrasonically and were fractured using the Chalmers test method. It was found that the ultrasonic results correlated with the bond strength, the ductility, and the degree of bonding at the tested interface. Specifically, high ultrasonic reflection percentages were associated with low bond strength, low ductility, and low percentages of bonded regions. The fracture mechanism in the bonded area of the babbitt-bronze interface is related to the presence of the intermetallic compound, Cu6Sn5, at the interface. It is suggested that the non-destructive ultrasonic technique can detect the bond integrity of babbitted metals.

  11. Studies in nondestructive testing with potential for in-service inspection of LMFBRs

    International Nuclear Information System (INIS)

    McClung, R.W.

    1976-01-01

    A variety of nondestructive examination techniques have been and are being developed at ORNL with potential for ISI in LMFBRs. Among these are radiographic techniques for radiation environment and image enhancement, advanced eddy-current techniques and equipment for flaw detection and thickness measurement and ISI of steam generator tubing, and ultrasonic methods for quantitative flaw evaluation using frequency-analysis and bore-side ultrasonic techniques for steam generator tubing. Further developments should result in positive application to ISI

  12. Manufacturing technologies for ultrasonic transducers in a broad frequency range

    OpenAIRE

    Gebhardt, Sylvia; Hohlfeld, Kai; Günther, Paul; Neubert, Holger

    2018-01-01

    According to the application field, working frequency of ultrasonic transducers needs to be tailored to a certain value. Low frequency ultrasonic transducers with working frequencies of 1 kHz to 1 MHz are especially interesting for sonar applications, whereas high frequency ultrasonic transducers with working frequencies higher than 15 MHz are favorable for high-resolution imaging in biomedical and non-destructive evaluation. Conventional non-destructive testing devices and clinical ultrasoun...

  13. Advanced ultrasonic techniques for nondestructive testing of austenitic and dissimilar welds in nuclear facilities

    Science.gov (United States)

    Juengert, Anne; Dugan, Sandra; Homann, Tobias; Mitzscherling, Steffen; Prager, Jens; Pudovikov, Sergey; Schwender, Thomas

    2018-04-01

    Austenitic stainless steel welds as well as dissimilar metal welds with nickel alloy filler material, used in safety relevant parts of nuclear power plants, still challenge the ultrasonic inspection. The weld material forms large oriented grains that lead, on the one hand, to high sound scattering and, on the other hand, to inhomogeneity and to the acoustic anisotropy of the weld structure. The ultrasonic wave fronts do not propagate linearly, as in ferritic weld joints, but along the curves, which depend on the specific grain structure of the weld. Due to the influence of these phenomena, it is difficult to analyze the inspection results and to classify the ultrasonic indications, which could be both from the weld geometry and from the material defects. A correct flaw sizing is not possible. In an ongoing research project, different techniques to improve the reliability of ultrasonic testing at these kinds of welds are investigated. In a first step (in the previous research project) two ultrasonic inspection techniques were developed and validated on plane test specimens with artificial and realistic flaws. In the ongoing project, these techniques are applied to circumferential pipe welds with longitudinal and transverse flaws. The technique developed at the Federal Institute for Materials Research and Testing (BAM) in Germany uses a combination of ray tracing and synthetic aperture focusing technique (SAFT). To investigate the unknown grain structure, the velocity distribution of weld-transmitting ultrasound waves is measured and used to model the weld by ray tracing. The second technique, developed at the Fraunhofer Institute for Nondestructive Testing (IZFP) in Germany, uses Sampling Phased Array (Full Matrix Capture) combined with the reverse phase matching (RPM) and the gradient elastic constant descent algorithm (GECDM). This inspection method is able to estimate the elastic constants of the columnar grains in the weld and offers an improvement of the

  14. Ultrasonic non-destructive testing of pieces of complex geometry with a flexible phased array transducer

    Science.gov (United States)

    Chatillon; Cattiaux; Serre; Roy

    2000-03-01

    Ultrasonic non-destructive testing of components of complex geometry in the nuclear industry faces several difficulties: sensitivity variations due to unmatched contact, inaccurate localization of defects due to variations of transducer orientation, and uncovered area of the component. To improve the performances of such testing and defect characterization, we propose a new concept of ultrasonic contact phased array transducer. The phased array transducer has a flexible radiating surface able to fit the actual surface of the piece to optimize the contact and thus the sensitivity of the test. To control the transmitted field, and therefore to improve the defect characterization, a delay law optimizing algorithm is developed. To assess the capability of such a transducer, the Champ-Sons model, developed at the French Atomic Energy Commission for predicting field radiated by arbitrary transducers into pieces, has to be extended to sources directly in contact with pieces of complex geometry. The good behavior of this new type of probe predicted by computations is experimentally validated with a jointed transducer positioned on pieces of various profiles.

  15. Computer simulation of ultrasonic testing for aerospace vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, H [National Institute for Materials Science, 1-2-1, Sengen, 305-0047 Tsukuba (Japan); Moriya, S; Masuoka, T [Japan Aerospace Exploration Agency, 1 Koganesawa, Kimigawa, 981-1525 Kakuda (Japan); Takatsubo, J, E-mail: yamawaki.hisashi@nims.go.jp [Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1-1-1 Umezono, 305-8568 Tsukuba (Japan)

    2011-01-01

    Non-destructive testing techniques are developed to secure reliability of aerospace vehicles used repetitively. In the case of cracks caused by thermal stress on walls in combustion chambers of liquid-fuel rockets, it is examined by ultrasonic waves visualization technique developed in AIST. The technique is composed with non-contact ultrasonic generation by pulsed-laser scanning, piezoelectric transducer for the ultrasonic detection, and image reconstruction processing. It enables detection of defects by visualization of ultrasonic waves scattered by the defects. In NIMS, the condition of the detection by the visualization is investigated using computer simulation for ultrasonic propagation that has capability of fast 3-D calculation. The simulation technique is based on finite-difference method and two-step elastic wave equations. It is reported about the investigation by the calculation, and shows availability of the simulation for the ultrasonic testing technique of the wall cracks.

  16. Ultrasonic phased arrays for nondestructive inspection of forgings

    International Nuclear Information System (INIS)

    Wuestenberg, H.; Rotter, B.; Klanke, H.P.; Harbecke, D.

    1993-01-01

    Ultrasonic examinations on large forgings like rotor shafts for turbines or components for nuclear reactors are carried out at various manufacturing stages and during in-service inspections. During the manufacture, most of the inspections are carried out manually. Special in-service conditions, such as those at nuclear pressure vessels, have resulted in the development of mechanized scanning equipment. Ultrasonic probes have improved, and well-adapted sound fields and pulse shapes and based on special imaging procedures for the representation of the reportable reflectors have been applied. Since the geometry of many forgings requires the use of a multitude of angles for the inspections in-service and during manufacture, phased-array probes can be used successfully. The main advantages of the phased-array concept, e.g. the generation of a multitude of angles with the typical increase of redundancy in detection and quantitative evaluation and the possibility to produce pictures of defect situations, will be described in this contribution

  17. Ultrasonic inspection

    International Nuclear Information System (INIS)

    Satittada, Gannaga

    1984-01-01

    Ultrasonic inspection is one of the most widely used methods for nondestructive inspection. The beam of high-frequency sound wave, ultrasonic wave, is introduced into the material. It travels through the material with some attendant loss of energy and can be reflected at interfaces. The reflected beam is detected and analyzed. Ultrasonic inspection is used to detect flaws in metal parts as well as in welded, brazed and bonded joints during research work and developing production and service. It is also used to detect and locate porosity, pipe, and flakes. In addition, it can be used for the measurement of metal thickness. Ultrasonic inspection is therefore used for quality control and material inspection in all major industries

  18. Building Of Training Program Of Non-Destructive Testing For Concrete Structures (Part 1: Radiographic testing; Ultrasonic pulse velocity measurement; Nuclear moisture-density gauge)

    International Nuclear Information System (INIS)

    Nguyen Le Son; Phan Chanh Vu; Pham The Hung; Vu Huy Thuc

    2007-01-01

    Non-destructive testing methods (NDT) have been identified as a strong candidate for remote sensing of concrete structures over recent years. This has accelerated the powerful development of the NDT techniques in Vietnam. Hence, there is an urgent need to promote the awareness of NDT methods which could give an improved estimate of the condition concrete. Building of training program of non-destructive testing for concrete structures is a necessary duty, in aiming to build a unified training program, possibly satisfying the requirements on training as well as researching. Under the framework of the basic VAEC project (CS/07/02-03), a training program for the first 03 NDT methods: 1. Radiographic testing; 2. Ultrasonic pulse velocity measurement; 3. Nuclear moisture- density gauge was prepared. The main products of this project include: 1. Set out 03 training notes for 03 methods; 2. Set out the practical exercises to train for 03 methods; 3. Editing a set of examination questions in aiming to familiarize with various questions in 03 trained methods; 4. Fabricating practical test specimens to demonstrate for 03 techniques. (author)

  19. An ultrasonic methodology to non-destructively estimate the grain orientation in an anisotropic weld

    Directory of Open Access Journals (Sweden)

    Wirdelius Håkan

    2014-06-01

    Full Text Available The initial step towards a non-destructive technique that estimates grain orientation in an anisotropic weld is presented in this paper. The purpose is to aid future forward simulations of ultrasonic NDT of this kind of weld to achieve a better result. A forward model that consists of a weld model, a transmitter model, a receiver model and a 2D ray tracing algorithm is introduced. An inversion based on a multi-objective genetic algorithm is also presented. Experiments are conducted for both P and SV waves in order to collect enough data used in the inversion. Calculation is conducted to fulfil the estimation with both the synthetic data and the experimental data. Concluding remarks are presented at the end of the paper.

  20. Laser ultrasonic receivers based on photorefractive materials in non-destructive testing

    International Nuclear Information System (INIS)

    Zamiri Hosseinzadeh, S.

    2014-01-01

    The field of laser ultrasonics is one of the most interesting topics in which laser light is used for the generation and the detection of ultrasound waves in materials. This contactless method is extremely useful for materials inspection being nondestructive and contactless, especially for hazardous environments. In this method a pulsed laser with a short pulse length of e.g. nano- or even picoseconds is focused on the surface of a specimen and then ultrasonic waves, nanometer vibrations, such as surface and bulk waves are generated and propagate in all directions on to the material. For contactless detection of ultrasonic waves several interferometers such as confocal Fabry-Perot, Michelson, and long path difference interferometers have been applied. Each of them has its individual advantages and disadvantages concerning, e.g., frequency responses and sensitivity. However, most of these interferometers work best on mirror-like surfaces and exhibit reduced sensitivity on rough surfaces. Also these kinds of interferometer are sensible to external noise as air fluctuations, sample vibrations or thermal deformations, thus requiring relatively complex stabilization techniques. This hinders their applicability in industrial applications with harsh environmental conditions. As an alternative to the before mentioned techniques interferometers based on photorefractive materials (PR) have been established. A typical two wave mixing interferometer (TWMI) configuration enables broadband ultrasonic measurements on rough surfaces. These types of interferometers have a good sensitivity up to 3e-7 nm(W/Hz) 1/2 spatially for samples with a high rough surface unlike the Michelson interferometer. By using ferroelectric photorefractive crystals such as LiNbO:Fe+2, sensitivity even is enhanced to 4e-8 nm(W/Hz) 1/2 but response time in these crystals is slower. In this work, contactless interferometer set ups based on photorefractive materials such as BSO (Bismuth Silicon Oxide: Bi 12

  1. Recent experience in nuclear plant nondestructive examinations

    International Nuclear Information System (INIS)

    Epps, T.N.

    1986-01-01

    This paper reviews recent experience in nuclear plant inservice inspection activities including ultrasonic examination of piping materials, personnel qualification, results, and the overall significance to the industry. Several areas of concern to the nuclear power industry have recently been addressed by Southern Company Services' (SCS) Inspection, Testing, and Engineering Department during implementation of preservice and in-service inspection activities in the SCS system. The most significant of these activities is the ultrasonic inspection of Type 304 stainless steel piping for the presence of intergranular stress corrosion cracking (IGSCC). This activity has been in the forefront of boiling water reactor (BWR) in-service inspections for the past several years

  2. Local defect resonance for sensitive non-destructive testing

    Science.gov (United States)

    Adebahr, W.; Solodov, I.; Rahammer, M.; Gulnizkij, N.; Kreutzbruck, M.

    2016-02-01

    Ultrasonic wave-defect interaction is a background of ultrasound activated techniques for imaging and non-destructive testing (NDT) of materials and industrial components. The interaction, primarily, results in acoustic response of a defect which provides attenuation and scattering of ultrasound used as an indicator of defects in conventional ultrasonic NDT. The derivative ultrasonic-induced effects include e.g. nonlinear, thermal, acousto-optic, etc. responses also applied for NDT and defect imaging. These secondary effects are normally relatively inefficient so that the corresponding NDT techniques require an elevated acoustic power and stand out from conventional ultrasonic NDT counterparts for their specific instrumentation particularly adapted to high-power ultrasonic. In this paper, a consistent way to enhance ultrasonic, optical and thermal defect responses and thus to reduce an ultrasonic power required is suggested by using selective ultrasonic activation of defects based on the concept of local defect resonance (LDR). A strong increase in vibration amplitude at LDR enables to reliably detect and visualize the defect as soon as the driving ultrasonic frequency is matched to the LDR frequency. This also provides a high frequency selectivity of the LDR-based imaging, i.e. an opportunity of detecting a certain defect among a multitude of other defects in material. Some examples are shown how to use LDR in non-destructive testing techniques, like vibrometry, ultrasonic thermography and shearography in order to enhance the sensitivity of defect visualization.

  3. Ultrasonic Examination of Double-Shell Tank 241-AY-101. Examination completed October 2007

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Weier, Dennis R.

    2008-01-01

    AREVA NC Inc., under contract from CH2M Hill Hanford Group, has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AY-101. PNNL is responsible for preparing a report(s) that describes the results of the AREVA ultrasonic examinations. This report is Revision 1 - more data has been added to the original report. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-AY-101 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan, RPP-Plan-27202 (Jensen 2005) and summarized on page 1 of this document, are to be reported to CH2M Hill Hanford Group and the Pacific Northwest National Laboratory for further evaluation. Under the contract with CH2M Hill Hanford Group, all data is to be recorded on electronic media and paper copies of all measurements are provided to Pacific Northwest National Laboratory for third-party evaluation. Pacific Northwest National Laboratory is responsible for preparing a report(s) that describes the results of the AREVA NC Inc. ultrasonic examinations.

  4. System for ultrasonic examination

    International Nuclear Information System (INIS)

    Lund, S.A.; Kristensen, W.D.

    1987-01-01

    A computerized system for the recording of flaw images by ultrasonic examination according to the pulse-echo method includes at least one ultrasonic probe which can be moved in steps over the surface of an object along a rectilinear scanning path. Digital signals containing information on the successive positions of the sound beam, on echo amplitudes, and on the lengths of sound paths to reflectors inside the object, are processed and used for the accumulated storage of circular patterns of echo amplitude data in a matrix memory associated with a sectional plane through the object. A video screen terminal controls the system and transforms the accumulated data into displays of sectional flaw images of greatly improved precision and sharpness of definition. A gradual transfer of filtered data from a number of parallel sectional planes to three further matrix memories associated with projection planes at right angles to each other permits presentation in three dimensions of equally improved projection flaw images. (author) 2 figs

  5. Elevated-temperature (6000F), manual contact ultrasonic examination

    International Nuclear Information System (INIS)

    Donnelly, C.W.

    1981-01-01

    Manual contact ultrasonic examination at temperatures above 250 0 F has not been successful in providing meaningful results. Sensitivity of standard transducers degrades rapidly at 250 0 F and above. It has been demonstrated that by using standard transducers and commercially available wedges and couplants in combination with a couplant/cooler system, manual contact ultrasonic examination can be performed at 600 0 F for an essentially 100% duty cycle in conformance to the sensitivity requirement of the ASME B and PV Code

  6. Nondestructive evaluation of creep-fatigue damage: an interim report

    International Nuclear Information System (INIS)

    Nickell, R.E.

    1977-02-01

    In view of the uncertainties involved in designing against creep-fatigue failure and the consequences of such failures in Class 1 nuclear components that operate at elevated temperature, the possibility of intermittent or even continuous non-destructive examination of these components has been considered. In this interim report some preliminary results on magnetic force and ultrasonic evaluation of creep-fatigue damage in an LMFBR steam generator material are presented. These results indicate that the non-destructive evaluation of pure creep damage will be extremely difficult. A set of biaxial creep-fatigue tests that are designed to discriminate between various failure theories is also described

  7. Status of the nondestructive examination equipment for the fuels and materials examination facility

    International Nuclear Information System (INIS)

    Frandsen, G.B.

    1980-01-01

    The present status of Nondestructive Examination (NDE) Equipment proposed for the Fuels and Materials Examination Facility (FMEF) now under construction at the Hanford Engineering Development Laboratory is discussed. Items discussed include the NDE cell receiving machine, the dismantling machine, the standard examination stage, profilometry, eddy current, wire wrap removal machine, surface examination, gamma scan and general NDE equipment

  8. Non-destructive Inspection of Multi-layered Composite Using Ultrasonic Signal Processing

    International Nuclear Information System (INIS)

    Ng, S C; Ismail, N; Ali, Aidy; Sahari, Barkawi; Yusof, J M; Chu, B W

    2011-01-01

    Composites exhibit higher strength and stiffness, better design practice and greater corrosion resistance compare to metal material. However, composites are susceptible to impact damage and the typical damage behaviour in the laminated composites is fibre-breakage and delamination. Detection of failure in laminated composites is complicated compared with ordinary non-destructive testing for metal materials as they are sensitive to echoes drown in noise due to the properties of the constituent materials and the multi-layered structure of the composites. In the current study, the detection of failure in multi-layered composite materials is investigated. To obtain a high probability of defect detection in composite materials, signal processing algorithms were used to resolve echoes associated with defects in glass fibre-reinforced plastics (GRP) detected by using ultrasonic testing. Pulse-echo method with single transducer was used to transmit and receive ultrasound. The obtained signals were processed to reduce noise and to extract suitable features. Results were validated on GRP with and without defects in order to demonstrate the feasibility of the method on defect detection in composites.

  9. Measurement of a 3D Ultrasonic Wavefield Using Pulsed Laser Holographic Microscopy for Ultrasonic Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2018-02-01

    Full Text Available In ultrasonic array imaging, 3D ultrasonic wavefields are normally recorded by an ultrasonic piezo array transducer. Its performance is limited by the configuration and size of the array transducer. In this paper, a method based on digital holographic interferometry is proposed to record the 3D ultrasonic wavefields instead of the array transducer, and the measurement system consisting of a pulsed laser, ultrasonic excitation, and synchronization and control circuit is designed. A consecutive sequence of holograms of ultrasonic wavefields are recorded by the system. The interferograms are calculated from the recorded holograms at different time sequence. The amplitudes and phases of the transient ultrasonic wavefields are recovered from the interferograms by phase unwrapping. The consecutive sequence of transient ultrasonic wavefields are stacked together to generate 3D ultrasonic wavefields. Simulation and experiments are carried out to verify the proposed technique, and preliminary results are presented.

  10. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P. [Riso National Lab. (Denmark)

    1997-08-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today.

  11. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    International Nuclear Information System (INIS)

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P.

    1997-01-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today

  12. The role of ultrasonic velocity and Schmidt hammer hardness - The simple and economical non-destructive test for the evaluation of mechanical properties of weathered granite

    Science.gov (United States)

    Jobli, Ahmad Fadzil; Hampden, Ahmad Zaidi; Tawie, Rudy

    2017-08-01

    One of the most significant techniques for evaluation of rock strength is by using the simple and economical non-destructive test (NDT). Previous literatures confirm that there were good correlations between NDTs to the strength properties of granite rocks. The present work deals with the use of Ultrasonic Pulse Velocity and Schmidt Hammer Hardness test to predict the mechanical properties of weathered granite. Cylindrical specimens with the length to diameter ratio of two were prepared for this study and were characterized based on different weathering states. Each of the rock specimens was tested under non-destructive test and then followed by uniaxial compression test to assess the mechanical properties. It was found that good correlations established between the NDTs and the uniaxial compressive strength. The correlation between uniaxial compressive strength and rebound hardness number was demonstrated by exponential form; UCS = 6.31e0.057N, while linear correlations was obtained between the uniaxial compressive strength and the ultrasonic pulse velocity; UCS = 0.023Vp - 21.43. It was also noticed that the increase of uniaxial compression strength was parallel to the increase of elastic modulus and can be presented by a linear equation; UCS = 1.039Et50 + 4.252. Based on the reported results, it is clear that the mechanical properties or weathered granite can be estimated by means of non-destructive test.

  13. Annual meeting 1996 'Nondestructive materials testing'. German, Austrian and Swiss nondestructive materials testing standards as mirrored by international standardization. Vol. 1. Lectures

    International Nuclear Information System (INIS)

    1996-01-01

    The volume contains 45 lectures which were given at the annual meeting of the German Society for Nondestructive Testing on May 13-15, 1996 at Lindau. The main subjects were: Standardization of nondestructive testing, irradiation testing, ultrasonic testing and electromagnetic processes. 13 individual articles were included in the ENERGY database. (MM) [de

  14. Annual meeting 1996 'Nondestructive material testing'. German, Austrian and Swiss nondestructive materials testing standards as mirrored by international standardization. Vol. 2. Posters

    International Nuclear Information System (INIS)

    1996-01-01

    The volume contains 49 poster articles which were presented at the Annual Meeting of the German Society for Nondestructive Testing at Lindau on May 13-15, 1996. The main subjects were: Standardization of nondestructive testing, irradiation testing, ultrasonic testing and electromagnetic processes. 16 individual articles were included in the ENERGY databank. (MM) [de

  15. Eddy current and ultrasonic fuel channel inspection at Karachi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Mayo, W.R.; Alam, M.M.

    1997-01-01

    In November of 1993 and in-service inspection was performed on eight fuel channels in the Karachi Nuclear Power Plant (KANUPP) reactor. The workscope included ultrasonic and eddy current volumetric examinations, and eddy current measurement of pressure-to calandria tube gap. This paper briefly discusses the planning strategy of the ultrasonic and eddy current examinations, and describes the equipment developed to meet the requirements, followed by details of the actual channel inspection campaign. The presented nondestructive examinations assisted in determining fitness for service of KANUPP reactor channels in general, and confirmed that the problems associated with channel G12 were not generic in nature. (author)

  16. A robust approach to optimal matched filter design in ultrasonic non-destructive evaluation (NDE)

    Science.gov (United States)

    Li, Minghui; Hayward, Gordon

    2017-02-01

    The matched filter was demonstrated to be a powerful yet efficient technique to enhance defect detection and imaging in ultrasonic non-destructive evaluation (NDE) of coarse grain materials, provided that the filter was properly designed and optimized. In the literature, in order to accurately approximate the defect echoes, the design utilized the real excitation signals, which made it time consuming and less straightforward to implement in practice. In this paper, we present a more robust and flexible approach to optimal matched filter design using the simulated excitation signals, and the control parameters are chosen and optimized based on the real scenario of array transducer, transmitter-receiver system response, and the test sample, as a result, the filter response is optimized and depends on the material characteristics. Experiments on industrial samples are conducted and the results confirm the great benefits of the method.

  17. Nondestructive testing at the CEA

    International Nuclear Information System (INIS)

    Colomer, J.; Lucas, G.

    1976-01-01

    The different nondestructive testing methods used at the CEA are presented: X-ray or gamma radiography, X-ray stress analysis, neutron radiography, ultrasonic testing, eddy currents, electrical testing, microwaves, thermal testing, acoustic emission, optical holography, tracer techniques. (102 references are cited) [fr

  18. Ultrasonic immersion probes characterization for use in nondestructive testing according to EN 12668-2:2001

    International Nuclear Information System (INIS)

    Silva, C E R; Alvarenga, A V; Costa-Felix, R P B

    2011-01-01

    Ultrasound is often used as a Non-Destructive Testing (NDT) technique to analyze components and structures to detect internal and surface flaws. To guarantee reliable measurements, it is necessary to calibrate instruments and properly assess related uncertainties. An important device of an ultrasonic instrument system is its probe, which characterization should be performed according to EN 12668-2. Concerning immersion probes beam profile, the parameters to be assessed are beam divergence, focal distance, width, and zone length. Such parameters are determined by scanning a reflector or a hydrophone throughout the transducer beam. Within the present work, a methodology developed at Inmetro's Laboratory of Ultrasound to evaluate relevant beam parameters is presented, based on hydrophone scan. Water bath and positioning system to move the hydrophone were used to perform the scan. Studied probes were excited by a signal generator, and the waterborne signals were detected by the hydrophone and acquired using an oscilloscope. A user-friendly virtual instrument was developed in LabVIEW to automate the system. The initial tests were performed using 1 and 2.25 MHz-ultrasonic unfocused probes (Oe 1.27 cm), and results were consistent with the manufacturer's specifications. Moreover, expanded uncertainties were lower than 6% for all parameters under consideration.

  19. Ultrasonic immersion probes characterization for use in nondestructive testing according to EN 12668-2:2001

    Science.gov (United States)

    Silva, C. E. R.; Alvarenga, A. V.; Costa-Felix, R. P. B.

    2011-02-01

    Ultrasound is often used as a Non-Destructive Testing (NDT) technique to analyze components and structures to detect internal and surface flaws. To guarantee reliable measurements, it is necessary to calibrate instruments and properly assess related uncertainties. An important device of an ultrasonic instrument system is its probe, which characterization should be performed according to EN 12668-2. Concerning immersion probes beam profile, the parameters to be assessed are beam divergence, focal distance, width, and zone length. Such parameters are determined by scanning a reflector or a hydrophone throughout the transducer beam. Within the present work, a methodology developed at Inmetro's Laboratory of Ultrasound to evaluate relevant beam parameters is presented, based on hydrophone scan. Water bath and positioning system to move the hydrophone were used to perform the scan. Studied probes were excited by a signal generator, and the waterborne signals were detected by the hydrophone and acquired using an oscilloscope. A user-friendly virtual instrument was developed in LabVIEW to automate the system. The initial tests were performed using 1 and 2.25 MHz-ultrasonic unfocused probes (Ø 1.27 cm), and results were consistent with the manufacturer's specifications. Moreover, expanded uncertainties were lower than 6% for all parameters under consideration.

  20. Progress and Challenges of Ultrasonic Testing for Stress in Remanufacturing Laser Cladding Coating

    Directory of Open Access Journals (Sweden)

    Xiao-Ling Yan

    2018-02-01

    Full Text Available Stress in laser cladding coating is an important factor affecting the safe operation of remanufacturing components. Ultrasonic testing has become a popular approach in the nondestructive evaluation of stress, because it has the advantages of safety, nondestructiveness, and online detection. This paper provides a review of ultrasonic testing for stress in remanufacturing laser cladding coating. It summarizes the recent research outcomes on ultrasonic testing for stress, and analyzes the mechanism of ultrasonic testing for stress. Remanufacturing laser cladding coating shows typical anisotropic behaviors. The ultrasonic testing signal in laser cladding coating is influenced by many complex factors, such as microstructure, defect, temperature, and surface roughness, among others. At present, ultrasonic testing for stress in laser cladding coating can only be done roughly. This paper discusses the active mechanism of micro/macro factors in the reliability of stress measurement, as well as the impact of stress measurement on the quality and safety of remanufacturing components. Based on the discussion, this paper proposes strategies to nondestructively, rapidly, and accurately measure stress in remanufacturing laser cladding coating.

  1. Recent improvements concerning nondestructive testing

    International Nuclear Information System (INIS)

    Asty, M.

    1984-12-01

    Rare are the techniques of which development is not already touched by microelectronics and micro-data processing. Nondestructive testing and more particularly ultrasonic and Foucault current testing follow this general rule. With some examples, this paper focuses on the potential of numerical signal processing [fr

  2. Ultrasonic examination of stainless steel weldments

    International Nuclear Information System (INIS)

    Mullan, J.V.

    1976-01-01

    Atomic Energy of Canada Ltd. have specified a combination of liquid penetrant, radiography and ultrasonic examination of welds in austenitic stainless steel. In the past, angle wedges attached to ultrasonic transducers have been designed so that only shear waves are propagated in the medium. Shear waves, however, do not penetrate one half inch of weld metal without high transmission losses, so that the signal-to-noise ratio is poor. Canadian Vickers have therefore developed a method using longitudinal waves at 45 deg in the material. The presence also of a shear wave at an angle of 19 deg does not cause confusion, because the shear wave travels slower, and has farther to travel. Some considerations for the design of transducers and wedges are outlined. (N.D.H.)

  3. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-6, Radiography Inspection.

    Science.gov (United States)

    Pelton, Rick; Espy, John

    This sixth in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I explains radiographic inspection as a means of nondestructively examining components, assemblies, structures, and fabricated piping. The module follows a typical format that includes the following sections: (1) introduction, (2) module…

  4. Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites

    Science.gov (United States)

    Generazio, Edward R.

    1990-01-01

    Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.

  5. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  6. Sampling phased array a new technique for signal processing and ultrasonic imaging

    OpenAIRE

    Bulavinov, A.; Joneit, D.; Kröning, M.; Bernus, L.; Dalichow, M.H.; Reddy, K.M.

    2006-01-01

    Different signal processing and image reconstruction techniques are applied in ultrasonic non-destructive material evaluation. In recent years, rapid development in the fields of microelectronics and computer engineering lead to wide application of phased array systems. A new phased array technique, called "Sampling Phased Array" has been developed in Fraunhofer Institute for non-destructive testing. It realizes unique approach of measurement and processing of ultrasonic signals. The sampling...

  7. Development of phased-array ultrasonic testing probe

    International Nuclear Information System (INIS)

    Kawanami, Seiichi; Kurokawa, Masaaki; Taniguchi, Masaru; Tada, Yoshihisa

    2001-01-01

    Phased-array ultrasonic testing was developed for nondestructive evaluation of power plants. Phased-array UT scans and focuses an ultrasonic beam to inspect areas difficult to inspect by conventional UT. We developed a highly sensitive piezoelectric composite, and designed optimized phased-array UT probes. We are applying our phased-array UT to different areas of power plants. (author)

  8. Designing an in-situ ultrasonic nondestructive evaluation system for ultrasonic additive manufacturing

    Science.gov (United States)

    Nadimpalli, Venkata K.; Nagy, Peter B.

    2018-04-01

    Ultrasonic Additive Manufacturing (UAM) is a solid-state layer by layer manufacturing process that utilizes vibration induced plastic deformation to form a metallurgical bond between a thin layer and an existing base structure. Due to the vibration based bonding mechanism, the quality of components at each layer depends on the geometry of the structure. In-situ monitoring during and between UAM manufacturing steps offers the potential for closed-loop control to optimize process parameters and to repair existing defects. One interface that is most prone to delamination is the base/build interface and often UAM component height and quality are limited by failure at the base/build interface. Low manufacturing temperatures and favorable orientation of typical interface defects in UAM make ultrasonic NDE an attractive candidate for online monitoring. Two approaches for in-situ NDE are discussed and the design of the monitoring system optimized so that the quality of UAM components is not affected by the addition of the NDE setup. Preliminary results from in-situ ultrasonic NDE indicate the potential to be utilized for online qualification, closed-loop control and offline certification of UAM components.

  9. Sampling phased array - a new technique for ultrasonic signal processing and imaging

    OpenAIRE

    Verkooijen, J.; Boulavinov, A.

    2008-01-01

    Over the past 10 years, the improvement in the field of microelectronics and computer engineering has led to significant advances in ultrasonic signal processing and image construction techniques that are currently being applied to non-destructive material evaluation. A new phased array technique, called 'Sampling Phased Array', has been developed in the Fraunhofer Institute for Non-Destructive Testing([1]). It realises a unique approach of measurement and processing of ultrasonic signals. Th...

  10. Real-time measurement of relative sensor position changes using ultrasonic signal evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yastrebova, O.; Bulavinov, A.; Kroening, M. [Fraunhofer Institute Nondestructive Testing IZFP, Saarbruecken (Germany)

    2008-07-01

    Ultrasonic testing is considered to be one of the most commonly applied nondestructive testing techniques for flaw detection and material characterization. Traditional Nondestructive Testing (NDT) provides detection of material discontinuities that may cause failure within the designed lifetime of a part or component. In addition, Quantitative Nondestructive Testing (QNDT) provides means to obtain required information about type, size and location of deficiencies to the integrity of the inspected structure and further use under specific, given load conditions. The ''Acoustic Mouse'' technique has been developed as a tool for manual ultrasonic inspection to provide test results that can be evaluated quantitatively. The ultrasonic data are processed by real-time variation methods to extract position information from backscattered acoustic noise and geometric scatter signals in the inspection volume. The position and positional changes of the ''Acoustic Mouse'' sensor (transducer) are determined by the sequential analysis of ultrasonic data (highresolution sector-scans), which are acquired and reconstructed using the Sampling Phased Array technique. The results of first experiments conducted with linear scanning and intentional lift-offs demonstrate sufficient accuracy in position measurements. (orig.)

  11. Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for ultrasonic test methods

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice facilitates the interoperability of ultrasonic imaging equipment by specifying image data transfer and archival storage methods in commonly accepted terms. This document is intended to be used in conjunction with Practice E 2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E 2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, transfer and archival storage. The goal of Practice E 2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE test results on any system conforming to the DICONDE standard. Toward that end, Practice E 2339 provides a data dictionary and set of information modules that are applicable to all NDE modalities. This practice supplements Practice E 2339 by providing information object definitions, information ...

  12. A Comparative Analysis of the Rebound Hammer and Ultrasonic ...

    African Journals Online (AJOL)

    This work presents a study on the comparison between some non-destructive testing tech-niques (Rebound Hammer and Ultrasonic Pulse Velocity). Tests were performed to com-pare the accuracy between the rebound hammer and the ultrasonic pulse velocity methodin estimating the strength of concrete. Eighty samples ...

  13. Non-destructive control at the Kozloduy NPP; Nerazrushayushchij kontrol` v AEhS `Kozloduy`

    Energy Technology Data Exchange (ETDEWEB)

    Mikhovsky, M [Institute of Mechanics, Bulgarian Academy of Sciences, Sofia (Bulgaria); Skordev, A [SIME-CONTROL, Sofia (Bulgaria); Nichev, V; Tsokov, P; Popova, N [Kombinat Atomna Energetika, Kozloduj (Bulgaria)

    1996-12-31

    A program for technical diagnostics using non-destructive methods is being carried out at the Kozloduy NPP. The main target is to test mechanical equipment integrity (metal control, mechanical stress control, etc.) as well as electrical equipment. Computer methods and simulation are widely used in program implementation. Non-destructive testing is based on methods involving optical, radiation, ultrasonic and magnetic processes. Control procedures are standardised in special technological documents and one of them is described as an example. It refers to ultrasonic control of the austenitic steel welds of the WWER-440 piping system (DU-500). Graphic representing the microstructure of the welds, the distribution of surface ultrasonic wave and the longitudinal and vertically polarised perpendicular waves are presented. 6 refs. 8 figs.

  14. Nondestructive detection of microstructural fatigue damage

    International Nuclear Information System (INIS)

    Willems, H.; Persch, H.; Voss, B.; Falk, L.

    1989-01-01

    Ultrasonic as well as magnetic investigations have been performed on a pressure vessel steel (A533, B class 1) in order to study the influence of fatigue loading on both elastic and magnetic material properties. Using laboratory specimens under two different loading conditions (tension-tension loading, tension-compression loading), material characteristics like ultrasonic velocity, ultrasonic absorption, coercivity, incremental permeability were measured and evaluated as a function of consumed lifetime. Only in case of macroscopic plastic deformation, significant changes of the measuring quantities were observed. Otherwise the effects are so small that the nondestructive detection of microstructural changes due to high-cycle fatigue loading seems not to be feasible under practical conditions (for example at pressure vessels) with the techniques used. (orig.) [de

  15. Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing.

    Science.gov (United States)

    Capriotti, Margherita; Kim, Hyungsuk E; Scalea, Francesco Lanza di; Kim, Hyonny

    2017-06-04

    This paper discusses a non-destructive evaluation (NDE) technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI) from ground service equipment (GSE), such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers.

  16. Needs for development in nondestructive testing for advanced reactor systems

    International Nuclear Information System (INIS)

    McClung, R.W.

    1978-01-01

    The needs for development of nondestructive testing (NDT) techniques and equipment were surveyed and analyzed relative to problem areas for the Liquid-Metal Fast Breeder Reactor, the Molten-Salt Breeder Reactor, and the Advanced Gas-Cooled Reactor. The paper first discusses the developmental needs that are broad-based requirements in nondestrutive testing, and the respective methods applicable, in general, to all components and reactor systems. Next, the requirements of generic materials and components that are common to all advanced reactor systems are examined. Generally, nondestructive techniques should be improved to provide better reliability and quantitativeness, improved flaw characterization, and more efficient data processing. Specific recommendations relative to such methods as ultrasonics, eddy currents, acoustic emission, radiography, etc., are made. NDT needs common to all reactors include those related to materials properties and degradation, welds, fuels, piping, steam generators, etc. The scope of applicability ranges from initial design and material development stages through process control and manufacturing inspection to in-service examination

  17. Non-Destructive Testing for Building Diagnostics and Monitoring: Experience Achieved with Case Studies

    Directory of Open Access Journals (Sweden)

    Tavukçuoğlu Ayşe

    2018-01-01

    Full Text Available Building inspection on site, in other words in-situ examinations of buildings is a troublesome work that necessitates the use of non-destructive investigation (NDT techniques. One of the main concerns of non-destructive testing studies is to improve in-situ use of NDT techniques for diagnostic and monitoring studies. The quantitative infrared thermography (QIRT and ultrasonic pulse velocity (UPV measurements have distinct importance in that regard. The joint use of QIRT and ultrasonic testing allows in-situ evaluation and monitoring of historical structures and contemporary ones in relation to moisture, thermal, materials and structural failures while the buildings themselves remain intact. For instances, those methods are useful for detection of visible and invisible cracks, thermal bridges and damp zones in building materials, components and functional systems as well as for soundness assessment of materials and thermal performance assessment of building components. In addition, those methods are promising for moisture content analyses in materials and monitoring the success of conservation treatments or interventions in structures. The in-situ NDT studies for diagnostic purposes should start with the mapping of decay forms and scanning of building surfaces with infrared images. Quantitative analyses are shaped for data acquisition on site and at laboratory from representative sound and problem areas in structures or laboratory samples. Laboratory analyses are needed to support in-situ examinations and to establish the reference data for better interpretation of in situ data. Advances in laboratory tests using IRT and ultrasonic testing are guiding for in-situ materials investigations based on measurable parameters. The knowledge and experience on QIRT and ultrasonic testing are promising for the innovative studies on today’s materials technologies, building science and conservation/maintenance practices. Such studies demand a multi

  18. Summaries of the lectures of a conference on nondestructive testing

    International Nuclear Information System (INIS)

    1980-01-01

    The present brochure contains summaries of the lectures that were held at the DGZfP-conference on non-destructive testing' in May 1980 in Goettingen. The greater part of the lectures dealt with ultrasonic methods, electromagnetic methods and applications of X-, γ- and neutron-rays in non-destructive testing. Besides, questions of quality ensurance, economics and problems of the training of testing personnel were treated. (RW) [de

  19. Community survey on reference blocks and transducers for non-destructive ultrasonic testing

    International Nuclear Information System (INIS)

    Vinche, C.; Borloo, E.; Jehenson, P.

    1978-01-01

    In the frame of the European programmes 'Standards and Reference Substances' and 'Reference Materials and Methods' (BCR) the Commission of the European Communities, in conjunction with National experts launched in 1975 an inquiry on reference blocks and transducers for non-destructive ultrasonic testing. This inquiry which is complementary to a general survey made in 1971-1972 by the Commission on Reference Materials (Ref. EUR Report 1973. EUR 4886. d,f,i,n,e) was felt necessary and prepared by a specialists group from the Community Countries and the Joint Research Centre (JRC), Ispra Establishment (the list of these specialists is indicated on p. 2 of the questionnaire). The results of this survey, collated by the JRC Ispra Members have been discussed by the group of specialists and form the subject of this report. On bases of mailing lists submitted by national specialists, 215 organizations have been contacted; the fields of activity of these organizations are mainly: metallurgy, machine parts, technical assistance, aeronautics, power stations and research, 73 organizations have replied to the questionnaire. Most answers were obained from organizations dealing with metallurgy, machine parts manufacturers and technical consultants. The annexes supply a detailed analysis of the results given, on a national basis

  20. Nondestructive inspection of General Purpose Heat Source (GPHS) fueled clad girth welds

    International Nuclear Information System (INIS)

    Reimus, M. A. H.; George, T. G.; Lynch, C.; Padilla, M.; Moniz, P.; Guerrero, A.; Moyer, M. W.; Placr, A.

    1998-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238 Pu decay to an array of thermoelectric elements. The GPHS is fabricated using an iridium-alloy to contain the 238 PuO 2 fuel pellet. GPHS capsules will be utilized in the upcoming Cassini mission to explore Saturn and its moons. The physical integrity of the girth weld is important to mission safety and performance. Because past experience had revealed a potential for initiation of small cracks in the girth weld overlap zone, a nondestructive inspection of each capsule weld is required. An ultrasonic method was used to inspect the welds of capsules fabricated for the Galileo mission. The instrument, transducer, and method used were state of the art at the time (early 1980s). The ultrasonic instrumentation and methods used to inspect the Cassini GPHSs was significantly upgraded from those used for the Galileo mission. GPHSs that had ultrasonic reflectors in excess of the reject specification level were subsequently inspected with radiography to provide additional engineering data used to accept/reject the heat source. This paper describes the Galileo-era ultrasonic instrumentation and methods and the subsequent upgrades made to support testing of Cassini GPHSs. Also discussed is the data obtained from radiographic examination and correlation to ultrasonic examination results

  1. Nondestructive inspection of General Purpose Heat Source (GPHS) fueled clad girth welds

    International Nuclear Information System (INIS)

    Reimus, M.A.; George, T.G.; Lynch, C.; Padilla, M.; Moniz, P.; Guerrero, A.; Moyer, M.W.; Placr, A.

    1998-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238 Pu decay to an array of thermoelectric elements. The GPHS is fabricated using an iridium-alloy to contain the 238 PuO 2 fuel pellet. GPHS capsules will be utilized in the upcoming Cassini mission to explore Saturn and its moons. The physical integrity of the girth weld is important to mission safety and performance. Because past experience had revealed a potential for initiation of small cracks in the girth weld overlap zone, a nondestructive inspection of each capsule weld is required. An ultrasonic method was used to inspect the welds of capsules fabricated for the Galileo mission. The instrument, transducer, and method used were state of the art at the time (early 1980s). The ultrasonic instrumentation and methods used to inspect the Cassini GPHSs was significantly upgraded from those used for the Galileo mission. GPHSs that had ultrasonic reflectors in excess of the reject specification level were subsequently inspected with radiography to provide additional engineering data used to accept/reject the heat source. This paper describes the Galileo-era ultrasonic instrumentation and methods and the subsequent upgrades made to support testing of Cassini GPHSs. Also discussed is the data obtained from radiographic examination and correlation to ultrasonic examination results. copyright 1998 American Institute of Physics

  2. Computer simulation of ultrasonic waves in solids

    International Nuclear Information System (INIS)

    Thibault, G.A.; Chaplin, K.

    1992-01-01

    A computer model that simulates the propagation of ultrasonic waves has been developed at AECL Research, Chalk River Laboratories. This program is called EWE, short for Elastic Wave Equations, the mathematics governing the propagation of ultrasonic waves. This report contains a brief summary of the use of ultrasonic waves in non-destructive testing techniques, a discussion of the EWE simulation code explaining the implementation of the equations and the types of output received from the model, and an example simulation showing the abilities of the model. (author). 2 refs., 2 figs

  3. Nondestructive evaluation of a cermet coating using ultrasonic and eddy current techniques

    International Nuclear Information System (INIS)

    Roge, B.; Fahr, A.; Giguere, J.S.R.; McRae, K.I.

    2002-01-01

    This paper describes a series of experiments conducted to characterize cermet coatings using conventional ultrasonic and eddy current techniques as well as an ultrasonic leaky surface wave method. The results demonstrate the ability of these techniques to detect the presence of artificial defects on the surface or beneath the surface of the coating. In addition, ultrasonic tests in particular ultrasonic leaky surface waves demonstrate the ability to detect the presence of manufacturing flaws. Ultrasonic time-of-flight and eddy current quadrature measurements also show sensitivity to variations in coating thickness

  4. Nondestructive Examination (NDE) Detection and Characterization of Degradation Precursors, Technical Progress Report for FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, P.; Meyer, R.M.; Fricke, J.M.; Prowant, M.S.; Coble, J.B.; Griffin, J.W.; Pitman, S.G.; Dahl, M.E.; Kafentzis, T.A.; Roosendaal, T.J.

    2012-09-01

    The overall objective of this project was to investigate the effectiveness of nondestructive examination (NDE) technology in detecting material degradation precursors by initiating and growing cracks in selected materials and using NDE methods to measure crack precursors prior to the onset of cracking. Nuclear reactor components are subject to stresses over time that are not precisely known and that make the life expectancy of components difficult to determine. To prevent future issues with the operation of these plants because of unforeseen failure of components, NDE technology is needed that can be used to identify and quantify precursors to macroscopic degradation of materials. Some of the NDE methods being researched as possible solutions to the precursor detection problem are magnetic Barkhausen noise, nonlinear ultrasonics, acoustic emission, eddy current measurements, and guided wave technology. In FY12, the objective was to complete preliminary assessment of advanced NDE techniques for sensitivity to degradation precursors, using prototypical degradation mechanisms in laboratory-scale measurements. This present document reports on the deliverable that meets the following milestone: M3LW-12OR0402143 – Report detailing an initial demonstration on samples from the crack-initiation tests will be provided (demonstrating acceleration of the work).

  5. Nondestructive techniques for assaying fuel debris in piping at Three Mile Island Unit 2

    International Nuclear Information System (INIS)

    Vinjamuri, K.; McIsaac, C.V.; Beller, L.S.; Isaacson, L.; Mandler, J.W.; Hobbins, R.R. Jr.

    1981-11-01

    Four major categories of nondestructive techniques - ultrasonic, passive gamma ray, infrared detection, and remote video examination - have been determined to be feasible for assaying fuel debris in the primary coolant system of the Three Mile Island Unit 2 (TMI-2) Reactor. Passive gamma ray detection is the most suitable technique for the TMI-2 piping; however, further development of this technique is needed for specific application to TMI-2

  6. Ultrasonic nondestructive evaluation systems industrial application issues

    CERN Document Server

    Callegari, Sergio; Montisci, Augusto; Ricci, Marco; Versaci, Mario

    2015-01-01

    This book covers the practical implementation of ultrasonic NDT techniques in an industrial environment, discussing several issues that may emerge and proposing strategies for addressing them successfully.  It aims to bridge advanced academic research results and their application to industrial procedures. The topics covered in the text range from the basic operation of an ultrasonic NDT system to the simulation of the measurement operations; from the choice and generation of the signals energizing the system to the different ways of exploiting the probes and their output signals; and from quality assessment evaluation to the use of soft computing techniques for classification. Throughout the text, an effort is made to embrace a system view where the physical and technological aspects of sensing are addressed together with higher abstraction levels, such as signal and information processing. Consequently, the book aims at guiding the reader through the various tasks requested for developing a complete ultras...

  7. Examination of Sandwich Materials Using Air-Coupled Ultrasonics

    DEFF Research Database (Denmark)

    Borum, K.K.; Berggreen, Carl Christian

    2004-01-01

    The air-coupled ultrasonic techniques have been improved drastically in recent years. Better equipment has made this technique much more useful. This paper focuses on the examination of sandwich materials used in naval ships. It is more convenient to be able to make the measurements directly...

  8. Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing

    Directory of Open Access Journals (Sweden)

    Margherita Capriotti

    2017-06-01

    Full Text Available This paper discusses a non-destructive evaluation (NDE technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI from ground service equipment (GSE, such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers.

  9. The non-destructive control, a major constituent of quality

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The number of continuous research and development works about non-destructive control in all sectors of activity is justified by the increasing need for high quality materials without anomalies. This paper gives a overview of the state of the art and of the recent trends in non-destructive testing researches in different sectors: aeronautics, nuclear industry, automotive industry. New studies and techniques are presented: ultrasonic testing of welds on large diameter pipes, automated applications of ultrasonic testing, ultrasound/computer-aided design coupling, pressure vessels inspection using acoustic emission testing (leaks detection, application to composite materials), numerical radiography (image visualisation and processing), magnetic testing (steel damage detection using Barkhausen noise testing), 'shearography' (detection of the loss of thickness in pipes due to corrosion), X-ray tomography (density measurement of sintered steels, fluid flow calculations in automobile parts). (J.S.)

