WorldWideScience

Sample records for ultimate strength design

  1. Design proposal for ultimate shear strength of tapered steel plate girders

    Directory of Open Access Journals (Sweden)

    A. Bedynek

    2017-03-01

    Full Text Available Numerous experimental and numerical studies on prismatic plate girders subjected to shear can be found in the literature. However, the real structures are frequently designed as non-uniform structural elements. The main objective of the research is the development of a new proposal for the calculation of the ultimate shear resistance of tapered steel plate girders taking into account the specific behaviour of such members. A new mechanical model is presented in the paper and it is used to show the differences between the behaviour of uniform and tapered web panels subjected to shear. EN 1993-1-5 design specifications for the determination of the shear strength for rectangular plates are improved in order to assess the shear strength of tapered elements. Numerical studies carried out on tapered steel plate girders subjected to shear lead to confirm the suitability of the mechanical model and the proposed design expression.

  2. A new concept for design of fibered high strength reinforced concrete elements using ultimate limit state method

    International Nuclear Information System (INIS)

    Iskhakov, I.; Ribakov, Y.

    2013-01-01

    Highlights: • A new concept for design of two layer reinforced concrete beams is proposed. • Concrete class and section height of bending elements are calculated. • Good correlation between experimental and numerical results is obtained. - Abstract: Existing methods for design of reinforced concrete (RC) bending elements in the ultimate limit state are based on calculating the compressed zone depth of the section. At the same time, in isotropic materials the neutral axis of the bending section crosses its center of gravity (CG). It was proved that if a neutral axis of bending RC element crosses the section’s CG, the total reinforcement section (A s +A s ′ ) is minimal. Therefore the compressed zone depth should be selected so that under the design load the neutral axis should pass through the section’s CG. In this case the compressed zone depth that is unknown in existing design methods becomes a known value. This concept enables to select other parameters as unknowns (bending element concrete class, section height, etc.). It is especially important for design of modern high strength concrete (HSC) bending elements, for which the concrete class can be calculated, but not selected. It is demonstrated that applying the proposed concept enables to assume that the neutral axis location is constant for all stages of stress - strain state in bending. As HSC is rather brittle, stresses diagram in the compressed section zone has a form close to triangular. However, adding steel fibers allows improving the elastic–plastic properties of HSC. In this case a rectangular stresses diagram can be used, as for normal strength concrete. Consequently, the proposed concept yields more economical solutions and allows more effective using the HSC properties

  3. Ultimate Strength of Ship Hulls under Torsion

    DEFF Research Database (Denmark)

    Paik, Jeom Kee; Thayamballi, Anil K.; Pedersen, Preben Terndrup

    2001-01-01

    For a ship hull with large deck openings such as container vessels and some large bulk carriers, the analysis of warping stresses and hatch opening deformations is an essential part of ship structural analyses. It is thus of importance to better understand the ultimate torsional strength characte......For a ship hull with large deck openings such as container vessels and some large bulk carriers, the analysis of warping stresses and hatch opening deformations is an essential part of ship structural analyses. It is thus of importance to better understand the ultimate torsional strength...... characteristics of ships with large hatch openings. The primary aim of the present study is to investigate the ultimate strength characteristics of ship hulls with large hatch openings under torsion. Axial (warping) as well as shear stresses are normally developed for thin-walled beams with open cross sections...... subjected to torsion. A procedure for calculating these stresses is briefly described. As an illustrative example, the distribution and magnitude of warping and shear stresses for a typical container vessel hull cross section under unit torsion is calculated by the procedure. By theoretical and numerical...

  4. Influence of initial imperfections on ultimate strength of spherical shells

    Directory of Open Access Journals (Sweden)

    Chang-Li Yu

    2017-09-01

    Full Text Available Comprehensive consideration regarding influence mechanisms of initial imperfections on ultimate strength of spherical shells is taken to satisfy requirement of deep-sea structural design. The feasibility of innovative numerical procedure that combines welding simulation and non-linear buckling analysis is verified by a good agreement to experimental and theoretical results. Spherical shells with a series of wall thicknesses to radius ratios are studied. Residual stress and deformations from welding process are investigated separately. Variant influence mechanisms are discovered. Residual stress is demonstrated to be influential to stress field and buckling behavior but not to the ultimate strength. Deformations are proved to have a significant impact on ultimate strength. When central angles are less than critical value, concave magnitudes reduce ultimate strengths linearly. However, deformations with central angles above critical value are of much greater harm. Less imperfection susceptibility is found in spherical shells with larger wall thicknesses to radius ratios.

  5. Sensitivity analysis on ultimate strength of aluminium stiffened panels

    DEFF Research Database (Denmark)

    Rigo, P.; Sarghiuta, R.; Estefen, S.

    2003-01-01

    This paper presents the results of an extensive sensitivity analysis carried out by the Committee III.1 "Ultimate Strength" of ISSC?2003 in the framework of a benchmark on the ultimate strength of aluminium stiffened panels. Previously, different benchmarks were presented by ISSC committees on ul...

  6. Cable tray ultimate strength test employing a large shaker table

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, K.; Myojin, K.; Imai, K. [The Kansai Electric Power Co., Osaka (Japan); Fuyama, H. [Mitsubishi Heavy Industries Ltd, Takasago (Japan); Kokubo, E. [Mitsubishi Heavy Industdries Ltd, Kobe (Japan)

    2004-07-01

    Ultimate behaviors of cable trays, used in nuclear plants, have not been well studied since cable trays are designed based on conservative design criteria. In this study, by employing a large shaker table, an ultimate strength test was conducted for cable trays used in nuclear power plants. This report describes the results of shaker table test. The following results were obtained. First, in an S{sub 2} earthquake, the damping ratio was so large - more than 30% due to the rubbing of cables - that a large response was not present and the strains in the support were within the elastic limits. Secondly, the support was strong enough to sustain the cable trays even when the strain in the support was 20 times larger than the elastic limit. (authors)

  7. Influence of cracks and pitting corrosion on residual ultimate strength of stiffened plates

    Directory of Open Access Journals (Sweden)

    ZHANG Jing

    2018-02-01

    Full Text Available [Objectives] Ships and offshore platforms serve in the harsh sea environment for a long time. Cracks and pitting corrosion will occur in such a structure and the damage will affect its ultimate strength.[Methods] To investigate the influence of cracks and pitting corrosion on ultimate bearing capacity, the ultimate strength of a structure under axial compression is studied by using a nonlinear finite element. The mesh size of a stiffened plate with cracks and pitting corrosion is first discussed. Then the influence of the relative positions of cracks and pitting corrosion, number of corrosion points and crack length impact on the residual ultimate strength of damaged stiffened plates is discussed via a series of calculations.[Results] The results indicate that the increase in crack length and pitting corrosion significantly decreases the ultimate strength of a stiffened plate. [Conclusions] This provides a useful reference for designing and maintaining ships and offshore structures in their life cycles.

  8. Ultimate strength of a large wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Moelholt Jensen, Find

    2008-05-15

    The present PhD project contains a study of the structural static strength of wind turbine blades loaded in flap-wise direction. A combination of experimental and numerical work has been used to address the most critical failure mechanisms and to get an understanding of the complex structural behaviour of wind turbine blades. Four failure mechanisms observed during the fullscale tests and the corresponding FE-analysis are presented. Elastic mechanisms associated with failure, such as buckling, localized bending and the Brazier effect, are studied. Six different types of structural reinforcements helping to prevent undesired structural elastic mechanisms are presented. The functionality of two of the suggested structural reinforcements was demonstrated in full-scale tests and the rest trough FE-studies. The blade design under investigation consisted of an aerodynamic airfoil and a load carrying box girder. In total, five full-scale tests have been performed involving one complete blade and two shortened box girders. The second box girder was submitted to three independent tests covering different structural reinforcement alternatives. The advantages and disadvantages of testing a shortened load carrying box girder vs. an entire blade are discussed. Changes in the boundary conditions, loads and additional reinforcements, which were introduced in the box girder tests in order to avoid undesired structural elastic mechanisms, are presented. New and advanced measuring equipment was used in the fullscale tests to detect the critical failure mechanisms and to get an understanding of the complex structural behaviour. Traditionally, displacement sensors and strain gauges in blade tests are arranged based on an assumption of a Bernoulli-Euler beam structural response. In the present study it is shown that when following this procedure important information about distortions of the cross sections is lost. In the tests presented here, one of the aims was to measure distortion

  9. Ultimate uniaxial compressive strength of stiffened panel with opening under lateral pressure

    Directory of Open Access Journals (Sweden)

    Chang-Li Yu

    2015-03-01

    Full Text Available This paper concentrated on the ultimate uniaxial compressive strength of stiffened panel with opening under lateral load and also studied the design-oriented formulae. For this purpose, three series of well executed experiments on longitudinal stiffened panel with rectangular opening subjected to the combined load have been selected as test models. The finite element analysis package, ABAQUS, is used for simulation with considering the large elasticplastic deflection behavior of stiffened panels. The feasibility of the numerical procedure is verified by a good agreement of experimental results and numerical results. More cases studies are executed employing nonlinear finite element method to analyze the influence of design variables on the ultimate strength of stiffened panel with opening under combined pressure. Based on data, two design formulae corresponding to different opening types are fitted, and accuracy of them is illustrated to demonstrate that they could be applied to basic design of practical engineering structure.

  10. Ultimate strength of a large wind turbine blade

    DEFF Research Database (Denmark)

    Jensen, Find Mølholt

    2009-01-01

    reinforcements helping to prevent undesired structural elastic mechanisms are presented. The functionality of two of the suggested structural reinforcements was demonstrated in full-scale tests and the rest trough FE-studies. The blade design under investigation consisted of an aerodynamic airfoil and a load...... carrying box girder. In total, five full-scale tests have been performed involving one complete blade and two shortened box girders. The second box girder was submitted to three independent tests covering different structural reinforcement alternatives. The advantages and disadvantages of testing......The present PhD project contains a study of the structural static strength of wind turbine blades loaded in flap-wise direction. A combination of experimental and numerical work has been used to address the most critical failure mechanisms and to get an understanding of the complex structural...

  11. Reliability analysis of production ships with emphasis on load combination and ultimate strength

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaozhi

    1995-05-01

    This thesis deals with ultimate strength and reliability analysis of offshore production ships, accounting for stochastic load combinations, using a typical North Sea production ship for reference. A review of methods for structural reliability analysis is presented. Probabilistic methods are established for the still water and vertical wave bending moments. Linear stress analysis of a midships transverse frame is carried out, four different finite element models are assessed. Upon verification of the general finite element code ABAQUS with a typical ship transverse girder example, for which test results are available, ultimate strength analysis of the reference transverse frame is made to obtain the ultimate load factors associated with the specified pressure loads in Det norske Veritas Classification rules for ships and rules for production vessels. Reliability analysis is performed to develop appropriate design criteria for the transverse structure. It is found that the transverse frame failure mode does not seem to contribute to the system collapse. Ultimate strength analysis of the longitudinally stiffened panels is performed, accounting for the combined biaxial and lateral loading. Reliability based design of the longitudinally stiffened bottom and deck panels is accomplished regarding the collapse mode under combined biaxial and lateral loads. 107 refs., 76 refs., 37 tabs.

  12. Experimental study on ultimate strength and strain behavior of concrete under biaxial compressive stresses

    International Nuclear Information System (INIS)

    Onuma, Hiroshi; Aoyagi, Yukio

    1976-01-01

    The purpose of this investigation was to study the ultimate strength failure mode and deformation behavior of concrete under short-term biaxial compressive stresses, as an aid to design and analyze the concrete structures subjected to multiaxial compression such as prestressed or reinforced concrete vessel structures. The experimental work on biaxial compression was carried out on the specimens of three mix proportions and different ages with 10cm x 10cm x 10cm cubic shape in a room controlled at 20 0 C. The results are summarized as follows. (1) To minimize the surface friction between specimens and loading platens, the pads of teflon sheets coated with silicone grease were used. The coefficient of friction was measured and was 3 percent on the average. (2) The test data showed that the strength of the concrete subjected to biaxial compression increased as compared to uniaxial compressive strength, and that the biaxial strength increase was mainly dependent on the ratio of principal stresses, and it was hardly affected by mix proportions and ages. (3) The maximum increase of strength, which occurred at the stress ratio of approximately sigma 2 /sigma 1 = 0.6, was about 27 percent higher than the uniaxial strength of concrete. (4) The ultimate strength in case of biaxial compression could be approximated by the parabolic equation. (Kako, I.)

  13. Chain Ends and the Ultimate Tensile Strength of Polyethylene Fibers

    Science.gov (United States)

    O'Connor, Thomas C.; Robbins, Mark O.

    Determining the tensile yield mechanisms of oriented polymer fibers remains a challenging problem in polymer mechanics. By maximizing the alignment and crystallinity of polyethylene (PE) fibers, tensile strengths σ ~ 6 - 7 GPa have been achieved. While impressive, first-principal calculations predict carbon backbone bonds would allow strengths four times higher (σ ~ 20 GPa) before breaking. The reduction in strength is caused by crystal defects like chain ends, which allow fibers to yield by chain slip in addition to bond breaking. We use large scale molecular dynamics (MD) simulations to determine the tensile yield mechanism of orthorhombic PE crystals with finite chains spanning 102 -104 carbons in length. The yield stress σy saturates for long chains at ~ 6 . 3 GPa, agreeing well with experiments. Chains do not break but always yield by slip, after nucleation of 1D dislocations at chain ends. Dislocations are accurately described by a Frenkel-Kontorova model, parametrized by the mechanical properties of an ideal crystal. We compute a dislocation core size ξ = 25 . 24 Å and determine the high and low strain rate limits of σy. Our results suggest characterizing such 1D dislocations is an efficient method for predicting fiber strength. This research was performed within the Center for Materials in Extreme Dynamic Environments (CMEDE) under the Hopkins Extreme Materials Institute at Johns Hopkins University. Financial support was provided by Grant W911NF-12-2-0022.

  14. Experimental research on the ultimate strength of hard aluminium alloy 2017 subjected to short-time radioactive heating

    International Nuclear Information System (INIS)

    Dafang, Wu; Yuewu, Wang; Bing, Pan; Meng, Mu; Lin, Zhu

    2012-01-01

    Highlights: ► Ultimate strength at transient heating is critical to security design of missiles. ► We measure the ultimate strength of alloy 2017 subjected to transient heating. ► Experimental results at transient heating are lacking in strength design handbook. ► Ultimate strength of alloy 2017 experimented is much higher than handbook value. ► The results provide a new method for optimal design of high-speed flight vehicles. -- Abstract: Alloy 2017 (Al–Cu–Mg) is a hard aluminium alloy strengthened by heat treatment. Because of its higher strength, finer weldability and ductility, hard aluminium alloy 2017 has been widely used in the field of aeronautics and astronautics. However, the ultimate strength and other characteristic mechanical parameters of aluminium alloy 2017 in a transient heating environment are still unclear, as these key mechanical parameters are lacking in the existing strength design handbook. The experimental characterisation of these critical parameters of aluminium alloy 2017 is undoubtedly meaningful for reliably estimating life span of and improving safety in designing high-speed flight vehicles. In this paper, the high-temperature ultimate strength, loading time and other mechanical properties of hard aluminium alloy 2017 under different transient heating temperatures and loading conditions are investigated by combining a transient aerodynamic heating simulation system and a material testing machine. The experimental results reveal that the ultimate strength and loading capability of aluminium alloy 2017 subjected to transient thermal heating are much higher than those tested in a long-time stable high-temperature environment. The research of this work not only provides a substantial basis for the loading capability improvement and optimal design of aerospace materials and structures subject to transient heating but also presents a new research direction with a practical application value.

  15. Seismic proving test of ultimate piping strength (current status of preliminary tests)

    International Nuclear Information System (INIS)

    Suzuki, K.; Namita, Y.; Abe, H.; Ichihashi, I.; Suzuki, K.; Ishiwata, M.; Fujiwaka, T.; Yokota, H.

    2001-01-01

    In 1998 Fiscal Year, the 6 year program of piping tests was initiated with the following objectives: i) to clarify the elasto-plastic response and ultimate strength of nuclear piping, ii) to ascertain the seismic safety margin of the current seismic design code for piping, and iii) to assess new allowable stress rules. In order to resolve extensive technical issues before proceeding on to the seismic proving test of a large-scale piping system, a series of preliminary tests of materials, piping components and simplified piping systems is intended. In this paper, the current status of the material tests and the piping component tests is reported. (author)

  16. Ultimate strength and ductility of steel reinforced concrete beam-columns

    International Nuclear Information System (INIS)

    Shohara, Ryoichi

    1991-01-01

    The ultimate strength and ductility of SRC beam-columns are investigated using the data gathered in Architectural Institute of Japan. Though the simple superposed strength formula in AIJ standard underestimates the strength of SRC beam-column failed in flexure, the generalized superposed strength formula estimates it satisfactory. The strength formula in AIJ standard does not good agreement with test data. The SRC beam-column failed in shear has almost equalductility with that failed in flexure owing to the encased steel. Author presents the formulas which estimate the ultimate deformation angle for SRC beam-columns. (author)

  17. Ultimate strength performance of tankers associated with industry corrosion addition practices

    Directory of Open Access Journals (Sweden)

    Kim Do Kyun

    2014-09-01

    Full Text Available In the ship and offshore structure design, age-related problems such as corrosion damage, local denting, and fatigue damage are important factors to be considered in building a reliable structure as they have a significant influence on the residual structural capacity. In shipping, corrosion addition methods are widely adopted in structural design to prevent structural capacity degradation. The present study focuses on the historical trend of corrosion addition rules for ship structural design and investigates their effects on the ultimate strength performance such as hull girder and stiffened panel of double hull oil tankers. Three types of rules based on corrosion addition models, namely historic corrosion rules (pre-CSR, Common Structural Rules (CSR, and harmonised Common Structural Rules (CSRH are considered and compared with two other corrosion models namely UGS model, suggested by the Union of Greek Shipowners (UGS, and Time-Dependent Corrosion Wastage Model (TDCWM. To identify the general trend in the effects of corrosion damage on the ultimate longitudinal strength performance, the corrosion addition rules are applied to four representative sizes of double hull oil tankers namely Panamax, Aframax, Suezmax, and VLCC. The results are helpful in understanding the trend of corrosion additions for tanker structures

  18. Ultimate strength performance of tankers associated with industry corrosion addition practices

    Directory of Open Access Journals (Sweden)

    Do Kyun Kim

    2014-09-01

    Full Text Available In the ship and offshore structure design, age-related problems such as corrosion damage, local denting, and fatigue damage are important factors to be considered in building a reliable structure as they have a significant influence on the residual structural capacity. In shipping, corrosion addition methods are widely adopted in structural design to prevent structural capacity degradation. The present study focuses on the historical trend of corrosion addition rules for ship structural design and investigates their effects on the ultimate strength performance such as hull girder and stiffened panel of double hull oil tankers. Three types of rules based on corrosion addition models, namely historic corrosion rules (pre-CSR, Common Structural Rules (CSR, and harmonised Common Structural Rules (CSRH are considered and compared with two other corrosion models namely UGS model, suggested by the Union of Greek Shipowners (UGS, and Time-Dependent Corrosion Wastage Model (TDCWM. To identify the general trend in the effects of corrosion damage on the ultimate longitudinal strength performance, the corrosion addition rules are applied to four representative sizes of double hull oil tankers namely Panamax, Aframax, Suezmax, and VLCC. The results are helpful in understanding the trend of corrosion additions for tanker structures.

  19. Ultimate shearing strength of aseismatic walls with many small holes for reactor buildings

    International Nuclear Information System (INIS)

    Yoshizaki, Seiji; Ezaki, Tetsuro; Korenaga, Takeyoshi; Sotomura, Kentaro.

    1984-01-01

    The aseismatic walls for reactor buildings have complicated forms, and are characterized by large wall thickness and high reinforcement ratio as compared with ordinary aseismatic walls. The forms are mainly box, cylinder or irregular polygonal prism and their combination. The design of the walls with many small holes has been performed on the basis of the reinforced concrete structure calculation standard of the Architectural Institute of Japan, following the case with large opening. When there are many small holes, the arrangement of reinforcement for the openings becomes complex, and the construction is difficult. It is necessary to rationalize the design and to simplify the reinforcement work. Under the background like this, the experiment to examine the shearing property in bending of the aseismatic walls with many small holes for reactor buildings was carried out, and horizontal loading test was performed on 43 specimens. The method of calculating the ultimate shearing strength of a wall without opening was proposed, and the method of applying it to a wall with many small holes is shown. The experimental method and the results, the examination of the experimental results, and the ultimate shearing strength of the aseismatic walls are reported. (Kako, I.)

  20. Maintained ship hull girder ultimate strength reliability considering corrosion and fatigue

    DEFF Research Database (Denmark)

    Hu, Yong; Cui, W.; Pedersen, Preben Terndrup

    2004-01-01

    The prupose of this paper is to propose a methodology to assess the time-variant ultimate strength of ship hull girder under the degradations of corrosion and fatigue. The effects of fatigue cracks on the tensile and compressive residual ultimate strength of stiffened panels and unstiffened plates......, webs and flanges, respectively. The effects of inspections and repair are taken into account. A minimum net thickness rule is used to determine repair policies. A procedure is proposed to determine the maximum allowable corrosion thickness of different parts of the hull cross section. The procedure...

  1. The Influence of Wagon Structure Part Shape Optimization on Ultimate Fatigue Strength

    OpenAIRE

    Milovanović, Vladimir; Živković, Miroslav; Jovičić, Gordana; Živković, Jelena; Kozak, Dražan

    2016-01-01

    This study investigates how shape optimisation affects the ultimate fatigue strength of a mechanical part. The mechanical part chosen for this investigation is an axle guard of running gear elements of the Hccrrs 2x2 axle car-carrying wagon. The static and fatigue strength analysis procedure according to the UIC 517 standard and numerical methods have been applied. Material properties were determined experimentally and the necessary numerical calculations were performed by using the finite el...

  2. The Assessment of the Ultimate Hull Girder Strength of RO-RO Ship after Damages

    Science.gov (United States)

    Zubair Muis Alie, Muhammad; Sitepu, Ganding; Izaak Latumahin, Samuel

    2018-03-01

    Many accidents of Ro-Ro ships happen in Indonesia such as collision and grounding. When the collision or grounding takes place on the Ro-Ro ship, the ultimate strength of hull structure after damage becomes decrease. Car and passenger decks are critical location since collision and/or grounding occur. In the present study, the assessment of the ultimate hull girder strength is conducted. The cross section of Ro-Ro ship is taken to be analyzed. The collision and grounding damages are assumed to be palced on the side and bottom area, respectively. The damages are created by removing the element from the side shell and bottom part. Finally, the result obtained is compared with one another.

  3. Out-of-plane ultimate shear strength of RC mat-slab foundations

    International Nuclear Information System (INIS)

    Kumagai, Hitoshi; Nukui, Yasushi; Imamura, Akira; Terayama, Takeshi; Hagiwara, Tetsuya; Kojima, Isao

    2011-01-01

    There have been few studies on the out-of-plane shear in RC mat-slab foundations, and the reasonable method has been demanded to estimate ultimate shear strength of RC mat-slab foundations in the nuclear facilities. In the previous study, the out-of-plane loading tests on the 20 square slab specimens had been performed to collect the fundamental data. In this study, the test results were successfully predicted by 3D non-linear Finite Element Analysis. It has been confirmed that the ultimate shear stress in the slab specimen can be estimated by the Arakawa's formula, which is commonly used to estimate the shear strength of RC beams. (author)

  4. Dual characteristics of yield and ultimate strength as applied to two grades of beryllium

    International Nuclear Information System (INIS)

    Priddy, T.G.; Benzley, S.E.; Johnson, R.L.

    1977-02-01

    Published yield and ultimate biaxial strength data for two grades of beryllium are correlated with the use of a macroscopic failure model. Cross sections of the resulting surfaces in three-dimensional stress space are drawn to illustrate the expected transition from ductile to brittle fracture for triaxial tension states of stress. The usefulness of these models to the prediction of fracture in ductile materials is discussed. 5 tables, 8 figures, 11 references

  5. Ultimate strength analysis of ring-stiffened cylinders subjected to hydrostatic pressure

    International Nuclear Information System (INIS)

    Park, Chi Mo

    1990-01-01

    In this study, ultimate strength analysis of ring-stiffened cylinders have been performed, considering the elasto-plastic large deflection. In the elasto-plastic analysis, von Mises yield criteria, the plastic flow theory and the layered approach have been adopted. In order to take into account the follower force effect of the hydrostatic pressure, the incremental load components have been updated at every loading step. As collapse modes, axisymmetric yielding, interframe shell buckling and general buckling are considered, while local buckling of ring-stiffener is not considered. Initial shape imperfection is assumed to be the elastic buckling mode to obtain the lower bound of the ultimate strength. Results of numerical analysis are compared with the experimental results to show the validity of the present approach. It has been drawn that the present numerical results are closely correlated with the experimental results. On the other hand, the effects of initial shape imperfection and condition on the ultimate strength have been investigated. (Author)

  6. BNL NONLINEAR PRE TEST SEISMIC ANALYSIS FOR THE NUPEC ULTIMATE STRENGTH PIPING TEST PROGRAM

    International Nuclear Information System (INIS)

    DEGRASSI, G.; HOFMAYER, C.; MURPHY, C.; SUZUKI, K.; NAMITA, Y.

    2003-01-01

    The Nuclear Power Engineering Corporation (NUPEC) of Japan has been conducting a multi-year research program to investigate the behavior of nuclear power plant piping systems under large seismic loads. The objectives of the program are: to develop a better understanding of the elasto-plastic response and ultimate strength of nuclear piping; to ascertain the seismic safety margin of current piping design codes; and to assess new piping code allowable stress rules. Under this program, NUPEC has performed a large-scale seismic proving test of a representative nuclear power plant piping system. In support of the proving test, a series of materials tests, static and dynamic piping component tests, and seismic tests of simplified piping systems have also been performed. As part of collaborative efforts between the United States and Japan on seismic issues, the US Nuclear Regulatory Commission (USNRC) and its contractor, the Brookhaven National Laboratory (BNL), are participating in this research program by performing pre-test and post-test analyses, and by evaluating the significance of the program results with regard to safety margins. This paper describes BNL's pre-test analysis to predict the elasto-plastic response for one of NUPEC's simplified piping system seismic tests. The capability to simulate the anticipated ratcheting response of the system was of particular interest. Analyses were performed using classical bilinear and multilinear kinematic hardening models as well as a nonlinear kinematic hardening model. Comparisons of analysis results for each plasticity model against test results for a static cycling elbow component test and for a simplified piping system seismic test are presented in the paper

  7. Investigations on the ultimate compressive strength of composite plates with geometrical imperfections

    DEFF Research Database (Denmark)

    Misirlis, K.; Downes, J.; Dow, R.S.

    2009-01-01

    with initial geometric imperfections. This paper presents the validation of finite element models against a series of plate tests that were performed within this framework and parametric studies that were carried out to identify the effects of geometric imperfections on the ultimate compressive strength......A series of studies has been performed within the MARSTRUCT Network of Excellence on Marine Structures in order to investigate the buckling response of glass fibre reinforced polymer plates. These studies include the fabrication, testing and finite element analysis of a large number of plates...

  8. Bootstrap calculation of ultimate strength temperature maxima for neutron irradiated ferritic/martensitic steels

    Science.gov (United States)

    Obraztsov, S. M.; Konobeev, Yu. V.; Birzhevoy, G. A.; Rachkov, V. I.

    2006-12-01

    The dependence of mechanical properties of ferritic/martensitic (F/M) steels on irradiation temperature is of interest because these steels are used as structural materials for fast, fusion reactors and accelerator driven systems. Experimental data demonstrating temperature peaks in physical and mechanical properties of neutron irradiated pure iron, nickel, vanadium, and austenitic stainless steels are available in the literature. A lack of such an information for F/M steels forces one to apply a computational mathematical-statistical modeling methods. The bootstrap procedure is one of such methods that allows us to obtain the necessary statistical characteristics using only a sample of limited size. In the present work this procedure is used for modeling the frequency distribution histograms of ultimate strength temperature peaks in pure iron and Russian F/M steels EP-450 and EP-823. Results of fitting the sums of Lorentz or Gauss functions to the calculated distributions are presented. It is concluded that there are two temperature (at 360 and 390 °C) peaks of the ultimate strength in EP-450 steel and single peak at 390 °C in EP-823.

  9. An experimental investigation on the ultimate strength of epoxy repaired braced partial infilled RC frames

    Science.gov (United States)

    Dubey, Shailendra Kumar Damodar; Kute, Sunil

    2014-09-01

    Due to earthquake, buildings are damaged partially or completely. Particularly structures with soft storey are mostly affected. In general, such damaged structures are repaired and reused. In this regard, an experimental investigation was planned and conducted on models of single-bay, single-storey of partial concrete infilled reinforced concrete (RC) frames up to collapse with corner, central and diagonal steel bracings. Such collapsed frames were repaired with epoxy resin and retested. The initiative was to identify the behaviour, extent of restored ultimate strength and deflection of epoxy-retrofitted frames in comparison to the braced RC frames. The performance of such frames has been considered only for lateral loads. In comparison to bare RC frames, epoxy repaired partial infilled frames have significant increase in the lateral load capacity. Central bracing is more effective than corner and diagonal bracing. For the same load, epoxy repaired frames have comparable deflection than similar braced frames.

  10. Effect of Incorporation of Antifungal Agents on the Ultimate Tensile Strength of Temporary Soft Denture Liners.

    Science.gov (United States)

    Neppelenbroek, Karin Hermana; Lima, Jozely Francisca Mello; Hotta, Juliana; Galitesi, Lucas Lulo; Almeida, Ana Lucia Pompéia Fraga; Urban, Vanessa Migliorini

    2018-02-01

    To investigate the ultimate tensile strength of temporary soft denture liners modified by minimum inhibitory concentrations (MICs) of antifungal agents for Candida albicans biofilm (SC5314) determined in previous microbiological research. Dumbbell-shaped specimens (n = 7) with a central cross-sectional area of 6 × 3 × 33 mm were produced by Softone and Trusoft, without (control) or with incorporation of drugs in powder form at MICs for C. albicans biofilm (per g of material powder): nystatin (0.032 g), chlorhexidine diacetate (0.064 g), ketoconazole (0.128 g), miconazole (0.256 g), and itraconazole (0.256 g). After plasticization, specimens were immersed in distilled water at 37°C for 24 hours, 7 or 14 days, and then tested in tension in a universal testing machine at 40 mm/min. Data of tensile strength (MPa) and elongation percentage (%) were submitted to 3-way ANOVA and Tukey's test (α = 0.05). At the end of 14 days, the tensile strength for both materials was significantly lower in the groups modified by miconazole and itraconazole compared to the other groups (p 0.05). After 7 and 14 days in water, miconazole and itraconazole added into both materials resulted in significantly lower elongation percentages compared to the other antifungal agents and control (p 0.05). The addition of the nystatin, chlorhexidine, and ketoconazole at MICs for C. albicans biofilm resulted in no harmful effects on the tensile strength and elongation percentage of the temporary soft denture liner materials up to 14 days. © 2017 by the American College of Prosthodontists.

  11. Reduced design load basis for ultimate blade loads estimation in multidisciplinary design optimization frameworks

    DEFF Research Database (Denmark)

    Pavese, Christian; Tibaldi, Carlo; Larsen, Torben J.

    2016-01-01

    The aim is to provide a fast and reliable approach to estimate ultimate blade loads for a multidisciplinary design optimization (MDO) framework. For blade design purposes, the standards require a large amount of computationally expensive simulations, which cannot be efficiently run each cost...... function evaluation of an MDO process. This work describes a method that allows integrating the calculation of the blade load envelopes inside an MDO loop. Ultimate blade load envelopes are calculated for a baseline design and a design obtained after an iteration of an MDO. These envelopes are computed...... for a full standard design load basis (DLB) and a deterministic reduced DLB. Ultimate loads extracted from the two DLBs with the two blade designs each are compared and analyzed. Although the reduced DLB supplies ultimate loads of different magnitude, the shape of the estimated envelopes are similar...

  12. Behavior and ultimate strength of an inner concrete structure of a nuclear reactor building subjected to thermal and seismic loads

    International Nuclear Information System (INIS)

    Omatsuzawa, K.; Suzuki, Y.; Sato, M.; Takeda, T.; Yamaguchi, T.; Yoshioka, K.; Nakayama, T.; Furuya, N.; Kawaguchi, T.; Koike, K.; Naganuma, K.

    1987-01-01

    Heating tests and heating-plus-seismic-loading tests at high temperature (T max = 175 0 C) were conducted using various concrete structural members such as beams, cylindrical walls, H-section walls, and 1/10-scale models of the inner concrete (I/C) structure in a fast breeder reactor (FBR) building. Concrete subjected to high temperature exceeding 100 0 C has a tendency to have lower Young's modulus and to shrink. As these material constants are temperature-dependent, the thermal stress occurring within the concrete structure is smaller than the values usually obtained by normal crack analysis methods. Although thermal stresses and cracks exert marked influences on the behaviors of the structures during the earlier stages of loading, they hardly affect the ultimate bending and shear strengths. Specifically, as a result of I/C model tests, it was made clear that the ultimate strength of the structure is considerably greater than the design loads under combined thermal and seismic loading conditions. (orig./HP)

  13. Ultimate Tensile Strength as a Function of Test Rate for Various Ceramic Matrix Composites at Elevated Temperatures

    Science.gov (United States)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2002-01-01

    Ultimate tensile strength of five different continuous fiber-reinforced ceramic composites, including SiC/BSAS (2D 2 types), SiC/MAS-5 (2D), SiC/SiC (2D enhanced), and C/SiC(2D) was determined as a function of test rate at I 100 to 1200 'C in air. All five composite materials exhibited a significant dependency of ultimate strength on test rate such that the ultimate strength decreased with decreasing test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress rate) to another (constant stress loading) for SiC/BSAS suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics.

  14. Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.

    Science.gov (United States)

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-06-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks.

  15. An Experimental Investigation on the Ultimate Strength of Partially Infilled: Braced Steel Frames

    Science.gov (United States)

    Dubey, Shailendra Kumar Damodar; Kute, Sunil Y.

    2017-12-01

    Infilled walls are usually, considered as non-structural elements. However, these walls are effective in carrying lateral loads. In this regard, an experimental investigation was planned and conducted to study the effect of braced and partially infilled steel frames with cement mortar and concrete in comparison to the bare frames. All these frames were tested up to collapse and subjected only to horizontal loads to obtain an effective and possible solution for soft storey which are generally not infilled. In comparison to bare steel frames, partially infilled frames have an increase of lateral load capacity by 45-60%. Central bracing is more effective than that of the corner bracing. For the same load partially infilled frames have significantly less deflection than that of the bare frames. A reduced load factor is suggested for the design of soft storey columns with the partial infills. A mathematical model has been proposed to calculate the theoretical ultimate load for the braced, cement mortar and concrete partial infilled frames.

  16. Ultimate strength analysis of long-span cable-stayed bridges; Chodai chachokyo no shukyoku kyodo kaiseki to kyodo ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Xie, X.; Yamaguchi, H. [Saitama Univ., Urawa (Japan)] Nagai, M. [Nagaoka Technical Coll., Niigata (Japan)

    1998-07-21

    Recently, span of cable-stayed bridges has been getting loner and longer, present situation is that cable-stayed bridges with span 600 to 800m class have been built inside and outside the country, and accurate determination of its ultimate strength has been an important problem statistically. However, concrete design method for evaluating load bearing stress of long-span cable-stayed bridge. Particularly of the main beam whose axial stress is dominating, has not been established so far. As for cable-stayed bridge, even for long-span, effect of plasticization of cross section on ultimate strength is severe because there is little effect of geometric nonlinearity and it is thought that accurate evaluation of ultimate strength only by elastic finite potential analysis is difficult. Accordingly, it is necessary to study the behavior by using combined nonlinear analysis considering the nonlinearity of the material in order to evaluate the safety and economy to long-span cable-stayed bridge. In this report, 3 dimensional analysis method was formularized taking into account the combine nonlinearity of multi-box girder and analysis program of ultimate strength behavior of long-span cable-stayed bridge was developed. 19 refs., 17 figs., 2 tabs.

  17. Experimental investigation on ultimate strength and failure response of composite box beams used in wind turbine blades

    DEFF Research Database (Denmark)

    Tang, Jing; Chen, Xiao

    2018-01-01

    This study focuses on the ultimate strength and failure response of composite box beams under three-point bending. The box beams consist of spar caps and shear webs and they are typically used in wind turbine blades as load-carrying members. Different spar cap configurations and loading directions...

  18. A Simplified Model for the Effect of Weld-Induced Residual Stresses on the Axial Ultimate Strength of Stiffened Plates

    Science.gov (United States)

    Chen, Bai-Qiao; Guedes Soares, C.

    2018-03-01

    The present work investigates the compressive axial ultimate strength of fillet-welded steel-plated ship structures subjected to uniaxial compression, in which the residual stresses in the welded plates are calculated by a thermo-elasto-plastic finite element analysis that is used to fit an idealized model of residual stress distribution. The numerical results of ultimate strength based on the simplified model of residual stress show good agreement with those of various methods including the International Association of Classification Societies (IACS) Common Structural Rules (CSR), leading to the conclusion that the simplified model can be effectively used to represent the distribution of residual stresses in steel-plated structures in a wide range of engineering applications. It is concluded that the widths of the tension zones in the welded plates have a quasi-linear behavior with respect to the plate slenderness. The effect of residual stress on the axial strength of the stiffened plate is analyzed and discussed.

  19. Ultimate strength, low stress creep characteristics, and thermal intercept methods for an epoxy fiberglass tension member support

    International Nuclear Information System (INIS)

    Niemann, R.C.; Gonczy, J.D.; Hoffman, J.A.; Mataya, K.F.; Smelser, P.; Young, W.C.

    1979-01-01

    A support system utilizing epoxy fiberglass tension members will be used for the UTSI Superconducting Dipole Magnet. Elements of a support system have a basic member which is a link in which a composite is wound around a mandrel. This element uses the strength of the material fibers in a most advantageous way. The flexural and torsional load imputs to the link at its end must be minimized. A spherical bearing with a cylindrical outer surface functions as the central pin. Experience gained in the application with emphasis on tension member material, ultimate strength, creep, and heat intercepts is presented

  20. Numerical Analysis on the High-Strength Concrete Beams Ultimate Behaviour

    Science.gov (United States)

    Smarzewski, Piotr; Stolarski, Adam

    2017-10-01

    Development of technologies of high-strength concrete (HSC) beams production, with the aim of creating a secure and durable material, is closely linked with the numerical models of real objects. The three-dimensional nonlinear finite element models of reinforced high-strength concrete beams with a complex geometry has been investigated in this study. The numerical analysis is performed using the ANSYS finite element package. The arc-length (A-L) parameters and the adaptive descent (AD) parameters are used with Newton-Raphson method to trace the complete load-deflection curves. Experimental and finite element modelling results are compared graphically and numerically. Comparison of these results indicates the correctness of failure criteria assumed for the high-strength concrete and the steel reinforcement. The results of numerical simulation are sensitive to the modulus of elasticity and the shear transfer coefficient for an open crack assigned to high-strength concrete. The full nonlinear load-deflection curves at mid-span of the beams, the development of strain in compressive concrete and the development of strain in tensile bar are in good agreement with the experimental results. Numerical results for smeared crack patterns are qualitatively agreeable as to the location, direction, and distribution with the test data. The model was capable of predicting the introduction and propagation of flexural and diagonal cracks. It was concluded that the finite element model captured successfully the inelastic flexural behaviour of the beams to failure.

  1. Effect of soaking seeds of flax on the ultimate strength of flaxes

    Directory of Open Access Journals (Sweden)

    E. I. Ponomareva

    2017-01-01

    Full Text Available There are one of ways to save peoples heath is eating food, what rich in fiber. To the recovery of polyunsarurated fatty acids, protein, mineral substances, fibers it recommended to eat flax seeds and its products. One of these products are flaxes. The purpose of the work was a rational choice of the duration of soaking seeds, providing strong reception of finished products. Founds that when hydrated of 10 to 30 minutes of the study setting almost unchanged. After 30 minutes soaking the tensile strength increased, and then decreased. The maximum value observed in the samples in which lasted 40 minutes soaking. Probably, due to the fact that upon contact with water 30 minutes before the moisture is adsorbed on the surface of flax seed are thus formed in a small amount of mucus. From 30 to 40 minutes soaking carbohydrates undergo hydrolysis inner layers of the endosperm and seed shell. While the water absorption capacity of flax reaches limits. Also increases the amount of mucus, and after 40 minutes soaking becomes excessive, resulting in reduced tensile strength of the finished product. Therefore, rational while soaking flax 40 minutes, providing the maximum value of the parameter under study. Flux thus, thanks to the ability of flax seed soaking and store slime forming after drying alpha-linolenic acid is a source of polyunsaturated fatty acids, dietary fibers, vitamins, minerals.

  2. Measurement of ultimate tensile strength and Young modulus in LYSO scintillating crystals

    Energy Technology Data Exchange (ETDEWEB)

    Scalise, Lorenzo, E-mail: l.scalise@univpm.it [Dipartimento di Meccanica, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Rinaldi, Daniele [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Istituto Nazionale di Fisica Nucleare, Section of Perugia (Italy); Davi, Fabrizio [Dipartimento di Architettura Costruzioni e Strutture, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Paone, Nicola [Dipartimento di Meccanica, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy)

    2011-10-21

    Scintillating crystals are employed in high energy physics, in medical imaging, diagnostic and security. Two mechanical properties of lutetium-yttrium oxyorthosilicate cerium-doped Lu{sub 2(1-x)}Y{sub 2x}SiO{sub 5}:Ce with x=0.1 (LYSO) crystals have been measured: the ultimate tensile stress ({sigma}{sub UTS}) and the Young elastic modulus (E). Measurements are made by means of a 4-points loading device and the experimental results account for an elastic-brittle stress-strain relation, which depends heavily on the specimen preparation and the material defects. {sigma}{sub UTS} along the [0 1 0] tensile direction ranges within 68.14 and 115.61 MPa, which, in the lowest case, is more than twice with respect to those measured for PbWO{sub 4} (PWO), exhibiting a marked difference between the annealed and the not-annealed samples. The mean elastic modulus (E), along the same direction, is E=1.80x10{sup 11} ({+-}2.15x10{sup 10}) N/m{sup 2}, with lower dispersion respect to UTS data. This type of analysis and study can be included into quality control procedures of crystals, based on samples taken out of production; such procedures can be established for industrial processing of crystals aimed to the high energy physics (calorimeters) and medical imaging (PET, etc.) applications.

  3. Investigation of Ultimate Strength of Composite Open-Web Joist-Girders

    OpenAIRE

    Showalter, Sheldon Lee

    1999-01-01

    The goal of this research was to study several methods of generating composite action using open-web joist-girders, designed and manufactured by Nucor Corporation. In addition to comparing the relative performance of these systems, it was intended to determine whether the current accepted design procedure for composite joists could be extended to joist-girders.

  4. Estimation of the Ultimate Tensile Strength of Steel from Its HB and HV Hardness Numbers and Coercive Force

    Science.gov (United States)

    Sandomirskii, S. G.

    2017-11-01

    A formula is derived to accurately describe the tabulated relation between the Brinell ( HB) and Vickers ( HV) hardnesses of steel over the entire range of their possible variation. This formula and the formulas describing the relation between the HB hardness of chromium-molybdenum and chromium-nickel steels and their ultimate tensile strength σu are used to analyze the change in σu of 38KhNM steel upon quenching and tempering. The data that reveal a relation between σu of 38KhNM steel and its coercive force are obtained.

  5. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements.

    Science.gov (United States)

    Peng, Bei; Locascio, Mark; Zapol, Peter; Li, Shuyou; Mielke, Steven L; Schatz, George C; Espinosa, Horacio D

    2008-10-01

    The excellent mechanical properties of carbon nanotubes are being exploited in a growing number of applications from ballistic armour to nanoelectronics. However, measurements of these properties have not achieved the values predicted by theory due to a combination of artifacts introduced during sample preparation and inadequate measurements. Here we report multiwalled carbon nanotubes with a mean fracture strength >100 GPa, which exceeds earlier observations by a factor of approximately three. These results are in excellent agreement with quantum-mechanical estimates for nanotubes containing only an occasional vacancy defect, and are approximately 80% of the values expected for defect-free tubes. This performance is made possible by omitting chemical treatments from the sample preparation process, thus avoiding the formation of defects. High-resolution imaging was used to directly determine the number of fractured shells and the chirality of the outer shell. Electron irradiation at 200 keV for 10, 100 and 1,800 s led to improvements in the maximum sustainable loads by factors of 2.4, 7.9 and 11.6 compared with non-irradiated samples of similar diameter. This effect is attributed to crosslinking between the shells. Computer simulations also illustrate the effects of various irradiation-induced crosslinking defects on load sharing between the shells.

  6. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements.

    Energy Technology Data Exchange (ETDEWEB)

    Peng, B.; Locascio, M.; Zapol, P.; Li, S.; Mielke, S. L.; Schatz, G. C.; Espinosa, H. D.; Northwestern Univ.

    2008-01-01

    The excellent mechanical properties of carbon nanotubes are being exploited in a growing number of applications from ballistic armour to nanoelectronics. However, measurements of these properties have not achieved the values predicted by theory due to a combination of artifacts introduced during sample preparation and inadequate measurements. Here we report multiwalled carbon nanotubes with a mean fracture strength >100 GPa, which exceeds earlier observations by a factor of approximately three. These results are in excellent agreement with quantum-mechanical estimates for nanotubes containing only an occasional vacancy defect, and are {approx}80% of the values expected for defect-free tubes. This performance is made possible by omitting chemical treatments from the sample preparation process, thus avoiding the formation of defects. High-resolution imaging was used to directly determine the number of fractured shells and the chirality of the outer shell. Electron irradiation at 200 keV for 10, 100 and 1,800 s led to improvements in the maximum sustainable loads by factors of 2.4, 7.9 and 11.6 compared with non-irradiated samples of similar diameter. This effect is attributed to crosslinking between the shells. Computer simulations also illustrate the effects of various irradiation-induced crosslinking defects on load sharing between the shells.