  10. NonDestructive Evaluation for Industrial & Development Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, James F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-12

    Provide overview of weld inspection for Non-Destructive Testing at LANL. This includes radiography (RT/DR/CR/CT for x-ray & neutron sources), ultrasonic testing (UT/PAUT), dye penetrant inspection (PT), eddy current inspection (ET) and magnetic particle testing (MT). Facilities and capabilities for weld inspection will be summarized with examples.

  11. Non-destructive control: technologies, applications and markets

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    A description of NDC - nondestructive controls - (acoustic emission, Eddy currents, infrared and thermal, liquid penetrants, magnetic particles, radiographic, ultrasonic, visual and optical techniques) is given with various industrial applications and market trends. Some research projects, contacts and a list of NDC systems main manufacturers are given. (A.B.). 37 figs. and tabs

  12. Nondestructive testing of thin films using surface acoustic waves and laser ultrasonics

    Science.gov (United States)

    Jenot, Frédéric; Fourez, Sabrina; Ouaftouh, Mohammadi; Duquennoy, Marc

    2018-04-01

    Thin films are widely used in many fields such as electronics, optics or materials science. For example, they find applications in thermal or mechanical sensors design. They are also very useful as protective or reinforcement layers for many structures. However, some coating defects such as thickness variations, microfissuring or poor adhesion are common problems. Therefore, nondestructive testing of these structures using acoustic waves generated and detected by lasers represents a major interest. Indeed, in comparison with conventional methods based on the use of piezoelectric transducers, laser ultrasonics leads to non-contact investigations with a large bandwidth. Usually, bulk acoustic waves are used and a pulse-echo technique is considered that needs high frequencies and implies local measurements. In order to avoid this limitation, we propose to use surface acoustic waves in a frequency range up to 45 MHz. The samples consist of a micrometric gold layer deposited on silicon substrates. In a first part, using dispersion analysis, theoretical and experimental results clearly reveal that the first Rayleigh mode allows the detection of film thickness variations and open cracks. In a second part, a localized adhesion defect is introduced in a similar sample. The effects of such a flaw on the Rayleigh modes dispersion curves are theoretically described. Finally, we experimentally show that the first Rayleigh mode allows the defect detection only under specific conditions.

  13. Finite element simulation and experimental verification of ultrasonic non-destructive inspection of defects in additively manufactured materials

    Science.gov (United States)

    Taheri, H.; Koester, L.; Bigelow, T.; Bond, L. J.

    2018-04-01

    Industrial applications of additively manufactured components are increasing quickly. Adequate quality control of the parts is necessary in ensuring safety when using these materials. Base material properties, surface conditions, as well as location and size of defects are some of the main targets for nondestructive evaluation of additively manufactured parts, and the problem of adequate characterization is compounded given the challenges of complex part geometry. Numerical modeling can allow the interplay of the various factors to be studied, which can lead to improved measurement design. This paper presents a finite element simulation verified by experimental results of ultrasonic waves scattering from flat bottom holes (FBH) in additive manufacturing materials. A focused beam immersion ultrasound transducer was used for both the modeling and simulations in the additive manufactured samples. The samples were SS17 4 PH steel samples made by laser sintering in a powder bed.

  14. Non-destructive testing of the MEGAPIE target

    Science.gov (United States)

    Dai, Y.; Wohlmuther, M.; Boutellier, V.; Hahl, S.; Lagotzki, A.; Leu, H.; Linder, H. P.; Schwarz, R.; Spahr, A.; Zanini, L.; Kuster, D.; Gavillet, D.; Wagner, W.

    2016-01-01

    Non-destructive testing (NDT) is one important part of the post-irradiation examination (PIE) of the MEGAPIE target. It includes visual inspection and ultrasonic measurement of the beam window of the T91 LBE container and gamma mapping of the beam window of the AlMg3 safety-container. The visual inspection showed no visible failure in the proton beam window area of the T91 LBE container. The ultrasonic measurement demonstrated no detectable change in the wall thickness of the T91 beam window, which implies no severe corrosion effect induced by flowing LBE during the four-month irradiation period. The gamma mapping provided the distribution of 22Na, a spallation product, in the proton beam window area of the AlMg3 safety-container. The result was used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. A maximum proton fluence of 1.9 × 1025 p/m2 was deduced. The corresponding displacement damage degree in the T91 beam window was 7.1 dpa.

  15. IVA Ultrasonic and Eddy Current NDE for ISS

    Data.gov (United States)

    National Aeronautics and Space Administration — The project intends to develop a combined Ultrasonic and Eddy Current nondestructive evaluation (NDE) instrument for IVA use on ISS. A suite of IVA and EVA NDE...

  16. Sampling phased array, a new technique for ultrasonic signal processing and imaging now available to industry

    OpenAIRE

    Verkooijen, J.; Bulavinov, A.

    2008-01-01

    Over the past 10 years the improvement in the field of microelectronics and computer engineering has led to significant advances in ultrasonic signal processing and image construction techniques that are currently being applied to non-destructive material evaluation. A new phased array technique, called "Sampling Phased Array" has been developed in the Fraunhofer Institute for non-destructive testing [1]. It realizes a unique approach of measurement and processing of ultrasonic signals. The s...

  17. Ultrasonic Examination of Jet Pump Diffuser Assemblies

    International Nuclear Information System (INIS)

    Hacker, M.; Levesque, M.; Whitman, G.

    1998-01-01

    In October 1997 the Boiling Water REactor Vessel and Internals Project (BWRVIP) issued the BWR Jet Pump Assembly Inspection and Flaw Evaluation Guidelines (BWRVIP-41). This document identified several welds on the jet pump diffuser assembly that are susceptible to Intergranular Stress Corrosion Cracking (IGSCC) or fatigue, and whose failure could result in jet pump disassembly. Based on the potential for failures, the document recommends inspection of 50% of the high priority welds at the next refueling outage for each BWR, with 100% expansion if flaws are identified. Because each diffuser assembly contains as many as six high priority welds, and access to these welds from the annulus is very restricted, implementing these recommendations can have a significant impact on outage critical path. In an effort to minimize the impact of implementing these recommendations, Framatome Technologies, Inc (FTI) developed a method to perform ultrasonic examinations of the jet pump diffuser assembly welds utilizing remotely operated equipment from the inner diameter (ID) of the diffuser assembly. This paper will discuss the tooling, ultrasonic methods, and delivery techniques used to perform the examinations, as well as the results obtained from a spring 1998 deployment of the system at a U.S. Nuclear Generating Plant. (Author)

  18. Inverse Kinematic Analysis and Evaluation of a Robot for Nondestructive Testing Application

    Directory of Open Access Journals (Sweden)

    Zongxing Lu

    2015-01-01

    Full Text Available The robot system has been utilized in the nondestructive testing field in recent years. However, only a few studies have focused on the application of ultrasonic testing for complex work pieces with the robot system. The inverse kinematics problem of the 6-DOF robot should be resolved before the ultrasonic testing task. A new effective solution for curved-surface scanning with a 6-DOF robot system is proposed in this study. A new arm-wrist separateness method is adopted to solve the inverse problem of the robot system. Eight solutions of the joint angles can be acquired with the proposed inverse kinematics method. The shortest distance rule is adopted to optimize the inverse kinematics solutions. The best joint-angle solution is identified. Furthermore, a 3D-application software is developed to simulate ultrasonic trajectory planning for complex-shape work pieces with a 6-DOF robot. Finally, the validity of the scanning method is verified based on the C-scan results of a work piece with a curved surface. The developed robot ultrasonic testing system is validated. The proposed method provides an effective solution to this problem and would greatly benefit the development of industrial nondestructive testing.

  19. Review of progress in quantitative nondestructive evaluation

    CERN Document Server

    Chimenti, Dale

    1999-01-01

    This series provides a comprehensive review of the latest research results in quantitative nondestructive evaluation (NDE). Leading investigators working in government agencies, major industries, and universities present a broad spectrum of work extending from basic research to early engineering applications. An international assembly of noted authorities in NDE thoroughly cover such topics as: elastic waves, guided waves, and eddy-current detection, inversion, and modeling; radiography and computed tomography, thermal techniques, and acoustic emission; laser ultrasonics, optical methods, and microwaves; signal processing and image analysis and reconstruction, with an emphasis on interpretation for defect detection; and NDE sensors and fields, both ultrasonic and electromagnetic; engineered materials and composites, bonded joints, pipes, tubing, and biomedical materials; linear and nonlinear properties, ultrasonic backscatter and microstructure, coatings and layers, residual stress and texture, and constructi...

  20. Ultrasonic testing of materials at level 2

    International Nuclear Information System (INIS)

    1988-06-01

    Ultrasonic inspection is a nondestructive method in which high frequency sound waves are introduced into the material being inspected. Ultrasonic testing has a superior penetrating power to radiography and can detect flaws deep in the test specimen (say up to about 6 to 7 meters of steel). It is quite sensitive to small flaws and allows the precise determination of the location and size of the flaws. Basic ultrasonic test methods such as the through transmission method and the resonance method, sensors and testing techniques are described. Pulse echo type flaw detectors and their applications for inspection of welds are surveyed. Ultrasonic standards, calibration of the equipment and evaluation methods are presented. Examples of practical applications in welding, casting and forging processes are given. Figs and tabs

  1. Study of problems associated with the ultrasonic examination of repeatedly repaired austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Subbaratnam, R.; Palaniappan, M.; Baskaran, A.; Chandramohan, R.

    1994-01-01

    In recent years the ultrasonic examination of austenitic stainless steel weldments has gained increased importance as an NDE technique for the volumetric examination in the nuclear power plant construction and other industries. A study has been undertaken to evaluate the effects of multiple repairs on austenitic stainless steel weldments, for the successful ultrasonic examination. The test welds have been subjected to repeated welding cycles and the ultrasonic parameters including the defect characterization have been evaluated for analysis. The paper discusses the approach followed, analysis, results obtained and the recommendations based on the above. 1 fig., 2 tabs

  2. Simulations of ultrasonic examination using focused beams properties

    International Nuclear Information System (INIS)

    Calmon, P.; Gondard, C.; Lobjois, D.

    1992-01-01

    A simulation software based on a simplified model has been developed by the C.E.A. in order to predict the results of ultrasonic examinations. The algorithm account for the response of a crack close to the outer surface of a block examined with a focusing probe. It is based on a model described in this paper. This model allows to explain the main features observed on the echodynamic curves. Comparisons between experimental and simulated results show a quite good agreement

  3. Non-destructive controls in the mechanical industry

    Energy Technology Data Exchange (ETDEWEB)

    Jarlan, L

    1978-12-01

    The sequence of operations implicating the mechanical industries from the suppliers to their customers is briefly recalled; a description of the field of application of non-destructive control methods in these industries is given. Follows a description of some recent typical applications of the principal methods: radiography, ultrasonic waves, magnetism, acoustic emission, sonic control, tracer techniques.

  4. Advanced nondestructive examination of the reactor vessel head penetration tube welds

    International Nuclear Information System (INIS)

    Cvitanovic, M.; Zado, V.

    1996-01-01

    Beside a referent code examination requirements, appearance of the service induced flaws on the Reactor Vessel Head (RVH) penetration tube welds forced development of remotely operated examination tools and techniques. Several systems were developed for examination of RVH PWR type while only one system for examination of VVER - 440 type RVH has been developed by Inetec. In this article the most advanced RVH VVER - 440 type examination techniques such as ultrasonic, eddy current and visual testing techniques as well as remotely operated tool are described. (author)

  5. Study of the simulation of working of ultrasonic equipment in order to optimize the nondestructive control conditions

    International Nuclear Information System (INIS)

    Drai, R.

    1986-01-01

    The aim of this study is, for the long run, to define one or several procedures of ultrasonic nondestructive testing, allowing the use of the equipment, at their best conditions. In this work, the behaviour of the testing system is simulated. The water bounded by a reflector plane is taken as a propagation medium. The testing equipment is considered as a system composed by a set of sub-systems (generator, cable, transducers and reception amplifier). Each of these sub-systems is modelled by its respective transfer functions. Thus, an experimental procedure for measuring sub-system characteristics is given in order to calculate the different transfer functions. With this model, we have the possibility to obtain, by calculation, all signals given by testing system for any combination of these parameters: damping, attenuation, cable length... So, it is possible to establish prior to the test, the adequate conditions for the testing system (high sensitivity, good resolution or good compromise between both)

  6. Non-destructive tests of capsules for JMTR irradiation examination

    International Nuclear Information System (INIS)

    Tanaka, Hidetaka; Nagao, Yoshiharu; Sato, Masashi; Osawa, Kenji

    2007-03-01

    Irradiation examination are increasing in advanced irradiation research for accurate prediction control and evaluation of irradiation parameter such as neutron fluence, etc. by using JMTR. Irradiation capsule internals are therefore structurally complicated recently. This report described the procedure of non destructive tests such as radiographic test, penetrant test, ultrasonic test, etc. for inspection of irradiation capsules in JMTR, and the result of Test-case of confirmation procedure for internal parts of irradiation capsules. (author)

  7. Nondestructive testing of concrete structures

    International Nuclear Information System (INIS)

    Rufino, Randy R.; Relunia, Estrella

    1999-01-01

    Nondestructive testing of concrete is highly inhomogeneous which makes it cumbersome to setup experimental procedures and analyze experimental data. However, recent research and development activities have discovered the different methods of NDT, like the electromagnetic method, ultrasonic pulse velocity test, pulse echo/impact echo test, infrared thermography, radar or short pulse radar techniques, neutron and gamma radiometry, radiography, carbonation test and half-cell potential method available for NDT of concrete structures. NDT of concrete is emerging as a useful tool for quality control and assurance. This papers also describes the more common NDT methods discussed during the two-week course on 'Nondestructive Testing of Concrete Structures', held at the Malaysian Institute for Nuclear Technology Research (MINT) in Malaysia, which was jointly organized by MINT and the International Atomic Energy Agency (IAEA)

  8. Acceptance criteria for non-destructive examination of double-shell tanks

    International Nuclear Information System (INIS)

    Jensen, C.E.

    1995-09-01

    This supporting document provides requirements for acceptance of relevant indications found during non-destructive examination of double-shell tanks (DSTs) at Hanford 200 areas. Requirements for evaluation of relevant indications are provided to determine acceptability of continued safe operation of the DSTs. Areas of the DSTs considered include the tank wall vapor space, liquid-vapor interface, wetted tank wall, sludge-liquid interface, and the knuckle region

  9. Residual stress determination of rail tread using a laser ultrasonic technique

    International Nuclear Information System (INIS)

    Wang, Jing; Feng, Qibo

    2015-01-01

    A non-destructive method for measuring the residual stress on rail tread that uses a laser-generated ultrasonic technique is proposed. The residual stress distribution of different parts on both the new rail and used rail were examined. The surface acoustic waves (SAWs) are excited by a scanning line laser and detected by a laser ultrasonic detection system. A digital correlation method was used for calculating the changes in velocity of SAWs, which reflects the stress distribution. A wavelet de-noising technique and a least square fit were used for signal processing to improve the measurement accuracy. The effects of ultrasonic propagation distance and surface roughness on the determination of residual stress were analyzed and simulated. Results from the study demonstrate that the stress distribution results are accordant with the practical situation, and the laser-generated SAWs technique is a promising tool for the determination of residual stress in the railway inspection and other industrial testing fields. (paper)

  10. The real defect and its nondestructive characterization

    International Nuclear Information System (INIS)

    Licht, H.

    1982-01-01

    Nondestructive test techniques to evaluate defect severity and component degradation are typically based on transmission of energy into the material to be inspected. The capabilities of such techniques are controlled by physical phenomena which generally do not coincide with inspection requirements. This paper reviews several recent developments (mainly in ultrasonic and eddy current testing) which highlight the state of the art

  11. Ultrasonic texture characterization of aluminum, zirconium and titanium alloys

    International Nuclear Information System (INIS)

    Anderson, A.J.

    1997-01-01

    This work attempts to show the feasibility of nondestructive characterization of non-ferrous alloys. Aluminum alloys have a small single crystal anisotropy which requires very precise ultrasonic velocity measurements for derivation of orientation distribution coefficients (ODCs); the precision in the ultrasonic velocity measurement required for aluminum alloys is much greater than is necessary for iron alloys or other alloys with a large single crystal anisotropy. To provide greater precision, some signal processing corrections need to be applied to account for the inherent, half-bandwidth offset in triggered pulses when using a zero-crossing technique for determining ultrasonic velocity. In addition, alloys with small single crystal anisotropy show a larger dependence on the single crystal elastic constants (SCECs) when predicting ODCs which require absolute velocity measurements. Attempts were made to independently determine these elastics constants in an effort to improve correlation between ultrasonically derived ODCs and diffraction derived ODCs. The greater precision required to accurately derive ODCs in aluminum alloys using ultrasonic nondestructive techniques is easily attainable. Ultrasonically derived ODCs show good correlation with derivations made by Bragg diffraction techniques, both neutron and X-ray. The best correlation was shown when relative velocity measurements could be used in the derivations of the ODCs. Calculation of ODCs in materials with hexagonal crystallites can also be done. Because of the crystallite symmetries, more information can be extracted using ultrasonic techniques, but at a cost of requiring more physical measurements. Some industries which use materials with hexagonal crystallites, e.g. zirconium alloys and titanium, have traditionally used texture parameters which provide some specialized measure of the texture. These texture parameters, called Kearns factors, can be directly related to ODCs

  12. Ultrasonic system for NDE of fruits and vegetables

    International Nuclear Information System (INIS)

    Jhang, Kyung Young; Jung, Gyoo Hong; Kim, Man Soo

    1999-01-01

    The nondestructive internal quality evaluation of agricultural products has been strongly required from the needs for individual inspection. In recent, ultrasonic wave has been considered as a solution for this problem. This study is to construct the ultrasonic inspection system for fruits and vegetables on the basis of pre-knowledge that general frequency band(higher than 100 kHz) ultrasonic waves do not transmitted well due to severe attenuation. Our system includes ultrasonic pulser and receiver, transducers(50 kHz), acoustic hem, pneumatic controller and signal processing units (PC). In order to confirm the performance, several samples (apple, pear, persimmon, kiwi fruit, potato and radish) were tested, and the results showed sufficient possibility to apply to NDE of fruits and vegetables.

  13. Nondestructive detection of microstructural fatigue damage

    International Nuclear Information System (INIS)

    Willems, H.; Persch, H.

    1990-02-01

    Ultrasonic as well as magnetic investigations have been performed on a pressure vessel steel (A533, B class 1) in order to study the influence of fatigue loading on both elastic and magnetic material properties. Using laboratory specimens under two different loading conditions (tension-tension loading, tension-compression loading), material characteristics like ultrasonic velocity, ultrasonic absorption, coercivity, incremental permeability were measured and evaluated as a function of consumed lifetime. Only in case of macroscopic plastic deformation, significant changes of the measuring quantities were observed. Otherwise the effects are so small that the nondestructive detection of microstructural changes due to fatigue loading seems not to be feasible under practical conditions (for example at pressure vessels) with the techniques used. Besides a zero measurement, additional measurements on a 1:5 model vessel at JRC Ispra could not be carried out, because the planned fatigue tests were not performed by JRC Ispra during the research period

  14. Phased Array Ultrasonic Evaluation of Space Shuttle Main Engine (SSME) Nozzle Weld

    Science.gov (United States)

    James, Steve; Engel, J.; Kimbrough, D.; Suits, M.; Hopson, George (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of the phased array ultrasonic evaluation of the Space Shuttle Main Engine (SSME) nozzle weld. Details are given on the nondestructive testing evaluation approach, conventional shear wave and phased array techniques, and an x-ray versus phased array risk analysis. The field set-up was duplicated to the greatest extent possible in the laboratory and the phased array ultrasonic technique was developed and validated prior to weld evaluation. Results are shown for the phased array ultrasonic evaluation and conventional ultrasonic evaluation results.

  15. Numerical and Experimental Characterization of a Composite Secondary Bonded Adhesive Lap Joint Using the Ultrasonics method

    Science.gov (United States)

    Kumar, M. R.; Ghosh, A.; Karuppannan, D.

    2018-05-01

    The construction of aircraft using advanced composites have become very popular during the past two decades, in which many innovative manufacturing processes, such as cocuring, cobonding, and secondary bonding processes, have been adopted. The secondary bonding process has become less popular than the other two ones because of nonavailability of process database and certification issues. In this article, an attempt is made to classify the quality of bonding using nondestructive ultrasonic inspection methods. Specimens were prepared and tested using the nondestructive ultrasonic Through Transmission (TT), Pulse Echo (PE), and air coupled guided wave techniques. It is concluded that the ultrasonic pulse echo technique is the best one for inspecting composite secondary bonded adhesive joints.

  16. Economic importance of non-destructive testing

    International Nuclear Information System (INIS)

    Loebert, P.

    1979-01-01

    On May 21 to 23, 1979, the annual meeting of the Deutsche Gesellschaft fuer Zerstoerungsfreie Pruefung took place in Lindau near the Bodensee lake. About 600 experts from Germany and abroad participated in the meeting, whose general subject was 'The Economic Importance of Non-Destructive Testing'. Theoretical problems and practical investigations were discussed in a number of papers on special subjects. Apart from the 33 papers, there was also a poster show with 53 stands with texts, drawings, diagrams, and figures where the authors informed those interested on the latest state of knowledge in testing. The short papers were read in six sessions under the headings of rentability of non-destructive testing, X-ray methods, electromagnetic methods, and ultrasonic methods 1 and 2. (orig.) [de

  17. Nondestructive Testing

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Harold [Argonne National Laboratory

    1969-01-01

    A nondestructive test is an examination of an object in any manner which will not impair the future usefulness of the object. This booklet discusses a few basic methods of nondestructive testing, and some of their characteristics. In addition, it discusses possible future methods for nondestructive testing by taking a quick look at some of the methods now under study.

  18. Establishment and implementation of performance demonstration system for ultrasonic examination in Korea

    International Nuclear Information System (INIS)

    Kim, Yong-sik

    2007-01-01

    Korea Electric Power Research Institute (KEPRI) and Korea Hydro and Nuclear Power Company (KHNP) developed Korean Performance Demonstration (KPD) system for ultrasonic examination applicable to pressurized light-water reactor and pressurized heavy-water reactor power plants in accordance with ASME Sec. XI App. VIII. In order to develop the KPD system following works were completed. 1) Surveying the welds on piping of all nuclear power plants in Korea, 2) Surveying the bolting configuration of all nuclear power plant in Korea, 3) Determining the number and type of test specimens, 4)Designing the test and the practice specimens, 5) Developing quality assurance procedures for the fabrication of test specimens and system management, 6) Developing generic procedures for manual ultrasonic test, 7) Fabrication and fingerprint of test specimen. After establishing the KPD system, round robin tests were conducted to evaluate the accuracy and reliability of examination results by comparing traditional ASME code and performance demonstration method. KEPRI/KHNP had successfully developed the KPD system to fulfill the performance demonstration requirements of ASME Sec. XI, Appendix VIII, and are executing the performance demonstration test for ultrasonic examination system. (author)

  19. A study on non-contact ultrasonic technique for on-line inspection of CFRP

    International Nuclear Information System (INIS)

    Lee, Seung-Joon; Park, Won-Su; Lee, Joon-Hyun; Byun, Joon-Hyung

    2007-01-01

    The advantages of carbon fiber reinforced plastic materials (CFRP) are: they are light structure materials, they have corrosion resistance, and higher specific strength and elasticity. The recently developed 3-dimentional fiber placement system is able to produce a more complex and various shaped structures due to less limitations of a product shape according to the problem in conventional fabrication process. This fiber placement system stacks the narrow prepreg tape on the mold according to the designed sequence and thickness. Non-destructive evaluation was rquired for these composites to evaluate changes in strength caused by defects such as delamination and porosity. Additionally, the expectent quality should be satisfied for the high cost fabrication process using the fiber placement system. Therefore, an on line non-destructive evaluation system is required and real-time complement is needed when the defects are detected [1]. Defect imaging by the ultrasonic C-scan method is a useful technique for defect detection in CFRP. However, the conventional ultrasonic C-scan technique cannot be applied during the fabrication process because the test piece should be immersed into the water. Therefore, non-contact ultrasonic techniques should be applied during the fabricating process. For the development of non-contact ultrasonic techniques available in non-destructive evaluation of CFRP, a recent laser-generated ultrasonic technique and an air-coupled transducer that transmit and receive ultrasounds in the air are studied [2-3]. In this study, generating and receiving techniques of laser-generated ultrasound and the characteristics of received signals upon the internal defects of CFRO were studied for non-contact inspection

  20. Scanning Ultrasonic Spectroscopy System Developed for the Inspection of Composite Flywheels

    Science.gov (United States)

    Martin, Richard E.; Baaklini, George Y.

    2002-01-01

    Composite flywheels are being considered as replacements for chemical batteries aboard the International Space Station. A flywheel stores energy in a spinning mass that can turn a generator to meet power demands. Because of the high rotational speeds of the spinning mass, extensive testing of the flywheel system must be performed prior to flight certification. With this goal in mind, a new scanning system has been developed at the NASA Glenn Research Center for the nondestructive inspection of composite flywheels and flywheel subcomponents. The system uses ultrasonic waves to excite a material and examines the response to detect and locate flaws and material variations. The ultrasonic spectroscopy system uses a transducer to send swept-frequency ultrasonic waves into a test material and then receives the returning signal with a second transducer. The received signal is then analyzed in the frequency domain using a fast Fourier transform. A second fast Fourier transform is performed to examine the spacing of the peaks in the frequency domain. The spacing of the peaks is related to the standing wave resonances that are present in the material because of the constructive and destructive interferences of the waves in the full material thickness as well as in individual layers within the material. Material variations and flaws are then identified by changes in the amplitudes and positions of the peaks in both the frequency and resonance spacing domains. This work, conducted under a grant through the Cleveland State University, extends the capabilities of an existing point-by-point ultrasonic spectroscopy system, thus allowing full-field automated inspection. Results of an ultrasonic spectroscopy scan of a plastic cylinder with intentionally seeded flaws. The result of an ultrasonic spectroscopy scan of a plastic cylinder used as a proof-of-concept specimen is shown. The cylinder contains a number of flat bottomed holes of various sizes and shapes. The scanning system

  1. Ultrasonic phased array examination of circumferential weld joint in reactor pressure vessel of BWR

    Energy Technology Data Exchange (ETDEWEB)

    Nanekar, Paritosh, E-mail: pnanekar@barc.gov.in [Quality Assurance Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jothilakshmi, N. [Quality Assurance Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2013-12-15

    Highlights: • Phased array technique developed for weld joint inspection in BWR pressure vessel. • Simulation studies were carried out for conventional and phased array probe. • Conventional ultrasonic test shows in-adequate weld coverage and poor resolution. • Focused sound beam in phased array results in good resolution and sensitivity. • Ultrasonic phased array technique is validated on mock-up with reference defects. - Abstract: The weld joints in the reactor pressure vessel (RPV) of Boiling Water Reactors (BWR) are required to be examined periodically for assurance of structural integrity. Ultrasonic phased array examination technique has been developed in authors’ laboratory for inspection of the top flange to shell circumferential weld joint in RPV of BWRs, which are in operation in India since the late 1960s. The development involved detailed simulation studies for computation of focal laws followed by validation on mock-up. The paper brings out the limitations of the conventional ultrasonic technique and how this can be overcome by the phased array approach for the weld joint under consideration. The phased array technique was successfully employed for field examination of this weld joint in RPV during the re-fuelling outage.

  2. Multi-Canister overpack ultrasonic examination of closure weld

    International Nuclear Information System (INIS)

    SMITH, K.E.

    1998-01-01

    The method used for non-destructive examination of the closure weld must provide adequate assurance that the weld is structurally sound for the pressure and lifting loads to be imposed, and must be consistent with NRC equivalency requirements established for the SNF Project. Given the large flaw size that would need to exist before the structural integrity of the weld is challenged, liquid penetrant testing of the root and final passes provides adequate assurance of weld quality to meet structural loads. In addition, the helium leak test provides confirmation that the containment boundary is intact and leaktight. While UT examination does provide additional evidence of weld integrity, the value of that additional evidence for this particular application does not justify performing UT examination, given the additional financial and ALARA costs associated with performing the examination

  3. Surry steam generator - examination and evaluation

    International Nuclear Information System (INIS)

    Clark, R.A.; Doctor, P.G.; Ferris, R.H.

    1985-10-01

    This report summarizes research conducted during the fourth year of the five year Steam Generator Group Project. During this period the project conducted numerous nondestructive examination (NDE) round robin inspections of the original Surry 2A steam generator. They included data acquisition/analysis and analysis-only round robins using multifrequency bobbin coil eddy current tests. In addition, the generator was nondestructively examined by alternate or advanced techniques including ultrasonics, optical fiber, profilometry and special eddy current instrumentation. The round robin interpretation data were compared. To validate the NDE results and for tube integrity testing, a selection of tubing samples, determined to be representative of the generator, was designated for removal. Initial sample removals from the generator included three sections of tube sheet, two sections of support plate and encompassed tubes, and a number of straight and U-bend tubing sections. Metallographic examination of these sections was initiated. Details of significant results are presented in the following paper. 13 figs

  4. Surry steam generator - examination and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R A; Doctor, P G; Ferris, R H

    1987-01-01

    This report summarizes research conducted during the fourth year of the five year Steam Generator Group Project. During this period the project conducted numerous nondestructive examination (NDE) round robin inspections of the original Surry 2A steam generator. They included data acquisition/analysis and analysis-only round robins using multifrequency bobbin coil eddy current tests. In addition, the generator was nondestructively examined by alternate or advanced techniques including ultrasonics, optical fiber, profilometry and special eddy current instrumentation. The round robin interpretation data were compared. To validate the NDE results and for tube integrity testing, a selection of tubing samples, determined to be representative of the generator, was designated for removal. Initial sample removals from the generator included three sections of tube sheet, two sections of support plate and encompassed tubes, and a number of straight and U-bend tubing sections. Metallographic examination of these sections was initiated. Details of significant results are presented in the following paper.

  5. Further Experiments with Lok-Test and Ultrasonic Test in Relation to Fresh and Hardened Concrete

    DEFF Research Database (Denmark)

    Jensen, Jens Kristian Jehrbo

    Lok-test is mainly a non-destructive pull-out test for determination of concrete strength. The method is deseribed in (l) and it is detailed discussed in theory (2). The method is welknown in practice. Ultrasonic is commonly used for investigations of several materials, especially concrete. In a ....... In a project (3) about non-destructive testing of concrete different methods and the relations to concrete are discussed in theory and practice. This paper point out some interesting results from further experiments in this area.......Lok-test is mainly a non-destructive pull-out test for determination of concrete strength. The method is deseribed in (l) and it is detailed discussed in theory (2). The method is welknown in practice. Ultrasonic is commonly used for investigations of several materials, especially concrete...

  6. Utilization and reliability of nondestructive testing in ordnance

    International Nuclear Information System (INIS)

    Maranhao, M.; Alves, L.E.G.

    1983-01-01

    Information about nondestructive testing used in ordnance are presented. For propellants and breaking load ultrasonic testing and X-ray are used. For skyrocket propellants the X-ray is used to test the continuity of the explosive mass and the burn inhibiting agent. For rupture explosive, the X-ray is used to test the continuity of explosive mass. (E.G.) [pt

  7. In situ ultrasonic examination of high-strength steam generator support bolts

    International Nuclear Information System (INIS)

    Jusino, A.

    1985-01-01

    Currently employed high-strength steam generator support bolting material (designed prior to ASME Section III Part NF or Component Supports), 38.1 mm in diameter, in combination with high preloads are susceptible to stress corrosion cracking because of the relatively low stress corrosion resistance (K/sub ISCC/) properties. These bolts are part of the pressurized water reactor steam generator supports at the integral support pads (three per steam generator, with each pad housing six, eight, or ten bolts depending on the design). The US Nuclear Regulatory Commission concerns for high-strength bolting were identified in NUREG-0577, ''Potential for Low Fracture Toughness and Laminar Tearing in PWR Steam Generator and Reactor Coolant Pump Supports,'' which was issued for comment on unresolved safety issue A-12. Subsequently, the bolting issues were addressed in generic issue B29. One of the issues deals specifically with high-strength bolting materials, which are vulnerable to stress corrosion cracking. A Westinghouse Owners Group funded program was established to develop in situ ultrasonic examination techniques to determine steam generator support bolting integrity at the head-to-shank and first-thread locations. This program was established in order to determine bolting integrity in place. Ultrasonic techniques were developed for both socket-head and flat-head bolt configurations. As a result of this program, in situ ultrasonic examination techniques were developed for examination of PWR steam generator support bolts. By employing these techniques utilities will be able to ensure the integrity of this in-place bolting without incurring the costs previously experienced during removal for surface examinations

  8. Nondestructive examinations performance demonstration standpoint of the BCCN (Nuclear Construction Inspection Office)

    International Nuclear Information System (INIS)

    Deschamps, J.; Novat, J.

    1994-01-01

    The part played by in service non-destructive examinations (NDE) in the safety assessment of French nuclear power plants has developed considerably since startup of the first PWR unit 15 years ago. In 15 years of operation and continued plant construction, defects came to light, revealed either by a non-destructive examination or a leak occurring in operation or during hydrostatic test. It is consequently necessary to operate reactors affected by defects already detected or liable to develop according to a known mechanism. This practice is only acceptable if it can be proved that the defects will remain harmless in all situations. This implies that they can be detected without fail beyond a certain threshold, that they can be characterized and that their propensity to develop can be measured. In some cases, only NDE data can justify the continued operation of a reactor. Maximum guarantees as to the performances and reliability of these examinations are consequently indispensable, since plant safety conclusions will be based on their results. This paper discusses: the advantages of an NDE performance demonstration program; practical assessments role; and NDE performance demonstration stages

  9. Introduction to non-destructive testing of materials: part II

    International Nuclear Information System (INIS)

    Ahmed, M.; Ahmed, B.

    2001-01-01

    Ultrasonic waves are mechanical vibrations that require a medium, which functions as carrier. Ultrasonics are widely used in non-destructive testing of materials in which high frequency sound waves are introduced into the material being inspected. If the frequency of sound waves in within the range 10 to 20,000 Hz, the sound is audible, i.e. the range of hearing, above 20,000 Hz, the sound waves are referred to as Ultrasound or Ultrasonics. Sound waves do not cause any permanent change in material although its transient presence is very noticeable. An energy transport through a sound wave is possible only when constituent particles are connected to each other by elastic forces. Liquids and Gases are also suitable media for the transmission of sound. In vacuum no matter exists and thus no sound transmission is possible. At the end of this article advantages and limitations of ultrasonic testing are also given. (A.B.)

  10. Nondestructive testing of materials

    International Nuclear Information System (INIS)

    NUKEM has transferred know-how from reactor technology to materials testing. The high and to a large extent new quality standards in the nuclear industry necessitate reliable measuring and testing equipment of the highest precision. Many of the tasks presented to us could not be solved with the equipment available on the market, for which reason we have developed our own measuring, testing and control systems. We have therefore acquired considerable experience in dealing with specific measuring, testing and control tasks and can handle even out-of-the-way problems that are submitted to us from a wide variety of fields. Our mechanical systems for the checking of close-tolerance gaps, the automatic determination of pellet dimensions and the measurement of absolute lengths and absolute velocities are in use in many different industrial fields. We have succeeded in solving unusual testing and sorting problems with the aid of automated surface testing equipment working on optical principles. Our main activities in the field of non-destructive testing have been concentrated on ultrasonic and eddy current testing and, of late, acoustic emission analysis. NUKEM ultrasonic systems are notable for their high defect detection rate and testing accuracy, combined with high testing speed. The equipment we supply includes ultrasonic rotary systems for the production testing of quality tubes, ultrasonic immersion systems for the final testing of reactor cladding tubes, weld testing equipment, and test equipment for the bonds in multi-layer plates. (orig./RW) [de

  11. Non-destructive testing of a NPP's metallic equipment during operation

    International Nuclear Information System (INIS)

    Brodskij, B.R.; Monina, Eh.F.

    1977-01-01

    Some nondestructive testing methods and facilities currently used in the USSR and overseas to remotely control the quality of a NPPs metallic equipment during operation are reviewed. The ultrasonic and γ scanning devices designed to verify the integrity of nuclear reactor pressure vessels and piping weldments are considered. The acoustic emission techniques, ultrasonic holography and routine ultrasonic fault detection are acknowledged the most promising and safe when applied to reactor vessels. On the other hand, the radiographic methods are pointed out not to quarantee the identification of a flaw. There is also a description of a container designed to maintain and repair a nuclear reactor in the highly radioactive environment. The increased interest of foreign firms towards acoustic emission techniques is stressed

  12. Ultrasonic Technique for Predicting Grittiness of Salted Duck Egg

    Science.gov (United States)

    Erawan, S.; Budiastra, I. W.; Subrata, I. D. M.

    2018-05-01

    Grittiness of egg yolk is a major factor in consumer acceptance of salted duck egg product. Commonly, the grittiness level is determined by the destructive method. Salted egg industries need a grading system that can judge the grittiness accurately and nondestructively. The purpose of this study was to develop a method for determining grittiness of salted duck eggs nondestructively based on ultrasonic method. This study used 100 samples of salted duck eggs with 7,10,14 and 21 days of salting age. Velocity and attenuation were measured by an ultrasonic system at frequency 50 kHz, followed by physicochemical properties measurement (hardness of egg yolks and salt content), and organoleptic test. Ultrasonic wave velocity in salted duck eggs ranged from 620.6 m/s to 1334.6 m/s, while the coefficient of attenuation value ranged from – 0.76 dB/m to -0.51 dB/m. Yolk hardness was 2.68 N at 7 days to 5.54 N at 21 days of salting age. Salt content was 1.81 % at 7 days to 5.71 % at 21 days of salting age. Highest scores of organoleptic tests on salted duck eggs were 4.23 and 4.18 for 10 and 14 days of salting age, respectively. Discriminant function using ultrasonic velocity variables in minor and major diameter could predict grittiness with 95 % accuracy.

  13. Mid-infrared pulsed laser ultrasonic testing for carbon fiber reinforced plastics.

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Watanabe, Makoto; Takekawa, Shunji; Yamawaki, Hisashi; Oguchi, Kanae; Enoki, Manabu

    2018-03-01

    Laser ultrasonic testing (LUT) can realize contactless and instantaneous non-destructive testing, but its signal-to-noise ratio must be improved in order to measure carbon fiber reinforced plastics (CFRPs). We have developed a mid-infrared (mid-IR) laser source optimal for generating ultrasonic waves in CFRPs by using a wavelength conversion device based on an optical parametric oscillator. This paper reports a comparison of the ultrasonic generation behavior between the mid-IR laser and the Nd:YAG laser. The mid-IR laser generated a significantly larger ultrasonic amplitude in CFRP laminates than a conventional Nd:YAG laser. In addition, our study revealed that the surface epoxy matrix of CFRPs plays an important role in laser ultrasonic generation. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Non-destructive evaluation on mechanical properties of nuclear graphite with porous structure

    International Nuclear Information System (INIS)

    Shibata, Taiju; Hanawa, Satoshi; Sumita, Junya; Tada, Tatsuya; Sawa, Kazuhiro; Iyoku, Tatsuo

    2005-01-01

    As a research subjects of 'Research and development for advanced high temperature gas cooled reactor fuels and graphite components,' we started the study of development of non-destructive evaluation methods for mechanical properties of graphite components. The micro-indentation and ultrasonic wave methods are focused to evaluate the degradation of graphite components in VHTR core. For the micro-indentation method, the test apparatus was designed for the indentation test on graphite specimens with some stress levels. It is expected the stress condition is evaluated by the indentation load-depth characteristics and hardness. For the ultrasonic wave method, ultrasonic wave testing machine and probes were prepared for experiments. It is expected that the stress and inner porous conditions are evaluated by the wave propagation characteristics with wave-pore interaction model. R and D plan to develop the non-destructive evaluation method for graphite is presented in this paper. (This study is the result of contract research in the fiscal year of 2004, Research and development for advanced high temperature gas cooled reactor fuels and graphite components,' which is entrusted to the Japan Atomic Energy Research Institute from the Ministry of Education, Culture, Sports, Science and Technology of Japan.) (author)

  15. Development of non-destructive testing. Turkey

    International Nuclear Information System (INIS)

    1991-01-01

    A National Scheme for the qualification and certification of Non-Destructive Testing (NDT) personnel in various methods has been established as the first stage of implementation. Systematic training in such methods as radiography (RT), ultrasonics (UT), magnetic particles (MT), liquid penetrant (PT) and eddy currents (ET) at levels I, II and some at III has been initiated and should be continued. Direct link with the industry and continuous effort to extend practical applications is strongly recommended

  16. New technologies in electromagnetic non-destructive testing

    CERN Document Server

    Huang, Songling

    2016-01-01

    This book introduces novel developments in the field of electromagnetic non-destructive testing and evaluation (NDT/E). The topics include electromagnetic ultrasonic guided wave testing, pulsed eddy current testing, remote field eddy current testing, low frequency eddy current testing, metal magnetic memory testing, and magnetic flux leakage testing. Considering the increasing concern about the safety maintenance of critical structures in various industries and everyday life, these topics presented here will be of particular interest to the readers in the NDT/E field. This book covers both theoretical researches and the engineering applications of the electromagnetic NDT technology. It could serve as a valuable reference for college students and relevant NDT technicians. It is also a useful material for qualification training and higher learning for nondestructive testing professionals.

  17. A study on Computer-controlled Ultrasonic Scanning Device

    International Nuclear Information System (INIS)

    Huh, H.; Park, C. S.; Hong, S. S.; Park, J. H.

    1989-01-01

    Since the nuclear power plants in Korea have been operated in 1979, the nondestructive testing (NDT) of pressure vessels and/or piping welds plays an important role for maintaining the safety and integrity of the plants. Ultrasonic method is superior to the other NDT method in the viewpoint of the detectability of small flaw and accuracy to determine the locations, sizes, orientations, and shapes. As the service time of the nuclear power plants is increased, the radiation level from the components is getting higher. In order to get more quantitative and reliable results and secure the inspector from the exposure to high radiation level, automation of the ultrasonic equipment has been one of the important research and development(R and D) subject. In this research, it was attempted to visualize the shape of flaws presented inside the specimen using a Modified C-Scan technique. In order to develop Modified C-Scan technique, an automatic ultrasonic scanner and a module to control the scanner were designed and fabricated. IBM-PC/XT was interfaced to the module to control the scanner. Analog signals from the SONIC MARK II were digitized by Analog-Digital Converter(ADC 0800) for Modified C-Scan display. A computer program has been developed and has capability of automatic data acquisition and processing from the digital data, which consist of maximum amplitudes in each gate range and locations. The data from Modified C-Scan results was compared with shape from artificial defects using the developed system. Focal length of focused transducer was measured. The automatic ultrasonic equipment developed through this study is essential for more accurate, reliable, and repeatable ultrasonic experiments. If the scanner are modified to meet to appropriate purposes, it can be applied to automation of ultrasonic examination of nuclear power plants and helpful to the research on ultrasonic characterization of the materials

  18. Comparison of Metallurgical and Ultrasonic Inspections of Galvanized Steel Resistance Spot Welds

    International Nuclear Information System (INIS)

    Potter, Timothy J.; Ghaffari, Bita; Mozurkewich, George; Reverdy, Frederic; Hopkins, Deborah

    2006-01-01

    Metallurgical examination of galvanized steel resistance spot welds was used to gauge the capabilities of two ultrasonic, non-destructive, scanning techniques. One method utilized the amplitude of the echo from the weld faying surface, while the other used the spectral content of the echo train to map the fused area. The specimens were subsequently sectioned and etched, to distinguish the fused, zinc-brazed, and non-fused areas. The spectral maps better matched the metallurgical maps, while the interface-amplitude method consistently overestimated the weld size

  19. Noncontact ultrasonic nondestructive evaluation/inspection using laser generation and air coupled transducer

    International Nuclear Information System (INIS)

    Jhang, Kyung Young; Kim, Hong Joon; Cemiglia, Donatella; Djordjevic, Boro

    2001-01-01

    Ultrasonic MDE/I methods have been demonstrated as very effective tool in characterization of cracks and structural defects such as bond-line failures. Most of the ultrasonic testing is performed using conventional contact ultrasonic transducers that cannot be readily adapted to automation and field application. However, for large area inspection contact type is time consuming and as a result, it is important to develop a rapid and more efficient ultrasonic technique. In this paper, laser generation and air-coupled detection of ultrasound is proposed as a solution of non-contact method with no requirement of a coupling medium, and the bond quality of adhesively bonded and riveted aluminum lap splice joints is investigated as an application. A Q-switched Nd:YAG laser and a periodic transmission mask are used to generate a selected Lamb mode. The experimental show that multi-line laser source produces significant directed ultrasound and that the presence of defects can be detected reliably from the attenuation of signal amplitude. These results demonstrate that the proposed technique is well suitable and flexible for non-contact NDE/I applications.

  20. Geometrical Feature Extraction from Ultrasonic Time Frequency Responses: An Application to Nondestructive Testing of Materials

    Directory of Open Access Journals (Sweden)

    Naranjo Valery

    2010-01-01

    Full Text Available Signal processing is an essential tool in nondestructive material characterization. Pulse-echo inspection with ultrasonic energy provides signals (A-scans that can be processed in order to obtain parameters which are related to physical properties of inspected materials. Conventional techniques are based on the use of a short-term frequency analysis of the A-scan, obtaining a time-frequency response (TFR, to isolate the evolution of the different frequency-dependent parameters. The application of geometrical estimators to TFRs provides an innovative way to complement conventional techniques based on the one-dimensional evolution of an A-scan extracted parameter (central or centroid frequency, bandwidth, etc.. This technique also provides an alternative method of obtaining similar meaning and less variance estimators. A comparative study of conventional versus new proposed techniques is presented in this paper. The comparative study shows that working with binarized TFRs and the use of shape descriptors provide estimates with lower bias and variance than conventional techniques. Real scattering materials, with different scatterer sizes, have been measured in order to demonstrate the usefulness of the proposed estimators to distinguish among scattering soft tissues. Superior results, using the proposed estimators in real measures, were obtained when classifying according to mean scatterer size.

  1. Experimental POD measurement using ultrasonic phased arrays for incorporating nondestructive testes in probabilistic failure analyses

    International Nuclear Information System (INIS)

    Kurz, Jochen H.; Dobmann, Gerd; Juengert, Anne; Dugan, Sandra; Roos, Eberhard

    2011-01-01

    In nuclear facilities, nondestructive tests are carried out during construction and during inspections. The type and extent of the tests are specified in the KTA rules. All tests must be qualified. In the past, the qualifications were made by extensive performance demonstrations of the test teams and equipment, which were judged by experts. This provided primarily pragmatic information on fault detection performance. In the USA, qualification of EPRI test teams also includes testing of test pieces with hidden (unknown) defects, of which a certain percentage must be detected. There is still a lack of information on the probability of detection (POD), in the form of POD curves, of specific defects in given test situations, using specifically selected testing techniques. Quantification of POD and the integration of relevant data in the probabilistic evaluation chain is one of the key goals of a research project whose first results are presented here. The concept of the project and first results of ultrasonic tests are presented. Defect distributions in the test pieces, experiment planning, and test specifications are gone into more closely. One of the most important goals is the specification of the residual uncertainty of components failure on the basis of the investigations. An outlook is presented for this.

  2. A Portable Ultrasonic Nondestructive Inspection System for Metal Matrix Composite Track Shoes

    International Nuclear Information System (INIS)

    Mi Bao; Zhao Xiaoliang; Qian Tao; Stevenson, Mark; Kwan, Chiman; Owens, Steven E.; Royer, Roger L. Jr.; Tittmann, Bernhard R.; Raju, Basavaraju B.

    2007-01-01

    Cast aluminum track shoes reinforced with metal matrix composite (MMC) inserts at heavy loading areas such as center splines and sprocket windows are light in weight, and can resist high temperature and wear. Various defects such as disbonds at the insert-substrate interface, cracks and porosity in the MMC layer, etc. can be introduced during the manufacturing process and/or in service. This paper presents a portable ultrasonic system to automatically inspect tank track shoes for disbond. Ultrasonic pulse/echo inspection has shown good reliability for disbond detection. A prototype sensor array fixture has been designed and fabricated to prove the feasibility. Good agreements between the sensor fixture results and ultrasonic C-scan images were obtained

  3. Imaging techniques for ultrasonic testing

    International Nuclear Information System (INIS)

    2013-01-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [de

  4. Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure

    International Nuclear Information System (INIS)

    Kim, Jae Hoon; Kim, Dong Ryun

    2012-01-01

    Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

  5. Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hoon [Dept. of Mechanical Design Engineering, Chungnam National University, Daejeon (Korea, Republic of); Kim, Dong Ryun [Agency for Defense Development, Daejeon (Korea, Republic of)

    2012-08-15

    Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

  6. Guidebook on non-destructive testing of concrete structures

    International Nuclear Information System (INIS)

    2002-01-01

    The International Atomic Energy Agency has been active in the promotion of non-destructive testing (NDT) technology for many years. NDT is an important component of a number of IAEA regional projects. This guidebook deals with NDT of concrete. This book covers a wide range of NDT methods including industrial radiography, ultrasonic testing, electromagnetic testing, infrared thermography, etc. Codes, standards, specifications and procedures are also covered

  7. Development of ultrasonic inspection technique for crack detection in retaining rings

    International Nuclear Information System (INIS)

    Brook, M.V.

    1990-01-01

    The majority of retaining rings which are currently in service, are composed of a material which is susceptible to stress corrosion when exposed to moisture. Due to the inherent stress levels in the shrunk-on areas, they are particularly susceptible to stress corrosion attack. Therefore, retaining rings require non-destructive examination to avert catastrophic failure. Guidelines for retaining ring inspection issued by EPRI recommend ultrasonic manual and automated methods of inspection for rings in place. Application of the conventional manual method, using S-waves is difficult, and yields unreliable results. Due to the unreliability factor, utilities have been forced to depend upon surface examination methods, such as visual and penetrant techniques. In most instances, a surface exam will necessitate the costly and potentially damaging removal of the rings from the rotor to provide full access to areas of interest. Due to the various complexities of conventional ultrasonic retaining ring inspections, it is essential that the front end ultrasonics (i.e., transducers and techniques) be optimized to produce the best possible examination. For this reason, AMDATA has developed custom transducers and techniques to enhance automated detection capability of flaws in the various suspect areas of retaining rings. When the optimized techniques are applied to generate the best possible raw data, the Intraspect /98 trademark is then used to reliably apply technique, acquire the data and perform post processing evaluations. One of the most promising ultrasonic techniques for retaining ring inspection is creeping waves. This paper investigates the use of creeping waves for retaining ring inspection

  8. Nondestructive testing for bridge diagnosis

    International Nuclear Information System (INIS)

    Oshima, Toshiyuki; Mikami, Shuichi; Yamazaki, Tomoyuki

    1997-01-01

    There are many motivations for bridge diagnosis using Nondestructive testing (NDT) to monitor its integrity. The measured frequency and damping on real bridge are compared in one figure as a function of span length and general aspects are explained. These date were measured in every construction of bridges and applied to design new bridges. Ultrasonic testing is also well used for concrete and steel members mainly to detect internal damages or delaminations. Detail analysis on reflected waves gives us more accurate information about the defect. Experimental results are shown as examples in this paper.

  9. Qualifying program on Non-Destructive Testing, Visual Inspection of the welding (level 2)

    International Nuclear Information System (INIS)

    Shafee, M. A.

    2011-01-01

    Nondestructive testing is a wide group of analysis technique used in science and industry to evaluate the properties of a material, component or system without causing damage. Common Non-Destructive Testing methods include ultrasonic, magnetic-particle, liquid penetrate, radiographic, visual inspection and eddy-current testing. AAEA put the new book of the Non-Destructive Testing publication series that focused on Q ualifying program on Non-Destructive Testing, visual inspection of welding-level 2 . This book was done in accordance with the Arab standard certification of Non-Destructive Testing (ARAB-NDT-CERT-002) which is agreeing with the ISO-9712 (2005) and IAEA- TEC-DOC-487. It includes twenty one chapters dealing with engineering materials used in industry, the mechanical behavior of metals, metal forming equipments, welding, metallurgy, testing of welds, introduction to Non-Destructive Testing, defects in metals, welding defects and discontinuities, introduction to visual inspection theory, properties and tools of visual testing, visual testing, quality control regulations, standards, codes and specifications, procedures of welding inspections, responsibility of welding test inspector, qualification of Non-Destructive Testing inspector and health safety during working.

  10. An Ultrasonic Wireless Sensor Network for Data Communication and Structural Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Typical Structural Health Monitoring (SHM) uses embedded ultrasonic transducers exclusively for non-destructive evaluation (NDE) purposes, whereas data transfer is...

  11. Ultrasonic evaluation of local human skin anisotropy

    Czech Academy of Sciences Publication Activity Database

    Tokar, Daniel; Převorovský, Zdeněk; Hradilová, Jana

    2014-01-01

    Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : anisotropy * ultrasonic testing * human skin in-vivo * fabric-fiber composite * signal processing Subject RIV: BI - Acoustics http://www.ndt.net/events/ECNDT2014/app/content/Paper/324_Tokar.pdf

  12. Serus, an expert system for the ultrasonic examination of fuel rods

    International Nuclear Information System (INIS)

    Gondard, C.; Papezyk, F.; Wident, P.

    1987-01-01

    The use of pattern recognition functions and the modelization of the human expert reasoning, allow the automatic identification of defects in welds or structures. The proposed application uses an ultrasonic examination to detect and classify 3 types of defects in end plug welds of PWR fuel rods

  13. Development of automatic ultrasonic testing system and its application

    International Nuclear Information System (INIS)

    Oh, Sang Hong; Matsuura, Toshihiko; Iwata, Ryusuke; Nakagawa, Michio; Horikawa, Kohsuke; Kim, You Chul

    1997-01-01

    The radiographic testing (RT) has been usually applied to a nondestructive testing, which is carried out on purpose to detect internal defects at welded joints of a penstock. In the case that RT could not be applied to, the ultrasonic testing (UT) was performed. UT was generally carried out by manual scanning and the inspections data were recorded by the inspector in a site. So, as a weak point, there was no objective inspection records correspond to films of RT. It was expected that the automatic ultrasonic testing system by which automatic scanning and automatic recording are possible was developed. In this respect, the automatic ultrasonic testing system was developed. Using newly developed the automatic ultrasonic testing system, test results to the circumferential welded joints of the penstock at a site were shown in this paper.

  14. Automated ultrasonic examination of light water reactor systems

    International Nuclear Information System (INIS)

    Walter, J.H.

    1975-01-01

    An automated ultrasonic examination system has been developed to meet the pre- and inservice inspection requirements of light water reactors. This system features remotely-controlled travelling instrument carriers, computerized collection and storage or inspection data in a manner providing real time comparison against code standards, and computer control over the positioning of the instrument carriers to provide precise location data. The system is currently being utilized in the field for a variety of reactor inspections. The principal features of the system and the recent inspection experience are discussed. (author)

  15. High-resolution ultrasonic spectroscopy

    Directory of Open Access Journals (Sweden)

    V. Buckin

    2018-03-01

    Full Text Available High-resolution ultrasonic spectroscopy (HR-US is an analytical technique for direct and non-destructive monitoring of molecular and micro-structural transformations in liquids and semi-solid materials. It is based on precision measurements of ultrasonic velocity and attenuation in analysed samples. The application areas of HR-US in research, product development, and quality and process control include analysis of conformational transitions of polymers, ligand binding, molecular self-assembly and aggregation, crystallisation, gelation, characterisation of phase transitions and phase diagrams, and monitoring of chemical and biochemical reactions. The technique does not require optical markers or optical transparency. The HR-US measurements can be performed in small sample volumes (down to droplet size, over broad temperature range, at ambient and elevated pressures, and in various measuring regimes such as automatic temperature ramps, titrations and measurements in flow.

  16. Ultrasonic evaluation of the physical and mechanical properties of granites.

    Science.gov (United States)

    Vasconcelos, G; Lourenço, P B; Alves, C A S; Pamplona, J

    2008-09-01

    Masonry is the oldest building material that survived until today, being used all over the world and being present in the most impressive historical structures as an evidence of spirit of enterprise of ancient cultures. Conservation, rehabilitation and strengthening of the built heritage and protection of human lives are clear demands of modern societies. In this process, the use of nondestructive methods has become much common in the diagnosis of structural integrity of masonry elements. With respect to the evaluation of the stone condition, the ultrasonic pulse velocity is a simple and economical tool. Thus, the central issue of the present paper concerns the evaluation of the suitability of the ultrasonic pulse velocity method for describing the mechanical and physical properties of granites (range size between 0.1-4.0 mm and 0.3-16.5 mm) and for the assessment of its weathering state. The mechanical properties encompass the compressive and tensile strength and modulus of elasticity, and the physical properties include the density and porosity. For this purpose, measurements of the longitudinal ultrasonic pulse velocity with distinct natural frequency of the transducers were carried out on specimens with different size and shape. A discussion of the factors that induce variations on the ultrasonic velocity is also provided. Additionally, statistical correlations between ultrasonic pulse velocity and mechanical and physical properties of granites are presented and discussed. The major output of the work is the confirmation that ultrasonic pulse velocity can be effectively used as a simple and economical nondestructive method for a preliminary prediction of mechanical and physical properties, as well as a tool for the assessment of the weathering changes of granites that occur during the serviceable life. This is of much interest due to the usual difficulties in removing specimens for mechanical characterization.

  17. Nondestructive examination of DOE high-level waste storage tanks

    International Nuclear Information System (INIS)

    Bush, S.; Bandyopadhyay, K.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; van Rooyen, D.; Weeks, J.

    1995-01-01

    A number of DOE sites have buried tanks containing high-level waste. Tanks of particular interest am double-shell inside concrete cylinders. A program has been developed for the inservice inspection of the primary tank containing high-level waste (HLW), for testing of transfer lines and for the inspection of the concrete containment where possible. Emphasis is placed on the ultrasonic examination of selected areas of the primary tank, coupled with a leak-detection system capable of detecting small leaks through the wall of the primary tank. The NDE program is modelled after ASME Section XI in many respects, particularly with respects to the sampling protocol. Selected testing of concrete is planned to determine if there has been any significant degradation. The most probable failure mechanisms are corrosion-related so that the examination program gives major emphasis to possible locations for corrosion attack

  18. The Remotely Operated Nondestructive Examination System for Examining the Knuckle Region of Hanford's Double Shell Waste Tanks

    International Nuclear Information System (INIS)

    Crawford, Susan L.; Pardini, Allan F.; Donald Thompson and Dale Chimenti

    2005-01-01

    The Pacific Northwest National Laboratory has developed a technology to address the examination requirements associated with the knuckle region of Hanford's double shell waste tanks. This examination poses a significant technical challenge because the area that requires examination is in a confined space, high radiation region and is not accessible using conventional measurement techniques. This paper describes the development, deployment, and modification of the remotely operated nondestructive examination (RONDE) system that utilizes a technique known as Synthetic Aperture Focusing (SAFT). The system detects stress corrosion cracking in the high stress region of the knuckle and characterizes the crack with tandem SAFT. PNNL has qualified the system to perform inspections on the entire knuckle region of Hanford's double shell waste tanks

  19. Microwave Detection of Laser Ultrasonic for Non-Destructive Testing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we describe a program to develop a high-performance, cost-effective and robust microwave receiver prototype for multi-purpose Non-Destructive...

  20. Laser induced ultrasonic phased array using full matrix capture data acquisition and total focusing method.

    Science.gov (United States)

    Stratoudaki, Theodosia; Clark, Matt; Wilcox, Paul D

    2016-09-19

    Laser ultrasonics is a technique where lasers are employed to generate and detect ultrasound. A data collection method (full matrix capture) and a post processing imaging algorithm, the total focusing method, both developed for ultrasonic arrays, are modified and used in order to enhance the capabilities of laser ultrasonics for nondestructive testing by improving defect detectability and increasing spatial resolution. In this way, a laser induced ultrasonic phased array is synthesized. A model is developed and compared with experimental results from aluminum samples with side drilled holes and slots at depths of 5 - 20 mm from the surface.

  1. An Ultrasonic Pattern Recognition Approach to Welding Defect Classification

    International Nuclear Information System (INIS)

    Song, Sung Jin

    1995-01-01

    Classification of flaws in weldments from their ultrasonic scattering signals is very important in quantitative nondestructive evaluation. This problem is ideally suited to a modern ultrasonic pattern recognition technique. Here brief discussion on systematic approach to this methodology is presented including ultrasonic feature extraction, feature selection and classification. A stronger emphasis is placed on probabilistic neural networks as efficient classifiers for many practical classification problems. In an example probabilistic neural networks are applied to classify flaws in weldments into 3 classes such as cracks, porosity and slag inclusions. Probabilistic nets are shown to be able to exhibit high performance of other classifiers without any training time overhead. In addition, forward selection scheme for sensitive features is addressed to enhance network performance

  2. Nondestructive controls and testings: the new developments and their applications; Controles et examens non destructifs: les developpements recents et leurs applications

    Energy Technology Data Exchange (ETDEWEB)

    Recolin, P [Centre d' Etude des Structures et Materiaux Navals (CESMAN), DCN Propulsion, 44 - La Montagne (France); Bremnes, O; Chassignole, B; Schumm, A; Chassignole, B; Doudet, L; Dupond, O; Fouquet, T; Richard, B; Delnondedieu, M [Electricite de France (EDF/RD), 92 - Clamart (France); Calmon, P; Mahaut, S; Sollier, T; Haiat, G; Leberre, S; Benoist, Ph; Casula, O [CEA Saclay Dir. de la Recherche Technologique, 91 - Gif sur Yvette (France); Lasserre, F; Pasquier, T; Legrandjacques, L [FRAMATOME ANP/Intercontrole, 94 - Rungis (France); Lutsen, M [Electricite de France (EDF CEIDRE), 93 - Saint-Denis (France); Levy, R [AREVA/Intercontrole, 75 - Paris (France); Piriou, M; Glass, B; Chanussot, J M [FRAMATOME ANP, 92 - Paris-La-Defence (France); Cattiaux, G [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Clamart (France); Fleury, G [IMASONIC, 25 - Besancon (France); Thiery, Ch [CEA Bruyeres-le-Chatel, 91 (France); COFREND, 75 - Paris [France; Breysse, D [Bordeaux-1 Univ., 33 (France); Abraham, O [Ecole Nationale des Ponts et Chaussees (ENPC), Laboratoire Central des Ponts et Chaussees (LCPC), 75 - Paris (France)

    2005-07-01

    This document provides the proceedings of the conference on nondestructive controls and testings, held at Paris the 18 November 2004. Ten presentations were discussed on the following topics: the nondestructive testing of shipbuilding, the nondestructive evaluation simulation, the ultrasonic testing of austenitic stainless steels joints, qualification of the PWR vessels control, evaluation of the nuclear power plants materials aging, automation of the PWR primary coolant circuit testing, the photothermal imaging facing the liquid penetrant testing, geometry control with adaptative transducers, industrial tomography developments, nondestructive evaluation of the reinforced concretes structures. (A.L.B.)

  3. Certain strength test of concrete with ultrasonic waves by better evaluation

    International Nuclear Information System (INIS)

    Roethig, H.

    1978-01-01

    As a result of the increasing demands put to the quality control of buildings and concrete assembly units, ultrasonic testing has found an internationally ever wider application in building industries and facilities in recent years. The ultrasonic method is in its nature analogous to the application with metallic materials, particularly suitable for recognizing defects and poor quality concrete and an increased application in this direction is most promising. However, it is equally important for concrete plants and building sites to certify the specified concrete quality or a required degree of hardness which can be determined by the pressure resistance of a test cube according to the valid specifications. Therefore the non-destructive pressure resistance determination of concrete is of great practical interest and ultrasonic testing is at present, above all being used for this purpose. It is very suitable in many cases for calibration on cubes of the same concrete as the assembly units or buildings to be tested. The quality of the calibration gives a ruling determination of the accuracy and reliability of the non-destructively determined pressure resistance values. (orig./RW) [de

  4. Nondestructive testing of the low-level radioactive waste drums for uni-axial compressive strength and free liquid content

    International Nuclear Information System (INIS)

    Yu Geping; Chang Mingyu; Wang Yeajeng; Chu, David S.L.; Ju Yihzen

    1992-01-01

    This paper summarizes the nondestructive test to determine the uni-axial compressive strength and free water content of solidified low level radioactive waste. The uni-axial compressive strength is determined by ultrasonic wave propagation speed, and the results are compared with those of compressive tests. Three methods of detecting the surface free water by ultrasonic testing are established, the ultrasonic wave speed, wave form and pulse height are used to determine the existence and amount of the surface free liquid. Possible difficulties are discussed. (author)

  5. Nondestructive characterization of hydrogen concentration in zircaloy cladding tubes with laser ultrasound technique

    International Nuclear Information System (INIS)

    Yang, Che Hua; Lai, Yu An

    2006-01-01

    This paper describes a laser ultrasound technique (LUT) for nondestructive characterization of hydrogen concentration (HC) in Zircaloy cladding tubes. With the LUT, guided ultrasonic waves are generated remotely and then propagate in the axial direction of Zircaloy tubes, and finally detected remotely by an optical probe. By measuring the dispersion spectra with the LUT, relations between the dispersion spectra and the HC of the Zircaloy tubes can be established. The LUT is non-contact, capable of remote inspection, and therefore suitable for nondestructive inspection of HC in Zircaloy cladding tubes used in nuclear power plant.

  6. Emerging nondestructive inspection methods for aging aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, A; Dahlke, L; Gieske, J [and others

    1994-01-01

    This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with a discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.

  7. Design and development of an ultrasonic pulser-receiver unit for non-destructive testing of materials

    International Nuclear Information System (INIS)

    Patankar, V.H.; Joshi, V.M.

    2002-11-01

    The pulser/receiver constitutes the most vital part of an ultrasonic flaw detector or an ultrasonic imaging system used for inspection of materials. The ultrasonic properties of the material and resolution requirements govern the choice of the frequency of ultrasound that can be optimally used. The pulser/receiver in turn decides the efficiency of excitation of the transducer and the overall signal to noise ratio of the system for best sensitivity and resolution. A variety of pulsers are used in the ultrasonic instruments employed for materials inspection. This report describes a square wave type of an ultrasonic pulser-receiver unit developed at Ultrasonic Instrumentation Section, Electronics Division, BARC. It has been primarily designed for excitation of the transducer that is used with a multi-channel ultrasonic imaging system ULTIMA 100M targeted for inspection of SS403 billets, which are in turn used as the base material for fabrication of end fittings for coolant channels of pressurized heavy water nuclear reactors (PHWRs). The design of the pulser is based upon very fast MOSFETs, configured as electronic switches. The pulser is operated with a linear bipolar H.V. supply (+/- 500V max.). The receiver provides a 60 dB gain with a -3 dB BW of 40 MHz. This pulser/receiver unit has been successfully interfaced with a 4 channel ULTIMA 100 M4 multichannel ultrasonic C-scan imaging system, also designed and developed by the authors at Ultrasonic Instrumentation Section (Electronics Division, BARC) and supplied to Centre for Design and Manufacturer - CDM, BARC. This system is being regularly used in C-scan imaging mode for volumetric inspection of SS403 billets for end fittings of 500 MWe PHWRs. (author)

  8. Ultrasonication and food technology: A review

    OpenAIRE

    Ishrat Majid; Gulzar Ahmad Nayik; Vikas Nanda

    2015-01-01

    With increasing consumers demand and tightening of food and environmental regulations, traditional food-processing techniques have lost their optimum performance which gave rise to new and powerful technologies. Ultrasonic is a one of the fast, versatile, emerging, and promising non-destructive green technology used in the food industry from last few years. The ultrasound is being carried out in various areas of food technology namely crystallization, freezing, bleaching, degassing, extractio...

  9. Development of ultrasonic testing technique to inspect containment liners embedded in concrete on nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, H.; Kurozumi, Y. [Inst. of Nuclear Safety System, Incorporated, Mihama, Fukui (Japan); Kaneshima, Y. [The Kansai Electric Power Company, Inc., Mihama, Fukui (Japan)

    2004-07-01

    The purpose of this study is development of ultrasonic testing technique to inspect containment liners embedded in concrete on nuclear power plants. Integrity of containment liners on nuclear power plants can be secured by suitable present operation and maintenance. Furthermore, non-destructive testing technique to inspect embedded liners will ensure the integrity of the containment further. In order to develop the non-destructive testing technique, ultrasonic transducers were made newly and ultrasonic testing data acquisition and evaluation were carried out by using a mock-up. We adopted the surface shear horizontal (SH) wave, low frequency (0.3-0.5MHz), to be able to detect an echo from a defect against attenuation of ultrasonic waves due to long propagation in the liners and dispersion into concrete. We made transducers with three large active elements (40mm x 40mm) in a line which were equivalent to a 120mm width active element. Artificial hollows, {phi}200mm - 19mm depth (1/2thickness) and {phi}200mm - 9.5mm depth (1/4thickness), were made on a surface of a mock-up: carbon steel plate, 38mm thickness, 2,000mm length, 1000mm width. The surfaces of the plate were covered with concrete in order to simulate liners embedded in concrete. As a result of the examinations, the surface SH transducers could detect clearly the echo from the hollows at a distance of 1500mm. We evaluate that the newly made surface SH transducers with three elements have ability of detection of defects such as corrosion on the liners embedded in concrete. (author)

  10. Ultrasonic detection technology based on joint robot on composite component with complex surface

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Juan; Xu, Chunguang; Zhang, Lan [School of Mechanical Engineering, Beijing Institute of Technology, Beijing (China)

    2014-02-18

    Some components have complex surface, such as the airplane wing and the shell of a pressure vessel etc. The quality of these components determines the reliability and safety of related equipment. Ultrasonic nondestructive detection is one of the main methods used for testing material defects at present. In order to improve the testing precision, the acoustic axis of the ultrasonic transducer should be consistent with the normal direction of the measured points. When we use joint robots, automatic ultrasonic scan along the component surface normal direction can be realized by motion trajectory planning and coordinate transformation etc. In order to express the defects accurately and truly, the robot position and the signal of the ultrasonic transducer should be synchronized.

  11. Characterisation of nuclear dispersion fuels. The non-destructive examination of silicon carbide by selenium immersion

    Energy Technology Data Exchange (ETDEWEB)

    Ambler, J.F.R.; Ferguson, I.F.

    1974-07-15

    The non-destructive microscopic examination of silicon-carbide-coated spheres containing uranium carbide, which involves immersing the coated spheres in selenium, is particularly suited for the examination of flaws in the coats but it is not possible to measure coating thicknesses by this method. Some coats are found to be opaque and this is related to their porosity. (auth)

  12. Review of Micro/Nano Nondestructive Evaluation Technique (II): Measurement of Acoustic Properties

    International Nuclear Information System (INIS)

    Kim, Chung Seok; Park, Ik Keun

    2012-01-01

    The present paper reviews the micro and nano nondestructive evaluation(NDE) technique that is possible to investigate the surface and measure the acoustic properties. The technical theory, features and applications of the ultrasonic atomic force microscopy(UAFM) and scanning acoustic microscopy(SAM) are illustrated. Especially, these technologies are possible to evaluate the mechanical properties in micro/nano structure and surface through the measurement of acoustic properties in addition to the observation of surface and subsurface. Consequently, it is thought that technique developments and applications of these micro/nano NDE in advanced industrial parts together with present nondestructive industry are widely possible hereafter.

  13. Initial evaluation of ultrasonic attenuation measurements for estimating fracture toughness of RPV steels

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, A.L. Jr.; Green, R.E. Jr. [Johns Hopkins Univ., Baltimore, MD (United States). Center for Nondestructive Evaluation

    1999-08-01

    Neutron bombardment of reactor pressure vessel (RPV) steels causes reductions in fracture toughness in these steels, termed neutron irradiation embrittlement. Currently, there are no accepted methods for nondestructive determination of the extent of the irradiation embrittlement nor the actual fracture toughness of the reactor pressure vessel. This paper provides initial results of an effort addressing the use of ultrasonic attenuation as a suitable parameter for nondestructive determination of irradiation embrittlement in RPV steels. (orig.)

  14. Ultrasonic analysis of UO{sub 2} pellets

    Energy Technology Data Exchange (ETDEWEB)

    Bittencourt, Marcelo de S.Q.; Baroni, Douglas B.; Martorelli, Daniel S., E-mail: bittenc@ien.gov.br, E-mail: douglasbaroni@ien.gov.br, E-mail: daniel@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Ultrassom; Dias, Fabio C.; Silva, Jose W.S. da, E-mail: fabio@ird.gov.br, E-mail: wanderley@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Salvaguardas

    2013-07-01

    Ceramic materials have been widely used for various purposes in many different industries due to certain characteristics, such as high melting point and high resistance to corrosion. In the nuclear area, ceramics are of great importance due to the process of fabrication of fuel pellets for nuclear reactors. Generally, high accuracy destructive techniques are used to characterize nuclear materials for fuel fabrication. These techniques usually require costly equipment and facilities, as well as experienced personnel. This paper aims at presenting an analysis methodology for UO2 pellets using a non-destructive ultrasonic technique for porosity measurement. This technique differs from traditional ultrasonic techniques in the sense it uses ultrasonic pulses in frequency domain instead of time domain. Therefore, specific characteristics of the analyzed material are associated with the obtained frequency spectrum. In the present work, four fuel grade UO2 pellets were analyzed and the corresponding results evaluated. (author)

  15. Contribution of expert systems to data processing in non-destructive control

    International Nuclear Information System (INIS)

    Augendre, H.; Perron, M.C.

    1990-01-01

    The increase of non-destructive control in industrial applications requires the development of new data processing methods. The expert system approach is able to provide signal modelling means which are closer to the human behaviour. Such methods used in more traditional programs lead to substantial improvements. These investigations come within our design to apply sophisticated methods to industrial non-destructive control. For defect characterization purposes in ultrasonic control, various supervised learning methods have been investigated in an experimental study. The traditional approach is concerned with statistics based methods, whereas the second one lies in learning logical decision rules valid within a numerical description space [fr

  16. Nondestructive techniques for the control of conditioned radioactive wastes

    International Nuclear Information System (INIS)

    Delprato, U.

    1987-01-01

    The final product of the radwaste conditioning process must satisfy certain requirments and physico-chemical properties in order to assure its safe long-term behaviour. Of course, the foreseen quality assurance and quality control should be conducted by means of non-destructive techniques. This work presents an over-view of various applicable non-destructive methods of analysis, showing their fields of investigation in testing waste packages, together with some arising practical problems. The most promising methods, such as eddy current testing, ultrasonic testing, γ-scanning, γ-spectroscopy, neutron counting and computerized tomography, are treated more deeply and some applications are presented. Particular attention is devoted to the development of a device based on computerized tomography; its essential components are reported and some design problems are also discussed

  17. Nondestructive characterization of materials (ultrasonic and micromagnetic techniques) for strength and toughness prediction and the detection of early creep damage

    International Nuclear Information System (INIS)

    Dobmann, G.; Kroening, M.; Theiner, W.; Willems, H.; Fiedler, U.

    1995-01-01

    In recent years, nondestructive testing techniques for materials characterization have been developed in Germany under the sponsorship of the Ministry of Research and Development, as part of the Reactor Safety Research Programme, in order to provide techniques for PSI and ISI that are sensitive and reliable, in particular with respect to the prediction of strength and toughness. As ferritic steels (pressure vessels and pipelines in the primary circuit) are of special interest, R and D was concentrated on micromagnetic techniques which are sensitive to the microstructure and its changes under service and/or repair conditions. In order to characterize microstructural states superimposed by residual stresses in an unambiguous way, numerical modelling was applied using advanced tools of mathematical approximation theory, i.e. multiregression algorithms and neural networks.For the detection of early creep damage in fossil power plant applications, i.e. micropores and their subsequent development to linked pores and microcracks, besides the micromagnetic techniques an ultrasonic technique was also applied and optimized for in situ applications on components such as pipe bends. Whereas the ultrasonic technique is sensitive to pore concentrations as small as about 0.2%, the parameters of the micromagnetic techniques are mainly influenced by temperature- and load-induced microstructural changes occurring in service, dependent on the steel quality. The techniques are applied at two pipe bends (steel grades 14MoV63 and X20CrMoV121) loaded under near practical conditions during seven inspection intervals between 2048h and 21000h to evaluate the progress of damage. (orig.)

  18. Ultrasonic testing of a sealing construction made of salt concrete in an underground disposal facility for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Martin; Effner, Ute Antonie; Milmann, Boris; Voelker, Christoph; Wiggenhauser, Herbert [Federal Institute for Materials Research and Testing (BAM), Berlin (Germany); Mauke, Ralf [The Federal Office for Radiation Protection, Salzgitter (Germany)

    2015-07-01

    For the closure of radioactive waste disposal facilities engineered barriers- so called ''drift seals'' are used. The purpose of these barriers is to constrain the possible infiltration of brine and to prevent the migration of radionuclides into the biosphere. In a rock salt mine a large scale in-situ experiment of a sealing construction made of salt concrete was set up to prove the technical feasibility and operability of such barriers. In order to investigate the integrity of this structure, non-destructive ultrasonic measurements were carried out. Therefore two different methods were applied at the front side of the test-barrier: 1 Reflection measurements from boreholes 2 Ultrasonic imaging by means of scanning ultrasonic echo methods This extended abstract is a short version of an article to be published in a special edition of ASCE Journal that will briefly describe the sealing construction, the application of the non-destructive ultrasonic measurement methods and their adaptation to the onsite conditions -as well as parts of the obtained results. From this a concept for the systematic investigation of possible contribution of ultrasonic methods for quality assurance of sealing structures may be deduced.

  19. Automated ultrasonic inspection of IGSCC in DOE production reactor process water piping

    International Nuclear Information System (INIS)

    Harrison, J.M.; Sprayberry, R.; Ehrhart, W.

    1987-01-01

    Inspection of nuclear power components has always presented difficulties to the nondestructive testing (NDT) industry from a time consumption and radiation exposure standpoint. Recent advances in computerized NDT equipment have improved the situation to some extent; however, the need for high reliability, precision, reproducibility, and clear permanent documentation are indispensable requirements that can only be met by automatic inspection and recording systems. The Savannah River Plant's inspection program of over 1000 IGSCC-susceptible welds is one of the most complete in the country and offers educational insight into ultrasonic examination technology of thin-wall stainless steel pipe welds

  20. Nondestructive technique application for corrosion evaluation by hydrogen charging of stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Kyung, E-mail: leejink@deu.ac.kr [Department of Mechanical Engineering, Dongeui University, Busan (Korea, Republic of); Bae, Dong Su [Department of Advanced Materials Engineering, Dongeui University, Busan (Korea, Republic of); Lee, Sang Pill; Hwang, Sung Guk [Department of Mechanical Engineering, Dongeui University, Busan (Korea, Republic of); Lee, Joon Hyun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-11-01

    Highlights: • We have studied on the nondestructive technique application for corrosion evaluation by hydrogen charging of stainless steel. An ultrasonic test (UT) is an useful method to evaluate the mechanical properties of material. By measuring the velocity and the attenuation of ultrasonic wave propagating the hydrogen charged stainless steel, the relation of ultrasonic wave and mechanical properties of hydrogen charged 316L stainless steel was discussed. However, in order to evaluate the dynamic behavior of materials, an acoustic emission (AE) technique was applied to investigate the corrosion characteristics of hydrogen charged specimen. Acoustic emission is one of elastic waves caused by dislocation, cracks initiation and propagation within material from loading outside. The waveform of the acoustic emission is different depending on the damage mechanism of material. Lots of AE parameters such as energy, duration time, event and amplitude were used to analyze the dynamic behavior of the hydrogen charged specimen. • A conventional 316L stainless steel was used in this study, and electrochemical treat system for hydrogen charging of the specimen. ASTM (G142) type tensile specimens (diameter 6.0 mm, gage length 28.6 mm) were prepared, and sulfuric acid(H{sub 2}SO{sub 4}) and arsenic trioxide(As{sub 2}O{sub 3}) were used as the electrolyte, and potentiostat(HA 151) supplied the current to platinum wire and specimen. • Tensile strength and attenuation coefficient has a relation to some extent. Therefore, we could estimate the tensile strength and the hydrogen charging time by measuring the attenuation coefficient using ultrasonic wave nondestructively. • Acoustic emission technique was useful to evaluate the dynamic damage because AE parameters of AE event, average energy and average frequency showed various change by external loading at the specimens with and without hydrogen. - Abstract: Caused corrosion by hydrogen on stainless steel using

  1. A study on the development of a real-time intelligent system for ultrasonic flaw classification

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Hak Joon; Lee, Hyun; Lee, Seung Seok

    1998-01-01

    In spite of significant progress in research on ultrasonic pattern recognition it is not widely used in many practical field inspection in weldments. For the convenience of field application of this methodology, following four key issues have to be suitably addressed; 1) a software where the ultrasonic pattern recognition algorithm is efficiently implemented, 2) a real-time ultrasonic testing system which can capture the digitized ultrasonic flaw signal so the pattern recognition software can be applied in a real-time fashion, 3) database of ultrasonic flaw signals in weldments, which is served as a foundation of the ultrasonic pattern recognition algorithm, and finally, 4) ultrasonic features which should be invariant to operational variables of the ultrasonic test system. Presented here is the recent progress in the development of a real-time ultrasonic flaw classification by the novel combination of followings; an intelligent software for ultrasonic flaw classification in weldments, a computer-base real-time ultrasonic nondestructive evaluation system, database of ultrasonic flaw signals, and invariant ultrasonic features called 'normalized features.'

  2. Evaluation of Nondestructive Assay/Nondestructive Examination Capabilities for Department of Energy Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Luptak, A.J.; Bulmahn, K.D.

    1998-01-01

    This report summarizes an evaluation of the potential use of nondestructive assay (NDA) and nondestructive examination (NDE) technologies on DOE spent nuclear fuel (SNF). It presents the NDA/NDE information necessary for the National Spent Nuclear Fuel Program (NSNFP) and the SNF storage sites to use when defining that role, if any, of NDA/NDE in characterization and certification processes. Note that the potential role for NDA/NDE includes confirmatory testing on a sampling basis and is not restricted to use as a primary, item-specific, data collection method. The evaluation does not attempt to serve as a basis for selecting systems for development or deployment. Information was collected on 27 systems being developed at eight DOE locations. The systems considered are developed to some degree, but are not ready for deployment on the full range of DOE SNF and still require additional development. The system development may only involve demonstrating performance on additional SNF, packaging the system for deployment, and developing calibration standards, or it may be as extensive as performing additional basic research. Development time is considered to range from one to four years. We conclude that NDA/NDE systems are capable of playing a key role in the characterization and certification of DOE SNF, either as the primary data source or as a confirmatory test. NDA/NDE systems will be able to measure seven of the nine key SNF properties and to derive data for the two key properties not measured directly. The anticipated performance goals of these key properties are considered achievable except for enrichment measurements on fuels near 20% enrichment. NDA/NDE systems can likely be developed to measure the standard canisters now being considered for co-disposal of DOE SNF. This ability would allow the preparation of DOE SNF for storage now and the characterization and certification to be finalize later

  3. Ultrasonic monitoring of Iberian fat crystallization during cold storage

    International Nuclear Information System (INIS)

    Corona, E; García-Pérez, J V; Santacatalina, J V; Peña, R; Benedito, J

    2012-01-01

    The aim of this work was to evaluate the use of ultrasonic measurements to characterize the crystallization process and to assess the textural changes of Iberian fat and Iberian ham during cold storage. The ultrasonic velocity was measured in two types of Iberian fats (Montanera and Cebo) during cold storage (0, 2, 5, 7 and 10 °C) and in vacuum packaged Iberian ham stored at 6°C for 120 days. The fatty acid profile, thermal behaviour and textural properties of fat were determined. The ultrasonic velocity and textural measurements showed a two step increase during cold storage, which was related with the separate crystallization of two fractions of triglycerides. It was observed that the harder the fat, the higher the ultrasonic velocity. Likewise, Cebo fat resulted harder than Montanera due to a higher content of saturated triglycerides. The ultrasonic velocity in Iberian ham showed an average increase of 55 m/s after 120 days of cold storage due to fat crystallization. Thus, non-destructive ultrasonic technique could be a reliable method to follow the crystallization of fats and to monitor the changes in the textural properties of Iberian ham during cold storage.

  4. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-3, Hydrostatic Tests.

    Science.gov (United States)

    Pelton, Rick; Espy, John

    This third in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I describes the principles and practices associated with hydrostatic testing. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student,…

  5. Ultrasonic mammography

    International Nuclear Information System (INIS)

    Hueneke, B.

    1982-01-01

    608 women are examined by means of ultrasonic mammography during the period of 1 year. 432 patients were examined with the compound method with the U.I. Octoson, a water tank scanner, and 176 patients with the real time method with a directly connected linear-array-scanner. The following results were obtained at the end of the examination period: In the ultrasonic and also in the X-ray mammogram tumour diameters can be determined with an error rate of +- 30%. In the diagnosing of carcinomas, a significant dependence of the exactness on the sice of the tumour is found for the combination of the five methods tested (clinical examination, X-ray mammography, ultrasonic mammography, thermography, cytology). Classifying the individual methods with regard to their exactness, X-ray mammography ranks in front of ultrasonic mammography. Mastopathic changes in the breast can be screened by means of ultrasonic mammography. The structure of the changes can be determined more exactly than with an X-ray picture which is due to the possibility of differentiating solid and cystic structures. In diagnosing fibro-adenomas and establishing diagnoses on young women with dense gland bodies, ultrasonic mammography is superior to radiology both in the ability of screening a finding of a fibro-adenoma (US=88%, X-ray=75%) and in the possibility of classifying it as ''more benign than malignant''. (orig./MG) [de

  6. Nondestructive post-irradiation examination of Loop-1, S1 and B1 rods

    International Nuclear Information System (INIS)

    Bratton, R.L.

    1997-05-01

    As a part of the Pacific Northwest National Laboratory's Tritium Target Development Program, eleven tritium target rods were irradiated in the Advanced Test Reactor located at the Idaho National Engineering and Environmental Laboratory during 1991. Both nondestructive and destructive post-irradiation examination on all eleven rods was planned under the Tritium Target Development Program. Funding for the program was reduced in 1991 resulting in the early removal of the program experiments before reaching their irradiation goals. Post-irradiation examination was only performed on one of the irradiated rods at the Pacific Northwest National Laboratory before the program was terminated in 1992. On December 6, 1995, the Secretary of Energy announced the pursuit of the Commercial Light-Water Reactor option for producing tritium establishing the Tritium Target Qualification Program at the Pacific Northwest National Laboratory. This program decided to pursue nondestructive and destructive post-irradiation examination of the ten remaining rods from the previous program. The ten rods comprise three experiments. The Loop-1 experiment irradiated eight target rods in a loop configuration for 217 irradiation days. The other two rods were irradiated in two separate irradiation experiments, designated as S1 and B1 for 143 effective full-power days, but at different power levels. After the ten rods were transferred from the ATR Canal to the Hot Fuels Examination Facility, the following examinations were performed: (1) visual examination and photography; (2) neutron radiography; (3) axial gamma scanning; (4) contact profilometry measurement; (5) bow and length measurements; (6) rod puncture and plenum gas analysis/measurement of plenum gas quantity; (7) void volume determination; and (8) internal pressure determination. This report presents the data collected during these examinations

  7. Augmented reality application for training in pipe defects ultrasonic investigation

    Directory of Open Access Journals (Sweden)

    Amza Cătălin Gheorghe

    2017-01-01

    Full Text Available The paper presents the development process of an Augmented Reality (AR application used for training operators in using ultrasonic equipment for non-destructive testing (NDT of pipework. The application provides workers useful information regarding the process steps, the main components of ultrasonic equipment and the proper modality of placing, aligning and moving it on pipe and weld. Using tablet or mobile phone device, an operator can see on screen written details and images on standardized working method, thus offering assistance during the training process. Allowing 3D augmented visualization of ultrasonic equipment overlaid on the real-world environment consisting in pipes and welds, the AR application makes the NDT process easier to understand and learn, as the initial evaluation results showed.

  8. Performance testing of a system for remote ultrasonic examination of the Hanford double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Pfluger, D.C.; Somers, T.; Berger, A.D.

    1995-02-01

    A mobile robotic inspection system is being developed for remote ultrasonic examination of the double wall waste storage tanks at Hanford. Performance testing of the system includes demonstrating robot mobility within the tank annulus, evaluating the accuracy of the vision based navigation process, and verifying ultrasonic and video system performance. This paper briefly describes the system and presents a summary of the plan for performance testing of the ultrasonic testing system. Performance test results will be presented at the conference

  9. Prediction of strength of wood composite materials using ultrasonic

    International Nuclear Information System (INIS)

    Mahmoud, M.K.; Emam, A.

    2005-01-01

    Wood is a biological material integrating a very large variability of its mechanical properties (tensile and compressive), on the two directional longitudinal and transverse Ultrasonic method has been utilized to measure both wood physical and / or wood mechanical properties. The aim of this article is to show the development of ultrasonic technique for quality evaluation of trees, wood material and wood based composites. For quality assessment of these products we discuss the nondestructive evaluation of different factors such as: moisture content, temperature, biological degradation induced by bacterial attack and fungal attack. These techniques were adapted for trees, timber and wood based composites. The present study discusses the prediction of tensile and compressive strength of wood composite materials using ultrasonic testing. Empirical relationships between the tensile properties, compression strength and ultrasonic were proposed. The experimental results indicate the possibility of establishing a relationship between tensile strength and compression values. Moreover, the fractures in tensile and compressive are discussed by photographic

  10. Factors of Nonlinear-ultrasonic Detection and Its Application to HR3C Fireside Corrosion

    Directory of Open Access Journals (Sweden)

    QIN Peng

    2016-11-01

    Full Text Available Based on the discussion of the factors influencing the nonlinear ultrasonic testing, the feasibility of nondestructive evaluation of HR3C fireside corrosion was investigated using nonlinear ultrasonic testing. The results show that the number of pulse string is no more than 2df/c and the installation of Hanning window is helpful to reduce the disturbance of the system, in addition, the rough surface of the sample has a significant impact on the nonlinear parameter β. The nonlinear coefficient demonstrates a phased growth trend as corrosion time prolongs. At the initial stage of corrosion(within 50h,there are small increments within 20% in the nonlinear coefficient, however,the nonlinear coefficient β is increased obviously with the duration time to 150h. Compared with un-corroded sample, the amplification in the sample corroded for 200h reaches to 260%. The monotonous varieties in nonlinear coefficient are consistent with the aggravation of corrosion damage,hence,it is feasible to nondestructively evaluate HR3C fireside corrosion by means of ultrasonic nonlinear testing.

  11. Ultrasonic examination of ceramics and composites for porosities in an automatic scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Gundtoft, H.E.

    1988-05-01

    Using a very precise scanning system and computer evaluation, we can get quantitative results from automatic ultrasonic examination. In this paper two examples dealing with nonmetallic materials are presented. In a ceramic plate (>1 inch thick) small spherical prorosities (down to 0.1 mm) would harm the final product. Several artificial defects made in the plate were used for calibration and optimisation of the technique. Areas with with a microscope. Good agreement with the predicted values from the ultrasonic examination was found. From the NDT-examination the exact position of a porosity is known in all 3 coordinates (x, y and z). The size of the defect can also be measured. A single porosity with a diameter of 0.1 mm can be detected. Carbon-reinforced composites were examined. 8 prepregs were stacked and hardened in an autoclave to form a sheet (1 mm thick). Air trapped in the material resulted in porosities in the final product. A double trough transmission-scanning technique was used for the examination. The porosity percentages were determined by the NDT-technique, and agreement with destructivly determined values on samples from the same sheet was found.

  12. Nondestructive methods for quality evaluation of livestock products.

    Science.gov (United States)

    Narsaiah, K; Jha, Shyam N

    2012-06-01

    The muscles derived from livestock are highly perishable. Rapid and nondestructive methods are essential for quality assurance of such products. Potential nondestructive methods, which can supplement or replace many of traditional time consuming destructive methods, include colour and computer image analysis, NIR spectroscopy, NMRI, electronic nose, ultrasound, X-ray imaging and biosensors. These methods are briefly described and the research work involving them for products derived from livestock is reviewed. These methods will be helpful in rapid screening of large number of samples, monitoring distribution networks, quick product recall and enhance traceability in the value chain of livestock products. With new developments in the areas of basic science related to these methods, colour, image processing, NIR spectroscopy, biosensors and ultrasonic analysis are expected to be widespread and cost effective for large scale meat quality evaluation in near future.

  13. Development of ultrasonic heat transfer tube thickness measurement apparatus. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, Toshihiro; Katoh, Chiaki; Yanagihara, Takao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Suetugu, Hidehiko; Yano, Masaya [Sumitomo Chemical Co., Ltd., Tokyo (Japan)

    2003-01-01

    The demonstration test for evaluating reliability of the acid recovery evaporator at Rokkasho Reprocessing Plant has been carried out at JAERI. For the nondestructive measurement of the thickness of heat transfer tubes of the acid recovery evaporator in corrosion test, we have developed thickness measurement apparatus for heat transfer tubes by ultrasonic immersion method with high resolution. The ultrasonic prove in a heat transfer tube can be moved vertically and radially. The results obtained by this apparatus coincident well with those obtained by a destructive method using an optical microscope. (author)

  14. A study on the inclusion sizing using immersion ultrasonic C-scan imaging

    International Nuclear Information System (INIS)

    Chen, D; Xiao, H F; Li, M; Xu, J W

    2017-01-01

    Inclusion sizing, especially for large inclusions greater than 30μm provides important reference for metallurgical process control and fatigue life assessment of steel. Ultrasonic non-destructive testing (NDT) shows great advantages in detecting infrequently occurred large inclusions than eddy current, magnetic particle, microscopic or macroscopic examination procedures. In this paper, the performance of inclusion sizing by immersion ultrasonic C-scan imaging is studied numerically. A two-dimensional model that consists of spherically focused transducer, water couplant and steel with embedded inclusion is established and solved numerically by the finite element method. The signal intensity distributions of inclusion with different sizes are acquired and the effects of inclusion type, shape, orientation on signal intensity distribution are analysed. The results show that the 6dB-drop threshold has the smallest relative error compared with the 12dB-drop threshold and the full-drop threshold, which is better for determining inclusion size larger than 100μm. Experiment is also performed to validate the simulated results. (paper)

  15. Ultrasonic evaluation of heat treatment for stress relief in steel

    International Nuclear Information System (INIS)

    Bittencourt, Marcelo de S.Q.; Lamy, Carlos A.; Goncalves Filho, Orlando J.A.; Payao Filho, Joao da C.

    2000-01-01

    Residual stresses in materials arise due to the manufacturing processes. As a consequence, in the nuclear area some components must suffer a stress relief treatment according to strict criteria. Although these treatments are carefully carried on, concern with nuclear safety is constantly growing. This work proposes a nondestructive ultrasonic method to guarantee the efficiency of the heat treatment. It was used a short peened steel plate with tensile and compressive stresses which was submitted to a stress relief treatment. The results show that the proposed ultrasonic method could be used to confirm the efficiency of the stress relief heat treatment. (author)

  16. Phased array ultrasonic testing of dissimilar metal pipe weld joints

    International Nuclear Information System (INIS)

    Rajeev, J.; Sankaranarayanan, R.; Sharma, Govind K; Joseph, A.; Purnachandra Rao, B.

    2015-01-01

    Dissimilar metal weld (DMW) joints made of stainless steel and ferritic steel is used in nuclear industries as well as oil and gas industries. These joints are prone to frequent failures which makes the non-destructive testing of dissimilar metal weld joints utmost important for reliable and safe operation of nuclear power plants and oil and gas industries. Ultrasonic inspection of dissimilar metal weld joints is still challenging due to the inherent anisotropic and highly scattering nature. Phased array ultrasonic testing (PAUT) is an advanced technique and its capability has not been fully explored for the inspection of dissimilar metal welds

  17. Frequency-domain imaging algorithm for ultrasonic testing by application of matrix phased arrays

    Directory of Open Access Journals (Sweden)

    Dolmatov Dmitry

    2017-01-01

    Full Text Available Constantly increasing demand for high-performance materials and systems in aerospace industry requires advanced methods of nondestructive testing. One of the most promising methods is ultrasonic imaging by using matrix phased arrays. This technique allows to create three-dimensional ultrasonic imaging with high lateral resolution. Further progress in matrix phased array ultrasonic testing is determined by the development of fast imaging algorithms. In this article imaging algorithm based on frequency domain calculations is proposed. This approach is computationally efficient in comparison with time domain algorithms. Performance of the proposed algorithm was tested via computer simulations for planar specimen with flat bottom holes.

  18. Fatigue crack growth studies on a tee junction using ultrasonic non-destructive methods

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Thavasimuthu, M.; Ramesh, A.S.; Jayakumar, T.; Kalyanasundaram, P.; Baldev Raj

    1996-01-01

    Fatigue cracks need to be detected and sized to maintain structural integrity. The significance of cracks detected in service must also be assessed. This paper describes the on-line ultrasonic testing carried out on a Tee joint subjected to fatigue loading. The initiation and growth of the cracks were monitored for every 5,000 cycles up to 40,000 cycles. The study demonstrated the use of ultrasonic testing for fatigue crack growth detection and sizing. (author)

  19. Proceedings of the 5. Pan Pacific conference on nondestructive testing

    International Nuclear Information System (INIS)

    Kittmer, C.A.