  7. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements

    International Nuclear Information System (INIS)

    Peng, B.; Locascio, M.; Zapol, P.; Li, S.; Mielke, S.L.; Schatz, G.C.; Espinosa, H.D.

    2008-01-01

    The excellent mechanical properties of carbon nanotubes are being exploited in a growing number of applications from ballistic armour to nanoelectronics. However, measurements of these properties have not achieved the values predicted by theory due to a combination of artifacts introduced during sample preparation and inadequate measurements. Here we report multiwalled carbon nanotubes with a mean fracture strength >100 GPa, which exceeds earlier observations by a factor of approximately three. These results are in excellent agreement with quantum-mechanical estimates for nanotubes containing only an occasional vacancy defect, and are ∼80% of the values expected for defect-free tubes. This performance is made possible by omitting chemical treatments from the sample preparation process, thus avoiding the formation of defects. High-resolution imaging was used to directly determine the number of fractured shells and the chirality of the outer shell. Electron irradiation at 200 keV for 10, 100 and 1,800 s led to improvements in the maximum sustainable loads by factors of 2.4, 7.9 and 11.6 compared with non-irradiated samples of similar diameter. This effect is attributed to crosslinking between the shells. Computer simulations also illustrate the effects of various irradiation-induced crosslinking defects on load sharing between the shells.

  8. Post-Buckling and Ultimate Strength Analysis of Stiffened Composite Panel Base on Progressive Damage

    Science.gov (United States)

    Zhang, Guofan; Sun, Xiasheng; Sun, Zhonglei

    Stiffened composite panel is the typical thin wall structure applied in aerospace industry, and its main failure mode is buckling subjected to compressive loading. In this paper, the development of an analysis approach using Finite Element Method on post-buckling behavior of stiffened composite structures under compression was presented. Then, the numerical results of stiffened panel are obtained by FE simulations. A thorough comparison were accomplished by comparing the load carrying capacity and key position strains of the specimen with test. The comparison indicates that the FEM results which adopted developed methodology could meet the demand of engineering application in predicting the post-buckling behavior of intact stiffened structures in aircraft design stage.

  9. Experimental study on buckling and ultimate strength of thin-walled box stub columns; Usuniku hakogata danmen buzai no zakutsu / shukyoku kyodo tokusei ni kansuru jikkenteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, H.; Kitada, T. [Osaka City Univ. (Japan); Oryu, T. [Kawasaki Heavy Industries Ltd., Kobe (Japan)

    1998-10-21

    Thin-walled box stub columns such as beams of cable-stayed bridge, suspension bridge tower, arch rib of arch bridge and steel piers and so forth can also bear torsion at the same time besides compression and bending. These thin-walled box stub columns may achieve ultimate condition before reaching to plastic condition due to the effect of local buckling and so forth. Accordingly, it is the important topic to study the properties regarding ultimate strength of thin-walled box members in order to evaluate correctly the effect on load bearing resistance of local buckling. In this report, validity of load bearing resistance curve and ultimate strength interaction curve proposed by authors was studied using load bearing capacity experiment results. As a result, all ultimate strengths obtained by the experiment were higher than the ultimate strengths estimated by load bearing capacity curve and ultimate strength interaction curve. Further, it was revealed that the specimens subjected to torsion or subjected to bending and torsion and so forth exceeded the plastic strength due to the effect of strain hardening. 12 refs., 14 figs., 4 tabs.

  10. Ultimate load design and testing of a cylindrical prestressed concrete vessel

    International Nuclear Information System (INIS)

    Stefanou, G.D.

    1982-01-01

    The object of this research was to design, construct and test to failure a prestressed concrete pressure vessel model that could be used to investigate the behavior of a full scale structure underworking and ultimate load. The properties and the design of the model was based generally on full scale vessels already constructed to house the nuclear reactors used in atomic power stations. To design the model the ultimate load approach was adopted throughout. All load factors associated with the prestressing have been defined and kept to a minimum in order that the vessel's behavior may be predicted. The tests on the vessel were carried out first on the elastic range to observe its behavior at working load and then at the ultimate range to observe the modes of failure and compare the actual results in both cases with the predicted values. Although full agreement between observed results and predicted values was not obtained, the conclusions drawn from the study were useful for the design of full scale vessels. (author)

  11. Evaluation of pH, ultimate tensile strength, and micro-shear bond strength of two self-adhesive resin cements

    Directory of Open Access Journals (Sweden)

    Luciana Artioli COSTA

    2014-01-01

    Full Text Available The aim of this study was to evaluate the pH, ultimate tensile strength (UTS, and micro-shear bond strength (µSBS of two self-adhesive resin cements to enamel and dentin. Sound bovine incisors (n = 10 and two self-adhesive resin cements (i.e., RelyX U-100 and seT PP were used. The pH of the resin cements was measured using a pH-indicator paper (n = 3. Specimens for UTS were obtained from an hourglass-shaped mold. For µSBS, cylinders with internal diameter of 0.75 mm and height of 0.5 mm were bonded to the flat enamel and dentin surfaces. Bonded cylinders were tested in the shear mode using a loop wire. The fracture mode was also evaluated. The cement seT PP showed a low pH; U-100 showed significantly higher UTS (49.9 ± 2.0 than seT PP (40.0 ± 2.1 (p < 0.05 and high µSBS to enamel (10.7 ± 3.7. The lowest µSBS was found for seT PP to dentin (0.7 ± 0.6; seT PP to enamel (4.8 ± 1.7, and for U-100 to dentin (7.2 ± 1.9, showing an intermediate µSBS value (p < 0.05. Adhesive failure was the most frequently observed failure mode. The resin cement that presented the lowest pH and UTS also presented the lowest micro-shear bond strength to enamel and dentin.

  12. Statistical considerations of graphite strength for assessing design allowable stresses

    International Nuclear Information System (INIS)

    Ishihara, M.; Mogi, H.; Ioka, I.; Arai, T.; Oku, T.

    1987-01-01

    Several aspects of statistics need to be considered to determine design allowable stresses for graphite structures. These include: 1) Statistical variation of graphite material strength. 2) Uncertainty of calculated stress. 3) Reliability (survival probability) required from operational and safety performance of graphite structures. This paper deals with some statistical considerations of structural graphite for assessing design allowable stress. Firstly, probability distribution functions of tensile and compressive strengths are investigated on experimental Very High Temperature candidated graphites. Normal, logarithmic normal and Weibull distribution functions are compared in terms of coefficient of correlation to measured strength data. This leads to the adaptation of normal distribution function. Then, the relation between factor of safety and fracture probability is discussed on the following items: 1) As the graphite strength is more variable than metalic material's strength, the effect of strength variation to the fracture probability is evaluated. 2) Fracture probability depending on survival probability of 99 ∼ 99.9 (%) with confidence level of 90 ∼ 95 (%) is discussed. 3) As the material properties used in the design analysis are usually the mean values of their variation, the additional effect of these variations on the fracture probability is discussed. Finally, the way to assure the minimum ultimate strength with required survival probability with confidence level is discussed in view of statistical treatment of the strength data from varying sample numbers in a material acceptance test. (author)

  13. Pre-heated dual-cured resin cements: analysis of the degree of conversion and ultimate tensile strength

    Directory of Open Access Journals (Sweden)

    Flávio Álvares França

    2011-04-01

    Full Text Available This study evaluated the degree of conversion (DC and ultimate tensile strength (UTS of dual-cured resin cements heated to 50º C prior to and during polymerization. Disc- and hourglass-shaped specimens of Rely X ARC (RX and Variolink II (VII were obtained using addition silicon molds. The products were manipulated at 25º C or 50º C and were subjected to 3 curing conditions: light-activation through a glass slide or through a pre-cured 2-mm thick resin composite disc, or they were allowed to self-cure (SC. All specimens were dark-stored dry for 15 days. For DC analysis, the resin cements were placed into the mold located on the center of a horizontal diamond on the attenuated total reflectance element in the optical bench of a Fourier Transformed Infrared spectrometer. Infrared spectra (n = 6 were collected between 1680 and 1500 cm-1, and DC was calculated by standard methods using changes in ratios of aliphatic-to-aromatic C=C absorption peaks from uncured and cured states. For UTS test, specimens (n = 10 were tested in tension in a universal testing machine (crosshead speed of 1 mm/min until failure. DC and UTS data were submitted to 2-way ANOVA, followed by Tukey's test (α= 5%. Both products showed higher DC at 50º C than at 25º C in all curing conditions. No significant difference in UTS was noted between most light-activated groups at 25º C and those at 50º C. VII SC groups showed higher UTS at 50º C than at 25º C (p < 0.05. Increased temperature led to higher DC, but its effects on resin cement UTS depended on the curing condition.

  14. Application of risk-informed design methods to select the PSACS ultimate heat sink

    International Nuclear Information System (INIS)

    Elliott, Michael A.; Apostolakis, George E.

    2009-01-01

    In the early phases of advanced system design, information is scarce. The technologies, components and processes to be used have not been specified adequately or are not well understood and uncertainties are very large. Yet, it is during these early phases that design teams and other stakeholders are required to make critical decisions to guide the development of the system. To aid in this decision making, a formal process is proposed based on the Analytic-Deliberative Decision-Making Process (ADP) that allows stakeholders to synthesize rationally their knowledge and experience and facilitate learning and sharing of best practices. The ADP identifies and prioritizes attributes relevant to a decision problem and supports the formulation of metrics to measure the performance of different design options. This paper reports on an application of the ADP to the selection of an ultimate heat sink for the Flexible Conversion Ratio (FCR) reactor's Passive Secondary Auxiliary Cooling System (PSACS). Two ultimate heat sink options are identified and evaluated, air and water.

  15. The theoretical ultimate magnetoelectric coefficients of magnetoelectric composites by optimization design

    International Nuclear Information System (INIS)

    Wang, H.-L.; Liu, B.

    2014-01-01

    This paper investigates what is the largest magnetoelectric (ME) coefficient of ME composites, and how to realize it. From the standpoint of energy conservation, a theoretical analysis is carried out on an imaginary lever structure consisting of a magnetostrictive phase, a piezoelectric phase, and a rigid lever. This structure is a generalization of various composite layouts for optimization on ME effect. The predicted theoretical ultimate ME coefficient plays a similar role as the efficiency of ideal heat engine in thermodynamics, and is used to evaluate the existing typical ME layouts, such as the parallel sandwiched layout and the serial layout. These two typical layouts exhibit ME coefficient much lower than the theoretical largest values, because in the general analysis the stress amplification ratio and the volume ratio can be optimized independently and freely, but in typical layouts they are dependent or fixed. To overcome this shortcoming and achieve the theoretical largest ME coefficient, a new design is presented. In addition, it is found that the most commonly used electric field ME coefficient can be designed to be infinitely large. We doubt the validity of this coefficient as a reasonable ME effect index and consider three more ME coefficients, namely the electric charge ME coefficient, the voltage ME coefficient, and the static electric energy ME coefficient. We note that the theoretical ultimate value of the static electric energy ME coefficient is finite and might be a more proper measure of ME effect

  16. Evaluation of size dependent design shear strength of reinforced ...

    Indian Academy of Sciences (India)

    to the development of the size dependent models on the shear strength in ... predict the diagonal cracking strength and the ultimate shear strength of RC ... ing strength of normal beams was by Zsutty (1968) based on the data base available without .... The comparison of the calculated shear strength of the beams is shown.

  17. Ultimate Limit State Design Of Sheet Pile Walls By Finite Elements And Nonlinear Programming

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Damkilde, Lars; Krabbenhøft, Sven

    2002-01-01

    Limit analysis has been used for decades in civil and mechanical engineering practice as a means of analyzing structures of materials which with reasonable accuracy can be described as being rigid-perfectly plastic. Such materials include steel, concrete and soils. Traditionally, most attention has...... been given to the problem which consists of determining the ultimate magnitude of a given set of loads acting on a structure with a given geometry. This problem is relevant when determining e.g. the necessary extrusion pressure in metal forming problems, when evaluating the bearing capacity...... is the load intensity. In the paper we consider the latter of these problems with particular reference to the design of sheet pile walls....

  18. Design Dependent Cutoff Frequency of Nanotransistors Near the Ultimate Performance Limit

    Science.gov (United States)

    Kordrostami, Zoheir; Sheikhi, M. Hossein; Zarifkar, Abbas

    2012-12-01

    We have studied the effect of different structural designs of double gate MOSFETs (DG-MOSFETs) and carbon nanotube field effect transistors (CNTFETs) on the cutoff frequency (fT). The effects of metallic contacts with Schottky barriers, gate work function, dual material gate (DMG), halo doped channel and lightly doped drain and source (LDDS) architectures on the fT have been investigated for DG-MOSFETs and CNTFETs and the design dependent fT for both types of transistors has been studied for the first time. The simulations are based on the Schrödinger-Poisson solvers developed for each nanotransistor separately. The ballistic limit has been studied as the ultimate performance limit of the DG-MOSFETs and CNTFETs. The results of this paper, for the first time, show how some designations used for modification of short channel effects or current-voltage characteristics affect the fT. The results revealed that the cutoff frequencies of both types of the transistors exhibit the same behavior with changing design parameters. We have shown that the Schottky barriers, parasitic capacitances and halo doping reduce the fT and have proposed the DMG and LDDS artchitectures as ways to increase the fT for DG-MOSFETs and CNTFETs for the first time.

  19. Strength optimized designs of thermoelastic structures

    DEFF Research Database (Denmark)

    Pedersen, Pauli; Pedersen, Niels Leergaard

    2010-01-01

    For thermoelastic structures the same optimal design does not simultaneously lead to minimum compliance and maximum strength. Compliance may be a questionable objective and focus for the present paper is on the important aspect of strength, quantified as minimization of the maximum von Mises stre...... loads are appended....

  20. LRFD software for design and actual ultimate capacity of confined rectangular columns.

    Science.gov (United States)

    2013-04-01

    The analysis of concrete columns using unconfined concrete models is a well established practice. On the : other hand, prediction of the actual ultimate capacity of confined concrete columns requires specialized nonlinear : analysis. Modern codes and...

  1. Mechanical design of mussel byssus: material yield enhances attachment strength

    Science.gov (United States)

    Bell; Gosline

    1996-01-01

    The competitive dominance of mussels in the wave-swept rocky intertidal zone is in part due to their ability to maintain a secure attachment. Mussels are tethered to the substratum by a byssus composed of numerous extracellular, collagenous threads secreted by the foot. Each byssal thread has three serially arranged parts: a corrugated proximal region, a smooth distal region and an adhesive plaque. This study examines the material and structural properties of the byssal threads of three mussel species: Mytilus californianus, M. trossulus, and M. galloprovincialis. Tensile tests in general reveal similar material properties among species: the proximal region has a lower initial modulus, a lower ultimate stress and a higher ultimate strain than the distal region. The distal region also yields at a stress well below its ultimate value. In whole thread tests, the proximal region and adhesive plaque are common sites of structural failure and are closely matched in strength, while the distal region appears to be excessively strong. We propose that the high strength of the distal region is the byproduct of a material designed to yield and extend before structural failure occurs. Experimental and theoretical evidence is presented suggesting that thread yield and extensibility provide two important mechanisms for increasing the overall attachment strength of the mussel: (1) the reorientation of threads towards the direction of applied load, and (2) the 'recruitment' of more threads into tension and the consequent distribution of applied load over a larger cross-sectional area, thereby reducing the stress on each thread. This distal region yield behavior is most striking for M. californianus and may be a key to its success in extreme wave-swept environments.

  2. Ultimate stress increase in unbonded tendons in post-tensioned indeterminate I-beams cast with high strength normal and self compacting concrete

    Directory of Open Access Journals (Sweden)

    Yousef Askari Dolatabad

    2018-06-01

    Full Text Available The use of un-bonded tendons is prevalent in post-tensioned concrete structures. Equations for prediction of stress in un-bonded tendons of post-tensioned normal (vibrating concrete flexural members have been given in various codes. They are based on experience and don’t account all of important parameters such as concrete strength (normal and high strength and its type (vibrating and non-vibrating concrete. Since self-compacting concrete (SCC is nearly a new innovation therefore, understanding the implementation of this type of non-vibrating concrete on the ultimate unbonded tendon stress is critical. For this aim, in this paper there are presented experimental results of six continuous un-bonded post-tensioned I-beams in two groups were casted and monitored by different electrical strain gauges. In the first tested group, the beams (UPN1-12, UPN1-18, UPN1-22 were consisting of high strength normal concrete (HSNC where as in the second group (UPS1-12, UPS1-18, UPS1-22 high strength self-compacting concrete (HSSCC were tested. The variables included the type of concrete and percentage of bounded non-prestressed steel. Experimental monitored results of ultimate stress increase in unbonded tendons are compared with predicted equations of different researchers and standards. It was found that, the proposed equation is in better agreement with the test results. The results of standard error of estimate Sy/x, indicates that for two types of HSCs, the ACI 318-2011 provides better estimates than AASHTO-2010 model whereas this model provides better estimates than BS 8110-97. Keywords: Post-tensioned, Unbonded tendons, Stress increase, High strength normal and self-compacting concrete, Continuous beams

  3. ZERODUR: deterministic approach for strength design

    Science.gov (United States)

    Hartmann, Peter

    2012-12-01

    There is an increasing request for zero expansion glass ceramic ZERODUR substrates being capable of enduring higher operational static loads or accelerations. The integrity of structures such as optical or mechanical elements for satellites surviving rocket launches, filigree lightweight mirrors, wobbling mirrors, and reticle and wafer stages in microlithography must be guaranteed with low failure probability. Their design requires statistically relevant strength data. The traditional approach using the statistical two-parameter Weibull distribution suffered from two problems. The data sets were too small to obtain distribution parameters with sufficient accuracy and also too small to decide on the validity of the model. This holds especially for the low failure probability levels that are required for reliable applications. Extrapolation to 0.1% failure probability and below led to design strengths so low that higher load applications seemed to be not feasible. New data have been collected with numbers per set large enough to enable tests on the applicability of the three-parameter Weibull distribution. This distribution revealed to provide much better fitting of the data. Moreover it delivers a lower threshold value, which means a minimum value for breakage stress, allowing of removing statistical uncertainty by introducing a deterministic method to calculate design strength. Considerations taken from the theory of fracture mechanics as have been proven to be reliable with proof test qualifications of delicate structures made from brittle materials enable including fatigue due to stress corrosion in a straight forward way. With the formulae derived, either lifetime can be calculated from given stress or allowable stress from minimum required lifetime. The data, distributions, and design strength calculations for several practically relevant surface conditions of ZERODUR are given. The values obtained are significantly higher than those resulting from the two

  4. Review of ultimate pressure capacity test of containment structure and scale model design techniques

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Moon; Choi, In Kil [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    This study was performed to obtain the basic knowledge of the scaled model test through the review of experimental studies conducted in foreign countries. The results of this study will be used for the wall segment test planed in next year. It was concluded from the previous studies that the larger the model, the greater the trust of the community in the obtained results. It is recommended that a scale model 1/4 - 1/6 be suitable considering the characteristics of concrete, reinforcement, liner and tendon. Such a large scale model test require large amounts of time and budget. Because of these reasons, it is concluded that the containment wall segment test with analytical studies is efficient for the verification of the ultimate pressure capacity of the containment structures. 57 refs., 46 figs., 11 tabs. (Author)

  5. Design of integrated passive safety system (IPSS) for ultimate passive safety of nuclear power plants

    International Nuclear Information System (INIS)

    Chang, Soon Heung; Kim, Sang Ho; Choi, Jae Young

    2013-01-01

    Highlights: • We newly propose the design concept of integrated passive safety system (IPSS). • It has five safety functions for decay heat removal and severe accident mitigation. • Simulations for IPSS show that core melt does not occur in accidents with SBO. • IPSS can achieve the passive in-vessel retention and ex-vessel cooling strategy. • The applicability of IPSS is high due to the installation outside the containment. -- Abstract: The design concept of integrated passive safety system (IPSS) which can perform various passive safety functions is proposed in this paper. It has the various functions of passive decay heat removal system, passive safety injection system, passive containment cooling system, passive in-vessel retention and cavity flooding system, and filtered venting system with containment pressure control. The objectives of this paper are to propose the conceptual design of an IPSS and to estimate the design characters of the IPSS with accident simulations using MARS code. Some functions of the IPSS are newly proposed and the other functions are reviewed with the integration of the functions. Consequently, all of the functions are modified and integrated for simplicity of the design in preparation for beyond design based accidents (BDBAs) focused on a station black out (SBO). The simulation results with the IPSS show that the decay heat can be sufficiently removed in accidents that occur with a SBO. Also, the molten core can be retained in a vessel via the passive in-vessel retention strategy of the IPSS. The actual application potential of the IPSS is high, as numerous strong design characters are evaluated. The installation of the IPSS into the original design of a nuclear power plant requires minimal design change using the current penetrations of the containment. The functions are integrated in one or two large tanks outside the containment. Furthermore, the operation time of the IPSS can be increased by refilling coolant from the

  6. Ultimate limit state design of sheet pile walls by finite elements and nonlinear programming

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Damkilde, Lars; Krabbenhøft, Sven

    2005-01-01

    The design of sheet pile walls by lower bound limit analysis is considered. The design problem involves the determination of the necessary yield moment of the wall, the wall depth and the anchor force such that the structure is able to sustain the given loads. This problem is formulated...... as a nonlinear programming problem where the yield moment of the wall is minimized subject to equilibrium and yield conditions. The finite element discretization used enables exact fulfillment of these conditions and thus, according to the lower bound theorem, the solutions are safe....

  7. Compressive force-path method unified ultimate limit-state design of concrete structures

    CERN Document Server

    Kotsovos, Michael D

    2014-01-01

    This book presents a method which simplifies and unifies the design of reinforced concrete (RC) structures and is applicable to any structural element under both normal and seismic loading conditions. The proposed method has a sound theoretical basis and is expressed in a unified form applicable to all structural members, as well as their connections. It is applied in practice through the use of simple failure criteria derived from first principles without the need for calibration through the use of experimental data. The method is capable of predicting not only load-carrying capacity but also the locations and modes of failure, as well as safeguarding the structural performance code requirements. In this book, the concepts underlying the method are first presented for the case of simply supported RC beams. The application of the method is progressively extended so as to cover all common structural elements. For each structural element considered, evidence of the validity of the proposed method is presented t...

  8. Conceptual design of module fast reactor of ultimate safety cooled by lead-bismuth alloy

    International Nuclear Information System (INIS)

    Myasnikov, V.O.; Stekolnikov, V.V.; Stepanov, V.S.; Gorshkov, V.T.; Kulikov, M.L.; Shulyndin, V.A.; Gromov, B.F.; Kalashnikov, A.G.; Pashkin, Yu.G.

    1993-01-01

    During past time all basic problems arisen during working-out of NPP with lead-bismuth coolant were solved: physics and thermal physics of the cores, heat transfer and hydrodynamics, corrosion resistance of the structural materials and coolant technology, radiation and nuclear safety, investigations of emergency situations, development of fuel elements and absorbing elements of the reactor, equipment of the primary circuit and other circuits. A powerful experimental base equpped by unique rigs is made. A series of ship and test NPP has been constructed whereat repair of the plants and reactor refuelling are developed. Highly-skilled groups of investigators, designers and operation personnel capable of performing the development of the reactor plant with MFR within short terms have been formed. In this case MFR with lead-bismuth coolant may become the initial step in development of large-scale nuclear power engineering with fast reactors cooled by liquid lead

  9. The ultimate emergency measures to secure a NPP under an accidental condition with no designed power or water supply

    Energy Technology Data Exchange (ETDEWEB)

    Liang, K.S., E-mail: ksliang@alum.mit.edu [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101 Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai (China); Chiang, S.C. [Department of Nuclear Safety, Taiwan Power Company, 242 Sec. 3, Roosevelt Road, Taipei 10016, Taiwan (China); Hsu, Y.F.; Young, H.J.; Pei, B.S. [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101 Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Wang, L.C. [Department of Nuclear Safety, Taiwan Power Company, 242 Sec. 3, Roosevelt Road, Taipei 10016, Taiwan (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer An ultimate measure to secure core was developed, if power or water supply cannot be restored in time. Black-Right-Pointing-Pointer This ultimate measure was simulated by RELAP5-3D to verify the concept of this emergency plan. Black-Right-Pointing-Pointer Quantification of the required raw water injection rate was performed for NPPS in Taiwan Black-Right-Pointing-Pointer Reactor controlled depressurization within the 1st hour is essential to reduce the required raw water injection rate. Black-Right-Pointing-Pointer For PWR, even heat sink can be developed, RCP seal leak might eventually cause core uncover 10 h after seal leak occurs. - Abstract: In the recent nuclear catastrophe which occurred in Japan on March 11, 2011, several units of Fukushima conventional BWR experienced a total loss of power and water supply triggered by a heavy earthquake and a following Tsunami beyond design basis. In Fukushima accident it was observed that sea water was injected into reactors only after hydrogen explosion took place and it was considered a little too late to prevent core from damage. With regard to this fact, the Taiwan power company develops an ultimate measure to prevent reactor from encountering core damage, if either designed AC power or reactor water supply cannot be restored in time. This ultimate measure was named as DIVing plan, abbreviated from system depressurization, water injection and containment venting. Once any designed AC power or reactor water supply is made available, this DIVing plan will be activated to (1) depressurize reactor first, (2) inject any available water into reactor by any available power supply if this critical status cannot be restored in time, and (3) vent the containment if necessary to maintain containment integrity. In this paper the DIVing plan was simulated by RELAP5-3D to verify the concept of it and also to quantify the required raw water injection rate to prevent core from damage for both

  10. The ultimate emergency measures to secure a NPP under an accidental condition with no designed power or water supply

    International Nuclear Information System (INIS)

    Liang, K.S.; Chiang, S.C.; Hsu, Y.F.; Young, H.J.; Pei, B.S.; Wang, L.C.

    2012-01-01

    Highlights: ► An ultimate measure to secure core was developed, if power or water supply cannot be restored in time. ► This ultimate measure was simulated by RELAP5-3D to verify the concept of this emergency plan. ► Quantification of the required raw water injection rate was performed for NPPS in Taiwan ► Reactor controlled depressurization within the 1st hour is essential to reduce the required raw water injection rate. ► For PWR, even heat sink can be developed, RCP seal leak might eventually cause core uncover 10 h after seal leak occurs. - Abstract: In the recent nuclear catastrophe which occurred in Japan on March 11, 2011, several units of Fukushima conventional BWR experienced a total loss of power and water supply triggered by a heavy earthquake and a following Tsunami beyond design basis. In Fukushima accident it was observed that sea water was injected into reactors only after hydrogen explosion took place and it was considered a little too late to prevent core from damage. With regard to this fact, the Taiwan power company develops an ultimate measure to prevent reactor from encountering core damage, if either designed AC power or reactor water supply cannot be restored in time. This ultimate measure was named as DIVing plan, abbreviated from system depressurization, water injection and containment venting. Once any designed AC power or reactor water supply is made available, this DIVing plan will be activated to (1) depressurize reactor first, (2) inject any available water into reactor by any available power supply if this critical status cannot be restored in time, and (3) vent the containment if necessary to maintain containment integrity. In this paper the DIVing plan was simulated by RELAP5-3D to verify the concept of it and also to quantify the required raw water injection rate to prevent core from damage for both PWR and BWR plants in Taiwan, after the loss of passive cooling mechanism. Provided the passive cooling mechanism is lost

  11. Assessment of Ultimate Load Capacity for Pre-Stressed Concrete Containment Vessel Model of PWR Design With BARC Code ULCA

    International Nuclear Information System (INIS)

    Basha, S.M.; Singh, R.K.; Patnaik, R.; Ramanujam, S.; Kushwaha, H.S.; Venkat Raj, V.

    2002-01-01

    Ultimate load capacity assessment of nuclear containments has been a thrust research area for Indian Pressurised Heavy Water Reactor (PHWR) power programme. For containment safety assessment of Indian PHWRs a finite element code ULCA was developed at BARC, Trombay. This code has been extensively benchmarked with experimental results. The present paper highlights the analysis results for Prestressed Concrete Containment Vessel (PCCV) tested at Sandia National Labs, USA in a Round Robin analysis activity co-sponsored by Nuclear Power Engineering Corporation (NUPEC), Japan and the U.S Nuclear Regulatory Commission (NRC). Three levels of failure pressure predictions namely the upper bound, the most probable and the lower bound (all with 90% confidence) were made as per the requirements of the round robin analysis activity. The most likely failure pressure is predicted to be in the range of 2.95 Pd to 3.15 Pd (Pd= design pressure of 0.39 MPa for the PCCV model) depending on the type of liners used in the construction of the PCCV model. The lower bound value of the ultimate pressure of 2.80 Pd and the upper bound of the ultimate pressure of 3.45 Pd are also predicted from the analysis. These limiting values depend on the assumptions of the analysis for simulating the concrete-tendon interaction and the strain hardening characteristics of the steel members. The experimental test has been recently concluded at Sandia Laboratory and the peak pressure reached during the test is 3.3 Pd that is enveloped by our upper bound prediction of 3.45 Pd and is close to the predicted most likely pressure of 3.15 Pd. (authors)

  12. Ultimate strength analysis of thin plated structures using eigen-functions. 3rd Report. Application to reliability analysis; Koyu kansu wo mochiita usuita kozobutsu no dansosei kaisekiho. 3. Shinraisei kaiseki eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Y. [Osaka University, Osaka (Japan). Welding Research Institute; Masaoka, K.; Okada, H. [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering

    1996-12-31

    A reliability analysis was performed on ultimate strength of a hull by introducing reliability engineerings into the idealized structural unit method. Elements developed under the present study were applied to a model of an actual structure to indicate that even an analysis requiring much time under the finite element method can be performed in a short time and at high accuracy when this method is used. Analysis acted with bending moment and shear force simultaneously was performed on a model used as a structure in experiments carried out by Nishihara, assuming pure bending moment and longitudinal strength during slamming. Then, a reliability analysis was conducted on the same model based on this analysis method to investigate the ultimate strength. In an analysis of an ultimate strength when bending and shearing that assume slamming act upon simultaneously, axial force in the hull side decreases as loading increases, wherein how the shearing force increases can be identified clearly. Although existence of initial bends reduces the strength, the effect of variance in the vicinity of the average value on the reliability is rather small, while the effect due to variance in yield stress is greater. 27 refs., 14 figs., 4 tabs.

  13. Ultimate strength analysis of thin plated structures using eigen-functions. 3rd Report. Application to reliability analysis; Koyu kansu wo mochiita usuita kozobutsu no dansosei kaisekiho. 3. Shinraisei kaiseki eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Y [Osaka University, Osaka (Japan). Welding Research Institute; Masaoka, K; Okada, H [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering

    1997-12-31

    A reliability analysis was performed on ultimate strength of a hull by introducing reliability engineerings into the idealized structural unit method. Elements developed under the present study were applied to a model of an actual structure to indicate that even an analysis requiring much time under the finite element method can be performed in a short time and at high accuracy when this method is used. Analysis acted with bending moment and shear force simultaneously was performed on a model used as a structure in experiments carried out by Nishihara, assuming pure bending moment and longitudinal strength during slamming. Then, a reliability analysis was conducted on the same model based on this analysis method to investigate the ultimate strength. In an analysis of an ultimate strength when bending and shearing that assume slamming act upon simultaneously, axial force in the hull side decreases as loading increases, wherein how the shearing force increases can be identified clearly. Although existence of initial bends reduces the strength, the effect of variance in the vicinity of the average value on the reliability is rather small, while the effect due to variance in yield stress is greater. 27 refs., 14 figs., 4 tabs.

  14. Multi-material topology design of laminates with strength criteria

    DEFF Research Database (Denmark)

    Lund, Erik

    2012-01-01

    The objective of this paper is to present a novel approach for multi-material topology optimization of laminated composite structures where strength constraints are taken into account together with other global structural performance measures. The topology design problem considered contains very...... many design variables, and when strength criteria are included in the problem, a very large number of criteria functions must be considered in the optimization problem to be solved. Thus, block aggregation methods are introduced, such that global strength measures are obtained. These formulations...... are illustrated for multi-material laminated design problems where the maximum failure index is minimized while compliance and mass constraints are taken into account....

  15. OPTIMUM DESIGN OF ULTRAHIGH STRENGTH NANOLAYERED COMPOSITES

    Energy Technology Data Exchange (ETDEWEB)

    H. KUNG; ET AL

    2000-10-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Refinement of the microstructure in metallic multilayers from the micrometer-scale to the nanometer-scale often results in a break down of the classical Hall-Petch model relating strength to the microstructural length scale. The critical length scale at which this behavior breaks down is investigated both experimentally and theoretically. Using transmission electron microscopy and nanoindentation, we evaluated the microstructure and mechanical properties of Cu/Cr, Cu./Ni, and Cu/Nb multilayers that had different shear moduli mismatch between layers and lattice misfit strain between layers. Two-dimensional maps showing layer thickness and grain size ranges over which different deformation mechanisms operate were constructed using dislocation theory. The deformation mechanisms responsible for the breakdown of Hall-Petch behavior are discussed. By correlating the deformation mechanism maps with the experimental data, we show that these maps serve as guidelines for interpreting the scale-dependent deformation mechanisms in multilayers. Atomistic simulation was also used to evaluate the interaction between interfaces and glide dislocations to provide atomic scale insights into the deformation mechanisms.

  16. Theoretical design and advanced microstructure in super high strength steels

    International Nuclear Information System (INIS)

    Caballero, F.G.; Santofimia, M.J.; Garcia-Mateo, C.; Chao, J.; Garcia de Andres, C.

    2009-01-01

    A theoretical design procedure based on phase transformation theory alone has been successfully applied to design steels with a microstructure consisting of a mixture of bainitic ferrite and retained austenite. Using thermodynamics and kinetics models, a set of four carbide free bainitic steels with a 0.3 wt.% carbon content were designed and manufactured following a thermomechanical treatment consisting of hot rolling and two-step cooling. The designed steels present significant combinations of strength and ductility, with tensile strengths ranging from 1500 to 1800 MPa and total elongations over 15%. However, a carbon content of 0.3 wt.% is still high for in-use properties such as weldability. In this sense, a reduction in the average carbon content of advanced bainitic steels was proposed. Improved bainitic steels with a carbon content of 0.2 wt.% reached combinations of strength and ductility comparable to those in TRIP assisted steels.

  17. Statistical modeling of static strengths of nuclear graphites with relevance to structural design

    International Nuclear Information System (INIS)

    Arai, Taketoshi

    1992-02-01

    Use of graphite materials for structural members poses a problem as to how to take into account of statistical properties of static strength, especially tensile fracture stresses, in component structural design. The present study concerns comprehensive examinations on statistical data base and modelings on nuclear graphites. First, the report provides individual samples and their analyses on strengths of IG-110 and PGX graphites for HTTR components. Those statistical characteristics on other HTGR graphites are also exemplified from the literature. Most of statistical distributions of individual samples are found to be approximately normal. The goodness of fit to normal distributions is more satisfactory with larger sample sizes. Molded and extruded graphites, however, possess a variety of statistical properties depending of samples from different with-in-log locations and/or different orientations. Second, the previous statistical models including the Weibull theory are assessed from the viewpoint of applicability to design procedures. This leads to a conclusion that the Weibull theory and its modified ones are satisfactory only for limited parts of tensile fracture behavior. They are not consistent for whole observations. Only normal statistics are justifiable as practical approaches to discuss specified minimum ultimate strengths as statistical confidence limits for individual samples. Third, the assessment of various statistical models emphasizes the need to develop advanced analytical ones which should involve modeling of microstructural features of actual graphite materials. Improvements of other structural design methodologies are also presented. (author)

  18. Controller Design of Complex System Based on Nonlinear Strength

    Directory of Open Access Journals (Sweden)

    Rongjun Mu

    2015-01-01

    Full Text Available This paper presents a new idea of controller design for complex systems. The nonlinearity index method was first developed for error propagation of nonlinear system. The nonlinearity indices access the boundary between the strong and the weak nonlinearities of the system model. The algorithm of nonlinearity index according to engineering application is first proposed in this paper. Applying this method on nonlinear systems is an effective way to measure the nonlinear strength of dynamics model over the full flight envelope. The nonlinearity indices access the boundary between the strong and the weak nonlinearities of system model. According to the different nonlinear strength of dynamical model, the control system is designed. The simulation time of dynamical complex system is selected by the maximum value of dynamic nonlinearity indices. Take a missile as example; dynamical system and control characteristic of missile are simulated. The simulation results show that the method is correct and appropriate.

  19. Assessment of Coping Capability of KORI Unit 1 under Extended Loss AC Power and Loss of Ultimate Heat Sink Initiated by Beyond Design Natural Disaster

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyun; Ha, Sang Jun [KHNP CRI, Daejeon (Korea, Republic of); Han, Kee Soo [Nuclear Engineering Service and Solution (NESS) Co. Ltd., Deajeon (Korea, Republic of); Park, Chan Eok [KEPCO Engineering and Constructd., Deajeon (Korea, Republic of)

    2016-10-15

    In Korea, the government and industry performed comprehensive safety inspection on all domestic nuclear power plants against beyond design basis external events and fifty action items have been issued. In addition to post- Fukushima action items, the stress tests for all domestic nuclear power plants are on the way to enhance the safety of domestic nuclear power plants through finding the vulnerabilities in intentional stress conditions initiated by beyond design natural disaster. This paper presents assessment results of coping capability of KORI Unit 1 under the simultaneous Extended Loss of AC Power (ELAP) and Loss of Ultimate Heat Sink (LUHS) which is a representative plant condition initiated by beyond design natural disaster. The assessment of the coping capability of KORI Unit 1 has been performed under simultaneous the extended loss of AC power and loss of ultimate heat sink initiated by beyond design natural disaster. It is concluded that KORI Unit 1 has the capability, in the event of loss of safety functions by beyond design natural disaster, to sufficiently cool down the reactor core without fuel damage, to keep pressure boundaries of the reactor coolant system in transient condition and to control containment and temperature to maintain the integrity of the containment buildings.

  20. Assessment of Coping Capability of KORI Unit 1 under Extended Loss AC Power and Loss of Ultimate Heat Sink Initiated by Beyond Design Natural Disaster

    International Nuclear Information System (INIS)

    Kim, Chang Hyun; Ha, Sang Jun; Han, Kee Soo; Park, Chan Eok

    2016-01-01

    In Korea, the government and industry performed comprehensive safety inspection on all domestic nuclear power plants against beyond design basis external events and fifty action items have been issued. In addition to post- Fukushima action items, the stress tests for all domestic nuclear power plants are on the way to enhance the safety of domestic nuclear power plants through finding the vulnerabilities in intentional stress conditions initiated by beyond design natural disaster. This paper presents assessment results of coping capability of KORI Unit 1 under the simultaneous Extended Loss of AC Power (ELAP) and Loss of Ultimate Heat Sink (LUHS) which is a representative plant condition initiated by beyond design natural disaster. The assessment of the coping capability of KORI Unit 1 has been performed under simultaneous the extended loss of AC power and loss of ultimate heat sink initiated by beyond design natural disaster. It is concluded that KORI Unit 1 has the capability, in the event of loss of safety functions by beyond design natural disaster, to sufficiently cool down the reactor core without fuel damage, to keep pressure boundaries of the reactor coolant system in transient condition and to control containment and temperature to maintain the integrity of the containment buildings

  1. Design and optimization for strength and integrity of tidal turbine rotor blades

    International Nuclear Information System (INIS)

    Liu, Pengfei; Veitch, Brian

    2012-01-01

    Tidal turbine rotor blade fractures and failures have resulted in substantial damage and hence cost of repair and recovery. The present work presents a rotor blade design and optimization method to address the blade structural strength design problem. The generic procedure is applicable to both turbine rotors and propellers. The optimization method seeks an optimum blade thickness distribution across the span with a prescribed constant safety factor for all the blade sections. This optimization procedure serves two purposes: while maintaining the required structural strength and integrity for an ultimate inflow speed, it aims to reduce the material to a minimum and to maintain power generation efficiency or improve the hydrodynamic efficiency. The value of the chosen minimum safety factor depends on the actual working conditions of the turbine in which the sectional peak loading and frequency are used: the harsher the environment, the larger the required safety factor. An engineering software tool with both hydrodynamic and structural capabilities was required to predict the instantaneous loading acting on all the blade sections, as well as the strength of a local blade section with a given blade geometry and chosen material. A time-domain, 3D unsteady panel method was then implemented based on a marine propeller software tool and used to perform the optimization. A 3-blade 20-m tidal turbine that was prototyped in parallel with the current work for the Bay of Fundy was used as an example for optimization. The optimum thickness distribution for a required safety factor at the ultimate possible inflow speed resulted in 37.6% saving in blade material. The blade thickness and distribution as a function of a maximum inflow speed of 6 m/s is also presented. The blade material used in the example was taken as nickel–aluminium–bronze (NAB) but the procedure was developed to be applicable to propeller or turbine blades of basically any material. -- Highlights: ► A

  2. Testing and Analysis of a Composite Non-Cylindrical Aircraft Fuselage Structure. Part 1; Ultimate Design Loads

    Science.gov (United States)

    Przekop, Adam; Jegley, Dawn C.; Lovejoy, Andrew E.; Rouse, Marshall; Wu, Hsi-Yung T.

    2016-01-01

    The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses finite element analysis and testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part I of the paper considers the five most critical load conditions, which are internal pressure only and positive and negative g-loads with and without internal pressure. Analysis results are compared with measurements acquired during testing. Performance of the test article is found to be closely aligned with predictions and, consequently, able to support the hybrid wing body design loads in pristine and barely visible impact damage conditions.

  3. Correction of the calculation of the ultimate strength of studs shear connectors in solid slab composite section; Correccion del calculo de la capacidad resistente ultima de conectadores tipo perno de estructuras mixtas en la tipologia de viga-losa maciza

    Energy Technology Data Exchange (ETDEWEB)

    Bonilla Rocha, J. D.; Larrua Quevedo, R.; Recarey Morfa, C. A.; Mirambell Arrizabalaga, E.

    2009-07-01

    In this work is studied starting from the numeric simulation with previous calibration and validation, the behavior of studs shear connectors of composite structures of concrete and steel formed by beam sections and solid slab of concrete, subjected to flexion under loads static. In such a sense it is carried out a parametric study that allows to value the influence of the different factors that intervene in the behavior of the connection and allow to establish the variables of the proposed formulation, obtaining a procedure enough easy and practical. Finally a new formulation the one is achieved which supposes a significant advances with regard to the existent ones in the main ones normative international: AISC-LRFD (2005), Eurocode 4 (IN-1994-1-1:2004), as well as the normative cuban NR 080-2004, when taking in consideration in the expression new factors, redounding in a bigger in the presage of the ultimate strength capacity. (Author) 22 refs.

  4. Comparison of residual strength-grounding damage index diagrams for tankers produced by the ALPS/HULL ISFEM and design formula method

    Directory of Open Access Journals (Sweden)

    Do Kyun Kim

    2013-03-01

    Full Text Available This study compares the Residual ultimate longitudinal strength – grounding Damage index (R-D diagrams produced by two analysis methods: the ALPS/HULL Intelligent Supersize Finite Element Method (ISFEM and the design formula (modified Paik and Mansour method – used to assess the safety of damaged ships. The comparison includes four types of double-hull oil tankers: Panamax, Aframax, Suezmax and VLCC. The R-D diagrams were calculated for a series of 50 grounding scenarios. The diagrams were efficiently sampled using the Latin Hypercube Sampling (LHS technique and comprehensively analysed based on ship size. Finally, the two methods were compared by statistically analysing the differences between their grounding damage indices and ultimate longitudinal strength predictions. The findings provide a useful example of how to apply the ultimate longitudinal strength analysis method to grounded ships.

  5. Flux scaling: Ultimate regime

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Flux scaling: Ultimate regime. With the Nusselt number and the mixing length scales, we get the Nusselt number and Reynolds number (w'd/ν) scalings: and or. and. scaling expected to occur at extremely high Ra Rayleigh-Benard convection. Get the ultimate regime ...

  6. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    Directory of Open Access Journals (Sweden)

    Solikin Mochamad

    2017-01-01

    Full Text Available High volume fly ash concrete becomes one of alternatives to produce green concrete as it uses waste material and significantly reduces the utilization of Portland cement in concrete production. Although using less cement, its compressive strength is comparable to ordinary Portland cement (hereafter OPC and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly Ash Concrete. The experiment and data analysis were prepared using minitab, a statistic software for design of experimental. The specimens were concrete cylinder with diameter of 15 cm and height of 30 cm, tested for its compressive strength at 56 days. The result of the research demonstrates that high volume fly ash concrete can produce comparable compressive strength which meets the strength of OPC design strength especially for high strength concrete. In addition, the best mix proportion to achieve the design strength is the combination of high strength concrete and 50% content of fly ash. Moreover, the use of spraying method for curing method of concrete on site is still recommended as it would not significantly reduce the compressive strength result.

  7. Weld Design, Testing, and Assessment Procedures for High Strength Pipelines

    Science.gov (United States)

    2011-12-20

    Long-distance high-strength pipelines are increasingly being constructed for the efficient transportation of energy products. While the high-strength linepipe steels and high productivity welding processes are being applied, the procedures employed f...