    1987-03-01

    This is the fifth in the series of Pan Pacific Conference on Nondestructive Testing held once every two years. The honour of hosting the conference is shared among those countries bordering on the Pacific Ocean, this year the responsibility being granted to Canada. The call for papers for this three day conference attracted significant interest. This provided the Technical Program Committee with an extremely difficult task in reducing the overwhelming response to only 46 (plus 10 alternates) for presentation at the conference, and inclusion in these proceedings. The selected papers provide an international perspective on advances in nondestructive techniques such as ultrasonics, eddy current, radiography, magnetic particle and liquid penetrant, as well as their diverse applications in the various countries involved

  20. Proceedings of a specialist meeting on the ultrasonic inspection of reactor components

    International Nuclear Information System (INIS)

    1976-01-01

    Beside synthesis of two conferences on nondestructive testing and on inspection, the contributions of this conference are reporting experimental observations and research works on ultrasonic techniques, methods, procedures (pre-service or in-service) and equipment for the inspection of nuclear reactor components (pressure vessels, tubing and piping), generally in stainless steel (often austenitic or ferritic) material or in zirconium alloy. Some contributions are also dealing with the relationship between material microstructure and ultrasonic inspection method and equipment, or with the detection and sizing precision of flaws (cracks)

  1. A final report on the performance achieved by non-destructive testing of defective butt welds in 50mm thick Type 316 stainless steel

    International Nuclear Information System (INIS)

    Ford, J.; Hudgell, R.J.

    1987-03-01

    This report concludes a programme of work started approximately eight years ago to fabricate deliberately defective austenitic downhand welds in 50 mm thick Type 316 plate and then to examine them non-destructively under ideal laboratory conditions. After completing and reporting the Non-Destructive Testing (NDT), the specimens were subjected to detailed metallography to locate, identify and size all the planned and unplanned flaws in the welds. The report gives the final analysis of this exercise on the relative merits of X-radiography, pulse echo ultrasonics and the time-of-flight technique for the detection, location and sizing of weld flaws. It was found that X-radiography and pulse echo ultrasonics were the best techniques for flaw detection but neither technique was reliable for flaw sizing. The time-of-flight technique provided accurate sizing data but the location of the flaws had to be known to identify the diffracted signals from the extremities of the flaws due to the poor signal to noise ratio. Observations are also reported on the fabrication of deliberately defective austenitic welds for use as reference specimens in the FR programme. (author)

  2. Using piezoelectric sensors for ultrasonic pulse velocity measurements in concrete

    International Nuclear Information System (INIS)

    Kee, Seong-Hoon; Zhu, Jinying

    2013-01-01

    The ultrasonic pulse velocity (UPV) test has been a widely used non-destructive testing method for concrete structures. However, the conventional UPV test has limitations in consistency of results and applicability in hard-to-access regions of structures. The authors explore the feasibility of embedded piezoelectric (PZT) sensors for ultrasonic measurements in concrete structures. Two PZT sensors were embedded in a reinforced concrete specimen. One sensor worked as an actuator driven by an ultrasonic pulse-receiver, and another sensor worked as a receiver. A series of ultrasonic tests were conducted to investigate the performance of the embedded sensors in crack-free concrete and concrete specimens having a surface-breaking crack under various external loadings. Signals measured by the embedded sensors show a broad bandwidth with a centre frequency around 80 kHz, and very good coherence in the frequency range from 30 to 180 kHz. Furthermore, experimental variability in ultrasonic pulse velocity and attenuation is substantially reduced compared to previously reported values from conventional UPV equipment. Findings from this study demonstrate that the embedded sensors have great potential as a low-cost solution for ultrasonic transducers for health monitoring of concrete in structures. (paper)

  3. Non-destructive examination of the bonding interface in DEMO divertor fingers

    International Nuclear Information System (INIS)

    Richou, Marianne; Missirlian, Marc; Vignal, Nicolas; Cantone, Vincent; Hernandez, Caroline; Norajitra, Prachai; Spatafora, Luigi

    2013-01-01

    Highlights: • SATIR tests on DEMO divertor fingers (integrating or not He cooling system). • Millimeter size artificial defects were manufactured. • Detectability of millimeter size artificial defects was evaluated. • SATIR can detect defect in DEMO divertor fingers. • Simulations are well correlated to SATIR tests. -- Abstract: Plasma facing components (PFCs) with tungsten (W) armor materials for DEMO divertor require a high heat flux removal capability (at least 10 MW/m 2 in steady-state conditions). The reference divertor PFC concept is a finger with a tungsten tile as a protection and sacrificial layer brazed to a thimble made of tungsten alloy W – 1% La 2 O 3 (WL10). Defects may be located at the W thimble to W tile interface. As the number of fingers is considerable (>250,000), it is then a major issue to develop a reliable control procedure in order to control with a non-destructive examination the fabrication processes. The feasibility for detecting defect with infrared thermography SATIR test bed is presented. SATIR is based on the heat transient method and is used as an inspection tool in order to assess component heat transfer capability. SATIR tests were performed on fingers integrating or not the complex He cooling system (steel cartridge with jet holes). Millimeter size artificial defects were manufactured and their detectability was evaluated. Results of this study demonstrate that the SATIR method can be considered as a relevant non-destructive technique examination for the defect detection of DEMO divertor fingers

  4. Nondestructive inspection of concrete structures by nonlinear elastic wave spectroscopy methods

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk; Krofta, Josef; Kober, Jan; Chlada, Milan

    2014-01-01

    Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : civil engineering * nuclear * power plant * structural health monitoring (SHM) * signal processing * other medhods * ultrasonic testing (UT) Subject RIV: BI - Acoustics http://www.ndt.net/events/ECNDT2014/app/content/Slides/642_Prevorovsky_Rev1.pdf

  5. Hydrogen attack evaluation of boiler tube using ultrasonic wave

    International Nuclear Information System (INIS)

    Won, Soon Ho; Hyun, Yang Ki; Lee, Jong O; Cho, Kyung Shik; Lee, Jae Do

    2001-01-01

    The presence of hydrogen in industrial plants is a source of damage. Hydrogen attack is one such form of degradation and often causing large tube ruptures that necessitate an immediate shutdown. Hydrogen attack may reduce the fracture toughness as well as the strength of steels. This reduction is caused partially by the presence of cavities and microcracks at the grain boundaries. In the past several techniques have been used with limited results. This paper describes the application of an ultrasonic velocity, attenuation and backscatter techniques for detecting the presence of hydrogen damage in utility boiler tubes. Ultrasonic tests showed a decrease in wave velocity and an increase in attenuation. Such results demonstrate the potential for ultrasonic nondestructive testing to quantify damage. Based on this study, recommendations are that both velocity and attenuation be used to detect hydrogen attack in steels.

  6. Nondestructive characterization of embrittlement in reactor pressure vessel steels -- A feasibility study

    International Nuclear Information System (INIS)

    McHenry, H.I.; Alers, G.A.

    1998-01-01

    The Nuclear Regulatory Commission recently initiated a study by NIST to assess the feasibility of using physical-property measurements for evaluating radiation embrittlement in reactor pressure vessel (RPV) steels. Ultrasonic and magnetic measurements provide the most promising approaches for nondestructive characterization of RPV steels because elastic waves and magnetic fields can sense the microstructural changes that embrittle materials. The microstructural changes of particular interest are copper precipitation hardening, which is the likely cause of radiation embrittlement in RPV steels, and the loss of dislocation mobility that is an attribute of the ductile-to-brittle transition. Measurements were made on a 1% copper steel, ASTM grade A710, in the annealed, peak-aged and overaged conditions, and on an RPV steel, ASTM grade A533B. Nonlinear ultrasonic and micromagnetic techniques were the most promising measures of precipitation hardening. Ultrasonic velocity measurements and the magnetic properties associated with hysteresis-loop measurements were not particularly sensitive to either precipitation hardening or the ductile-to-brittle transition. Measurements of internal friction using trapped ultrasonic resonance modes detected energy losses due to the motion of pinned dislocations; however, the ultrasonic attenuation associated with these measurements was small compared to the attenuation caused by beam spreading that would occur in conventional ultrasonic testing of RPVs

  7. Interrelation of material microstructure, ultrasonic factors, and fracture toughness of two phase titanium alloy

    Science.gov (United States)

    Vary, A.; Hull, D. R.

    1982-01-01

    The pivotal role of an alpha-beta phase microstructure in governing fracture toughness in a titanium alloy, Ti-662, is demonstrated. The interrelation of microstructure and fracture toughness is demonstrated using ultrasonic measurement techniques originally developed for nondestructive evaluation and material property characterization. It is shown that the findings determined from ultrasonic measurements agree with conclusions based on metallurgical, metallographic, and fractographic observations concerning the importance of alpha-beta morphology in controlling fracture toughness in two phase titanium alloys.

  8. Effects of microstructure on ultrasonic examination of stainless steel

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Reimann, K.J.

    1976-01-01

    Ultrasonic inspection of cast stainless steel components or stainless steel welds is difficult, and the results obtained are hard to interpret. The present study describes the effects of stainless steel microstructure on ultrasonic test results. Welded coupons, 2.5 and 5.0 cm thick, were fabricated from Type 304 stainless steel, with Type 308 stainless steel as the weld material. Metallography of the base material shows grain sizes of 15 and 80 μm, and dendrites aligned from the top to the bottom surface in cast material. X-ray diffraction and ultrasonic velocity measurements indicate a random crystal orientation in the base material, but the cast sample had aligned dendrites. The weld material exhibits a dendritic structure with a preferred (100) direction perpendicular to the weld pass. Spectral analysis of ultrasonic broad-band signals through the base materials shows drastic attenuation of higher frequencies with increasing grain size (Rayleigh scattering). Annealing and recrystallization increases the ultrasonic attenuation and produces carbide precipitation at grain boundaries. The microstructural differences of the base metal, heat-affected zone, and weld metal affect the amplitude of ultrasonic reflections from artificial flaws in these zones. Data obtained from two samples of different grain sizes indicate that grain size has little effect when a 1-MHz transducer is used. When going from a 15 to an 80-μm crystalline structure, a 5-MHz unit suffers a 30-dB attenuation in the detection of a 1.2 mm deep notch. The anisotropy of the dendritic structure in stainless steel renewed the interest in the effect of shear-wave polarization. In the (110) crystallographic orientation of stainless steel, two modes of shear waves can be generated, which have velocities differing by a factor of two. This effect may be helpful in ''tuning'' of shear waves by polarization to obtain better penetration in large grain materials such as welds

  9. A computer-controlled electronic system for the ultrasonic NDT of components for nuclear power stations

    International Nuclear Information System (INIS)

    Rehrmann, M.; Harbecke, D.

    1987-01-01

    The paper describes an automatic ultrasonic testing system combined with a computer-controlled electronics system, called IMPULS I, for the non-destructive testing of components of nuclear reactors. The system can be used for both in-service inspection and for inspection during the manufacturing process. IMPUL I has more functions and less components than conventional ultrasonic systems, and the system gives good reproducible test results and is easy to operate. (U.K.)

  10. Ultrasonic characterization of microstructure in powder metal alloy

    Science.gov (United States)

    Tittmann, B. R.; Ahlberg, L. A.; Fertig, K.

    1986-01-01

    The ultrasonic wave propagation characteristics were measured for IN-100, a powder metallurgy alloy used for aircraft engine components. This material was as a model system for testing the feasibility of characterizing the microstructure of a variety of inhomogeneous media including powder metals, ceramics, castings and components. The data were obtained for a frequency range from about 2 to 20 MHz and were statistically averaged over numerous volume elements of the samples. Micrographical examination provided size and number distributions for grain and pore structure. The results showed that the predominant source for the ultrasonic attenuation and backscatter was a dense (approx. 100/cubic mm) distribution of small micropores (approx. 10 micron radius). Two samples with different micropore densities were studied in detail to test the feasibility of calculating from observed microstructural parameters the frequency dependence of the microstructural backscatter in the regime for which the wavelength is much larger than the size of the individual scattering centers. Excellent agreement was found between predicted and observed values so as to demonstrate the feasibility of solving the forward problem. The results suggest a way towards the nondestructive detection and characterization of anomalous distributions of micropores when conventional ultrasonic imaging is difficult. The findings are potentially significant toward the application of the early detection of porosity during the materials fabrication process and after manufacturing of potential sites for stress induced void coalescence leading to crack initiation and subsequent failure.

  11. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-5, Fundamentals of Radiography.

    Science.gov (United States)

    Groseclose, Richard

    This fifth in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I explains the radiographic process, from radiation source selection to equipment and specimen selection and arrangement, and film processing. The module follows a typical format that includes the following sections: (1) introduction, (2) module…

  12. The state of the art in non destructive testing of nuclear fuel cladding tubes using ultrasonic rotary systems; on line computer and statistics

    International Nuclear Information System (INIS)

    Rauscher, Rudolf

    Nondestructive evaluation of nuclear fuel cladding by ultrasonic tests is described. Ultrasonic transducers for detection of flaws and dimensions are built in a rotary system with a speed of 8000 rpm. The testing system is adapted to a configuration consisting of two microcomputers connected to each other

  13. Correlation between ultrasonic nonlinearity and elastic nonlinearity in heat-treated aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Beom; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2017-04-15

    The nonlinear ultrasonic technique is a potential nondestructive method to evaluate material degradation, in which the ultrasonic nonlinearity parameter is usually measured. The ultrasonic nonlinearity parameter is defined by the elastic nonlinearity coefficients of the nonlinear Hooke’s equation. Therefore, even though the ultrasonic nonlinearity parameter is not equal to the elastic nonlinearity parameter, they have a close relationship. However, there has been no experimental verification of the relationship between the ultrasonic and elastic nonlinearity parameters. In this study, the relationship is experimentally verified for a heat-treated aluminum alloy. Specimens of the aluminum alloy were heat-treated at 300°C for different periods of time (0, 1, 2, 5, 10, 20, and 50 h). The relative ultrasonic nonlinearity parameter of each specimen was then measured, and the elastic nonlinearity parameter was determined by fitting the stress-strain curve obtained from a tensile test to the 5th-order-polynomial nonlinear Hooke’s equation. The results showed that the variations in these parameters were in good agreement with each other.

  14. Application of nonlinear ultrasonic method for monitoring of stress state in concrete

    International Nuclear Information System (INIS)

    Kim, Gyu Jin; Kwak, Hyo Gyoung; Park, Sun Jong

    2016-01-01

    As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members

  15. Application of nonlinear ultrasonic method for monitoring of stress state in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyu Jin; Kwak, Hyo Gyoung [Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Sun Jong [Dept. of Structural System and Site Safety Evaluation, Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-04-15

    As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members.

  16. Babcock experience of automated ultrasonic non-destructive testing of PWR pressure vessels during manufacture

    International Nuclear Information System (INIS)

    Dikstra, B.J.; Farley, J.M.; Scruton, G.

    1990-01-01

    Major developments in ultrasonic techniques, equipment and systems for automated inspection have lead, over a period of about ten years, to the regular application of sophisticated computer-controlled systems during the manufacture of nuclear reactor pressure vessels. Ten years ago the use of procedures defined in a code such as ASME XI might have been considered sufficient, but it is now necessary, as was demonstrated by the results of the UKAEA defect detection trials and the PISC II trials, to apply more comprehensive arrays of probes and higher test sensitivities. The ultrasonic techniques selected are demonstrated to be adequate by modelling or test-block exercises, the automated systems applied are subject to stringent quality assurance testing, and very rigorous inspection procedures are used in conjunction with a high degree of automation to ensure reproducibility of inspection quality. The state-of-the-art in automated ultrasonic testing of pressure vessels by Babcock is described. Current developments by the company, including automated flaw recognition, integrated modelling of inspection capability, and the use of electronically scanned variable-angle probes are reviewed. Examples quoted include the automated ultrasonic inspections of the Sizewell B pressurized water reactor vessel. (author)

  17. Mechanized ultrasonic examination of piping systems in nuclear power plants

    International Nuclear Information System (INIS)

    Edelmann, X.; Pfister, O.; Allidi, F.

    1988-01-01

    The success of mechanized ultrasonic examination applied on welds in piping systems in nuclear power plants is highly dependent on its careful preparation. From the development of an adequate examination technique to its implementation on site, many problems are to be solved. This is especially the case when dealing with austenitic welds or dissimilar metal welds. In addition to the specific needs for examination technique based on material properties and requirements for minimum flaw size detection, accessibility and radiation aspects have to be considered. A crew of skilled and highly trained examination personnel is required. Experience in various nuclear power plants, - BWR's and PWR's of different designs - has shown, that even difficult examination problems can be successfully solved, provided that there is a good preparation. The necessary step by step proceeding is illustrated by examples concerning mechanized examination. Preservice inspections and in-service inspections with specific requirements, due to the types of flaws to be found or the type of material concerned, are discussed

  18. A Gaussian beam method for ultrasonic non-destructive evaluation modeling

    Science.gov (United States)

    Jacquet, O.; Leymarie, N.; Cassereau, D.

    2018-05-01

    The propagation of high-frequency ultrasonic body waves can be efficiently estimated with a semi-analytic Dynamic Ray Tracing approach using paraxial approximation. Although this asymptotic field estimation avoids the computational cost of numerical methods, it may encounter several limitations in reproducing identified highly interferential features. Nevertheless, some can be managed by allowing paraxial quantities to be complex-valued. This gives rise to localized solutions, known as paraxial Gaussian beams. Whereas their propagation and transmission/reflection laws are well-defined, the fact remains that the adopted complexification introduces additional initial conditions. While their choice is usually performed according to strategies specifically tailored to limited applications, a Gabor frame method has been implemented to indiscriminately initialize a reasonable number of paraxial Gaussian beams. Since this method can be applied for an usefully wide range of ultrasonic transducers, the typical case of the time-harmonic piston radiator is investigated. Compared to the commonly used Multi-Gaussian Beam model [1], a better agreement is obtained throughout the radiated field between the results of numerical integration (or analytical on-axis solution) and the resulting Gaussian beam superposition. Sparsity of the proposed solution is also discussed.

  19. Non-destructive examination of grouted waste

    International Nuclear Information System (INIS)

    Benny, H.L.

    1994-01-01

    This data report contains the results of ultrasonic pulse velocity (UPV) and unconfined compressive strength (USC) measurements on a grouted simulant of 106AN tank waste. This testing program was conducted according to the requirements detailed in WHC-1993a. If successful, these methods could lead to a system for the remote verification of waste form quality. The objectives of this testing program were: to determine if a relationship exists between the velocity of ultrasonic compression waves and the unconfined compressive strength of simulated grouted waste, and if so, determine if the relationship is a valid method for grout quality assessment; and to determine if a relationship exists between the attenuation of wave amplitude and the age of test specimens. The first objective was met, in that a relationship between the UPV waves and USC was determined. This method appears to provide a valid measure of the quality of the grouted waste, as discussed in Sections 3.0 and 4.0. The second objective, to determine if the attenuation of UPV waves was related to the age of test specimens was partially met. A relationship does exist between wave amplitude and age, but it is doubtful that this method alone can be used to verify the overall quality of grouted waste. Section 2.0 describes the test methods, with the results detailed in Section 3.0. A discussion of the results are provided in Section 4.0

  20. Ultrasonic imaging of material flaws exploiting multipath information

    Science.gov (United States)

    Shen, Xizhong; Zhang, Yimin D.; Demirli, Ramazan; Amin, Moeness G.

    2011-05-01

    In this paper, we consider ultrasonic imaging for the visualization of flaws in a material. Ultrasonic imaging is a powerful nondestructive testing (NDT) tool which assesses material conditions via the detection, localization, and classification of flaws inside a structure. Multipath exploitations provide extended virtual array apertures and, in turn, enhance imaging capability beyond the limitation of traditional multisensor approaches. We utilize reflections of ultrasonic signals which occur when encountering different media and interior discontinuities. The waveforms observed at the physical as well as virtual sensors yield additional measurements corresponding to different aspect angles. Exploitation of multipath information addresses unique issues observed in ultrasonic imaging. (1) Utilization of physical and virtual sensors significantly extends the array aperture for image enhancement. (2) Multipath signals extend the angle of view of the narrow beamwidth of the ultrasound transducers, allowing improved visibility and array design flexibility. (3) Ultrasonic signals experience difficulty in penetrating a flaw, thus the aspect angle of the observation is limited unless access to other sides is available. The significant extension of the aperture makes it possible to yield flaw observation from multiple aspect angles. We show that data fusion of physical and virtual sensor data significantly improves the detection and localization performance. The effectiveness of the proposed multipath exploitation approach is demonstrated through experimental studies.

  1. Nondestructive Evaluation of the J-2X Direct Metal Laser Sintered Gas Generator Discharge Duct

    Science.gov (United States)

    Esther, Elizabeth A.; Beshears, Ronald D.; Lash, Rhonda K.

    2012-01-01

    The J-2X program at NASA's Marshall Space Flight Center (MSFC) procured a direct metal laser sintered (DMLS) gas generator discharge duct from Pratt & Whitney Rocketdyne and Morris Technologies for a test program that would evaluate the material properties and durability of the duct in an engine-like environment. DMLS technology was pursued as a manufacturing alternative to traditional techniques, which used off nominal practices to manufacture the gas generator duct's 180 degree turn geometry. MSFC's Nondestructive Evaluation (NDE) Team performed radiographic, ultrasonic, computed tomographic, and fluorescent penetrant examinations of the duct. Results from the NDE examinations reveal some shallow porosity but no major defects in the as-manufactured material. NDE examinations were also performed after hot-fire testing the gas generator duct and yielded similar results pre and post-test and showed no flaw growth or development.

  2. Nondestructive materials evaluation and imaging by higher harmonics

    International Nuclear Information System (INIS)

    Kawashima, Koichiro

    2012-01-01

    Nondestructive detection of material anormalities, degradation and tight cracks, in which the acoustic impedance mismatch is low, is rather difficult by conventional ultrasonic testing. A novel nonlinear ultrasonic technique, in particular, higher harmonic technique, utilizes the waveform distortion, which results from the interaction between anormalities and large amplitude tone-burst waves. This technique is not affected by acoustic impedance mismatch, therefore, it has possibility to detect such anormalities, degradation and tight cracks. A novel higher harmonic imaging technique is proposed and applied to detect and visualize local plastic deformation of SUS 304 plates, plastic zone in front of crack tip, weld bond contour of carbon steel, small inclusions in ODS steel fuel tubes, pitting damage of SUS 316 plates in mercury, shallow fatigue cracks of SUS 316 plates introduced by thermal fatigue, and inter-granular stress corrosion cracking, IGSCC, in welded plates simulated safe-ends for bonding dissimilar metals. (author)

  3. Assessment of hydrogen levels in Zircaloy-2 by non-destructive testing

    International Nuclear Information System (INIS)

    De, P.K.; John, J.T.; Banerjee, S.; Jayakumar, T.; Thavasimuthu, M.; Raj, B.

    1998-01-01

    A non-destructive assessment of Zircaloy-2 samples charged with hydrogen in the range of 50 to 1150 mg/kg has been made using ultrasonic and eddy current testing. It has been found that the ratio of the longitudinal to the shear wave velocity is a parameter which can be directly correlated with the hydrogen content up to a level of 100 to 200 mg/kg. This parameter together with the values of longitudinal and shear wave velocities can be utilized in a multi-parametric correlation approach for estimation of higher levels of the hydrogen content (up to 1150 mg/kg). The sensitivity at different ranges has been found to be acceptable. Ultrasonic attenuation measurements at higher frequencies and eddy current test parameter are also effective for estimation of hydrogen levels above 250 mg/kg in zirconium alloys. Microstructural characterization including TEM studies have been carried out for studying the influence of the type and the morphology of hydride precipitates on ultrasonic parameters. (orig.)

  4. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    Science.gov (United States)

    Zeng, Fan W.; Han, Karen; Olasov, Lauren R.; Gallego, Nidia C.; Contescu, Cristian I.; Spicer, James B.

    2015-05-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have been made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements.

  5. Accumulation and preparation of nondestructive inspection data for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In recent years, flaws due to stress corrosion cracking (SCC) in stainless steel piping and nickel based alloy welds were detected at nuclear power plants in Japan. Weld Overlay (WOL) has been developed as a repairing method for piping items without removing flaws. Since the inspection techniques for WOL pipes and nickel based alloy welds are not verified enough in Japan, Japan Nuclear Energy Safety Organization (JNES) has been carrying out a six year research project entitled 'Accumulation and Preparation of Nondestructive Inspection Data for Nuclear Power Plants' regarding nondestructive inspection since FY2007. In this research project, detection and sizing capability of SCC by Ultrasonic Testing (UT) are evaluated using mockup tests. In addition, the results of this project and past nondestructive inspection data performed by JNES projects are gathered, and inputted into the database of NDT information. In FY2012, followings were conducted. 1) Analysis for UT measurement results of nickel based alloy weld simulating safe end of reactor vessel outlet nozzle. 2) Analysis for UT measurement results of cast stainless steel piping. 3) Development of interface of UT simulation. 4) Development of nondestructive testing guideline. (author)

  6. Facilities for the examination of radioactive bodies

    International Nuclear Information System (INIS)

    Ginniff, M.E.; Richardson, E.K.

    1981-01-01

    A facility for the examination of radioactive bodies comprises carriages, each transporting one or more radioactive bodies, e.g. nuclear fuel elements, which travel along a shielded passage to bring the bodies to examination stations spaced along the passage. The passage comprises a circular section tube surrounded by a thick cylinder of shielding material e.g. lead. The transverse sectional dimensions of the passage are not much larger than the corresponding dimensions of the carriages in order to maintain the radioactive region as small as possible. Equipment for the examination of the radioactive bodies is located outside the shielded passage, and may be for metallurgical examination, e.g. by ultrasonics, radiography or other non-destructive testing means, or for mensuration to identify changes in shape, dimensions or weight. (author)

  7. Numeric ultrasonic image processing method: application to non-destructive testing of stainless austenitic steel welds

    International Nuclear Information System (INIS)

    Corneloup, G.

    1988-09-01

    A bibliographic research on the means used to improve the ultrasonic inspection of heterogeneous materials such as stainless austenitic steel welds has shown, taking into account the first analysis, a signal assembly in the form of an image (space, time) which carries an original solution to fault detection in highly noisy environments. A numeric grey-level ultrasonic image processing detection method is proposed based on the research of a certain determinism, in the way which the ultrasonic image evolves in space and time in the presence of a defect: the first criterion studies the horizontal stability of the gradients in the image and the second takes into account the time-transient nature of the defect echo. A very important rise in the signal-to-noise ratio obtained in welding inspections evidencing defects (real and artificial) is shown with the help of a computerized ultrasonic image processing/management system, developed for this application [fr

  8. Image based EFIT simulation for nondestructive ultrasonic testing of austenitic steel

    International Nuclear Information System (INIS)

    Nakahata, Kazuyuki; Hirose, Sohichi; Schubert, Frank; Koehler, Bernd

    2009-01-01

    The ultrasonic testing (UT) of an austenitic steel with welds is difficult due to the acoustic anisotropy and local heterogeneity. The ultrasonic wave in the austenitic steel is skewed along crystallographic directions and scattered by weld boundaries. For reliable UT, a straightforward simulation tool to predict the wave propagation is desired. Here a combined method of elastodynamic finite integration technique (EFIT) and digital image processing is developed as a wave simulation tool for UT. The EFIT is a grid-based explicit numerical method and easily treats different boundary conditions which are essential to model wave propagation in heterogeneous materials. In this study, the EFIT formulation in anisotropic and heterogeneous materials is briefly described and an example of a two dimensional simulation of a phased array UT in an austenitic steel bar is demonstrated. In our simulation, a picture of the surface of the steel bar with a V-groove weld is scanned and fed into the image based EFIT modeling. (author)

  9. Improvement of ultrasonic examination using the Spartacus system

    International Nuclear Information System (INIS)

    Benoist, P.; Chapuis, N.; Cartier, F.; Pincemaille, G.

    1992-01-01

    Improved computer technology and technical advances in data analysis have significantly modified the methods employed to perform ultrasonic inspections. The SPARTACUS system developed by the CEA (French Atomic Agency) in an example of this progress. The nerve center of the system is a graphic workstation. The system permits full digitization of waveform while retaining high data acquisition rates of conventional system. In addition, it enables ultra fast analysis with comprehensive interactive imaging including signal processing (filtering, correlation, deconvolution...), image processing, spectrum analysis, automatic edition of report, 3D presentation. This system is now use during In-Service Inspection with MIS (In-Service Inspection Machine). Some examples of applications are shown: improvement in sizing capabilities, examination of austenitic weldments; thickness measurement (tube applications...), automatic detection

  10. Comparative study of linear and nonlinear ultrasonic techniques for evaluation thermal damage of tube like structures

    International Nuclear Information System (INIS)

    Li, Weibin; Cho, Younho; Li, Xianqiang

    2013-01-01

    Ultrasonic guided wave techniques have been widely used for long range nondestructive detection in tube like structures. The present paper investigates the ultrasonic linear and nonlinear parameters for evaluating the thermal damage in aluminum pipe. Specimens were subjected to thermal loading. Flexible polyvinylidene fluoride (PVDF) comb transducers were used to generate and receive the ultrasonic waves. The second harmonic wave generation technique was used to check the material nonlinearity change after different heat loadings. The conventional linear ultrasonic approach based on attenuation was also used to evaluate the thermal damages in specimens. The results show that the proposed experimental setup is viable to assess the thermal damage in an aluminum pipe. The ultrasonic nonlinear parameter is a promising candidate for the prediction of micro damages in a tube like structure

  11. An ultrasonic technique for predicting tensile strength of southern pine lumber

    Science.gov (United States)

    D. Rajeshwar; D.A. Bender; D.E. Bray; K.A. McDonald

    1997-01-01

    The goal of this research was to develop nondestructive evaluation (NDE) technology to enhance mechanical stress rating of lumber. An ultrasonic NDE technique was developed that is sensitive to grain angle and edge knots in lumber - two primary determinants of lumber strength. The presence of edge knots increased the acoustic wave travel time and selectively...

  12. Real-time nondestructive monitoring of the gas tungsten arc welding (GTAW) process by combined airborne acoustic emission and non-contact ultrasonics

    Science.gov (United States)

    Zhang, Lu; Basantes-Defaz, Alexandra-Del-Carmen; Abbasi, Zeynab; Yuhas, Donald; Ozevin, Didem; Indacochea, Ernesto

    2018-03-01

    Welding is a key manufacturing process for many industries and may introduce defects into the welded parts causing significant negative impacts, potentially ruining high-cost pieces. Therefore, a real-time process monitoring method is important to implement for avoiding producing a low-quality weld. Due to high surface temperature and possible contamination of surface by contact transducers, the welding process should be monitored via non-contact transducers. In this paper, airborne acoustic emission (AE) transducers tuned at 60 kHz and non-contact ultrasonic testing (UT) transducers tuned at 500 kHz are implemented for real time weld monitoring. AE is a passive nondestructive evaluation method that listens for the process noise, and provides information about the uniformity of manufacturing process. UT provides more quantitative information about weld defects. One of the most common weld defects as burn-through is investigated. The influences of weld defects on AE signatures (time-driven data) and UT signals (received signal energy, change in peak frequency) are presented. The level of burn-through damage is defined by using single method or combine AE/UT methods.

  13. Benefits of the Multiple Echo Technique for Ultrasonic Thickness Testing

    Energy Technology Data Exchange (ETDEWEB)

    Elder, J.; Vandekamp, R.

    2011-02-10

    Much effort has been put into determining methods to make accurate thickness measurements, especially at elevated temperatures. An accuracy of +/- 0.001 inches is typically noted for commercial ultrasonic thickness gauges and ultrasonic thickness techniques. Codes and standards put limitations on many inspection factors including equipment, calibration tolerance and temperature variations. These factors are important and should be controlled, but unfortunately do not guarantee accurate and repeatable measurements in the field. Most technicians long for a single technique that is best for every situation, unfortunately, there are no 'silver bullets' when it comes to nondestructive testing. This paper will describe and discuss some of the major contributors to measurement error as well as some advantages and limitations of multiple echo techniques and why multiple echo techniques should be more widely utilized for ultrasonic thickness measurements.

  14. Flaw characterization through nonlinear ultrasonics and wavelet cross-correlation algorithms

    Science.gov (United States)

    Bunget, Gheorghe; Yee, Andrew; Stewart, Dylan; Rogers, James; Henley, Stanley; Bugg, Chris; Cline, John; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz

    2018-04-01

    Ultrasonic measurements have become increasingly important non-destructive techniques to characterize flaws found within various in-service industrial components. The prediction of remaining useful life based on fracture analysis depends on the accurate estimation of flaw size and orientation. However, amplitude-based ultrasonic measurements are not able to estimate the plastic zones that exist ahead of crack tips. Estimating the size of the plastic zone is an advantage since some flaws may propagate faster than others. This paper presents a wavelet cross-correlation (WCC) algorithm that was applied to nonlinear analysis of ultrasonically guided waves (GW). By using this algorithm, harmonics present in the waveforms were extracted and nonlinearity parameters were used to indicate both the tip of the cracks and size of the plastic zone. B-scans performed with the quadratic nonlinearities were sensitive to micro-damage specific to plastic zones.

  15. Ultrasonic characterization of GRC with high percentage of fly ash substitution.

    Science.gov (United States)

    Genovés, V; Gosálbez, J; Miralles, R; Bonilla, M; Payá, J

    2015-07-01

    New applications of non-destructive techniques (NDT) with ultrasonic tests (attenuation and velocity by means of ultrasonic frequency sweeps) have been developed for the characterization of fibre-reinforced cementitious composites. According to new lines of research on glass-fibre reinforced cement (GRC) matrix modification, two similar GRC composites with high percentages of fly ash and different water/binder ratios will be studied. Conventional techniques have been used to confirm their low Ca(OH)(2) content (thermogravimetry), fibre integrity (Scanning Electron Microscopy), low porosity (Mercury Intrusion Porosimetry) and good mechanical properties (compression and four points bending test). Ultrasound frequency sweeps allowed the estimation of the attenuation and pulse velocity as functions of frequency. This ultrasonic characterization was correlated successfully with conventional techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Nondestructive examination of Oconee 1 fuel assemblies after four cycles of irradiation

    International Nuclear Information System (INIS)

    Pyecha, T.D.; Mayer, J.T.; Guthrie, B.A. III; Riordan, J.E.

    1980-12-01

    Five B and W Mark B (15 x 15) pressurized water reactor fuel assemblies were nondestructively examined after four cycles of irradiation in the Oconee 1 reactor. Four of the five assemblies examined had a burnup of 40,000 MWd/mtU; the fifth assembly had a burnup of 36,800 MWd/mtU. This effort is part of a Department of Energy program to improve uranium utilization by extending the burnup of light water reactor fuel. The examinations were conducted in the Oconee 1 and 2 spent fuel storage pool. Data obtained included fuel assembly and fuel rod dimensions, water channel spacings, spacer grid and holddown spring forces, fuel column stack and axial gap lengths, and crud samples. The results indicate that the assemblies performed well through four cycles of operation; all of the data were within design limits

  17. The use of computers for the performance and analysis of non-destructive testing

    International Nuclear Information System (INIS)

    Edelmann, X.; Pfister, O.

    1988-01-01

    Examples of the use of computers in non-destructive testing are related. Ultrasonic testing is especially addressed. The employment of computers means improvements for the user, the possibility of registering the reflector position, storage of test data and help with documentation. The test can be automated. The introduction of expert systems is expected for the future. 8 figs., 12 refs

  18. Ultrasonic NDE Simulation for Composite Manufacturing Defects

    Science.gov (United States)

    Leckey, Cara A. C.; Juarez, Peter D.

    2016-01-01

    The increased use of composites in aerospace components is expected to continue into the future. The large scale use of composites in aerospace necessitates the development of composite-appropriate nondestructive evaluation (NDE) methods to quantitatively characterize defects in as-manufactured parts and damage incurred during or post manufacturing. Ultrasonic techniques are one of the most common approaches for defect/damage detection in composite materials. One key technical challenge area included in NASA's Advanced Composite's Project is to develop optimized rapid inspection methods for composite materials. Common manufacturing defects in carbon fiber reinforced polymer (CFRP) composites include fiber waviness (in-plane and out-of-plane), porosity, and disbonds; among others. This paper is an overview of ongoing work to develop ultrasonic wavefield based methods for characterizing manufacturing waviness defects. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with in-plane fiber waviness (also known as marcelling). Wavefield data processing methods are applied to the simulation data to explore possible routes for quantitative defect characterization.

  19. Supporting the potential of quantitative ultrasonic techniques for the evaluation of platelet concentration

    Science.gov (United States)

    Villamarín, J. A.; Jiménez, Y. M.; Molano, L. Tatiana; Gutierrez, W. Edgar; Londoño, L. Fernando; Gutierrez, D. A.

    2017-11-01

    This article describes the results obtained by making use of a non-destructive, non-invasive ultrasonic system for the acoustic characterization of bovine plasma rich in platelets using digital signal processing techniques. This study includes computational methods based on acoustic spectrometry estimation and experimental measurements of the speed of sound in blood plasma from different samples analyzed, using an ultrasonic field with resonance frequency of 5 MHz. The results showed that the measurements on ultrasonic signals can contribute to the hematological predictions based on the linear regression model applied to the relationship between experimental ultrasonic parameters calculated and platelet concentration, indicating a growth rate of 1 m/s for each 0.90 x103 platelet per mm3. On the other hand, the attenuation coefficient presented changes of 20% in the platelet concentration using a resolution of 0.057 dB/cm MHz.

  20. Finite-element model of ultrasonic NDE [nondestructive evaluation

    International Nuclear Information System (INIS)

    Lord, W.

    1989-07-01

    An understanding of the way in which ultrasound interacts with defects in materials is essential to the development of improved nondestructive testing procedures for the inspection of critical power plant components. Traditionally, the modeling of such phenomena has been approached from an analytical standpoint in which appropriate assumptions are made concerning material properties, geometrical constraints and defect boundaries in order to arrive at closed form solutions. Such assumptions, by their very nature, tend to inhibit the development of complete input/output NDT system models suitable for predicting realistic piezoelectric transducer signals from the interaction of pulsed, finite-aperture ultrasound with arbitrarily shaped defects in the kinds of materials of interest to the utilities. The major thrust of EPRI Project RP 2687-2 is to determine the feasibility of applying finite element analysis techniques to overcome these problems. 85 refs., 64 figs., 3 tabs

  1. Ultrasonic examination of defects close to the outer surface

    International Nuclear Information System (INIS)

    Benoist, P.; Serre, M.; Champigny, F.

    1986-11-01

    During the examination of a pressurized water reactor vessel with an in Service Inspection Machine (MIS), various welds are scanned with immersion ultrasonic focused transducers from the inside of the vessel. Defects close to the outer surface are sometimes detected, and sizing with the successive 6 dB drop method leads to oversize some indications; this is caused by various reflections on the outer wall; the corner echo is of particular importance here. CEA and EDF have started an experimental program in order to study the response of volumetric and planar defects located near the outer surface. We present here the first results obtained with artificial defects. 2 refs

  2. Examination techniques for non-magnetic rings

    International Nuclear Information System (INIS)

    Metala, M.J.; Kilpatrick, N.L.; Frank, W.W.

    1990-01-01

    Until the introduction of 18Mn18Cr rings a few years ago, most non-magnetic steel rings for generator rotors were made from 18Mn5Cr alloy steel, which is highly susceptible to stress corrosion cracking in the presence of water. This, the latest in a series of papers on the subject of non-magnetic rings by the authors' company, provides a discussion of nondestructive examination of 18Mn5Cr rings for stress corrosion distress. With rings on the rotor, fluorescent penetrant, ultrasonic and special visual techniques are applied. With rings off the rotor, the fluorescent penetrant technique is used, with and without stress enhancement

  3. Modelling of ultrasonic nondestructive testing in anisotropic materials - Rectangular crack

    International Nuclear Information System (INIS)

    Bostroem, A.

    2001-12-01

    Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry when searching for defects, in particular cracks. To develop and qualify testing procedures extensive experimental work on test blocks is usually required. This can take a lot of time and therefore be quite costly. A good mathematical model of the testing situation is therefore of great value as it can reduce the experimental work to a great extent. A good model can be very useful for parametric studies and as a pedagogical tool. A further use of a model is as a tool in the qualification of personnel. In anisotropic materials, e.g. austenitic welds, the propagation of ultrasound becomes much more complicated as compared to isotropic materials. Therefore, modelling is even more useful for anisotropic materials, and it in particular has a greater pedagogical value. The present project has been concerned with a further development of the anisotropic capabilities of the computer program UTDefect, which has so far only contained a strip-like crack as the single defect type for anisotropic materials. To be more specific, the scattering by a rectangular crack in an anisotropic component has been studied and the result is adapted to include transmitting and receiving ultrasonic probes. The component under study is assumed to be anisotropic with arbitrary anisotropy. On the other hand, it is assumed to be homogeneous, and this in particular excludes most welds, where it is seldom an adequate approximation to assume homogeneity. The anisotropy may be arbitrarily oriented and the same is true of the rectangular crack. The crack may also be located near a backside of the component. To solve the scattering problem for the crack an integral equation method is used. The probe model has been developed in an earlier project and to compute the signal response in the receiving probe an electromechanical reciprocity argument is employed. As a rectangle is a truly 3D scatterer the sizes of the

  4. In-Situ Characterization of Isotropic and Transversely Isotropic Elastic Properties Using Ultrasonic Wave Velocities

    NARCIS (Netherlands)

    Pant, S; Laliberte, J; Martinez, M.J.; Rocha, B.

    2016-01-01

    In this paper, a one-sided, in situ method based on the time of flight measurement of ultrasonic waves was described. The primary application of this technique was to non-destructively measure the stiffness properties of isotropic and transversely isotropic materials. The method consists of

  5. Spatially resolved ultrasonic attenuation in resistance spot welds: implications for nondestructive testing.

    Science.gov (United States)

    Mozurkewich, George; Ghaffari, Bita; Potter, Timothy J

    2008-09-01

    Spatial variation of ultrasonic attenuation and velocity has been measured in plane parallel specimens extracted from resistance spot welds. In a strong weld, attenuation is larger in the nugget than in the parent material, and the region of increased attenuation is surrounded by a ring of decreased attenuation. In the center of a stick weld, attenuation is even larger than in a strong weld, and the low-attenuation ring is absent. These spatial variations are interpreted in terms of differences in grain size and martensite formation. Measured frequency dependences indicate the presence of an additional attenuation mechanism besides grain scattering. The observed attenuations do not vary as commonly presumed with weld quality, suggesting that the common practice of using ultrasonic attenuation to indicate weld quality is not a reliable methodology.

  6. Detection of defects in multi-layered aramid composites by ultrasonic IR thermography

    Science.gov (United States)

    Pracht, Monika; Swiderski, Waldemar

    2017-10-01

    In military applications, laminates reinforced with aramid, carbon, and glass fibers are used for the construction of protection products against light ballistics. Material layers can be very different by their physical properties. Therefore, such materials represent a difficult inspection task for many traditional techniques of non-destructive testing (NDT). Defects which can appear in this type of many-layered composite materials usually are inaccuracies in gluing composite layers and stratifications or delaminations occurring under hits of fragments and bullets. IR thermographic NDT is considered as a candidate technique to detect such defects. One of the active IR thermography methods used in nondestructive testing is vibrothermography. The term vibrothermography was created in the 1990s to determine the thermal test procedures designed to assess the hidden heterogeneity of structural materials based on surface temperature fields at cyclical mechanical loads. A similar procedure can be done with sound and ultrasonic stimulation of the material, because the cause of an increase in temperature is internal friction between the wall defect and the stimulation mechanical waves. If the cyclic loading does not exceed the flexibility of the material and the rate of change is not large, the heat loss due to thermal conductivity is small, and the test object returns to its original shape and temperature. The most commonly used method is ultrasonic stimulation, and the testing technique is ultrasonic infrared thermography. Ultrasonic IR thermography is based on two basic phenomena. First, the elastic properties of defects differ from the surroundings, and acoustic damping and heating are always larger in the damaged regions than in the undamaged or homogeneous areas. Second, the heat transfer in the sample is dependent on its thermal properties. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR

  7. Non-linear ultrasonic time-reversal mirrors in NDT

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk

    -, č. 4 (2012), s. 4-4 [World Conference on Nondestructive Testing /18./. 16.4.2012-20.4.2012, Durban] R&D Projects: GA MPO(CZ) FR-TI1/274; GA MPO(CZ) FR-T1/198; GA ČR(CZ) GAP104/10/1430 Institutional research plan: CEZ:AV0Z2076919 Keywords : non-linear ime reversal mirror * ultrasonic techniques * ESAM Subject RIV: BI - Acoustics http://www.academia-ndt.org/Downloads/AcademiaNews4.pdf

  8. Reliability of non-destructive test techniques in the inspection of pipelines used in the oil industry

    International Nuclear Information System (INIS)

    Carvalho, A.A.; Rebello, J.M.A.; Souza, M.P.V.; Sagrilo, L.V.S.; Soares, S.D.

    2008-01-01

    The aim of this work is to evaluate the reliability of non-destructive test (NDT) techniques for the inspection of pipeline welds employed in the petroleum industry. Radiography, manual and automatic ultrasonic techniques using pulse-echo and time of flight diffraction (TOFD) were employed. Three classes of defects were analyzed: lack of penetration (LP), lack of fusion (LF) and undercut (UC). The tests were carried out on specimen made from pipelines containing defects, which had been artificially inserted on laying the weld bead. The results showed the superiority of the automatic ultrasonic tests for defect detection compared with the manual ultrasonic and radiographic tests. Additionally, artificial neural networks (ANN) were used in the detection and automatic classification of the defects

  9. Ultrasonic Resonance Spectroscopy of Composite Rims for Flywheel Rotors

    Science.gov (United States)

    Harmon, Laura M.; Baaklini, George Y.

    2002-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The ultrasonic system employs a continuous swept-sine waveform and performs a fast Fourier transform (FFT) on the frequency response spectrum. In addition, the system is capable of equalizing the amount of energy at each frequency. Equalization of the frequency spectrum, along with interpretation of the second FFT, aids in the evaluation of the fundamental frequency. The frequency responses from multilayered material samples, with and without known defects, were analyzed to assess the capabilities and limitations of this nondestructive evaluation technique for material characterization and defect detection. Amplitude and frequency changes were studied from ultrasonic responses of thick composite rings and a multiring composite rim. A composite ring varying in thickness was evaluated to investigate the full thickness resonance. The frequency response characteristics from naturally occurring voids in a composite ring were investigated. Ultrasonic responses were compared from regions with and without machined voids in a composite ring and a multiring composite rim. Finally, ultrasonic responses from the multiring composite rim were compared before and after proof spin testing to 63,000 rpm.

  10. Ultrasonic monitoring on the Electron Beam Welding line at Techmeta during manufacturing of the CMS magnet conductor.

    CERN Multimedia

    Benoit CURE

    2002-01-01

    The ultrasonic non-destructive method allows testing the EBW interface high-strength aluminium alloy / high-purity aluminium. The testing technique implemeted by EMPA is a Phased array system amplitude C-scan with immersion pulse-echo-technique.

  11. Nondestructive Testing of Advanced Concrete Structure during Lifetime

    Directory of Open Access Journals (Sweden)

    Lubos Pazdera

    2015-01-01

    Full Text Available The paper reports on measurements and analysis of the measurements during hardening and drying of specimens using selected acoustic nondestructive testing techniques. An integrated approach was created for better understanding of the relations between the lifetime cycle and the development of the mechanical properties of concrete. Acoustic emission, impact echo, and ultrasonic techniques were applied simultaneously to the same mixtures. These techniques and results are presented on alkali-activated slag mortars. The acoustic emission method detects transient elastic waves within the material, caused by the release of cumulated stress energy, which can be mechanical, thermal, or chemical. Hence, the cause is a phenomenon which releases elastic energy into the material, which then spreads in the form of an elastic wave. The impact echo method is based on physical laws of elastic stress wave propagation in solids generated by mechanical impulse. Ultrasonic testing is commonly used to find flaws in materials or to assess wave velocity spreading.

  12. The reliability of ultrasonic inspection and the critical defect size

    International Nuclear Information System (INIS)

    Vasilchenko, G.S.; Bely, V.E.; Ovchinnikov, A.V.; Rivkin, E.Yu.