  8. Seismic shear wall ISP NUPEC's seismic ultimate dynamic response test. Comparison report

    International Nuclear Information System (INIS)

    1996-01-01

    In the seismic design of a nuclear power plant, evaluation of the ultimate strength of the nuclear reactor building is an important subject for assessment of seismic reliability of the plant. In order to carry out the evaluation, the response characteristics of reinforced concrete seismic shear walls up to their ultimate state have to be understood. For this purpose, there is a need to develop reliable non-linear response analysis methods which enables the reliable ultimate strength evaluation of nuclear reactor buildings. Along with this need, many computer codes have been developed. These computer codes are compared. (K.A.)

  9. Stalking the ultimate particle

    CERN Multimedia

    2003-01-01

    If you missed the ARTE programme entitled "L'Ultime Particule" broadcast in February, you have another chance to catch it in CERN's Main Auditorium on 13 March. "L'Ultime Particule" is a documentary by the French director Michel Andrieu that seeks to explain particle physics through a contemplative quest for the research physicists of matter of today and yesteryear. Invariably kitted out in a red parka and a soft hat, the programme's investigator scours the planet and the archives in search of the research physicists who are stalking the ultimate particle, the Higgs boson, in their quest to understand the structure of matter. Naturally enough, CERN is an important stage of his journey where Michel Andrieu and his team spent several days last year. Both from the physics and metaphysical points of view, "L'Ultime Particule" is worth seeing. The film's director, Michel Andrieu, will introduce his documentary and answer questions from the audience after the documentary has been shown. L'Ultime Particule by Mic...

  10. The ultimate quotable Einstein

    CERN Document Server

    2011-01-01

    Here is the definitive new edition of the hugely popular collection of Einstein quotations that has sold tens of thousands of copies worldwide and been translated into twenty-five languages. The Ultimate Quotable Einstein features 400 additional quotes, bringing the total to roughly 1,600 in all. This ultimate edition includes new sections--"On and to Children," "On Race and Prejudice," and "Einstein's Verses: A Small Selection"--as well as a chronology of Einstein's life and accomplishments, Freeman Dyson's authoritative foreword, and new commentary by Alice Calaprice.

  11. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    OpenAIRE

    Solikin Mochamad; Setiawan Budi

    2017-01-01

    High volume fly ash concrete becomes one of alternatives to produce green concrete as it uses waste material and significantly reduces the utilization of Portland cement in concrete production. Although using less cement, its compressive strength is comparable to ordinary Portland cement (hereafter OPC) and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly ...

  12. Ultimate disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Roethemeyer, H.

    1991-01-01

    The activities developed by the Federal Institution of Physical Engineering PTB and by the Federal Office for Radiation Protection (BfS) concentrated, among others, on work to implement ultimate storage facilities for radioactive wastes. The book illuminates this development from site designation to the preliminary evaluation of the Gorleben salt dome, to the preparation of planning documents proving that the Konrad ore mine is suitable for a repository. The paper shows the legal provisions involved; research and development tasks; collection of radioactive wastes ready for ultimate disposal; safety analysis in the commissioning and post-operational stages, and product control. The historical development of waste management in the Federal Republic of Germany and international cooperation in this area are outlined. (DG) [de

  13. design of ceramic membrane supports: permeability, tensile strength and stress

    NARCIS (Netherlands)

    Biesheuvel, Pieter Maarten; Biesheuvel, P.M.; Verweij, H.

    1999-01-01

    A membrane support provides mechanical strength to a membrane top layer to withstand the stress induced by the pressure difference applied over the entire membrane and must simultaneously have a low resistance to the filtrate flow. In this paper an experimental and a theoretical approach toward the

  14. High-strength concrete and the design of power plant structures

    International Nuclear Information System (INIS)

    Puttonen, J.

    1991-01-01

    Based on the literature, the design of high-strength concrete structures and the suitability of high-strength concrete for the power plant structures have been studied. Concerning the behavior of structures, a basic difference between the high-strength concrete and the traditional one is that the ductility of the high-strength concrete is smaller. In the design, the non-linear stress-strain relationship of the high-strength concrete has to be taken into account. The use of the high-strength concrete is economical if the strength of the material can be utilized. In the long term, the good durability and wear resistance of the high-strength concrete increases the economy of the material. Because of the low permeability of the high-strength concrete, it is a potential material in the safety-related structures of nuclear power plants. The study discovered no particular power plant structure which would always be economical to design of high-strength concrete. However, the high-strength concrete was found to be a competitive material in general

  15. The Ultimate Technology

    DEFF Research Database (Denmark)

    Riis, Søren

    2013-01-01

    One of the most influential philosophers of the 20th century, Martin Heidegger (1889-1976), died prior to the remarkable cloning of the sheep Dolly and before Dr. Venter started his experiments on creating synthetic life, and he never explicitly discussed living technologies. However, by reinterp......One of the most influential philosophers of the 20th century, Martin Heidegger (1889-1976), died prior to the remarkable cloning of the sheep Dolly and before Dr. Venter started his experiments on creating synthetic life, and he never explicitly discussed living technologies. However......, by reinterpreting his notion of "modern technology," this article shows how it is possible to philosophically assess living technologies and to recognize ways in which Heidegger anticipated this phenomenon with his notion of cybernetics. The interpretation elucidates the fundamental process of technology becoming...... living and simultaneously presents living technology as the ultimate technology. The thesis of this article is that living technology is not just one more technology; rather, it is the perfection of technology as understood by Aristotle. Aristotle's thinking is in this way a key example of a profound...

  16. Ultimate loading of wind turbines

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Ronold, K.; Ejsing Jørgensen, Hans

    1999-01-01

    An extreme loading study has been conducted comprising a general wind climate analysis as well as a wind turbine reliability study. In the wind climate analysis, the distribution of the (horizontal) turbulence standard deviation, conditioned on the meanwind speed, has been approximated by fitting......, a design turbulence intensity for off-shore application is proposed which, in the IEC code framework, is applicable for extreme as well as for fatigue loaddetermination. In order to establish a rational method to analyse wind turbine components with respect to failure in ultimate loading, and in addition...... a three parameter Weibull distribution to the measured on-shore and off-shore data for wind speed variations. Specific recommendations on off-shore design turbulence intensities are lacking in the presentIEC-code. Based on the present analysis of the off-shore wind climate on two shallow water sites...

  17. Experimental investigation of ultimate loads

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, S M; Larsen, G C; Antoniou, I; Lind, S O; Courtney, M [Risoe National Lab., Wind Energy and Atmospheric Physics, Roskilde (Denmark)

    1999-03-01

    Verification of the structural integrity of a wind turbine involves analysis of fatigue loading as well as ultimate loading. With the trend of persistently growing turbines, the ultimate loading seems to become relatively more important. For wind turbines designed according to the wind conditions prescribed in the IEC-61400 code, the ultimate load is often identified as the leading load parameter. Exemplified by the use of an extensive measurement campaign a procedure for evaluation of the extreme flap-wise bending moments, occurring during normal operating of a wind turbine, is presented. The structural measurements are made on a NEG Micon 650 kW wind turbine erected at a complex high wind site in Oak Creek, California. The turbine is located on the top of a ridge. The prevailing wind direction is perpendicular to the ridge, and the annual mean wind speed is 9.5 m/s. The associated wind field measurement, are taken from two instrumented masts erected less than one rotor diameter in front of the turbine in direction of the prevailing wind direction. Both masts are instrumented at different heights in order to gain insight of the 3D-wind speed structure over the entire rotor plane. Extreme distributions, associated with a recurrence period of 10 minutes, conditioned on the mean wind speed and the turbulence intensity are derived. Combined with the wind climate model proposed in the IEC standard, these distributions are used to predict extreme distributions with recurrence periods equal to one and fifty years, respectively. The synthesis of the conditioned PDF`s and the wind climate model is performed by means of Monte Carlo simulation. (au)

  18. Stiffness and design for strength of trapezoidal Belleville springs

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard; Pedersen, Pauli

    2011-01-01

    in this paper. Finite element results are compared with analytical predictions and critically analysed in terms of the effect of Poisson ratio, overall stiffness, and stress distribution in the spring. This is done in order to verify the range of validity of design standards. Finite element analysis emerges......Belleville springs or coned disc springs are commonly used in machine design. The geometric dimensions of the spring and the determination of non-linear force–displacement curve are regulated by different standards. However, the theory behind Belleville spring design standards is founded on a study...... published in 1936. Furthermore, the common spring design with cross-sections of uniform thickness poses problems in terms of non-uniformity of stress distribution. In view of this, non-linear three-dimensional finite element analyses of spring designs including uniform or variable thickness are carried out...

  19. Design of block copolymer membranes using segregation strength trend lines

    KAUST Repository

    Sutisna, Burhannudin; Polymeropoulos, Georgios; Musteata, Valentina-Elena; Peinemann, Klaus-Viktor; Avgeropoulos, Apostolos; Smilgies, Detlef-M.; Hadjichristidis, Nikolaos; Nunes, Suzana Pereira

    2016-01-01

    composition, polymer molecular weights, casting solution concentration, and evaporation time. We propose here an effective method for designing new block copolymer membranes. The method consists of predetermining a trend line for the preparation of isoporous

  20. Pneumatic strength assessment device: design and isometric measurement.

    Science.gov (United States)

    Paulus, David C; Reiser, Raoul F; Troxell, Wade O

    2004-01-01

    In order to load a muscle optimally during resistance exercise, it should be heavily taxed throughout the entire range of motion for that exercise. However, traditional constant resistance squats only tax the lower-extremity muscles to their limits at the "sticking region" or a critical joint configuration of the exercise cycle. Therefore, a linear motion (Smith) exercise machine was modified with pneumatics and appropriate computer control so that it could be capable of adjusting force to control velocity within a repetition of the squat exercise or other exercise performed with the device. Prior to application of this device in a dynamic squat setting, the maximum voluntary isometric force (MVIF) produced over a spectrum of knee angles is needed. This would reveal the sticking region and overall variation in strength capacity. Five incremental knee angles (90, 110, 130, 150, and 170 degrees, where 180 degrees defined full extension) were examined. After obtaining university-approved informed consent, 12 men and 12 women participated in the study. The knee angle was set, and the pneumatic cylinder was pressurized such that the subject could move the barbell slightly but no more than two-centimeters. The peak pressure exerted over a five-second maximum effort interval was recorded at each knee angle in random order and then repeated. The average of both efforts was then utilized for further analysis. The sticking region occurred consistently at a 90 degrees knee angle, however, the maximum force produced varied between 110 degrees and 170 degrees with the greatest frequency at 150 degrees for both men and women. The percent difference between the maximum and minimum MVIF was 46% for men and 57% for women.

  1. Correlation of In Situ Test Data with Shear Strength for Deep Foundation Design.

    Science.gov (United States)

    2016-06-16

    The project addresses drilled shaft foundation design for Nevada, especially for the population center of Las Vegas Valley. Specifically, we address overconservatism due to challenges in characterizing deformability and strength of dense, hard-to-sam...

  2. Concussion Prevalence in Competitive Ultimate Frisbee Players

    Science.gov (United States)

    Lazar, Damien J.; Lichtenstein, Jonathan D.; Tybor, David J.

    2018-01-01

    Background: Ultimate Frisbee (ultimate) is a fast-growing, popular sport played nationally by over 4 million athletes. While several studies have examined injury rates in ultimate, no work has investigated the prevalence of concussions specifically or players’ knowledge and management of those injuries. Purpose: To estimate the lifetime prevalence of concussions in ultimate and to assess players’ knowledge of concussions as well as their concussion management behaviors. Study Design: Descriptive epidemiology study. Methods: From June to November 2015, we collected ultimate-related concussion data via an anonymous web-based survey, the Concussion in Ultimate Frisbee Survey, from a convenience sample of 787 male and female ultimate players across the United States. Results: There were 553 male and 234 female respondents included in the analysis; 26.58% of men and 24.79% of women reported that they had sustained at least 1 concussion while playing ultimate, with 45.58% and 43.10% of those men and women, respectively, reporting multiple concussions. A total of 67.81% of men and 78.21% of women stated that they would remove themselves from play after sustaining a given concussion, although 45.99% of men and 37.62% of women indicated that they had returned to play in the same game or practice. Conclusion: Our preliminary data suggest that concussions do commonly occur in competitive ultimate and that better education and management of concussions in ultimate athletes are needed. This study is an important first step in deepening our understanding of these issues. PMID:29552572

  3. Influence of different luting protocols on shear bond strength of computer aided design/computer aided manufacturing resin nanoceramic material to dentin.

    Science.gov (United States)

    Poggio, Claudio; Pigozzo, Marco; Ceci, Matteo; Scribante, Andrea; Beltrami, Riccardo; Chiesa, Marco

    2016-01-01

    The purpose of this study was to evaluate the influence of three different luting protocols on shear bond strength of computer aided design/computer aided manufacturing (CAD/CAM) resin nanoceramic (RNC) material to dentin. In this in vitro study, 30 disks were milled from RNC blocks (Lava Ultimate/3M ESPE) with CAD/CAM technology. The disks were subsequently cemented to the exposed dentin of 30 recently extracted bovine permanent mandibular incisors. The specimens were randomly assigned into 3 groups of 10 teeth each. In Group 1, disks were cemented using a total-etch protocol (Scotchbond™ Universal Etchant phosphoric acid + Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 2, disks were cemented using a self-etch protocol (Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 3, disks were cemented using a self-adhesive protocol (RelyX™ Unicem 2 Automix self-adhesive resin cement). All cemented specimens were placed in a universal testing machine (Instron Universal Testing Machine 3343) and submitted to a shear bond strength test to check the strength of adhesion between the two substrates, dentin, and RNC disks. Specimens were stressed at a crosshead speed of 1 mm/min. Data were analyzed with analysis of variance and post-hoc Tukey's test at a level of significance of 0.05. Post-hoc Tukey testing showed that the highest shear strength values (P adhesives) showed better shear strength values compared to self-adhesive resin cements. Furthermore, conventional resin cements used together with a self-etch adhesive reported the highest values of adhesion.

  4. Design of block copolymer membranes using segregation strength trend lines

    KAUST Repository

    Sutisna, Burhannudin

    2016-05-18

    Block copolymer self-assembly and non-solvent induced phase separation are now being combined to fabricate membranes with narrow pore size distribution and high porosity. The method has the potential to be used with a broad range of tailor-made block copolymers to control functionality and selectivity for specific separations. However, the extension of this process to any new copolymer is challenging and time consuming, due to the complex interplay of influencing parameters, such as solvent composition, polymer molecular weights, casting solution concentration, and evaporation time. We propose here an effective method for designing new block copolymer membranes. The method consists of predetermining a trend line for the preparation of isoporous membranes, obtained by computing solvent properties, interactions and copolymer block sizes for a set of successful systems and using it as a guide to select the preparation conditions for new membranes. We applied the method to membranes based on poly(styrene-b-ethylene oxide) diblocks and extended it to newly synthesized poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) terpolymers. The trend line method can be generally applied to other new systems and is expected to dramatically shorten the path of isoporous membrane manufacture. The PS-b-P2VP-b-PEO membrane formation was investigated by in situ Grazing Incident Small Angle X-ray Scattering (GISAXS), which revealed a hexagonal micelle order with domain spacing clearly correlated to the membrane interpore distances.

  5. The Dutch 'Focus on Strength' intervention study protocol: programme design and production, implementation and evaluation plan.

    Science.gov (United States)

    Ten Hoor, G A; Kok, G; Rutten, G M; Ruiter, R A C; Kremers, S P J; Schols, A M J W; Plasqui, G

    2016-06-10

    Overweight youngsters are better in absolute strength exercises than their normal-weight counterparts; a physiological phenomenon with promising psychological impact. In this paper we describe the study protocol of the Dutch, school-based program 'Focus on Strength' that aims to improve body composition of 11-13 year old students, and with that to ultimately improve their quality of life. The development of this intervention is based on the Intervention Mapping (IM) protocol, which starts from a needs assessment, uses theory and empirical research to develop a detailed intervention plan, and anticipates program implementation and evaluation. This novel intervention targets first year students in preparatory secondary vocational education (11-13 years of age). Teachers are the program implementers. One part of the intervention involves a 30 % increase of strength exercises in the physical education lessons. The other part is based on Motivational Interviewing, promoting autonomous motivation of students to become more physically active outside school. Performance and change objectives are described for both teachers and students. The effectiveness of the intervention will be tested in a Randomized Controlled Trial in 9 Dutch high schools. Intervention Mapping is a useful framework for program planning a school-based program to improve body composition and motivation to exercise in 11-13 year old adolescents by a "Focus on Strength". NTR5676 , registered 8 February 2016 (retrospectively registered).

  6. A Critical Evaluation of Structural Analysis Tools used for the Design of Large Composite Wind Turbine Rotor Blades under Ultimate and Cycle Loading

    DEFF Research Database (Denmark)

    Lekou, D.J.; Bacharoudis, K. C.; Farinas, A. B.

    2015-01-01

    Rotor blades for 10-20MW wind turbines may exceed 120m. To meet the demanding requirements of the blade design, structural analysis tools have been developed individually and combined with commercial available ones by blade designers. Due to the various available codes, understanding and estimating...

  7. A general solution to the material performance index for bending strength design

    International Nuclear Information System (INIS)

    Burgess, S.C.; Pasini, D.; Smith, D.J.; Alemzadeh, K.

    2006-01-01

    This paper presents a general solution to the material performance index for the bending strength design of beams. In general, the performance index for strength design is ρ f q /ρ where σ f is the material strength, ρ is the material density and q is a function of the direction of scaling. Previous studies have only solved q for three particular cases: proportional scaling of width and height (q=2/3), constrained height (q=1) and constrained width (q=1/2). This paper presents a general solution to the exponent q for any arbitrary direction of scaling. The index is used to produce performance maps that rank relative material performance for particular design cases. The performance index and the performance maps are applied to a design case study

  8. 14 CFR 23.613 - Material strength properties and design values.

    Science.gov (United States)

    2010-01-01

    ... statistical basis. (b) Design values must be chosen to minimize the probability of structural failure due to... must be shown by selecting design values that ensure material strength with the following probability... failure of which would result in loss of structural integrity of the component; 99 percent probability...

  9. 14 CFR 29.613 - Material strength properties and design values.

    Science.gov (United States)

    2010-01-01

    ... Administrator: (1) MIL—HDBK-5, “Metallic Materials and Elements for Flight Vehicle Structure”. (2) MIL—HDBK-17, “Plastics for Flight Vehicles”. (3) ANC-18, “Design of Wood Aircraft Structures”. (4) MIL—HDBK-23... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Material strength properties and design...

  10. 14 CFR 27.613 - Material strength properties and design values.

    Science.gov (United States)

    2010-01-01

    ... Administrator: (1) MIL-HDBK-5, “Metallic Materials and Elements for Flight Vehicle Structure”. (2) MIL-HDBK-17, “Plastics for Flight Vehicles”. (3) ANC-18, “Design of Wood Aircraft Structures”. (4) MIL-HDBK-23... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Material strength properties and design...

  11. Indigenous Design for Automatic Testing of Tensile Strength Using Graphical User Interface

    OpenAIRE

    Ali Rafay; Junejo Faraz; Imtiaz Rafey; Shamsi Usama Sultan

    2016-01-01

    Tensile Testing is a fundamental material test to measure the tenacity and tensile strength. Tensile strength means ability to take tensile stress. This Universal Testing Machine is designed using Dual Cylinder Technique in order to comply with the maximun load (tensile force) with the reduction of minimum physical effort and minimized losses.It is to provide material testing opportunity to the students of different institutions, locally and globally, at lowest price; so that they can have a ...

  12. Shear bond strength of computer-aided design and computer-aided manufacturing feldspathic and nano resin ceramics blocks cemented with three different generations of resin cement.

    Science.gov (United States)

    Ab-Ghani, Zuryati; Jaafar, Wahyuni; Foo, Siew Fon; Ariffin, Zaihan; Mohamad, Dasmawati

    2015-01-01

    To evaluate the shear bond strength between the dentin substrate and computer-aided design and computer-aided manufacturing feldspathic ceramic and nano resin ceramics blocks cemented with resin cement. Sixty cuboidal blocks (5 mm × 5 mm × 5 mm) were fabricated in equal numbers from feldspathic ceramic CEREC(®) Blocs PC and nano resin ceramic Lava™ Ultimate, and randomly divided into six groups (n = 10). Each block was cemented to the dentin of 60 extracted human premolar using Variolink(®) II/Syntac Classic (multi-steps etch-and-rinse adhesive bonding), NX3 Nexus(®) (two-steps etch-and-rinse adhesive bonding) and RelyX™ U200 self-adhesive cement. All specimens were thermocycled, and shear bond strength testing was done using the universal testing machine at a crosshead speed of 1.0 mm/min. Data were analyzed using one-way ANOVA. Combination of CEREC(®) Blocs PC and Variolink(®) II showed the highest mean shear bond strength (8.71 Mpa), while the lowest of 2.06 Mpa were observed in Lava™ Ultimate and RelyX™ U200. There was no significant difference in the mean shear bond strength between different blocks. Variolink(®) II cement using multi-steps etch-and-rinse adhesive bonding provided a higher shear bond strength than the self-adhesive cement RelyX U200. The shear bond strength was not affected by the type of blocks used.

  13. Interrelationship betwen material strength and component design under elevated temperature for FBR

    International Nuclear Information System (INIS)

    Nakagawa, Y.

    Structural design under elevated temperature for fast breeder reactor plant is very troublesome compared to that of for lower temperature. This difficulty can be mainly discussed from two different stand points. One is design and design code, another is material strength. Components in FBR are operated under creep regime and time dependent creep behaviour should be elevated properly. This means the number and combinations of design code and material strength are significantly large and makes these systems very complicated. Material selection is, in no words, not an easy job. This should be done by not only material development but also component design stand point. With valuable experience of construction and research on FBR, a lot of information on component design and material behaviour is available. And it is a time to choose the ''best material'' from the entire stand points of component construction. (author)

  14. The Design of EMG Measurement System for Arm Strength Training Machine

    Directory of Open Access Journals (Sweden)

    Tze-Yee Ho

    2015-01-01

    Full Text Available The setup of interactive communication between arm strength training machine and the people will make exercise and rehabilitation therapy become more friendly. The employment of electromyographic not only can help physical therapy but also can achieve more effective rehabilitation. Both of the system hardware and software of the arm strength training machine with EMG system are well designed and described. The fundamental design of electromyographic measurement system based on a microcontroller is analyzed and discussed. The software programming is developed in MPLAB integrated development environment from the Microchip Technology Inc. and the friendly user interface is created as well. Finally, an arm strength training machine with electromyographic control system is realized and demonstrated. The experimental results show the feasibility and fidelity of the complete designed system.

  15. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  16. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  17. On strength design using free material subjected to multiple load cases

    DEFF Research Database (Denmark)

    Pedersen, Pauli; Pedersen, Niels Leergaard

    2013-01-01

    Multiple load cases and the consideration of strength is a reality that most structural designs are exposed to. Improved possibility to produce specific materials, say by fiber lay-up, put focus on research on free material optimization. A formulation for such design problems together with a prac......Multiple load cases and the consideration of strength is a reality that most structural designs are exposed to. Improved possibility to produce specific materials, say by fiber lay-up, put focus on research on free material optimization. A formulation for such design problems together...... with a practical recursive design procedure is presented and illustrated with examples. The presented finite element analysis involve many elements as well as many load cases. Separating the local amount of material from a description with unit trace for the local anisotropy, gives the free materials formulation...

  18. Reaction kinetics, reaction products and compressive strength of ternary activators activated slag designed by Taguchi method

    NARCIS (Netherlands)

    Yuan, B.; Yu, Q.L.; Brouwers, H.J.H.

    2015-01-01

    This study investigates the reaction kinetics, the reaction products and the compressive strength of slag activated by ternary activators, namely waterglass, sodium hydroxide and sodium carbonate. Nine mixtures are designed by the Taguchi method considering the factors of sodium carbonate content

  19. Coefficient αcc in design value of concrete compressive strength

    Directory of Open Access Journals (Sweden)

    Goleš Danica

    2016-01-01

    Full Text Available Coefficient αcc introduces the effects of rate and duration of loading on compressive strength of concrete. These effects may be partially or completely compensated by the increase in concrete strength over time. Selection of the value of this coefficient, in recommended range between 0.8 and 1.0, is carried out through the National Annexes to Eurocode 2. This paper presents some considerations related to the introduction of this coefficient and its value adopted in some European countries. The article considers the effect of the adoption of conservative value αcc=0.85 on design value of compressive and flexural resistance of rectangular cross-section made of normal and high strength concrete. It analyzes the influence of different values of coefficient αcc on the area of reinforcement required to achieve the desired resistance of cross-section.

  20. Evaluation of weldment creep and fatigue strength-reduction factors for elevated-temperature design

    International Nuclear Information System (INIS)

    Corum, J.M.

    1989-01-01

    New explicit weldment strength criteria in the form of creep and fatigue strength-reduction factors were recently introduced into the American Society of Mechanical Engineers Code Case N-47, which governs the design of elevated-temperature nuclear plants components in the United States. This paper provides some of the background and logic for these factors and their use, and it describes the results of a series of long-term, confirmatory, creep-rupture and fatigue tests of simple welded structures. The structures (welded plates and tubes) were made of 316 stainless steel base metal and 16-8-2 weld filler metal. Overall, the results provide further substantiation of the validity of the strength-reduction factor approach for ensuring adequate life in elevated-temperature nuclear component weldments. 16 refs., 7 figs

  1. Design and production of a novel sand materials strength testing machine for foundry applications

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Hansen, K. S.; Tiedje, Niels Skat

    2012-01-01

    testing machine was designed and built for both green sand and chemically-bonded sand materials. This machine measures and presents the loading response as a force-displacement profile from which the mechanical properties of the moulding materials can be deduced. The system was interfaced to a computer......In the foundry, existing strength testing machines are used to measure only the maximum fracture strength of mould and core materials. With traditionally used methods, the loading history to ascertain deformation of the material is not available. In this paper, a novel moulding material strength...... with a commercial PC based-control and data acquisition software. The testing conditions and operations are specified in the user interface and the data acquisition is made according to specifications. The force and displacements were calibrated to ensure consistency and reliability of the measurement data...

  2. Shear wall ultimate drift limits

    International Nuclear Information System (INIS)

    Duffey, T.A.; Goldman, A.; Farrar, C.R.

    1994-04-01

    Drift limits for reinforced-concrete shear walls are investigated by reviewing the open literature for appropriate experimental data. Drift values at ultimate are determined for walls with aspect ratios ranging up to a maximum of 3.53 and undergoing different types of lateral loading (cyclic static, monotonic static, and dynamic). Based on the geometry of actual nuclear power plant structures exclusive of containments and concerns regarding their response during seismic (i.e.,cyclic) loading, data are obtained from pertinent references for which the wall aspect ratio is less than or equal to approximately 1, and for which testing is cyclic in nature (typically displacement controlled). In particular, lateral deflections at ultimate load, and at points in the softening region beyond ultimate for which the load has dropped to 90, 80, 70, 60, and 50 percent of its ultimate value, are obtained and converted to drift information. The statistical nature of the data is also investigated. These data are shown to be lognormally distributed, and an analysis of variance is performed. The use of statistics to estimate Probability of Failure for a shear wall structure is illustrated

  3. Predicting Ultimate Loads for Wind Turbine Design

    International Nuclear Information System (INIS)

    Madsen, P. H.; Pierce, K.; Buhl, M.

    1998-01-01

    This paper addresses the statistical uncertainty of loads prediction using structural dynamics simulation codes and the requirements for the number and duration of simulations for obtaining robust load estimates

  4. Torsional strength of computer-aided design/computer-aided manufacturing-fabricated esthetic orthodontic brackets.

    Science.gov (United States)

    Alrejaye, Najla; Pober, Richard; Giordano Ii, Russell

    2017-01-01

    To fabricate orthodontic brackets from esthetic materials and determine their fracture resistance during archwire torsion. Computer-aided design/computer-aided manufacturing technology (Cerec inLab, Sirona) was used to mill brackets with a 0.018 × 0.025-inch slot. Materials used were Paradigm MZ100 and Lava Ultimate resin composite (3M ESPE), Mark II feldspathic porcelain (Vita Zahnfabrik), and In-Ceram YZ zirconia (Vita Zahnfabrik). Ten brackets of each material were subjected to torque by a 0.018 × 0.025-inch stainless steel archwire (G&H) using a specially designed apparatus. The average moments and degrees of torsion necessary to fracture the brackets were determined and compared with those of commercially available alumina brackets, Mystique MB (Dentsply GAC). The YZ brackets were statistically significantly stronger than any other tested material in their resistance to torsion (P brackets. Resistance of MZ100 and Lava Ultimate composite resin brackets to archwire torsion was comparable to commercially available alumina ceramic brackets.

  5. Ultimate fate of constrained voters

    International Nuclear Information System (INIS)

    Vazquez, F; Redner, S

    2004-01-01

    We examine the ultimate fate of individual opinions in a socially interacting population of leftists, centrists and rightists. In an elemental interaction between agents, a centrist and a leftist can both become centrists or both become leftists with equal rates (and similarly for a centrist and a rightist). However leftists and rightists do not interact. This interaction step between pairs of agents is applied repeatedly until the system can no longer evolve. In the mean-field limit, we determine the exact probability that the system reaches consensus (either leftist, rightist or centrist) or a frozen mixture of leftists and rightists as a function of the initial composition of the population. We also determine the mean time until the final state is reached. Some implications of our results for the ultimate fate in a limit of the Axelrod model are discussed

  6. Ultimate fate of constrained voters

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, F [Department of Physics, Center for BioDynamics, Boston University, Boston, MA 02215 (United States); Redner, S [Department of Physics, Center for Polymer Studies, Boston University, Boston, MA 02215 (United States)

    2004-09-03

    We examine the ultimate fate of individual opinions in a socially interacting population of leftists, centrists and rightists. In an elemental interaction between agents, a centrist and a leftist can both become centrists or both become leftists with equal rates (and similarly for a centrist and a rightist). However leftists and rightists do not interact. This interaction step between pairs of agents is applied repeatedly until the system can no longer evolve. In the mean-field limit, we determine the exact probability that the system reaches consensus (either leftist, rightist or centrist) or a frozen mixture of leftists and rightists as a function of the initial composition of the population. We also determine the mean time until the final state is reached. Some implications of our results for the ultimate fate in a limit of the Axelrod model are discussed.

  7. Optimising mechanical strength and bulk density of dry ceramic bodies through mixture design

    OpenAIRE

    Correia, S. L.; Hotza, D.; Segadães, A. M.

    2005-01-01

    In industrial practice, it is desirable to be able to predict, in an expeditious way, what the effects of a change in raw materials or the proportions thereof might be in the various processing steps towards the final product. When the property of interest is basically determined by the combination (or mixture) of raw materials, an optimisation methodology specific to the design of mixture experiments can be successfully used. In the present study, dry bending strength and bulk density were s...

  8. Design of γ measurement system of neutron source strength standard with a manganese sulphate bath method

    International Nuclear Information System (INIS)

    Wang Xiaoqiong; Wang Pan; Chen Mingchi; Zhang Hui

    2010-01-01

    It mostly introduced the hardware and software design and test of Measurement System of Neutron Source Strength Standard with a Manganese Sulphate Bath Method. Hardware of system mainly contains six modules named detector, high voltage source, head amplifier, main amplifier, single channel pulse-amplitude analyzer and data acquisition system. The software program of system data acquisition is made up of four functional modules: user login, parameter setting, data collection, and data saving. (authors)

  9. Ultimate Strength of Wind Turbine Blades under Multiaxial Loading

    DEFF Research Database (Denmark)

    Haselbach, Philipp Ulrich

    the thickness location. Another modelling approach shows a modelling strategy, where shell and solid elements where combined with the purpose to estimate the strain energy release rate of transversely orientated crack in the trailing edge for different loading conditions. Furthermore, state-of-the-art failure...

  10. A Local Approach Methodology for the Analysis of Ultimate Strength ...

    African Journals Online (AJOL)

    The local approach methodology in contrast to classical fracture mechanics can be used to predict the onset of tearing fracture, and the effects of geometry in tubular joints. Finite element analysis of T-joints plate geometries, and tubular joints has been done. The parameters of constraint, equivalent stress, plastic strain and ...

  11. Design and strength evaluation of structural joint made by electro-magnetic forming (EMF)

    International Nuclear Information System (INIS)

    Park, Young-Bae; Oh, Soo-Ik; Kim, Heon-Young

    2004-01-01

    Recently, weight reduction of vehicles has been of great interest, and consequently, the use of low-density materials in the automotive industry is increasing every year. Materials should not be substituted such a way that material of component parts is simply changed because there is a problem in achieving stiffness and strength. To achieve these requirements, the automobile should be redesigned totally. Aluminum spaceframe is rapidly being adopted as a body structure for accommodating lightness, stiffness and strength requirement. In aluminum spaceframe manufacturing, it is often required to join aluminum tube. But there are few suitable methods for joining aluminum tube, so that much interest has been focused on testing suitable joining methods. Joining by electromagnetic forming(EMF) can be useful method in joining aluminum tube, which offers some advantages compared with the conventional joining method. In this paper, joining by EMF was investigated as a pre-study for applying an automotive spaceframe. Finite element simulations and strength tests were performed to analyze the influence of geometric parameters on joint strength. Based on these results, configurations of axial joint and torque joint were suggested and guidelines for designing EMF joint were established

  12. Experimental evaluation of torsional fatigue strength of welded bellows and application to design of fusion device

    International Nuclear Information System (INIS)

    Takatsu, Hideyuki; Yamamoto, Masahiro; Shimizu, Masatsugu; Suzuki, Kazuo; Sonobe, Tadashi; Hayashi, Yuzo; Mizuno, Gen-ichiro.

    1984-01-01

    Torsional fatigue strength of the welded bellows was evaluated experimentally, aiming the application to a port of a fusion device. The welded bellows revealed elastic torsional buckling and spiral distorsion even under a small angle of torsion. Twisting load never leads the welded bellows to fracture easily so far as the angle of torsion is not excessively large, and the welded bellows has the torsional fatigue strength much larger than that expected so far. Two formulae were proposed to evaluate the stress of the welded bellows under the forced angle of torsion; shearing stress evaluation formula in the case that torsional buckling does not occur and the axial bending stress evaluation formula in the case that torsional buckling occurs. And the results of the torsional fatigue experiments showed that the former is reasonably conservative and simulates the actual behavior of the welded bellows better than the latter in the high cycle fatigue region and vice versa in the low cycle fatigue region from the viewpoint of the mechanical design. The present evaluation method of the torsional fatigue strength was applied to the welded bellows for the port of the JT-60 vacuum vessel and its structural integrity was confirmed under the design load condition. (author)

  13. Strength behaviour of sintered steel from the view of design-relevant material data

    International Nuclear Information System (INIS)

    Sonsino, C.M.; Esper, F.J.; Leuze, G.

    1982-01-01

    A reliable design of sintered components and an aimed material's selection requires the knowledge of designrelevant material data as Cyclic stress-strain-curves, crack propagation and fracture toughness properties as well as statistically evaluated S-N-curves, because conventional material data as tensile strength, monotonic yield strength, elongation, area reduction and impact strength can lead to a false estimation of the material's fatigue behaviour. For this reason the powder metallurgical industry began to determine design-relevant material data on the example of the porous Fe-Cu-C- and Fe-Cu-Ni-alloys. The fatigue tests with notched specimen and different modes of loading show that porous sintered parts having mechanical notches are less sensitive to external notches than wrought steel, because crack-propagation is delayed by pores. The possibility to manufacture cyclic hardening alloys, their relative notch-insensitivity and with wrought steel comparable scatter of fatigue properties show the importance of sintered alloys as alternative materials. (orig.) [de

  14. High-capacity, high-strength trailer designs for the GA-4/GA-9 casks

    International Nuclear Information System (INIS)

    Rickard, N.D.; Kissinger, J.A.; Taylor, C.; Zimmer, A.

    1991-01-01

    General Atomics (GA) is developing final designs for two dedicated legal-weight trailers to transport the GA-4 and GA-9 Spent-Fuel Casks. The basic designs for these high-capacity, high-strength trailers are essentially identical except for small modifications to account for the differences in cask geometry. The authors are designing both trailers to carry a 55,000 lb (24,900 kg) payload and to withstand a 2.5 g vertical design load. The GA-4 and GA-9 trailers are designed for significantly higher loads than are typical commercial semitrailers, which are designed to loads in the range of 1.7 to 2.0 g. To meet the federal gross vehicle weight limit for legal-weight trucks, GA has set a target design weight for the trailers of 9000 lb (4080 kg). This weight includes the personnel barrier, cask tiedowns, and impact limiter removal and storage system. Based on the preliminary trailer designs, the final design weight will to be very close to this target weight

  15. High-capacity, high-strength trailer designs for the GA-4/GA-9 Casks

    International Nuclear Information System (INIS)

    Kissinger, J.A.; Rickard, N.D.; Taylor, C.; Zimmer, A.

    1991-01-01

    General Atomics (GA) is developing final designs for two dedicated legal-weight trailers to transport the GA-4 and GA-9 Spent-Fuel Casks. The basic designs for these high-capacity, high-strength trailers are essentially identical except for small modifications to account for the differences in cask geometry. We are designing both trailers to carry a 55,000 lb (24,900 kg) payload and to withstand a 2.5 g vertical design load. The GA-4 and GA-9 trailers are designed for significantly higher loads than are typical commercial semitrailers, which are designed to loads in the range of 1.7 to 2.0 g. To meet the federal gross vehicle weight limit for legal-weight trucks, GA has set a target design weight for the trailers of 9000 lb (4080 kg). This weight includes the personnel barrier, cask tiedowns, and impact limiter removal and storage system. Based on the preliminary trailer designs, the final design weight is expected to be very close to this target weight. 3 refs., 3 figs

  16. Ultimate load capacities of expansion anchor bolts

    International Nuclear Information System (INIS)

    Czarnecki, R.M.; Manrique, M.A.; Samaddar, S.K.

    1993-01-01

    A summary of available experimental expansion anchor bolt test data is presented. These data were collected as part of programs by the nuclear industry to address generic issues related to verification of seismic adequacy of equipment in nuclear power plants. Some of the data presented are suitable for use in seismic probabilistic risk assessments. For example, mean values of ultimate strength, along with their standard deviation and coefficients of variation, for a range of most typical expansion anchor bolt sizes are presented. Effects of interaction between shear and tension, edge distance, spacing, and cracking of the concrete are presented in a manner that is more suitable for use in deterministic evaluations. Related industry programs to derive anchor bolt capacities are briefly discussed. Recommendations for areas of further investigation are also presented

  17. Reliability-Based Approach for the Determination of the Required Compressive Strength of Concrete in Mix Design

    OpenAIRE

    Okasha , Nader M

    2017-01-01

    International audience; Concrete is recognized as the second most consumed product in our modern life after water. The variability in concrete properties is inevitable. The concrete mix is designed for a compressive strength that is different from, typically higher than, the value specified by the structural designer. Ways to calculate the compressive strength to be used in the mix design are provided in building and structural codes. These ways are all based on criteria related purely and on...

  18. The improved design method of shear strength of reinforced concrete beams without transverse reinforcement

    Directory of Open Access Journals (Sweden)

    Vegera Pavlo

    2017-12-01

    Full Text Available In this article, results of experimental testing of reinforced concrete beams without transverse shear reinforcement are given. Three prototypes for improved testing methods were tested. The testing variable parameter was the shear span to the effective depth ratio. In the result of the tests we noticed that bearing capacity of RC beams is increased with the decreasing shear span to the effective depth ratio. The design method according to current codes was applied to test samples and it showed a significant discrepancy results. Than we proposed the improved design method using the adjusted value of shear strength of concrete CRd,c. The results obtained by the improved design method showed satisfactory reproducibility.

  19. Analysis on Flexural Strength of A36 Mild Steel by Design of Experiment (DOE)

    Science.gov (United States)

    Nurulhuda, A.; Hafizzal, Y.; Izzuddin, MZM; Sulawati, MRN; Rafidah, A.; Suhaila, Y.; Fauziah, AR

    2017-08-01

    Nowadays demand for high quality and reliable components and materials are increasing so flexural tests have become vital test method in both the research and manufacturing process and development to explain in details about the material’s ability to withstand deformation under load. Recently, there are lack research studies on the effect of thickness, welding type and joint design on the flexural condition by DOE approach method. Therefore, this research will come out with the flexural strength of mild steel since it is not well documented. By using Design of Experiment (DOE), a full factorial design with two replications has been used to study the effects of important parameters which are welding type, thickness and joint design. The measurement of output response is identified as flexural strength value. Randomize experiments was conducted based on table generated via Minitab software. A normal probability test was carried out using Anderson Darling Test and show that the P-value is <0.005. Thus, the data is not normal since there is significance different between the actual data with the ideal data. Referring to the ANOVA, only factor joint design is significant since the P-value is less than 0.05. From the main plot and interaction plot, the recommended setting for each of parameters were suggested as high level for welding type, high level for thickness and low level for joint design. The prediction model was developed thru regression in order to measure effect of output response for any changes on parameters setting. In the future, the experiments can be enhanced using Taguchi methods in order to do verification of result.

  20. Ultimate Explanations of the Universe

    CERN Document Server

    Heller, Michael

    2009-01-01

    We humans are collectively driven by a powerful - yet not fully explained - instinct to understand. We would like to see everything established, proven, laid bare. The more important an issue, the more we desire to see it clarified, stripped of all secrets, all shades of gray. What could be more important than to understand the Universe and ourselves as a part of it? To find a window onto our origin and our destiny? This book examines how far our modern cosmological theories - with their sometimes audacious models, such as inflation, cyclic histories, quantum creation, parallel universes - can take us towards answering these questions. Can such theories lead us to ultimate truths, leaving nothing unexplained? Last, but not least, Heller addresses the thorny problem of why and whether we should expect to find theories with all-encompassing explicative power.

  1. Strength of Fibrous Composites

    CERN Document Server

    Huang, Zheng-Ming

    2012-01-01

    "Strength of Fibrous Composites" addresses evaluation of the strength of a fibrous composite by using its constituent material properties and its fiber architecture parameters. Having gone through the book, a reader is able to predict the progressive failure behavior and ultimate strength of a fibrous laminate subjected to an arbitrary load condition in terms of the constituent fiber and matrix properties, as well as fiber geometric parameters. The book is useful to researchers and engineers working on design and analysis for composite materials. Dr. Zheng-Ming Huang is a professor at the School of Aerospace Engineering & Applied Mechanics, Tongji University, China. Mr. Ye-Xin Zhou is a PhD candidate at the Department of Mechanical Engineering, the University of Hong Kong, China.

  2. Conceptual design of a compact high gradient quadrupole magnet of varying strength using permanent magnets

    Directory of Open Access Journals (Sweden)

    Gautam Sinha

    2018-02-01

    Full Text Available A concept is presented to design magnets using cylindrical-shaped permanent-magnet blocks, where various types of magnetic fields can be produced by either rotating or varying the size of the magnetic blocks within a given mechanical structure. A general method is introduced to calculate the 3D magnetic field produced by a set of permanent magnets. An analytical expression of the 2D field and the condition to generate various magnetic fields like dipole, quadrupole, and sextupole are derived. Using the 2D result as a starting point, a computer code is developed to get the optimum orientation of the magnets to obtain the user-specific target field profile over a given volume in 3D. Designs of two quadrupole magnets are presented, one using 12 and the other using 24 permanent-magnet blocks. Variation of the quadrupole strength is achieved using tuning coils of a suitable current density and specially designed end tubes. A new concept is introduced to reduce the integrated quadrupole field strength by inserting two hollow cylindrical tubes made of iron, one at each end. This will not affect the field gradient at the center but reduce the integrated field strength by shielding the magnetic field near the ends where the tubes are inserted. The advantages of this scheme are that it is easy to implement, the magnetic axis will not shift, and it will prevent interference with nearby devices. Around 40% integrated field variation is achieved using this method in the present example. To get a realistic estimation of the field quality, a complete 3D model using a nonlinear B-H curve is also studied using a finite-element-based computer code. An example to generate around an 80  T/m quadrupole field gradient is also presented.

  3. Comparison of two test designs for evaluating the shear bond strength of resin composite cements.

    Science.gov (United States)

    Hu, M; Weiger, R; Fischer, J

    2016-02-01

    To compare a shear bond strength test for resin composite cements developed in order to better consider the shrinkage stress (here termed "Swiss shear test") with the shear test design according to ISO 29022. Four restorative materials (VITA Enamic (VE), VITA Suprinity (VS), Vitablocs Mark II (VM) and VITA YZ T (YZ)) served as substrate. VE, VS and VM were polished or etched. YZ was polished, sandblasted or etched. Specimens were either bonded according to the Swiss or the ISO shear test. RelyX Unicem 2 Automix, Maxcem Elite and PermaFlo DC were used as cements. Shear bond strength (SBS) was measured. Failure modes (adhesive, cohesive or mixed) were evaluated by means of SEM. Mean SBS values obtained with the Swiss shear test were significantly lower than those obtained with the ISO shear test. VE and VM exhibited similar SBS, values of VS were significantly higher. On etched surfaces VM and VE exhibited primarily cohesive failures, VS primarily adhesive failures. On polished substrates significantly lower bond strength values and exclusively adhesive failures were observed. YZ exhibited solely adhesive failures. Compared to polished YZ, SBS significantly increased after sandblasting and even more after etching. Only for adhesively failed specimens mean SBS values of Swiss and ISO shear test were strongly correlated. Both test designs showed the same ranking of test results. When adhesive failure occurred test results were strongly correlated. When cohesive failure was involved, both test designs did not provide reliable results. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Conceptual design of a compact high gradient quadrupole magnet of varying strength using permanent magnets

    Science.gov (United States)

    Sinha, Gautam

    2018-02-01

    A concept is presented to design magnets using cylindrical-shaped permanent-magnet blocks, where various types of magnetic fields can be produced by either rotating or varying the size of the magnetic blocks within a given mechanical structure. A general method is introduced to calculate the 3D magnetic field produced by a set of permanent magnets. An analytical expression of the 2D field and the condition to generate various magnetic fields like dipole, quadrupole, and sextupole are derived. Using the 2D result as a starting point, a computer code is developed to get the optimum orientation of the magnets to obtain the user-specific target field profile over a given volume in 3D. Designs of two quadrupole magnets are presented, one using 12 and the other using 24 permanent-magnet blocks. Variation of the quadrupole strength is achieved using tuning coils of a suitable current density and specially designed end tubes. A new concept is introduced to reduce the integrated quadrupole field strength by inserting two hollow cylindrical tubes made of iron, one at each end. This will not affect the field gradient at the center but reduce the integrated field strength by shielding the magnetic field near the ends where the tubes are inserted. The advantages of this scheme are that it is easy to implement, the magnetic axis will not shift, and it will prevent interference with nearby devices. Around 40% integrated field variation is achieved using this method in the present example. To get a realistic estimation of the field quality, a complete 3D model using a nonlinear B -H curve is also studied using a finite-element-based computer code. An example to generate around an 80 T /m quadrupole field gradient is also presented.

  5. Design considerations for neutron activation and neutron source strength monitors for ITER

    International Nuclear Information System (INIS)

    Barnes, C.W.; Jassby, D.L.; LeMunyan, G.; Roquemore, A.L.

    1997-01-01

    The International Thermonuclear Experimental Reactor will require highly accurate measurements of fusion power production in time, space, and energy. Spectrometers in the neutron camera could do it all, but experience has taught us that multiple methods with redundancy and complementary uncertainties are needed. Previously, conceptual designs have been presented for time-integrated neutron activation and time-dependent neutron source strength monitors, both of which will be important parts of the integrated suite of neutron diagnostics for this purpose. The primary goals of the neutron activation system are: to maintain a robust relative measure of fusion energy production with stability and wide dynamic range; to enable an accurate absolute calibration of fusion power using neutronic techniques as successfully demonstrated on JET and TFTR; and to provide a flexible system for materials testing. The greatest difficulty is that the irradiation locations need to be close to plasma with a wide field of view. The routing of the pneumatic system is difficult because of minimum radius of curvature requirements and because of the careful need for containment of the tritium and activated air. The neutron source strength system needs to provide real-time source strength vs. time with ∼1 ms resolution and wide dynamic range in a robust and reliable manner with the capability to be absolutely calibrated by in-situ neutron sources as done on TFTR, JT-60U, and JET. In this paper a more detailed look at the expected neutron flux field around ITER is folded into a more complete design of the fission chamber system

  6. Effects of Geometry Design Parameters on the Static Strength and Dynamics for Spiral Bevel Gear

    Directory of Open Access Journals (Sweden)

    Zhiheng Feng

    2017-01-01

    Full Text Available Considering the geometry design parameters, a quasi-static mesh model of spiral bevel gears was established and the mesh characteristics were computed. Considering the time-varying effects of mesh points, mesh force, line-of-action vector, mesh stiffness, transmission error, friction force direction, and friction coefficient, a nonlinear lumped parameter dynamic model was developed for the spiral bevel gear pair. Based on the mesh model and the nonlinear dynamic model, the effects of main geometry parameters on the contact and bending strength were analyzed. Also, the effects on the dynamic mesh force and dynamic transmission error were investigated. Results show that higher value for the pressure angle, root fillet radius, and the ratio of tooth thickness tend to improve the contact and bending strength and to reduce the risk of tooth fracture. Improved gears have a better vibration performance in the targeted frequency range. Finally, bench tests for both types of spiral bevel gears were performed. Results show that the main failure mode is the tooth fracture and the life was increased a lot for the spiral bevel gears with improved geometry parameters compared to the original design.

  7. The Composition and Temperature Effects on the Ultra High Strength Stainless Steel Design

    Science.gov (United States)

    Xu, W.; Del Castillo, P. E. J. Rivera Díaz; van der Zwaag, S.

    Alloy composition and heat treatment are of paramount importance to determining alloy properties. Their control is of great importance for new alloy design and industrial fabrication control. A base alloy utilizing MX carbide is designed through a theory guided computational approach coupling a genetic algorithm with optimization criteria based on thermodynamic, kinetic and mechanical principles. The combined effects of 11 alloying elements (Al, C, Co, Cr, Cu, Mo, Nb, Ni, Si, Ti and V) are investigated in terms of the composition optimization criteria: the martensite start (Ms) temperature, the suppression of undesirable phases, the Cr concentration in the matrix and the potency of the precipitation strengthening contribution. The results show the concentration sensitivities of each component and also point out new potential composition domains for further strength increase. The aging temperature effect is studied and the aging temperature industrially followed is recovered.

  8. Optimization design of hydroturbine rotors according to the efficiency-strength criteria

    Science.gov (United States)

    Bannikov, D. V.; Yesipov, D. V.; Cherny, S. G.; Chirkov, D. V.

    2010-12-01

    The hydroturbine runner designing [1] is optimized by efficient methods for calculation of head loss in entire flow-through part of the turbine and deformation state of the blade. Energy losses are found at modelling of the spatial turbulent flow and engineering semi-empirical formulae. State of deformation is determined from the solution of the linear problem of elasticity for the isolated blade at hydrodynamic pressure with the method of boundary elements. With the use of the proposed system, the problem of the turbine runner design with the capacity of 640 MW providing the preset dependence of efficiency on the turbine work mode (efficiency criterion) is solved. The arising stresses do not exceed the critical value (strength criterion).

  9. Ultimate explanations and suboptimal choice.

    Science.gov (United States)

    Vasconcelos, Marco; Machado, Armando; Pandeirada, Josefa N S

    2018-07-01

    Researchers have unraveled multiple cases in which behavior deviates from rationality principles. We propose that such deviations are valuable tools to understand the adaptive significance of the underpinning mechanisms. To illustrate, we discuss in detail an experimental protocol in which animals systematically incur substantial foraging losses by preferring a lean but informative option over a rich but non-informative one. To understand how adaptive mechanisms may fail to maximize food intake, we review a model inspired by optimal foraging principles that reconciles sub-optimal choice with the view that current behavioral mechanisms were pruned by the optimizing action of natural selection. To move beyond retrospective speculation, we then review critical tests of the model, regarding both its assumptions and its (sometimes counterintuitive) predictions, all of which have been upheld. The overall contention is that (a) known mechanisms can be used to develop better ultimate accounts and that (b) to understand why mechanisms that generate suboptimal behavior evolved, we need to consider their adaptive value in the animal's characteristic ecology. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. COMPARISON OF THE TRADITIONAL STRENGTH OF MATERIALS APPROACH TO DESIGN WITH THE FRACTURE MECHANICS APPROACH

    International Nuclear Information System (INIS)

    Z. Ceylan

    2002-01-01

    The objective of this activity is to show that the use of the traditional strength of materials approach to the drip shield and the waste package (WP) designs is bounding and appropriate when compared to the fracture mechanics approach. The scope of this activity is limited to determining the failure assessment diagrams for the two materials at issue: Ti-7 and Alloy 22. This calculation is intended for use in support of the license application design of the drip shield and the WP. This activity is associated with the drip shield and the WP designs. The activity evaluation for work package number P32 12234F2, included in ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 1, p. A-6), has determined that the development of this document is subject to ''Quality Assurance Requirements and Description'' requirements. The control of the electronic management of data is accomplished in accordance with the methods specified in Reference 1, Section 10. AP-3.124, ''Design Calculations and Analysis'' (Ref. 2), is used to develop and document the calculation

  11. Design and Characterization of High-strength Bond Coats for Improved Thermal Barrier Coating Durability

    Science.gov (United States)

    Jorgensen, David John

    High pressure turbine blades in gas turbine engines rely on thermal barrier coating (TBC) systems for protection from the harsh combustion environment. These coating systems consist of a ceramic topcoat for thermal protection, a thermally grown oxide (TGO) for oxidation passivation, and an intermetallic bond coat to provide compatibility between the substrate and ceramic over-layers while supplying aluminum to sustain Al2O 3 scale growth. As turbine engines are pushed to higher operating temperatures in pursuit of better thermal efficiency, the strength of industry-standard bond coats limits the lifetime of these coating systems. Bond coat creep deformation during thermal cycling leads to a failure mechanism termed rumpling. The interlayer thermal expansion differences, combined with TGO-imposed growth stresses, lead to the development of periodic undulations in the bond coat. The ceramic topcoat has low out-of-plane compliance and thus detaches and spalls from the substrate, resulting in a loss of thermal protection and subsequent degradation of mechanical properties. New creep resistant Ni3Al bond coats were designed with improved high-temperature strength to inhibit this type of premature failure at elevated temperatures. These coatings resist rumpling deformation while maintaining compatibility with the other layers in the system. Characterization methods are developed to quantify rumpling and assess the TGO-bond coat interface toughness of experimental systems. Cyclic oxidation experiments at 1163 °C show that the Ni3Al bond coats do not experience rumpling but have faster oxide growth rates and are quicker to spall TGO than the (Pt,Ni)Al benchmark. However, the Ni 3Al coatings outperformed the benchmark by over threefold in TBC system life due to a higher resistance to rumpling (mechanical degradation) while maintaining adequate oxidation passivation. The Ni3Al coatings eventually grow spinel NiAl2O4 on top of the protective Al2O3 layer, which leads to the

  12. Dentin bond strength of two resin-ceramic computer-aided design/computer-aided manufacturing (CAD/CAM) materials and five cements after six months storage.

    Science.gov (United States)

    Flury, Simon; Schmidt, Stefanie Zita; Peutzfeldt, Anne; Lussi, Adrian

    2016-10-01

    The aim was to investigate dentin bond strength of two resin-ceramic materials and five cements after 24 h and six months storage. Cylinders (n=15/group) of Lava Ultimate (3M ESPE) and VITA ENAMIC (VITA Zahnfabrik) were cemented to mid-coronal dentin of 300 extracted human molars with RelyX Ultimate (3M ESPE), PANAVIA F2.0 (Kuraray), Variolink II (Ivoclar Vivadent), els cem (Saremco Dental), or Ketac Cem Plus (3M ESPE). Shear bond strength (SBS) was measured after 24 h or six months storage (37°C, 100% humidity) and statistically analyzed (significance level: α=0.05). SBS varied markedly between Lava Ultimate and VITA ENAMIC, between the five cements, and between storage of either 24 h or six months. After six months, SBS was highest when Lava Ultimate was cemented with RelyX Ultimate and when VITA ENAMIC was cemented with RelyX Ultimate or with Variolink II. Lava Ultimate was somewhat more sensitive to storage than was VITA ENAMIC.

  13. Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W. Y.; Kim, D. B.; Park, J. G; Kim, D. H.; Kim, K. H.; Lee, I. H.; Cho, H. Y. [Chungbuk National University, Cheongju (Korea, Republic of)

    2014-07-15

    A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets.

  14. Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets

    International Nuclear Information System (INIS)

    Kim, W. Y.; Kim, D. B.; Park, J. G; Kim, D. H.; Kim, K. H.; Lee, I. H.; Cho, H. Y.

    2014-01-01

    A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets

  15. Towards Subject-Specific Strength Training Design through Predictive Use of Musculoskeletal Models

    Directory of Open Access Journals (Sweden)

    Michael Plüss

    2018-01-01

    Full Text Available Lower extremity dysfunction is often associated with hip muscle strength deficiencies. Detailed knowledge of the muscle forces generated in the hip under specific external loading conditions enables specific structures to be trained. The aim of this study was to find the most effective movement type and loading direction to enable the training of specific parts of the hip muscles using a standing posture and a pulley system. In a novel approach to release the predictive power of musculoskeletal modelling techniques based on inverse dynamics, flexion/extension and ab-/adduction movements were virtually created. To demonstrate the effectiveness of this approach, three hip orientations and an external loading force that was systematically rotated around the body were simulated using a state-of-the art OpenSim model in order to establish ideal designs for training of the anterior and posterior parts of the M. gluteus medius (GM. The external force direction as well as the hip orientation greatly influenced the muscle forces in the different parts of the GM. No setting was found for simultaneous training of the anterior and posterior parts with a muscle force higher than 50% of the maximum. Importantly, this study has demonstrated the use of musculoskeletal models as an approach to predict muscle force variations for different strength and rehabilitation exercise variations.

  16. Effect of various veneering techniques on mechanical strength of computer-controlled zirconia framework designs.

    Science.gov (United States)

    Kanat, Burcu; Cömlekoğlu, Erhan M; Dündar-Çömlekoğlu, Mine; Hakan Sen, Bilge; Ozcan, Mutlu; Ali Güngör, Mehmet

    2014-08-01

    The objectives of this study were to evaluate the fracture resistance (FR), flexural strength (FS), and shear bond strength (SBS) of zirconia framework material veneered with different methods and to assess the stress distributions using finite element analysis (FEA). Zirconia frameworks fabricated in the forms of crowns for FR, bars for FS, and disks for SBS (N = 90, n = 10) were veneered with either (a) file splitting (CAD-on) (CD), (b) layering (L), or (c) overpressing (P) methods. For crown specimens, stainless steel dies (N = 30; 1 mm chamfer) were scanned using the labside contrast spray. A bilayered design was produced for CD, whereas a reduced design (1 mm) was used for L and P to support the veneer by computer-aided design and manufacturing. For bar (1.5 × 5 × 25 mm(3) ) and disk (2.5 mm diameter, 2.5 mm height) specimens, zirconia blocks were sectioned under water cooling with a low-speed diamond saw and sintered. To prepare the suprastructures in the appropriate shapes for the three mechanical tests, nano-fluorapatite ceramic was layered and fired for L, fluorapatite-ceramic was pressed for P, and the milled lithium-disilicate ceramics were fused with zirconia by a thixotropic glass ceramic for CD and then sintered for crystallization of veneering ceramic. Crowns were then cemented to the metal dies. All specimens were stored at 37°C, 100% humidity for 48 hours. Mechanical tests were performed, and data were statistically analyzed (ANOVA, Tukey's, α = 0.05). Stereomicroscopy and scanning electron microscopy (SEM) were used to evaluate the failure modes and surface structure. FEA modeling of the crowns was obtained. Mean FR values (N ± SD) of CD (4408 ± 608) and L (4323 ± 462) were higher than P (2507 ± 594) (p mechanical tests, whereas a layering technique increased the FR when an anatomical core design was employed. File splitting (CAD-on) or layering veneering ceramic on zirconia with a reduced framework design may reduce ceramic chipping

  17. Sampling flies or sampling flaws? Experimental design and inference strength in forensic entomology.

    Science.gov (United States)

    Michaud, J-P; Schoenly, Kenneth G; Moreau, G

    2012-01-01

    Forensic entomology is an inferential science because postmortem interval estimates are based on the extrapolation of results obtained in field or laboratory settings. Although enormous gains in scientific understanding and methodological practice have been made in forensic entomology over the last few decades, a majority of the field studies we reviewed do not meet the standards for inference, which are 1) adequate replication, 2) independence of experimental units, and 3) experimental conditions that capture a representative range of natural variability. Using a mock case-study approach, we identify design flaws in field and lab experiments and suggest methodological solutions for increasing inference strength that can inform future casework. Suggestions for improving data reporting in future field studies are also proposed.

  18. Design and Strength Calculations of the Tripod Support Structure for Offshore Power Plant

    Directory of Open Access Journals (Sweden)

    Dymarski C.

    2015-01-01

    Full Text Available The support structure being the object of the analysis presented in the article is Tripod. According to the adopted assumptions, it is a foundation gravitationally set in the water region of 60 m in depth, not fixed to the seabed, which can be used for installing a 7MW wind turbine. Due to the lack of substantial information on designing and strength calculations of such types of structures in the world literature, authors have made an attempt to solve this problem within the framework of the abovementioned project. In the performed calculations all basic loads acting on the structure were taken into account, including: the self mass of the structure, the masses of the ballast, the tower and the turbine, as well as hydrostatic forces, and aero- and hydrodynamic forces acting on the entire object in extreme operating conditions.

  19. Development of high-strength concrete mix designs in support of the prestressed concrete reactor vessel design for a HTGR steam cycle/cogeneration plant

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.

    1985-01-01

    Design optimization studies indicate that a significant reduction in the size of the PCRV for a 2240 MW(t) HTGR plant can be effected through utilization of high-strength concrete in conjunction with large capacity prestressing systems. A three-phase test program to develop and evaluate high-strength concretes (>63.4 MPa) is described. Results obtained under Phase I of the investigation related to materials selection-evaluation and mix design development are presented. 3 refs., 4 figs

  20. Ultimate storage of reactor wastes

    International Nuclear Information System (INIS)

    1987-01-01

    The report describes the store, SFR 1, designed for final disposal of high and intermediate radioactive wastes from the Swedish nuclear power stations and from the Central Interior Storage Facility for Spent Nuclear Fuel and from other industry, research institutes and medical service. The store is located in rock more than 60 meters below bottom of the Baltic Sea. (O.S.)

  1. Nonlinear finite element analysis of nuclear reinforced prestressed concrete containments up to ultimate load capacity

    International Nuclear Information System (INIS)

    Gupta, A.; Singh, R.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1996-01-01

    For safety evaluation of nuclear structures a finite element code ULCA (Ultimate Load Capacity Assessment) has been developed. Eight/nine noded isoparametric quadrilateral plate/shell element with reinforcement as a through thickness discrete but integral smeared layer of the element is presented to analyze reinforced and prestressed concrete structures. Various constitutive models such as crushing, cracking in tension, tension stiffening and rebar yielding are studied and effect of these parameters on the reserve strength of structures is brought out through a number of benchmark tests. A global model is used to analyze the prestressed concrete containment wall of a typical 220 MWe Pressurized Heavy Water Reactor (PHWR) up to its ultimate capacity. This demonstrates the adequacy of Indian PHWR containment design to withstand severe accident loads

  2. Shear Bond Strength of Ceramic Brackets with Different Base Designs: Comparative In-vitro Study

    Science.gov (United States)

    Ansari, Mohd. Younus; Agarwal, Deepak K; Bhattacharya, Preeti; Ansar, Juhi; Bhandari, Ravi

    2016-01-01

    Introduction Knowledge about the Shear Bond Strength (SBS) of ceramic brackets with different base design is essential as it affects bond strength to enamel. Aim The aim of the present study was to evaluate and compare the effect of base designs of different ceramic brackets on SBS, and to determine the fracture site after debonding. Materials and Methods Four groups of ceramic brackets and one group of metal brackets with different base designs were used. Adhesive precoated base of Clarity Advanced (APC Flash-free) (Unitek/3M, Monrovia, California), microcrystalline base of Clarity Advanced (Unitek/3M, Monrovia, California), polymer mesh base of InVu (TP Orthodontics, Inc., La Porte, IN, United States), patented bead ball base of Inspire Ice (Ormco, Glendora, California), and a mechanical mesh base of Gemini Metal bracket (Unitek/3M, Monrovia, California). Ten brackets of each type were bonded to 50 maxillary premolars with Transbond XT (Unitek/3M). Samples were stored in distilled water at room temperature for 24 hours and subsequently tested in shear mode on a universal testing machine (Model 3382; Instron Corp., Canton, Massachusetts, USA) at a cross head speed of 1mm/minute with the help of a chisel. The debonded interface was recorded and analyzed to determine the predominant bond failure site under an optical microscope (Stereomicroscope) at 10X magnification. One way analysis of variance (ANOVA) was used to compare SBS. Tukey’s significant differences tests were used for post-hoc comparisons. The Adhesive Remnant Index (ARI) scores were compared by chi-square test. Results Mean SBS of microcrystalline base (27.26±1.73), was the highest followed by bead ball base (23.45±5.09), adhesive precoated base (20.13±5.20), polymer mesh base (17.54±1.91), and mechanical mesh base (17.50±2.41) the least. Comparing the frequency (%) of ARI Score among the groups, chi-square test showed significantly different ARI scores among the groups (χ2 = 34.07, pbrackets

  3. Composition design of superhigh strength maraging stainless steels using a cluster model

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2014-02-01

    Full Text Available The composition characteristics of maraging stainless steels were studied in the present work investigation using a cluster-plus-glue-atom model. The least solubility limit of high-temperature austenite to form martensite in basic Fe–Ni–Cr corresponds to the cluster formula [NiFe12]Cr3, where NiFe12 is a cuboctahedron centered by Ni and surrounded by 12 Fe atoms in FCC structure and Cr serves as glue atoms. A cluster formula [NiFe12](Cr2Ni with surplus Ni was then determined to ensure the second phase (Ni3M precipitation, based on which new multi-component alloys [(Ni,Cu16Fe192](Cr32(Ni,Mo,Ti,Nb,Al,V16 were designed. These alloys were prepared by copper mould suction casting method, then solid-solution treated at 1273 K for 1 h followed by water-quenching, and finally aged at 783 K for 3 h. The experimental results showed that the multi-element alloying results in Ni3M precipitation on the martensite, which enhances the strengths of alloys sharply after ageing treatment. Among them, the aged [(Cu4Ni12Fe192](Cr32(Ni8.5Mo2Ti2Nb0.5Al1V1 alloy (Fe74.91Ni8.82Cr11.62Mo1.34Ti0.67Nb0.32Al0.19V0.36Cu1.78 wt% has higher tensile strengths with YS=1456 MPa and UTS=1494 MPa. It also exhibits good corrosion-resistance in 3.5 wt% NaCl solution.

  4. Strength and Numerical Analysis in the Design of Permeable Reactive Barriers

    Science.gov (United States)

    Pawluk, Katarzyna; Wrzesiński, Grzegorz; Lendo-Siwicka, Marzena

    2017-10-01

    Permeable reactive barriers are one of the most important in situ technologies in groundwater remediation. Most of the installed PRBs have tended to use singular reactive media, but there is an increasing number of applications using combined or sequenced media to treat mixtures of contaminants within a groundwater plume. The concept of a multi-layered permeable reactive barrier (MPRB) to prevent and protect groundwater along traffic routes, especially in ecologically and naturally valuable areas, was developed following several field and laboratory investigations conducted in the Department of Geotechnical Engineering of the Warsaw University of Life Sciences. In accordance with the guidelines of the Interstate Technology & Regulatory Council for the selection of reactive materials, numerous laboratory and field investigations should be performed to determine the environmental conditions, type and concentrations of the contaminants, and the physical-chemical and permeability properties of the reactive materials. However, the deformation and strength properties of the reactive materials should be also considered in the design and evaluation of the safety conditions. In this paper, strength and deformation properties of silica spongolite, zeolite, and activated carbon were investigated using direct shear and oedometer tests. The laboratory test results were used in numerical calculations with the application of the finite element method. The aim of this study was to define the impact of the installation stages of a multi-layered permeable reactive barrier on the stability of a road embankment. Numerical analysis may prevent, reduce or eliminate the risk in the case of a breakdown during the construction or/and exploitation of a PRB.

  5. Role of interfaces i nthe design of ultra-high strength, radiation damage tolerant nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Amit [Los Alamos National Laboratory; Wang, Yongqiang [Los Alamos National Laboratory; Nastasi, Michael A [Los Alamos National Laboratory; Baldwin, Jon K [Los Alamos National Laboratory; Wei, Qiangmin [Los Alamos National Laboratory; Li, Nan [Los Alamos National Laboratory; Mara, Nathan [Los Alamos National Laboratory; Zhang, Xinghang [Los Alamos National Laboratory; Fu, Engang [Los Alamos National Laboratory; Anderoglu, Osman [Los Alamos National Laboratory; Li, Hongqi [Los Alamos National Laboratory; Bhattacharyya, Dhriti [NON LANL

    2010-12-09

    The combination of high strength and high radiation damage tolerance in nanolaminate composites can be achieved when the individual layers in these composites are only a few nanometers thick and contain special interfaces that act both as obstacles to slip, as well as sinks for radiation-induced defects. The morphological and phase stabilities and strength and ductility of these nano-composites under ion irradiation are explored as a function of layer thickness, temperature and interface structure. Magnetron sputtered metallic multilayers such as Cu-Nb and V-Ag with a range of individual layer thickness from approximately 2 nm to 50 nm and the corresponding 1000 nm thick single layer films were implanted with helium ions at room temperature. Cross-sectional Transmission Electron Microscopy (TEM) was used to measure the distribution of helium bubbles and correlated with the helium concentration profile measured vis ion beam analysis techniques to obtain the helium concentration at which bubbles are detected in TEM. It was found that in multilayers the minimum helium concentration to form bubbles (approximately I nm in size) that are easily resolved in through-focus TEM imaging was several atomic %, orders of magnitude higher than that in single layer metal films. This observation is consistent with an increased solubility of helium at interfaces that is predicted by atomistic modeling of the atomic structures of fcc-bcc interfaces. At helium concentrations as high as 7 at.%, a uniform distribution of I nm diameter bubbles results in negligible irradiation hardening and loss of deformability in multi layers with layer thicknesses of a few nanometers. The control of atomic structures of interfaces to produce high helium solubility at interfaces is crucial in the design of nano-composite materials that are radiation damage tolerant. Reduced radiation damage also leads to a reduction in the irradiation hardening, particularly at layer thickness of approximately 5 run

  6. Effects of framework design and layering material on fracture strength of implant-supported zirconia-based molar crowns.

    Science.gov (United States)

    Kamio, Shingo; Komine, Futoshi; Taguchi, Kohei; Iwasaki, Taro; Blatz, Markus B; Matsumura, Hideo

    2015-12-01

    To evaluate the effects of framework design and layering material on the fracture strength of implant-supported zirconia-based molar crowns. Sixty-six titanium abutments (GingiHue Post) were tightened onto dental implants (Implant Lab Analog). These abutment-implant complexes were randomly divided into three groups (n = 22) according to the design of the zirconia framework (Katana), namely, uniform-thickness (UNI), anatomic (ANA), and supported anatomic (SUP) designs. The specimens in each design group were further divided into two subgroups (n = 11): zirconia-based all-ceramic restorations (ZAC group) and zirconia-based restorations with an indirect composite material (Estenia C&B) layered onto the zirconia framework (ZIC group). All crowns were cemented on implant abutments, after which the specimens were tested for fracture resistance. The data were analyzed with the Kruskal-Wallis test and the Mann-Whitney U-test with the Bonferroni correction (α = 0.05). The following mean fracture strength values (kN) were obtained in UNI design, ANA design, and SUP design, respectively: Group ZAC, 3.78, 6.01, 6.50 and Group ZIC, 3.15, 5.65, 5.83. In both the ZAC and ZIC groups, fracture strength was significantly lower for the UNI design than the other two framework designs (P = 0.001). Fracture strength did not significantly differ (P > 0.420) between identical framework designs in the ZAC and ZIC groups. A framework design with standardized layer thickness and adequate support of veneer by zirconia frameworks, as in the ANA and SUP designs, increases fracture resistance in implant-supported zirconia-based restorations under conditions of chewing attrition. Indirect composite material and porcelain perform similarly as layering materials on zirconia frameworks. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Ultimate - a new generation of gasoline and diesel fuels; Ultimate - eine neue Generation von Otto- und Dieselkraftstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Strempel, G. [Aral Forschung/Global Fuels Technology, Bochum (Germany); Beckwith, P. [BP Fuels Management Group, Pangbourne (United Kingdom); Froehling, J. [Aral Forschung, Bochum (Germany). Labor/Analytik; Baron, U. [Aral Forschung, Bochum (Germany). Motor- und Fahrzeuglaboratorium; Sauermann, P.; Balfanz, U. [Aral Forschung, Bochum (Germany). Produktentwicklung; Doermer, W. [Aral Forschung, Bochum (Germany). Produktqualitaet

    2005-06-01

    With the launch of Ultimate 100 gasoline and Ultimate Diesel, motorists in Germany now have the opportunity to choose new advanced performance fuels designed to get the very best from their engines. This article gives details of the technical development behind these fuels, their wide range of benefits, and how it is possible to manufacture fuels which meet the considerable technical challenge of achieving both more performance and less pollution. (orig.)

  8. Design Optimization of Laminated Composite Structures with Many Local Strength Criteria

    DEFF Research Database (Denmark)

    Lund, Erik

    2012-01-01

    This paper presents different strategies for handling very many local strength criteria in structural optimization of laminated composites. Global strength measures using Kreisselmeier-Steinhauser or p-norm functions are introduced for patch-wise parameterizations, and the efficiency of the metho...

  9. The dream of an ultimate theory

    International Nuclear Information System (INIS)

    Weinberg, S.

    1997-10-01

    Steven Weinberg describes how the dream of an ultimate theory began when one tried to unify the fundamental laws governing the stars constellations as elementary particles: electromagnetism, weak-electro theory then standard model which gives only one quantity out of its fields, the gravitation. He tries to explain to what an ultimate theory could look like. but the dream of an ultimate theory is not yet realized, there are some elementary particles to find before and then to build superconducting super colliders. The europe made it. the dream of an ultimate theory became an european dream. (N.C.)

  10. Optimising mechanical strength and bulk density of dry ceramic bodies through mixture design

    Directory of Open Access Journals (Sweden)

    Correia, S. L.

    2005-02-01

    Full Text Available In industrial practice, it is desirable to be able to predict, in an expeditious way, what the effects of a change in raw materials or the proportions thereof might be in the various processing steps towards the final product. When the property of interest is basically determined by the combination (or mixture of raw materials, an optimisation methodology specific to the design of mixture experiments can be successfully used. In the present study, dry bending strength and bulk density were selected as the properties to model, given the simplicity of their experimental determination and because they are frequently used as quality control parameter in the development and manufacture stages of floor and wall ceramic tiles. Ten formulations of three raw materials (a clay mixture, potash feldspar and quartz sand were processed in the laboratory under fixed conditions, similar to those used in the ceramics industry, and characterised. The use of this methodology enabled the calculation of valid regression models (equations relating dry bending strength and bulk density with the contents, in the starting mixture, of the particular raw materials used.

    En el trabajo industrial es deseable poder predecir de manera efectiva, los efectos que los cambios en las materias primas o en sus proporciones pueden ejercer sobre las variables del proceso y como estos afectan al producto final. Cuando la propiedad de interés depende preferentemente de la mezcla de las materias primas, una metodología específica de optimización para el diseño de los experimentos de mezclas puede ser empleada con éxito. En este trabajo, la resistencia mecánica en seco y la densidad se emplearon como los parámetros de control en el desarrollo y producción de azulejos cerámicos para pavimento y revestimiento. Diez formulaciones a partir de tres materias primas ( una mezcla de arcilla, feldespato potásico y arena de cuarzo fueron procesadas en el laboratorio bajo

  11. Analysis of ultimate-heat-sink spray ponds. Technical report

    International Nuclear Information System (INIS)

    Codell, R.

    1981-08-01

    This report develops models which can be utilized in the design of certain types of spray ponds used in ultimate heat sinks at nuclear power plants, and ways in which the models may be employed to determine the design basis required by U.S. Nuclear Regulatory Commission Regulatory Guide 1.27

  12. STRENGTH OF NANOMODIFIED HIGH-STRENGTH LIGHTWEIGHT CONCRETES

    Directory of Open Access Journals (Sweden)

    NOZEMTСEV Alexandr Sergeevich

    2013-02-01

    Full Text Available The paper presents the results of research aimed at development of nanomodified high-strength lightweight concrete for construction. The developed concretes are of low average density and high ultimate compressive strength. It is shown that to produce this type of concrete one need to use hollow glass and aluminosilicate microspheres. To increase the durability of adhesion between cement stone and fine filler the authors offer to use complex nanodimensinal modifier based on iron hydroxide sol and silica sol as a surface nanomodifier for hollow microspheres. It is hypothesized that the proposed modifier has complex effect on the activity of the cement hydration and, at the same time increases bond strength between filler and cement-mineral matrix. The compositions for energy-efficient nanomodified high-strength lightweight concrete which density is 1300…1500 kg/m³ and compressive strength is 40…65 MPa have been developed. The approaches to the design of high-strength lightweight concrete with density of less than 2000 kg/m³ are formulated. It is noted that the proposed concretes possess dense homogeneous structure and moderate mobility. Thus, they allow processing by vibration during production. The economic and practical implications for realization of high-strength lightweight concrete in industrial production have been justified.

  13. A Progressive Resistance Weight Training Program Designed to Improve the Armor Crewman’s Strength

    Science.gov (United States)

    1992-06-05

    Training with a weightlifting belt which supports the abdominal region and lower back can help reduce the chance for injury . A belt 35 should be used...life-saving task more efficiently. If the wounded or unconscious crewman has a traumatic injury , extreme care must be taken not to cause further... injury . This justifies the need for added strength. Three strength related maintenance tasks routinely performed are: (1) checking the link assembly, (2

  14. Physical demands in competitive ultimate frisbee

    DEFF Research Database (Denmark)

    Krustrup, Peter; Mohr, Magni

    2015-01-01

    The objective was to study game demands in competitive ultimate Frisbee by performing match analysis during a game. Thirteen moderately trained (Yo-Yo intermittent recovery test levels 1 and 2 [Yo-Yo IR1 and IR2] performance: 1790 ± 382 m and 657 ± 225 m, respectively) competitive male ultimate...... = 0.74, p ≤ 0.05). Ultimate Frisbee is an intense intermittent team sport with high cardiovascular loading and clear indications of fatigue toward the end of each half. Yo-Yo IR test performances correlate with physical match performance....

  15. A design method for two-layer beams consisting of normal and fibered high strength concrete

    International Nuclear Information System (INIS)

    Iskhakov, I.; Ribakov, Y.

    2007-01-01

    Two-layer fibered concrete beams can be analyzed using conventional methods for composite elements. The compressed zone of such beam section is made of high strength concrete (HSC), and the tensile one of normal strength concrete (NSC). The problems related to such type of beams are revealed and studied. An appropriate depth of each layer is prescribed. Compatibility conditions between HSC and NSC layers are found. It is based on the shear deformations equality on the layers border in a section with maximal depth of the compression zone. For the first time a rigorous definition of HSC is given using a comparative analysis of deformability and strength characteristics of different concrete classes. According to this definition, HSC has no download branch in the stress-strain diagram, the stress-strain function has minimum exponent, the ductility parameter is minimal and the concrete tensile strength remains constant with an increase in concrete compression strength. The application fields of two-layer concrete beams based on different static schemes and load conditions make known. It is known that the main disadvantage of HSCs is their low ductility. In order to overcome this problem, fibers are added to the HSC layer. Influence of different fiber volume ratios on structural ductility is discussed. An upper limit of the required fibers volume ratio is found based on compatibility equation of transverse tensile concrete deformations and deformations of fibers

  16. THE ULTIMATE STATE CONCEPT APPLIED TO TUNNEL SUPPORT

    Directory of Open Access Journals (Sweden)

    Mladen Hudec

    2000-12-01

    Full Text Available The most questionable are the values of pressures between rock and support resulting from common deformations on the contact area between rock and support. Therefore the modelling and design of the tunnel support is not reliable, if it is based on active rock pressure resulting from this common deformations. The inversion of the design procedure is proposed. Instead of the active extreme pressure of the rock on support, the influence of ultimate reaction of the support on the rock has to be analysed. This procedure can be performed using the ultimate load principle, as proposed by Eurocodc 7 (Geotechnies. Normally, the rock has the tendency to increase the common conver¬gence until the support reaches its ultimate state. So, loading of profile boundary with the ultimate possible reaction of the support is very plausible. The reactive support pressures have to be probable and itself in equilibrium. The ultimate reactive load has to be reduced by Euro-code safety factor for structural elements and applied on the rock with given properties, or alternatively (as proposed by Eurocode 7 the soil or rock properties have to be diminished and calculated with full ultimate support pressures. If the rock with given (or proposed pro¬perties and loaded with ultimate reactive pressures resulting from supposed support, satisfy its failure criterion, then is the compound system support-rock verificatcd. By this procedure, the number of relevant material properties is reduce to the primary stress ratio and the constants defining the failure criterion. The verification can be performed by any of numerical methods, but we prefer here used boundary elements method (the paper is published in Croatian.

  17. Investigation on the Effect of Drained Strength when Designing Sheet Pile Walls

    DEFF Research Database (Denmark)

    Iversen, Kirsten Malte; Nielsen, Benjaminn Nordahl; Augustesen, Anders Hust

    that the height, anchor force, and the maximum bending moment in the wall can be lowered significantly when the effective cohesion is increased above zero. However, as the cohesion increases, the drop in the moment levels off, which implies that the benefit obtained from investigations increasing the cohesion......Long sheet pile walls are constructed in the cities as an integrated part of deep excavations for e.g. parking lots, pumping stations, reservoirs, and cut and cover tunnels. To minimise costs, the strength of the soil needs to be determined in the best possible way. The drained strength of clay...... expressed by c and ϕ is often estimated as c 10% = 10%・cu, and found by estimations based on the soil describtion, respectively. However, due to possible slicken slides and tension cracks, c = 0 is used on the back side of the sheet pile wall. This reduces the strength significantly. A parametric study...

  18. Nonlinear modeling, strength-based design, and testing of flexible piezoelectric energy harvesters under large dynamic loads for rotorcraft applications

    Science.gov (United States)

    Leadenham, Stephen; Erturk, Alper

    2014-04-01

    There has been growing interest in enabling wireless health and usage monitoring for rotorcraft applications, such as helicopter rotor systems. Large dynamic loads and acceleration fluctuations available in these environments make the implementation of vibration-based piezoelectric energy harvesters a very promising choice. However, such extreme loads transmitted to the harvester can also be detrimental to piezoelectric laminates and overall system reliability. Particularly flexible resonant cantilever configurations tuned to match the dominant excitation frequency can be subject to very large deformations and failure of brittle piezoelectric laminates due to excessive bending stresses at the root of the harvester. Design of resonant piezoelectric energy harvesters for use in these environments require nonlinear electroelastic dynamic modeling and strength-based analysis to maximize the power output while ensuring that the harvester is still functional. This paper presents a mathematical framework to design and analyze the dynamics of nonlinear flexible piezoelectric energy harvesters under large base acceleration levels. A strength-based limit is imposed to design the piezoelectric energy harvester with a proof mass while accounting for material, geometric, and dissipative nonlinearities, with a focus on two demonstrative case studies having the same linear fundamental resonance frequency but different overhang length and proof mass values. Experiments are conducted at different excitation levels for validation of the nonlinear design approach proposed in this work. The case studies in this work reveal that harvesters exhibiting similar behavior and power generation performance at low excitation levels (e.g. less than 0.1g) can have totally different strength-imposed performance limitations under high excitations (e.g. above 1g). Nonlinear modeling and strength-based design is necessary for such excitation levels especially when using resonant cantilevers with no

  19. Ultimate capabilities of soft x-ray optics

    International Nuclear Information System (INIS)

    Vinogradov, A.V.; Zorev, N.N.; Kozhevnikov, I.V.

    1988-01-01

    Nonimaging soft X-ray optics is examined. The ultimate capabilities of a number of X-ray optical components designed for concentration and collimation of radiation from point sources are determined. The applications of X-ray optics are discussed together with the properties of materials in the X-ray range

  20. Ultimate and proximate explanations of strong reciprocity.

    Science.gov (United States)

    Vromen, Jack

    2017-08-23

    Strong reciprocity (SR) has recently been subject to heated debate. In this debate, the "West camp" (West et al. in Evol Hum Behav 32(4):231-262, 2011), which is critical of the case for SR, and the "Laland camp" (Laland et al. in Science, 334(6062):1512-1516, 2011, Biol Philos 28(5):719-745, 2013), which is sympathetic to the case of SR, seem to take diametrically opposed positions. The West camp criticizes advocates of SR for conflating proximate and ultimate causation. SR is said to be a proximate mechanism that is put forward by its advocates as an ultimate explanation of human cooperation. The West camp thus accuses advocates of SR for not heeding Mayr's original distinction between ultimate and proximate causation. The Laland camp praises advocates of SR for revising Mayr's distinction. Advocates of SR are said to replace Mayr's uni-directional view on the relation between ultimate and proximate causes by the bi-directional one of reciprocal causation. The paper argues that both the West camp and the Laland camp misrepresent what advocates of SR are up to. The West camp is right that SR is a proximate cause of human cooperation. But rather than putting forward SR as an ultimate explanation, as the West camp argues, advocates of SR believe that SR itself is in need of ultimate explanation. Advocates of SR tend to take gene-culture co-evolutionary theory as the correct meta-theoretical framework for advancing ultimate explanations of SR. Appearances notwithstanding, gene-culture coevolutionary theory does not imply Laland et al.'s notion of reciprocal causation. "Reciprocal causation" suggests that proximate and ultimate causes interact simultaneously, while advocates of SR assume that they interact sequentially. I end by arguing that the best way to understand the debate is by disambiguating Mayr's ultimate-proximate distinction. I propose to reserve "ultimate" and "proximate" for different sorts of explanations, and to use other terms for distinguishing

  1. Ultimate load model test for Sizewell 'B' primary containment

    International Nuclear Information System (INIS)

    Crowder, R.

    1988-01-01

    This paper considers the factors influencing the adoption of an ultimate load factor for the Sizewell 'B' PWR primary containment structure. As part of the validation process for the ultimate load analysis method, a proposal has been made by Nuclear Design Associates to build and test a 1/10th scale model of the containment structure, which would proceed following the granting of section 2 consent for Sizewell 'B'. The modelling principles, construction method and test proposals are examined in some detail. The proposal is currently being considered by the CEGB's Project Management Team. (author)

  2. Ultimate pressure capacity of CANDU 6 containment structures

    International Nuclear Information System (INIS)

    Radulescu, J.P.; Pradolin, L.; Mamet, J.C.

    1997-01-01

    This paper summarizes the analytical work carried out and the results obtained when determining the ultimate pressure capacity (UPC) of the containment structures of CANDU 6 nuclear power plants. The purpose of the analysis work was to demonstrate that such containment structures are capable of meeting design requirements under the most severe accident conditions. For this concrete vessel subjected to internal pressure, the UPC was defined as the pressure causing through cracking in the concrete. The present paper deals with the overall behaviour of the containment. The presence of openings, penetrations and the ultimate pressure of the airlocks were considered separately. (author)

  3. Examples of density, orientation and shape optimal design for stiffness and/or strength with orthotropic materials

    DEFF Research Database (Denmark)

    Pedersen, Pauli

    2004-01-01

    The balance between stiffness and strength design is considered in the present paper. For materials with different levels of orthotropy (including isotropy), we optimize the density distribution as well as the orientational distribution for a short cantilever problem, and discuss the tendencies...... in design and response (energy distributions and stress directions). For a hole in a biaxial stress field, the shape design of the boundary hole is also incorporated. The resulting tapered density distributions may be difficult to manufacture, for example, in micro-mechanics production. For such problems...... a penalization approach to obtain "black and white" designs, i.e. uniform material or holes, is often applied in optimal design. A specific example is studied to show the effect of the penalization, but is restricted here to an isotropic material. When the total amount of material is not specified, a conflict...

  4. Interpolation/penalization applied for strength design of 3D thermoelastic structures

    DEFF Research Database (Denmark)

    Pedersen, Pauli; Pedersen, Niels L.

    2012-01-01

    compliance. This is proved for thermoelastic structures by sensitivity analysis of compliance that facilitates localized determination of sensitivities, and the compliance is not identical to the total elastic energy (twice strain energy). An explicit formula for the difference is derived and numerically...... parameter interpolation in explicit form is preferred, and the influence of interpolation on compliance sensitivity analysis is included. For direct strength maximization the sensitivity analysis of local von Mises stresses is demanding. An applied recursive procedure to obtain uniform energy density...

  5. Ultimate load capacity assessment of reinforced concrete shell structures

    International Nuclear Information System (INIS)

    Gupta, Amita; Singh, R.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1993-01-01

    The objective of this study is to develop capability for prediction of ultimate load capacity of reinforced concrete shell structures. The present finite element code ULCA (Ultimate Load Capacity Assessment) adopts a degenerate concept of formulating general isoparametric shell element with a layered approach in the thickness direction. Different failure modes such as crushing, tensile cracking and reinforcement yielding are recognised for various problems. The structure fails by crushing of concrete when the concrete strain/stress reaches the ultimate stress or strain of concrete. Material nonlinearities as a result of tension cracking, tension stiffening between reinforcement and concrete in cracked region and yielding of reinforcement are considered along with geometric nonlinearity. Thus with this code it is possible to predict the pressure at which the first cracking, first through thickness cracking, first yielding of reinforcement occurs. After validating the code with few bench mark problems for different failure modes a reinforced concrete nuclear containment is analysed for its ultimate capacity and the results are matched with the published results. Further the ultimate load capacity of outer containment wall of Narora Atomic Power Station is predicted. It is observed that containment fails in membrane region and has a sufficient margin against design pressure. (author). 9 refs., 56 figs., 3 tabs., 1 appendix with 4 tabs

  6. A Comprehensive Solution of the Problems of Ensuring the Strength of Gas Turbine Engine Compressor at the Design Stage

    Science.gov (United States)

    Vedeneev, V. V.; Kolotnikov, M. E.; Mossakovskii, P. A.; Kostyreva, L. A.; Abdukhakimov, F. A.; Makarov, P. V.; Pyhalov, A. A.; Dudaev, M. A.

    2018-01-01

    In this paper we present a complex numerical workflow for analysis of blade flutter and high-amplitude resonant oscillations, impenetrability of casing if the blade is broken off, and the rotor reaction to the blade detachment and following misbalance, with the assessment of a safe flight possibility at the auto-rotation regime. All the methods used are carefully verified by numerical convergence study and correlations with experiments. The use of the workflow developed significantly improves the efficiency of the design process of modern jet engine compressors. It ensures a significant reduction of time and cost of the compressor design with the required level of strength and durability.