    1991-01-01

    The ability to detect fabrication and service-induced defects in the welded joints of components and pipelines in nuclear power stations by ultrasonic inspection when this is conducted by using standard instruments and procedures appears to be insufficient. This fact was confirmed by the research carried out in PISC program and other studies. In order to increase the accuracy of measurement and to obtain the additional information on the character of any defect in ultrasonic testing as well as the validity of applying nondestructive testing data to strength calculation, scientific researches have been promoted and carried out in the USSR in a program under the guidance of NPO CNIITMASH. The reliability of the ultrasonic control of welded joints and the ways and means for its improvement are discussed. The presentation of the parameters realized by the ultrasonic inspection of defects in the form of schema for the use in strength calculation is explained. The calculation of stress intensity factor, the estimation of critical defect size, and the estimation of acceptable defect size are reported. (K.I.)

  13. Post-irradiation examination of Oconee 1 fuel: end-of-cycle 2 nondestructive test phase

    International Nuclear Information System (INIS)

    1979-11-01

    Standard B and W Mark B (15 x 15) pressurized water reactor fuel assemblies were nondestructively examined at the end of the second cycle of Oconee 1 reactor operation. Burnups of the 16 fuel assemblies examined ranged from 13,100 to 20,000 MWd/mtU. The examinations were conducted in the Oconee 1 and 2 spent fuel storage pool using the installed underwater test equipment. Data obtained included fuel rod and fuel assembly dimensions, water channel spacings, holddown spring forces, fuel rod crud characteristics, and fuel column axial gap and stack lengths. Visual examinations revealed no evidence of significant rod bowing, cladding deformation, cocked grids, or rod defects. The results, summarized in this report, indicate that the assemblies performed well through two cycles of reactor operation

  14. Federal laboratory nondestructive testing research and development applicable to industry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.A.; Moore, N.L.

    1987-02-01

    This document presents the results of a survey of nondestructive testing (NDT) and related sensor technology research and development (R and D) at selected federal laboratories. Objective was to identify and characterize NDT activities that could be applied to improving energy efficiency and overall productivity in US manufacturing. Numerous federally supported R and D programs were identified in areas such as acoustic emissions, eddy current, radiography, computer tomography and ultrasonics. A Preliminary Findings Report was sent to industry representatives, which generated considerable interest.

  15. English-Japanese terms in nondestructive testing specifications

    International Nuclear Information System (INIS)

    1991-01-01

    For technical development, it is the prerequisite to clarify the terms to be used in various fields and their definition, therefore, in various foreign countries, there are some standards on terms in respective fields, and also as international standards, ISO/TC 135 (Non-destructive testing) organized the SC on terms from the beginning of foundation. In JIS, there is the column for corresponding English (for reference), but there is the problem of English and American English. The English used in ISO, BS or EN and ASTM standards in relation to nondestructive testing were collected in every technical field and put in order, and the corresponding English terms were selected. Moreover at this opportunity, the terms having the definition in these international, national and semi-national standards were classified into eight fields, that is, common (approval, quality assurance, defects and others), radiography, ultrasonic flaw detection, acoustic emission, eddy current flaw detection, magnetic flaw detection, liquid penetrant testing and leak test, and the Japanese translation was stipulated. The draft of this standard was approved by the standardization committee on January 17, 1991. (K.I.)

  16. Nuclear Technology. Course 32: Nondestructive Examination (NDE) II. Module 32-3, Fundamentals of Magnetic Particle Testing.

    Science.gov (United States)

    Groseclose, Richard

    This third in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II explains the principles of magnets and magnetic fields and how they are applied in magnetic particle testing, describes the theory and methods of magnetizing test specimens, describes the test equipment used, discusses the principles and…

  17. Non-destructive testing of the MEGAPIE target

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Y., E-mail: yong.dai@psi.ch; Wohlmuther, M.; Boutellier, V.; Hahl, S.; Lagotzki, A.; Leu, H.; Linder, H.P.; Schwarz, R.; Spahr, A.; Zanini, L.; Kuster, D.; Gavillet, D.; Wagner, W.

    2016-01-15

    Non-destructive testing (NDT) is one important part of the post-irradiation examination (PIE) of the MEGAPIE target. It includes visual inspection and ultrasonic measurement of the beam window of the T91 LBE container and gamma mapping of the beam window of the AlMg{sub 3} safety-container. The visual inspection showed no visible failure in the proton beam window area of the T91 LBE container. The ultrasonic measurement demonstrated no detectable change in the wall thickness of the T91 beam window, which implies no severe corrosion effect induced by flowing LBE during the four-month irradiation period. The gamma mapping provided the distribution of {sup 22}Na, a spallation product, in the proton beam window area of the AlMg{sub 3} safety-container. The result was used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. A maximum proton fluence of 1.9 × 10{sup 25} p/m2 was deduced. The corresponding displacement damage degree in the T91 beam window was 7.1 dpa. - Highlights: • MEGAPIE is to design, build, operate and explore a liquid lead–bismuth (LBE) spallation target for 1 MW of beam power. • NDT of the target components exposed to high fluxes of high-energy protons and spallation neutrons was conducted. • There are no evident failures and corrosion effect of LBE in the T91 steel liquid metal container after irradiation to 7.1 dpa.

  18. Thermal shock resistance of ceramic fibre composites characterized by non-destructive methods

    Directory of Open Access Journals (Sweden)

    M. Dimitrijević

    2008-12-01

    Full Text Available Alumina based ceramic fibres and alumina based ceramic were used to produce composite material. Behaviour of composite ceramics after thermal shock treatments was investigated. Thermal shock of the samples was evaluated using water quench test. Surface deterioration level of samples was monitored by image analysis before and after a number of quenching cycles. Ultrasonic measurements were done on samples after quench tests. Dynamic Young modulus of elasticity and strength degradation were calculated using measured values of ultrasonic velocities. Strengths deterioration was calculated using the non-destructive measurements and correlated to degradation of surface area and number of quenches. The addition of small amount of ceramic fibres improves the strengths and diminishes the loss of mechanical properties of samples during thermal shock experiments.

  19. Ultrasonic examination of JBK-75 strip material

    International Nuclear Information System (INIS)

    Cook, K.V.; Cunningham, R.A. Jr.; Lewis, J.C.; McClung, R.W.

    1982-12-01

    An ultrasonic inspection system was assembled to inspect the JBK-75 stainless steel sheath material (for the Large Coil Project) for the Westinghouse-Airco superconducting magnet program. The mechanical system provided for handling the 180-kg (400-lb) coils of strip material [1.6 mm thick by 78 mm wide by 90 to 120 m long (0.064 by 3.07 in. by 300 to 400 ft)], feeding the strip through the ultrasonic inspection and cleaning stations, and respooling the coils. We inspected 54 coils of strip for both longitudinal and laminar flaws. Simulated flaws were used to calibrate both inspections. Saw-cut notches [0.28 mm deep (0.011 in., about 17% of the strip thickness)] were used to calibrate the longitudinal flaw inspections; 1.59-mm-diam (0.063-in.) flat-bottom holes drilled halfway through a calibration strip were used to calibrate the laminar flaw tests

  20. Feasibility on fiber orientation detection on unidirectional CFRP composite laminates using nondestructive evaluation techniques

    Science.gov (United States)

    Yang, In-Young; Kim, Ji-Hoon; Cha, Cheon-Seok; Lee, Kil-Sung; Hsu, David K.; Im, Kwang-Hee

    2007-07-01

    In particular, CFRP (carbon fiber reinforced plastics) composite materials have found wide applicability because of their inherent design flexibility and improved material properties. CFRP composites were manufactured from uni-direction prepreg sheet in this paper. It is important to assess fiber orientation, material properties and part defect in order to ensure product quality and structural integrity of CFRP because strength and stiffness of composites depend on fiber orientation. It is desirable to perform nondestructive evaluation which is very beneficial. An new method for nondestructively determining the fiber orientation in a composite laminate is presented. A one-sided pitch-catch setup was used in the detection and evaluation of flaws and material anomalies in the unidirectional CFRP composite laminates. Two Rayleigh wave transducers were joined head-to-head and used in the pitch-catch mode on the surface of the composites. The pitch-catch signal was found to be more sensitive than normal incidence backwall echo of longitudinal wave to subtle flaw conditions in the composite. Especially, ultrasonic waves were extensively characterized in the CFRP composite laminates both normal to fiber and along to fiber with using a one-sided direction of Rayleigh wave transducers. Also, one-sided ultrasonic measurement was made with using a Rayleigh wave transducers and a conventional scanner was used in an immersion tank for extracting fiber orientation information from the ultrasonic reflection in the unidirectional laminate. Therefore, it is thought that the proposed method is useful to evaluate integrity of CFRP laminates.

  1. Nondestructive evaluation of nuclear-grade graphite

    Science.gov (United States)

    Kunerth, D. C.; McJunkin, T. R.

    2012-05-01

    The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.

  2. Augmented reality application for industrial non-destructive inspection training

    Science.gov (United States)

    Amza, Catalin Gheorghe; Zapciu, Aurelian; Teodorescu, Octav

    2018-02-01

    Such a technology - Augmented Reality (AR) has great potential of use, especially for training purposes of new operators on using expensive equipment. In this context, the paper presents an augmented reality training system developed for phased-array ultrasonic non-destructive testing (NDT) equipment. The application has been developed using Unity 5.6.0 game-engine platform integrated with Vuforia sdk toolkit for devices with Android operating system. The test results performed by several NDT operators showed good results, thus proving the potential of using the application in the industrial field.

  3. Dental hard tissue characterization using laser-based ultrasonics

    Science.gov (United States)

    Blodgett, David W.; Massey, Ward L.

    2003-07-01

    Dental health care and research workers require a means of imaging the structures within teeth in vivo. One critical need is the detection of tooth decay in its early stages. If decay can be detected early enough, the process can be monitored and interventional procedures, such as fluoride washes and controlled diet, can be initiated to help re-mineralize the tooth. Currently employed x-ray imaging is limited in its ability to visualize interfaces and incapable of detecting decay at a stage early enough to avoid invasive cavity preparation followed by a restoration. To this end, non-destructive and non-contact in vitro measurements on extracted human molars using laser-based ultrasonics are presented. Broadband ultrasonic waves are excited in the extracted sections by using a pulsed carbon-dioxide (CO2) laser operating in a region of high optical absorption in the dental hard tissues. Optical interferometric detection of the ultrasonic wave surface displacements in accomplished with a path-stabilized Michelson-type interferometer. Results for bulk and surface in-vitro characterization of caries are presented on extracted molars with pre-existing caries.

  4. Thickness measurement by using cepstrum ultrasonic signal processing

    International Nuclear Information System (INIS)

    Choi, Young Chul; Yoon, Chan Hoon; Choi, Heui Joo; Park, Jong Sun

    2014-01-01

    Ultrasonic thickness measurement is a non-destructive method to measure the local thickness of a solid element, based on the time taken for an ultrasound wave to return to the surface. When an element is very thin, it is difficult to measure thickness with the conventional ultrasonic thickness method. This is because the method measures the time delay by using the peak of a pulse, and the pulses overlap. To solve this problem, we propose a method for measuring thickness by using the power cepstrum and the minimum variance cepstrum. Because the cepstrums processing can divides the ultrasound into an impulse train and transfer function, where the period of the impulse train is the traversal time, the thickness can be measured exactly. To verify the proposed method, we performed experiments with steel and, acrylic plates of variable thickness. The conventional method is not able to estimate the thickness, because of the overlapping pulses. However, the cepstrum ultrasonic signal processing that divides a pulse into an impulse and a transfer function can measure the thickness exactly.

  5. Considerations for ultrasonic testing application for on-orbit NDE

    Science.gov (United States)

    Koshti, Ajay M.

    2015-04-01

    The paper addresses some on-orbit nondestructive evaluation (NDE) needs of NASA for International Space Station (ISS). The presentation gives NDE requirements for inspecting suspect damage due to micro-meteoroids and orbital debris (MMOD) impact on the pressure wall of the ISS. This inspection is meant to be conducted from inside of the ISS module. The metallic wall of the module has a fixed wall thickness but also has integral orthogrid ribs for reinforcement. Typically, a single MMOD hit causes localized damage in a small area causing loss of material similar to pitting corrosion, but cracks may be present too. The impact may cause bulging of the wall. Results of the ultrasonic and eddy current demonstration scans on test samples are provided. The ultrasonic technique uses shear wave scans to interrogate the localized damage area from the surrounding undamaged area. The scanning protocol results in multiple scans, each with multiple "vee" paths. A superimposition and mosaic of the three-dimensional ultrasonic data from individual scans is desired to create C-scan images of the damage. This is a new data reduction process which is not currently implemented in state-of-art ultrasonic instruments. Results of ultrasonic scans on the simulated MMOD damage test plates are provided. The individual C-scans are superimposed manually creating mosaic of the inspection. The resulting image is compared with visibly detected damage boundaries, X-ray images, and localized ultrasonic and eddy current scans for locating crack tips to assess effectiveness of the ultrasonic scanning. The paper also discusses developments needed in improving ergonomics of the ultrasonic testing for on-orbit applications.

  6. Effect of Ultrasonic Frequency on Lactic Acid Fermentation Promotion by Ultrasonic Irradiation

    Science.gov (United States)

    Shimada, Tadayuki; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi

    2004-05-01

    The authors have been researching the promotion of lactic acid fermentation by ultrasonic irradiation. In the past research, it was proven that ultrasonic irradiation is effective in the process of fermentation, and the production of yoghurt and kefir was promoted. In this study, the effect of the ultrasonic frequency in this fermentation process was examined. In the frequency range of this study, it was found that the action of fermentation promotion was exponentially proportionate to the irradiated ultrasonic frequency.

  7. Welding and nondestructive examination issues at Seabrook Nuclear Station: An independent review team report

    International Nuclear Information System (INIS)

    Spessard, R.L.; Coley, J.; Crowley, W.; Walton, G.

    1990-07-01

    In response to congressional concerns about the adequacy of the welding and nondestructive examination (NDE) programs at the Seabrook Nuclear Station, NRC senior management established an independent review team (IRT) to conduct an assessment. The IRT focused on the quality of the finished hardware and associated records, as well as on the adequacy of the overall quality assurance program as applied to the fabrication and NDE programs for pipe welds. This report documents the findings of that investigation

  8. Guided ultrasonic wave beam skew in silicon wafers

    Science.gov (United States)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2018-04-01

    In the photovoltaic industry, monocrystalline silicon wafers are employed for solar cells with high conversion efficiency. Micro-cracks induced by the cutting process in the thin wafers can lead to brittle wafer fracture. Guided ultrasonic waves would offer an efficient methodology for the in-process non-destructive testing of wafers to assess micro-crack density. The material anisotropy of the monocrystalline silicon leads to variations of the guided wave characteristics, depending on the propagation direction relative to the crystal orientation. Selective guided ultrasonic wave excitation was achieved using a contact piezoelectric transducer with custom-made wedges for the A0 and S0 Lamb wave modes and a transducer holder to achieve controlled contact pressure and orientation. The out-of-plane component of the guided wave propagation was measured using a non-contact laser interferometer. The phase slowness (velocity) of the two fundamental Lamb wave modes was measured experimentally for varying propagation directions relative to the crystal orientation and found to match theoretical predictions. Significant wave beam skew was observed experimentally, especially for the S0 mode, and investigated from 3D finite element simulations. Good agreement was found with the theoretical predictions based on nominal material properties of the silicon wafer. The important contribution of guided wave beam skewing effects for the non-destructive testing of silicon wafers was demonstrated.

  9. Nondestructive test for estimating strength of concrete in structure

    International Nuclear Information System (INIS)

    Nozaki, Yoshitsugu; Soshiroda, Tomozo

    1997-01-01

    Evaluation of the quality of concrete in structures, especially strength estimation is said to be one of the most important problem and needed to establish test method especial tv for non-destructive method in situ. The paper describes the nondestructive test to estimate strength of concrete. From experimental study using full scale model wall, strength estimating equations are proposed by ultra-sonic pulse velocity, rebound hardness of Schmidt hammer and combined with two methods. From statistical study of the results of experiments, errors of estimated strength by the proposed equations are suggested. The validity of the equations are verified by investigation for existing reinforced concrete buildings aged 20 - 50 years. And it was found from the statistical study that the strength estimating equations need to be corrected in applying to tons aged concrete, and correction factor to those squat ions were suggested. Furthermore the corrected proposed equations were verified by applying to buildings investigated the other case.

  10. Aging management of major LWR components with nondestructive evaluation

    International Nuclear Information System (INIS)

    Shah, V.N.; MacDonald, P.E.; Akers, D.W.; Sellers, C.; Murty, K.L.; Miraglia, P.Q.; Mathew, M.D.; Haggag, F.M.

    1997-01-01

    Nondestructive evaluation of material damage can contribute to continued safe, reliable, and economical operation of nuclear power plants through their current and renewed license period. The aging mechanisms active in the major light water reactor components are radiation embrittlement, thermal aging, stress corrosion cracking, flow-accelerated corrosion, and fatigue, which reduce fracture toughness, structural strength, or fatigue resistance of the components and challenge structural integrity of the pressure boundary. This paper reviews four nondestructive evaluation methods with the potential for in situ assessment of damage caused by these mechanisms: stress-strain microprobe for determining mechanical properties of reactor pressure vessel and cast stainless materials, magnetic methods for estimating thermal aging damage in cast stainless steel, positron annihilation measurements for estimating early fatigue damage in reactor coolant system piping, and ultrasonic guided wave technique for detecting cracks and wall thinning in tubes and pipes and corrosion damage to embedded portion of metal containments

  11. Radiographic and ultrasonic testings of welded joints of 6063 aluminium alloy

    International Nuclear Information System (INIS)

    Oliveira e Silva Mury, A.G. de.

    1980-05-01

    A study on evaluation of weld defects in aluminium butt joints was made in a comparative way through the radiographic and ultrasonic testing. This work was conducted with pipes 5 IPS (6,35 mm thickness) of 6063 aluminium alloy, circumferential TIG welded, due to the difficulty on performing non-destructive testing with this schedule. It was concluded thta ultrasonic testing has adequate sensitivity when setting gain adjustment is made with aid of a reference curve constructed by using a Reference Block (among others studied) with 1,5 mm dia. Hole as reference reflector, and a 5 MHz angle beam search-unit. In this case the ultrasonic testing is more accurate than radiographic testing to detect planar defects like lack of fusion and lack of penetration. Defect sizing by ultrasonic methods employed were 6 and 20 dB drop methods. In spite of your observed limitations concerning the establishment of the real size of defects, the procedure applied was precise for locate and define the weld defects that where found in this study. (author) [pt

  12. Ultrasonic defect characterization using parametric-manifold mapping

    Science.gov (United States)

    Velichko, A.; Bai, L.; Drinkwater, B. W.

    2017-06-01

    The aim of ultrasonic non-destructive evaluation includes the detection and characterization of defects, and an understanding of the nature of defects is essential for the assessment of structural integrity in safety critical systems. In general, the defect characterization challenge involves an estimation of defect parameters from measured data. In this paper, we explore the extent to which defects can be characterized by their ultrasonic scattering behaviour. Given a number of ultrasonic measurements, we show that characterization information can be extracted by projecting the measurement onto a parametric manifold in principal component space. We show that this manifold represents the entirety of the characterization information available from far-field harmonic ultrasound. We seek to understand the nature of this information and hence provide definitive statements on the defect characterization performance that is, in principle, extractable from typical measurement scenarios. In experiments, the characterization problem of surface-breaking cracks and the more general problem of elliptical voids are studied, and a good agreement is achieved between the actual parameter values and the characterization results. The nature of the parametric manifold enables us to explain and quantify why some defects are relatively easy to characterize, whereas others are inherently challenging.

  13. Application of ultra-sons to on-site spent fuel assemblies metrology

    International Nuclear Information System (INIS)

    Gondard, C.; Saglio, R.; Vouillot, M.; Delaroche, P.; Vaubert, Y.; Van Craeynest, J.C.

    1983-12-01

    Fuel assemblies inspection on the site of a power reactor, between two irradiation campaigns, allows to estimate the behaviour of prototype fuel assemblies and to permit their refueling for the continuation of the irradiation; the utilization of non-destructive, reliable and high-performance techniques, is of a great interest in the application. For, this reason, the C.E.A. has been led to carry out new techniques allowing the visual examination and the dimensional inspection of spent fuel assemblies of 900 MWe French pressurized water reactors, with a transportable Fuel Examination Module (MEC) on every reactor site. This module includes a television camera, and uses for the first time as ''position sensor'' the properties offered by a set of ultrasonic transducers. The main principle of the design, of the operation way of the module, of the measuring methods, and, of the data acquisition and processing, are presented [fr

  14. Ultrasonic inspection of the strength member weld of transit and pioneer heat sources

    International Nuclear Information System (INIS)

    Dudley, W.A.

    1975-01-01

    A nondestructive technique was developed which allows ultrasonic inspection of the closure weld for the strength member component in plutonium-238 radioisotopic heat sources. The advantage of the ultrasonic approach, over that of the more commonly used radiographic one, is the recognized superiority of ultrasonic testing for identifying lack-of-weld penetration (LOP) when accompanied by incomplete diffusion bonding. The ultrasonic technique, a transverse mode scan of the weld for detection of LOP, is primarily accomplished by use of a holding fixture which permits the vented heat source to be immersed into an inspection tank. The mechanical portion of the scanning system is a lathe modified with an inspection tank and a manipulator. This scanning system has been used in the past to inspect SNAP-27 heat sources. The analyzer-transducer combination used in the inspection is capable of detecting a channel type flaw with a side wall depth of 0.076 mm (0.003 in.) in a weld standard. (U.S.)

  15. Nondestructive examination

    International Nuclear Information System (INIS)

    Mletzko, U.

    1980-01-01

    Visual examination is treated as a method for the control of size and shape of components, surface quality and weld performance. Dye penetrant, magnetic particle and eddy current examinations are treated as methods for the evaluation of surface defects and material properties. The limitations to certain materials, defect sizes and types are shown. (orig./RW)

  16. Ultrasonic Characterization of Aerospace Composites

    Science.gov (United States)

    Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel

    2015-01-01

    Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.

  17. Study of different ultrasonic focusing methods applied to non destructive testing

    International Nuclear Information System (INIS)

    El Amrani, M.

    1995-01-01

    The work presented in this thesis concerns the study of different ultrasonic focusing techniques applied to Nondestructive Testing (mechanical focusing and electronic focusing) and compares their capabilities. We have developed a model to predict the ultrasonic field radiated into a solid by water-coupled transducers. The model is based upon the Rayleigh integral formulation, modified to take account the refraction at the liquid-solid interface. The model has been validated by numerous experiments in various configurations. Running this model and the associated software, we have developed new methods to optimize focused transducers and studied the characteristics of the beam generated by transducers using various focusing techniques. (author). 120 refs., 95 figs., 4 appends

  18. Implementation of efficient trajectories for an ultrasonic scanner using chaotic maps

    Science.gov (United States)

    Almeda, A.; Baltazar, A.; Treesatayapun, C.; Mijarez, R.

    2012-05-01

    Typical ultrasonic methodology for nondestructive scanning evaluation uses systematic scanning paths. In many cases, this approach is time inefficient and also energy and computational power consuming. Here, a methodology for the scanning of defects using an ultrasonic echo-pulse scanning technique combined with chaotic trajectory generation is proposed. This is implemented in a Cartesian coordinate robotic system developed in our lab. To cover the entire search area, a chaotic function and a proposed mirror mapping were incorporated. To improve detection probability, our proposed scanning methodology is complemented with a probabilistic approach of discontinuity detection. The developed methodology was found to be more efficient than traditional ones used to localize and characterize hidden flaws.

  19. Ultrasonic Measurement of Corrosion Depth Development in Concrete Exposed to Acidic Environment

    Directory of Open Access Journals (Sweden)

    Fan Yingfang

    2012-01-01

    Full Text Available Corrosion depth of concrete can reflect the damage state of the load-carrying capacity and durability of the concrete structures servicing in severe environment. Ultrasonic technology was studied to evaluate the corrosion depth quantitatively. Three acidic environments with the pH level of 3.5, 2.5, and 1.5 were simulated by the mixture of sulfate and nitric acid solutions in the laboratory. 354 prism specimens with the dimension of 150 mm × 150 mm × 300 mm were prepared. The prepared specimens were first immersed in the acidic mixture for certain periods, followed by physical, mechanical, computerized tomography (CT and ultrasonic test. Damage depths of the concrete specimen under different corrosion states were obtained from both CT and ultrasonic test. Based on the ultrasonic test, a bilinear regression model is proposed to estimate the corrosion depth. It is shown that the results achieved by ultrasonic and CT test are in good agreement with each other. Relation between the corrosion depth of concrete specimen and the mechanical indices such as mass loss, compressive strength, and elastic modulus is discussed in detail. It can be drawn that the ultrasonic test is a reliable nondestructive way to measure the damage depth of concrete exposed to acidic environment.

  20. Computer control in nondestructive testing illustrated by an automatic ultrasonic tube inspection system

    International Nuclear Information System (INIS)

    Gundtoft, H.E.; Nielsen, N.

    1976-06-01

    In Risoe's automatic tube inspection system, data (more than half a million per tube) from ultrasonic dimension measurements and defect inspections are fed into a computer that simultaneously calculates and evaluates the results. (author)

  1. Thermophysical instruments for non-destructive examination of tightness and internal gas pressure or irradiated power reactor fuel rods

    International Nuclear Information System (INIS)

    Pastoushin, V.V.; Novikov, A.Yu.; Bibilashvili, Yu.K.

    1998-01-01

    The developed thermophysical method and technical instruments for non-destructive leak-tightness and gas pressure inspection inside irradiated power reactor fuel rods and FAs under poolside and hot cell conditions are described. The method of gas pressure measuring based on the examination of parameters of thermal convection that aroused in gas volume of rod plenum by special technical instruments. The developed method and technique allows accurate value determination of not only one of the main critical rod parameters, namely total internal gas pressure, that forms rod mean life in the reactor core, but also the partial pressure of every main constituent of gaseous mixture inside irradiated fuel rod, that provides the feasibility of authentic and reliable leak-tightness detection. The described techniques were experimentally checked during the examination of all types power reactor fuel rods existing in Russia (WWER, BN, RBMK) and could form the basis for new technique development for non-destructive examination of PWR (and other) type rods and FAs having gas plenum filled with spring or another elements of design. (author)

  2. Combined Non-destructive Testing (NDT) methods for evaluating concrete quality

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Noor Azreen Masenwat; Suhairy Sani; Nasharuddin Isa; Mohamad Haniza Mahmud

    2014-01-01

    This paper described the results of combining Non-destructive measurements on concrete. Local crushed granite and hematite were used as coarse aggregates; mining sand and river sand were used as fine aggregates to produce various density and strength of concrete. Concrete samples (150 mm cubes and interlocked blocks) were prepared by changing mix ratio, water to cement ratio (w/c) and types of aggregates. Density, rebound number(N) and ultrasonic pulse velocity (UPV) of the samples were taken before compressed to failure. The measurement results are explained and discussed. (author)

  3. Damage detection in composites using nonlinear ultrasonically modulated thermography

    Science.gov (United States)

    Malfense Fierro, G.-P.; Dionysopoulos, D.; Meo, M.; Ciampa, F.

    2018-03-01

    This paper proposes a novel nonlinear ultrasonically stimulated thermography technique for a quick and reliable assessment of material damage in carbon fibre reinforced plastic (CFRP) composite materials. The proposed nondestructive evaluation (NDE) method requires narrow sweep ultrasonic excitation using contact piezoelectric transducers in order to identify dual excitation frequencies associated with the damage resonance. High-amplitude signals and higher harmonic generation are necessary conditions for an accurate identification of these two input frequencies. Dual periodic excitation using high- and low-frequency input signals was then performed in order to generate frictional heating at the crack location that was measured by an infrared (IR) camera. To validate this concept, an impact damaged CFRP composite panel was tested and the experimental results were compared with traditional flash thermography. A laser vibrometer was used to investigate the response of the material with dual frequency excitation. The proposed nonlinear ultrasonically modulated thermography successfully detected barely visible impact damage in CFRP composites. Hence, it can be considered as an alternative to traditional flash thermography and thermosonics by allowing repeatable detection of damage in composites.

  4. Standard practice for examination of seamless, Gas-Filled, pressure vessels using acoustic emission

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice provides guidelines for acoustic emission (AE) examinations of seamless pressure vessels (tubes) of the type used for distribution or storage of industrial gases. 1.2 This practice requires pressurization to a level greater than normal use. Pressurization medium may be gas or liquid. 1.3 This practice does not apply to vessels in cryogenic service. 1.4 The AE measurements are used to detect and locate emission sources. Other nondestructive test (NDT) methods must be used to evaluate the significance of AE sources. Procedures for other NDT techniques are beyond the scope of this practice. See Note 1. Note 1—Shear wave, angle beam ultrasonic examination is commonly used to establish circumferential position and dimensions of flaws that produce AE. Time of Flight Diffraction (TOFD), ultrasonic examination is also commonly used for flaw sizing. 1.5 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only. 1.6 This standa...

  5. Development of ultrasonic immersion inspection technique for spent fuel canisters

    International Nuclear Information System (INIS)

    Schankula, J.J.

    1982-07-01

    This report summarizes ultrasonic nondestructive testing development for metal matrix supported spent fuel disposal canisters. The work has concentated in two areas: inspection for lack of bond at the shell/matrix interface and inspection for voids in the matrix. The capabilities and limitations of these techniques have been fully established. Unbonded areas as small as 4 mm in diameter and voids 6 mm in diameter, 25 mm deep in the matrix, can readily be detected

  6. Laser-Ultrasonic Testing and its Applications to Nuclear Reactor Internals

    Science.gov (United States)

    Ochiai, M.; Miura, T.; Yamamoto, S.

    2008-02-01

    A new nondestructive testing technique for surface-breaking microcracks in nuclear reactor components based on laser-ultrasonics is developed. Surface acoustic wave generated by Q-switched Nd:YAG laser and detected by frequency-stabilized long pulse laser coupled with confocal Fabry-Perot interferometer is used to detect and size the cracks. A frequency-domain signal processing is developed to realize accurate sizing capability. The laser-ultrasonic testing allows the detection of surface-breaking microcrack having a depth of less than 0.1 mm, and the measurement of their depth with an accuracy of 0.2 mm when the depth exceeds 0.5 mm including stress corrosion cracking. The laser-ultrasonic testing system combined with laser peening system, which is another laser-based maintenance technology to improve surface stress, for inner surface of small diameter tube is developed. The generation laser in the laser-ultrasonic testing system can be identical to the laser source of the laser peening. As an example operation of the system, the system firstly works as the laser-ultrasonic testing mode and tests the inner surface of the tube. If no cracks are detected, the system then changes its work mode to the laser peening and improves surface stress to prevent crack initiation. The first nuclear industrial application of the laser-ultrasonic testing system combined with the laser peening was completed in Japanese nuclear power plant in December 2004.

  7. Rotary union for use with ultrasonic thickness measuring probe

    Science.gov (United States)

    Nachbar, Henry D.

    1992-01-01

    A rotary union for rotatably supporting an ultrasonic probe operable to nondestructively measure the thickness of steam generator tubes to determine the amount of corrosion experienced by the tubes includes a stationary body having a bore therethrough and an outlet drain, and a fitting rotatably mounted within the upper end of the body. The fitting has a bore aligned with the bore of the body. An electrical cable positioned within a water supply tube in an annular arrangement passes through the bore of the body and the bore of the fitting. This annular arrangement, in turn, is positioned within a connector element which extends outwardly from the fitting bore and is connected to the ultrasonic probe. An elastomeric lower bushing seals the annular arrangement to the lower end of the rotary union body and an elastomeric upper bushing seals the connector element to the fitting to permit the connector element and the ultrasonic probe connected thereto to rotate with the fitting relative to the body. The lower and upper bushings permit water to be passed through the annular arrangement and into the ultrasonic probe and thereafter discharged between the annular arrangement and the connector element to the outlet drain of the rotary union body.

  8. Rotary union for use with ultrasonic thickness measuring probe

    International Nuclear Information System (INIS)

    Nachbar, H.D.

    1992-01-01

    A rotary union for rotatably supporting an ultrasonic probe operable to nondestructively measure the thickness of steam generator tubes to determine the amount of corrosion experienced by the tubes includes a stationary body having a bore therethrough and an outlet drain, and a fitting rotatably mounted within the upper end of the body. The fitting has a bore aligned with the bore of the body. An electrical cable positioned within a water supply tube in an annular arrangement passes through the bore of the body and the bore of the fitting. This annular arrangement, in turn, is positioned within a connector element which extends outwardly from the fitting bore and is connected to the ultrasonic probe. An elastomeric lower bushing seals the annular arrangement to the lower end of the rotary union body and an elastomeric upper bushing seals the connector element to the fitting to permit the connector element and the ultrasonic probe connected thereto to rotate with the fitting relative to the body. The lower and upper bushings permit water to be passed through the annular arrangement and into the ultrasonic probe and thereafter discharged between the annular arrangement and the connector element to the outlet drain of the rotary union body. 5 figs

  9. Fatigue crack growth monitoring: fracture mechanics and non-destructive testing requirements

    International Nuclear Information System (INIS)

    Williams, S.; Mudge, P.J.

    1982-01-01

    If a fatigue crack is found in a component in service, two options exist if plant integrity is to be maintained: first, the plant can be removed from service and repairs effected or replacements fitted; second, the growth of the crack can be monitored non-destructively until it is either considered to be too large to tolerate, in which case it must be repaired, or until a convenient down time when repair can be effected. The second option has obvious benefits for plant operators, but in such a situation it is essential that errors of the non-destructive estimate of defect size, which will undoubtedly exist, and uncertainties in the fatigue crack growth laws in operation must both be allowed for if a safe extension of service life is to be obtained; i.e. without failure by leakage or fast fracture arising from the fatigue crack. This paper analyses the accuracy required of non-destructive crack measurement techniques to permit the safe monitoring of crack growth by periodic inspection. It then demonstrates that it is possible to achieve adequate crack monitoring using conventional ultrasonic techniques. (author)

  10. Quench detection of superconducting magnets using ultrasonic wave

    International Nuclear Information System (INIS)

    Ninomiya, A.; Sakaniwa, K.; Kado, H.; Ishigohka, T.; Higo, Y.

    1989-01-01

    A method to detect a quench of a superconducting magnet using ultrasonic technique is presented. This method is a kind of non-destructive one which monitors a change of acoustic transfer function of a superconducting magnet induced by a local temperature rise or an epoxy crack etc.. Some experiments are carried out on a small epoxy impregnated magnet. The experimental results show that a local temperature rise of about 2-3K can be detected by this method. And, some leading symptoms before quench were detected

  11. Modelling of ultrasonic beam propagation from an array through transversely isotropic fibre reinforced composites using Multi Gaussian beams

    NARCIS (Netherlands)

    Anand, C.; Shroff, S.; Groves, R.M.; Benedictus, R.

    2017-01-01

    Ultrasonic arrays are used for non-destructive evaluation of structures for aerospace and other applications. With the increase in the usage of fibre-reinforced composites in aerospace structures, this evaluation becomes complex due to the effects of attenuation and reflection from the layer

  12. Ultrasonic surface measurements at the Porta Nigra, Trier, and the Neptungrotte, Park Sanssouci Potsdam

    Science.gov (United States)

    Meier, Thomas; Auras, Michael; Fehr, Moritz; Köhn, Daniel

    2015-04-01

    Ultrasonic measurements along profiles at the surface of an object are well suited to characterize non-destructively weathering of natural stone near the surface. Ultrasonic waveforms of surface measurements in the frequency range between 10 kHz and 300 kHz are often dominated by the Rayleigh wave - a surface wave that is mainly sensitive to the velocity and attenuation of S-waves in the upper 0.3 cm to 3 cm. The frequency dependence of the Rayleigh wave velocity may be used to analyze variations of the material properties with depth. Applications of ultrasonic surface measurements are shown for two buildings: the Roman Porta Nigra in Trier from the 3rd century AD and the Neptungrotte at Park Sanssouci in Potsdam designed by von Knobelsdorff in the 18th century. Both buildings belong to the world cultural heritage and restorations are planned for the near future. It is interesting to compare measurements at these two buildings because they show the applicability of ultrasonic surface measurements to different natural stones. The Porta Nigra is made of local sandstones whereas the facades of the Neptungrotte are made of Carrara and Kauffunger marble. 71 and 46 surface measurements have been carried out, respectively. At both buildings, Rayleigh-wave group velocities show huge variations. At the Porta Nigra they vary between ca. 0.4 km/s and 1.8 km/s and at the Neptungrotte between ca. 0.7 km/s and 3.0 km/s pointing to alterations in the Rayleigh- and S-wave velocities of more than 50 % due to weathering. Note that velocities of elastic waves may increase e.g. because of the formation of black crusts like at the Porta Nigra or they may be strongly reduced due to weathering. The accuracy of the ultrasonic surface measurements, its reproducibility, and the influence of varying water saturation are discussed. Options for the analysis of ultrasonic waveforms are presented ranging from dispersion analysis to full waveform inversions for one-dimensional and two

  13. Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-4, Operation of Magnetic Particle Test Equipment.

    Science.gov (United States)

    Groseclose, Richard

    This fourth in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II describes the specific technique variables and options which are available to the test technician, provides instructions for selecting and operating the appropriate test equipment, describes physical criteria for detectable discontinuities,…

  14. Picosecond ultrasonics study of the modification of interfacial bonding by ion implantation

    International Nuclear Information System (INIS)

    Tas, G.; Loomis, J.J.; Maris, H.J.; Bailes, A.A. III; Seiberling, L.E.

    1998-01-01

    We report on experiments in which picosecond ultrasonic techniques are used to investigate the modification of interfacial bonding that results from ion implantation. The bonding is studied through measurements of the acoustic reflection coefficient at the interface. This method is nondestructive and can be used to create a map of the variation of the bonding over the area of the interface. copyright 1998 American Institute of Physics

  15. Assessment of Aluminum FSW Joints Using Ultrasonic Testing

    Directory of Open Access Journals (Sweden)

    Adamus K.

    2017-12-01

    Full Text Available The paper concerns aluminum joints made using friction stir welding. Although in the aerospace industry there is a tendency to replace metal components with composites, aluminum continues to be a valuable material. Its share in the aircraft structures is the biggest among all structural metals. Lots of aluminum components are made of sheets and most of them require joining. Friction stir welding is a relatively new joining technology, particularly with regard to the sheets having a thickness of 1 mm or lower. The paper is dedicated to non-destructive testing of such joints using ultrasonic inspection. It was found that ultrasonic testing allows for distinguishing between joints without material discontinuities, joint with material discontinuities at the advancing side and joint with discontinuities extending through the whole width of the stir zone. During research only horizontally aligned defects were taken into account.

  16. Modelling of ultrasonic nondestructive testing of cracks in claddings

    International Nuclear Information System (INIS)

    Bostroem, Anders; Zagbai, Theo

    2006-05-01

    Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry. To develop and qualify the methods extensive experimental work with test blocks is usually required. This can be very time-consuming and costly and it also requires a good physical intuition of the situation. A reliable mathematical model of the testing situation can, therefore, be very valuable and cost-effective as it can reduce experimental work significantly. A good mathematical model enhances the physical intuition and is very useful for parametric studies, as a pedagogical tool, and for the qualification of procedures and personnel. The present project has been concerned with the modelling of defects in claddings. A cladding is a layer of material that is put on for corrosion protection, in the nuclear power industry this layer is often an austenitic steel that is welded onto the surface. The cladding is usually anisotropic and to some degree it is most likely also inhomogeneous, particularly in that the direction of the anisotropy is varying. This degree of inhomogeneity is unknown but probably not very pronounced so for modelling purposes it may be a valid assumption to take the cladding to be homogeneous. However, another important complicating factor with claddings is that the interface between the cladding and the base material is often corrugated. This corrugation can have large effects on the transmission of ultrasound through the interface and can thus greatly affect the detectability of defects in the cladding. In the present project the only type of defect that is considered is a planar crack that is situated inside the cladding. The investigations are, furthermore, limited to two dimensions, and the crack is then only a straight line. The crack can be arbitrarily oriented and situated, but it must not intersect the interface to the base material. The crack can be surface-breaking, and this is often the case of most practical interest, but it should then be

  17. The Design Of The Ultrasonic Nondestructive Testing System Based On The EMAT

    OpenAIRE

    Cheng Huan Xin; Meng Xiang Yong; Li Jing; Cheng Li

    2016-01-01

    This paper introduces a kind of based on the electromagnetic acoustic transducer (EMAT) metal pipeline detection system, fusion of two dimensional orientation, shape unique technological innovation, implementation of various metal pipe wall corrosion situation of rapid, accurate, fully automated non-destructive testing.In the aspect of hardware design, single-chip microcomputer control was achieved by C language programming the launch of the pulse signal. Pulse signal was sent to launch circu...

  18. Non-destructive evaluation of welding part of stainless steels by phased array system

    International Nuclear Information System (INIS)

    Tatematsu, Nobuhiro; Matsumoto, Eiji

    2009-01-01

    Recently, more accurate and convenient Non-Destructive Evaluation techniques are required for flaw inspection of structural materials. Phased array ultrasonic transducers are expected as such as NDE technique but there are many subjects to be solved. Furthermore, commercial phased array systems with conventional scanning and imaging techniques have not fulfilled their maximum potential. The purpose of this paper is to improve the phased array system to be applicable to the inhomogeneity evaluation of welding part of stainless steels. (author)

  19. Ultrasonic technique for measuring porosity of plasma-sprayed alumina coatings

    Science.gov (United States)

    Parthasarathi, S.; Tittmann, B. R.; Onesto, E. J.

    1997-12-01

    Porosity is an important factor in plasma-sprayed coatings, especially ceramic coatings. Excessive poros-ity can adversely affect the performance of the coated component in various ways. An ultrasonic nonde-structive measurement technique has been developed to measure porosity in plasma-sprayed alumina coatings. The technique is generic and can be extended to other ceramic coating systems. To test the tech-nique, freestanding alumina coatings with varying levels of porosity were fabricated via plasma spray. Samples with varying porosity, obtained through innovative fabrication techniques, were used to gener-ate a calibration curve. The ultrasonic velocity in the low-frequency range was found to be dependent on the density of freestanding coatings (measured via Archimedian techniques). This dependence is the basis of the development of a technique to measure the density of coatings.

  20. A system for personnel qualification of non-destructive testing procedures from testing and and qualification system in Sweden

    International Nuclear Information System (INIS)

    Kuna, M.; Kubis, S.; Plasek, J.

    1999-01-01

    The method for qualification of non-destructive testing personnel carrying out inspections by means of ultrasonic and eddy-current tests to inspect cladding in BWR reactor pressure vessel and core shroud lid. Development of procedures tests with real artificial cracks, blind tests. Evaluation of results by the Swedish Qualification Commission. Performance of the tests at Oskarshamn-1

  1. Nondestructive examination of the Tropical Rainfall Measuring Mission (TRMM) reaction control subsystem (RCS) propellant tanks

    Science.gov (United States)

    Free, James M.

    1993-01-01

    This paper assesses the feasibility of using eddy current nondestructive examination to determine flaw sizes in completely assembled hydrazine propellant tanks. The study was performed by the NASA Goddard Space Flight Center for the Tropical Rainfall Measuring Mission (TRMM) project to help determine whether existing propellant tanks could meet the fracture analysis requirements of the current pressure vessel specification, MIL-STD-1522A and, therefore be used on the TRMM spacecraft. After evaluating several nondestructive test methods, eddy current testing was selected as the most promising method for determining flaw sizes on external and internal surfaces of completely assembled tanks. Tests were conducted to confirm the detection capability of the eddy current NDE, procedures were developed to inspect two candidate tanks, and the test support equipment was designed. The non-spherical tank eddy current NDE test program was terminated when the decision was made to procure new tanks for the TRMM propulsion subsystem. The information on the development phase of this test program is presented in this paper as a reference for future investigation on the subject.

  2. Questions of qualification exam for non-destructive testing and materials science - the first level

    International Nuclear Information System (INIS)

    Shaaban, H.I.; Addarwish, J.M.A.

    2013-01-01

    The book contains seven chapters: Questions of qualification for magnetic particles testing method - Questions of qualification for liquids penetrant testing method - Questions of qualification for the visual inspection testing method - Questions of qualification for the ultrasonic testing method - Questions of qualification for the eddy current testing method - Questions of rehabilitation for industrial radiographic testing method - Qualification questions about materials science and manufacturing defects of castings and welding and comparison between non-destructive testing methods.

  3. Innovative ultrasonics for power plant commissioning

    International Nuclear Information System (INIS)

    Murphy, R.V.; Alikhan, S.

    1983-05-01

    During the commissioning of a nuclear power plant, the usual role of ultrasonics is associated with nondestructive testing of welds. There is, however, a variety of undesirable conditions associated with the fluids carried through the various reactor systems which may be just as important to station operation. A variety of unusual ultrasonic techniques has been developed for testing fluid systems at the Point Lepreau Generating Station. This paper uses the experience gained at the Point Lepreau reactor to illustrate the valuable information which can be gained from these measurements, such as: fluid level in pipes and headers; fluid level in pressure vessels; detection, and sizing of debris in pipes; in situ measurement and verification of orifice condition; detection and location of cavitation, water hammer, valve leakage; quantitative measurement of gate movement within the body of an inservice valve; determination of valve position; detection and imaging of flow separation; detection and location of leaks in concrete containment structures; verification of design flows; balancing of loop flows; and detection of low flow. The application of these techniques at other reactor sites is also discussed

  4. Handbook of nondestructive evaluation

    National Research Council Canada - National Science Library

    Hellier, Charles

    2013-01-01

    "Fully revised to cover the latest nondestructive testing (NDT) procedures, this practical resource reviews established and emerging methods for examining materials without destroying them or altering their structure...

  5. A Study on a Crack Evaluation Technique for Turbine Blade Root Using Phased Array Ultrasonics

    International Nuclear Information System (INIS)

    Cho, Yong Sang; Jung, Gye Jo; Park, Sang Ki; Kim, Jae Hoon

    2004-01-01

    Ultrasonic testing is a kind of nondestructive test to detect a crack or discontinuity in materials or on material surfaces by sending ultrasound to it. This conventional ultrasonic technique has some limitations in reliably detecting crack or accurately assessing materials in the case of complex-shaped power plant components such as a turbine blade root. An alternative method for such a difficult inspection is highly needed. In this study, application of a phased array ultrasonic testing (UT) system to a turbine blade, one of the critical power plant components, has been considered, and the particular incident angle has been determined so that the greatest track detectability and the most accurate crack length evaluation nay be achieved. The response of ultrasonic phased array was also analyzed to establish a special method to determine the track length without moving the transducer. The result showed that the developed method for crack length assessment is a more accurate and effective method, compared with the conventional method

  6. Evaluation of Internal Cracks and Collapse in Poplar Wood (Populus nigra during a Conventional Drying Process with Ultrasonic Inspection

    Directory of Open Access Journals (Sweden)

    Saeid ESHAGHI

    2012-05-01

    Full Text Available In this research, internal cracks and collapse of wood, formed during drying process, were measured using ultrasonic inspection. For this purpose, seven poplar (Populus nigra small blocks were dried, according to a time-based schedule. Ultrasonic waves� propagation velocity was measured at both parallel and perpendicular to grain directions, using Sylvatest ultrasound device, during kiln drying process. Results showed that in all dried blocks, waves� propagation velocity in the parallel direction was higher than in the perpendicular direction to grain. Ultrasonic waves� propagation test for non-destructive identification of internal cracks, which occurs in wood during drying process in the parallel direction, was more successful compared to the perpendicular direction. Using ultrasonic waves� propagation test for detection of collapse that occurs in wood during drying process was not useful.

  7. Evaluation of Internal Cracks and Collapse in Poplar Wood (Populus nigra during a Conventional Drying Process with Ultrasonic Inspection

    Directory of Open Access Journals (Sweden)

    Saeid ESHAGHI

    2012-05-01

    Full Text Available In this research, internal cracks and collapse of wood, formed during drying process, were measured using ultrasonic inspection. For this purpose, seven poplar (Populus nigra small blocks were dried, according to a time-based schedule. Ultrasonic waves propagation velocity was measured at both parallel and perpendicular to grain directions, using Sylvatest ultrasound device, during kiln drying process. Results showed that in all dried blocks, waves propagation velocity in the parallel direction was higher than in the perpendicular direction to grain. Ultrasonic waves propagation test for non-destructive identification of internal cracks, which occurs in wood during drying process in the parallel direction, was more successful compared to the perpendicular direction. Using ultrasonic waves propagation test for detection of collapse that occurs in wood during drying process was not useful.

  8. Equipment for examination of bodies by means of ultrasonic scanning

    International Nuclear Information System (INIS)

    Hoelzler, G.

    1977-01-01

    Equipment for linear or surface scanning of bodies by ultrasonics where an ultrasonic applicator, consisting of rows of transducer elements arranged one beside the other and made of e.g. piezoelectric crystal plates, and a control unit is used. Control and cadencing of the transducer elements is performed in groups of four or five of neighboring transducers. For control there may be provided for adjacent or engaging scanning of the groups. By this means the number of transducer elements is reduced e.g. by a factor of 2. (orig.) [de

  9. Non-destructive testing of CFC/Cu joints

    International Nuclear Information System (INIS)

    Casalegno, V.; Ferraris, M.; Salvo, M.; Vesprini, R.; Merola, M.