  7. Influence of Abutment Design on Stiffness, Strength, and Failure of Implant-Supported Monolithic Resin Nano Ceramic (RNC) Crowns.

    Science.gov (United States)

    Joda, Tim; Huber, Samuel; Bürki, Alexander; Zysset, Philippe; Brägger, Urs

    2015-12-01

    Recent technical development allows the digital manufacturing of monolithic reconstructions with high-performance materials. For implant-supported crowns, the fixation requires an abutment design onto which the reconstruction can be bonded. The aim of this laboratory investigation was to analyze stiffness, strength, and failure modes of implant-supported, computer-assisted design and computer-aided manufacturing (CAD/CAM)-generated resin nano ceramic (RNC) crowns bonded to three different titanium abutments. Eighteen monolithic RNC crowns were produced and loaded in a universal testing machine under quasi-static condition according to DIN ISO 14801. With regard to the type of titanium abutment, three groups were defined: (1) prefabricated cementable standard; (2) CAD/CAM-constructed individualized; and (3) novel prefabricated bonding base. Stiffness and strength were measured and analyzed statistically with Wilcoxon rank sum test. Sections of the specimens were examined microscopically. Stiffness demonstrated high stability for all specimens loaded in the physiological loading range with means and standard deviations of 1,579 ± 120 N/mm (group A), 1,733 ± 89 N/mm (group B), and 1,704 ± 162 N/mm (group C). Mean strength of the novel prefabricated bonding base (group C) was 17% lower than of the two other groups. Plastic deformations were detectable for all implant-abutment crown connections. Monolithic implant crowns made of RNC seem to represent a feasible and stable prosthetic construction under laboratory testing conditions with strength higher than the average occlusal force, independent of the different abutment designs used in this investigation. © 2014 Wiley Periodicals, Inc.

  8. Strength of Ship Plates under Combined Loading

    DEFF Research Database (Denmark)

    Cui, W.; Wang, Y.; Pedersen, Preben Terndrup

    2002-01-01

    Strength of ship plates plays a significant role in the ultimate strength analysis of ship structures. In recent years several authors have proposed simplified analytical methods to calculate the ultimate strength of unstiffened plates. The majority of these investigations deal with plates subjec...

  9. Strength of ship plates under combined loading

    DEFF Research Database (Denmark)

    Cui, Weiching; Wang, Yongjun; Pedersen, Preben Terndrup

    2000-01-01

    Strength of ship plates plays a significant role for the ultimate strength analysis of ship structures. In recent years several authors have proposed simplified methods to calculate the ultimate strength of unstiffened plates. The majority of these investigations deal with plates subjected to lon...

  10. [Influence of retainer design on fixation strength of resin-bonded glass fiber reinforced composite fixed cantilever dentures].

    Science.gov (United States)

    Petrikas, O A; Voroshilin, Iu G; Petrikas, I V

    2013-01-01

    Fiber-reinforced composite (FRC) fixed partial dentures (FPD) have become an accepted part of the restorative dentist's armamentarium. The aim of this study was to evaluate in vitro the influence of retainer design on the strength of two-unit cantilever resin-bonded glass FRC-FPDs. Four retainer designs were tested: a dual wing, a dual wing + horizontal groove, a dual wing + occlusal rest and a step-box. Of each design on 7 human mandibular molars, FRC-FPDs of a premolar size were produced. The FRC framework was made of resin Revolution (Kerr) impregnated glass fibers (GlasSpan, GlasSpan) and veneered with hybrid resin composite (Charisma, Kulzer). Revolution (Kerr) was used as resin luting cement. FRC-FPDs were loaded to failure in a universal testing machine. T (Student's)-test was used to evaluate the data. The four designs were analyzed with finite element analysis (FEA) to reveal the stress distribution within the tooth/restoration complex. Significantly lower fracture strengths were observed with inlay-retained FPDs (step-box: 172±11 N) compared to wing-retained FPDs (poptimal design for replacement of a single premolar by means of a two-unit cantilever FRC-FPDs.

  11. Ultimate justification: Wittgenstein and medical ethics.

    Science.gov (United States)

    Hughes, J

    1995-02-01

    Decisions must be justified. In medical ethics various grounds are given to justify decisions, but ultimate justification seems illusory and little considered. The philosopher Wittgenstein discusses the problem of ultimate justification in the context of general philosophy. His comments, nevertheless, are pertinent to ethics. From a discussion of Wittgensteinian notions, such as 'bedrock', the idea that 'ultimate' justification is grounded in human nature as such is derived. This discussion is relevant to medical ethics in at least five ways: it shows generally what type of certainty there is in practical ethics; it seems to imply some objective foundation to our ethical judgements; it squares with our experience of making ethical decisions; it shows something of the nature of moral arguments; and, finally, it has implications for teaching medicine and ethics.

  12. Genetic design and characterization of novel ultra-high-strength stainless steels strengthened by Ni3Ti intermetallic nanoprecipitates

    International Nuclear Information System (INIS)

    Xu, W.; Rivera-Diaz-del-Castillo, P.E.J.; Wang, W.; Yang, K.; Bliznuk, V.; Kestens, L.A.I.; Zwaag, S. van der

    2010-01-01

    A general computational alloy design approach based on thermodynamic and physical metallurgical principles, and coupled with a genetic optimization scheme, is presented. The method is applied to the design of new ultra-high-strength maraging stainless steels strengthened by Ni 3 Ti intermetallics. In the first design round, the alloy composition is optimized on the basis of precipitate formation at a fixed ageing temperature without considering other steps in the heat treatment. In the second round, the alloy is redesigned, applying an integrated model which allows for the simultaneous optimization of alloy composition and the ageing temperature as well as the prior austenitization temperature. The experimental characterizations of prototype alloys clearly demonstrate that alloys designed by the proposed approach achieve the desired microstructures.

  13. Design of High Voltage Electrical Breakdown Strength measuring system at 1.8K with a G-M cryocooler

    Science.gov (United States)

    Li, Jian; Huang, Rongjin; Li, Xu; Xu, Dong; Liu, Huiming; Li, Laifeng

    2017-09-01

    Impregnating resins as electrical insulation materials for use in ITER magnets and feeder system are required to be radiation stable, good mechanical performance and high voltage electrical breakdown strength. In present ITER project, the breakdown strength need over 30 kV/mm, for future DEMO reactor, it will be greater than this value. In order to develop good property insulation materials to satisfy the requirements of future fusion reactor, high voltage breakdown strength measurement system at low temperature is necessary. In this paper, we will introduce our work on the design of this system. This measuring system has two parts: one is an electrical supply system which provides the high voltage from a high voltage power between two electrodes; the other is a cooling system which consists of a G-M cryocooler, a superfluid chamber and a heat switch. The two stage G-M cryocooler pre-cool down the system to 4K, the superfluid helium pot is used for a container to depress the helium to superfluid helium which cool down the sample to 1.8K and a mechanical heat switch connect or disconnect the cryocooler and the pot. In order to provide the sufficient time for the test, the cooling system is designed to keep the sample at 1.8K for 300 seconds.

  14. A Field Experimental Design of a Strengths-Based Training to Overcome Academic Procrastination: Short- and Long-Term Effect

    Directory of Open Access Journals (Sweden)

    Lennart Visser

    2017-11-01

    Full Text Available This study reports on the effect of a newly developed 4-week strengths-based training approach to overcome academic procrastination, given to first-year elementary teacher education students (N = 54. The training was based on a strengths-based approach, in which elements of the cognitive behavioral approach were also used. The purpose of the training was to promote awareness of the personal strengths of students who experience academic procrastination regularly and to teach them how to use their personal strengths in situations in which they usually tend to procrastinate. With a pretest-posttest control group design (two experimental groups: n = 31, control group: n = 23, the effect of the training on academic procrastination was studied after 1, 11, and 24 weeks. Results of a one-way analysis of covariance revealed a significant short-term effect of the training. In the long term (after 11 and 24 weeks, the scores for academic procrastination for the intervention groups remained stable, whereas the scores for academic procrastination for the control group decreased to the same level as those of the intervention groups. The findings of this study suggest that a strengths-based approach can be helpful to students at an early stage of their academic studies to initiate their individual process of dealing with academic procrastination. The findings for the long term show the importance of measuring the outcomes of an intervention not only shortly after the intervention but also in the long term. Further research is needed to find out how the short-term effect can be maintained in the long-term.

  15. A Field Experimental Design of a Strengths-Based Training to Overcome Academic Procrastination: Short- and Long-Term Effect.

    Science.gov (United States)

    Visser, Lennart; Schoonenboom, Judith; Korthagen, Fred A J

    2017-01-01

    This study reports on the effect of a newly developed 4-week strengths-based training approach to overcome academic procrastination, given to first-year elementary teacher education students ( N = 54). The training was based on a strengths-based approach, in which elements of the cognitive behavioral approach were also used. The purpose of the training was to promote awareness of the personal strengths of students who experience academic procrastination regularly and to teach them how to use their personal strengths in situations in which they usually tend to procrastinate. With a pretest-posttest control group design (two experimental groups: n = 31, control group: n = 23), the effect of the training on academic procrastination was studied after 1, 11, and 24 weeks. Results of a one-way analysis of covariance revealed a significant short-term effect of the training. In the long term (after 11 and 24 weeks), the scores for academic procrastination for the intervention groups remained stable, whereas the scores for academic procrastination for the control group decreased to the same level as those of the intervention groups. The findings of this study suggest that a strengths-based approach can be helpful to students at an early stage of their academic studies to initiate their individual process of dealing with academic procrastination. The findings for the long term show the importance of measuring the outcomes of an intervention not only shortly after the intervention but also in the long term. Further research is needed to find out how the short-term effect can be maintained in the long-term.

  16. Stud-bolts strength for cell-liner design under shearing deformation

    International Nuclear Information System (INIS)

    Watashi, Katsumi; Nakanishi, Seiji

    1991-01-01

    This paper presents experimental and analytical stud-bolt strength subjected to large shearing deformation at high temperature. Tensile test result of the material, SM41B, was shown in the range of room temperature to 550degC at 10 -3 and 10 -4 m/m/s in strain rate. Shearing fracture test result of the stud-bolt is shown at room temperature and 530degC. Shearing fracture criterion was discussed based on both test results and FEM analysis result. (author)

  17. Design of duplex low carbon steels for improved strength: weight applications

    Energy Technology Data Exchange (ETDEWEB)

    Koo, J.

    1977-08-01

    Duplex ferrite-martensite (DFM) steels with excellent combinations of strength and formability have been selected from first principles, and their microstructure-property relationships established through a systematic investigation of a series of ternary Fe/X/0.1 C steels (X being varying amount of Cr and Si). Duplex processing consists of initial austenitization and quenching to form 100% martensite, followed by annealing in the (..cap alpha.. + ..gamma..) range and subsequent quenching. The resultant DFM morphology is controlled by the type and amount of alloying element X.

  18. OECD MCCI Small-Scale Water Ingression and Crust Strength tests (SSWICS) design report, Rev. 2 October 31, 2002

    International Nuclear Information System (INIS)

    Farmer, M.; Lomperski, S.; Kilsdonk, D.; Aeschlimann, B.; Pfeiffer, P.

    2011-01-01

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are planned to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium (∼φ30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. A description of the test apparatus, instrumentation, data reduction, and test matrix are the subject of the first portion of this report. The issue of crust strength will be addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus will measure the fracture strength of the crust while under a thermal load created by a heating element beneath the crust. The introduction of a thermal gradient across the crust is thought to be important for these tests because of uncertainty in the magnitude of the thermal stresses and thus their relative

  19. Ultimate internal pressure capacity of concrete containment structures

    International Nuclear Information System (INIS)

    Krishnaswamy, C.N.; Namperumal, R.; Al-Dabbagh, A.

    1983-01-01

    Lesson learned from the accident at Three-Mile Island nuclear plant has necessitated the computation of the ultimate internal pressure capacity of containment structures as a licensing requirement in the U.S. In general, a containment structure is designed to be essentially elastic under design accident pressure. However, as the containment pressure builds up beyond the design value due to a more severe postulated accident, the containment response turns nonlinear as it sequentially passes through cracking of concrete, yielding of linear plate, yielding of rebar, and yielding of post-tensioning tendon (if the containment concrete is prestressed). This paper reports on the determination of the ultimate internal pressure capacity and nonlinear behavior of typical reinforced and prestressed concrete BWR containments. The probable modes of failure, the criteria for ultimate pressure capacity, and the most critical sections are described. Simple equations to hand-calculate the ultimate pressure capacity and the nonlinear behavior at membrane sections of the containment shell are presented. A nonlinear finite element analysis performed to determine the nonlinear behavior of the entire shell including nonmembrane sections is briefly discribed. The analysis model consisted of laminated axisymmetric shell finite elements with nonlinear stress-strain properties for each material. Results presented for typical BWR concrete containments include nonlinear response plots of internal pressure versus containment deflection and strains in the liner, rebar, and post-tensioning tendons at the most stressed section in the shell. Leak-tightness of the containment liner and the effect of thermal loads on the ultimate capacity are discussed. (orig.)

  20. Design of strength characteristics on the example of a mining support

    Science.gov (United States)

    Gwiazda, A.; Sękala, A.; Banaś, W.; Topolska, S.; Foit, K.; Monica, Z.

    2017-08-01

    It is a special group of particular design aproches that could be characterized as “design for X”. All areas of specific these design methodology, taking into account the requirements of the life cycle are described with the acronym DfX. It means an integrated computing platform approach to design binding together both the area of design knowledge and area of computer systems. In this perspective, computer systems are responsible for the link between design requirements with the subject of the project and to filter the information being circulated throughout the operation of the project. The DfX methodologies together form an approach integrating to different functional areas of industrial organization. Among the internal elements it can distinguish the structure of the project team, the people making it, the same process design, control system design and implementation of the action tools to assist this process. Among the elements that are obtained in the framework of this approach should be distinguished: higher operating efficiency, professionalism, the ability to create innovation, incremental progress of the project and the appropriate focus of the project team. It have been done attempts to integrate identified specific areas for action in the field of design methodology. They have already taken place earlier in the design due to the Economic Design for Manufacture. This approach was characteristic for European industry. In this case, an approach was developed in methodology, which can be defined as the Design to/for Cost. The article presents the idea of an integrated design approach related with the DfX approach. The results are described on the base of a virtual 3D model of a mining support. This model was elaborated in the advanced engineering platform like Siemens PLM NX.

  1. Librarians Are the Ultimate Knowledge Managers?

    Science.gov (United States)

    Koina, Cathie

    2003-01-01

    Librarians are the ultimate knowledge managers. Everyone knows that. After all, haven't they been the custodians of documented knowledge for centuries? Who could possibly do it better than them? Well, then why aren't people knocking down their doors, begging them to be the knowledge managers of the organisation? Are they just ignorant of how…

  2. Design of high-temperature high-strength Al-Ti-V-Zr alloys

    International Nuclear Information System (INIS)

    Lee, H.M.

    1990-01-01

    This paper reports that it seems plausible to develop high-strength Al-base alloys useful up to 698K in view of the behavior of nickel base superalloys which resist degradation of mechanical properties to 75 pct of their absolute melting temperature. For high temperature Al alloys, the dispersed hardening phase must not undergo phase transformation to an undesirable phase during long time exposure at the temperature of interest. An additional factor to be considered is the stability of the hardening phase with respect to Ostwald ripening. This coarsening resistance is necessary so that the required strength level can be maintained after the long-time service at high temperatures. The equilibrium crystal structures of Al 3 Ti, Al 3 V and Al 3 Zr are tetragonal D0 22 , D0 22 and D0 23 , respectively. At the temperatures of interest, around 698K, vanadium and titanium are mutually substitutable in the form of Al 3 (Ti, V). Much of titanium and vanadium can be substituted for zirconium in the D0 23 - type Al 3 Zr compound, creating Al 3 (Ti, Zr) and Al 3 (V, Zr), respectively. In particular, it has been reported that fcc L1 2 -structured Al 3 M dispersoids form in the rapidly solidified Al-V-Zr and Al-Ti-Zr systems and both L1 2 and D0 23 -structured Al 3 M phases showed slow coarsening kinetics

  3. 30 CFR 75.335 - Seal strengths, design applications, and installation.

    Science.gov (United States)

    2010-07-01

    ... characteristics, flame spread index, entry size, engineering design and analysis, elasticity of design, material... land surveyor. (iv) Specific mine site information, including— (A) Type of seal; (B) Safety precautions... and materials used to maintain each type of seal; (K) Methods to address shafts and boreholes in the...

  4. Biaxial Testing of High-Strength Fabric Improves Design of Inflatable Radar Domes

    Science.gov (United States)

    Krause, David L.; Bartolotta, Paul A.

    2001-01-01

    Large radar installations around the globe continuously watch the skies, unobtrusively providing security to the United States; these systems have been in active use for the past 50 years. Often situated in extreme environments, the radar dishes require shielding from the harsh elements. Air-inflated domes (over 100 ft in diameter) are one structure of choice for providing this essential protection. The radomes are constructed from highstrength fabric that is strong enough to withstand the inflation pressure, high winds, and other environmental loads, yet transparent to the microwave signal to allow precise radar mapping. This fabric is woven from glass fibers for high strength and embedded in a polytetrafluoroethylene resin matrix, akin to the nonstick coatings used on cookware.

  5. High-throughput design of low-activation, high-strength creep-resistant steels for nuclear-reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Qi; Zwaag, Sybrand van der [Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands); Xu, Wei, E-mail: xuwei@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, 110819, Shenyang (China); Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands)

    2016-02-15

    Reduced-activation ferritic/martensitic steels are prime candidate materials for structural applications in nuclear power reactors. However, their creep strength is much lower than that of creep-resistant steel developed for conventional fossil-fired power plants as alloying elements with a high neutron activation cannot be used. To improve the creep strength and to maintain a low activation, a high-throughput computational alloy design model coupling thermodynamics, precipitate-coarsening kinetics and an optimization genetic algorithm, is developed. Twelve relevant alloying elements with either low or high activation are considered simultaneously. The activity levels at 0–10 year after the end of irradiation are taken as optimization parameter. The creep-strength values (after exposure for 10 years at 650 °C) are estimated on the basis of the solid-solution strengthening and the precipitation hardening (taking into account precipitate coarsening). Potential alloy compositions leading to a high austenite fraction or a high percentage of undesirable second phase particles are rejected automatically in the optimization cycle. The newly identified alloys have a much higher precipitation hardening and solid-solution strengthening at the same activity level as existing reduced-activation ferritic/martensitic steels.

  6. Ultimate gradient in solid-state accelerators

    International Nuclear Information System (INIS)

    Whittum, D.H.

    1998-08-01

    The authors recall the motivation for research in high-gradient acceleration and the problems posed by a compact collider. They summarize the phenomena known to appear in operation of a solid-state structure with large fields, and research relevant to the question of the ultimate gradient. They take note of new concepts, and examine one in detail, a miniature particle accelerator based on an active millimeter-wave circuit and parallel particle beams

  7. The ultimate disposition of depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

    1991-12-31

    Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

  8. 14 CFR 25.613 - Material strength properties and material design values.

    Science.gov (United States)

    2010-01-01

    ... statistical basis. (b) Material design values must be chosen to minimize the probability of structural... following probability: (1) Where applied loads are eventually distributed through a single member within an... probability with 95 percent confidence. (2) For redundant structure, in which the failure of individual...

  9. THE TECHNOLOGICAL AND EXPLOITATIVE FACTORS OF LOCAL INCREASE OF ELECTRIC FIELD STRENGTH IN THE POWER CABLE OF COAXIAL DESIGN

    Directory of Open Access Journals (Sweden)

    G. V. Bezprozvannych

    2016-12-01

    Full Text Available Introduction. Reliability of high voltage power cables in the process of long-term operation is largely due to the intensity of polymeric insulation aging. It is now established that the aging of polyethylene, which is the main material for the insulation of high voltage power cables, under the action of the electric field is determined primarily by the presence of structural heterogeneity arising both during cable production and during use. The cable is always there deviations from the ideal structure, which manifest in a deviation of diameters of conductors from nominal values; in the arrangement of the conductor and the insulation is not strictly coaxially and eccentrically; in elliptic (oval core and insulation; change in relative dielectric constant and thickness of insulation on cable length force the formation of low molecular weight products (including water in the flow at the manufacturing stage crosslinked polyethylene insulation and moisture during operation. Such defects are structural, technological and operational irregularities, which lead to a local change in the electric field. Purpose. Analysis of the influence of the eccentricity, elliptic and spherical inclusions in the electric field distribution in the power cable of a coaxial design with cross-linked polyethylene insulation, based on numerical simulation. Methodology. The bases of the numerical method of calculation of the electrical field strength are Fredholm integral equations of the first and second kind (method of secondary sources for an axially symmetric field. Analysis of the influence of irregularities, including water treeing, the shape of the sounding signal is made using the method of discrete resistive circuit inductance and capacitance of substitution with the initial conditions. Solving systems of linear algebraic equations nodal analysis performed by the sweep method. Results. The presence of the eccentricity and ellipticity in the construction of cable has

  10. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects

    OpenAIRE

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-01

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100?150?MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110?MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1?10?MPa compressive...

  11. The ultimate disposition of depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

  12. Comparison of the Pullout Strength of Different Pedicle Screw Designs and Augmentation Techniques in an Osteoporotic Bone Model.

    Science.gov (United States)

    Kiyak, Gorkem; Balikci, Tevfik; Heydar, Ahmed Majid; Bezer, Murat

    2018-02-01

    Mechanical study. To compare the pullout strength of different screw designs and augmentation techniques in an osteoporotic bone model. Adequate bone screw pullout strength is a common problem among osteoporotic patients. Various screw designs and augmentation techniques have been developed to improve the biomechanical characteristics of the bone-screw interface. Polyurethane blocks were used to mimic human osteoporotic cancellous bone, and six different screw designs were tested. Five standard and expandable screws without augmentation, eight expandable screws with polymethylmethacrylate (PMMA) or calcium phosphate augmentation, and distal cannulated screws with PMMA and calcium phosphate augmentation were tested. Mechanical tests were performed on 10 unused new screws of each group. Screws with or without augmentation were inserted in a block that was held in a fixture frame, and a longitudinal extraction force was applied to the screw head at a loading rate of 5 mm/min. Maximum load was recorded in a load displacement curve. The peak pullout force of all tested screws with or without augmentation was significantly greater than that of the standard pedicle screw. The greatest pullout force was observed with 40-mm expandable pedicle screws with four fins and PMMA augmentation. Augmented distal cannulated screws did not have a greater peak pullout force than nonaugmented expandable screws. PMMA augmentation provided a greater peak pullout force than calcium phosphate augmentation. Expandable pedicle screws had greater peak pullout forces than standard pedicle screws and had the advantage of augmentation with either PMMA or calcium phosphate cement. Although calcium phosphate cement is biodegradable, osteoconductive, and nonexothermic, PMMA provided a significantly greater peak pullout force. PMMA-augmented expandable 40-mm four-fin pedicle screws had the greatest peak pullout force.

  13. Shear Bond Strength of Bracket Bases to Adhesives Based on Bracket Base Design

    Science.gov (United States)

    2016-04-13

    shear bond value when compared to the traditional mesh based orthodontic bracket. Methods: The experimental design included 4 test groups, each... Experimental Design……………………………………………………..…………8 B. Statistical Management of Data………………………………………………….26 IV. RESULTS………………………………………………………………………………28...tooth through which forces may be applied. Through diligent research efforts, clinical experience, and trial and error, this attachment apparatus to

  14. Comparison of Marginal Fit and Fracture Strength of a CAD/CAM Zirconia Crown with Two Preparation Designs

    Directory of Open Access Journals (Sweden)

    Hamid Jalali

    2016-08-01

    Full Text Available Objectives: The purpose of this in vitro study was to compare the marginal adaptation and fracture resistance of a zirconia-based all-ceramic restoration with two preparation designs.Materials and Methods: Twenty-four mandibular premolars were randomly divided into two groups (n=12; the conventional group received a peripheral shoulder preparation and the modified group received a buccal shoulder and proximal/lingual chamfer preparation. The marginal fit of the zirconia crowns (Cercon was evaluated using a stereomicroscope. After cementation, load was applied to the crowns. The mean fracture load and the mean marginal gap for each group were analyzed using t-test (P=0.05.Results: The mean marginal gap was 71±16µm in the conventional group and 80±10µm in the modified group, with no significant difference (P=0.161. The mean fracture strength was 830±153N for the conventional group and 775±125N for the modified group, with no significant difference (P=0.396. All but one fracture occurred in the veneering ceramic.Conclusion: Less aggressive preparation of proximal and lingual finish lines for the preservation of tooth structure in all-ceramic restorations does not adversely affect the marginal adaptation or fracture strength of the final restoration.

  15. Ultimately short ballistic vertical graphene Josephson junctions

    Science.gov (United States)

    Lee, Gil-Ho; Kim, Sol; Jhi, Seung-Hoon; Lee, Hu-Jong

    2015-01-01

    Much efforts have been made for the realization of hybrid Josephson junctions incorporating various materials for the fundamental studies of exotic physical phenomena as well as the applications to superconducting quantum devices. Nonetheless, the efforts have been hindered by the diffusive nature of the conducting channels and interfaces. To overcome the obstacles, we vertically sandwiched a cleaved graphene monoatomic layer as the normal-conducting spacer between superconducting electrodes. The atomically thin single-crystalline graphene layer serves as an ultimately short conducting channel, with highly transparent interfaces with superconductors. In particular, we show the strong Josephson coupling reaching the theoretical limit, the convex-shaped temperature dependence of the Josephson critical current and the exceptionally skewed phase dependence of the Josephson current; all demonstrate the bona fide short and ballistic Josephson nature. This vertical stacking scheme for extremely thin transparent spacers would open a new pathway for exploring the exotic coherence phenomena occurring on an atomic scale. PMID:25635386

  16. Ultimate-gradient accelerators physics and prospects

    CERN Document Server

    Skrinsky, Aleksander Nikolayevich

    1995-01-01

    As introduction, the needs and ways for ultimate acceleration gradients are discussed briefly. The Plasma Wake Field Acceleration is analized in the most important details. The structure of specific plasma oscillations and "high energy driver beam SP-plasma" interaction is presented, including computer simulation of the process. Some pratical ways to introduce the necessary mm-scale bunching in driver beam and to arrange sequential energy multiplication are dicussed. The influence of accelerating beam particle - plasma binary collisions is considered, also. As applications of PWFA, the use of proton super-colliders beams (LHC and Future SC) to drive the "multi particle types" accelerator, and the arrangements for the electron-positron TeV range collider are discussed.

  17. Focused ion beam technology and ultimate applications

    International Nuclear Information System (INIS)

    Gierak, Jacques

    2009-01-01

    In this topical review, the potential of the focused ion beam (FIB) technology and ultimate applications are reviewed. After an introduction to the technology and to the operating principles of liquid metal ion sources (LMIS), of ion optics and instrument architectures, several applications are described and discussed. First, the application of FIB for microcircuit inspection, metrology and failure analysis is presented. Then, we introduce and illustrate some advanced patterning schemes we propose as next generation FIB processing examples. These patterning schemes are (i) local defect injection or smoothing in magnetic thin film direct patterning, (ii) functionalization of graphite substrates to guide organization of clusters, (iii) local and selective epitaxy of III–V semiconductor quantum dots and (iv) FIB patterned solid-state nanopores for biological molecules manipulation and analysis. We conclude this work by giving our vision of the future developments for FIB technology. (topical review)

  18. Transcending matter: physics and ultimate meaning.

    Science.gov (United States)

    Paulson, Steve; Frank, Adam; Kaiser, David; Maudlin, Tim; Natarajan, Priyamvada

    2015-12-01

    From the discovery of new galaxies and nearly undetectable dark energy to the quantum entanglement of particles across the universe, new findings in physics naturally elicit a sense of awe and wonder. For the founders of modern physics-from Einstein and Bohr to Heisenberg, Pauli, and Bohm-a fascination with deeper questions of meaning and ultimate reality led some of them to explore esoteric traditions and metaphysics. More recently, however, physicists have largely shunned such philosophical and spiritual associations. What can contemporary physics offer us in the quest to understand our place in the universe? Has physics in some ways become a religion unto itself that rejects the search for existential meaning? Discussion of these and related questions is presented in this paper. © 2015 New York Academy of Sciences.

  19. UHS, Ultimate Heat Sink Cooling Pond Analysis

    International Nuclear Information System (INIS)

    Codell, R.; Nuttle, W.K.

    1998-01-01

    1 - Description of program or function: Three programs model performance of an ultimate heat sink cooling pond. National Weather Service data is read and analyzed to predict periods of lowest cooling performance and highest evaporative loss. The data is compared to local site data for significant differences. Then the maximum pond temperature is predicted. Five programs model performance of an ultimate heat sink spray pond. The cooling performance, evaporative water loss, and drift water loss as a function of wind speed are estimated for a spray field. These estimates are used in conjunction with National Weather Service data to predict periods of lowest cooling performance and highest evaporative loss. This data is compared to local site data for significant differences. Then the maximum pond temperature is predicted. 2 - Method of solution: The transfer of heat and water vapor is modeled using an equilibrium temperature procedure for an UHS cooling pond. The UHS spray pond model considers heat, mass, and momentum transfer from a single water drop with the surrounding air, and modification of the surrounding air resulting from the heat, mass, and momentum transfer from many drops in different parts of a spray field. 3 - Restrictions on the complexity of the problem: The program SPRCO uses RANF, a uniform random number generator which is an intrinsic function on the CDC. All programs except COMET use the NAMELIST statement, which is non standard. Otherwise these programs conform to the ANSI Fortran 77 standard. The meteorological data scanning procedure requires tens of years of recorded data to be effective. The models and methods, provided as useful tool for UHS analyses of cooling ponds and spray ponds, are intended as guidelines only. Use of these methods does not automatically assure NRC approval, nor are they required procedures for nuclear-power-plant licensing

  20. Ultimate capacity and influenced factors analysis of nuclear RC containment subjected to internal pressure

    International Nuclear Information System (INIS)

    Song Chenning; Hou Gangling; Zhou Guoliang

    2014-01-01

    Ultimate compressive bearing capacity, influenced factors and its rules of nuclear RC containment are key problems of safety assessment, accident treatment and structure design, etc. Ultimate compressive bearing capacity of nuclear RC containment is shown by concrete damaged plasticity model and steel double liner model of ABAQUS. The study shows that the concrete of nuclear RC containment cylinder wall becomes plastic when the internal pressure is up to 0.87 MPa, the maximum tensile strain of steel liner exceeds 3000 × 10 6 and nuclear RC containment reaches ultimate status when the internal pressure is up to 1.02 MPa. The result shows that nuclear RC containment is in elastic condition under the design internal pressure and the bearing capacity meets requirement. Prestress and steel liner play key parts in the ultimate internal pressure and failure mode of nuclear RC containment. The study results have value for the analysis of ultimate compressive bearing capacity, structure design and safety assessment. (authors)

  1. Ultimate capacity of piles penetrating in weak soil layers

    Directory of Open Access Journals (Sweden)

    Al-Obaidi Ahmed

    2018-01-01

    Full Text Available A pile foundation is one of the most popular forms of deep foundations. They are routinely employed to transfer axial structure loads through the soft soil to stronger bearing strata. Piles generally used to increase the load carrying capacity of the foundation and reduce the settlement of the foundation. On the other hand, many cases in practice where piles pass through different layers of soil that contain weak layers located at different depths and extension, also some time cavities with a different shape, size, and depth are found. In this study, a total of 96 cases is considered and simulated in PLAXIS 2D program aiming to understand the influence of weak soil on the ultimate pile capacity. The piles embedded in the dense sand with a layer of weak soil at different extension and location. The cross section of the geometry used in this study was designed as an axisymmetric model with the 15-node element; the boundary condition recommended at least 5D in the horizontal direction, and (L+5D in the vertical direction where D and L are the diameter and length of pile, respectively. The soil is modeled as Mohr-Coulomb, with five input parameters and the behavior of pile material represented by the linear elastic model. The results of the above cases are compared with the results found in a pile embedded in dense soil without weak layers or cavities. The results indicated that the existence of weak soil layer within the surrounding soil around the pile decreases the ultimate capacity. Furthermore, it has been found that increase in the weak soil width (extension leads to reduction in the ultimate capacity of the pile. This phenomenon is applicable to all depth of weak soil. The influence of weak layer extension on the ultimate capacity is less when it is presentin the upper soil layers.

  2. Assessment on Ultimate Load of Cold-formed Steel Channel (CFSC Stub Column

    Directory of Open Access Journals (Sweden)

    Mohd Sani Mohd Syahrul Hisyam

    2015-01-01

    Full Text Available Cold-formed steel is used as the non-structural and structural material in civil engineering work and building. Cold-formed steel channel is selected and cut into 100 mm, 200 mm, 300 mm, 400 mm and 500 mm. The slenderness ratio is calculated and noted as a stub or short column because below 40. The column is tested by using Universal Testing Machine to determine the ultimate load of the stub column. Besides, the CFSC is determined the material properties of CFSC for checking it’s the originality of steel based material. The experimental data are tested and compared with the Direct Strength Method (DSM. It showed that the CFSC1 with a height of 100 mm is reported to have a higher value of ultimate load when compared with other samples. When the height of the stub column increased, the ultimate load of the sample is decreased. Then, the CFSC1 also showed a higher in initial stiffness when compared with other samples. All samples are shown having a higher data in ultimate load when compared with the Direct Strength Method prediction. The ultimate load of experimental and DSM all gave a ratio below 1.03. Finally, all samples can further recommend determining the relation between the ultimate loads with variations of height of the column.

  3. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects

    Science.gov (United States)

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-01

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100-150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1-10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications.

  4. Structural Phenomenon of Cement-Based Composite Elements in Ultimate Limit State

    Directory of Open Access Journals (Sweden)

    I. Iskhakov

    2016-01-01

    Full Text Available Cement-based composite materials have minimum of two components, one of which has higher strength compared to the other. Such materials include concrete, reinforced concrete (RC, and ferrocement, applied in single- or two-layer RC elements. This paper discusses experimental and theoretical results, obtained by the authors in the recent three decades. The authors have payed attention to a structural phenomenon that many design features (parameters, properties, etc. at ultimate limit state (ULS of a structure are twice higher (or lower than at initial loading state. This phenomenon is evident at material properties, structures (or their elements, and static and/or dynamic structural response. The phenomenon is based on two ideas that were developed by first author: quasi-isotropic state of a structure at ULS and minimax principle. This phenomenon is supported by experimental and theoretical results, obtained for various structures, like beams, frames, spatial structures, and structural joints under static or/and dynamic loadings. This study provides valuable indicators for experiments’ planning and estimation of structural state. The phenomenon provides additional equation(s for calculating parameters that are usually obtained experimentally and can lead to developing design concepts and RC theory, in which the number of empirical design coefficients will be minimal.

  5. Wall roughness induces asymptotic ultimate turbulence

    Science.gov (United States)

    Zhu, Xiaojue; Verschoof, Ruben A.; Bakhuis, Dennis; Huisman, Sander G.; Verzicco, Roberto; Sun, Chao; Lohse, Detlef

    2018-04-01

    Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by combining extensive experiments and numerical simulations, we examine the paradigmatic Taylor-Couette system, which describes the closed flow between two independently rotating coaxial cylinders. We show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents associated with wall-bounded turbulence. We reveal that if only one of the walls is rough, the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is eliminated, giving rise to asymptotic ultimate turbulence—the upper limit of transport—the existence of which was predicted more than 50 years ago. In this limit, the scaling laws can be extrapolated to arbitrarily large Reynolds numbers.

  6. The ultimate challenge of cloacal exstrophy.

    Science.gov (United States)

    Schober, Justine M; Carmichael, Polly A; Hines, Melissa; Ransley, Philip G

    2002-01-01

    Our review addresses the various system abnormalities associated with cloacal exstrophy and revisits the question of gender assignment. Gender assignment decisions and psychological aspects of gender issues have become the "ultimate challenge." Exploration of gender identity, gender role behavior and sexual orientation has just begun. A comprehensive literature review was performed with all world literature regarding the current management of cloacal exstrophy. Research focused on management principles, outcomes and documentation of concurrent anomalies. We also describe original research evaluating gender identity in our own series of patients raised as girls to illustrate the challenge of treatment and augment the available literature, which is scant. Abnormalities of the vertebral column ranged from hemivertebra to myelomeningocele. With magnetic resonance imaging, the incidence of spinal dysraphism approached 100% and cord tethering was also more frequently recognized. For children with the short bowel syndrome, advances in antibiotic usage, and parenteral and enteral nutrition have increased the survival rate and reduced morbidity. A neurological component has been recognized for bladder function, bladder neck continence, lower extremity function and erectile capacity. Mitrofanoff-type reconstruction with bladder neck closure and continent catheterizable stoma dramatically increased continence. Diminutive or absent penis has been documented in 30% of males, and no documentation of paternity exists. The majority of females have bicornuate uterus. However, ovaries and tubes were generally normal. No reports of proven fertility exist. The strategy and timing of surgery relating to gender assignment remain controversial. A desperate need exists for research focusing on gender development and quality of life. Until that time, a cautious watchful approach may be most appropriate as our patients with cloacal exstrophy mature into adulthood.

  7. Mechanical strength parameters of cast iron with lamellar graphite and their significance for the design of pressure-carrying reactor components

    International Nuclear Information System (INIS)

    Janakiev, N.

    1977-01-01

    The tensile strength of thick-walled components in cast iron with lamellar graphite is lower by about 50 to 65% than that stated in DIN 1691. The usable compressive strength of this material under uni-axial load is about twice as high as its tensile strength. The graphite lamellae are not bonded into the metallic matrix. The width of the gaps between the graphite lamellae and the matrix increases with increasing wall thickness of the casting. In stress calculations for design purposes it is advisable to rely only on the permissible tensile stresses. It is shown that cast iron can be used as structural material for shieldings but is unsuitable for thick-walled reactor components carrying compressive and tensile stresses because its mechanical strength parameters decrease rapidly with increasing wall thickness. (orig.) [de

  8. The strength compass

    DEFF Research Database (Denmark)

    Ledertoug, Mette Marie

    of agreement/disagreement. Also the child/teacher is asked whether the actual strength is important and if he or she has the possibilities to apply the strength in the school. In a PhDproject ‘Strengths-based Learning - Children’s Character Strengths as Means to their Learning Potential’ 750 Danish children......Individual paper presentation: The ‘Strength Compass’. The results of a PhDresearch project among schoolchildren (age 6-16) identifying VIAstrengths concerning age, gender, mother-tongue-langue and possible child psychiatric diagnosis. Strengths-based interventions in schools have a theoretical...... Psychological Publishing Company. ‘The Strength Compass’ is a computer/Ipad based qualitative tool to identify the strengths of a child by a self-survey or a teacher’s survey. It is designed as a visual analogue scale with a statement of the strength in which the child/teacher may declare the degree...

  9. Strength of Ship Stiffened Panels under Combined Loading

    DEFF Research Database (Denmark)

    Weicheng, Cui; Wang, Young-jun; Pedersen, Preben Terndrup

    2000-01-01

    A ship's hull is a box girder structure composed of stiffened panels and therefore, strength of stiffened panels plays a significant role for the ultimate strength analysis of ship structures. In recent years several authors have proposed simplified methods to calculate the ultimate strength of s...

  10. Towards an Ultimate Battery Thermal Management System

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    The prevailing standards and scientific literature offer a wide range of options for the construction of a battery thermal management system (BTMS). The design of an innovative yet well-functioning BTMS requires strict supervision, quality audit and continuous improvement of the whole process...

  11. An in vitro investigation into retention strength and fatigue resistance of various designs of tooth/implant supported overdentures.

    Science.gov (United States)

    Fatalla, Abdalbseet A; Song, Ke; Du, Tianfeng; Cao, Yingguang

    2012-02-01

    Previously, the choice of prosthetic implant-retained overdentures has depended on data from previous studies about the retention-fatigue strength of the attachment system selected. Little or no data have been available on the correlation between the attachment system selected and the overdenture support configuration. The purpose of the present study was to evaluate the retention force and fatigue resistance of three attachment systems and four support designs of overdenture prosthesis. Four lower edentulous acrylic models were prepared and eight combinations of attachments groups were investigated in the study. These included: O-Rings with mini-dental implants (MDIs), Dalbo elliptic with Dalbo Rotex and fabricated flexible acrylic attachments with both MDI and Dalbo Rotex. The study was divided into four test groups: groups A and B, controls, and groups C and D, experimental groups. Control group A contained three overdenture supports: two free standing MDIs in the canine region and at the midline, and one simulated tooth root with Dalbo Rotex screwed in. Control group B contained four overdenture support foundations: two free standing MDIs in the right canine region and the first premolar region, and two simulated tooth roots with Dalbo Rotex screwed in at the same MDI position, but on the left side of the model. Experimental group C contained three overdenture support foundations: two free standing MDIs in the canine region and at the midline, and one simulated tooth root with MDI screwed in. Experimental group D contained four overdenture support foundations: two free standing MDIs in the right canine region and the first premolar region, and two simulated tooth roots with MDIs screwed in at the same MDI position, but on the left side of the model. Each group was further divided into two subgroups according to attachment type used. Five samples were prepared for each group. Retention force (N) values were recorded initially (0 cycles) and after 360, 720, 1440

  12. Towards an Ultimate Battery Thermal Management System

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    The prevailing standards and scientific literature offer a wide range of options for the construction of a battery thermal management system (BTMS). The design of an innovative yet well-functioning BTMS requires strict supervision, quality audit and continuous improvement of the whole process....... It must address all the current quality and safety (Q&S) standards. In this review article, an effective battery thermal management is sought considering the existing battery Q&S standards and scientific literature. The article contains a broad overview of the current existing standards and literature...... on a generic compliant BTMS. The aim is to assist in the design of a novel compatible BTMS. Additionally, the article delivers a set of recommendations to make an effective BTMS....

  13. Design, characterization, and application of fast, broadband, high-dynamic range, three-axis field strength probes

    NARCIS (Netherlands)

    Serra, Ramiro; Leferink, Frank Bernardus Johannes

    2013-01-01

    Conventional field strength sensors use different detection methods, each having advantages and disadvantages. Modern signals in, for instance, wireless communication systems and radars use very complex modulation. Other signals, such as the ones often measured in reverberation chambers with mode

  14. Design, characterization and application of fast, broadband, high-dynamic range, three-axis field strength probes

    NARCIS (Netherlands)

    Serra, R.; Leferink, F.B.J.

    2013-01-01

    Conventional field strength sensors use different detection methods, each having advantages and disadvantages. Modern signals in, for instance, wireless communication systems and radars use very complex modulation. Other signals, such as the ones often measured in reverberation chambers with mode

  15. Mars One the ultimate reality TV show?

    CERN Document Server

    Seedhouse, Erik

    2017-01-01

    This book dissects the hype and hubris of the Mars One venture. Every aspect of the mission design is scrutinized, from the haphazard selection process to the unproven mission architecture. A controversial project, many professional astronauts consider Mars One a reckless attempt, yet it gained popular attention. This go-to reference guide provides the reader with insights into the myriad issues arising from the project's loss of funding, loss of sponsorship, loss of TV rights. It explains what contributed to an overly optimistic assessment of Mars One's mission-specific technology, and what captivated the public and the many willing candidates despite these flaws. From the author of Survival and Sacrifice in Mars Exploration (2015) among many more books on spacefaring, this is yet another up-to-the-minute account of an emerging player in the private space market from an expert on the subject.

  16. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    International Nuclear Information System (INIS)

    Cai, Yunhai

    2012-01-01

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving an ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend achromatic cell, we

  17. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai; /SLAC

    2012-04-09

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving an ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend

  18. DARWIN: towards the ultimate dark matter detector

    Science.gov (United States)

    Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Amsler, C.; Aprile, E.; Arazi, L.; Arneodo, F.; Barrow, P.; Baudis, L.; Benabderrahmane, M. L.; Berger, T.; Beskers, B.; Breskin, A.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; Diglio, S.; Drexlin, G.; Duchovni, E.; Erdal, E.; Eurin, G.; Ferella, A.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Di Gangi, P.; Di Giovanni, A.; Galloway, M.; Garbini, M.; Geis, C.; Glueck, F.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hannen, V.; Hogenbirk, E.; Howlett, J.; Hilk, D.; Hils, C.; James, A.; Kaminsky, B.; Kazama, S.; Kilminster, B.; Kish, A.; Krauss, L. M.; Landsman, H.; Lang, R. F.; Lin, Q.; Linde, F. L.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morå, K. D.; Morteau, E.; Murra, M.; Naganoma, J.; Newstead, J. L.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; de Perio, P.; Persiani, R.; Piastra, F.; Piro, M. C.; Plante, G.; Rauch, L.; Reichard, S.; Rizzo, A.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schumann, M.; Schreiner, J.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M. C.; Simgen, H.; Sissol, P.; von Sivers, M.; Thers, D.; Thurn, J.; Tiseni, A.; Trotta, R.; Tunnell, C. D.; Valerius, K.; Vargas, M. A.; Wang, H.; Wei, Y.; Weinheimer, C.; Wester, T.; Wulf, J.; Zhang, Y.; Zhu, T.; Zuber, K.

    2016-11-01

    DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its large mass, low-energy threshold and ultra-low background level will also be sensitive to other rare interactions. It will search for solar axions, galactic axion-like particles and the neutrinoless double-beta decay of 136Xe, as well as measure the low-energy solar neutrino flux with detect galactic supernovae. We present the concept of the DARWIN detector and discuss its physics reach, the main sources of backgrounds and the ongoing detector design and R&D efforts.

  19. DARWIN: towards the ultimate dark matter detector

    Energy Technology Data Exchange (ETDEWEB)

    Aalbers, J.; Breur, P.A.; Brown, A. [Nikhef and the University of Amsterdam, Amsterdam (Netherlands); Agostini, F. [Department of Physics and Astrophysics, University of Bologna and INFN-Bologna, Bologna (Italy); Alfonsi, M.; Beskers, B. [Institut für Physik and Exzellenzcluster PRISMA, Johannes Gutenberg-Universität Mainz, Mainz (Germany); Amaro, F.D. [Department of Physics, University of Coimbra, Coimbra (Portugal); Amsler, C. [Albert Einstein Center for Fundamental Physics, Universität Bern, Bern (Switzerland); Aprile, E. [Physics Department, Columbia University, New York, NY (United States); Arazi, L.; Breskin, A.; Budnik, R. [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot (Israel); Arneodo, F.; Benabderrahmane, M.L. [New York University Abu Dhabi (United Arab Emirates); Barrow, P.; Baudis, L. [Physik-Institut, Universität Zürich, Zürich (Switzerland); Berger, T.; Brown, E. [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY (United States); Bruenner, S. [Max-Planck-Institut für Kernphysik, Heidelberg (Germany); Bruno, G., E-mail: lior.arazi@weizmann.ac.il, E-mail: laura.baudis@physik.uzh.ch, E-mail: amos.breskin@weizmann.ac.il, E-mail: decowski@nikhef.nl, E-mail: marc.schumann@lhep.unibe.ch [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); and others

    2016-11-01

    DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/ c {sup 2}, such a detector with its large mass, low-energy threshold and ultra-low background level will also be sensitive to other rare interactions. It will search for solar axions, galactic axion-like particles and the neutrinoless double-beta decay of {sup 136}Xe, as well as measure the low-energy solar neutrino flux with < 1% precision, observe coherent neutrino-nucleus interactions, and detect galactic supernovae. We present the concept of the DARWIN detector and discuss its physics reach, the main sources of backgrounds and the ongoing detector design and R and D efforts.

  20. Direct ultimate disposal of spent fuel DEAB. Systems analysis. Ultimate disposal concepts. Final report. Main volume

    International Nuclear Information System (INIS)

    Wahl, A.

    1995-10-01

    The results elaborated under the project, systems analysis of mixed radwaste disposal concepts and systems analysis of ultimate disposal concepts, provide a comprehensive description and assessment of a radwaste repository, for heat generating wastes and for wastes with negligible heat generation, and thus represent the knowledge basis for forthcoming planning work for a repository in an abandoned salt mine. A fact to be considered is that temperature field calculations have shown that there is room for further optimization with regard to the mine layout. The following aspects have been analysed: (1) safety of operation; (2) technical feasibility and realisation and licensability of the concepts; (3) operational aspects; (4) varieties of utilization of the salt dome for the intended purpose (boreholes for waste emplacement, emplacement in galleries, multi-horizon systems); (5) long-term structural stability of the mine; (6) economic efficiency; (7) nuclear materials safeguards. (orig./HP) [de

  1. Applications of high-strength concrete to the development of the prestressed concrete reactor vessel (PCRV) design for an HTGR-SC/C plant

    International Nuclear Information System (INIS)

    Naus, D.J.

    1984-01-01

    The PCRV research and development program at ORNL consists of generic studies to provide technical support for ongoing PCRV-related studies, to contribute to the technological data base, and to provide independent review and evaluation of the relevant technology. Recent activities under this program have concentrated on the development of high-strength concrete mix designs for the PCRV of a 2240 MW(t) HTGR-SC/C plant, and the testing of models to both evaluate the behavior of high-strength concretes (plain and fibrous) and to develop model testing techniques. A test program to develop and evaluate high-strength (greater than or equal to 63.4 MPa) concretes utilizing materials from four sources which are in close proximity to potential sites for an HTGR plant is currently under way. The program consists of three phases. Phase I involves an evaluation of the cement, fly ash, admixtures and aggregate materials relative to their capability to produce concretes having the desired strength properties. Phase II is concerned with the evaluation of the effects of elevated temperatures (less than or equal to 316 0 C) on the strength properties of mixes selected for detailed evaluation. Phase III involves a determination of the creep characteristics and thermal properties of the selected mixes. An overview of each of these phases is presented as well as results obtained to date under Phase I which is approximately 75% completed

  2. Safety guidelines of ultimate hull girder strength for grounded container ships

    DEFF Research Database (Denmark)

    Kim, Do Kyun; Pedersen, Preben Terndrup; Paik, Jeom Kee

    2013-01-01

    Various accidents commonly occur on operating ships. The structural damage caused by such accidents is often accompanied by casualties and serious pollution. In this regard, an accidental risk-based approach that is in line with the Goal Based Standard (GBS) of the International Maritime Organiza...

  3. Application of a global plasticity model to determine the ultimate strength of a reinforced concrete slab

    International Nuclear Information System (INIS)

    Hoffmann, A.; Millard, A.; Nahas, G.

    1983-08-01

    In order to predict the behaviour of composite beams and shells loaded up to failure, a global method has been developped. This method is based on a generalized stress approach, formulated in terms of moment-curvature relations. The case of a reinforced concrete slab subjected to uniform pressure has been considered. It is shown that numerical results compare fairly well with experimental data. Some improvements to the model are also suggested

  4. Application of a microcomputer-based data system to ultimate strength tests of pressure vessels

    International Nuclear Information System (INIS)

    Woodfin, R.L.

    1983-01-01

    Sandia is evaluating the degree to which existing finite element computer codes can predict the structural behavior of containment buildings beyond the elastic range. The study also is attempting to discover whether any intrinsic functional relationship exists relating leakage to pressure. Test equipment and instrumentation are described

  5. Fatigue Lifetime of ADI from Ultimate Tensile Strength to Permanent Fatigue Limit

    Czech Academy of Sciences Publication Activity Database

    Zapletal, J.; Věchet, S.; Kohout, J.; Obrtlík, Karel

    -, č. 1 (2008), s. 40-43 ISSN 0556-171X. [MSMF /5./. Brno, 27.06.2007-29.06.2007] R&D Projects: GA ČR GA106/03/1265 Institutional research plan: CEZ:AV0Z20410507 Keywords : austempered ductile iron * fatigue behaviour * S N curve Subject RIV: JL - Materials Fatigue , Friction Mechanics

  6. Reliability of isometric lower-extremity muscle strength measurements in children with cerebral palsy: implications for measurement design

    NARCIS (Netherlands)

    Willemse, Lydia; Brehm, Merel A.; Scholtes, Vanessa A.; Jansen, Laura; Woudenberg-Vos, Hester; Dallmeijer, Annet J.

    2013-01-01

    Children with cerebral palsy (CP) typically show muscle weakness of the lower extremities, which can be measured with the use of handheld dynamometry (HHD). The purposes of this study were: (1) to determine test-retest reliability and measurement error of isometric lower-extremity strength

  7. ZIO: The Ultimate Linux I/O Framework

    CERN Document Server

    Gonzalez Cobas, J D; Rubini, A; Nellaga, S; Vaga, F

    2014-01-01

    ZIO (with Z standing for “The Ultimate I/O” Framework) was developed for CERN with the specific needs of physics labs in mind, which are poorly addressed in the mainstream Linux kernel. ZIO provides a framework for industrial, high-bandwith, high-channel count I/O device drivers (digitizers, function generators, timing devices like TDCs) with performance, generality and scalability as design goals. Among its features, it offers abstractions for • both input and output channels, and channel sets • run-time selection of trigger types • run-time selection of buffer types • sysfs-based configuration • char devices for data and metadata • a socket interface (PF ZIO) as alternative to char devices In this paper, we discuss the design and implementation of ZIO, and describe representative cases of driver development for typical and exotic applications: drivers for the FMC (FPGAMezzanine Card, see [1]) boards developed at CERN like the FMC ADC 100Msps digitizer, FMC TDC timestamp counter, and FMC DEL ...

  8. Ultimate Bound of a 3D Chaotic System and Its Application in Chaos Synchronization

    Directory of Open Access Journals (Sweden)

    Jiezhi Wang

    2014-01-01

    Full Text Available Two ellipsoidal ultimate boundary regions of a special three-dimensional (3D chaotic system are proposed. To this chaotic system, the linear coefficient of the ith state variable in the ith state equation has the same sign; it also has two one-order terms and one quadratic cross-product term in each equation. A numerical solution and an analytical expression of the ultimate bounds are received. To get the analytical expression of the ultimate boundary region, a new result of one maximum optimization question is proved. The corresponding ultimate boundary regions are demonstrated through numerical simulations. Utilizing the bounds obtained, a linear controller is proposed to achieve the complete chaos synchronization. Numerical simulation exhibits the feasibility of the designed scheme.

  9. Experimental and analytical investigation of reinforced high strength concrete continuous beams strengthened with fiber reinforced polymer

    International Nuclear Information System (INIS)

    Akbarzadeh, H.; Maghsoudi, A.A.

    2010-01-01

    Carbon and glass fiber reinforced polymer (CFRP and GFRP) are two materials suitable for strengthening the reinforced concrete (RC) beams. Although many in situ RC beams are of continuous constructions, there has been very limited research on the behavior of such beams with externally applied FRP laminate. In addition, most design guidelines were developed for simply supported beams with external FRP laminates. This paper presents an experimental program conducted to study the flexural behavior and redistribution in moment of reinforced high strength concrete (RHSC) continuous beams strengthened with CFRP and GFRP sheets. Test results showed that with increasing the number of CFRP sheet layers, the ultimate strength increases, while the ductility, moment redistribution, and ultimate strain of CFRP sheet decrease. Also, by using the GFRP sheet in strengthening the continuous beam reduced loss in ductility and moment redistribution but it did not significantly increase ultimate strength of beam. The moment enhancement ratio of the strengthened continuous beams was significantly higher than the ultimate load enhancement ratio in the same beam. An analytical model for moment-curvature and load capacity are developed and used for the tested continuous beams in current and other similar studies. The stress-strain curves of concrete, steel and FRP were considered as integrity model. Stress-strain model of concrete is extended from Oztekin et al.'s model by modifying the ultimate strain. Also, new parameters of equivalent stress block are obtained for flexural calculation of RHSC beams. Good agreement between experiment and prediction values is achieved.

  10. Can nature's design be improved upon? High strength, transparent nacre-like nanocomposites with double network of sacrificial cross links.

    Science.gov (United States)

    Podsiadlo, Paul; Kaushik, Amit K; Shim, Bong Sup; Agarwal, Ashish; Tang, Zhiyong; Waas, Anthony M; Arruda, Ellen M; Kotov, Nicholas A

    2008-11-20

    The preparation of a high-strength and highly transparent nacre-like nanocomposite via layer-by-layer assembly technique from poly(vinyl alcohol) (PVA) and Na+-montmorillonite clay nanosheets is reported in this article. We show that a high density of weak bonding interactions between the polymer and the clay particles: hydrogen, dipole-induced dipole, and van der Waals undergoing break-reform deformations, can lead to high strength nanocomposites: sigmaUTS approximately 150 MPa and E' approximately 13 GPa. Further introduction of ionic bonds into the polymeric matrix creates a double network of sacrificial bonds which dramatically increases the mechanical properties: sigmaUTS approximately 320 MPa and E' approximately 60 GPa.

  11. Mix design for improved strength and freeze-thaw durability of pervious concrete fill in Pearl-Chain Bridges

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Kevern, John T.; Schaefer, Vernon R.

    2017-01-01

    different mixture proportions using two different sizes of granite coarse aggregate and at two different water-to-cement ratios. The specimens had an average void content of 24-28 %. Specimens containing air entraining and high-range water reducing admixtures were most workable, as determined by fresh...... density, and thus the easiest to place. The addition of a high-range water reducing admixture and lightweight sand (expanded shale) for internal curing improved the 28-day compressive strength and splitting tensile strength. The coarse aggregate gradation had a large influence on permeability; however......, all tested permeabilities were high enough to drain the rain from a 100-year rain event in Denmark. The air entraining agent dosage used was not sufficiently high to create the necessary protective air content in the cement paste, and the freeze-thaw durability of the specimens were generally poor...

  12. Ultimate Educational Aims, Overridingness, and Personal Well-Being

    Science.gov (United States)

    Haji, Ishtiyaque; Cuypers, Stefaan E.

    2011-01-01

    Discussion regarding education's aims, especially its ultimate aims, is a key topic in the philosophy of education. These aims or values play a pivotal role in regulating and structuring moral and other types of normative education. We outline two plausible strategies to identify and justify education's ultimate aims. The first associates these…

  13. Stochastic models for strength of wind turbine blades using tests

    DEFF Research Database (Denmark)

    Toft, H.S.; Sørensen, John Dalsgaard

    2008-01-01

    The structural cost of wind turbine blades is dependent on the values of the partial safety factors which reflect the uncertainties in the design values, including statistical uncertainty from a limited number of tests. This paper presents a probabilistic model for ultimate and fatigue strength...... of wind turbine blades especially considering the influence of prior knowledge and test results and how partial safety factors can be updated when additional full-scale tests are performed. This updating is performed by adopting a probabilistic design basis based on Bayesian statistical methods....

  14. Alloy by design : A materials genome approach to advanced high strength stainless steels for low and high temperature applications

    NARCIS (Netherlands)

    Lu, Q.; Xu, W.; Van der Zwaag, S.

    2016-01-01

    We report a computational 'alloy by design' approach which can significantly accelerate the design process and substantially reduce the development costs. This approach allows simultaneously optimization of alloy composition and heat treatment parameters based on the integration of thermodynamic,

  15. The Science of Cost-Effective Materials Design - A Study in the Development of a High Strength, Impact Resistant Steel

    Science.gov (United States)

    Abrahams, Rachel

    2017-06-01

    Intermediate alloy steels are widely used in applications where both high strength and toughness are required for extreme/dynamic loading environments. Steels containing greater than 10% Ni-Co-Mo are amongst the highest strength martensitic steels, due to their high levels of solution strengthening, and preservation of toughness through nano-scaled secondary hardening, semi-coherent hcp-M2 C carbides. While these steels have high yield strengths (σy 0.2 % >1200 MPa) with high impact toughness values (CVN@-40 >30J), they are often cost-prohibitive due to the material and processing cost of nickel and cobalt. Early stage-I steels such as ES-1 (Eglin Steel) were developed in response to the high cost of nickel-cobalt steels and performed well in extreme shock environments due to the presence of analogous nano-scaled hcp-Fe2.4 C epsilon carbides. Unfortunately, the persistence of W-bearing carbides limited the use of ES-1 to relatively thin sections. In this study, we discuss the background and accelerated development cycle of AF96, an alternative Cr-Mo-Ni-Si stage-I temper steel using low-cost heuristic and Integrated Computational Materials Engineering (ICME)-assisted methods. The microstructure of AF96 was tailored to mimic that of ES-1, while reducing stability of detrimental phases and improving ease of processing in industrial environments. AF96 is amenable to casting and forging, deeply hardenable, and scalable to 100,000 kg melt quantities. When produced at the industrial scale, it was found that AF96 exhibits near-statistically identical mechanical properties to ES-1 at 50% of the cost.

  16. Optimized molten salt receivers for ultimate trough solar fields

    Science.gov (United States)

    Riffelmann, Klaus-J.; Richert, Timo; Kuckelkorn, Thomas

    2016-05-01

    Today parabolic trough collectors are the most successful concentrating solar power (CSP) technology. For the next development step new systems with increased operation temperature and new heat transfer fluids (HTF) are currently developed. Although the first power tower projects have successfully been realized, up to now there is no evidence of an all-dominant economic or technical advantage of power tower or parabolic trough. The development of parabolic trough technology towards higher performance and significant cost reduction have led to significant improvements in competitiveness. The use of molten salt instead of synthetic oil as heat transfer fluid will bring down the levelized costs of electricity (LCOE) even further while providing dispatchable energy with high capacity factors. FLABEG has developed the Ultimate TroughTM (UT) collector, jointly with sbp Sonne GmbH and supported by public funds. Due to its validated high optical accuracy, the collector is very suitable to operate efficiently at elevated temperatures up to 550 °C. SCHOTT will drive the key-innovations by introducing the 4th generation solar receiver that addresses the most significant performance and cost improvement measures. The new receivers have been completely redesigned to provide a product platform that is ready for high temperature operation up to 550 °C. Moreover distinct product features have been introduced to reduce costs and risks in solar field assembly and installation. The increased material and design challenges incurred with the high temperature operation have been reflected in sophisticated qualification and validation procedures.

  17. Accounting conservatism,ultimate ownership and investment efficiency

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Xu; Xia Wang; Nina Han

    2012-01-01

    Purpose-The purpose of this paper is to analyze and examine the role of accounting conservatism on firm investment behavior in China.Design/methodology/approach-By combining a developed theoretical framework and empirical study,this paper examines the impacts of accounting conservatism on firm investment.The sample and data are all collected from Wind and CAMAR databases.Findings-The paper finds that the association between accounting conservatism and capital expenditure is significantly positive when inside capital is not enough to use for investment,suggesting that conservatism can expend the level of investment by decreasing information asymmetry and cost of capital;however,the association between accounting conservatism and capital expenditure is significantly negative when inside capital is enough to use for investment,suggesting that conservatism can curtail the level of investment by mitigating the interest conflicts between management and outside shareholders and decreasing agency costs.Additionally,the paper finds that the severity of information asymmetry and agency problem affects the role of accounting conservatism on firm investment behaviour,and the association between accounting conservatism and capital expenditure is weaker for firms with ultimate ownership controller as local government or individuals.Originality/value-This is the first paper to analyze and examine the impacts of accounting conservatism on firm investment in China directly.The findings are also useful to explain the awkward predicament found by prior literature.

  18. Exploring Ultimate Water Capillary Evaporation in Nanoscale Conduits.

    Science.gov (United States)

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Zhao, Yihong; Duan, Chuanhua

    2017-08-09

    Capillary evaporation in nanoscale conduits is an efficient heat/mass transfer strategy that has been widely utilized by both nature and mankind. Despite its broad impact, the ultimate transport limits of capillary evaporation in nanoscale conduits, governed by the evaporation/condensation kinetics at the liquid-vapor interface, have remained poorly understood. Here we report experimental study of the kinetic limits of water capillary evaporation in two dimensional nanochannels using a novel hybrid channel design. Our results show that the kinetic-limited evaporation fluxes break down the limits predicated by the classical Hertz-Knudsen equation by an order of magnitude, reaching values up to 37.5 mm/s with corresponding heat fluxes up to 8500 W/cm 2 . The measured evaporation flux increases with decreasing channel height and relative humidity but decreases as the channel temperature decreases. Our findings have implications for further understanding evaporation at the nanoscale and developing capillary evaporation-based technologies for both energy- and bio-related applications.

  19. Ultimate Lateral Capacity of Rigid Pile in c- φ Soil

    Science.gov (United States)

    Zhang, Wei-min

    2018-03-01

    To date no analytical solution of the pile ultimate lateral capacity for the general c- φ soil has been obtained. In the present study, a new dimensionless embedded ratio was proposed and the analytical solutions of ultimate lateral capacity and rotation center of rigid pile in c- φ soils were obtained. The results showed that both the dimensionless ultimate lateral capacity and dimensionless rotation center were the univariate functions of the embedded ratio. Also, the ultimate lateral capacity in the c- φ soil was the combination of the ultimate lateral capacity ( f c ) in the clay, and the ultimate lateral capacity ( f φ ) in the sand. Therefore, the Broms chart for clay, solution for clay ( φ=0) put forward by Poulos and Davis, solution for sand ( c=0) obtained by Petrasovits and Awad, and Kondner's ultimate bending moment were all proven to be the special cases of the general solution in the present study. A comparison of the field and laboratory tests in 93 cases showed that the average ratios of the theoretical values to the experimental value ranged from 0.85 to 1.15. Also, the theoretical values displayed a good agreement with the test values.

  20. A randomized controlled trial on the effectiveness of strength training on clinical and muscle cellular outcomes in patients with prostate cancer during androgen deprivation therapy: rationale and design

    International Nuclear Information System (INIS)

    Thorsen, Lene; Nilsen, Tormod S; Raastad, Truls; Courneya, Kerry S; Skovlund, Eva; Fosså, Sophie D

    2012-01-01

    Studies indicate that strength training has beneficial effects on clinical health outcomes in prostate cancer patients during androgen deprivation therapy. However, randomized controlled trials are needed to scientifically determine the effectiveness of strength training on the muscle cell level. Furthermore, close examination of the feasibility of a high-load strength training program is warranted. The Physical Exercise and Prostate Cancer (PEPC) trial is designed to determine the effectiveness of strength training on clinical and muscle cellular outcomes in non-metastatic prostate cancer patients after high-dose radiotherapy and during ongoing androgen deprivation therapy. Patients receiving androgen deprivation therapy for 9-36 months combined with external high-dose radiotherapy for locally advanced prostate cancer are randomized to an exercise intervention group that receives a 16 week high-load strength training program or a control group that is encouraged to maintain their habitual activity level. In both arms, androgen deprivation therapy is continued until the end of the intervention period. Clinical outcomes are body composition (lean body mass, bone mineral density and fat mass) measured by Dual-energy X-ray Absorptiometry, serological outcomes, physical functioning (muscle strength and cardio-respiratory fitness) assessed with physical tests and psycho-social functioning (mental health, fatigue and health-related quality of life) assessed by questionnaires. Muscle cellular outcomes are a) muscle fiber size b) regulators of muscle fiber size (number of myonuclei per muscle fiber, number of satellite cells per muscle fiber, number of satellite cells and myonuclei positive for androgen receptors and proteins involved in muscle protein degradation and muscle hypertrophy) and c) regulators of muscle fiber function such as proteins involved in cellular stress and mitochondrial function. Muscle cellular outcomes are measured on muscle cross sections and

  1. Prediction of Local Ultimate Strain and Toughness of Trabecular Bone Tissue by Raman Material Composition Analysis

    Directory of Open Access Journals (Sweden)

    Roberto Carretta

    2015-01-01

    Full Text Available Clinical studies indicate that bone mineral density correlates with fracture risk at the population level but does not correlate with individual fracture risk well. Current research aims to better understand the failure mechanism of bone and to identify key determinants of bone quality, thus improving fracture risk prediction. To get a better understanding of bone strength, it is important to analyze tissue-level properties not influenced by macro- or microarchitectural factors. The aim of this pilot study was to identify whether and to what extent material properties are correlated with mechanical properties at the tissue level. The influence of macro- or microarchitectural factors was excluded by testing individual trabeculae. Previously reported data of mechanical parameters measured in single trabeculae under tension and bending and its compositional properties measured by Raman spectroscopy was evaluated. Linear and multivariate regressions show that bone matrix quality but not quantity was significantly and independently correlated with the tissue-level ultimate strain and postyield work (r=0.65–0.94. Principal component analysis extracted three independent components explaining 86% of the total variance, representing elastic, yield, and ultimate components according to the included mechanical parameters. Some matrix parameters were both included in the ultimate component, indicating that the variation in ultimate strain and postyield work could be largely explained by Raman-derived compositional parameters.

  2. Ultimate guide to YouTube for business

    CERN Document Server

    2018-01-01

    Ultimate Guide to YouTube for Business helps small business owners create marketing videos to help promote their products, share their story, build a community around their brand without spending a fortune-all the while making money.

  3. Ultimate Opening Combined with Area Stability Applied to Urban Scenes

    OpenAIRE

    Marcotegui , Beatriz; Serna , Andrés; Hernández , Jorge

    2017-01-01

    International audience; This paper explores the use of ultimate opening in urban analysis context. It demonstrates the efficiency of this approach for street level elevation images, derived from 3D point clouds acquired by terrestrial mobile mapping systems. An area-stability term is introduced in the residual definition, reducing the over-segmentation of the vegetation while preserving small significant regions. We compare two possible combinations of the Ultimate Opening and the Area Stabil...

  4. Direct ultimate disposal - state of investigations and prospects

    International Nuclear Information System (INIS)

    Gasterstaedt, N.

    1991-01-01

    Based on a decision adopted by the Prime Ministers on 25/10/90, the principles governing preventive waste management of nuclear power plants are reviewed. Increasing importance is attached to the direct ultimate disposal alternative. The legal and political framework, the technology involved, the state of developments, future activities under the R and D programme as well as a cost estimate of direct ultimate disposal are presented. (orig.) [de

  5. Assessment and characterization of radioactive waste for ultimate storage

    International Nuclear Information System (INIS)

    Brennecke, P.; Warnecke, E.

    1986-01-01

    The waste specifications determined from site safety analyses define the requirements to be met by waste forms for ultimate storage. Product quality control is the process step ensuring compliance with the conditions to be met for ultimate storage. For this purpose, radionuclide inventory, fixation method, container type, waste form and quantity, and type of waste are the most significant items on the checking list. (DG) [de

  6. The Ultimate Pile Bearing Capacity from Conventional and Spectral Analysis of Surface Wave (SASW) Measurements

    Science.gov (United States)

    Faizah Bawadi, Nor; Anuar, Shamilah; Rahim, Mustaqqim A.; Mansor, A. Faizal

    2018-03-01

    A conventional and seismic method for determining the ultimate pile bearing capacity was proposed and compared. The Spectral Analysis of Surface Wave (SASW) method is one of the non-destructive seismic techniques that do not require drilling and sampling of soils, was used in the determination of shear wave velocity (Vs) and damping (D) profile of soil. The soil strength was found to be directly proportional to the Vs and its value has been successfully applied to obtain shallow bearing capacity empirically. A method is proposed in this study to determine the pile bearing capacity using Vs and D measurements for the design of pile and also as an alternative method to verify the bearing capacity from the other conventional methods of evaluation. The objectives of this study are to determine Vs and D profile through frequency response data from SASW measurements and to compare pile bearing capacities obtained from the method carried out and conventional methods. All SASW test arrays were conducted near the borehole and location of conventional pile load tests. In obtaining skin and end bearing pile resistance, the Hardin and Drnevich equation has been used with reference strains obtained from the method proposed by Abbiss. Back analysis results of pile bearing capacities from SASW were found to be 18981 kN and 4947 kN compared to 18014 kN and 4633 kN of IPLT with differences of 5% and 6% for Damansara and Kuala Lumpur test sites, respectively. The results of this study indicate that the seismic method proposed in this study has the potential to be used in estimating the pile bearing capacity.

  7. Effects of three silane primers and five adhesive agents on the bond strength of composite material for a computer-aided design and manufacturing system.

    Science.gov (United States)

    Shinohara, Ayano; Taira, Yohsuke; Sakihara, Michino; Sawase, Takashi

    2018-01-01

    Objective The objective of this study was to evaluate the effects of combinations of silane primers and adhesive agents on the bond strength of a composite block for a computer-aided design and manufacturing system. Material and Methods Three silane primers [Clearfil Ceramic Primer (CP), Super-Bond PZ Primer (PZ), and GC Ceramic Primer II (GP)] were used in conjunction with five adhesive agents [G-Premio Bond (P-Bond), Repair Adhe Adhesive (R-Adhesive), Super-Bond D-Liner Dual (SB-Dual), Super-Bond C&B (SB-Self), and SB-Dual without tributylborane derivative (SB-Light)]. The surface of a composite block (Gradia Block) was ground with silicon carbide paper. After treatment with a silane primer, a adhesive agent was applied to each testing specimen. The specimens were then bonded with a light-curing resin composite. After 24 h, the shear bond strength values were determined and compared using a post hoc test (α=0.05, n=8/group). We also prepared control specimens without primer (No primer) and/or without adhesive agent (No adhesive). Results PZ/SB-Dual and GP/SB-Dual presented the highest bond strength, followed by GP/P-Bond, CP/SB-Dual, CP/R-Adhesive, No primer/SB-Dual, GP/R-Adhesive, CP/P-Bond, No primer/R-Adhesive, PZ/R-Adhesive, CP/SB-Self, PZ/P-Bond, PZ/SB-Self, and GP/SB-Self in descending order of bond strength. No primer/P-Bond, No primer/SB-Self, and all specimens in the SB-Light and No adhesive groups presented the lowest bond strengths. Conclusion A dual-curing adhesive agent (SB-Dual) containing a tributylborane derivative in combination with a silane primer (GP or PZ) presents a greater bond strength between the composite block and the repairing resin composite than the comparators used in the study.

  8. Methodology for predicting ultimate pressure capacity of the ACR-1000 containment structure

    International Nuclear Information System (INIS)

    Saudy, A.M.; Awad, A.; Elgohary, M.

    2006-01-01

    The Advanced CANDU Reactor or the ACR-1000 is developed by Atomic Energy of Canada Limited (AECL) to be the next step in the evolution of the CANDU product line. It is based on the proven CANDU technology and incorporates advanced design technologies. The ACR containment structure is an essential element of the overall defense in depth approach to reactor safety, and is a physical barrier against the release of radioactive material to the environment. Therefore, it is important to provide a robust design with an adequate margin of safety. One of the key design requirements of the ACR containment structure is to have an ultimate pressure capacity that is at least twice the design pressure Using standard design codes, the containment structure is expected to behave elastically at least up to 1.5 times the design pressure. Beyond this pressure level, the concrete containment structure with reinforcements and post-tension tendons behaves in a highly non-linear manner and exhibits a complex response when cracks initiate and propagate. To predict the structural non-linear responses, at least two critical features are involved. These are: the structural idealization by the geometry and material property models, and the adopted solution algorithm. Therefore, detailed idealization of the concrete structure is needed in order to accurately predict its ultimate pressure capacity. This paper summarizes the analysis methodology to be carried out to establish the ultimate pressure capacity of the ACR containment structure and to confirm that the structure meets the specified design requirements. (author)

  9. The importance of mines for ultimate storage at Deilmann-Haniel Shaft Sinking

    International Nuclear Information System (INIS)

    Greinacher, Jochen; Oellers, Thomas; Ahlbrecht, Thomas

    2011-01-01

    Deilmann-Haniel Shaft Sinking GmbH and its predecessor and associate companies have been involved in projects for underground ultimate storage in Germany, Europe and America for over 45 years. The field of activities previously comprised surveying, planning and sinking of shafts, repair and conversion work, design of underground sealing structures, planning of conveyors and support of the BfS in planning approval procedures. Following discontinuation of activities in the German coal mining industry the use of mines for ultimate storage is an important support for German specialist mining companies. The use of mines for ultimate storage ensures that the existing mining know how in Germany is maintained, because training of the younger generation on the commercial and engineering side of the companies is made possible by the imminent major projects.

  10. Optimization and influence of parameter affecting the compressive strength of geopolymer concrete containing recycled concrete aggregate: using full factorial design approach

    Science.gov (United States)

    Krishnan, Thulasirajan; Purushothaman, Revathi

    2017-07-01

    There are several parameters that influence the properties of geopolymer concrete, which contains recycled concrete aggregate as the coarse aggregate. In the present study, the vital parameters affecting the compressive strength of geopolymer concrete containing recycled concrete aggregate are analyzedby varying four parameters with two levels using full factorial design in statistical software Minitab® 17. The objective of the present work is to gain an idea on the optimization, main parameter effects, their interactions and the predicted response of the model generated using factorial design. The parameters such as molarity of sodium hydroxide (8M and 12M), curing time (6hrs and 24 hrs), curing temperature (60°C and 90°C) and percentage of recycled concrete aggregate (0% and 100%) are considered. The results show that the curing time, molarity of sodium hydroxide and curing temperature were the orderly significant parameters and the percentage of Recycled concrete aggregate (RCA) was statistically insignificant in the production of geopolymer concrete. Thus, it may be noticeable that the RCA content had negligible effect on the compressive strength of geopolymer concrete. The expected responses from the generated model showed a satisfactory and rational agreement to the experimental data with the R2 value of 97.70%. Thus, geopolymer concrete comprising recycled concrete aggregate can solve the major social and environmental concerns such as the depletion of the naturally available aggregate sources and disposal of construction and demolition waste into the landfill.

  11. An automated design and fabrication pipeline for improving the strength of 3D printed artifacts under tensile loading

    Science.gov (United States)

    Al, Can Mert; Yaman, Ulas

    2018-05-01

    In the scope of this study, an alternative automated method to the conventional design and fabrication pipeline of 3D printers is developed by using an integrated CAD/CAE/CAM approach. It increases the load carrying capacity of the parts by constructing heterogeneous infill structures. Traditional CAM software of Additive Manufacturing machinery starts with a design model in STL file format which only includes data about the outer boundary in the triangular mesh form. Depending on the given infill percentage, the algorithm running behind constructs the interior of the artifact by using homogeneous infill structures. As opposed to the current CAM software, the proposed method provides a way to construct heterogeneous infill structures with respect to the Von Misses stress field results obtained from a finite element analysis. Throughout the work, Rhinoceros3D is used for the design of the parts along with Grasshopper3D, an algorithmic design tool for Rhinoceros3D. In addition, finite element analyses are performed using Karamba3D, a plug-in for Grasshopper3D. According to the results of the tensile tests, the method offers an improvement of load carrying capacity about 50% compared to traditional slicing algorithms of 3D printing.

  12. Towards intelligent microstructural design of Nanocomposite Materials. Lightweight, high strength structural/armor materials for service in extreme environments

    International Nuclear Information System (INIS)

    Mara, Nathan Allan; Bronkhorst, Curt Allan; Beyerlein, Irene Jane

    2015-01-01

    The intent of this research effort is to prove the hypothesis that: Through the employment of controlled processing parameters which are based upon integrated advanced material characterization and multi-physics material modeling, bulk nanolayered composites can be designed to contain high densities of preferred interfaces that can serve as supersinks for the defects responsible for premature damage and failure.

  13. Towards intelligent microstructural design of Nanocomposite Materials. Lightweight, high strength structural/armor materials for service in extreme environments

    Energy Technology Data Exchange (ETDEWEB)

    Mara, Nathan Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beyerlein, Irene Jane [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-21

    The intent of this research effort is to prove the hypothesis that: Through the employment of controlled processing parameters which are based upon integrated advanced material characterization and multi-physics material modeling, bulk nanolayered composites can be designed to contain high densities of preferred interfaces that can serve as supersinks for the defects responsible for premature damage and failure.

  14. Strength degradation of oxidized graphite support column in VHTR

    International Nuclear Information System (INIS)

    Park, Byung Ha; No, Hee Cheon

    2010-01-01

    Air-ingress events caused by large pipe breaks are important accidents considered in the design of Very High Temperature Gas-Cooled Reactors (VHTRs). A main safety concern for this type of event is the possibility of core collapse following the failure of the graphite support column, which can be oxidized by ingressed air. In this study, the main target is to predict the strength of the oxidized graphite support column. Through compression tests for fresh and oxidized graphite columns, the compressive strength of IG-110 was obtained. The buckling strength of the IG-110 column is expressed using the following empirical straight-line formula: σ cr,buckling =91.34-1.01(L/r). Graphite oxidation in Zone 1 is volume reaction and that in Zone 3 is surface reaction. We notice that the ultimate strength of the graphite column oxidized in Zones 1 and 3 only depends on the slenderness ratio and bulk density. Its strength degradation oxidized in Zone 1 is expressed in the following nondimensional form: σ/σ 0 =exp(-kd), k=0.114. We found that the strength degradation of a graphite column, oxidized in Zone 3, follows the above buckling empirical formula as the slenderness of the column changes. (author)

  15. Design and Analysis of an Experimental Setup for Determining the Burst Strength and Material Properties of Hollow Cylinders

    Science.gov (United States)

    2015-12-01

    pressure hydraulic pump or through application of a compressive force to a piston . These designs essentially cap the ends of the cylinder and require...spiral-wound line connected to a vacuum pump was then taped to the mold cylinder as shown in Figure 23. The entire mold cylinder was then removed...of perforated release ply and breather cloth to absorb excess epoxy. A spiral-wound line connected to a vacuum pump was routed along the edge of the

  16. Ductility and Ultimate Capacity of Prestressed Steel Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Chengquan Wang

    2017-01-01

    Full Text Available Nonlinear numerical analysis of the structural behaviour of prestressed steel reinforced concrete (PSRC beams was carried out by using finite element analysis software ABAQUS. By comparing the load-deformation curves, the rationality and reliability of the finite element model have been confirmed; moreover, the changes of the beam stiffness and stress in the forcing process and the ultimate bearing capacity of the beam were analyzed. Based on the model, the effect of prestressed force, and H-steel to the stiffness, the ultimate bearing capacity and ductility of beam were also analyzed.

  17. ''Project Crystal'' for ultimate storage of highly radioactive waste

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    NAGRA (The National Association for storage of radioactive waste) in Baden has launched in North Switzerland an extensive geological research program. The current research program, under the title of ''Project Crystal'', aims at providing the scientific knowledge which is required for the assessment of the suitability of the crystalline sub-soil of North Switzerland for the ultimate storage of highly radioactive waste. Safety and feasibility of such ultimate storage are in the forefront of preoccupations. Scientific institutes of France, Germany, USA and Canada are cooperating more particularly on boring research and laboratory analyses. Technical data are given on the USA and German installations used. (P.F.K.)

  18. Trump er gældsøkonomiens ultimative illusionist

    DEFF Research Database (Denmark)

    Nielsen, Peter

    2018-01-01

    Trump giver ikke kun gevaldige skattelettelser og nærer en illusion om, at vækst vil løse alle problemer. Han fortrænger også gældsøkonomiens ultimative bundlinje i form af klimaforandringerne.......Trump giver ikke kun gevaldige skattelettelser og nærer en illusion om, at vækst vil løse alle problemer. Han fortrænger også gældsøkonomiens ultimative bundlinje i form af klimaforandringerne....

  19. Calculating the Insulated Car Roof Opening System Components and Strength Analysis of Car Design in Its Various Embodiments

    Directory of Open Access Journals (Sweden)

    V. S. Kopytov

    2016-01-01

    designed for considered structural scheme to open a car roof with beam cross-sections and their dimensions for the roof designs under consideration assumed to be identical. Comparison of calculation results for various opening options has shown that a double-leaf roof car has a number of advantages as compared with that of the single-leaf roof. The double-leaf opening scheme allows us to use more compact and easy-to-implement hydraulic cylinders. With the double-leaf roof, a design of all power components of the car is under less loads, and therefore, in optimization of this design will be used the cross-sections of the power components of smaller area, thereby leading to reduced weight and size characteristics of the entire design. Tightness of the internal volume of the car with a double-leaf opening roof can be provided through using both the structural components to open the car roof and the cutting-edge leak-proofing and sealing materials.

  20. Numerical multi-criteria optimization methods for alloy design. Development of new high strength nickel-based superalloys and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Rettig, Ralf; Mueller, Alexander; Ritter, Nils C.; Singer, Robert F. [Institute of Science and Technology of Metals, Department of Materials Science and Engineering, University of Erlangen (Germany)

    2016-07-01

    A new approach for the design of optimum balanced metallic alloys is presented. It is based on a mathematical multi-criteria optimization method which uses different property models to predict the alloy behavior in dependency of composition. These property models are mostly based on computational thermodynamics (CALPHAD-method). The full composition range of the alloying elements can be considered using these models. In alloy design usually several contradicting goals have to be fulfilled. This is handled by the calculation of so-called Pareto-fronts. The aim of our approach is to guide the experimental research towards new alloy compositions that have a high probability of having very good properties. Consequently the number of required test alloys can be massively reduced. The approach will be demonstrated for the computer-aided design of a new Re-free superalloy with nearly identical creep strength as that of Re-containing superalloys. Our starting point for the design was to maintain the good properties of the gamma prime-phase in well-known alloys like CMSX-4 and to maximize the solid solution strengthening of W and Mo. The presented experimental measurements proof the excellent properties.

  1. Ultimate deformation capacity of reinforced concrete slabs underblast load

    NARCIS (Netherlands)

    Doormaal, J.C.A.M. van; Weerheijm, J.

    1996-01-01

    In this paper a test method to determine the deformation capacity and the resistance-deformation curve of blast-loaded slabs is described. This method was developed at TNO-PML. The method has been used to determine the ultimate deformation capacity of some simply supported reinforced concrete slabs

  2. 49 Stories That Make an Ultimate STEM Lesson Plan

    Science.gov (United States)

    Mehta, Swati; Mehta, Rohit; Berzina-Pitcher, Inese; Seals, Christopher; Mishra, Punya

    2016-01-01

    In this paper we reviewed what 49 large urban public school district STEM teachers enrolled in a year-long graduate certificate and fellowship program at a large Midwestern university considered as their amazing teaching moments. They were asked to share their amazing teaching moments that would make an Ultimate Lesson Plan in STEM. In smaller…

  3. Safety related aspects of ultimate disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Goemmel, R.

    1992-01-01

    Solutions and questions related to nuclear waste management are presented. In particular, long-term safety of repositories in Germany and Sweden is considered, with special attention being paid to methods of detection, geotechnical barriers and post-operational phase of salt dome repositories, and conditioning of wastes to make them fit for ultimate disposal. (DG) [de

  4. [Loading and strength of single- and multi-unit fixed dental prostheses 2. Strength

    NARCIS (Netherlands)

    Baat, C. de; Witter, D.J.; Meijers, C.C.A.J.; Vergoossen, E.L.; Creugers, N.H.J.

    2014-01-01

    The ultimate strength of a dental prosthesis is defined as the strongest loading force applied to the prosthesis until afracture failure occurs. Important key terms are strength, hardness, toughness and fatigue. Relatively prevalent complications of single- and multi-unit fixed dental prostheses are

  5. Thermodynamic Alloy Design of High Strength and Toughness in 300 mm Thick Pressure Vessel Wall of 1.25Cr-0.5Mo Steel

    Directory of Open Access Journals (Sweden)

    Hye-sung Na

    2018-01-01

    Full Text Available In the 21st century, there is an increasing need for high-capacity, high-efficiency, and environmentally friendly power generation systems. The environmentally friendly integrated gasification combined-cycle (IGCC technology has received particular attention. IGCC pressure vessels require a high-temperature strength and creep strength exceeding those of existing pressure vessels because the operating temperature of the reactor is increased for improved capacity and efficiency. Therefore, high-pressure vessels with thicker walls than those in existing pressure vessels (≤200 mm must be designed. The primary focus of this research is the development of an IGCC pressure vessel with a fully bainitic structure in the middle portion of the 300 mm thick Cr-Mo steel walls. For this purpose, the effects of the alloy content and cooling rates on the ferrite precipitation and phase transformation behaviors were investigated using JMatPro modeling and thermodynamic calculation; the results were then optimized. Candidate alloys from the simulated results were tested experimentally.

  6. Multiaxial pedicle screw designs: static and dynamic mechanical testing.

    Science.gov (United States)

    Stanford, Ralph Edward; Loefler, Andreas Herman; Stanford, Philip Mark; Walsh, William R

    2004-02-15

    Randomized investigation of multiaxial pedicle screw mechanical properties. Measure static yield and ultimate strengths, yield stiffness, and fatigue resistance according to an established model. Compare these measured properties with expected loads in vivo. Multiaxial pedicle screws provide surgical versatility, but the complexity of their design may reduce their strength and fatigue resistance. There is no published data on the mechanical properties of such screws. Screws were assembled according to a vertebrectomy model for destructive mechanical testing. Groups of five assemblies were tested in static tension and compression and subject to three cyclical loads. Modes of failure, yield, and ultimate strength, yield stiffness, and cycles to failure were determined for six designs of screw. Static compression yield loads ranged from 217.1 to 388.0 N and yield stiffness from 23.7 to 38.0 N/mm. Cycles to failure ranged from 42 x 10(3) to 4,719 x 10(3) at 75% of static ultimate load. There were significant differences between designs in all modes of testing. Failure occurred at the multiaxial link in static and cyclical compression. Bending yield strengths just exceeded loads expected in vivo. Multiaxial designs had lower static bending yield strength than fixed screw designs. Five out of six multiaxial screw designs achieved one million cycles at 200 N in compression bending. "Ball-in-cup" multiaxial locking mechanisms were vulnerable to fatigue failure. Smooth surfaces and thicker material appeared to be protective against fatigue failure.

  7. Design optimization of continuous partially prestressed concrete beams

    Science.gov (United States)

    Al-Gahtani, A. S.; Al-Saadoun, S. S.; Abul-Feilat, E. A.

    1995-04-01

    An effective formulation for optimum design of two-span continuous partially prestressed concrete beams is described in this paper. Variable prestressing forces along the tendon profile, which may be jacked from one end or both ends with flexibility in the overlapping range and location, and the induced secondary effects are considered. The imposed constraints are on flexural stresses, ultimate flexural strength, cracking moment, ultimate shear strength, reinforcement limits cross-section dimensions, and cable profile geometries. These constraints are formulated in accordance with ACI (American Concrete Institute) code provisions. The capabilities of the program to solve several engineering problems are presented.

  8. Effect of mix design on the size-independent fracture energy of normal- and high-strength self-compacting concrete

    International Nuclear Information System (INIS)

    Cifuentes, H.; Ríos, J.D.; Gómez, E.J.

    2018-01-01

    Self-compacting concrete has a characteristic microstructure inherent to its specific composition. The higher content of fine particles in self-compacting concrete relative to the equivalent vibrated concrete produces a different fracture behavior that affects the main fracture parameters. In this work, a comprehensive experimental investigation of the fracture behavior of self-compacting concrete has been carried out. Twelve different self-compacting concrete mixes with compressive strength ranging from 39 to 124 MPa (wider range than in other studies) have been subjected to three-point bending tests in order to determine the specific fracture energy. The influence of the mix design and its composition (coarse aggregate fraction, the water to binder ratio and the paste to solids ratio) on its fracture behavior has been analyzed. Moreover, further evidence of the objectivity of the size-independent fracture energy results, obtained by the two most commonly used methods, has been p [es

  9. Landau damping: the mechanics model and its ultimate entropy gain

    International Nuclear Information System (INIS)

    Hannay, J H; Kluge, Michel

    2011-01-01

    Classical mechanics has only been invoked to account for Landau damping in a rather half-hearted way, alongside plasma perturbation theory. In particular this invocation is essential for the study of the saturation, or post-linear (or 'nonlinear') regime of the damping initiated by Dawson and O'Neill. By embracing mechanics wholeheartedly here, with its attendant phase space, one can access results, old and new, cleanly and directly, and with one fewer numerical integration for the post-linear regime. By using a summation technique familiar in semiclassical quantum mechanics (Poisson summation), the one remaining numerical integration can be much improved in accuracy. Also accessible from mechanics is the ultimate entropy gain. Though zero for any finite time (in the absence of coarse graining), the entropy gain is ultimately non-zero (at infinite time the required coarse graining is zero). It is calculated analytically by using the appropriate asymptotics, hitherto not fully exploited.