    2006-01-01

    Reliable non-destructive tests (NDT) are fundamental for the manufacturing of ITER components, especially for high heat flux plasma facing components. NDT include various techniques, which allow inspection of a component without impairing serviceability; it's important to detect and characterize defects (type, size and position) as well as the set-up of acceptance standards in order to predict their influence on the component performance in service conditions. The present study shows a description of NDT used to assess the manufacturing quality of CFC (carbon fibre reinforced carbon matrix composites)/Cu/CuCrZr joints. In the ITER divertor, armor tiles made of CFC are joined to the cooling structure made of precipitation hardened copper alloy CuCrZr; a soft pure Cu interlayer is required between the heat sink and the armour in order to mitigate the stresses at the joint interface. NDT on CFC/Cu joint are difficult because of the different behavior of CFC and copper with regard to physical excitations (e.g. ultrasonic wave) used to test the component; furthermore the response to this input must be accurately studied to identify the detachment of CFC tiles from Cu alloy. The inspected CFC/Cu/CuCrZr joints were obtained through direct casting of pure Cu on modified CFC surface and subsequently through brazing of CFC/Cu joints to CuCrZr by a Cu-based alloy. Different non-destructive methods were used for inspecting these joints: lock-in thermography, ultrasonic inspections, microtomography and microradiography. The NDT tests were followed by metallographic investigation on the samples, since the reliability of a certain non destructive test can be only validated by morphological evidence of the detected defects. This study will undertake a direct comparison of NDT used on CFC/Cu joints in terms of real flaws presence. The purpose of this work is to detect defects at the joining interface as well as in the cast copper ( for instance voids). The experimental work was

  10. Numerical simulation of ultrasonic wave propagation in elastically anisotropic media

    International Nuclear Information System (INIS)

    Jacob, Victoria Cristina Cheade; Jospin, Reinaldo Jacques; Bittencourt, Marcelo de Siqueira Queiroz

    2013-01-01

    The ultrasonic non-destructive testing of components may encounter considerable difficulties to interpret some inspections results mainly in anisotropic crystalline structures. A numerical method for the simulation of elastic wave propagation in homogeneous elastically anisotropic media, based on the general finite element approach, is used to help this interpretation. The successful modeling of elastic field associated with NDE is based on the generation of a realistic pulsed ultrasonic wave, which is launched from a piezoelectric transducer into the material under inspection. The values of elastic constants are great interest information that provide the application of equations analytical models, until small and medium complexity problems through programs of numerical analysis as finite elements and/or boundary elements. The aim of this work is the comparison between the results of numerical solution of an ultrasonic wave, which is obtained from transient excitation pulse that can be specified by either force or displacement variation across the aperture of the transducer, and the results obtained from a experiment that was realized in an aluminum block in the IEN Ultrasonic Laboratory. The wave propagation can be simulated using all the characteristics of the material used in the experiment valuation associated to boundary conditions and from these results, the comparison can be made. (author)

  11. Non-Destructive Testing: Sample Questions for Conduct of Examinations at Levels 1 and 2

    International Nuclear Information System (INIS)

    2010-01-01

    The International Atomic Energy Agency (IAEA) supports industrial applications of radiation technology which include non-destructive testing (NDT) under its various programmes such as individual country Technical Co-operation (TC) projects, Regional Projects and Coordinated Research Projects (CRPs). NDT technology is essentially needed for the improvement of the quality of industrial products, equipment and plants all over the world, especially in developing Member States. Trained and certified personnel is one of the essential requirements for applying this technology in industry. With this in view, the IAEA first played an important role in cooperation with the International Organisation for Standardisation (ISO) for the development of a standard for training and certification of NDT personnel, namely ISO 9712, 'Non-Destructive Testing: Qualification and Certification of Personnel'. Subsequently the syllabi and needed training materials were identified and developed for the creation of, in each of the Member States, a core group of personnel who are trained and qualified to establish the training and certification process in their respective countries. One of the important requirements for such a process is to have the examination questions for conducting the certification examinations. A need had been felt to compile the appropriate questions firstly for conducting these examinations at the national and regional levels and secondly to provide these to the certification bodies of the Member States so that they could initiate their own level 1 and 2 certification examinations. For this purpose, Experts' Task Force Meetings were convened first in Accra, Ghana and then in Vienna, Austria under the AFRA regional projects on NDT. The experts examined and discussed in detail the ISO 9712 (1999 and 2005 versions) requirements for general, specific and practical examinations for level 1 and 2 personnel. After that a set of questions has been established which are

  12. Air-Coupled Low Frequency Ultrasonic Transducers and Arrays with PMN-32%PT Piezoelectric Crystals

    Directory of Open Access Journals (Sweden)

    Rymantas J. Kazys

    2017-01-01

    Full Text Available Air-coupled ultrasonic techniques are being increasingly used for material characterization, non-destructive evaluation of composite materials using guided waves as well as for distance measurements. Application of those techniques is mainly limited by the big losses of ultrasonic signals due to attenuation and mismatch of the acoustic impedances of ultrasonic transducers and air. One of the ways to solve this problem is by application of novel more efficient piezoelectric materials like lead magnesium niobate-lead titanate (PMN-PT type crystals. The objective of this research was the development and investigation of low frequency (<50 kHz wide band air-coupled ultrasonic transducers and arrays with an improved performance using PMN-32%PT crystals. Results of finite element modelling and experimental investigations of the developed transducers and arrays are presented. For improvement of the performance strip-like matching elements made of low acoustic impedance, materials such as polystyrene foams were applied. It allowed to achieve transduction losses for one single element transducer −11.4 dB, what is better than of commercially available air-coupled ultrasonic transducers. Theoretical and experimental investigations of the acoustic fields radiated by the eight element ultrasonic array demonstrated not only a good performance of the array in a pulse mode, but also very good possibilities to electronically focus and steer the ultrasonic beam in space.

  13. Development of nondestructive evaluation methods for structural ceramics

    International Nuclear Information System (INIS)

    Ellingson, W.A.; Roberts, R.A.; Vannier, M.W.; Ackerman, J.L.; Sawicka, B.D.; Gronemeyer, S.; Kriz, R.J.

    1987-01-01

    Advanced nondestructive evaluation methods are being developed to characterize ceramic materials and allow improvement of process technology. If one can spatially determine porosity, map organic binder/plasticizer distributions, measure average through-volume and in-plane density, as well as detect inclusions, process and machining operations may be modified to enhance the reliability of ceramics. Two modes of X-ray tomographic imaging -- advanced film (analog) tomography and computed tomography -- are being developed to provide flaw detection and density profile mapping capability. Nuclear magnetic resonance imaging is being developed to determine porosity and map the distribution of organic binder/plasticizer. Ultrasonic backscatter and through-transmission are being developed to measure average through-thickness densities and detect surface inclusions

  14. Opportunities and applications of medical imaging and image processing techniques for nondestructive testing

    International Nuclear Information System (INIS)

    Song, Samuel Moon Ho; Cho, Jung Ho; Son, Sang Rock; Sung, Je Jonng; Ahn, Hyung Keun; Lee, Jeong Soon

    2002-01-01

    Nondestructive testing (NDT) of structures strives to extract all relevant data regarding the state of the structure without altering its form or properties. The success enjoyed by imaging and image processing technologies in the field of modem medicine forecasts similar success of image processing related techniques both in research and practice of NDT. In this paper, we focus on two particular instances of such applications: a modern vision technique for 3-D profile and shape measurement, and ultrasonic imaging with rendering for 3-D visualization. Ultrasonic imaging of 3-D structures for nondestructive evaluation purposes must provide readily recognizable 3-D images with enough details to clearly show various faults that may or may not be present. As a step towards Improving conspicuity and thus detection of faults, we propose a pulse-echo ultrasonic imaging technique to generate a 3-D image of the 3-D object under evaluation through strategic scanning and processing of the pulse-echo data. This three-dimensional processing and display improves conspicuity of faults and in addition, provides manipulation capabilities, such as pan and rotation of the 3-D structure. As a second application, we consider an image based three-dimensional shape determination system. The shape, and thus the three-dimensional coordinate information of the 3-D object, is determined solely from captured images of the 3-D object from a prescribed set of viewpoints. The approach is based on the shape from silhouette (SFS) technique and the efficacy of the SFS method is tested using a sample data set. This system may be used to visualize the 3-D object efficiently, or to quickly generate initial CAD data for reverse engineering purposes. The proposed system potentially may be used in three dimensional design applications such as 3-D animation and 3-D games.

  15. Reproducibility of the results in nondestructive testing

    International Nuclear Information System (INIS)

    Launay, J.P.; Chalaye, H.; Thomas, A.

    1980-10-01

    Pressure vessels must comply with very severe safety criteria. In order to ensure that the required quality is attained, non destructive tests are used and these have to be highly reliable: magnetoscopy and liquid penetration for surface examinations, radiography and ultrasonics for voluminal examinations. In the case of ultrasonic examinations, a study of parameters has been made and a statistical analysis of the results has made it possible to calculate the dispersion due to the testing equipment [fr

  16. SAFT-assisted sound beam focusing using phased arrays (PA-SAFT) for non-destructive evaluation

    Science.gov (United States)

    Nanekar, Paritosh; Kumar, Anish; Jayakumar, T.

    2015-04-01

    Focusing of sound has always been a subject of interest in ultrasonic non-destructive evaluation. An integrated approach to sound beam focusing using phased array and synthetic aperture focusing technique (PA-SAFT) has been developed in the authors' laboratory. The approach involves SAFT processing on ultrasonic B-scan image collected by a linear array transducer using a divergent sound beam. The objective is to achieve sound beam focusing using fewer elements than the ones required using conventional phased array. The effectiveness of the approach is demonstrated on aluminium blocks with artificial flaws and steel plate samples with embedded volumetric weld flaws, such as slag and clustered porosities. The results obtained by the PA-SAFT approach are found to be comparable to those obtained by conventional phased array and full matrix capture - total focusing method approaches.

  17. Nonlinear Wave Mixing Technique for Nondestructive Assessment of Infrastructure Materials

    Science.gov (United States)

    Ju, Taeho

    To operate safely, structures and components need to be inspected or monitored either periodically or in real time for potential failure. For this purpose, ultrasonic nondestructive evaluation (NDE) techniques have been used extensively. Most of these ultrasonic NDE techniques utilize only the linear behavior of the ultrasound. These linear techniques are effective in detecting discontinuities in materials such as cracks, voids, interfaces, inclusions, etc. However, in many engineering materials, it is the accumulation of microdamage that leads to degradation and eventual failure of a component. Unfortunately, it is difficult for linear ultrasonic NDE techniques to characterize or quantify such damage. On the other hand, the acoustic nonlinearity parameter (ANLP) of a material is often positively correlated with such damage in a material. Thus, nonlinear ultrasonic NDE methods have been used in recently years to characterize cumulative damage such as fatigue in metallic materials, aging in polymeric materials, and degradation of cement-based materials due to chemical reactions. In this thesis, we focus on developing a suit of novel nonlinear ultrasonic NDE techniques based on the interactions of nonlinear ultrasonic waves, namely wave mixing. First, a noncollinear wave mixing technique is developed to detect localized damage in a homogeneous material by using a pair of noncollinear a longitudinal wave (L-wave) and a shear wave (S-wave). This pair of incident waves make it possible to conduct NDE from a single side of the component, a condition that is often encountered in practical applications. The proposed noncollinear wave mixing technique is verified experimentally by carrying out measurements on aluminum alloy (AA 6061) samples. Numerical simulations using the Finite Element Method (FEM) are also conducted to further demonstrate the potential of the proposed technique to detect localized damage in structural components. Second, the aforementioned nonlinear

  18. Ultrasonic inspection of AA6013 laser welded joints

    Directory of Open Access Journals (Sweden)

    Adriano Passini

    2011-09-01

    Full Text Available Interest in laser beam welding for aerospace applications is continuously growing, mainly for aluminum alloys. The joints quality is usually assessed by non-destructive inspection (NDI. In this work, bead on plate laser welds on 1.6 mm thick AA6013 alloy sheets, using a 2 kW Yb-fiber laser were obtained and inspected by pulse/echo ultrasonic phased-array technique. Good and poor quality welds were inspected in order to verify the limits of inspection, comparing also to X-ray radiography and metallographic inspections. The results showed that ultrasonic phased array technique was able to identify the presence of grouped porosity, through the attenuation of the amplitude of the echo signal. This attenuation is attributed to the scattering of the waves caused by micro pores, with individual size below the resolution limit of the equipment, but when grouped, can cause a perceptive effect on the reflection spectra.

  19. Cement-based materials' characterization using ultrasonic attenuation

    Science.gov (United States)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  20. Ultrasonic testing of materials at level 2. Manual for the syllabi contained in IAEA-TECDOC-628, training guidelines in non-destructive testing techniques

    International Nuclear Information System (INIS)

    1999-01-01

    The International Atomic Energy Agency (IAEA) has been active in the promotion of non-destructive testing (NDT) technology for many years. The prime reason for this interest has been the need for stringent quality control standards for the safe operation of nuclear installations. The IAEA has successfully executed a number of regional projects of which NDT was an important part. These were the Regional Co-operative Arrangements for the Promotion of Nuclear Science and Technology in Latin America (ARCAL), the Regional Co-operative Agreement for Asia and the Pacific (RCA), the African Regional Co-operative Agreement (AFRA) and lately the NDT Regional Project in West Asia. Through these projects a large number of persons have been trained in Member States and a state of self-sufficiency in this area of technology has been achieved in many of them. There has long been a realization of the need to have well established training guidelines and related books in order, firstly, to guide IAEA experts who were involved in this training programme and, secondly, to achieve some level of international uniformity and harmonization of training materials and consequent competence of personnel. The syllabi for training courses have been published in the form of two publications, IAEA-TECDOC-407 and IAEA-TECDOC-628. IAEA-TECDOC-628, as well as most of the international standards on the subject of training and certification of NDT personnel includes ISO 9712. The next logical step is to compile the textbooks and training manuals. Work in this regard has been undertaken and a manual on radiographic testing was issued in 1992 in the Training Course Series. This publication is a continuation of that effort. Earlier training notes on this subject existed in the form of IAEA-TECDOC-462, which was compiled in accordance with the syllabus of IAEA-TECDOC-407. These fulfilled the training needs of the member countries of RCA for quite some time. The present book is in fact an expanded and

  1. Forensic Examination Using a Nondestructive Evaluation Method for Surface Metrology

    Science.gov (United States)

    Eisenmann, David J.; Chumbley, L. Scott

    2009-03-01

    The objective of this paper is to describe the use of a new technique of optical profilometry in a nondestructive, non-contact fashion for the comparison of two metallic surfaces, one hard and one soft. When brought in contact with one another, the harder material (i.e. the tool) will impress its surface roughness onto the softer. It is understood that the resulting set of impressions left from a tool tip act in a manner similar to a photographic negative, in that it leaves a reverse, or negative impression on the surface of a plate. If properly inverted and reversed, measurements from the softer material should be identical to the harder indenting object with regard to surface texture and roughness. This assumption is inherent in the area of forensics, where bullets, cartridge cases, and toolmarked surfaces from crime scenes are compared to similar marks made under controlled conditions in the forensic laboratory. This paper will examine the methodology used to compare two surfaces for similarities and dissimilarities, and comment on the applicability of this technique to other studies.

  2. Development of non-destructive examination system for irradiated fuel rods

    International Nuclear Information System (INIS)

    Sumerling, R.; Goldsmith, L.A.; Cross, M.T.; McKee, F.

    1978-12-01

    The development of non-destructive examination (NDE) system for irradiated fuel rods is described. The system is used for testing rods within a concrete cave and consists of three parts: a fully-automated fuel rod-drive machine, designed for easy maintenance; a series of plug-in NDE modules which fit into the central space provided in the machine, plus optical/TV viewing devices and gamma-scan equipment lined up on the rod; and on electronic control equipment situated outside the concrete shielding. The equipment is at present routinely used for viewing, eddy-current testing, gamma-scanning and diameter measurement of rods. The system is flexible in that additional modules can be added later as they are developed, since there is room for three modules of standard size (about 10cm x 10 cm x 3cm) in the machine or one large module taking the full space. New developments include the use of dual frequency eddy-current testing, which allows much greater discrimination against unwanted signals, and measurement of oxide thickness using a high frequency eddy-current probe. (author)

  3. Pipe Wall Thickness Monitoring Using Dry-Coupled Ultrasonic Waveguide Technique

    International Nuclear Information System (INIS)

    Cheong, Yong Moo; Kim, Ha Nam; Kim, Hong Pyo

    2012-01-01

    In order to monitor a corrosion or FAC (Flow Accelerated Corrosion) in a pipe, there is a need to measure pipe wall thickness at high temperature. Ultrasonic thickness gauging is the most commonly used non-destructive testing technique for wall thickness measurement. However, current commonly available ultrasonic transducers cannot withstand high temperatures, such as above 200 .deg. C. It is therefore necessary to carry out manual measurements during plant shutdowns. The current method thus reveals several disadvantages: inspection have to be performed during shutdowns with the possible consequences of prolonging down time and increasing production losses, insulation has to be removed and replaced for each manual measurement, and scaffolding has to be installed to inaccessible areas, resulting in considerable cost for interventions. It has been suggested that a structural health monitoring approach with permanently installed ultrasonic thickness gauges could have substantial benefits over current practices. The main reasons why conventional piezoelectric ultrasonic transducers cannot be used at high temperatures are that the piezo-ceramic becomes depolarized at temperature above the Curie temperature and because differential thermal expansion of the substrate, couplant, and piezoelectric materials cause failure. In this paper, a shear horizontal waveguide technique for wall thickness monitoring at high temperature is investigated. Two different designs for contact to strip waveguide are shown and the quality of output signal is compared and reviewed. After a success of acquiring high quality ultrasonic signal, experiment on the wall thickness monitoring at high temperature is planned

  4. Educational ultrasound nondestructive testing laboratory.

    Science.gov (United States)

    Genis, Vladimir; Zagorski, Michael

    2008-09-01

    The ultrasound nondestructive evaluation (NDE) of materials course was developed for applied engineering technology students at Drexel University's Goodwin College of Professional Studies. This three-credit, hands-on laboratory course consists of two parts: the first part with an emphasis on the foundations of NDE, and the second part during which ultrasound NDE techniques are utilized in the evaluation of parts and materials. NDE applications are presented and applied through real-life problems, including calibration and use of the latest ultrasonic testing instrumentation. The students learn engineering and physical principles of measurements of sound velocity in different materials, attenuation coefficients, material thickness, and location and dimensions of discontinuities in various materials, such as holes, cracks, and flaws. The work in the laboratory enhances the fundamentals taught during classroom sessions. This course will ultimately result in improvements in the educational process ["The greater expectations," national panel report, http://www.greaterexpectations.org (last viewed February, 2008); R. M. Felder and R. Brent "The intellectual development of Science and Engineering Students. Part 2: Teaching to promote growth," J. Eng. Educ. 93, 279-291 (2004)] since industry is becoming increasingly reliant on the effective application of NDE technology and the demand on NDE specialists is increasing. NDE curriculum was designed to fulfill levels I and II NDE in theory and training requirements, according to American Society for Nondestructive Testing, OH, Recommended Practice No. SNT-TC-1A (2006).

  5. Two-dimensional analytic modeling of acoustic diffraction for ultrasonic beam steering by phased array transducers.

    Science.gov (United States)

    Wang, Tiansi; Zhang, Chong; Aleksov, Aleksandar; Salama, Islam; Kar, Aravinda

    2017-04-01

    Phased array ultrasonic transducers enable modulating the focal position of the acoustic waves, and this capability is utilized in many applications, such as medical imaging and non-destructive testing. This type of transducers also provides a mechanism to generate tilted wavefronts in acousto-optic deflectors to deflect laser beams for high precision advanced laser material processing. In this paper, a theoretical model is presented for the diffraction of ultrasonic waves emitted by several phased array transducers into an acousto-optic medium such as TeO 2 crystal. A simple analytic expression is obtained for the distribution of the ultrasonic displacement field in the crystal. The model prediction is found to be in good agreement with the results of a numerical model that is based on a non-paraxial multi-Gaussian beam (NMGB) model. Published by Elsevier B.V.

  6. Beginning of fish defrosting by using non-destructive ultrasonic technique

    International Nuclear Information System (INIS)

    Malainine, M; Faiz, B; Izbaim, D; Aboudaoud, I; Moudden, A; Maze, G

    2012-01-01

    During the experiments carried out on the monitoring and the study of fish defrosting by an ultrasonic technique, we have difficulties in detecting the beginning of the thawing which is an important criterion of fish quality control. To address this problem, we use the Singular Value Decomposition method (SVD) which is a mathematical tool that permits to separate the high and low energies of an histogram. The image representing low energy signals indicates the start of the thawing by showing an echo that was hidden in the original image for cod fish. Using transducers for central frequencies above 500 kHz the observed results are not very good. Therefore, this method is suitable for fish which fat content is medium or low.

  7. Geophysical Methods for Non-Destructive Testing in Civil Engineering

    Science.gov (United States)

    Niederleithinger, E.

    2013-12-01

    Many non-destructive testing (NDT) methods for civil engineering (e. g. ultrasonics, radar) are similar to geophysical techniques. They just differ in scale, material under investigation and vocabulary used. In spite of the fact that the same principles of physics and mathematics apply to both fields, exchange has been limited in the past. But since a few years more and more geophysical knowledge is used in civil engineering. One of the focal points in research is to improve ultrasonic testing of concrete to be able to image the inside even of large, complex structures and to detect any deterioration as early as possible. One of the main issues is the heterogeneity of concrete, including aggregates, reinforcement, cracks and many other features. Our current research focuses on three points. One is the application of state of the art geophysical migration techniques as Reverse Time Migration (RTM) to image vertical faces or the backside of voids and ducts in thick concrete structures, which isn't possible with conventional techniques used in NDT. Second, we have started to use seismic interferometric techniques to interpolate ultrasonic traces, which can't be measured directly for technical reasons. Third, we are using coda wave interferometry to detect concrete degradation due to load, fatigue, temperature or other influences as early as possible. Practical examples of the application of these techniques are given and potential future research directions will be discussed. It will be shown, how a subset of these techniques can be used for innovative monitoring systems for civil infrastructure. Imaging the interior of a concrete body by ultrasonics and reverse time migration(simulated data).

  8. Development of the ultrasonic technique for examination of centrifugally-cast stainless steel in pressure piping

    International Nuclear Information System (INIS)

    Jurenka, H.J.

    1983-01-01

    Centrifugally - cast stainless steel (CCSS) are used to manufacture a large variety of components in the nuclear industry. Weldments are also made to join these parts to carbon steel items. These welds are usually made of stainless steel or inconel alloys. CCSS is sophisticated material and justification for its use in critical components is safety and reliability. These steels, as any other materials, need to be inspected to assess their structural integrity. Ultrasonic testing is one of the possible techniques. In some cases it is the only one of the feasible methods for this examination. This mainly concerns components in the primary and auxiliary circuits of nuclear plants. For a long time it has been recognized that CCSS items can be extremely difficult to inspect using ultrasonics. Many attempts in various research laboratories were conducted to improve the testing technique

  9. Developments of modeling tools for the ultrasonic propagation in bimetallic welds

    International Nuclear Information System (INIS)

    Gardahaut, A.

    2013-01-01

    This study fits into the field of ultrasonic non-destructive evaluation. It consists in the development of a dynamic ray tracing model to simulate the ultrasonic propagation in bimetallic welds. The approach has been organised in three steps. First of all, an image processing technique has been developed and applied on the macro-graphs of the weld in order to obtain a smooth cartography of the crystallographic orientation. These images are used as input data for a dynamic ray tracing model adapted to the study of anisotropic and inhomogeneous media such as bimetallic welds. Based on a kinematic and a dynamic ray tracing model, usually used in geophysics, it allows the evaluation of ray trajectories between a source point and an observation point, and the computation of the ultrasonic amplitude through the geometrical spreading of an elementary ray tube. This model has been validated in 2D by comparison of the results with a hybrid semi-analytical/finite elements code, then in 3D thanks to experimental results made on the mock-ups of the studied bimetallic welds. (author) [fr

  10. HTS-SQUID NDE Technique for Pipes based on Ultrasonic Guided Wave

    International Nuclear Information System (INIS)

    Hatsukade, Y; Masutani, N; Teranishi, S; Masamoto, K; Kanenaga, S; Adachi, S; Tanabe, K

    2017-01-01

    This article describes research on the novel high-temperature superconductor (HTS) superconducting quantum interference device (SQUID) non-destructive evaluation (NDE) technique for metallic pipes based on ultrasonic guided waves. We constructed HTS-SQUID NDE system for pipes based on ultrasonic guided waves, which were generated and received by means of the magnetostrictive effects. Using the system, we measured magnetic signals due to T (0, 1) mode ultrasonic guided waves that transmitted on aluminium pipe, and investigated influences of measurement parameters to the magnetic signals, such as direction of a HTS-SQUID gradiometer, lift-off distance, and intensity and frequency of input current fed to a magnetostrictive transmitter. With the gradiometer oriented parallel to the pipe axis, more than 10 times larger signals were measured compared with that oriented perpendicular to the pipe axis. Magnetic signals measured by the gradiometer were inverse proportional to the power of the list- off distance, and proportional to the intensity of the input current up to 1 A pp . Relation between the frequency of the input current and the measured signal was shown and discussed. (paper)

  11. HTS-SQUID NDE Technique for Pipes based on Ultrasonic Guided Wave

    Science.gov (United States)

    Hatsukade, Y.; Masutani, N.; Teranishi, S.; Masamoto, K.; Kanenaga, S.; Adachi, S.; Tanabe, K.

    2017-07-01

    This article describes research on the novel high-temperature superconductor (HTS) superconducting quantum interference device (SQUID) non-destructive evaluation (NDE) technique for metallic pipes based on ultrasonic guided waves. We constructed HTS-SQUID NDE system for pipes based on ultrasonic guided waves, which were generated and received by means of the magnetostrictive effects. Using the system, we measured magnetic signals due to T (0, 1) mode ultrasonic guided waves that transmitted on aluminium pipe, and investigated influences of measurement parameters to the magnetic signals, such as direction of a HTS-SQUID gradiometer, lift-off distance, and intensity and frequency of input current fed to a magnetostrictive transmitter. With the gradiometer oriented parallel to the pipe axis, more than 10 times larger signals were measured compared with that oriented perpendicular to the pipe axis. Magnetic signals measured by the gradiometer were inverse proportional to the power of the list- off distance, and proportional to the intensity of the input current up to 1 App. Relation between the frequency of the input current and the measured signal was shown and discussed.

  12. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components

    Directory of Open Access Journals (Sweden)

    Francesco Ciampa

    2018-02-01

    Full Text Available Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters’ primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites.

  13. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components.

    Science.gov (United States)

    Ciampa, Francesco; Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele

    2018-02-16

    Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters' primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites.

  14. Ultrasonic assessment of additive manufactured Ti-6Al-4V

    Science.gov (United States)

    Schehl, Norman; Kramb, Vicki; Dierken, Josiah; Aldrin, John; Schwalbach, Edwin; John, Reji

    2018-04-01

    Additive Manufacturing (AM) processes offer the potential for manufacturing cost savings and rapid insertion into service through production of near net shape components for complicated structures. Use of these parts in high reliability applications such as those in the aerospace industry will require nondestructive characterization methods to ensure post-process material quality in as-built condition. Ultrasonic methods can be used for this quality verification. Depending on the application, the service life of AM components can be sensitive to the part surface condition. The surface roughness and layered structure inherent to the electron-beam powder-bed fusion process necessitates new approaches to evaluate subsurface material integrity in its presence. Experimental methods and data analytics may improve the evaluation of as-built additively manufactured materials. This paper discusses the assessment of additively manufactured EBM Ti-6Al-4V panels using ultrasonic methods and the data analytics applied to evaluate material integrity. The assessment was done as an exploratory study as the discontinuities of interest in these test samples were not known when the measurements were performed. Water immersion ultrasonic techniques, including pulse-echo and through transmission with 10 MHz focused transducers, were used to explore the material integrity of as-built plates. Subsequent destructive mechanical tests of specimens extracted from the plates provided fracture locations indicating critical flaws. To further understand the effect of surface-roughness, an evaluation of ultrasonic response in the presence of as-built surfaces and with the surface removed was performed. The assessment of additive manufactured EBM Ti-6Al-4V panels with ultrasonic techniques indicated that ultrasonic energy was attenuated by the as-built surface roughness. In addition, feature detection was shown to be sensitive to experimental ultrasonic parameters and flaw morphology.

  15. A circular aperture array for ultrasonic tomography and quantitative NDE

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, S A

    1998-08-01

    The main topics of this thesis are ultrasonic tomography and ultrasonic determination of elastic stiffness constants. Both issues are based on a synthetic array with transducer elements distributed uniformly along a circular aperture, i.e., a circular aperture array. The issues are treated both theoretically and experimentally by broadband pulse techniques. Ultrasonic tomography, UCT, from a circular aperture is a relatively new imaging technique in Non-destructive Evaluation (NDE) to acquire cross sectional images in bulk materials. A filtered back-projection algorithm is used to reconstruct images in four different experiments and results of attenuation, velocity and reflection tomograms in Plexiglas of AlSi-alloy cylinders are presented. Two kinds of ultrasonic tomography are introduced: bistatic and monostatic imaging. Both techniques are verified experimentally by Plexiglas cylinders. Different reconstruction artifacts are discussed and theoretical resolution constraints are discussed for various configurations of the circular aperture array. The monostatic technique is used in volumetric imaging. In the experimental verification artificial and real discontinuities in a cylindrical AlSi-alloy are compared with similar discontinuities in a Plexiglas specimen. Finally, some limitations to UCT are discussed. The circular aperture array is used to determine five independent elastic stiffness constants of a unidirectional glass/PET (Poly Ethylene Teraphtalate) laminate. Energy flux propagation and attenuation of ultrasonic waves are considered and velocity surfaces are calculated for different planes of interest. Relations between elastic stiffness constants and engineering constants (i.e., Young`s moduli, shear moduli and Poisson`s ratios) are discussed for an orthotropic composite. Six micromechanical theories are reviewed, and expressions predicting the elastic engineering constants are evaluated. The micromechanical predicted elastic stiffness constants for the

  16. Early detection of fatigue cracks by means of nondestructive testing, NDT; Tidig detektering av utmattningssprickor genom ofoerstoerande provning, OFP

    Energy Technology Data Exchange (ETDEWEB)

    Broddegaard, Mattias [Siemens Industrial Turbines, Finspaang (Sweden)

    2004-12-01

    Components in gas turbines, steam turbines and boilers are subjected to both high and low cycle fatigue. The lifetime of components is established by calculations based on conservative assumptions and safety factors, which means that most components will have a real life far exceeding the calculated. Conventional nondestructive testing is aimed at detecting macroscopic defects, such as cracks, inclusions and other discontinuities in the material. By having the possibility of detecting damage at a microscopic level, the risk of fractures in components subjected to fatigue can be reduced and the interval between testing occasions can be extended. The project goal has been to establish knowledge about possibilities and limitations for early detection of low and high cycle fatigue damage, by a literature survey and by practical experiments on low cycle fatigue specimens in 12% Cr-steel, for the following nondestructive testing methods: MWM (Meandering Winding Magnetometer) eddy current testing; and Nonlinear ultrasonics, both classical (second harmonic) and non-classical (crack closure). The project started with a literature survey. This resulted in a proposal for specimen design and selection of testing techniques and project partners. Manufacturing of specimens in 12% Cr-steel, designation X22CrMoV12-1, and low cycle fatigue testing at 300 deg C testing temperature was carried out at Siemens Industrial Turbines in Finspaang. Specimens with 0, 25, 50, 75 and 100% consumed life, based on the number of cycles to presence of macroscopic cracks, were produced. MWM eddy current testing was carried out by Jentek Sensors Inc. in the USA. Measurements with nonlinear ultrasonics were carried out by Siemens Corporate Technology in Munich and at Blekinge Univ. The specimens were finally examined in SEM and light optical microscope in Finspaang. In the literature, results showing that early detection of fatigue damage by nondestructive testing is possible, can be found. By

  17. Studies on Section XI ultrasonic repeatability

    International Nuclear Information System (INIS)

    Jamison, T.D.; McDearman, W.R.

    1981-05-01

    A block representative of a nuclear component has been welded containing intentional defects. Acoustic emission data taken during the welding correlate well with ultrasonic data. Repetitive ultrasonic examinations have been performed by skilled operators using a procedure based on that desribed in ASME Section XI. These examinations were performed by different examination teams using different ultrasonic equipment in such a manner that the effects on the repeatability of the ultrasonic test method caused by the operator and by the use of different equipment could be estimated. It was tentatively concluded that when considering a large number of inspections: (1) there is no significant difference in indication sizing between operators, and (2) there is a significant difference in amplitude and defect sizing when instruments having different, Code acceptable operating characteristics are used. It was determined that the Section XI sizing parameters follow a bivariate normal distribution. Data derived from ultrasonically and physically sizing indications in nuclear components during farication show that the Section XI technique tends to overestimate the size of the reflectors

  18. Monitoring of Freeze-Thaw Cycles in Concrete Using Embedded Sensors and Ultrasonic Imaging

    Science.gov (United States)

    Ranz, Javier; Aparicio, Sofía; Romero, Héctor; Casati, María Jesús; Molero, Miguel; González, Margarita

    2014-01-01

    This paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches—the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles. These estimates have been compared with the results obtained using mercury porosimetry testing. In the second approach, the damage due to F-T cycles has been evaluated by automated ultrasonic transmission and pulse-echo inspections made before and after the cycles. With these inspections the variations in the dimensions, velocity and attenuation caused by the accelerated F-T cycles were determined. PMID:24481231

  19. Numerical Analysis of Ultrasonic Beam Profile Due to the Change of the Number of Piezoelectric Elements for Phased Array Transducer

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Hyun

    1999-01-01

    A phased array is a multi-element piezoelectric device whose elements are individually excited by electric pulses at programmed delay time. One of the advantages of using phased array in nondestructive evaluation (NDE) application over conventional ultrasonic transducers is their great maneuverability of ultrasonic beam. There are some parameters such as the number and the size of the piezoelectric elements and the inter-element spacing of the elements to design phased array transducer. In this study, the characteristic of ultrasonic beam for phased array transducer due to the variation of the number of elements has been simulated for ultrasonic SH-wave on the basis of Huygen's principle. Ultrasonic beam directivity and focusing due to the change of time delay of each element were discussed due to the change of the number of piezoelectric elements. It was found that ultrasonic beam was much more spreaded and hence its sound pressure was decreased as steering angle of ultrasonic beam was increased. In addition, the ability of ultrasonic bean focusing decreased gradually with the increase of focal length at the same piezoelectric elements. However, the ability of beam focusing was improved as the number of consisting elements was increased

  20. Fast Lamb wave energy shift approach using fully contactless ultrasonic system to characterize concrete structures

    Science.gov (United States)

    Ham, Suyun; Popovics, John S.

    2015-03-01

    Ultrasonic techniques provide an effective non-destructive evaluation (NDE) method to monitor concrete structures, but the need to perform rapid and accurate structural assessment requires evaluation of hundreds, or even thousands, of measurement datasets. Use of a fully contactless ultrasonic system can save time and labor through rapid implementation, and can enable automated and controlled data acquisition, for example through robotic scanning. Here we present results using a fully contactless ultrasonic system. This paper describes our efforts to develop a contactless ultrasonic guided wave NDE approach to detect and characterize delamination defects in concrete structures. The developed contactless sensors, controlled scanning system, and employed Multi-channel Analysis of Surface Waves (MASW) signal processing scheme are reviewed. Then a guided wave interpretation approach for MASW data is described. The presence of delamination is interpreted by guided plate wave (Lamb wave) behavior, where a shift in excited Lamb mode phase velocity, is monitored. Numerically simulated and experimental ultrasonic data collected from a concrete sample with simulated delamination defects are presented, where the occurrence of delamination is shown to be associated with a mode shift in Lamb wave energy.

  1. Experimental and field achievements in the ultrasonic examination of austenitic stainless steel

    International Nuclear Information System (INIS)

    Dombret, P.; Cermak, J.; Delaide, M.; Verspeelt, D.; Caussin, P.

    1988-01-01

    In spite of the many disturbances caused in the propagation of acoustic waves by the metallurgical structure of austenitic stainless steel, ultrasonic examination can provide in many cases key information in the process of assessing the structural integrity of industrial installations made from such materials. Indeed the steel structure variability makes every cases peculiar, with the consequence that the achievement of a dedicated feasibility study will often enhance drastically the examination performance. Such an exploratory exercise imposes to use a careful methodology regarding transducer and pulser selection, data analysis, performance evaluation, procedure qualification and field implementation. Through various examples from the nuclear industry field, the paper illustrates that kind of approach, as well as the extent to which it has been made possible to optimize the actual inspection capability and reliability. (author)

  2. Experimental and field achievements in the ultrasonic examination of austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Dombret, P; Cermak, J; Delaide, M; Verspeelt, D; Caussin, P

    1988-12-31

    In spite of the many disturbances caused in the propagation of acoustic waves by the metallurgical structure of austenitic stainless steel, ultrasonic examination can provide in many cases key information in the process of assessing the structural integrity of industrial installations made from such materials. Indeed the steel structure variability makes every cases peculiar, with the consequence that the achievement of a dedicated feasibility study will often enhance drastically the examination performance. Such an exploratory exercise imposes to use a careful methodology regarding transducer and pulser selection, data analysis, performance evaluation, procedure qualification and field implementation. Through various examples from the nuclear industry field, the paper illustrates that kind of approach, as well as the extent to which it has been made possible to optimize the actual inspection capability and reliability. (author).

  3. Data merging of infrared and ultrasonic images for plasma facing components inspection

    International Nuclear Information System (INIS)

    Richou, M.; Durocher, A.; Medrano, M.; Martinez-Ona, R.; Moysan, J.; Riccardi, B.

    2009-01-01

    For steady-state magnetic thermonuclear fusion devices which need large power exhaust capability, actively cooled plasma facing components have been developed. In order to guarantee the integrity of these components during the required lifetime, their thermal and mechanical behaviour must be assessed. Before the procurement of the ITER Divertor, the examination of the heat sink to armour joints with non-destructive techniques is an essential topic to be addressed. Defects may be localised at different bonding interfaces. In order to improve the defect detection capability of the SATIR technique, the possibility of merging the infrared thermography test data coming from SATIR results with the ultrasonic test data has been identified. The data merging of SATIR and ultrasonic results has been performed on Carbon Fiber Composite (CFC) monoblocks with calibrated defects, identified by their position and extension. These calibrated defects were realised with machining, with 'stop-off' or by a lack of CFC activation techniques, these last two representing more accurately a real defect. A batch of 56 samples was produced to simulate each possibility of combination with regards to interface location, position and extension and way of realising the defect. The use of a data merging method based on Dempster-Shafer theory improves significantly the detection sensibility and reliability of defect location and size.

  4. Can non-destructive inspection be reliable

    International Nuclear Information System (INIS)

    Silk, M.G.; Stoneham, A.M.; Temple, J.A.G.

    1988-01-01

    The paper on inspection is based on the book ''The reliability of non-destructive inspection: assessing the assessment of structures under stress'' by the present authors (published by Adam Hilger 1987). Emphasis is placed on the reliability of inspection and whether cracks in welds or flaws in components can be detected. The need for non-destructive testing and the historical attitudes to non-destructive testing are outlined, along with the case of failure. Factors influencing reliable inspection are discussed, and defect detection trials involving round robin tests are described. The development of reliable inspection techniques and the costs of reliability and unreliability are also examined. (U.K.)

  5. Aging material evaluation and studies by non-destructive techniques (AMES-NDT) - a European network project

    International Nuclear Information System (INIS)

    Dobmann, Gerd; Debarberis, Luigi; Coste, Jean-Francois

    2001-01-01

    This paper presents results obtained in a round-robin action organized in a concerted action of ten partners in the EURATOM program of the European Community. The objective of the research was to document the state of the art of available non-destructive testing (NDT) techniques in order to characterize material aging phenomena based on a reduction of Charpy-V energy and a shift in the fracture appearance transition temperature. Therefore, samples from the Japanese nuclear reactor pressure vessel JRQ-steel (ASMT Standard A533-B Class 1) have been thermally treated at 700 deg. C for 18 h with a subsequent water quenching. Besides micromagnetic and electromagnetic NDT, the positron annihilation technique, ultrasonic reverberation by using Laser ultrasonics and the thermo-electrical power have been applied to characterize the aged material states

  6. Ultrasonic velocity measurements- a potential sensor for intelligent processing of austenitic stainless steels

    International Nuclear Information System (INIS)

    Venkadesan, S.; Palanichamy, P.; Vasudevan, M.; Baldev Raj

    1996-01-01

    Development of sensors based on Non-Destructive Evaluation (NDE) techniques for on-line sensing of microstructure and properties requires a thorough knowledge on the relation between the sensing mechanism/measurement of an NDE technique and the microstructure. As a first step towards developing an on-line sensor for studying the dynamic microstructural changes during processing of austenitic stainless steels, ultrasonic velocity measurements have been carried out to study the microstructural changes after processing. Velocity measurements could follow the progress of annealing starting from recovery, onset and completion of recrystallization, sense the differences in the microstructure obtained after hot deformation and estimate the grain size. This paper brings out the relation between the sensing method based on ultrasonic velocity measurements and the microstructure in austenitic stainless steel. (author)

  7. Research and developments on nondestructive testing in fabrications of fast breeder reactor structural components in Japan

    International Nuclear Information System (INIS)

    Ebata, M.; Ooka, K.; Miyoshi, S.; Senda, T.

    1985-01-01

    Research and developments (R and D) have been conducted on the nondestructive testing techniques necessary for the construction of fast breeder reactor (FBR). Radiographic tests have been made on tube-tube plate welds and small-diameter tube welds, etc. Ultrasonic tests have been conducted on austenitic stainless steel welds. In the penetrant tests and magnetic particle tests, the investigations have been performed on the effects of various test factors on the test results

  8. Assuring the reliability of structural components - experimental data and non-destructive examination requirements

    International Nuclear Information System (INIS)

    Lucia, A.C.

    1984-01-01

    The probability of failure of a structural component can be estimated by either statistical methods or a probabilistic structural reliability approach (where the failure is seen as a level crossing of a damage stochastic process which develops in space and in time). The probabilistic approach has the advantage that it makes available not only an absolute value of the failure probability but also a lot of additional information. The disadvantage of the probabilistic approach is its complexity. It is discussed for the following situations: reliability of a structural component, material properties, data for fatigue crack growth evaluation, a bench mark exercise on reactor pressure vessel failure probability computation, and non-destructive examination for assuring a given level of structural reliability. (U.K.)

  9. Modelling of ultrasonic nondestructive testing of cracks in claddings

    Energy Technology Data Exchange (ETDEWEB)

    Bostroem, Anders; Zagbai, Theo [Calmers Univ. of Technology, Goeteborg (Sweden). Dept. of Applied Mechanics

    2006-05-15

    Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry. To develop and qualify the methods extensive experimental work with test blocks is usually required. This can be very time-consuming and costly and it also requires a good physical intuition of the situation. A reliable mathematical model of the testing situation can, therefore, be very valuable and cost-effective as it can reduce experimental work significantly. A good mathematical model enhances the physical intuition and is very useful for parametric studies, as a pedagogical tool, and for the qualification of procedures and personnel. The present project has been concerned with the modelling of defects in claddings. A cladding is a layer of material that is put on for corrosion protection, in the nuclear power industry this layer is often an austenitic steel that is welded onto the surface. The cladding is usually anisotropic and to some degree it is most likely also inhomogeneous, particularly in that the direction of the anisotropy is varying. This degree of inhomogeneity is unknown but probably not very pronounced so for modelling purposes it may be a valid assumption to take the cladding to be homogeneous. However, another important complicating factor with claddings is that the interface between the cladding and the base material is often corrugated. This corrugation can have large effects on the transmission of ultrasound through the interface and can thus greatly affect the detectability of defects in the cladding. In the present project the only type of defect that is considered is a planar crack that is situated inside the cladding. The investigations are, furthermore, limited to two dimensions, and the crack is then only a straight line. The crack can be arbitrarily oriented and situated, but it must not intersect the interface to the base material. The crack can be surface-breaking, and this is often the case of most practical interest, but it should then be

  10. Ultrasonic guided wave inspection of Inconel 625 brazed lap joints

    Science.gov (United States)

    Comot, Pierre; Bocher, Philippe; Belanger, Pierre

    2016-04-01

    The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.

  11. Characterization of legacy low level waste at the Svafo facility using gamma non-destructive assay and X-ray non-destructive examination techniques - 59289

    International Nuclear Information System (INIS)

    Halliwell, Stephen; Mottershead, Gary; Ekenborg, Fredrik

    2012-01-01

    Document available in abstract form only. Full text of publication follows: Over 7000 drums containing legacy, low level radioactive waste are stored at four SVAFO facilities on the Studsvik site which is located near Nykoeping, Sweden. The vast majority of the waste drums (>6000) were produced between 1969 and 1979. The remainder were produced from 1980 onwards. Characterization of the waste was achieved using a combination of non-destructive techniques via mobile equipment located in the AU building at the Studsvik site. Each drum was weighed and a dose rate measurement was recorded. Gamma spectroscopy was used to measure and estimate radionuclide content. Real time xray examination was performed to identify such prohibited items as free liquids. (authors)

  12. Quantitative ultrasonic evaluation of concrete structures using one-sided access

    Science.gov (United States)

    Khazanovich, Lev; Hoegh, Kyle

    2016-02-01

    Nondestructive diagnostics of concrete structures is an important and challenging problem. A recent introduction of array ultrasonic dry point contact transducer systems offers opportunities for quantitative assessment of the subsurface condition of concrete structures, including detection of defects and inclusions. The methods described in this paper are developed for signal interpretation of shear wave impulse response time histories from multiple fixed distance transducer pairs in a self-contained ultrasonic linear array. This included generalizing Kirchoff migration-based synthetic aperture focusing technique (SAFT) reconstruction methods to handle the spatially diverse transducer pair locations, creating expanded virtual arrays with associated reconstruction methods, and creating automated reconstruction interpretation methods for reinforcement detection and stochastic flaw detection. Interpretation of the reconstruction techniques developed in this study were validated using the results of laboratory and field forensic studies. Applicability of the developed methods for solving practical engineering problems was demonstrated.

  13. Ultrasonic signal processing and B-SCAN imaging for nondestructive testing. Application to under - cladding - cracks

    International Nuclear Information System (INIS)

    Theron, G.

    1988-02-01

    Crack propagation under the stainless steel cladding of nuclear reactor vessels is monitored by ultrasonic testing. This work study signal processing to improve detection and sizing of defects. Two possibilities are examined: processing of each individual signal and simultaneous processing of all the signals giving a B-SCAN image. The bibliographic study of time-frequency methods shows that they are not suitable for pulses. Then decomposition in instantaneous frequency and envelope is used. Effect of interference of 2 close echoes on instantaneous frequency is studies. The deconvolution of B-SCAN images is obtained by the transducer field. A point-by-point deconvolution method, less noise sensitive, is developed. B-SCAN images are processed in 2 phases: interface signal processing and deconvolution. These calculations improve image accuracy and dynamics. Water-stell interface and ferritic-austenitic interface are separated. Echoes of crack top are visualized and crack-hole differentiation is improved [fr

  14. An HDF5-based framework for the distribution and analysis of ultrasonic concrete data

    Science.gov (United States)

    Prince, Luke; Clayton, Dwight; Santos-Villalobos, Hector

    2017-02-01

    There are many commercial ultrasonic tomography devices (UTDs) available for use in nondestructive evaluation (NDE) of reinforced concrete structures. These devices emit, measure, and store ultrasonic signals typically in the 25 kHz to 5 MHz frequency range. UTDs are characterized by a composition of multiple transducers, also known as a transducer array or phased array. Often, UTDs data are in a proprietary format. Consequently, NDE research data is limited to those who have prior non-disclosure agreements or the appropriate licenses. Thus, there is a need for a proper universal data framework to exist such that proprietary file datasets for different concrete specimens can be converted, organized, and stored with relative metadata for individual or collaborative NDE research. Building upon the Hierarchical Data Format (HDF5) model, we have developed a UTD data management framework and Graphic User Interface (GUI) to promote the algorithmic reconstruction of ultrasonic data in a controlled environment for easily reproducible and publishable results.