  10. Management and ultimate storage of wastes from nuclear power generation

    International Nuclear Information System (INIS)

    1989-09-01

    The annotation on R and D prorgam 86 parts I-II have been brought together in the present report part I, together with some general viewpoints, and been classified according to subject. Part II of the present report comprises viewpoints of 'Research Program 1987-1992' and part III of 'Alternative methods of ultimate storage'. Swedish and French viewpoints are presented in Swedish, the remaining foreign material in English. The comments are grouped in subject catergories. (O.S.)

  11. The ultimate challenge of pregnancy-associated breast carcinoma

    International Nuclear Information System (INIS)

    Raja, R.; Tahira, A.

    2005-01-01

    Pregnancy associated breast carcinoma requires making judicious use of all diagnostic modalities and the therapeutic options of surgery, irradiation, chemotherapy and hormonal therapy to enhance survival rates. Individualization of treatment for each patient is the key to success. The effects on future fertility, the time interval before next conception, and whether to breast feed or not are all well-documented. A multidisciplinary coordinated team approach to this ultimate challenge of patient care will prove fruitful. (author)

  12. Ultimate Gradient Limitation in Niobium Superconducting Accelerating Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Checchin, Mattia [Illinois Inst. of Technology, Chicago, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Grassellino, Anna [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Martinello, Martina [Illinois Inst. of Technology, Chicago, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Posen, Sam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Romanenko, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Zasadzinski, John [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-06-01

    The present study is addressed to the theoretical description of the ultimate gradient limitation in SRF cavities. Our intent is to exploit experimental data to confirm models which provide feed-backs on how to improve the current state-of-art. New theoretical insight on the cavities limiting factor can be suitable to improve the quench field of N-doped cavities, and therefore to take advantage of high Q0 at high gradients.

  13. Ultimate survival in anomalous ψ(2S) decays

    International Nuclear Information System (INIS)

    Gérard, Jean-Marc; Martini, Antony

    2014-01-01

    The hierarchy among the radiative γ(π 0 ,η,η ′ ) decay channels for the ψ ′ looks quite different from the J/ψ one. The fate of charm, namely an ultimate survival of on-shell cc ¯ intermediate states, might give us the clue for this new puzzle in exclusive charmonium decays. A similar self-preservation has already been invoked in the past to solve the so-called ρπ puzzle.

  14. Hydrogeological problems in the ultimate storage of radioactive wastes

    International Nuclear Information System (INIS)

    Uerpmann, E.P.

    1980-01-01

    The following work shows how one can achieve the safe closure of ultimate-stored radioactive wastes by connecting a series of various barriers to the biosphere. The propagation of radionuclides by ground water is considered to be the most important long-term transport mechanism. Salt occurences in the Federal Republic of Germany are considered to be the best form suitable for end storage formations for known reasons. When not observing mining and hydrogeological knowledge, the danger of uncontrollable water flow in the end storage can arise from the water solubility of the salt rocks. Therefore the filling of salt mines and the subsequent procedures are dealt with in detail. The leading of radioactive nuclides is influenced by the properties of the ultimately stored wastes and by the quality of the remaining filling of the caves. These problems are dealt with in detail. A series of barriers to the closure of the underground caves are suggested and discussed. The most important barriers consist of the stability of the corresponding selected end storage structure. Possible arrangements of the storage cave are given which even after storage must maintain a high stability. Proposals are made on how the ultimately stored wastes can protect themselves against contact with free water or salt solutions. (orig.) [de

  15. Ultimate concerns in late modernity: Archer, Bourdieu and reflexivity.

    Science.gov (United States)

    Farrugia, David; Woodman, Dan

    2015-12-01

    Through a critique of Margaret Archer's theory of reflexivity, this paper explores the theoretical contribution of a Bourdieusian sociology of the subject for understanding social change. Archer's theory of reflexivity holds that conscious 'internal conversations' are the motor of society, central both to human subjectivity and to the 'reflexive imperative' of late modernity. This is established through critiques of Bourdieu, who is held to erase creativity and meaningful personal investments from subjectivity, and late modernity is depicted as a time when a 'situational logic of opportunity' renders embodied dispositions and the reproduction of symbolic advantages obsolete. Maintaining Archer's focus on 'ultimate concerns' in a context of social change, this paper argues that her theory of reflexivity is established through a narrow misreading and rejection of Bourdieu's work, which ultimately creates problems for her own approach. Archer's rejection of any pre-reflexive dimensions to subjectivity and social action leaves her unable to sociologically explain the genesis of 'ultimate concerns', and creates an empirically dubious narrative of the consequences of social change. Through a focus on Archer's concept of 'fractured reflexivity', the paper explores the theoretical necessity of habitus and illusio for understanding the social changes that Archer is grappling with. In late modernity, reflexivity is valorized just as the conditions for its successful operation are increasingly foreclosed, creating 'fractured reflexivity' emblematic of the complex contemporary interaction between habitus, illusio, and accelerating social change. © London School of Economics and Political Science 2015.

  16. Evaluation of the ultimate pressure capacity of rectangular HVAC ducts for nuclear pwoer plants

    International Nuclear Information System (INIS)

    Wedellsborg, B.W.

    1984-01-01

    Typical Category I HVAC ducts in a nuclear plant must be designed for loads and load combinations including positive and negative pressure loads which are generated due to the normal operation and postulated accident conditions. These pressure loads most often govern the design of the HVAC ducts. Structural design criteria are presently based on the AISI Code which limits the duct panel width-to-thickness ratio to a maximum of 500 and the maximum height-to-thickness ratio to 200, unless it can be shown by structural tests that larger ratios can be used. Test Programs performed on rectangular HVAC ducts subjected to vacumm loads have substantiated the use of ducts having panel width to thickness ratios of up to 1600. The results of the test programs were subsequently incorporated into the design through a more rational analytical design method which was developed from and correlates well with the test results. The purpose of this paper is to present the analytical design method and its correlation with the test results. Simple formulae for the design of rectangular HVAC ducts are presented. Lower bound values of duct sheet, and stiffener ultimate loads are derived, and correlated with recent test results. Analytically predicted ultimate pressures are also compared with other available duct test data

  17. Behavior and strength of beams cast with ultra high strength concrete containing different types of fibers

    Directory of Open Access Journals (Sweden)

    M.M. Kamal

    2014-04-01

    Full Text Available Ultra-high performance concrete (UHPC is a special type of concrete with extraordinary potentials in terms of strength and durability performance. Its production and application implement the most up-to-date knowledge and technology of concrete manufacturing. Sophisticated structural designs in bridges and high-rise buildings, repair works and special structures like nuclear facilities are currently the main fields of applications of UHPC. This paper aimed to evaluate the behavior of ultra-high strength concrete beams. This paper also aimed to determine the effect of adding fibers and explore their effect upon the behavior and strength of the reinforced concrete beams. A total of twelve simple concrete beams with and without shear reinforcements were tested in flexure. The main variables taken into consideration in this research were the type of fibers and the percentage of longitudinal reinforcement as well as the existence or absence of the web reinforcement. Two types of fibers were used including steel and polypropylene fibers. The behavior of the tested beams was investigated with special attention to the deflection under different stages of loading, initial cracking, cracking pattern, and ultimate load. Increased number of cracks was observed at the end of loading due to the use of fibers, which led to the reduced width of cracks. This led to increased stiffness and higher values of maximum loads.

  18. Rapid population growth and environmental degradation: ultimate versus proximate factors.

    Science.gov (United States)

    Shaw, R P

    1989-01-01

    This philosophical review of 2 arguments about responsibility for and solutions to environmental degradation concludes that both sides are correct: the ultimate and the proximal causes. Ultimate causes of pollution are defined as the technology responsible for a given type of pollution, such as burning fossil fuel; proximate causes are defined as situation-specific factors confounding the problem, such as population density or rate of growth. Commoner and others argue that developed countries with low or negative population growth rates are responsible for 80% of world pollution, primarily in polluting technologies such as automobiles, power generation, plastics, pesticides, toxic wastes, garbage, warfaring, and nuclear weapons wastes. Distortionary policies also contribute; examples are agricultural trade protection, land mismanagement, urban bias in expenditures, and institutional rigidity., Poor nations are responsible for very little pollution because poverty allows little waste or expenditures for polluting, synthetic technologies. The proximal causes of pollution include numbers and rate of growth of populations responsible for the pollution. Since change in the ultimate cause of pollution remains out of reach, altering the numbers of polluters can make a difference. Predictions are made for proportions of the world's total waste production, assuming current 1.6 tons/capita for developed countries and 0.17 tons/capita for developing countries. If developing countries grow at current rates and become more wealthy, they will be emitting half the world's waste by 2025. ON the other hand, unsustainable population growth goes along with inadequate investment in human capital: education, health, employment, infrastructure. The solution is to improve farming technologies in the 117 non-self-sufficient countries, fund development in the most unsustainable enclaves of growing countries, break institutionalized socio-political rigidity in these enclaves, and focus on

  19. Adobe Photoshop CS5 for Photographers The Ultimate Workshop

    CERN Document Server

    Evening, Martin

    2010-01-01

    If you already have a good knowledge of Adobe Photoshop and are looking to advance your skills, Adobe Photoshop CS5 for Photographers: The Ultimate Workshop is the book you've been waiting for.  Renowned photographers Martin Evening and Jeff Schewe impart their Photoshop tips and workflow, showing you how to use a vast array of rarely seen advanced Photoshop techniques.  Whether the subject is serious retouching work, weird and wonderful compositions, or planning a shoot before you've even picked up a camera, you can be sure that the advice is based on years of practical experience.

  20. Ultimate survival in anomalous ψ(2S) decays

    Energy Technology Data Exchange (ETDEWEB)

    Gérard, Jean-Marc; Martini, Antony

    2014-03-07

    The hierarchy among the radiative γ(π{sup 0},η,η{sup ′}) decay channels for the ψ{sup ′} looks quite different from the J/ψ one. The fate of charm, namely an ultimate survival of on-shell cc{sup ¯} intermediate states, might give us the clue for this new puzzle in exclusive charmonium decays. A similar self-preservation has already been invoked in the past to solve the so-called ρπ puzzle.

  1. Determination of Ultimate Torque for Multiply Connected Cross Section Rod

    Directory of Open Access Journals (Sweden)

    V. L. Danilov

    2015-01-01

    Full Text Available The aim of this work is to determine load-carrying capability of the multiply cross-section rod. This calculation is based on the model of the ideal plasticity of the material, so that the desired ultimate torque is a torque at which the entire cross section goes into a plastic state.The article discusses the cylindrical multiply cross-section rod. To satisfy the equilibrium equation and the condition of plasticity simultaneously, two stress function Ф and φ are introduced. By mathematical transformations it has been proved that Ф is constant along the path, and a formula to find its values on the contours has been obtained. The paper also presents the rationale of the line of stress discontinuity and obtained relationships, which allow us to derive the equations break lines for simple interaction of neighboring circuits, such as two lines, straight lines and circles, circles and a different sign of the curvature.After substitution into the boundary condition at the end of the stress function Ф and mathematical transformations a formula is obtained to determine the ultimate torque for the multiply cross-section rod.Using the doubly connected cross-section and three-connected cross-section rods as an example the application of the formula of ultimate torque is studied.For doubly connected cross-section rod, the paper offers a formula of the torque versus the radius of the rod, the aperture radius and the distance between their centers. It also clearly demonstrates the torque dependence both on the ratio of the radii and on the displacement of hole. It is shown that the value of the torque is more influenced by the displacement of hole, rather than by the ratio of the radii.For the three-connected cross-section rod the paper shows the integration feature that consists in selection of a coordinate system. As an example, the ultimate torque is found by two methods: analytical one and 3D modeling. The method of 3D modeling is based on the Nadai

  2. A New Algorithm for Determining Ultimate Pit Limits Based on Network Optimization

    OpenAIRE

    Ali Asghar Khodayari

    2013-01-01

    One of the main concerns of the mining industry is to determine ultimate pit limits. Final pit is a collection of blocks, which can be removed with maximum profit while following restrictions on the slope of the mine’s walls. The size, location and final shape of an open-pit are very important in designing the location of waste dumps, stockpiles, processing plants, access roads and other surface facilities as well as in developing a production program. There are numerous methods for designing...

  3. Accelerator physics and technology limitations to ultimate energy and luminosity in very large hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    P. Bauer et al.

    2002-12-05

    The following presents a study of the accelerator physics and technology limitations to ultimate energy and luminosity in very large hadron colliders (VLHCs). The main accelerator physics limitations to ultimate energy and luminosity in future energy frontier hadron colliders are synchrotron radiation (SR) power, proton-collision debris power in the interaction regions (IR), number of events-per-crossing, stored energy per beam and beam-stability [1]. Quantitative estimates of these limits were made and translated into scaling laws that could be inscribed into the particle energy versus machine size plane to delimit the boundaries for possible VLHCs. Eventually, accelerator simulations were performed to obtain the maximum achievable luminosities within these boundaries. Although this study aimed at investigating a general VLHC, it was unavoidable to refer in some instances to the recently studied, [2], 200 TeV center-of-mass energy VLHC stage-2 design (VLHC-2). A more thorough rendering of this work can be found in [3].

  4. Ultimate analysis of PWR prestressed concrete containment subjected to internal pressure

    International Nuclear Information System (INIS)

    Hu, H.-T.; Lin, Y.-H.

    2006-01-01

    Numerical analyses are carried out by using the ABAQUS finite element program to predict the ultimate pressure capacity and the failure mode of the PWR prestressed concrete containment at Maanshan nuclear power plant. Material nonlinearity such as concrete cracking, tension stiffening, shear retention, concrete plasticity, yielding of prestressing tendon, yielding of steel reinforcing bar and degradation of material properties due to high temperature are all simulated with proper constitutive models. Geometric nonlinearity due to finite deformation has also been considered. The results of the analysis show that when the prestressed concrete containment fails, extensive cracks take place at the apex of the dome, the junction of the dome and cylinder, and the bottom of the cylinder connecting to the base slab. In addition, the ultimate pressure capacity of the containment is higher than the design pressure by 86%

  5. 75 FR 60133 - Agency Information Collection Activities: Declaration of Ultimate Consignee That Articles Were...

    Science.gov (United States)

    2010-09-29

    ... Activities: Declaration of Ultimate Consignee That Articles Were Exported for Temporary Scientific or... the Declaration of Ultimate Consignee That Articles Were Exported for Temporary Scientific or...: Title: Declaration of Ultimate Consignee That Articles Were Exported for Temporary Scientific or...

  6. Hand grip strength

    DEFF Research Database (Denmark)

    Frederiksen, Henrik; Gaist, David; Petersen, Hans Christian

    2002-01-01

    in life is a major problem in terms of prevalence, morbidity, functional limitations, and quality of life. It is therefore of interest to find a phenotype reflecting physical functioning which has a relatively high heritability and which can be measured in large samples. Hand grip strength is known......-55%). A powerful design to detect genes associated with a phenotype is obtained using the extreme discordant and concordant sib pairs, of whom 28 and 77 dizygotic twin pairs, respectively, were found in this study. Hence grip strength is a suitable phenotype for identifying genetic variants of importance to mid...

  7. The prospects of transition metal dichalcogenides for ultimately scaled CMOS

    Science.gov (United States)

    Thiele, S.; Kinberger, W.; Granzner, R.; Fiori, G.; Schwierz, F.

    2018-05-01

    MOSFET gate length scaling has been a main source of progress in digital electronics for decades. Today, researchers still spend considerable efforts on reducing the gate length and on developing ultimately scaled MOSFETs, thereby exploring both new device architectures and alternative channel materials beyond Silicon such as two-dimensional TMDs (transition metal dichalcogenide). On the other hand, the envisaged scaling scenario for the next 15 years has undergone a significant change recently. While the 2013 ITRS edition required a continuation of aggressive gate length scaling for at least another 15 years, the 2015 edition of the ITRS suggests a deceleration and eventually a levelling off of gate length scaling and puts more emphasis on alternative options such as pitch scaling to keep Moore's Law alive. In the present paper, future CMOS scaling is discussed in the light of emerging two-dimensional MOSFET channel, in particular two-dimensional TMDs. To this end, the scaling scenarios of the 2013 and 2015 ITRS editions are considered and the scaling potential of TMD MOSFETs is investigated by means of quantum-mechanical device simulations. It is shown that for ultimately scaled MOSFETs as required in the 2013 ITRS, the heavy carrier effective masses of the Mo- and W-based TMDs are beneficial for the suppression of direct source-drain tunneling, while to meet the significantly relaxed scaling targets of the 2016 ITRS heavy-effective-mass channels are not needed.

  8. The ultimate security bounds of quantum key distribution protocols

    International Nuclear Information System (INIS)

    Nikolopoulos, G.M.; Alber, G.

    2005-01-01

    Full text: Quantum key distribution (QKD) protocols exploit quantum correlations in order to establish a secure key between two legitimate users. Recent work on QKD has revealed a remarkable link between quantum and secret correlations. In this talk we report on recent results concerning the ultimate upper security bounds of various QKD schemes (i.e., the maximal disturbance up to which the two legitimate users share quantum correlations) under the assumption of general coherent attacks. In particular, we derive an analytic expression for the ultimate upper security bound of QKD schemes that use two mutually unbiased bases. As long as the two legitimate users focus on the sifted key and treat each pair of data independently during the post processing, our results are valid for arbitrary dimensions of the information carriers. The bound we have derived is well below the predictions of optimal cloning machines. The possibility of extraction of a secret key beyond entanglement distillation is also discussed. In the case of qutrits we argue that any eavesdropping strategy is equivalent to a symmetric one. For higher dimensions, however, such equivalence is generally no longer valid. (author)

  9. Ultimate internal pressure capacity assessment of SC structure

    International Nuclear Information System (INIS)

    Park, Hyungkui; Choi, Inkil

    2013-01-01

    An SC structure applied to a containment building can be quite effective. However, an SC structure cannot be applied to a containment building, because its internal pressure resistance performance has not been verified. The containment building, which undergoes ultimate internal pressure, resists the internal pressure through a pre-stress tendon. It is hard to apply a tendon to an SC structure because of its structural characteristics. Therefore, the internal pressure resistance performance of the SC structure itself should be ensured to apply it to a structure with internal pressure resistance. In this study, the suitability of an SC structure as a substitution for the tendon of a pressure resistant structure was evaluated. A containment structure model was used in this study, because it was representative structures that resistance of ultimate internal pressure be required. In this study, a nonlinear analysis was performed to evaluate and compare the behaviors of tendon model and SC structure model. By comparing the internal pressure-displacement according to the structure type, the stability of SC structure model was assessed

  10. Ultimate Electrical Means for Severe Accident and Multi Unit Event Management

    International Nuclear Information System (INIS)

    Guisez, Xavier

    2015-01-01

    Following the Multi Unit Severe Accident that occurred at Fukushima as a result of the tsunami on 11 March 2011, the European Council decided to submit its Nuclear Power Plants to a Stress Test. In Belgium, this Stress Test, named BEST (Belgian Stress Test), was successfully concluded at the end of 2011. Nevertheless, Electrabel decided, in agreement with the Authorities, to start a beyond design basis action plan, with the goal to mitigate the consequences of a Beyond Design Basis Accident and a Multi Unit Event. Consequently, this has led to an improvement of the robustness of its Nuclear Power Plants. Considering the importance of electrical power supply to a nuclear power plant, a significant part of this action plan consisted of setting up a mobile, 'plug and play' method for the electrical power supply to some major safety systems. In order to install this ultimate power supply, three factors were retained as essential. First, important reactor monitoring instrumentation is preserved. Second, core cooling is provided at all times. Finally, systems are easily made operational within a very short delay of time. During normal operation and Design Basis Events, core cooling is provided by High Voltage equipment. However, during high stress circumstances, it is too complex to realize connections on this equipment. Therefore, analysis was performed to realize core cooling with, easier to handle, Low Voltage equipment. These systems are powered by several GenSets, especially designed and manufactured for this application. The outcome of this project are easy to use, ultimate means, that supply electric power to important safety systems in order to drastically reduce the risk of core damage, during a beyond design basis event. Additionally, for all ultimate means, procedures and training modules were developed for the operators. (authors)

  11. Attitude Strength.

    Science.gov (United States)

    Howe, Lauren C; Krosnick, Jon A

    2017-01-03

    Attitude strength has been the focus of a huge volume of research in psychology and related sciences for decades. The insights offered by this literature have tremendous value for understanding attitude functioning and structure and for the effective application of the attitude concept in applied settings. This is the first Annual Review of Psychology article on the topic, and it offers a review of theory and evidence regarding one of the most researched strength-related attitude features: attitude importance. Personal importance is attached to an attitude when the attitude is perceived to be relevant to self-interest, social identification with reference groups or reference individuals, and values. Attaching personal importance to an attitude causes crystallizing of attitudes (via enhanced resistance to change), effortful gathering and processing of relevant information, accumulation of a large store of well-organized relevant information in long-term memory, enhanced attitude extremity and accessibility, enhanced attitude impact on the regulation of interpersonal attraction, energizing of emotional reactions, and enhanced impact of attitudes on behavioral intentions and action. Thus, important attitudes are real and consequential psychological forces, and their study offers opportunities for addressing behavioral change.

  12. Effect of mix design on the size-independent fracture energy of normal- and high-strength self-compacting concrete

    Directory of Open Access Journals (Sweden)

    H. Cifuentes

    2018-02-01

    Full Text Available Self-compacting concrete has a characteristic microstructure inherent to its specific composition. The higher content of fine particles in self-compacting concrete relative to the equivalent vibrated concrete produces a different fracture behavior that affects the main fracture parameters. In this work, a comprehensive experimental investigation of the fracture behavior of self-compacting concrete has been carried out. Twelve different self-compacting concrete mixes with compressive strength ranging from 39 to 124 MPa (wider range than in other studies have been subjected to three-point bending tests in order to determine the specific fracture energy. The influence of the mix design and its composition (coarse aggregate fraction, the water to binder ratio and the paste to solids ratio on its fracture behavior has been analyzed. Moreover, further evidence of the objectivity of the size-independent fracture energy results, obtained by the two most commonly used methods, has been provided on the self-compacting concrete mixes.

  13. Design, Synthesis, Structural and Spectroscopic Studies of Push-Pull Two-Photon Absorbing Chromophores with Acceptor Groups of Varying Strength

    Science.gov (United States)

    Morales, Alma R.; Frazer, Andrew; Woodward, Adam W.; Ahn-White, Hyo-Yang; Fonari, Alexandr; Tongwa, Paul; Timofeeva, Tatiana; Belfield, Kevin D.

    2013-01-01

    A new series of unsymmetrical diphenylaminofluorene-based chromophores with various strong π-electron acceptors were synthesized and fully characterized. The systematic alteration of the structural design facilitated the investigation of effects such as molecular symmetry and strength of electron-donating and/or withdrawing termini have on optical nonlinearity. In order to determine the electronic and geometrical properties of the novel compounds, a thorough investigation was carried out by a combination of linear and nonlinear spectroscopic techniques, single crystal X-ray diffraction, and quantum chemical calculations. Finally, on the basis of two-photon absorption (2PA) cross sections, the general trend for π -electron accepting ability, i.e., ability to accept charge transfer from diphenylamine was: 2-pyran-4-ylidene malononitrile (pyranone) > dicyanovinyl > bis(dicyanomethylidene)indane > 1-(thiophen-2-yl)propenone > dicyanoethylenyl > 3-(thiophen-2-yl)propenone. An analog with the 2-pyran-4-ylidene malononitrile acceptor group exhibited a nearly three-fold enhancement of the 2PA< δ (1650 GM at 840 nm), relative to other members of the series. PMID:23305555

  14. Biomechanical evaluation of bending strength of spinal pedicle screws, including cylindrical, conical, dual core and double dual core designs using numerical simulations and mechanical tests.

    Science.gov (United States)

    Amaritsakul, Yongyut; Chao, Ching-Kong; Lin, Jinn

    2014-09-01

    Pedicle screws are used for treating several types of spinal injuries. Although several commercial versions are presently available, they are mostly either fully cylindrical or fully conical. In this study, the bending strengths of seven types of commercial pedicle screws and a newly designed double dual core screw were evaluated by finite element analyses and biomechanical tests. All the screws had an outer diameter of 7 mm, and the biomechanical test consisted of a cantilever bending test in which a vertical point load was applied using a level arm of 45 mm. The boundary and loading conditions of the biomechanical tests were applied to the model used for the finite element analyses. The results showed that only the conical screws with fixed outer diameter and the new double dual core screw could withstand 1,000,000 cycles of a 50-500 N cyclic load. The new screw, however, exhibited lower stiffness than the conical screw, indicating that it could afford patients more flexible movements. Moreover, the new screw produced a level of stability comparable to that of the conical screw, and it was also significantly stronger than the other screws. The finite element analysis further revealed that the point of maximum tensile stress in the screw model was comparable to the point at which fracture occurred during the fatigue test. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. High-Strength Low-Alloy Steel Strengthened by Multiply Nanoscale Microstructures

    Science.gov (United States)

    Shen, Y. F.; Zuo, L.

    Recently, we have being focused on improving the strength without sacrificing ductility of High-strength low-alloy (HSLA) steels by designing nanostructures. Several developments have been obtained, summarized as the following three parts: (a) Depressively nanoscale precipitates: A ferritic steel with finely dispersed precipitates reveals a yield strength of 760 MPa, approximately three times higher than that of conventional Ti-bearing high strength hot-rolled sheet steels, and its ultimate tensile strength reaches 850 MPa with an elongation-to-failure value of 18%. The finely dispersed TiC precipitates in the matrix provide matrix strengthening. The estimated magnitude of precipitation strengthening is around 458 MPa. The effects of the particle size, particle distribution and intrinsic particle strength have been investigated through dislocation dynamics (DD) simulations. The DD results show that strengthening is not only a function of the density of the nano-scale precipitates but also of their size. (b) Ultrafinely ferritic plate: An interstitial-free (IF) steel sheet with a cold-rolling reduction of 75% shows a high tensile strength (710MPa) while preserving a considerable plastic strain (13%). The ductility recovery with increasing the rolling reduction up to 75% is related with the decreasing both in lamellar spacings and cell blocks sizes. (c) Parallel nano-laminated austenite: A composite microstructure consisting of ferrite, bainitic ferrite (BF) laths and retained austenite (RA) platelets has been found for the steel with a chemical composition of 0.19C-0.30Si-1.76Mn-1.52Al (in mass fraction), processed with annealing and bainitic holding. The sample annealed at 820oC (for 120s) and partitioned at 400oC (for 300s) has the best combination of ultimate tensile strength (UTS, 682 MPa) and elongation to failure ( 70%) with about 26% of BF plates 16% RA in its microstructure.

  16. On the ultimate uncertainty of the top quark pole mass

    Energy Technology Data Exchange (ETDEWEB)

    Beneke, M. [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Marquard, P. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Nason, P. [INFN, Sezione di Milano Bicocca (Italy); Steinhauser, M. [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik

    2016-05-15

    We combine the known asymptotic behaviour of the QCD perturbation series expansion, which relates the pole mass of a heavy quark to the MS mass, with the exact series coefficients up to the four-loop order to determine the ultimate uncertainty of the top-quark pole mass due to the renormalon divergence. We perform extensive tests of our procedure by varying the number of colours and flavours, as well as the scale of the strong coupling and the MS mass, and conclude that this uncertainty is around 70 MeV. We further estimate the additional contribution to the mass relation from the five-loop correction and beyond to be 250 MeV.

  17. On the ultimate uncertainty of the top quark pole mass

    International Nuclear Information System (INIS)

    Beneke, M.; Nason, P.; Steinhauser, M.

    2016-05-01

    We combine the known asymptotic behaviour of the QCD perturbation series expansion, which relates the pole mass of a heavy quark to the MS mass, with the exact series coefficients up to the four-loop order to determine the ultimate uncertainty of the top-quark pole mass due to the renormalon divergence. We perform extensive tests of our procedure by varying the number of colours and flavours, as well as the scale of the strong coupling and the MS mass, and conclude that this uncertainty is around 70 MeV. We further estimate the additional contribution to the mass relation from the five-loop correction and beyond to be 250 MeV.

  18. ONE FINANCIAL REPORTING GLOBAL LANGUAGE: THE ULTIMATE GOAL?

    Directory of Open Access Journals (Sweden)

    Amelia Limijaya

    2017-05-01

    Full Text Available This article aims to analyse the extent to which international accounting standards is applied and whether it is the ultimate goal. Up until the end of 2016, approximately there are 84% of the 149 jurisdictions analysed which require IFRS for all or most domestic publicly accountable entities. This may indicate that we are not that much further from having a single set of globally-accepted accounting standards. However, there is more to financial reporting than just accounting standards alone, such as the political aspect of accounting standard-setting, translation issues surrounding IFRS adoption, the US position and the complexity of financial reporting. Improving financial reporting quality needs more than just having global accounting standards, rather, it is also essential to consider the preparers’ incentives and other institutions surrounding the firm. Stakeholders need to broaden the perspective when viewing financial reporting, so that it will not be focused merely on accounting standards alone.

  19. On the ultimate uncertainty of the top quark pole mass

    Science.gov (United States)

    Beneke, M.; Marquard, P.; Nason, P.; Steinhauser, M.

    2017-12-01

    We combine the known asymptotic behaviour of the QCD perturbation series expansion, which relates the pole mass of a heavy quark to the MS ‾ mass, with the exact series coefficients up to the four-loop order to determine the ultimate uncertainty of the top-quark pole mass due to the renormalon divergence. We perform extensive tests of our procedure by varying the number of colours and flavours, as well as the scale of the strong coupling and the MS ‾ mass. Including an estimate of the internal bottom and charm quark mass effect, we conclude that this uncertainty is around 110 MeV. We further estimate the additional contribution to the mass relation from the five-loop correction and beyond to be around 300 MeV.

  20. Multiple (Two) Met Bel 601 In Series Ultimate Vacuum Testing

    Energy Technology Data Exchange (ETDEWEB)

    Restivo, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-30

    SRNL Environmental and Chemical Process Technology (E&CPT) was requested to perform testing of vacuum pumps per a verbal request from the Customer, SRNL Hydrogen Processing Technology. Tritium Operations is currently having difficulties procuring the Normetex™® Model 15 m3/hr (9 CFM) vacuum pump (formerly Normetex Pompes, now EumecaSARL). One possible solution proposed by Hydrogen Processing Technology personnel is to use two Senior Aerospace Metal Bellows MB-601 vacuum pumps piped with the heads in series, and the pumps in series (Figure 1 below). This memorandum documents the ultimate vacuum testing that was performed to determine if this concept was a viable alternate vacuum pump strategy. This testing dovetails with previous pump evaluations documented in references 1 and 2.

  1. Ultimate Drivers and Proximate Correlates of Polyandry in Predatory Mites.

    Directory of Open Access Journals (Sweden)

    Peter Schausberger

    Full Text Available Polyandry is more widespread than anticipated from Bateman's principle but its ultimate (evolutionary causes and proximate (mechanistic correlates are more difficult to pinpoint than those of polygyny. Here, we combined mating experiments, quantification of reproductive traits and microsatellite genotyping to determine the fitness implications of polyandry in two predatory mite species, where males are highly polygynous (up to 45 fertilized females during life, whereas females range from monandry to various polyandry levels. The medium-level polyandrous (up to eight male mates possible Neoseiulus californicus received clear direct and indirect benefits: multiply mated females produced more offspring with higher survival chances over longer times than singly mated females. In contrast, singly and multiply mated females of the low-level polyandrous (commonly two male mates at maximum Phytoseiulus persimilis produced similar numbers of offspring having similar survival chances. In both species, multiple mating resulted in mixed offspring paternities, opening the chance for indirect fitness benefits such as enhanced genetic compatibility, complementarity and/or variability. However, the female re-mating likelihood and the paternity chance of non-first male mates were lower in P. persimilis than in N. californicus. Regarding proximate factors, in both species first mating duration and female re-mating likelihood were negatively correlated. Based on occasional fertilization failure of first male mates in P. persimilis, and mixed offspring paternities in both species, we argue that fertilization assurance and the chance to gain indirect fitness benefits are the ultimate drivers of polyandry in P. persimilis, whereas those of N. californicus are higher offspring numbers coupled with enhanced offspring viability and possibly other indirect fitness benefits. Overall, the adaptive significance and proximate events well reflected the polyandry levels. Our

  2. Ultimate Drivers and Proximate Correlates of Polyandry in Predatory Mites.

    Science.gov (United States)

    Schausberger, Peter; Patiño-Ruiz, J David; Osakabe, Masahiro; Murata, Yasumasa; Sugimoto, Naoya; Uesugi, Ryuji; Walzer, Andreas

    2016-01-01

    Polyandry is more widespread than anticipated from Bateman's principle but its ultimate (evolutionary) causes and proximate (mechanistic) correlates are more difficult to pinpoint than those of polygyny. Here, we combined mating experiments, quantification of reproductive traits and microsatellite genotyping to determine the fitness implications of polyandry in two predatory mite species, where males are highly polygynous (up to 45 fertilized females during life), whereas females range from monandry to various polyandry levels. The medium-level polyandrous (up to eight male mates possible) Neoseiulus californicus received clear direct and indirect benefits: multiply mated females produced more offspring with higher survival chances over longer times than singly mated females. In contrast, singly and multiply mated females of the low-level polyandrous (commonly two male mates at maximum) Phytoseiulus persimilis produced similar numbers of offspring having similar survival chances. In both species, multiple mating resulted in mixed offspring paternities, opening the chance for indirect fitness benefits such as enhanced genetic compatibility, complementarity and/or variability. However, the female re-mating likelihood and the paternity chance of non-first male mates were lower in P. persimilis than in N. californicus. Regarding proximate factors, in both species first mating duration and female re-mating likelihood were negatively correlated. Based on occasional fertilization failure of first male mates in P. persimilis, and mixed offspring paternities in both species, we argue that fertilization assurance and the chance to gain indirect fitness benefits are the ultimate drivers of polyandry in P. persimilis, whereas those of N. californicus are higher offspring numbers coupled with enhanced offspring viability and possibly other indirect fitness benefits. Overall, the adaptive significance and proximate events well reflected the polyandry levels. Our study provides a

  3. Numerical Study on Ultimate Behaviour of Bolted End-Plate Steel Connections

    Directory of Open Access Journals (Sweden)

    R.E.S. Ismail

    Full Text Available Abstract Bolted end-plate steel connections have become more popular due to ease of fabrication. This paper presents a three dimension Finite Element Model (FEM, using the multi-purpose software ABAQUS, to study the effect of different geometrical parameters on the ultimate behavior of the connection. The proposed model takes into account material and geometrical non-linearities, initial imperfection, contact between adjacent surfaces and the pretension force in the bolts. The Finite Element results are calibrated with published experimental results ''briefly reviewed in this paper'' and verified that the numerical model can simulate and analyze the overall and detailed behavior of different types of bolted end-plate steel connections. Using verified FEM, parametric study is then carried out to study the ultimate behavior with variations in: bolt diameter, end-plate thickness, length of column stiffener, angle of rib stiffener. The results are examined with respect to the failure modes, the evolution of the resistance, the initial stiffness, and the rotation capacity. Finally, the ultimate behavior of the bolted end-plate steel connection is discussed in detail, and recommendations for the design purpose are made.

  4. Reflector dowel strength test, Fort St. Vrain

    International Nuclear Information System (INIS)

    Doll, D.W.

    1975-01-01

    The strength of the 44.45 mm (1.75 in.) diameter Fort St. Vrain (FSV) reflector dowel for loads directed radially inward toward the center of the element was measured. For a statically applied load, the strength exceeded 5783 N (1300 lb) in direct shear. This strength remained after load cycling 100 times to 4448 N (1000 lb), 10 times to 4893 N (1100 lb), 10 times to 5338 N (1200 lb), and two times to 5783 N (1300 lb). Typically, the deflection to ultimate failure was approximately 1.0 mm (0.04 in.). At about 3316 N (750 lb) and 0.20 mm (0.008 in.) deflection, one of the webs between the dowel and a coolant hole cracked, apparently redistributing the load. No further failure occurred up to the ultimate load of 5783+ N (1300+ lb)

  5. Reflecting on impact, changes and continuities: restructuring workplace cultures: the ultimate work-family challenge.

    OpenAIRE

    Lewis, Suzan

    2010-01-01

    Purpose – The purpose of this paper is to reflect on the paper “Restructuring workplace cultures: the ultimate work-family challenge?” is published in Women in Management Review, Vol. 16 No. 1, 2001, pp. 21-9. \\ud \\ud Design/methodology/approach – The impact of the paper is considered within a framework that takes account of national discursive and political contexts in the UK in 2001 and in the present and uses a gendered organisation lens. \\ud \\ud Findings – The 2001 paper demonstrates that...

  6. Efficiency Of Different Teaching Models In Teaching Of Frisbee Ultimate

    Directory of Open Access Journals (Sweden)

    Žuffová Zuzana

    2015-05-01

    Full Text Available The aim of the study was to verify the efficiency of two frisbee ultimate teaching models at 8-year grammar schools relative to age. In the experimental group was used a game based model (Teaching Games for Understanding and in the control group the traditional model based on teaching techniques. 6 groups of female students took part in experiment: experimental group 1 (n=10, age=11.6, experimental group 2 (n=12, age=13.8, experimental group 3 (n=14, age =15.8, control group 1 (n=11, age =11.7, control group 2 (n=10, age =13.8 and control group 3 (n=9, age =15.8. Efficiency of the teaching models was evaluated based of game performance and special knowledge results. Game performance was evaluated by the method of game performance assessment based on GPAI (Game Performance Assessment Instrument through video record. To verify level of knowledge, we used a knowledge test, which consisted of questions related to the rules and tactics knowledge of frisbee ultimate. To perform statistical evaluation Mann-Whitney U-test was used. Game performance assessment and knowledge level indicated higher efficiency of TGfU in general, but mostly statistically insignificant. Experimental groups 1 and 2 were significantly better in the indicator that evaluates tactical aspect of game performance - decision making (p<0.05. Experimental group 3 was better in the indicator that evaluates skill execution - disc catching. The results showed that the students of the classes taught by game based model reached partially better game performance in general. Experimental groups achieved from 79.17 % to 80 % of correct answers relating to the rules and from 75 % to 87.5 % of correct answers relating to the tactical knowledge in the knowledge test. Control groups achieved from 57.69 % to 72.22 % of correct answers relating to the rules and from 51.92 % to 72.22 % of correct answers relating to the tactical knowledge in the knowledge test.

  7. The Exercising Together project: design and recruitment for a randomized, controlled trial to determine the benefits of partnered strength training for couples coping with prostate cancer.

    Science.gov (United States)

    Winters-Stone, Kerri M; Lyons, Karen S; Nail, Lillian M; Beer, Tomasz M

    2012-03-01

    Prostate cancer can threaten quality of life for the patient and his spouse and the quality of his marital relationship. The purpose of our study is to evaluate the effects of "Exercising Together" - a partnered strength training program for married couples coping with prostate cancer - on the physical and emotional health of prostate cancer survivors (PCS) and their spouses and on marital quality. We are conducting a 6-month randomized controlled trial with two groups: 1) Exercising Together - a progressive, supervised strength training program and 2) a usual care control condition. The primary aims of this exploratory study are to: 1) Determine the effect of partnered strength training on physical and emotional health (muscle strength, physical function, body composition and self-report physical and mental health) in PCS, 2) Determine the effect of partnered strength training on physical and emotional health in spouses and 3) Explore the effect of partnered strength training on marital quality (incongruence, communication, relationship quality, intimacy) of the PCS and spouse. Target accrual has been met in this study with 64 couples enrolled and randomized to exercise (n=32) or usual care (n=32) groups. This study is the first to examine the feasibility of this exercise format in both the chronically ill patient and spouse and explore benefits at the individual and couple level. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. effect of reinforcements combination on the mechanical strength of ...

    African Journals Online (AJOL)

    Dr Obe

    strength when compared with other metals such as aluminum, copper ... achieved by hand rotation of the wheels as described above. By ratio ... point of the specimen which is recorded by the push-plotter silver liquid indicator. This is the ultimate strength. The Brinnel hardness, Hb is calculated using the Brinnel equation: √.

  9. Process Inherent Ultimate Safety (PIUS) reactor evaluation study: Final report

    International Nuclear Information System (INIS)

    1987-02-01

    This report presents the results of an independent study by United Engineers and Constructors (UNITED) of the SECURE-P Process Inherent Ultimate Safety (PIUS) Reactor Concept which is presently under development by the Swedish light water reactor vendor ASEA-ATOM of Vasteras, Sweden. This study was performed to investigate whether there is any realistic basis for believing that the PIUS reactor could be a viable competitor in the US energy market in the future. Assessments were limited to the technical, economic and licensing aspects of PIUS. Socio-political issues, while certainly important in answering this question, are so broad and elusive that it was considered that addressing them with the limited perspective of one small group from one company would be of questionable value and likely be misleading. Socio-political issues aside, the key issue is economics. For this reason, the specific objectives of this study were to determine if the estimated PIUS plant cost will be competitive in the US market and to identify and evaluate the technical and licensing risks that might make PIUS uneconomical or otherwise unacceptable

  10. Episodic foresight and anxiety: Proximate and ultimate perspectives.

    Science.gov (United States)

    Miloyan, Beyon; Bulley, Adam; Suddendorf, Thomas

    2016-03-01

    In this paper, we examine the relationship between episodic foresight and anxiety from an evolutionary perspective, proposing that together they confer an advantage for modifying present moment decision-making and behaviour in the light of potential future threats to fitness. We review the body of literature on the role of episodic foresight in anxiety, from both proximate and ultimate perspectives. We propose that anxious feelings associated with episodic simulation of possible threat-related future events serve to imbue these simulations with motivational currency. Episodic and semantic details of a future threat may be insufficient for motivating its avoidance, but anxiety associated with a simulation can provoke adaptive threat management. As such, we detail how anxiety triggered by a self-generated, threat-related future simulation prepares the individual to manage that threat (in terms of its likelihood and/or consequences) over greater temporal distances than observed in other animals. We then outline how anxiety subtypes may represent specific mechanisms for predicting and managing particular classes of fitness threats. This approach offers an inroad for understanding the nature of characteristic future thinking patterns in anxiety disorders and serves to illustrate the adaptive function of the mechanism from which clinical anxiety deviates. © 2015 The British Psychological Society.

  11. Yield, utilization, storage and ultimate storage of depleted uranium

    International Nuclear Information System (INIS)

    Aumueller, L.; Hermann, J.

    1977-11-01

    More than 80% of the uranium leaving uranium enrichment plants is depleted to a residual content of about 0,25% U 235. Due to the present ineconomical further depletion to the technically possible residual content of 0,1% U 235, the so-called 'tails' are first of all stored. The quantity of stored depleted uranium in the FRG should be about 100.000 t by the year 2000. It represents a strategic reserve for future energy supply regardless of profitableness. The study analysis the conceivable possible uses for the tails quantity considered. These are, besides further depletion whose profitableness is considered, also the use as breeder material in breeder reactors and the use in the non-nuclear field. The main part of the study deals with the various storage possibilities of the depleted uranium in oxidic or fluoride form. A comparison of costs of alternative storage concepts showed a clear advantage for the storage of UF 6 in 48 inch containers already in use. The conceivable accidents in storing are analyzed and measures to reduce the consequences are discussed. Finally, the problems of ultimate storage for the remaining waste after further depletion or use are investigated and the costs arising here are also estimated. (RB) [de

  12. Ultimate storage of radioactive wastes annual report, 1973

    International Nuclear Information System (INIS)

    The present report is a cooperative effort by the Company for Radiation and Environmental Research, Munich, and the Company for Nuclear Research, Karlsruhe, and provides a survey of work carried out during 1973 in the area of ultimate storage of radioactive wastes. Mining and construction works which were carried out in the Asse Salt Mine near Remlingen both underground as well as above the ground and which were used for repair, maintenance and expansion of the operation consistent with its future tasks are reported. The storage of low-level wastes at the 750 m level and also the test-oriented storage of medium-level waste materials at the 490 m level were carried out within the reporting period. Shielded storage casks S7V developed by the GfK were used for the first time in September for transporting 200 l iron-hooped drums filled with medium-level radioactive wastes to Asse, each shipment always containing seven drums. With two round-trips a week taking place between the Nuclear Research Center, Karlsruhe and the Asse II shaft installation, 14 drums were brought each week so that, by the end of the year, the quantity in storage amounted to a total of 233 drums. Further information is provided concerning the present status of research work in the fields of oromechanics, geology and hydrology as well as other findings. Further, storage techniques are discussed which are presently in the planning stage

  13. Thermal performance measurements on ultimate heat sinks--cooling ponds

    International Nuclear Information System (INIS)

    Hadlock, R.K.; Abbey, O.B.