  15. Experimental Development and Demonstration of Ultrasonic Measurement Diagnostics for Sodium Fast Reactor Thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Tokuhiro, Akira; Jones, Byron

    2013-09-13

    This research project will address some of the principal technology issues related to sodium-cooled fast reactors (SFR), primarily the development and demonstration of ultrasonic measurement diagnostics linked to effective thermal convective sensing under normatl and off-normal conditions. Sodium is well-suited as a heat transfer medium for the SFR. However, because it is chemically reactive and optically opaque, it presents engineering accessibility constraints relative to operations and maintenance (O&M) and in-service inspection (ISI) technologies that are currently used for light water reactors. Thus, there are limited sensing options for conducting thermohydraulic measurements under normal conditions and off-normal events (maintenance, unanticipated events). Acoustic methods, primarily ultrasonics, are a key measurement technology with applications in non-destructive testing, component imaging, thermometry, and velocimetry. THis project would have yielded a better quantitative and qualitative understanding of the thermohydraulic condition of solium under varied flow conditions. THe scope of work will evaluate and demonstrate ultrasonic technologies and define instrumentation options for the SFR.

  16. Transmission mode acoustic time-reversal imaging for nondestructive evaluation

    Science.gov (United States)

    Lehman, Sean K.; Devaney, Anthony J.

    2002-11-01

    In previous ASA meetings and JASA papers, the extended and formalized theory of transmission mode time reversal in which the transceivers are noncoincident was presented. When combined with the subspace concepts of a generalized MUltiple SIgnal Classification (MUSIC) algorithm, this theory is used to form super-resolution images of scatterers buried in a medium. These techniques are now applied to ultrasonic nondestructive evaluation (NDE) of parts, and shallow subsurface seismic imaging. Results are presented of NDE experiments on metal and epoxy blocks using data collected from an adaptive ultrasonic array, that is, a ''time-reversal machine,'' at Lawrence Livermore National Laboratory. Also presented are the results of seismo-acoustic subsurface probing of buried hazardous waste pits at the Idaho National Engineering and Environmental Laboratory. [Work performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.] [Work supported in part by CenSSIS, the Center for Subsurface Sensing and Imaging Systems, under the Engineering Research Centers Program of the NSF (award number EEC-9986821) as well as from Air Force Contracts No. F41624-99-D6002 and No. F49620-99-C0013.

  17. Limits to the Recognizability of Flaws in Non-Destructive Testing Steam-Generator Tubes for Nuclear-Power Plants

    International Nuclear Information System (INIS)

    Kuhlmann, A.; Adamsky, F.-J.

    1965-01-01

    In the Federal Republic of Germany there are nuclear reactors under construction with steam generators inside the reactor pressure-vessel. As a result design repairs of steam- generator tubes are very difficult and cause large shut-down times of the nuclear-power plant. It is known that numerous troubles in operating conventional power plants are results of steam-generator tube damages. Because of the high total costs of these reactors it. is necessary to construct the steam generators especially in such a manner that the load factor of the power plant is as high as possible. The Technischer Überwachungs-Verein Rheinland was charged to supervise and to test fabrication and construction of the steam generators to see that this part of the plant was as free of defects as possible. The experience gained during this work is of interest for manufacture and construction of steam generators for nuclear-power plants in general. This paper deals with the efficiency limits of non-destructive testing steam-generator tubes. The following tests performed will be discussed in detail: (a) Automatic ultrasonic testing of the straight tubes in the production facility; (b) Combined ultrasonic and radiographic testing of the bent tubes and tube weldings; (c) Other non-destructive tests. (author) [fr

  18. Experimental investigation by laser ultrasonics for high speed train axle diagnostics.

    Science.gov (United States)

    Cavuto, A; Martarelli, M; Pandarese, G; Revel, G M; Tomasini, E P

    2015-01-01

    The present paper demonstrates the applicability of a laser-ultrasonic procedure to improve the performances of train axle ultrasonic inspection. The method exploits an air-coupled ultrasonic probe that detects the ultrasonic waves generated by a high-power pulsed laser. As a result, the measurement chain is completely non-contact, from generation to detection, this making it possible to considerably speed up inspection time and make the set-up more flexible. The main advantage of the technique developed is that it works in thermo-elastic regime and it therefore can be considered as a non-destructive method. The laser-ultrasonic procedure investigated has been applied for the inspection of a real high speed train axle provided by the Italian railway company (Trenitalia), on which typical fatigue defects have been expressly created according to standard specifications. A dedicated test bench has been developed so as to rotate the axle with the angle control and to speed up the inspection of the axle surface. The laser-ultrasonic procedure proposed can be automated and is potentially suitable for regular inspection of train axles. The main achievements of the activity described in this paper are: – the study of the effective applicability of laser-ultrasonics for the diagnostic of train hollow axles with variable sections by means of a numerical FE model, – the carrying out of an automated experiment on a real train axle, – the analysis of the sensitivity to experimental parameters, like laser source – receiving probe distance and receiving probe angular position, – the demonstration that the technique is suitable for the detection of surface defects purposely created on the train axle. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The study on defects in aluminum 2219-T6 thick butt friction stir welds with the application of multiple non-destructive testing methods

    International Nuclear Information System (INIS)

    Li, Bo; Shen, Yifu; Hu, Weiye

    2011-01-01

    Research highlights: → Friction stir weld-defect forming mechanisms of thick butt-joints. → Relationship between weld-defects and friction stir welding process parameters. → Multiple non-destructive testing methods applied to friction stir welds. → Empirical criterion basing on mass-conservation for inner material-loss defects. → Nonlinear correlation between weld strengths and root-flaw lengths. -- Abstract: The present study focused on the relationship between primary friction stir welding process parameters and varied types of weld-defect discovered in aluminum 2219-T6 friction stir butt-welds of thick plates, meanwhile, the weld-defect forming mechanisms were investigated. Besides a series of optical metallographic examinations for friction stir butt welds, multiple non-destructive testing methods including X-ray detection, ultrasonic C-scan testing, ultrasonic phased array inspection and fluorescent penetrating fluid inspection were successfully used aiming to examine the shapes and existence locations of different weld-defects. In addition, precipitated Al 2 Cu phase coarsening particles were found around a 'kissing-bond' defect within the weld stirred nugget zone by means of scanning electron microscope and energy dispersive X-ray analysis. On the basis of volume conservation law in material plastic deformation, a simple empirical criterion for estimating the existence of inner material-loss defects was proposed. Defect-free butt joints were obtained after process optimization of friction stir welding for aluminum 2219-T6 plates in 17-20 mm thickness. Process experiments proved that besides of tool rotation speed and travel speed, more other appropriate process parameter variables played important roles at the formation of high-quality friction stir welds, such as tool-shoulder target depth, spindle tilt angle, and fixture clamping conditions on the work-pieces. Furthermore, the nonlinear correlation between weld tensile strengths and weld crack

  20. Nondestructive Examination Equipment in the Hanford Site WRAP 1 and Retrieval Project

    International Nuclear Information System (INIS)

    Keve, J.K.; Weber, J.R.

    1994-08-01

    The Waste Receiving and Processing Facility, Module 1 (WRAP-1) is currently under construction at the Hanford Nuclear Site in south-central Washington Stage. The facility is scheduled to begin operation in 1996. Its mission is to annually receive more than 6,800 55-gallon drums of both newly generated and retrieved contact-handled solid waste and prepare them for certification and disposal. WRAP 1, the Nondestructive Examination (NDE) System has two primary functions: To identify the presence or verify the absence of non-compliant materials in the un-manifested, retrieved drums, and to certify that all outgoing drums of TRU waste (newly generated and processed) are free of liquids and other non-compliant items. The Solid Waste Retrieval Facility, Phase 1 Project will unearth and recover the first 10,000 of 38,000 drums of suspect TRU waste buried between 1970 and 1985 for which no detailed contents manifests exist. Follow-on projects will recover the balance of the buried drums. To resolve safely issues about storing the newly unearthed drums, the containers and contents will be examined at the recovery site before the containers are placed in storage facilities

  1. Remote consulting based on ultrasonic digital immages and dynamic ultrasonic sequences

    Science.gov (United States)

    Margan, Anamarija; Rustemović, Nadan

    2006-03-01

    Telematic ultrasonic diagnostics is a relatively new tool in providing health care to patients in remote, islolated communities. Our project facility, "The Virtual Polyclinic - A Specialists' Consulting Network for the Islands", is located on the island of Cres in the Adriatic Sea in Croatia and has been extending telemedical services to the archipelago population since 2000. Telemedicine applications include consulting services by specialists at the University Clinical Hospital Center Rebro in Zagreb and at "Magdalena", a leading cardiology clinic in Croatia. After several years of experience with static high resolution ultrasonic digital immages for referral consulting diagnostics purposes, we now also use dynamic ultrasonic sequences in a project with the Department of Emmergency Gastroenterology at Rebro in Zagreb. The aim of the ongoing project is to compare the advantages and shortcomings in transmitting static ultrasonic digital immages and live sequences of ultrasonic examination in telematic diagnostics. Ultrasonic examination is a dynamic process in which the diagnostic accuracy is highly dependent on the dynamic moment of an ultrasound probe and signal. Our first results indicate that in diffuse parenchymal organ pathology the progression and the follow up of a disease is better presented to a remote consulting specialist by dynamic ultrasound sequences. However, the changes that involve only one part of a parenchymal organ can be suitably presented by static ultrasonic digital images alone. Furthermore, we need less time for digital imaging and such tele-consultations overall are more economical. Our previous telemedicine research and practice proved that we can greatly improve the level of medical care in remote healthcare facilities and cut healthcare costs considerably. The experience in the ongoing project points to a conclusion that we can further optimize remote diagnostics benefits by a right choice of telematic application thus reaching a

  2. Examination of VVER-1000 Reactor Pressure Vessel

    International Nuclear Information System (INIS)

    Matokovic, A.; Picek, E.; Markulin, K.

    2008-01-01

    The increasing demand of a higher level of safety in the operation of the nuclear power plants requires the utilisation of more precise automated equipment to perform in-service inspections. That has been achieved by technological advances in computer technology, in robotics, in examination probe technology with the development of the advanced inspection technique and has also been due to the considerable and varied experience gained in the performance of such inspections. In-service inspection of reactor pressure vessel, especially Russian-designed WWER-1000 presents one of the most important and extensive examination of nuclear power plants primary circuit components. Such examination demand high standards of inspection technology, quality and continual innovation in the field of non-destructive testing advanced technology. A remote underwater contact ultrasonic technique is employed for the examination of the base metal of vessel and reactor welds, whence eddy current method is applied for clad surface examinations. Visual testing is used for examination of the vessel interior. The movement of inspection probes and data positioning are assured by using new reactor pressure vessel tool concept that is fully integrated with inspection systems. The successful performance of reactor pressure vessel is attributed thorough pre-outage planning, training and successful performance demonstration qualification of chosen non-destructive techniques on the specimens with artificial and/or real defects. Furthermore, use of advanced approach of inspection through implementation the state-of-the-art examination equipment significantly reduced the inspection time, radiation exposure to examination personnel, shortening nuclear power plant outage and cutting the total inspection costs. This paper presents advanced approach in the reactor pressure vessel in-service inspections and it is especially developed for WWER-1000 nuclear power plants.(author)

  3. Human and organisational factors influencing the reliability of non-destructive testing. An international literary survey

    International Nuclear Information System (INIS)

    Kettunen, J.; Norros, L.

    1996-04-01

    The aim of the study is to chart human and organisational factors influencing the reliability of non-destructive testing (NDT). The emphasis will be in ultrasonic testing (UT) and in the planning and execution of in-service inspections during nuclear power plant maintenance outages. Being a literary survey this study is mainly based on the foreign and domestic research available on the topic. In consequence, the results presented in this report reflect the ideas of international research community. In addition to this, Finnish nuclear power plant operators (Imatran Voima Oy and Teollisuuden Voima Oy), independent inspection organisations and the Finnish Centre for Radiation and Nuclear Safety have provided us with valuable information on NDT theory and practice. Especially, a kind of 'big picture' of non-destructive testing has been pursued in the study. (6 figs., 2 tabs.)

  4. Non-destructive testing. V. 2

    International Nuclear Information System (INIS)

    Farley, J.M.; Nichols, R.W.

    1988-01-01

    The book entitled 'Non-destructive Testing' Volume 2, contains the proceedings of the fourth European Conference, organized by the British Institute of Non-Destructive Testing and held in London, September 1987. The volume contains seven chapters which examine the reliability of NDT, the economics of NDT and the use of NDT in:- civil engineering; oil, gas, coal and petrochemical industries; iron and steel industries; aerospace industry; and the nuclear and electricity supply industries. The seven chapters contain 78 papers, of which 19 are selected for INIS and indexed separately. (U.K.)

  5. Review of inservice inspection and nondestructive examination practices at DOE Category A test and research reactors

    International Nuclear Information System (INIS)

    Anderson, M.T.; Aldrich, D.A.

    1990-09-01

    In-service inspection (ISI) programs are used at commercial nuclear power plants for monitoring the pressure boundary integrity of various systems and components to ensure their continued safe operation. The Department of Energy (DOE) operates several test and research reactors. This report represents an evaluation of the ISI and nondestructive examination (NDE) practices at five DOE Category A (> 20 MW thermal) reactors as compared, where applicable, to the current ISI activities of commercial nuclear power facilities. The purpose of an inservice inspection (ISI) program is to establish regular surveillance of safety-related components to ensure their safe and reliable operation. The integrity of materials comprising these components is generally monitored by means of periodic nondestructive examinations (NDE), which, if appropriately performed, provide methods for identifying degradation that could render components unable to perform their intended safety functions. The reactors evaluated during this review were the Experimental Breeder Reactor 2 and the Fast Flux Test Facility (liquid-metal cooled plants), the Advanced Test Reactor and the High Flux Isotopes Reactor (light-water cooled reactors), and the High Flux Beam Reactor (a heavy-water cooled facility). Although these facilities are extremely diverse in design and operation, they all have less stored energy, smaller inventories of radionuclides, and generally, more remote locations than commercial reactors. However, all DOE test and research facilities contain components similar to those of commercial reactors for which continued integrity is important to maintain plant safety. 10 refs., 6 tabs

  6. Near-surface non-destructive examination of reactor steels: a state-of-the-art report

    International Nuclear Information System (INIS)

    Launay, J.P.

    1985-06-01

    A Working Group has been set up to deal with nondestructive testing reliability within the OECD/CSNI framework. One of its activities was to initiate consideration on near surface defect inspection, especially inner surfaces of reactors. The purpose of the survey was to clarify the three following points: present regulations of safety authorities and implementation of these regulations concerning manufacturing examinations and in-service inspection; results of R and D work already performed in this field; R and D work in progress and proposal for an expansion within the framework of the CSNI Special Working Group. This document summarizes information received from the following countries: USA, Spain, the Netherlands, France, United Kingdom, Belgium, Switzerland

  7. Ultrasonic Guided Waves in Piezoelectric Layered Composite with Different Interfacial Properties

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2011-01-01

    Full Text Available Combining the propagation model of guided waves in a multilayered piezoelectric composite with the interfacial model of rigid, slip, and weak interfaces, the generalized dispersion characteristic equations of guided waves propagating in a piezoelectric layered composite with different interfacial properties are derived. The effects of the slip, weak, and delamination interfaces in different depths on the dispersion properties of the lowest-order mode ultrasonic guided wave are analyzed. The theory would be used to characterize the interfacial properties of piezoelectric layered composite nondestructively.

  8. Optical Production and Detection of Ultrasonic Waves in Metals for Nondestructive Testing

    Science.gov (United States)

    Morrison, R. A.

    1972-01-01

    Ultrasonic waves were produced by striking the surface of a metal with the focused one-joule pulse of a Q-switched ruby laser. Rayleigh (surface) waves and longitudinal waves were detected with conventional transducers. Optical methods of detection were tested and developed. Rayleigh waves were produced with an oscillator and transducer. They were optically detected on curved polished surfaces, and on unpolished surfaces. The technique uses a knife edge to detect small angle changes of the surface as the wave pulse passes the illuminated spot. Optical flaw detection using pulse echo and attenuation is demonstrated.

  9. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    The ultrasonic examination of austenitic stainless steel weld metal has always been regarded as a difficult proposition because of the large and variable ultrasonic attenuations and back scattering obtained from apparently similar weld deposits. The work to be described shows how the existence of a fibre texture within each weld deposit (as a result of epitaxial growth through successive weld beads) produces a systematic variation in the ultrasonic attenuation coefficient and the velocity of sound, depending upon the angle between the ultrasonic beam and the fibre axis. Development work has shown that it is possible to adjust the welding parameters to ensure that the crystallographic texture within each weld is compatible with improved ultrasonic transmission. The application of the results to the inspection of a specific weld in type 316 weld metal is described

  10. Non-destructive evaluation methods to improve quality control in low enrichment MTR fuel plate production

    International Nuclear Information System (INIS)

    Milne, J.M.; Lidington, B.; Hawker, B.M.

    1991-01-01

    This paper summarises some preliminary non-destructive measurements made recently at the Harwell Laboratory on a prototype low enrichment MTR fuel plate. The measurements were intended to indicate the potential of two different techniques for improving quality control in plate production. Pulse Video Thermography (PVT) is being considered as an alternative to ultrasound transmission measurements for the detection and sizing of lack of thermal bonding between the fuel and the clad layers, either to verify the indications from the established ultrasonic methods before destroying the plate or as a replacement method of inspection. High frequency pulse-echo ultrasonics is being considered for providing maps of clad layer thickness on each side of the plate. The measurements have indicated the potential for both methods, but more work is required, using a test plate containing controlled defects, to establish their capability. (orig.)

  11. The complementary roles of fracture mechanics and non-destructive examination in the safety assessment of components

    International Nuclear Information System (INIS)

    1988-01-01

    This document presents the various speeches of the workshop of the Committee on Safety of Nuclear Installations (CSNI) that took place in Wuerenligen, Switzerland, in October 1988. The speeches deal with the roles of Non-Destructive Examination (NDE) and Fracture Mechanics (FM) in the safety assessment of reactor components, such as pressure vessels. Some calibration standards and reference values of defects are presented, and several NDE and FM methods for the assessment of components are described. Separate abstracts were prepared for all the papers in this volume. (TEC)

  12. The complementary roles of fracture mechanics and non-destructive examination in the safety assessment of components

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-31

    This document presents the various speeches of the workshop of the Committee on Safety of Nuclear Installations (CSNI) that took place in Wuerenligen, Switzerland, in October 1988. The speeches deal with the roles of Non-Destructive Examination (NDE) and Fracture Mechanics (FM) in the safety assessment of reactor components, such as pressure vessels. Some calibration standards and reference values of defects are presented, and several NDE and FM methods for the assessment of components are described. Separate abstracts were prepared for all the papers in this volume. (TEC).

  13. Determination of crack size around rivet hole through neural network using ultrasonic Lamb wave

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Hyun

    1998-01-01

    Rivets are typical structural features that are potential initiation sites for fatigue crack due to combination of local stress concentration around rivet hole and moisture trapping. For the viewpoint of structural assurance, it is crucial to evaluate the size of crack around rivets by appropriate nondestructive techniques. Guided waves, which direct wave energy along the plate, carry information about the material in their path and offer a potentially more efficient tool for nondestructive inspection of structural material. Neural network that is considered to be the most suitable for pattern recognition and has been used by researchers in NDE field to classify different types of flaws and flaw size. In this study, crack size determination around rivet through a neural network based on the back-propagation algorithm has been done by extracting some feature from time-domain waveforms of ultrasonic Lamb wave for Al 2024-T3 skin panel of aircraft. Special attention was paid to reduce the coupling effect between transducer and specimen by extracting some features related to only time component data in ultrasonic waveform. It was demonstrated clearly that features extraction based on time component data of the time-domain waveform of Lamb wave was very useful to determine crack size initiated from rivet hole through neural network.

  14. A portable solution to enable guided ultrasonic inspection

    International Nuclear Information System (INIS)

    Enenkel, Laurent; Buechler, Johannes; Poirier, Jerome; Jervis David

    2012-01-01

    This paper describes the development and application of an innovative ultrasonic (UT) inspection system, which is 100% guided and menu-driven to reduce human error and ensure both inspection accuracy and productivity in the reliable and accurate non-destructive testing (NDT) of shafts, tubes, pipes, and other components and structures. Set-up is menu-directed with the minimum of instrument-specific training, allowing the integral operating software to calculate all the ultrasonic parameters for each task according to the inspection procedure and create an easy-to-follow inspection plan, using either phased array or conventional UT. The operator then scans the work piece, with an encoded scanner, which ensures that the inspection plan is strictly followed. Inspection data is transmitted to a review station in the industry-accepted, non-proprietary DICONDE protocol, allowing advanced analysis tools, such as real time, volume corrected imaging, to allow easier and more reliable image interpretation. By using GEs Rhythm software platform, inspection data can be reviewed and shared, reports generated and inspection results archived for traceability, tracking or further analysis.

  15. Determination of the apparent porosity level of refractory concrete during a sintering process using an ultrasonic pulse velocity technique and image analysis

    Directory of Open Access Journals (Sweden)

    LJUBICA M. PAVLOVIĆ

    2010-03-01

    Full Text Available Concrete which undergoes a thermal treatment before (pre-casted concrete blocks and during (concrete embedded in-situ its life-service can be applied in plants operating at high temperature and as thermal insulation. Sintering is a process which occurs within a concrete structure in such conditions. Progression of sintering process can be monitored by the change of the porosity parameters determined with a nondestructive test method - ultrasonic pulse velocity and computer program for image analysis. The experiment has been performed on the samples of corundum and bauxite concrete composites. The apparent porosity of the samples thermally treated at 110, 800, 1000, 1300 and 1500 C was primary investigated with a standard laboratory procedure. Sintering parameters were calculated from the creep testing. The loss of strength and material degradation occurred in concrete when it was subjected to the increased temperature and a compressive load. Mechanical properties indicate and monitor changes within microstructure. The level of surface deterioration after the thermal treatment was determined using Image Pro Plus program. Mechanical strength was estimated using ultrasonic pulse velocity testing. Nondestructive ultrasonic mea¬surement was used as a qualitative description of the porosity change in specimens which is the result of the sintering process. The ultrasonic pulse velocity technique and image analysis proved to be reliable methods for monitoring of micro-structural change during the thermal treatment and service life of refractory concrete.

  16. New possibilities for non-destructive testing of pipelines with intelligent pigs

    Energy Technology Data Exchange (ETDEWEB)

    Willems, H.; Jaskolla, B.; Barbian, O.A. [NDT Systems and Services, Stutensee (Germany); Niese, F. [Institut fuer zerstoerungsfreie Pruefverfahren, Saarbruecken (Germany)

    2009-07-01

    Pipelines are considered to be the safest way for transportation of large amounts of liquid and gas over large distances. In the course of the lifetime of a pipeline, however, many effects can lead to damages affecting the integrity of the line, e.g. manufacturing-related anomalies, operationally induced anomalies or third-party damage. In order to avoid pipeline failures with potentially catastrophic consequences so-called intelligent pigs (or smart pigs) were developed during the last decades: These tools allow for the internal inspection (In-Line Inspection, ILI) of pipelines using non-destructive testing technologies for the early detection and sizing of defects. Most common are magnetic flux leakage (MFL) and ultrasonic techniques for corrosion inspection and the latter also for crack inspection. While the ultrasonic techniques offer superior sizing capabilities they are limited to the inspection of liquid pipelines where the medium itself provides the necessary coupling between the (piezoelectric) ultrasonic transducers and the pipe wall. However, this limitation can be overcome by recent developments using EMAT (Electro-Magnetic Acoustic Transducer) technology. By a special sensor design, the EMAT inspection is combined with eddy current (EC) inspection and MFL inspection at the same time. As a result, this new multi-technology approach offers improved sizing as well as enhanced feature identification for wall thickness inspection of gas pipelines. (orig.)

  17. Ultrasonication and food technology: A review

    Directory of Open Access Journals (Sweden)

    Ishrat Majid

    2015-12-01

    Full Text Available With increasing consumers demand and tightening of food and environmental regulations, traditional food-processing techniques have lost their optimum performance which gave rise to new and powerful technologies. Ultrasonic is a one of the fast, versatile, emerging, and promising non-destructive green technology used in the food industry from last few years. The ultrasound is being carried out in various areas of food technology namely crystallization, freezing, bleaching, degassing, extraction, drying, filtration, emulsification, sterilization, cutting, etc. Ultrasound is being applied as an effective preservation tool in many food-processing fields viz. vegetables and fruits, cereal products, honey, gels, proteins, enzymes, microbial inactivation, cereal technology, water treatment, diary technology, etc. This review summarizes the latest knowledge on impact and application of ultrasound in food technology.

  18. Modeling the ultrasonic testing echoes by a combination of particle swarm optimization and Levenberg–Marquardt algorithms

    International Nuclear Information System (INIS)

    Gholami, Ali; Honarvar, Farhang; Moghaddam, Hamid Abrishami

    2017-01-01

    This paper presents an accurate and easy-to-implement algorithm for estimating the parameters of the asymmetric Gaussian chirplet model (AGCM) used for modeling echoes measured in ultrasonic nondestructive testing (NDT) of materials. The proposed algorithm is a combination of particle swarm optimization (PSO) and Levenberg–Marquardt (LM) algorithms. PSO does not need an accurate initial guess and quickly converges to a reasonable output while LM needs a good initial guess in order to provide an accurate output. In the combined algorithm, PSO is run first to provide a rough estimate of the output and this result is consequently inputted to the LM algorithm for more accurate estimation of parameters. To apply the algorithm to signals with multiple echoes, the space alternating generalized expectation maximization (SAGE) is used. The proposed combined algorithm is robust and accurate. To examine the performance of the proposed algorithm, it is applied to a number of simulated echoes having various signal to noise ratios. The combined algorithm is also applied to a number of experimental ultrasonic signals. The results corroborate the accuracy and reliability of the proposed combined algorithm. (paper)

  19. Application of positron annihilation techniques in non-destructive testing

    International Nuclear Information System (INIS)

    Zeng Hui; Chen Zhiqiang; Jiang Jing; Xue Xudong; Wu Yichu; Liang Jianping; Liu Xiangbing; Wang Rongshan

    2014-01-01

    Background: The investigation of the material damage state is very important for industrial application. Most mechanical damage starts with a change in the microstructure of the material. Positron annihilation techniques are very sensitive probes for detecting defects and damage on an atomic scale in materials, which are of great concern in the engineering applications. Additionally they are apparatus of non-destruction, high-sensitivity and easy-use. Purpose: Our goal is to develop a system to exploit new non-destructive testing (NDT) methods using positron annihilation spectroscopy, a powerful tool to detect vacancy-type defects and their chemical environment. Methods: A positron NDT system was designed and constructed by modifying the 'sandwich structure' of sample-source-sample in conventional Doppler broadening and positron lifetime spectrometers. Doppler broadening and positron lifetime spectra of a single sample can be measured and analyzed by subtracting the contribution of a reference sample. Results: The feasibility and reliability of positron NDT system have been tested by analyzing nondestructively deformation and damage caused by mechanical treatment or by irradiation of metal alloys. This system can be used for detecting defects and damage in thick or large-size samples, as well as for measuring the two-dimension distribution of defects in portable, sensitive, fast way. Conclusion: Positron NDT measurement shows changes in real atomic-scale defects prior to changes in the mechanical properties, which are detectable by other methods of NDT, such as ultrasonic testing and eddy current testing. This system can be developed for use in both the laboratory and field in the future. (authors)

  20. Standard Guide for Acousto-Ultrasonic Assessment of Composites, Laminates, and Bonded Joints

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This guide explains the rationale and basic technology for the acousto-ultrasonic (AU) method. Guidelines are given for nondestructive evaluation (NDE) of flaws and physical characteristics that influence the mechanical properties and relative strength of composite structures (for example, filament-wound pressure vessels), adhesive bonds (for example, joints between metal plates), and interlaminar and fiber/matrix bonds in man-made composites and natural composites (for example, wood products). 1.2 This guide covers technical details and rules that must be observed to ensure reliable and reproducible quantitative AU assessments of laminates, composites, and bonded structures. The underlying principles, prototype apparatus, instrumentation, standardization, examination methods, and data analysis for such assessments are covered. Limitations of the AU method and guidelines for taking advantage of its capabilities are cited. 1.3 The objective of AU is to assess subtle flaws and associated strength variations...

  1. Steam generator group project: Task 13 final report: Nondestructive examination validation

    International Nuclear Information System (INIS)

    Bradley, E.R.; Doctor, P.G.; Ferris, R.H.; Buchanan, J.A.

    1988-08-01

    The Steam Generator Group Project (SGGP) was a multi-task effort using the retired-from-service Surry 2A pressurized water reactor steam generator as a test bed to investigate the reliability and effectiveness of in-service nondestructive eddy current (EC) inspection equipment and procedures. The information developed provided the technical basis for recommendations for improved in- service inspection and tube plugging criteria of steam generators. This report describes the results and analysis from Task 13--NDE Validation. The primary objective of Task 13 was to validate the EC inspection to detect and size tube defects. Additional objectives were to assess the nature and severity of tube degradation from all regions of the generator and to measure the remaining integrity of degraded specimens by burst testing. More than 550 specimens were removed from the generator and included in the validation studies. The bases for selecting the specimens and the methods and procedures used for specimen removal from the generator are reported. Results from metallurgical examinations of these specimens are presented and discussed. These examinations include visual inspection of all specimens to locate and identify tube degradation, metallographic examination of selected specimens to establish defect severity and burst testing of selected specimens to establish the remaining integrity of service-degraded tubes. Statistical analysis of the combined metallurgical and EC data to determine the probability of detection (POD) and sizing accuracy are reported along with a discussion of the factors which influenced the EC results. Finally, listings of the metallurgical and corresponding EC data bases are given. 12 refs., 141 figs., 24 tabs

  2. Development of prototype virtual testing system for ultrasonic examination engineers

    International Nuclear Information System (INIS)

    Shohji, Hajime; Hide, Koichiro

    2015-01-01

    The reliability of inspection results is affected by the skill of examination personnel, particularly with regard to manual ultrasonic testing (UT). The number and design of test specimens are among the most important points to be considered during training or assessing the qualification of UT examination personnel. For training, a simulated UT training system using a computer mouse or touch sensor was proposed. However, this system proved to be inadequate as a replacement with for actual UT work. In this study, we have developed a novel virtual UT system that simulates actual UT work for piping welds. This system (Tool for Realistic UltraSound Testing) consists of a dummy UT probe, dummy piping, a computer system, and a 3D position detection system. It can detect the state of the dummy probe (3D position, skewing angle), and displays recorded A-scan data corresponding to the dummy probe status with random noise. Furthermore, it does not display A-scan data if the dummy probe is not in contact with the pipe. Thus, in this way, the system simulates actual UT work. Using this system, it is possible to significantly reduce the number of test specimens being utilized for training or assessing the qualification of UT examination personnel. Additionally, highly efficient training and certification will be achieved through this system. (author)

  3. Guidelines for destructive examination of potential MIC [microbiologically influenced corrosion]-related failures

    International Nuclear Information System (INIS)

    Borenstein, S.S.

    1989-01-01

    Microbiologically influenced corrosion (MIC) is recognized as a major cause of pitting corrosion failures in natural waters. In order to alleviate the problem, it is important to establish the exact cause of corrosion. If there is a possibility that the failure is due to MIC, a particularly careful failure analysis must be conducted. MIC can be misdiagnosed as attack due to conventional chloride crevice/pitting corrosion unless specialized techniques are used. Certain techniques generally must be employed, including a careful visual examination, is situ bacterial sampling of residual water, bacterial analysis for corrosion products, radiographic examinations, and metallographic examinations. Other techniques may be necessary, or may be very helpful in the analysis, including culture growth, scanning electron microscopy, and ultrasonic examinations. Metallographic examinations can reveal MIC characteristics such as selective pitting of one phase in duplex stainless steel weldments. The methods of failure analysis and their importance are addressed, including each of the steps in the nondestructive examinations and destructive analyses

  4. Thermographic Non-Destructive Evaluation for Natural Fiber-Reinforced Composite Laminates

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2018-02-01

    Full Text Available Natural fibers, including mineral and plant fibers, are increasingly used for polymer composite materials due to their low environmental impact. In this paper, thermographic non-destructive inspection techniques were used to evaluate and characterize basalt, jute/hemp and bagasse fibers composite panels. Different defects were analyzed in terms of impact damage, delaminations and resin abnormalities. Of particular interest, homogeneous particleboards of sugarcane bagasse, a new plant fiber material, were studied. Pulsed phase thermography and principal component thermography were used as the post-processing methods. In addition, ultrasonic C-scan and continuous wave terahertz imaging were also carried out on the mineral fiber laminates for comparative purposes. Finally, an analytical comparison of different methods was given.

  5. High temperature flexible ultrasonic transducers for structural health monitoring and NDT

    Energy Technology Data Exchange (ETDEWEB)

    Shih, J.L. [McGill Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering; Kobayashi, M.; Jen, C.K.; Tatibouet, J. [National Research Council of Canada, Boucherville, PQ (Canada). Industrial Materials Inst.; Mrad, N. [Department of National Defence, Ottawa, ON (Canada). Air Vehicles Research Station

    2009-07-01

    Ultrasonic techniques are often used for non-destructive testing (NDT) and structural health monitoring (SHM) of pipes in nuclear and fossil fuel power plants, petrochemical plants and other structures as a method to improve safety and extend the service life of the structure. In such applications, ultrasonic transducers (UTs) must be able to operate at high temperature, and must come in contact with structures that have surfaces with different curvatures. As such, flexible UTs (FUTs) are most suitable because they ensure self-alignment to the object's surface. The purpose of this study was to develop FUTs that have high flexibility similar to commercially available polyvinylidene fluoride PVDF FUTs, but which can operate at up to at least 150 degrees C and have a high ultrasonic performance comparable to commercial broadband UTs. The fabrication of the FUT consisted of a sol-gel based sensor fabrication process. The substrate was a 75 {mu}m thick titanium (Ti) membrane, a piezoelectric composite with a thickness larger than 85 {mu}m and a top electrode. The ultrasonic performance of the FUT in terms of signal strength was found to be at least as good as commercially available broadband ultrasonic transducers at room temperature. Onsite gluing and brazing installation techniques which bond the FUTs onto steel pipes for SHM and NDT purposes up to 100 and 150 degrees C were developed, respectively. The best thickness measurement accuracy of FUT at 150 degrees C was estimated to be 26 {mu}m. 18 refs., 2 tabs., 6 figs.

  6. Proceedings of the specialists' meeting on reliability of the ultrasonic inspection of austenitic materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    The contributions of this meeting addressed several topics: the fundamentals of ultrasonic examination of austenitic materials (effect of anisotropy on propagation, improvement of ultrasonic testing to thick bimetallic welds, aspects of the ultrasonic testing of austenitic steel structures, utilization of a Fisher linear discriminant function in intergranular stress corrosion cracking or IGSCC detection, case of coarse grain austenitic welds, efforts of the Argonne National Laboratory), instruments and methods (longitudinal wave ultrasonic inspection, Grass echo suppression technique during the ultrasonic inspection of fuel cladding tubes, inspections of fillet and butt welds, improvement by signal averaging techniques, multiple bearing angle crack detector for cladded pipes examinations, flow-to-grain echo enhancement by split-spectrum processing, ultrasonic imaging techniques, ultrasonic inspection of pipe weldments for IGSCC), industrial practice (ultrasonic testing techniques for fabrication and in-service inspection, experiences in ultrasonic examination of austenitic steel components, experience and practice on nuclear piping in Spain, detection of underclad defects, sizing of cracks perpendicular to stainless overlay), and reliability (survey of ultrasonic testing in austenitic weld material, examination of electron beam welds, factors affecting the reliability of ultrasonic examination, detectability of IGSCC, ultrasonic inspection reliability for primary piping systems)

  7. Proceedings of the specialists' meeting on reliability of the ultrasonic inspection of austenitic materials

    International Nuclear Information System (INIS)

    1980-01-01

    The contributions of this meeting addressed several topics: the fundamentals of ultrasonic examination of austenitic materials (effect of anisotropy on propagation, improvement of ultrasonic testing to thick bimetallic welds, aspects of the ultrasonic testing of austenitic steel structures, utilization of a Fisher linear discriminant function in intergranular stress corrosion cracking or IGSCC detection, case of coarse grain austenitic welds, efforts of the Argonne National Laboratory), instruments and methods (longitudinal wave ultrasonic inspection, Grass echo suppression technique during the ultrasonic inspection of fuel cladding tubes, inspections of fillet and butt welds, improvement by signal averaging techniques, multiple bearing angle crack detector for cladded pipes examinations, flow-to-grain echo enhancement by split-spectrum processing, ultrasonic imaging techniques, ultrasonic inspection of pipe weldments for IGSCC), industrial practice (ultrasonic testing techniques for fabrication and in-service inspection, experiences in ultrasonic examination of austenitic steel components, experience and practice on nuclear piping in Spain, detection of underclad defects, sizing of cracks perpendicular to stainless overlay), and reliability (survey of ultrasonic testing in austenitic weld material, examination of electron beam welds, factors affecting the reliability of ultrasonic examination, detectability of IGSCC, ultrasonic inspection reliability for primary piping systems)

  8. Ultrasonic imaging of materials under unconventional circumstances

    Energy Technology Data Exchange (ETDEWEB)

    Declercq, Nico Felicien, E-mail: declercqdepatin@gatech.edu; McKeon, Peter, E-mail: declercqdepatin@gatech.edu; Liu, Jingfei; Shaw, Anurupa [Georgia Institute of Technology, UMI Georgia Tech - CNRS 2958, George W. Woodruff School of Mechanical Engineering, Georgia Tech Lorraine, Laboratory for Ultrasonic Nondestructive Evaluation, 2 rue Marconi, 5070 Met-technopole (France); Slah, Yaacoubi [Institut de Soudure, 4 Bvd Henri Becquerel, Espace Cormontaigne, 57937 Yutz (France)

    2015-03-31

    This paper reflects the contents of the plenary talk given by Nico Felicien Declercq. “Ultrasonic Imaging of materials” covers a wide technological area with main purpose to look at and to peek inside materials. In an ideal world one would manage to examine materials like a clairvoyant. Fortunately this is impossible hence nature has offered sufficient challenges to mankind to provoke curiosity and to develop science and technology. Here we focus on the appearance of certain undesired physical effects that prohibit direct imaging of materials in ultrasonic C-scans. Furthermore we try to make use of these effects to obtain indirect images of materials and therefore make a virtue of necessity. First we return to one of the oldest quests in the progress of mankind: how thick is ice? Our ancestors must have faced this question early on during migration to Northern Europe and to the America’s and Asia. If a physicist or engineer is not provided with helpful tools such as a drill or a device based on ultrasound, it is difficult to determine the ice thickness. Guided waves, similar to those used for nondestructive testing of thin plates in structural health monitoring can be used in combination with the human ear to determine the thickness of ice. To continue with plates, if an image of its interior is desired high frequency ultrasonic pulses can be applied. It is known by the physicist that the resolution depends on the wavelength and that high frequencies usually result in undesirably high damping effects inhibiting deep penetration into the material. To the more practical oriented engineer it is known that it is advantageous to polish surfaces before examination because scattering and diffraction of sound lowers the image resolution. Random scatterers cause some blurriness but cooperating scatters, causing coherent diffraction effects similar to the effects that cause DVD’s to show rainbow patterns under sunlight, can cause spooky images and erroneous

  9. Ultrasonic simulation studies for sizing of planar flaws in thick carbon steel welds

    International Nuclear Information System (INIS)

    Prakash, Alok

    2015-01-01

    Ultrasonic non-destructive testing typically involves detection of flaws that may affect the integrity of component under test. Once detected, the flaw is sized for its critical dimensions and its nature. The detection of flaw in the component by ultrasonic test is based on the principle of echo or reflection. Once the echo from a flaw is received, there are several approaches for analyzing the signal so that more and accurate information is obtained on the size of the flaw and its nature. The 6dB drop method is commonly used for sizing of flaws. This technique is based on determining the end points where the ultrasonic signal amplitude from the flaw drops to half of the peak amplitude. Though this method works well for large flaws whose size is larger than the beam width, it has a tendency to oversize the flaw which is smaller than the beam dimensions. In addition to beam divergence, flaw sizing also depends upon the orientation of the flaw with respect to incident sound beam. The paper describes the results of simulation studies on ultrasonic response from planar flaws of various orientations, their imaging and the methodology to be adopted for their accurate depth sizing. The paper also describes the experimental results to validate the flaw sizing approach

  10. Guided ultrasonic waves for determining effective orthotropic material parameters of continuous-fiber reinforced thermoplastic plates.

    Science.gov (United States)

    Webersen, Manuel; Johannesmann, Sarah; Düchting, Julia; Claes, Leander; Henning, Bernd

    2018-03-01

    Ultrasonic methods are widely established in the NDE/NDT community, where they are mostly used for the detection of flaws and structural damage in various components. A different goal, despite the similar technological approach, is non-destructive material characterization, i.e. the determination of parameters like Young's modulus. Only few works on this topic have considered materials with high damping and strong anisotropy, such as continuous-fiber reinforced plastics, but due to the increasing demand in the industry, appropriate methods are needed. In this contribution, we demonstrate the application of laser-induced ultrasonic Lamb waves for the characterization of fiber-reinforced plastic plates, providing effective parameters for a homogeneous, orthotropic material model. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Feasibility of ultrasonic and eddy current methods for measurement of residual stress in shot peened metals

    International Nuclear Information System (INIS)

    Lavrentyev, Anton I.; Stucky, Paul A.; Veronesi, William A.

    2000-01-01

    Shot peening is a well-known method for extending the fatigue life of metal components by introducing compressive residual stresses near their surfaces. The capability to nondestructively evaluate the near surface residual stress would greatly aid the assurance of proper fatigue life in shot-peened components. This paper presents preliminary results from a feasibility study examining the use of ultrasonic and eddy current NDE methods for residual stress measurement in components where the stress has been introduced by shot peening. With an ultrasonic method, a variation of ultrasonic surface wave speed with shot peening intensity was measured. Near surface conductivity was measured by eddy current methods. Since the effective penetration depth of both methods employed is inversely related to the excitation frequency, by making measurements at different frequencies, each method has the potential to provide the stress-depth profile. Experiments were conducted on aluminum specimens (alloy 7075-T7351) peened within the Almen peening intensity range of 4C to 16C. The experimental results obtained demonstrate a correlation between peening intensity and Rayleigh wave velocity and between peening intensity and conductivity. The data suggests either of the methods may be suitable, with limitations, for detecting unsatisfactory levels of shot peening. Several factors were found to contribute to the measured responses: surface roughness, near surface plastic deformation (cold work) and residual stress. The contribution of each factor was studied experimentally. The feasibility of residual stress determination from the measured data is discussed

  12. Non-destructive X-ray examination of weft knitted wire structures

    Science.gov (United States)

    Obermann, M.; Ellouz, M.; Aumann, S.; Martens, Y.; Bartelt, P.; Klöcker, M.; Kordisch, T.; Ehrmann, A.; Weber, M. O.

    2016-07-01

    Conductive yarns or wires are often integrated in smart textiles to enable data or energy transmission. In woven fabrics, these conductive parts are fixed at defined positions and thus protected from external loads. Knitted fabrics, however, have relatively loose structures, resulting in higher impacts of possible mechanical forces on the individual yarns. Hence, metallic wires with smaller diameters in particular are prone to break when integrated in knitted fabrics. In a recent project, wires of various materials including copper, silver and nickel with diameters varying between 0.05 mm and 0.23 mm were knitted in combination with textile yarns. Hand flat knitting machines of appropriate gauges were used to produce different structures. On these samples, non-destructive examinations, using an industrial X-ray system Seifert x|cube (225 kV) equipped with a minifocus X-ray tube, were carried out, directly after knitting as well as after different mechanical treatments (tensile, burst, and washing tests). In this way, structural changes of the stitch geometry could be visualized before failure. In this paper, the loop geometries in the knitted fabrics are depicted depending on knitted structures, wire properties and the applied mechanical load. Consequently, it is shown which metallic wires and yarns are most suitable to be integrated into knitted smart textiles.

  13. Data merging of infrared and ultrasonic images for plasma facing components inspection

    Energy Technology Data Exchange (ETDEWEB)

    Richou, M. [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France)], E-mail: marianne.richou@cea.fr; Durocher, A. [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France); Medrano, M. [Association EURATOM - CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Martinez-Ona, R. [Tecnatom, 28703 S. Sebastian de los Reyes, Madrid (Spain); Moysan, J. [LCND, Universite de la Mediterranee, F-13625 Aix-en-Provence (France); Riccardi, B. [Fusion For Energy, 08019 Barcelona (Spain)

    2009-06-15

    For steady-state magnetic thermonuclear fusion devices which need large power exhaust capability, actively cooled plasma facing components have been developed. In order to guarantee the integrity of these components during the required lifetime, their thermal and mechanical behaviour must be assessed. Before the procurement of the ITER Divertor, the examination of the heat sink to armour joints with non-destructive techniques is an essential topic to be addressed. Defects may be localised at different bonding interfaces. In order to improve the defect detection capability of the SATIR technique, the possibility of merging the infrared thermography test data coming from SATIR results with the ultrasonic test data has been identified. The data merging of SATIR and ultrasonic results has been performed on Carbon Fiber Composite (CFC) monoblocks with calibrated defects, identified by their position and extension. These calibrated defects were realised with machining, with 'stop-off' or by a lack of CFC activation techniques, these last two representing more accurately a real defect. A batch of 56 samples was produced to simulate each possibility of combination with regards to interface location, position and extension and way of realising the defect. The use of a data merging method based on Dempster-Shafer theory improves significantly the detection sensibility and reliability of defect location and size.

  14. Wavelet modeling of signals for non-destructive testing of concretes

    International Nuclear Information System (INIS)

    Shao, Zhixue; Shi, Lihua; Cai, Jian

    2011-01-01

    In a non-destructive test of concrete structures, ultrasonic pulses are commonly used to detect damage or embedded objects from their reflections. A wavelet modeling method is proposed here to identify the main reflections and to remove the interferences in the detected ultrasonic waves. This method assumes that if the structure is stimulated by a wavelet function with good time–frequency localization ability, the detected signal is a combination of time-delayed and amplitude-attenuated wavelets. Therefore, modeling of the detected signal by wavelets can give a straightforward and simple model of the original signal. The central time and amplitude of each wavelet represent the position and amplitude of the reflections in the detected structure. A signal processing method is also proposed to estimate the structure response to wavelet excitation from its response to a high-voltage pulse with a sharp leading edge. A signal generation card with a compact peripheral component interconnect extension for instrumentation interface is designed to produce this high-voltage pulse. The proposed method is applied to synthesized aperture focusing technology of concrete specimens and the image results are provided

  15. Characterization of microstructures in austenitic stainless steels by ultrasonics

    International Nuclear Information System (INIS)

    Raj, Baldev; Palanichamy, P.; Jayakumar, T.; Kumar, Anish; Vasudevan, M.; Shankar, P.

    2000-01-01

    Recently, many nondestructive techniques have been considered for microstructural characterization of materials to enable in-situ component assessment for pre-service quality and in-service performance. Ultrasonic parameters have been used for estimation of average grain size, evaluation of recrystallization after cold working, and characterization of Cr2N precipitation during thermal aging in different grades of austenitic stainless steels. Ultrasonic first back wall echo signals were obtained from several specimens of AISI type 316 stainless steel with different grain sizes. Shift in the spectral peak frequency and the change in the full width at half maximum of the autopower spectrum of the first back wall echo are correlated with the grain size in the range 30-150 microns. The advantages of this method are: (i) independence of variation in couplant conditions (ii), applicable even to highly attenuating materials, (iii) direct correlation of the ultrasonic parameters with yield strength and (iv) suitability for shop-floor applications. Recrystallization behavior (temperature range 973-1173 K and time durations 0.5-1000 h) of cold worked titanium modified 316 stainless steel (D9) has been characterized using ultrasonic velocity measurements. A velocity parameter derived using a combination of shear and longitudinal wave velocities is correlated with the degree of recrystallization. These velocity measurement could also identify onset, progress and completion of recrystallization more accurately as compared to hardness and strength measurements. Ultrasonic velocity measurements were performed in thermally aged (at 1123 K for 10 to 2000 h) nuclear grade 316 LN stainless steel. Change in velocity due to thermal aging treatment could be used to reveal the formation of (i) Cr-N clusters associated with high lattice strains, (ii) coherent Cr2N precipitation, (iii) loss of coherency and (iv) growth of incoherent Cr2N precipitates. Microstructural characterization by

  16. Sizing of small surface-breaking tight cracks by using laser-ultrasonics

    International Nuclear Information System (INIS)

    Ochiai, M.; Miura, T.; Kuroda, H.; Yamamoto, S.; Onodera, T.

    2004-01-01

    On the nondestructive testing, not only detection but also sizing of crack is desirable because the crack depth is one of the most important parameter to evaluate the impact of the crack to the material, to estimate crack growth and ultimately to predict lifetime of the component. Moreover, accurate measurement of the crack depth optimizes countermeasures and timing of repairs, and eventually reduces total cost for plant maintenance. Laser-ultrasonic is a technique that uses two laser beams; one with a short pulse for the generation of ultrasound and another one, long pulse or continuous, coupled to an optical interferometer for detection. The technique features a large detection bandwidth, which is important for small defect inspection. Another feature of laser-ultrasonics is the remote optical scanning of generation and detection points, which enables to inspect components in narrow space and/or having complex shapes. A purpose of this paper is to describe the performance of a laser-ultrasonic testing (LUT) system on stress corrosion cracking (SCC) inspection. We have developed a new technique for sizing shallow cracks, say 0.5-1.5mm, based on the laser-induced surface wave and its frequency analysis. First, sizing capability of the system will be demonstrated by using an artificial surface-breaking slot having depth of 0-2mm in a stainless steel plate. Evaluated depths show good agreement with the machined slot depths within the accuracy of about a few hundred micrometers. Then, SCCs in a stainless steel plate are examined by using the system. Depth of SCC is evaluated every 0.2mm over the crack aperture length. The evaluated depths are compared with the depths measured by the destructive testing. (author)

  17. Phased array UT (Ultrasonic Testing) used in electricity production plants

    International Nuclear Information System (INIS)

    Kodaira, Takeshi

    2012-01-01

    Phased Array-Ultrasonic testing techniques widely used for detection and quantitative determination of the lattice defects which have been formed from fatigues or stress corrosion cracking in the materials used in the electricity production plants are presented with particular focus on the accurate determination of the defects depth (sizing) and defects discrimination applicable to weld metals of austenite stainless steels and Ni base alloys. The principle of this non-destructive analysis is briefly explained, followed by point and matrix focus phased array methods developed by Mitsubishi Heavy Industries, Ltd are explained rather in detail with illustration and the evaluated results. (S. Ohno)

  18. Dispersion curve estimation via a spatial covariance method with ultrasonic wavefield imaging.

    Science.gov (United States)

    Chong, See Yenn; Todd, Michael D

    2018-05-01

    Numerous Lamb wave dispersion curve estimation methods have been developed to support damage detection and localization strategies in non-destructive evaluation/structural health monitoring (NDE/SHM) applications. In this paper, the covariance matrix is used to extract features from an ultrasonic wavefield imaging (UWI) scan in order to estimate the phase and group velocities of S0 and A0 modes. A laser ultrasonic interrogation method based on a Q-switched laser scanning system was used to interrogate full-field ultrasonic signals in a 2-mm aluminum plate at five different frequencies. These full-field ultrasonic signals were processed in three-dimensional space-time domain. Then, the time-dependent covariance matrices of the UWI were obtained based on the vector variables in Cartesian and polar coordinate spaces for all time samples. A spatial covariance map was constructed to show spatial correlations within the full wavefield. It was observed that the variances may be used as a feature for S0 and A0 mode properties. The phase velocity and the group velocity were found using a variance map and an enveloped variance map, respectively, at five different frequencies. This facilitated the estimation of Lamb wave dispersion curves. The estimated dispersion curves of the S0 and A0 modes showed good agreement with the theoretical dispersion curves. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Ultrasonic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Jun; Kuk, Jeong Han

    2002-02-15

    This book introduces ultrasonic testing, which tells of outline of ultrasonic testing, principle of ultrasonic testing, prosperities of ultrasonic waves, radiographic test and ultrasonic test, basic theory on ultrasonic testing, mode conversion, transmission and diffraction, ultrasonic flaw detection and probe, standard test piece and reference test piece, like KS(JIS) ASME and ASTM, classification and properties of ultrasonic testing, straight beam method, angle beam method, ASME SEC.V.Art.5 ASTMA 388 and KS B 0817 Korean industrial standard.

  20. Non-destructive inspection approach using ultrasound to identify the material state for amorphous and semi-crystalline materials

    Science.gov (United States)

    Jost, Elliott; Jack, David; Moore, David

    2018-04-01

    At present, there are many methods to identify the temperature and phase of a material using invasive techniques. However, most current methods require physical contact or implicit methods utilizing light reflectance of the specimen. This work presents a nondestructive inspection method using ultrasonic wave technology that circumvents these disadvantages to identify phase change regions and infer the temperature state of a material. In the present study an experiment is performed to monitor the time of flight within a wax as it undergoes melting and the subsequent cooling. Results presented in this work show a clear relationship between a material's speed of sound and its temperature. The phase change transition of the material is clear from the time of flight results, and in the case of the investigated material, this change in the material state occurs over a range of temperatures. The range of temperatures over which the wax material melts is readily identified by speed of sound represented as a function of material temperature. The melt temperature, obtained acoustically, is validated using Differential Scanning Calorimetry (DSC), which uses shifts in heat flow rates to identify phase transition temperature ranges. The investigated ultrasonic NDE method has direct applications in many industries, including oil and gas, food and beverage, and polymer composites, in addition to many implications for future capabilities of nondestructive inspection of multi-phase materials.

  1. Flaw acceptance criteria taking into consideration the NDT: radiographic and ultrasonic testing. Analysis through the fracture mechanics methods

    International Nuclear Information System (INIS)

    Capurro, E.; Alicino, F.; Corvi, A.

    1993-01-01

    The present study compares and evaluates the flaw acceptance criteria of the non-destructive inspections meeting European Community standards, through the application of the fracture mechanics methods that were determined and verified by the previous activity. Some choices were made; these, however, do not change the general validity of the conclusions. Shaved full-penetration butt welds of Class 1 components making up the primary circuit were considered and the following parameters varied: standards: French, German, Italian (ASME III) and UK; material: AISI 316 and low alloy steel A 533; base material and weld metal; temperature: RT, 370 deg C for the austenitic and 260 deg C for the ferritic steel; ultrasonic and radiographic methods; defect position: surface and internal; stress condition: situations with different primary and secondary stresses. From a preliminary examination of this study it is evident that the large quantity of results available and the abundance of information contained therein make a simple and exhaustive synthesis difficult. In fact, different analyses are possible and we have, therefore, limited the research to activities to perform a comparison and a general evaluation of the acceptance criteria of the non-destructive testing. (authors). 57 refs., 25 figs., 11 tabs

  2. A DATA FUSION SYSTEM FOR THE NONDESTRUCTIVE EVALUATION OF NON-PIGGABLE PIPES

    Energy Technology Data Exchange (ETDEWEB)

    Shreekanth Mandayam; Robi Polikar; John C. Chen

    2004-04-01

    The objectives of this research project are: (1) To design sensor data fusion algorithms that can synergistically combine defect related information from heterogeneous sensors used in gas pipeline inspection for reliably and accurately predicting the condition of the pipe-wall. (2) To develop efficient data management techniques for signals obtained during multisensor interrogation of a gas pipeline. During this reporting period, Rowan University designed, developed and exercised multisensor data fusion algorithms for identifying defect related information present in magnetic flux leakage, ultrasonic testing and thermal imaging nondestructive evaluation signatures of a test-specimen suite representative of benign and anomalous indications in gas transmission pipelines.

  3. Classification Technique for Ultrasonic Weld Inspection Signals using a Neural Network based on 2-dimensional fourier Transform and Principle Component Analysis

    International Nuclear Information System (INIS)

    Kim, Jae Joon

    2004-01-01

    Neural network-based signal classification systems are increasingly used in the analysis of large volumes of data obtained in NDE applications. Ultrasonic inspection methods on the other hand are commonly used in the nondestructive evaluation of welds to detect flaws. An important characteristic of ultrasonic inspection is the ability to identify the type of discontinuity that gives rise to a peculiar signal. Standard techniques rely on differences in individual A-scans to classify the signals. This paper proposes an ultrasonic signal classification technique based on the information tying in the neighboring signals. The approach is based on a 2-dimensional Fourier transform and the principal component analysis to generate a reduced dimensional feature vector for classification. Results of applying the technique to data obtained from the inspection of actual steel welds are presented

  4. Verification of split spectrum technique for ultrasonic inspection of welded structures in nuclear reactors

    International Nuclear Information System (INIS)

    Ericsson, L.; Stepinski, T.

    1992-01-01

    Ultrasonic nondestructive inspection of materials is often limited by the presence of backscattered echoes from the material structure. A digital signal processing technique for removal of this material noise, referred to as split spectrum processing (SSP), has been developed and verified using simple laboratory experiments during the last decade. However, application of the split spectrum processing algorithm to industrial conditions has been rarely reported. In the paper the results of the practical evaluation of the SSP technique are presented. A number of different ultrasonic transducers were used for acquiring echoes from artificial flaws as well as natural cracks. The flaws were located in test blocks employed by the Swedish Nuclear Power Companies as reference during ultrasonic inspection of nuclear reactor vessels. The acquired ultrasonic A-scan signals were processed off-line using specially developed algorithms on a personal computer (PC). The experiments show evidence that properly tuned SSP algorithms result in a considerable improvement of the signal to material noise ratio. The enhancements were similar irrespective of the features of the transducer used or the nature of the inspected flaw. The problems related to the development of self-tuning SSP algorithms for on-line processing of B-scans are discussed. (author)

  5. Feature extraction for ultrasonic sensor based defect detection in ceramic components

    Science.gov (United States)

    Kesharaju, Manasa; Nagarajah, Romesh

    2014-02-01

    High density silicon carbide materials are commonly used as the ceramic element of hard armour inserts used in traditional body armour systems to reduce their weight, while providing improved hardness, strength and elastic response to stress. Currently, armour ceramic tiles are inspected visually offline using an X-ray technique that is time consuming and very expensive. In addition, from X-rays multiple defects are also misinterpreted as single defects. Therefore, to address these problems the ultrasonic non-destructive approach is being investigated. Ultrasound based inspection would be far more cost effective and reliable as the methodology is applicable for on-line quality control including implementation of accept/reject criteria. This paper describes a recently developed methodology to detect, locate and classify various manufacturing defects in ceramic tiles using sub band coding of ultrasonic test signals. The wavelet transform is applied to the ultrasonic signal and wavelet coefficients in the different frequency bands are extracted and used as input features to an artificial neural network (ANN) for purposes of signal classification. Two different classifiers, using artificial neural networks (supervised) and clustering (un-supervised) are supplied with features selected using Principal Component Analysis(PCA) and their classification performance compared. This investigation establishes experimentally that Principal Component Analysis(PCA) can be effectively used as a feature selection method that provides superior results for classifying various defects in the context of ultrasonic inspection in comparison with the X-ray technique.

  6. Nondestructive evaluation of defects in carbon fiber reinforced polymer (CFRP) composites

    Science.gov (United States)

    Ngo, Andrew C. Y.; Goh, Henry K. H.; Lin, Karen K.; Liew, W. H.

    2017-04-01

    Carbon fiber reinforced polymer (CFRP) composites are increasingly used in aerospace applications due to its superior mechanical properties and reduced weight. Adhesive bonding is commonly used to join the composite parts since it is capable of joining incompatible or dissimilar components. However, insufficient adhesive or contamination in the adhesive bonds might occur and pose as threats to the integrity of the plane during service. It is thus important to look for suitable nondestructive testing (NDT) techniques to detect and characterize the sub-surface defects within the CFRP composites. Some of the common NDT techniques include ultrasonic techniques and thermography. In this work, we report the use of the abovementioned techniques for improved interpretation of the results.

  7. Qualification of phased array ultrasonic examination on T-joint weld of austenitic stainless steel for ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.H. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Park, C.K., E-mail: love879@hanmail.net [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Jin, S.W.; Kim, H.S.; Hong, K.H.; Lee, Y.J.; Ahn, H.J.; Chung, W. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Jung, Y.H.; Roh, B.R. [Hyundai Heavy Industries Co. Ltd., Ulsan 682-792 (Korea, Republic of); Sa, J.W.; Choi, C.H. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-01

    Highlights: • PAUT techniques has been developed by Hyundai Heavy Industries Co., LTD (HHI) and Korea Domestic Agency (KODA) to verify and settle down instrument calibration, test procedures, image processing, and so on. As the first step of development for PAUT technique, Several dozens of qualification blocks with artificial defects, which are parallel side drilled hole, embedded lack of fusion, embedded repair weld notch, and so on, have been designed and fabricated to simulate all potential defects during welding process. Real UT qualification group-1 for T-joint weld was successfully conducted in front of ANB inspector. • In this paper, remarkable progresses of UT qualification are presented for ITER vacuum vessel. - Abstract: Full penetration welding and 100% volumetric examination are required for all welds of pressure retaining parts of the ITER Vacuum Vessel (VV) according to RCC-MR Code and French Order of Nuclear Pressure Equipment (ESPN). The NDE requirement is one of important technical issues because radiographic examination (RT) is not applicable to many welding joints. Therefore the ultrasonic examination (UT) has been selected as an alternative method. Generally the UT on the austenitic welds is regarded as a great challenge due to the high attenuation and dispersion of the ultrasonic signal. In this paper, Phased array ultrasonic examination (PAUT) has been introduced on double sided T-shape austenitic welds of the ITER VV as a major NDE method as well as RT. Several dozens of qualification blocks with artificial defects, which are parallel side drilled hole, embedded lack of fusion, embedded repair weld notch, embedded parallel vertical notch, and so on, have been designed and fabricated to simulate all potential defects during welding process. PAUT techniques on the thick austenitic welds have been developed taking into account the acceptance criteria. Test procedure including calibration of equipment is derived and qualified through

  8. Ultrasonic transverse velocity calibration of standard blocks for use in non-destructive testing

    International Nuclear Information System (INIS)

    Silva, C E R; Braz, D S; Maggi, L E; Felix, R P B Costa

    2015-01-01

    Standard blocks are employed in the verification of the equipment used in Ultrasound Non-Destructive Testing. To assure the metrology reliability of all the measurement process, it is necessary to calibrate or certify these Standard blocks. In this work, the transverse wave velocity and main dimensions were assessed according to the specifications ISO Standards. For transverse wave velocity measurement, a 5 MHz transverse wave transducer, a waveform generator, an oscilloscope and a computer with a program developed in LabVIEW TM were used. Concerning the transverse wave velocity calibration, only two Standard blocks of the 4 tested is in accordance with the standard

  9. Non-destructive examination of a time capsule recovered from the Gore Park excavations, Hamilton, Ontario

    International Nuclear Information System (INIS)

    MacDonald, B.L.; Vanderstelt, J.

    2015-01-01

    Non-destructive analytical techniques are becoming increasingly important for the study of objects of cultural heritage interest. We present a study that applied two techniques: x-ray fluorescence (XRF) and neutron radiography, for the investigation of a time capsule recovered from an urban construction site in Gore Park, Hamilton. XRF analysis revealed the composition of the artifact, while n-radiography showed that its contents remained intact after being interred for 91 years. Results of this study demonstrate the value of non-destructive techniques for the analysis and preservation of cultural heritage. (author)

  10. A fractional Fourier transform analysis of the scattering of ultrasonic waves

    Science.gov (United States)

    Tant, Katherine M.M.; Mulholland, Anthony J.; Langer, Matthias; Gachagan, Anthony

    2015-01-01

    Many safety critical structures, such as those found in nuclear plants, oil pipelines and in the aerospace industry, rely on key components that are constructed from heterogeneous materials. Ultrasonic non-destructive testing (NDT) uses high-frequency mechanical waves to inspect these parts, ensuring they operate reliably without compromising their integrity. It is possible to employ mathematical models to develop a deeper understanding of the acquired ultrasonic data and enhance defect imaging algorithms. In this paper, a model for the scattering of ultrasonic waves by a crack is derived in the time–frequency domain. The fractional Fourier transform (FrFT) is applied to an inhomogeneous wave equation where the forcing function is prescribed as a linear chirp, modulated by a Gaussian envelope. The homogeneous solution is found via the Born approximation which encapsulates information regarding the flaw geometry. The inhomogeneous solution is obtained via the inverse Fourier transform of a Gaussian-windowed linear chirp excitation. It is observed that, although the scattering profile of the flaw does not change, it is amplified. Thus, the theory demonstrates the enhanced signal-to-noise ratio permitted by the use of coded excitation, as well as establishing a time–frequency domain framework to assist in flaw identification and classification. PMID:25792967

  11. Oxidation damage evaluation by non-destructive method for graphite components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Tada, Tatsuya; Sumita, Junya; Sawa, Kazuhiro

    2008-01-01

    To develop non-destructive evaluation methods for oxidation damage on graphite components in High Temperature Gas-cooled Reactors (HTGRs), the applicability of ultrasonic wave and micro-indentation methods were investigated. Candidate graphites, IG-110 and IG-430, for core components of Very High Temperature Reactor (VHTR) were used in this study. These graphites were oxidized uniformly by air at 500degC. The following results were obtained from this study. (1) Ultrasonic wave velocities with 1 MHz can be expressed empirically by exponential formulas to burn-off, oxidation weight loss. (2) The porous condition of the oxidized graphite could be evaluated with wave propagation analysis with a wave-pore interaction model. It is important to consider the non-uniformity of oxidized porous condition. (3) Micro-indentation method is expected to determine the local oxidation damage. It is necessary to assess the variation of the test data. (author)

  12. Ultrasonic Nondestructive Evaluation of Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) During Large-Scale Load Testing and Rod Push-Out Testing

    Science.gov (United States)

    Johnston, Patrick H.; Juarez, Peter D.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept developed by the Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body (HWB) aircraft configuration. The HWB has long been a focus of NASA's environmentally responsible aviation (ERA) project, following a building block approach to structures development, culminating with the testing of a nearly full-scale multi-bay box (MBB), representing a segment of the pressurized, non-circular fuselage portion of the HWB. PRSEUS is an integral structural concept wherein skins, frames, stringers and tear straps made of variable number of layers of dry warp-knit carbon-fiber stacks are stitched together, then resin-infused and cured in an out-of-autoclave process. The PRSEUS concept has the potential for reducing the weight and cost and increasing the structural efficiency of transport aircraft structures. A key feature of PRSEUS is the damage-arresting nature of the stitches, which enables the use of fail-safe design principles. During the load testing of the MBB, ultrasonic nondestructive evaluation (NDE) was used to monitor several sites of intentional barely-visible impact damage (BVID) as well as to survey the areas surrounding the failure cracks after final loading to catastrophic failure. The damage-arresting ability of PRSEUS was confirmed by the results of NDE. In parallel with the large-scale structural testing of the MBB, mechanical tests were conducted of the PRSEUS rod-to-overwrap bonds, as measured by pushing the rod axially from a short length of stringer.

  13. Nondestructive Examination Of Plutonium-Bearing Material Containers

    International Nuclear Information System (INIS)

    Yerger, L.; Mcclard, J.; Traver, L.; Grim, T.

    2010-01-01

    The first nondestructive examination (NDE) of 3013-type containers as part of the Department of Energy's (DOE's) Integrated Surveillance Program (ISP) was performed in February, 2005. Since that date 280 NDE surveillances on 255 containers have been conducted. These containers were packaged with plutonium-bearing materials at multiple DOE sites. The NDE surveillances were conducted at Hanford, Lawrence Livermore National Laboratory (LLNL), and Savannah River Site (SRS). These NDEs consisted of visual inspection, mass verification, radiological surveys, prompt gamma analysis, and radiography. The primary purpose of performing NDE surveillances is to determine if there has been a significant pressure buildup inside the inner 3013 container. This is done by measuring the lid deflection of the inner 3013 container using radiography images. These lid deflection measurements are converted to pressure measurements to determine if a container has a pressure of a 100 psig or greater. Making this determination is required by Surveillance and Monitoring Plan (S and MP). All 3013 containers are designed to withstand at least 699 psig as specified by DOE-STD-3013. To date, all containers evaluated have pressures under 50 psig. In addition, the radiography is useful in evaluating the contents of the 3013 container as well as determining the condition of the walls of the inner 3013 container and the convenience containers. The radiography has shown no signs of degradation of any container, but has revealed two packaging anomalies. Quantitative pressure measurements based on lid deflections, which give more information than the 'less than or greater than 100 psig' (pass/fail) data are also available for many containers. Statistical analyses of the pass/fail data combined with analysis of the quantitative data show that it is extremely unlikely that any container in the population of 3013 containers considered in this study (e.g., containers packaged according to the DOE-STD-3013

  14. Pulsed eddy current inspection system for nondestructive examination of irradiated fuel rods

    International Nuclear Information System (INIS)

    Yancey, M.E.

    1979-01-01

    An inspection system has been developed for nondestructive examination of irradiated fuel rods utilizing pulsed eddy current techniques. The system employs an encircling type pulsed eddy current transducer capable of sensing small defects located on both the inner and outer diameter fuel rod surfaces during a single scan. Pulsed eddy current point probes are used to provide fuel rod wall thikness data and an indication of radial defect location. Two linear variable differential transformers are used to provide information on fuel rod diameter variation. A microprocessor based control system is used to automatically scan fuel rods up to 4.06 meters in length at predetermined radial locations. Defects as small as 0.005 cm deep by 0.254 cm long by 0.005 cm wide have been detected on outside diameter surfaces of a 1.43 cm outside diameter fuel rod cladding with a 0.094 cm wall thickness and 0.010 cm deep by 0.254 cm long by 0.005 cm wide on the inside diameter surface

  15. Contribution to the improved ultrasonic testing of glass fiber-reinforced polymers based on analytic modeling; Beitrag zur Verbesserung der Ultraschallpruefung glasfaserverstaerkter Polymere auf der Grundlage analytischer Modellierung

    Energy Technology Data Exchange (ETDEWEB)

    Gripp, S.

    2001-04-01

    The non-destructive testing of acoustic anisotropic materials like fiber composites has been evaluated. Modelling enabled predictions about wave deflection, direction of wave propagation, and refractive angle of ultrasonic waves in these media. Thus, measurements could be carried out using unidirectional glass-fiber composites.

  16. An intelligent stand-alone ultrasonic device for monitoring local structural damage: implementation and preliminary experiments

    International Nuclear Information System (INIS)

    Pertsch, Alexander; Kim, Jin-Yeon; Wang, Yang; Jacobs, Laurence J

    2011-01-01

    Continuous structural health monitoring has the potential to significantly improve the safety management of aged, in-service civil structures. In particular, monitoring of local damage growth at hot-spot areas can help to prevent disastrous structural failures. Although ultrasonic nondestructive evaluation (NDE) has proved to be effective in monitoring local damage growth, conventional equipment and devices are usually bulky and only suitable for scheduled human inspections. The objective of this research is to harness the latest developments in embedded hardware and wireless communication for developing a stand-alone, compact ultrasonic device. The device is directed at the continuous structural health monitoring of civil structures. Relying on battery power, the device possesses the functionalities of high-speed actuation, sensing, signal processing, and wireless communication. Integrated with contact ultrasonic transducers, the device can generate 1 MHz Rayleigh surface waves in a steel specimen and measure response waves. An envelope detection algorithm based on the Hilbert transform is presented for efficiently determining the peak values of the response signals, from which small surface cracks are successfully identified

  17. Monitoring of soluble starch hydrolysis induced by α-amylase from Aspergillus oryzae using ultrasonic spectroscopy

    Science.gov (United States)

    Sierra, Carlos; Resa, Pablo; Buckin, Vitaly; Elvira, Luis

    2012-05-01

    The online monitoring of enzymatic starch hydrolysis is an important issue for several industrial sectors, mainly in the alimentary industry. Ultrasonic non-invasive methods based on the detection of wave velocity and amplitude changes can be used to study this enzymatic reaction. These wave propagating changes are result of physicalchemical modifications produced in the media by the starch hydrolysis. In this work the starch hydrolysis induced by the enzyme α-amylase from Aspergillus oryzae is studied. This biochemical reaction has been monitored using a high-resolution ultrasonic spectroscopy (HR-US) which is non-invasive and nondestructive. The measured time profiles o of ultrasonic velocity are explained in terms of the starch hydrolysis and the subsequent production of oligosaccharides as a consequence of the enzymatic action. The obtained results have been compared to a conventional off-line technique used in biochemistry, the iodine-starch reaction, a spectrophotometric method to quantify the amount of starch remaining in the medium. The combination of these two types of measurement provides more complete information about the biochemical processes occurred during hydrolysis.

  18. Pulse-echo ultrasonic inspection system for in-situ nondestructive inspection of Space Shuttle RCC heat shields.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis Patrick; Walkington, Phillip D.; Rackow, Kirk A.

    2005-06-01

    The reinforced carbon-carbon (RCC) heat shield components on the Space Shuttle's wings must withstand harsh atmospheric reentry environments where the wing leading edge can reach temperatures of 3,000 F. Potential damage includes impact damage, micro cracks, oxidation in the silicon carbide-to-carbon-carbon layers, and interlaminar disbonds. Since accumulated damage in the thick, carbon-carbon and silicon-carbide layers of the heat shields can lead to catastrophic failure of the Shuttle's heat protection system, it was essential for NASA to institute an accurate health monitoring program. NASA's goal was to obtain turnkey inspection systems that could certify the integrity of the Shuttle heat shields prior to each mission. Because of the possibility of damaging the heat shields during removal, the NDI devices must be deployed without removing the leading edge panels from the wing. Recently, NASA selected a multi-method approach for inspecting the wing leading edge which includes eddy current, thermography, and ultrasonics. The complementary superposition of these three inspection techniques produces a rigorous Orbiter certification process that can reliably detect the array of flaws expected in the Shuttle's heat shields. Sandia Labs produced an in-situ ultrasonic inspection method while NASA Langley developed the eddy current and thermographic techniques. An extensive validation process, including blind inspections monitored by NASA officials, demonstrated the ability of these inspection systems to meet the accuracy, sensitivity, and reliability requirements. This report presents the ultrasonic NDI development process and the final hardware configuration. The work included the use of flight hardware and scrap heat shield panels to discover and overcome the obstacles associated with damage detection in the RCC material. Optimum combinations of custom ultrasonic probes and data analyses were merged with the inspection procedures needed to

  19. The ultrasonic shop map and its use in preservice inspection

    International Nuclear Information System (INIS)

    Caplan, J.S.

    1975-01-01

    Prior to the introduction of Section X1 of the ASME Code on Inservice Inspection, a plan was introduced by Westinghouse to perform ultrasonic examinations of areas of high stress and high fluence of reactor pressure vessels in the manufacturer's shop and subsequent to the shop hydrostatic test. The tests provided a shop reference map of ultrasonic responses to use in subsequent preservice and inservice inspections, and attempted to locate any ultrasonic reflections beyond the acceptance standards of ASME Section III and, later, of Section X1. The history of the program is reviewed. Thirty-six vessels were examined during 1970 to 1973. As a result of indications discovered during ultrasonic examination repairs were carried out on five of these. Details are given of inspections and repairs. A summary is also given of the indications detected and of the correlations between the ultrasonic evaluation and actual flow characteristics. (U.K.)

  20. An Examination of the Feasibility of Ultrasonic Communications Links

    Science.gov (United States)

    2010-06-01

    achieved by human speech and by certain systems of whistled languages (Busnel and Classe, 1976). Hence he concluded that advanced modulation techniques...is that our application area and the ultrasound field are both designated under the umbrella term of ultrasonics. And though the technology of... ultrasound is extensive, the frequency regime at which this equipment operates (200–300 kHz) limits its application to our research. Ultrasound

  1. Models on reliability of non-destructive testing

    International Nuclear Information System (INIS)

    Simola, K.; Pulkkinen, U.

    1998-01-01

    The reliability of ultrasonic inspections has been studied in e.g. international PISC (Programme for the Inspection of Steel Components) exercises. These exercises have produced a large amount of information on the effect of various factors on the reliability of inspections. The information obtained from reliability experiments are used to model the dependency of flaw detection probability on various factors and to evaluate the performance of inspection equipment, including the sizing accuracy. The information from experiments is utilised in a most effective way when mathematical models are applied. Here, some statistical models for reliability of non-destructive tests are introduced. In order to demonstrate the use of inspection reliability models, they have been applied to the inspection results of intergranular stress corrosion cracking (IGSCC) type flaws in PISC III exercise (PISC 1995). The models are applied to both flaw detection frequency data of all inspection teams and to flaw sizing data of one participating team. (author)

  2. Universality of Nonclassical Nonlinearity Applications to Non-Destructive Evaluations and Ultrasonic

    CERN Document Server

    Delsanto, Pier Paolo

    2006-01-01

    This book comes as a result of the research work developed in the framework of two international projects: the European Science Foundation supported program NATEMIS (Nonlinear Acoustic Techniques for Micro-Scale Damage Diagnostics) and a Los Alamos-based international network. The main topics of both the programs and the book cover the phenomenology, theory and applications of Nonclassical Nonlinearity (NCNL). NCNL techniques have been found in recent years to be extremely powerful (up to 1000 times more than the corresponding linear techniques) in a wide range of applications, including Material Characterization, Ultrasonics, Geophysics and Maintenance and Restoration of artifacts. These techniques are being adopted as the main inspection and research tool in another European program: AERONEWS (Health monitoring of aircraft by nonlinear elastic wave propagation). In the future, the proposed Universality of NCNL is expected to extend the range of applications to numerous other fields and scientific discipline...

  3. Multivariate data-driven modelling and pattern recognition for damage detection and identification for acoustic emission and acousto-ultrasonics

    International Nuclear Information System (INIS)

    Torres-Arredondo, M-A; Fritzen, C-P; Tibaduiza, D-A; Mujica, L E; Rodellar, J; McGugan, M; Toftegaard, H; Borum, K-K

    2013-01-01

    Different methods are commonly used for non-destructive testing in structures; among others, acoustic emission and ultrasonic inspections are widely used to assess structures. The research presented in this paper is motivated by the need to improve the inspection capabilities and reliability of structural health monitoring (SHM) systems based on ultrasonic guided waves with focus on the acoustic emission and acousto-ultrasonics techniques. The use of a guided wave based approach is driven by the fact that these waves are able to propagate over relatively long distances, and interact sensitively and uniquely with different types of defect. Special attention is paid here to the development of efficient SHM methodologies. This requires robust signal processing techniques for the correct interpretation of the complex ultrasonic waves. Therefore, a variety of existing algorithms for signal processing and pattern recognition are evaluated and integrated into the different proposed methodologies. As a contribution to solve the problem, this paper presents results in damage detection and classification using a methodology based on hierarchical nonlinear principal component analysis, square prediction measurements and self-organizing maps, which are applied to data from acoustic emission tests and acousto-ultrasonic inspections. At the end, the efficiency of these methodologies is experimentally evaluated in diverse anisotropic composite structures. (paper)

  4. Ultrasonic Beam Propagation in Highly Anisotropic Materials Simulated by Multi-Gaussian Beams

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo; Schmerr, Lester W.

    2007-01-01

    The necessity of nondestructively inspecting fiber-reinforced composites, austenitic steels, and other inherently anisotropic materials has stimulated considerable interest in developing beam models for anisotropic media. The properties of slowness surface play key role in the beam models based on the paraxial approximation. In this paper, we apply a modular multi-Gaussian beam (MMGB) model to study the effects of material anisotropy on ultrasonic beam profile. It is shown that the anisotropic effects of beam skew and excess beam divergence enter into the MMGB model through parameters defining the slope and curvature of the slowness surface. The overall beam profile is found when the quasi longitudinal (qL) beam propagates in the symmetry plane of a transversely isotropic gr/ep composite. Simulation results are presented to illustrate the effects of these parameters on ultrasonic beam diffraction and beam skew. The MMGB calculations are also checked by comparing the anisotropy factor and beam skew angle with other analytical solutions

  5. Intramembrane Cavitation as a Predictive Bio-Piezoelectric Mechanism for Ultrasonic Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Michael Plaksin

    2014-01-01

    Full Text Available Low-intensity ultrasonic waves can remotely and nondestructively excite central nervous system (CNS neurons. While diverse applications for this effect are already emerging, the biophysical transduction mechanism underlying this excitation remains unclear. Recently, we suggested that ultrasound-induced intramembrane cavitation within the bilayer membrane could underlie the biomechanics of a range of observed acoustic bioeffects. In this paper, we show that, in CNS neurons, ultrasound-induced cavitation of these nanometric bilayer sonophores can induce a complex mechanoelectrical interplay leading to excitation, primarily through the effect of currents induced by membrane capacitance changes. Our model explains the basic features of CNS acoustostimulation and predicts how the experimentally observed efficacy of mouse motor cortical ultrasonic stimulation depends on stimulation parameters. These results support the hypothesis that neuronal intramembrane piezoelectricity underlies ultrasound-induced neurostimulation, and suggest that other interactions between the nervous system and pressure waves or perturbations could be explained by this new mode of biological piezoelectric transduction.

  6. Neutron and ultrasonic determination of residual stress in an aluminum ring-plug

    International Nuclear Information System (INIS)

    Prask, H.J.; Gnaeupel-Herold, T.; Clark, A.V.; Hehman, C.S.; Nguyen, T.N.

    2000-01-01

    Stress is a principal cause of material failure. This has been a well-recognized problem for decades, yet--in general--neutron diffraction remains the only way to measure sub-surface residual stresses without destroying the component. A field-portable ultrasonic strain-meter is being developed at NIST (Boulder) to determine residual stresses in engineering specimens, nondestructively. To test this and other techniques an array of stress-measurement standards are being prepared. These will be characterized by neutron diffraction and then used to evaluate, quantitatively, the potential of new methods. The first standard specimen produced for this purpose is a large shrink-fit ring-plug of 2024 aluminum (305 mm OD, 25.4 mm thick, 101.6 mm diameter plug). Because of large grain size, a sample-rotation averaging technique was developed to make reliable neutron measurements possible. A comparison of the neutron diffraction and ultrasonic results for this specimen will be presented, along with strain gauge results

  7. Nondestructive characterization of low-level transuranic waste

    International Nuclear Information System (INIS)

    Barna, B.A.; Reinhardt, W.W.

    1981-10-01

    The use of nondestructive evaluation (NDE) methods is proposed for characterization of transuranic (TRU) waste stored at the Radioactive Waste Management Complex. These NDE methods include real-time x-ray radiography, real-time neutron radiography, x-ray and neutron computed tomography, thermal imaging, container weighing, visual examination, and acoustic measurements. An integrated NDE system is proposed for characterization and certification of TRU waste destined for eventual shipment to the Waste Isolation Pilot Plant in New Mexico. Methods for automating both the classification waste and control of a complete nondestructive evaluation/nondestructive assay system are presented. Feasibility testing of the different NDE methods, including real-time x-ray radiography, and development of automated waste classification techniques are covered as part of a five year effort designed to yield a production waste characterization system

  8. Application of HOLOSAFT for nondestructive testing of reactor components

    International Nuclear Information System (INIS)

    Schmitz, V.; Mueller, W.; Schaefer, G.; Graeber, B.; Hoppstaedter, K.

    1985-01-01

    The aim of the project was to develop a superimposed ultrasonic test process, or to combine existing ones, so that a classification and three dimensional representation of defects is made possible. Two analytic test processes - ultrasonic holography and SAFT (synthetic aperture focussing technique) are combined, using identical hardware components and developing common software packages to create an imaging process called HOLOSAFT. The high possible lateral resolution of ultrasonic holography parallel to the test sample surface is used, together with the high possible axial resolution of the SAFT process at right angles to the surface, in order to make measurement of defects possible in three coordinate directions. The development of the process is described in detail, where, based on physical-mathematical bases, the equipment and software developed for pulse echo and tandem arrangements are discussed. The possible resolution is examined in laboratory experiments as a function of the test head diameter, the picture is examined as a function of the aperture length and the picture quality is examined as a function of the ultrasonic devices and defect orientation. Other chapters are concerned with measuring the defect depth, the determination of inclined positions, multi-angle sounding and examination of components with curved surfaces. The results show the great capacity for analysis of the HOLOSAFT process and its suitability for application in nuclear power stations. (orig./HP) [de

  9. Ultrasonic sectional imaging for crack identification. Part 1. Confirmation test of essential factors for ultrasonic imaging

    International Nuclear Information System (INIS)

    Sasahara, Toshihiko

    2008-01-01

    Since the first reports of inter-granular stress corrosion crack (IGSCC) in boiling water reactor (BWR) pipe in the 1970s, nuclear power industry has focused considerable attention on service induced crack detection and sizing using ultrasonic examination. In recent years, phased array systems, those reconstruct high quality flaw images at real time are getting to apply for crack detection and sizing. But because the price of phased array systems are expensive for inspection vendors, field application of phased array systems are limited and reliable ultrasonic imaging systems with reasonable price are expected. This paper will discuss cost effective ultrasonic equipment with sectional image (B-scan) presentation as the simplified imaging system for assisting ultrasonic examination personnel. To develop the simplified B-scan imaging system, the frequency characteristics of IGSCC echoes and neighboring geometry echoes such as base-metal to weld interface and inner surface of a pipe are studied. The experimental study confirmed the reflectors have different frequency characteristics and 2MHz is suitable to visualize IGSCC and 5MHz and higher frequency are suitable to reconstruct geometry images. The other study is the amplifier selection for the imaging system. To reconstruct images of IGSCC and geometry echoes, the ultrasonic imaging instrument with linear amplifier has to adjust gain setting to the target. On the other hand, the ultrasonic imaging instrument with logarithmic amplifier can collect and display wider dynamic range on a screen and this wider dynamic range are effective to visualize IGSCC and geometry echoes on a B-scan presentation at a time. (author)

  10. Tone burst generator for a Non-Destructive Testing system based on ultrasonic guided waves

    OpenAIRE

    Jiménez Sánchez, Daniel

    2011-01-01

    English: This PFC provides a design of a tested and specific tone-burst generator circuit for a Non-Destructive System based on ultrasonid guided waves. This circuit includes a complementary protection circuit for the NDT system working in a pulse-echo configuration. In this paper, a brief state f art about different driving circuits employed in distinct NDE systems is presented. Castellano: El PFC proporciona un diseño electrónico específico y probado de un circuito excitador de salvas (C...

  11. Performance demonstration experience for reactor pressure vessel shell ultrasonic testing

    International Nuclear Information System (INIS)

    Zado, V.

    1998-01-01

    The most ultrasonic testing techniques used by many vendors for pressurized water reactor (PWR) examinations were based on American Society of Mechanical Engineers 'Boiler and Pressurized Vessel Code' (ASME B and PV Code) Sections XI and V. The Addenda of ASME B and PV Code Section XI, Edition 1989 introduced Appendix VIII - 'Performance Demonstration for Ultrasonic Examination Systems'. In an effort to increase confidence in performance of ultrasonic testing of the operating nuclear power plants in United States, the ultrasonic testing performance demonstration examination of reactor vessel welds is performed in accordance with Performance Demonstration Initiative (PDI) program which is based on ASME Code Section XI, Appendix VIII requirements. This article provides information regarding extensive qualification preparation works performed prior EPRI guided performance demonstration exam of reactor vessel shell welds accomplished in January 1997 for the scope of Appendix VIII, Supplements IV and VI. Additionally, an overview of the procedures based on requirements of ASME Code Section XI and V in comparison to procedure prepared for Appendix VIII examination is given and discussed. The samples of ultrasonic signals obtained from artificial flaws implanted in vessel material are presented and results of ultrasonic testing are compared to actual flaw sizes. (author)

  12. Quantitative evaluation of ultrasonic wave propagation in inhomogeneous anisotropic austenitic welds using 3D ray tracing method. Numerical and experimental validation

    International Nuclear Information System (INIS)

    Kolkoori, Sanjeevareddy

    2014-01-01

    Austenitic welds and dissimilar welds are extensively used in primary circuit pipes and pressure vessels in nuclear power plants, chemical industries and fossil fuelled power plants because of their high fracture toughness, resistance to corrosion and creep at elevated temperatures. However, cracks may initiate in these weld materials during fabrication process or stress operations in service. Thus, it is very important to evaluate the structural integrity of these materials using highly reliable non-destructive testing (NDT) methods. Ultrasonic non-destructive inspection of austenitic welds and dissimilar weld components is complicated because of anisotropic columnar grain structure leading to beam splitting and beam deflection. Simulation tools play an important role in developing advanced reliable ultrasonic testing (UT) techniques and optimizing experimental parameters for inspection of austenitic welds and dissimilar weld components. The main aim of the thesis is to develop a 3D ray tracing model for quantitative evaluation of ultrasonic wave propagation in an inhomogeneous anisotropic austenitic weld material. Inhomogenity in the anisotropic weld material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The influence of anisotropy on ultrasonic reflection and transmission behaviour in an anisotropic austenitic weld material are quantitatively analyzed in three dimensions. The ultrasonic beam directivity in columnar grained austenitic steel material is determined three dimensionally using Lamb's reciprocity theorem. The developed ray tracing model evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase

  13. Quantitative evaluation of ultrasonic wave propagation in inhomogeneous anisotropic austenitic welds using 3D ray tracing method. Numerical and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Kolkoori, Sanjeevareddy

    2014-07-01

    Austenitic welds and dissimilar welds are extensively used in primary circuit pipes and pressure vessels in nuclear power plants, chemical industries and fossil fuelled power plants because of their high fracture toughness, resistance to corrosion and creep at elevated temperatures. However, cracks may initiate in these weld materials during fabrication process or stress operations in service. Thus, it is very important to evaluate the structural integrity of these materials using highly reliable non-destructive testing (NDT) methods. Ultrasonic non-destructive inspection of austenitic welds and dissimilar weld components is complicated because of anisotropic columnar grain structure leading to beam splitting and beam deflection. Simulation tools play an important role in developing advanced reliable ultrasonic testing (UT) techniques and optimizing experimental parameters for inspection of austenitic welds and dissimilar weld components. The main aim of the thesis is to develop a 3D ray tracing model for quantitative evaluation of ultrasonic wave propagation in an inhomogeneous anisotropic austenitic weld material. Inhomogenity in the anisotropic weld material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The influence of anisotropy on ultrasonic reflection and transmission behaviour in an anisotropic austenitic weld material are quantitatively analyzed in three dimensions. The ultrasonic beam directivity in columnar grained austenitic steel material is determined three dimensionally using Lamb's reciprocity theorem. The developed ray tracing model evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase

  14. An ultrasonic guided wave approach for the inspection of overhead transmission line cables

    DEFF Research Database (Denmark)

    Yücel, Mehmet K.; Legg, Mathew; Kappatos, Vasileios

    2017-01-01

    as a non-destructive testing technique is well established for simple geometries such as plates, pipes, and rods. However, its application for multi-wire cables is still in development. In this study, ultrasonic guided waves excited by a shear mode transducer collar are utilised as a defect detection...... technique for untensioned aluminium conductor steel reinforced cable specimens. The identification and analysis of wave propagation for a broad range of frequencies is performed using a laser scanning vibrometer, and the effect of defect size on wave propagation is studied. Signal processing algorithms...

  15. Application of ICT in the non-destructive inspection of explosive device

    International Nuclear Information System (INIS)

    Wang Zhe; Li Tiantuo; Liu Zhiqiang; Pei Zhihua; Wang Zhiping

    2003-01-01

    The inspection of explosive device is an important task in the store of the weapons. The technique of non-destructive examination with radial, especially the ICT, is an effective method. The paper mainly introduces the design and the theories on the inspection system and software system of the application of industrial ICT in the non-destructive examination of explosive device, and gives a reference to the work in such fields

  16. Rail inspection using noncontact laser ultrasonics

    International Nuclear Information System (INIS)

    Kim, Nak Hyeon; Sohn, Hoon; Han, Soon Woo

    2012-01-01

    In this study, a noncontact laser ultrasonic system is proposed for rail defect detection. An Nd Yag pulse laser is used for generation of ultrasonic waves, and the corresponding ultrasonic responses are measured by a laser Doppler vibrometer. For the detection of rail surface damages, the shape of the excitation laser beam is transformed into a line. On the other hand, a point source laser beam is used for the inspection of defects inside a rail head. Then, the interactions of propagating ultrasonic waves with defects are examined using actual rail specimens. Amplitude attenuation was mainly observed for a surface crack, and reflections were most noticeable from an internal damage. Finally, opportunities and challenges associated with real time rail inspection from a high speed train are discussed

  17. 15. Internal symposium on recent progress of nondestructive inspection and monitoring technologies for nuclear power plants

    International Nuclear Information System (INIS)

    1994-01-01

    At the symposium, lectures were given on the recent development of the nondestructive inspection technology for nuclear power plants, the trend regarding the nondestructive inspection in foreign countries (Japan-Germany atomic energy seminar), the present state and subjects of the monitoring technology in BWR plants, the present state and subjects of the monitoring technology in PWR plants, and the present state and the subjects for hereafter of the defect evaluation method in the equipment of light water reactors. The data on the ultrasonic flaw detection in aluminum alloy welded joints were obtained. The German inspection technology is similar to that in Japan and other countries. The research on the plant synthetic monitoring and diagnosis system is reported. The monitoring systems for abnormal state in operation, troubles and the secular change of equipment are reported. The evaluation of the flaws in nuclear piping is reported. The summaries of the lectures are collected in this book. (K.I.)

  18. Flood Monitoring and Early Warning System Using Ultrasonic Sensor

    Science.gov (United States)

    Natividad, J. G.; Mendez, J. M.

    2018-03-01

    The purpose of this study is to develop a real-time flood monitoring and early warning system in the northern portion of the province of Isabela, particularly the municipalities near Cagayan River. Ultrasonic sensing techniques have become mature and are widely used in the various fields of engineering and basic science. One of advantage of ultrasonic sensing is its outstanding capability to probe inside objective non-destructively because ultrasound can propagate through any kinds of media including solids, liquids and gases. This study focuses only on the water level detection and early warning system (via website and/or SMS) that alerts concern agencies and individuals for a potential flood event. Furthermore, inquiry system is also included in this study to become more interactive wherein individuals in the community could inquire the actual water level and status of the desired area or location affected by flood thru SMS keyword. The study aims in helping citizens to be prepared and knowledgeable whenever there is a flood. The novelty of this work falls under the utilization of the Arduino, ultrasonic sensors, GSM module, web-monitoring and SMS early warning system in helping stakeholders to mitigate casualties related to flood. The paper envisions helping flood-prone areas which are common in the Philippines particularly to the local communities in the province. Indeed, it is relevant and important as per needs for safety and welfare of the community.

  19. Ultrasonic levitation for the examination of gas/solid reactions

    International Nuclear Information System (INIS)

    Kavouras, A.; Krammer, G.

    2003-01-01

    An experimental setup based on acoustic levitation for the examination of gas/solid reactions is presented. In this setup single particles in the diameter range 1 mm-30 μm can be held against gravity for any wanted time in a defined gas atmosphere at elevated temperatures. The change of particle size, shape, and position can be measured and recorded using an optical device, consisting of a camera and a long range microscope. Basic experiments with inert particles of different shape and solid density have shown that the axial position of a reacting particle can be employed to derive its weight change. A method to evaluate this change of the recorded position for the according weight change is proposed. Exemplary results in the context of dry flue gas cleaning using Ca(OH) 2 powder are presented. Single Ca(OH) 2 particles are exposed to a well defined gas atmosphere and after some time these particles are retrieved from the ultrasonic field for further analyses. Only an in situ measurement of the particle weight change (i.e., without removing the particle from the well defined reactive atmosphere) brings information regarding the uptake of water by the sorbent, which accompanies SO 2 and HCl absorption

  20. Nondestructive ultrasonic characterization of armor grade silicon carbide

    Science.gov (United States)

    Portune, Andrew Richard

    Ceramic materials have traditionally been chosen for armor applications for their superior mechanical properties and low densities. At high strain rates seen during ballistic events, the behavior of these materials relies upon the total volumetric flaw concentration more so than any single anomalous flaw. In this context flaws can be defined as any microstructural feature which detriments the performance of the material, potentially including secondary phases, pores, or unreacted sintering additives. Predicting the performance of armor grade ceramic materials depends on knowledge of the absolute and relative concentration and size distribution of bulk heterogeneities. Ultrasound was chosen as a nondestructive technique for characterizing the microstructure of dense silicon carbide ceramics. Acoustic waves interact elastically with grains and inclusions in large sample volumes, and were well suited to determine concentration and size distribution variations for solid inclusions. Methodology was developed for rapid acquisition and analysis of attenuation coefficient spectra. Measurements were conducted at individual points and over large sample areas using a novel technique entitled scanning acoustic spectroscopy. Loss spectra were split into absorption and scattering dominant frequency regimes to simplify analysis. The primary absorption mechanism in polycrystalline silicon carbide was identified as thermoelastic in nature. Correlations between microstructural conditions and parameters within the absorption equation were established through study of commercial and custom engineered SiC materials. Nonlinear least squares regression analysis was used to estimate the size distributions of boron carbide and carbon inclusions within commercial SiC materials. This technique was shown to additionally be capable of approximating grain size distributions in engineered SiC materials which did not contain solid inclusions. Comparisons to results from electron microscopy