    1977-12-01

    The primary objective of the studies described is to obtain the requisite data, with respect to modeling requirements, to characterize thermal performance of heat sinks for nuclear facilities existing at elevated water temperatures in result of experiencing a genuinely large heat load and responding to meteorological influence. The data should reflect thermal performance for combinations leading to worst-case meteorological influence. A geothermal water retention basin has been chosen as the site for the first measurement program and data have been obtained in the first of several experiments scheduled to be performed there. These data illustrate the thermal and water budgets during episodes of cooling from an initially high pond water bulk temperature. Monitoring proceeded while the pond experienced only meteorological and seepage influence. The data are discussed and are presented as a data volume which may be used for calculation purposes. Suggestions for future measurement programs are stated with the intent to maintain and improve relevance to nuclear ultimate heat sinks while continuing to examine the performance of the analog geothermal pond. It is further suggested that the geothermal pond, with some modification, may be a suitable site for spray pond measurements

  14. Time-Dependent Behavior of High-Strength Kevlar and Vectran Webbing

    Science.gov (United States)

    Jones, Thomas C.; Doggett, William R.

    2014-01-01

    High-strength Kevlar and Vectran webbings are currently being used by both NASA and industry as the primary load-bearing structure in inflatable space habitation modules. The time-dependent behavior of high-strength webbing architectures is a vital area of research that is providing critical material data to guide a more robust design process for this class of structures. This paper details the results of a series of time-dependent tests on 1-inch wide webbing including an initial set of comparative tests between specimens that underwent realtime and accelerated creep at 65 and 70% of their ultimate tensile strength. Variability in the ultimate tensile strength of the webbings is investigated and compared with variability in the creep life response. Additional testing studied the effects of load and displacement rate, specimen length and the time-dependent effects of preconditioning the webbings. The creep test facilities, instrumentation and test procedures are also detailed. The accelerated creep tests display consistently longer times to failure than their real-time counterparts; however, several factors were identified that may contribute to the observed disparity. Test setup and instrumentation, grip type, loading scheme, thermal environment and accelerated test postprocessing along with material variability are among these factors. Their effects are discussed and future work is detailed for the exploration and elimination of some of these factors in order to achieve a higher fidelity comparison.

  15. The ultimate intrinsic signal-to-noise ratio of loop- and dipole-like current patterns in a realistic human head model.

    Science.gov (United States)

    Pfrommer, Andreas; Henning, Anke

    2018-03-13

    The ultimate intrinsic signal-to-noise ratio (UISNR) represents an upper bound for the achievable SNR of any receive coil. To reach this threshold a complete basis set of equivalent surface currents is required. This study systematically investigated to what extent either loop- or dipole-like current patterns are able to reach the UISNR threshold in a realistic human head model between 1.5 T and 11.7 T. Based on this analysis, we derived guidelines for coil designers to choose the best array element at a given field strength. Moreover, we present ideal current patterns yielding the UISNR in a realistic body model. We distributed generic current patterns on a cylindrical and helmet-shaped surface around a realistic human head model. We excited electromagnetic fields in the human head by using eigenfunctions of the spherical and cylindrical Helmholtz operator. The electromagnetic field problem was solved by a fast volume integral equation solver. At 7 T and above, adding curl-free current patterns to divergence-free current patterns substantially increased the SNR in the human head (locally >20%). This was true for the helmet-shaped and the cylindrical surface. On the cylindrical surface, dipole-like current patterns had high SNR performance in central regions at ultra-high field strength. The UISNR increased superlinearly with B0 in most parts of the cerebrum but only sublinearly in the periphery of the human head. The combination of loop and dipole elements could enhance the SNR performance in the human head at ultra-high field strength. © 2018 International Society for Magnetic Resonance in Medicine.

  16. Bond strength of masonry

    NARCIS (Netherlands)

    Pluijm, van der R.; Vermeltfoort, A.Th.

    1992-01-01

    Bond strength is not a well defined property of masonry. Normally three types of bond strength can be distinguished: - tensile bond strength, - shear (and torsional) bond strength, - flexural bond strength. In this contribution the behaviour and strength of masonry in deformation controlled uniaxial

  17. Comparison between field data and ultimate heat-sink cooling-pond and spray-pond models

    International Nuclear Information System (INIS)

    Codell, R.

    1982-09-01

    Two previously published reports, NUREG-0693 and NUREG-0733, presented models and methods by which ultimate heat sink cooling ponds and spray ponds used for safety-related water supplies in nuclear power plants could be analyzed for design-basis conditions of heat load and meteorology. These models were only partially verified with field data. The present report compares the NRC models to data collected for NRC by Battelle Pacific Northwest Laboratories on the performance of small geothermally heated ponds and spray ponds. These comparisons generally support the conclusion that the NRC models are useful tools in predicting ultimate heat sink performance

  18. Research of dependence of ultimate strength of the bond border in solid state of dissimilar metals from their plasticity

    International Nuclear Information System (INIS)

    Borts, B.V.

    2010-01-01

    Theoretical model, describing the joining of dissimilar materials in solid state is presented. The model takes into account plastic deformation of materials at the joining temperature, and also shearing forces, appearing while rolling the material and playing determinant role in the process of materials solid phase joining. Experimental results of X-ray microanalysis, metallography, tension tests, micro-hardness and nano-hardness of samples bonding border are presented, which confirms the relevancy of the proposed model.

  19. Development of a Relationship Between Residual Ultimate Longitudinal Strength Versus Grounding Damage Index Diagram For Container Ships

    DEFF Research Database (Denmark)

    Kim, Do Kyun; Kim, Han Byul; Zhang, Xiaoming

    2012-01-01

    Various accidents such as grounding, collision, fire, and explosion commonly occur on operating ships. The structural damage caused by such accidents is often accompanied by casualties and serious pollution. Therefore, an accidental risk- based approach that is in line with the goal-based standard...

  20. A Numerical Method for Computing Barge Impact Forces Based on Ultimate Strength of the Lashings between Barges

    National Research Council Canada - National Science Library

    Arroyo, Jose

    2004-01-01

    ... of the barge train, the approach velocity, the approach angle, the barge train moment of inertia, damage sustained by the barge structure, and friction between the barge and the wall. computation...

  1. A New Algorithm for Determining Ultimate Pit Limits Based on Network Optimization

    Directory of Open Access Journals (Sweden)

    Ali Asghar Khodayari

    2013-12-01

    Full Text Available One of the main concerns of the mining industry is to determine ultimate pit limits. Final pit is a collection of blocks, which can be removed with maximum profit while following restrictions on the slope of the mine’s walls. The size, location and final shape of an open-pit are very important in designing the location of waste dumps, stockpiles, processing plants, access roads and other surface facilities as well as in developing a production program. There are numerous methods for designing ultimate pit limits. Some of these methods, such as floating cone algorithm, are heuristic and do not guarantee to generate optimum pit limits. Other methods, like Lerchs–Grossmann algorithm, are rigorous and always generate the true optimum pit limits. In this paper, a new rigorous algorithm is introduced. The main logic in this method is that only positive blocks, which can pay costs of their overlying non-positive blocks, are able to appear in the final pit. Those costs may be paid either by positive block itself or jointly with other positive blocks, which have the same overlying negative blocks. This logic is formulated using a network model as a Linear Programming (LP problem. This algorithm can be applied to two- and three-dimension block models. Since there are many commercial programs available for solving LP problems, pit limits in large block models can be determined easily by using this method.

  2. Lower extremity strength, systemic inflammation and all-cause mortality: Application to the "fat but fit" paradigm using cross-sectional and longitudinal designs.

    Science.gov (United States)

    Buckner, Samuel L; Loenneke, Jeremy P; Loprinzi, Paul D

    2015-10-01

    No study has applied the "fat-but-fit" paradigm with respect to muscular strength as an index of fitness, despite muscular strength being independently associated with functional ability and mortality. To examine the relationship between lower extremity muscular strength, C-reactive protein (CRP), and all-cause mortality among normal weight, overweight and obese individuals. Data from the 1999-2002 NHANES were used (N=2740 adults; ≥ 50 years). CRP values were obtained from a blood sample. Lower body isokinetic knee extensor strength (IKES) was assessed using a Kin Kom MP isokinetic dynamometer. Participant data was linked to death certificate data from the National Death Index to ascertain all-cause mortality status. Participants were classified, based on body mass index (BMI) and strength as: normal weight and unfit (fit (≥ 75th IKES percentile); overweight and fit; and obese and fit. Independent of physical activity and other confounders, compared to those who were normal weight and unfit, unfit overweight (β=.14, p=0.009), unfit obese (β=.33, pfit (β=.17, p=0.008) participants, had higher CRP levels. However, there was no difference in CRP levels between normal weight and unfit participants and overweight and fit participants (β=0.04, p=0.35). Compared to normal weight unfit adults, overweight fit (HR=0.28; 95% CI: 0.11-0.70; p=0.008) adults had a lower hazard rate for all-cause mortality. These finding suggest that increased lower body strength, independent of physical activity, may reduce premature all-cause mortality and attenuate systemic inflammation among overweight adults. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Design Methodology of Strength Verification of Platform During Load Out of the Arkutun Dagi SE-Topside 43.800 MT

    Directory of Open Access Journals (Sweden)

    Kaup Magdalena

    2016-12-01

    Full Text Available This paper presents the methodology of strength verification during load out of the heavy cargo, in this case Arkutun Dagi SE-Topside platform. General methodology of making calculation models and load algorithms has been presented. Paper shows results of verification of global shear forces and bending moments using self-developed algorithms to modify centre of gravity, fill tanks and hydrostatically balance a 3D finite element model with commercial hydrostatic code. The NAPA and ANSYS codes were used to calculate hydrostatic pressures and to apply to 3D-FE models and to carry out strength calculation of barge construction.

  4. Strength training for the warfighter.

    Science.gov (United States)

    Kraemer, William J; Szivak, Tunde K

    2012-07-01

    Optimizing strength training for the warfighter is challenged by past training philosophies that no longer serve the modern warfighter facing the "anaerobic battlefield." Training approaches for integration of strength with other needed physical capabilities have been shown to require a periodization model that has the flexibility for changes and is able to adapt to ever-changing circumstances affecting the quality of workouts. Additionally, sequencing of workouts to limit over-reaching and development of overtraining syndromes that end in loss of duty time and injury are paramount to long-term success. Allowing adequate time for rest and recovery and recognizing the negative influences of extreme exercise programs and excessive endurance training will be vital in moving physical training programs into a more modern perspective as used by elite strength-power anaerobic athletes in sports today. Because the warfighter is an elite athlete, it is time that training approaches that are scientifically based are updated within the military to match the functional demands of modern warfare and are given greater credence and value at the command levels. A needs analysis, development of periodized training modules, and individualization of programs are needed to optimize the strength of the modern warfighter. We now have the knowledge, professional coaches and nonprofit organization certifications with continuing education units, and modern training technology to allow this to happen. Ultimately, it only takes command decisions and implementation to make this possible.

  5. Concept for an ultimate storage facility for heat-generating radioactive waste in clay stone in Germany

    International Nuclear Information System (INIS)

    Bollingerfehr, Wilhelm; Poehler, Matthias

    2010-01-01

    According to the German reference ultimate storage concept heat-generating radioactive waste from the operation of nuclear power stations should be stored permanently maintenance-free and in a non-recoverable manner in a salt formation. Within the framework of investigations into the utilisation of alternative host rocks a concept for an ultimate storage facility in clay stone was developed in an R and D project. For this purpose all important aspects of the design, development, operation and shutdown were taken into account for a model region in northern Germany. It was established that storage in 50 m deep vertical boreholes in a mine at a depth of about 350 m appears to be the most practical solution for an ultimate storage facility in clay stone. Compared to the reference concept in salt an ultimate storage facility in clay stone requires solid support of all mine openings with steel arches or shotcrete. Because of the lower maximum permissible temperature in the backfilling material (bentonite) the area required for the ultimate storage facility is about five times larger. A period of more than 100 years is estimated from survey to shutdown. (orig.)

  6. Ultimate resistance of a reinforced concrete foundation under impulsive loading

    International Nuclear Information System (INIS)

    Aquaro, D.; Forasassi, G.; Marconi, M.

    2003-01-01

    The impact of a spent nuclear fuel cask against a reinforced concrete slab of a temporary repository for spent nuclear fuel is numerically analysed. The analysis considers accidental events in which a spent nuclear fuel cask would drop against the floor of a repository during lifting operations. Two types of solutions have been taken into account: a simple reinforced concrete structure and a structure provided with a 40 mm thick steel liner on the impacted surface, connected to a 1600 mm thick concrete bed. The model is assumed to be axisymmetric and positioned on an elastic ground (Winkler model). The concrete has been simulated as: elastic perfectly plastic under compressive stresses limited by a crushing strain; elastic linear under tensile stresses until a cracking stress value and a following decrease of stress characterized by a constant or variable softening modulus; limited ability to resist at shear stresses after cracking characterized by a shear retention factor. The steel of the reinforcement bars and of the cask has been simulated as an elastic perfectly plastic material. Several numerical simulations have been performed in order to determine the influence, on the ultimate resistance of the structure under examination, of the steel liner, of some characteristic parameters of concrete (as the softening module and the shear retention factor) and of the Winkler coefficient values, simulating the elastic behaviour of the ground. The obtained results demonstrate that a steel liner produces a lower stress in the concrete as well as in the reinforcement but the bed is still subjected to the cracking phenomenon throughout its entire width although the crushing is localized to only a few elements near the impact zone. The use of a more complex constitutive equation for the concrete considering the shear retention factor and the softening module has given results which do not differ greatly from those related to a more simplified model. A different degree of

  7. Influence of different luting protocols on shear bond strength of computer aided design/computer aided manufacturing resin nanoceramic material to dentin

    Directory of Open Access Journals (Sweden)

    Claudio Poggio

    2016-01-01

    Conclusion: Within the limitations of this in vitro study, conventional resin cements (coupled with etch and rinse or self-etch adhesives showed better shear strength values compared to self-adhesive resin cements. Furthermore, conventional resin cements used together with a self-etch adhesive reported the highest values of adhesion.

  8. Effect of structural discontinuities on coal pillar strength as a basis for improving safety in the design of coal pillar systems.

    CSIR Research Space (South Africa)

    Esterhuizen, GS

    1998-12-01

    Full Text Available The stability of underground coal mines depends on the integrity of the pillars which are required to support the overlying strata. Should the pillars collapse, the safety of the persons in the workings will be threatened. The strength of a coal...

  9. Parasites in food webs: the ultimate missing links

    Science.gov (United States)

    Lafferty, Kevin D.; Allesina, Stefano; Arim, Matias; Briggs, Cherie J.; De Leo, Giulio A.; Dobson, Andrew P.; Dunne, Jennifer A.; Johnson, Pieter T.J.; Kuris, Armand M.; Marcogliese, David J.; Martinez, Neo D.; Memmott, Jane; Marquet, Pablo A.; McLaughlin, John P.; Mordecai, Eerin A.; Pascual, Mercedes; Poulin, Robert; Thieltges, David W.

    2008-01-01

    Parasitism is the most common consumer strategy among organisms, yet only recently has there been a call for the inclusion of infectious disease agents in food webs. The value of this effort hinges on whether parasites affect food-web properties. Increasing evidence suggests that parasites have the potential to uniquely alter food-web topology in terms of chain length, connectance and robustness. In addition, parasites might affect food-web stability, interaction strength and energy flow. Food-web structure also affects infectious disease dynamics because parasites depend on the ecological networks in which they live. Empirically, incorporating parasites into food webs is straightforward. We may start with existing food webs and add parasites as nodes, or we may try to build food webs around systems for which we already have a good understanding of infectious processes. In the future, perhaps researchers will add parasites while they construct food webs. Less clear is how food-web theory can accommodate parasites. This is a deep and central problem in theoretical biology and applied mathematics. For instance, is representing parasites with complex life cycles as a single node equivalent to representing other species with ontogenetic niche shifts as a single node? Can parasitism fit into fundamental frameworks such as the niche model? Can we integrate infectious disease models into the emerging field of dynamic food-web modelling? Future progress will benefit from interdisciplinary collaborations between ecologists and infectious disease biologists.

  10. The effects of isolated ankle strengthening and functional balance training on strength, running mechanics, postural control and injury prevention in novice runners: design of a randomized controlled trial.

    Science.gov (United States)

    Baltich, Jennifer; Emery, Carolyn A; Stefanyshyn, Darren; Nigg, Benno M

    2014-12-04

    Risk factors have been proposed for running injuries including (a) reduced muscular strength, (b) excessive joint movements and (c) excessive joint moments in the frontal and transverse planes. To date, many running injury prevention programs have focused on a "top down" approach to strengthen the hip musculature in the attempt to reduce movements and moments at the hip, knee, and/or ankle joints. However, running mechanics did not change when hip muscle strength increased. It could be speculated that emphasis should be placed on increasing the strength of the ankle joint for a "ground up" approach. Strengthening of the large and small muscles crossing the ankle joint is assumed to change the force distribution for these muscles and to increase the use of smaller muscles. This would be associated with a reduction of joint and insertion forces, which could have a beneficial effect on injury prevention. However, training of the ankle joint as an injury prevention strategy has not been studied. Ankle strengthening techniques include isolated strengthening or movement-related strengthening such as functional balance training. There is little knowledge about the efficacy of such training programs on strength alteration, gait or injury reduction. Novice runners will be randomly assigned to one of three groups: an isolated ankle strengthening group (strength, n = 40), a functional balance training group (balance, n = 40) or an activity-matched control group (control, n = 40). Isokinetic strength will be measured using a Biodex System 3 dynamometer. Running kinematics and kinetics will be assessed using 3D motion analysis and a force platform. Postural control will be assessed by quantifying the magnitude and temporal structure of the center of pressure trace during single leg stance on a force platform. The change pre- and post-training in isokinetic strength, running mechanics, and postural control variables will be compared following the interventions

  11. Parametric Study on Ultimate Failure Criteria of Elbow Piping Components in Seismically Isolated NPP

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Dae Gi; Ki, Min Kyu [KAERI, Daejeon (Korea, Republic of); Jeon, Bub Gyu; Kim, Nam Sik [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    It is well known that the interface pipes between isolated and non-isolated structures will become the most critical in the seismically isolated NPPs. Therefore, seismic performance of such interface pipes should be evaluated comprehensively especially in terms of the seismic fragility capacity. To evaluate the seismic capacity of interface pipes in the isolated NPP, firstly, we should define the failure mode and failure criteria of critical pipe components. Hence, in this study, we performed the dynamic tests of elbow components which were installed in a seismically isolated NPP, and evaluated the ultimate failure mode and failure criteria by using the test results. To do this, we manufactured 25 critical elbow component specimens and performed cyclic loading tests under the internal pressure condition. The failure mode and failure criteria of a pipe component will be varied by the design parameters such as the internal pressure, pipe diameter, loading type, and loading amplitude. From the tests, we assessed the effects of the variation parameters onto the failure criteria. For the tests, we generated the seismic input protocol of relative displacement between the ends of elbow component. In this paper, elbow in piping system was defined as a fragile element and numerical model was updated by component test. Failure mode of piping component under seismic load was defined by the dynamic tests of ultimate pipe capacity. For the interface piping system, the seismic capacity should be carefully estimated since that the required displacement absorption capacity will be increased significantly by the adoption of the seismic isolation system. In this study, the dynamic tests were performed for the elbow components which were installed in an actual NPPs, and the ultimate failure mode and failure criteria were also evaluated by using the test results.

  12. Ultimate after-heat removal system for nuclear reactors

    International Nuclear Information System (INIS)

    Bernard, L. Jr.

    1980-01-01

    The invention concerns the safety region of a nuclear power plant, especially the divertor for the residual heat which keeps forming after shutdown of the reactor. According to the invention a dry cooling tower of enclosed construction is planned. The walls and roof shall be rocket-proof. Such a configuration is described and explained by means of designs. (UWI) [de

  13. Alloy Design and Development of Cast Cr-W-V Ferritic Steels for Improved High-Temperature Strength for Power Generation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R L; Maziasz, P J; Vitek, J M; Evans, N D; Hashimoto, N

    2006-09-23

    Economic and environmental concerns demand that the power-generation industry seek increased efficiency for gas turbines. Higher efficiency requires higher operating temperatures, with the objective temperature for the hottest sections of new systems {approx} 593 C, and increasing to {approx} 650 C. Because of their good thermal properties, Cr-Mo-V cast ferritic steels are currently used for components such as rotors, casings, pipes, etc., but new steels are required for the new operating conditions. The Oak Ridge National Laboratory (ORNL) has developed new wrought Cr-W-V steels with 3-9% Cr, 2-3% W, 0.25% V (compositions are in wt.%), and minor amounts of additional elements. These steels have the strength and toughness required for turbine applications. Since cast alloys are expected to behave differently from wrought material, work was pursued to develop new cast steels based on the ORNL wrought compositions. Nine casting test blocks with 3, 9, and 11% Cr were obtained. Eight were Cr-W-V-Ta-type steels based on the ORNL wrought steels; the ninth was COST CB2, a 9Cr-Mo-Co-V-Nb cast steel, which was the most promising cast steel developed in a European alloy-development program. The COST CB2 was used as a control to which the new compositions were compared, and this also provided a comparison between Cr-W-V-Ta and Cr-Mo-V-Nb compositions. Heat treatment studies were carried out on the nine castings to determine normalizing-and-tempering treatments. Microstructures were characterized by both optical and transmission electron microscopy (TEM). Tensile, impact, and creep tests were conducted. Test results on the first nine cast steel compositions indicated that properties of the 9Cr-Mo-Co-V-Nb composition of COST CB2 were better than those of the 3Cr-, 9Cr-, and 11Cr-W-V-Ta steels. Analysis of the results of this first iteration using computational thermodynamics raised the question of the effectiveness in cast steels of the Cr-W-V-Ta combination versus the Cr

  14. ULtiMATE system for rapid assembly of customized TAL effectors.

    Directory of Open Access Journals (Sweden)

    Junjiao Yang

    Full Text Available Engineered TAL-effector nucleases (TALENs and TALE-based constructs have become powerful tools for eukaryotic genome editing. Although many methods have been reported, it remains a challenge for the assembly of designer-based TALE repeats in a fast, precise and cost-effective manner. We present an ULtiMATE (USER-based Ligation Mediated Assembly of TAL Effector system for speedy and accurate assembly of customized TALE constructs. This method takes advantage of uracil-specific excision reagent (USER to create multiple distinct sticky ends between any neighboring DNA fragments for specific ligation. With pre-assembled templates, multiple TALE DNA-binding domains could be efficiently assembled in order within hours with minimal manual operation. This system has been demonstrated to produce both functional TALENs for effective gene knockout and TALE-mediated gene-specific transcription activation (TALE-TA. The feature of both ease-of-operation and high efficiency of ULtiMATE system makes it not only an ideal method for biologic labs, but also an approach well suited for large-scale assembly of TALENs and any other TALE-based constructions.

  15. 78 FR 69101 - Agency Information Collection Activities: Declaration of the Ultimate Consignee That Articles...

    Science.gov (United States)

    2013-11-18

    ... Activities: Declaration of the Ultimate Consignee That Articles Were Exported for Temporary Scientific or... the Declaration of the Ultimate Consignee that Articles were Exported for Temporary Scientific or...: Title: Declaration of the Ultimate Consignee that Articles were Exported for Temporary Scientific or...

  16. Designing alternative strategies for the European industry according to its strength and weaknesses and taking into consideration the opportunities and threats of the PV market

    International Nuclear Information System (INIS)

    Viaud, M.; Despotou, E.; Latour, M.; Cameron, M.; Weiss, I.; Baumann, J.; Stierstorfer, J.; Gisler, R.

    2004-01-01

    The objectives were to generate a variety of strategies to identify alternative ways that the PV Sector can use its specific strengths to capitalize on opportunities or to avoid threats and to overcome its weaknesses. The so-called SWOT analysis provides a matrix illustrating how businesses can match the external opportunities and threats facing the sector with its internal strengths and weaknesses to yield in possible strategic alternatives. This method lends itself to brainstorming to create alternative strategies and actions, which might not otherwise be considered. In two working group meetings with participants from the PV industry, research and other stakeholders the SWOT were performed to result into implications for the PV sector. Through workshops the results will be discussed within an expert group and priorities for the future activities will be defined. The project is co-financed through the 6. Framework Programme of the EC. (authors)

  17. Influence of multiaxial preloading on the strength of concrete

    International Nuclear Information System (INIS)

    Linse, D.

    1975-01-01

    In a preliminary study about the influence of the loading direction discs of 20/20/5 cm were loaded at different stress-rates in one direction, then unloaded and loaded up to failure again. Two series of each about 15 specimens were tested: the first series was reloaded in the same direction as it was loaded before. If the preloading was not greater than about 90% of the original short-term uniaxial strength βsub(p), one could achieve in the second loading a higher strength than the strength βsub(p). The second series was reloaded normal to the direction of preloading. By an other series of about 50 specimens the influence of triaxial preloading on the uniaxial strength of concrete was tested. Cubes of 10cm were loaded by brush bearing platens up to a stress which was maximally three times higher than the uniaxial short-term strength βsub(p), then unloaded and tested again under uniaxial compression. The achieved ultimate strength of the cubes at the second loading was obviously dependent upon the stress-state and the stress-rate of the preloading. Multiaxial preloading which is far below the ultimate multiaxial strength can considerably defect the remaining strength of concrete. The decrease in strength was defined by the reduction of the uniaxial strength. It can be assumed that the remaining multiaxial strength is reduced at least to the same rate. Further tests are planned

  18. Ultimate pressure capacity assessment of R FRC PCCV based on the tension stiffening tests

    International Nuclear Information System (INIS)

    Hahm, Dae Gi; Choun, Young Sun

    2012-01-01

    The use of fibers in concrete or cement composites can enhance the performance of structural elements. Fibers have been used for a cement mixture to increase the toughness and tensile strength, and to improve the cracking and deformation characteristics. The addition of fibers into concrete can improve the ductility and increase the tensile resistance of concrete structures. Recently, the application of fibers to prestressed concrete containment vessels (PCCVs) has been a major research topic. However, the tensile stiffening behavior of reinforced - fiber reinforced concrete (RFRC) is not fully developed yet especially for specimens using large diameter re bars. In nuclear power plant (NPP) PCCVs, large diameter re bars are applied. Therefore, the tensile stiffening behavior model should be developed to assess ultimate pressure capacity (UPC) of R FRC PCCVs. In this study, we modeled the tensile stiffening behavior of R FRC PCCVs by using recently developed model, and assessed the UPC of R FRC PCCVs. To do this, we performed tension stiffening test of R FRC with large diameter re bar

  19. Ultimate pressure capacity assessment of R FRC PCCV based on the tension stiffening tests

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Dae Gi; Choun, Young Sun [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The use of fibers in concrete or cement composites can enhance the performance of structural elements. Fibers have been used for a cement mixture to increase the toughness and tensile strength, and to improve the cracking and deformation characteristics. The addition of fibers into concrete can improve the ductility and increase the tensile resistance of concrete structures. Recently, the application of fibers to prestressed concrete containment vessels (PCCVs) has been a major research topic. However, the tensile stiffening behavior of reinforced - fiber reinforced concrete (RFRC) is not fully developed yet especially for specimens using large diameter re bars. In nuclear power plant (NPP) PCCVs, large diameter re bars are applied. Therefore, the tensile stiffening behavior model should be developed to assess ultimate pressure capacity (UPC) of R FRC PCCVs. In this study, we modeled the tensile stiffening behavior of R FRC PCCVs by using recently developed model, and assessed the UPC of R FRC PCCVs. To do this, we performed tension stiffening test of R FRC with large diameter re bar.

  20. BOOK REVIEW: Seeking Ultimates. An Intuitive Guide to Physics

    Science.gov (United States)

    Brown, Neil

    2000-05-01

    Physics has the reputation of being a difficult and dry subject. Many books have been written in attempts to show that the difficulties are not insurmountable, even for the layman, and to convey some of the fascination it provides for those within it. In Seeking Ultimates Peter Landsberg avoids mathematics, the source of so many difficulties, entirely, and seeks to make physics comprehensible by what he terms intuition. He also emphasizes that there is almost no part of science that is completely understood; there are always areas of incompleteness and uncertainty, capable of providing exciting new results, and examples of this are highlighted throughout the book. After an introduction Landsberg starts with macroscopic phenomena for ease of understanding, though one might question whether the chosen topic of thermodynamics is ever going to be easy. Next he looks at microscopic effects, from atomic structure to the fundamental particles of the standard model and their interactions. There follow chapters on time and entropy, on chaos theory, on quantum mechanics and then cosmology. The final chapters look at physical constants (including the anthropic principle), whether physics has room for a creator God (the conclusion is that this is not the province of science), and some thoughts on science as a human activity. The chosen topics are those which have been important in the late twentieth century and remain important. Each chapter cites an eminent scientist as a `hero', though little is made of this. There are occasional historical notes, set in boxes, and a few short poems to leaven the text. What the book achieves is difficult to assess. Removing mathematics and adding a glossary of technical terms do not necessarily allow non-scientists to enjoy the text, as the publisher's note on the back cover suggests. The concepts can baffle the layman even more than the mathematics, and one of the most difficult of all physical concepts permeates so much of this book

  1. Numerical Model of High Strength Concrete

    Science.gov (United States)

    Wang, R. Z.; Wang, C. Y.; Lin, Y. L.

    2018-03-01

    The purpose of this paper is to present a three-dimensional constitutive model based on the concept of equivalent uniaxial strain. closed Menetrey-Willam (CMW) failure surfaces which combined with Menetrey-Willam meridian and the cap model are introduced in this paper. Saenz stress-strain model is applied and adjusted by the ultimate strength parameters from CMW failure surface to reflect the latest stress or strain condition. The high strength concrete (HSC) under tri-axial non-proportional loading is considered and the model in this paper performed a good prediction.

  2. Application of the Materials-by-Design Methodology to Redesign a New Grade of the High-Strength Low-Alloy Class of Steels with Improved Mechanical Properties and Processability

    Science.gov (United States)

    Grujicic, M.; Snipes, J. S.; Ramaswami, S.

    2016-01-01

    An alternative to the traditional trial-and-error empirical approach for the development of new materials is the so-called materials-by-design approach. Within the latter approach, a material is treated as a complex system and its design and optimization is carried out by employing computer-aided engineering analyses, predictive tools, and available material databases. In the present work, the materials-by-design approach is utilized to redesign a grade of high-strength low-alloy (HSLA) class of steels with improved mechanical properties (primarily strength and fracture toughness), processability (e.g., castability, hot formability, and weldability), and corrosion resistance. Toward that end, a number of material thermodynamics, kinetics of phase transformations, and physics of deformation and fracture computational models and databases have been developed/assembled and utilized within a multi-disciplinary, two-level material-by-design optimization scheme. To validate the models, their prediction is compared against the experimental results for the related steel HSLA100. Then the optimization procedure is employed to determine the optimal chemical composition and the tempering schedule for a newly designed grade of the HSLA class of steels with enhanced mechanical properties, processability, and corrosion resistance.

  3. Institutional Strength in Depth

    International Nuclear Information System (INIS)

    Weightman, M.

    2016-01-01

    Much work has been undertaken in order to identify, learn and implement the lessons from the TEPCO Fukushima Daiichi nuclear accident. These have mainly targeted on engineering or operational lessons. Less attention has been paid to the institutional lessons, although there have been some measures to improve individual peer reviews, particularly by the World Association of Nuclear Operators, and the authoritative IAEA report published in 2015 brought forward several important lessons for regulators and advocated a system approach. The report noted that one of the contributing factors the accident was the tendency of stakeholders not to challenge. Additionally, it reported deficiencies in the regulatory authority and system. Earlier, the root cause of the accident was identified by a Japanese independent parliamentary report as being cultural and institutional. The sum total of the institutions, the safety system, was ineffective. While it is important to address the many technical and operational lessons these may not necessary address this more fundamental lesson, and may not serve to provide robust defences against human or institutional failings over a wide variety of possible events and combinations. The overall lesson is that we can have rigorous and comprehensive safety standards and other tools in place to deliver high levels of safety, but ultimately what is important is the ability of the nuclear safety system to ensure that the relevant institutions diligently and effectively apply those standards and tools — to be robust and resilient. This has led to the consideration of applying the principles of the strength in depth philosophy to a nuclear safety system as a way of providing a framework for developing, assessing, reviewing and improving the system. At an IAEA conference in October 2013, a model was presented for a robust national nuclear safety system based on strength in depth philosophy. The model highlighted three main layers: industry, the

  4. Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

    2005-06-30

    Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

  5. Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits

    International Nuclear Information System (INIS)

    Canciamilla, A; Torregiani, M; Ferrari, C; Morichetti, F; Melloni, A; De La Rue, R M; Samarelli, A; Sorel, M

    2010-01-01

    Coupled-ring resonator-based slow light structures are reported and discussed. By combining the advantages of high index contrast silicon-on-insulator technology with an efficient thermo-optical activation, they provide an on-chip solution with a bandwidth of up to 100 GHz and a slowdown factor of up to 16, as well as a continuous reconfiguration scheme and a fine tunability. The performance of these devices is investigated in detail for both static and dynamic operation, in order to evaluate their potential in optical signal processing applications at high bit rate. The main impairments imposed by fabrication imperfections are also discussed in relation to the slowdown factor. In particular, the analysis of the impact of backscatter, disorder and two-photon absorption on the device transfer function reveals the ultimate limits of these structures and provides valuable design rules for their optimization

  6. Fuzzy stochastic analysis of serviceability and ultimate limit states of two-span pedestrian steel bridge

    Science.gov (United States)

    Kala, Zdeněk; Sandovič, GiedrÄ--

    2012-09-01

    The paper deals with non-linear analysis of ultimate and serviceability limit states of two-span pedestrian steel bridge. The effects of random material and geometrical characteristics on limit states are analyzed. The Monte Carlo method was applied to stochastic analysis. For the serviceability limit state, also influence of fuzzy uncertainty of the limit deflection value on random characteristics of load capacity of variable action was studied. The results prove that, for the type of structure studied, the serviceability limit state is decisive from the point of view of design. The present paper opens a discussion on the use of stochastic analysis to verify the limit deflections given in the standards EUROCODES.

  7. Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-13

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  8. Assessing Fatigue and Ultimate Load Uncertainty in Floating Offshore Wind Turbines Due to Varying Simulation Length

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, G.; Lackner, M.; Haid, L.; Matha, D.; Jonkman, J.; Robertson, A.

    2013-07-01

    With the push towards siting wind turbines farther offshore due to higher wind quality and less visibility, floating offshore wind turbines, which can be located in deep water, are becoming an economically attractive option. The International Electrotechnical Commission's (IEC) 61400-3 design standard covers fixed-bottom offshore wind turbines, but there are a number of new research questions that need to be answered to modify these standards so that they are applicable to floating wind turbines. One issue is the appropriate simulation length needed for floating turbines. This paper will discuss the results from a study assessing the impact of simulation length on the ultimate and fatigue loads of the structure, and will address uncertainties associated with changing the simulation length for the analyzed floating platform. Recommendations of required simulation length based on load uncertainty will be made and compared to current simulation length requirements.

  9. R&D paths toward achieving ultimate capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Peter Kneisel

    2004-09-01

    Superconducting niobium cavities for particle accelerator application are performing nowadays better than ever and a series of procedures have been established--if applied properly--which will result in multi-cell cavity gradients of up to E{sub acc} = 35 MV/m, the design goal for the International Linear Collider (ILC). In several cases gradients above 40 MV/m have been measured in single cell tests. These gradients are close to or at the critical magnetic field value for niobium--at least what is believed to be the fundamental limitation of the material. However, there are still some open questions, whether the value for the superheated magnetic field of {approx} 180 mT is the final answer.

  10. Ultimate storage of radioactive waste - geotechnical challenge or routine task?

    International Nuclear Information System (INIS)

    Alheid, H.J.

    2005-01-01

    Construction, operation and decommissioning of nuclear waste repositories require sophisticated design, high-tech technical implementation and reliable performance assessment studies. Geotechnical methods have been applied in many research projects and tailored to the high standards of nuclear waste disposal. Exemplary the development of methods for the characterization of excavation damaged zones (EDZ) is discussed in this paper. Well known geotechnical and geophysical methods have been adapted to fulfil the requirements of essential high resolution in space and the necessity of long term observations. The achieved improvements in measurement techniques and data processing allow to describe the properties of the EDZ in detail. Scientist have accepted the challenge and fulfilled the special requirements of measuring, monitoring and modelling in the field of nuclear waste disposal. The newly developed methods should be checked for their applicability to other geotechnical problems in order to achieve more detailed results than with standard methods. (orig.)

  11. Test research and analysis for ultimate capacity of Qinshan NPP PCCV

    International Nuclear Information System (INIS)

    Zufeng, X.

    1994-01-01

    This paper introduces design and research for containment of Qinshan NPP which is the first PWR in CHINA designed and constructed by ourselves. The PCCV design is basically in conformity to ASME code. To verify the structural integrity capacity of Qinshan NPP containment, we fulfilled SIT and ILRT successfully in June, 1991. The special attention of the paper is focused on the ultimate capacity of the PCCV under severe accidents and earthquake. A study comprised of five different independent parts has been performed for the development of containment model test and corresponding nonlinear analysis. There are two prestressed concrete containment models with equipment hatch. One is 1/15 scale with steel liner tested on shake table and then moved out loaded with atmospheric pressure. The other is 1/10 scale without steel liner loaded with water pressure until destruction. From different methods including model test and nonlinear analysis, all obtained unanimous conclusion. The capacity under internal pressure and earthquake is reliable. The safety margin is enough. Consequently, in the second phase of Qinshan NPP and other PWR NPP under design, PCCV should be a better selection in China since it's more economic, rational and safe. (author)

  12. The Strength Compass

    DEFF Research Database (Denmark)

    Ledertoug, Mette Marie

    In the Ph.D-project ͚Strengths-based Learning - Children͛s character strengths as a means to their learning potential͛ 750 Danish children have assessed ͚The Strength Compass͛ in order to identify their strengths and to create awareness of strengths. This was followed by a strengths......-based intervention program in order to explore the strengths. Finally different methods to apply the strength in everyday life at school were applied. The paper presentation will show the results for strengths display for children aged 6-16 in different categories: Different age groups: Are the same strengths...... present in both small children and youths? Gender: Do the results show differences between the two genders? Danish as a mother- tongue language: Do the results show any differences in the strengths display when considering different language and cultural backgrounds? Children with Special Needs: Do...

  13. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase.

    Science.gov (United States)

    Jiang, Pei; Ran, Jiabing; Yan, Pan; Zheng, Lingyue; Shen, Xinyu; Tong, Hua

    2018-02-01

    Bacterial cellulose/hydroxyapatite (BC/HAp) composite had favourable bioaffinity but its poor mechanical strength limited its widespread applications in bone tissue engineering (BTE). Silk fibroin, which possesses special crystalline structure, has been widely used as organic reinforcing material, and different SFs have different amino acid sequences, which exhibit different bioaffinity and mechanical properties. In this regard, bacterial cellulose-Antheraea yamamai silk fibroin/hydroxyapatite (BC-AYSF/HAp), bacterial cellulose-Bombyx mori silk fibroin/hydroxyapatite (BC-BMSF/HAp), and BC/HAp nano-composites were synthesized via a novel in situ hybridization method. Compared with BC/HAp and BC-BMSF/HAp, the BC-AYSF/HAp exhibited better interpenetration, which may benefit for the transportation of nutrients and wastes, the adhesion of cells as well. Additionally, the BC-AYSF/HAp also presented superior thermal stability than the other two composites revealed by differential thermal analysis (DTA) and thermogravimetric analysis (TGA). Compression testing indicated that the mechanical strength of BC-BMSF/HAp was greatly reinforced compared with BC/HAp and was even a little higher than that of BC-AYSF/HAp. Tensile testing showed that BC-AYSF/HAp possesses extraordinary mechanical properties with a higher elastic modulus at low strain and higher fracture strength simultaneously than the other two composites. In vitro cell culture exhibited that MC3T3-E1 cells on the BC-AYSF/HAp membrane took on higher proliferative potential than those on the BC-BMSF/HAp membrane. These results suggested that compared with BC-BMSF/HAp, the BC-AYSF/HAp composite was more appropriate as an ideal bone scaffold platform or biomedical membrane to be used in BTE.

  14. Moving Aerospace Structural Design Practice to a Load and Resistance Factor Approach

    Science.gov (United States)

    Larsen, Curtis E.; Raju, Ivatury S.

    2016-01-01

    Aerospace structures are traditionally designed using the factor of safety (FOS) approach. The limit load on the structure is determined and the structure is then designed for FOS times the limit load - the ultimate load. Probabilistic approaches utilize distributions for loads and strengths. Failures are predicted to occur in the region of intersection of the two distributions. The load and resistance factor design (LRFD) approach judiciously combines these two approaches by intensive calibration studies on loads and strength to result in structures that are efficient and reliable. This paper discusses these three approaches.

  15. Ultimate design load analysis of planetary gearbox bearings under extreme events

    DEFF Research Database (Denmark)

    Gallego Calderon, Juan Felipe; Natarajan, Anand; Cutululis, Nicolaos Antonio

    2017-01-01

    This paper investigates the impact of extreme events on the planet bearings of a 5 MW gearbox. The system is simulated using an aeroelastic tool, where the turbine structure is modeled, and MATLAB/Simulink, where the drivetrain (gearbox and generator) are modeled using a lumped-parameter approach....... Three extreme events are assessed: low-voltage ride through, emergency stop and normal stop. The analysis is focused on finding which event has the most negative impact on the bearing extreme radial loads. The two latter events are carried out following the guidelines of the International...

  16. The strength of polyaxial locking interfaces of distal radius plates.

    Science.gov (United States)

    Hoffmeier, Konrad L; Hofmann, Gunther O; Mückley, Thomas

    2009-10-01

    Currently available polyaxial locking plates represent the consequent enhancement of fixed-angle, first-generation locking plates. In contrast to fixed-angle locking plates which are sufficiently investigated, the strength of the new polyaxial locking options has not yet been evaluated biomechanically. This study investigates the mechanical strength of single polyaxial interfaces of different volar radius plates. Single screw-plate interfaces of the implants Palmar 2.7 (Königsee Implantate und Instrumente zur Osteosynthese GmbH, Allendorf, Germany), VariAx (Stryker Leibinger GmbH & Co. KG, Freiburg, Germany) und Viper (Integra LifeSciences Corporation, Plainsboro, NJ, USA) were tested by cantilever bending. The strength of 0 degrees, 10 degrees and 20 degrees screw locking angle was obtained during static and dynamic loading. The Palmar 2.7 interfaces showed greater ultimate strength and fatigue strength than the interfaces of the other implants. The strength of the VariAx interfaces was about 60% of Palmar 2.7 in both, static and dynamic loading. No dynamic testing was applied to the Viper plate because of its low ultimate strength. By static loading, an increase in screw locking angle caused a reduction of strength for the Palmar 2.7 and Viper locking interfaces. No influence was observed for the VariAx locking interfaces. During dynamic loading; angulation had no influence on the locking strength of Palmar 2.7. However, reduction of locking strength with increasing screw angulation was observed for VariAx. The strength of the polyaxial locking interfaces differs remarkably between the examined implants. Depending on the implant an increase of the screw locking angle causes a reduction of ultimate or fatigue strength, but not in all cases a significant impact was observed.

  17. PSA Update Procedures, an Ultimate Need for Living PSA

    International Nuclear Information System (INIS)

    Hegedus, D.

    1998-01-01

    Nuclear facilities by their complex nature, change with time. These changes can be both physical (plant modification, etc.), operational (enhanced procedures, etc.) and organizational. In addition, there are also changes in our understanding of the plant, due to operational experience, data collection, technology enhancements, etc. Therefore, it is imperative that PSA model must be frequently up-dated or modified to reflect these changes. Over the last ten years. these has been a remarkable growth of the use of Probabilistic Safety Assessments (PSAs). The most rapidly growing area of the PSA Applications is their use to support operational decision-making. Many of these applications are characterized by the potential for not only improving the safety level but also for providing guidance on the optimal use of resources and reducing regulatory burden. To enable a wider use of the PSA model as a tool for safety activities it is essential to maintain the model in a controlled state. Moreover, to fulfill requirements for L iving PSA , the PSA model has to be constantly updated and/or monitored to reflect the current plant configuration. It should be noted that the PSA model should not only represent the plant design but should also represent the operational and emergency procedures. To keep the PSA model up-to-date several issues should be clearly defined including: - Responsibility should be divided among the PSA group, - Procedures for implementing changes should be established, and - QA requirements/program should be established to assure documentation and reporting. (author)

  18. An Experimental Investigation on the Effect of Addition of Ternary Blend on the Mix Design Characteristics of High Strength Concrete using Steel Fibre

    Science.gov (United States)

    Sinha, Deepa A., Dr; Verma, A. K., Dr

    2017-08-01

    This paper presents the results of M60 grade of concrete. M60 grade of concrete is achieved by maximum density technique. Concrete is brittle and weak in tension and develops cracks during curing and due to thermal expansion / contraction over a period ot time. Thus the effect of addition of 1% steel fibre is studied. For ages, concrete has been one of the widely used materials for construction. When cement is manufactured, every one ton of cement produces around one ton of carbon dioxide leading to global warming and also as natural resources are finishing, so use of supplementary cementitious material like alccofine and flyash is used as partial replacement of cement is considered. The effect of binary and ternary blend on the strength characteristics is studied. The results indicate that the concrete made with alccofine and flyash generally show excellent fresh and hardened properties. The ternary system that is Portland cement-fly ash-Alccofine concrete was found to increase the strength of concrete when compared to concrete made with Portland cement or even from Portland cement and fly ash.

  19. The Development of Confidence Limits for Fatigue Strength Data

    International Nuclear Information System (INIS)

    SUTHERLAND, HERBERT J.; VEERS, PAUL S.

    1999-01-01

    Over the past several years, extensive databases have been developed for the S-N behavior of various materials used in wind turbine blades, primarily fiberglass composites. These data are typically presented both in their raw form and curve fit to define their average properties. For design, confidence limits must be placed on these descriptions. In particular, most designs call for the 95/95 design values; namely, with a 95% level of confidence, the designer is assured that 95% of the material will meet or exceed the design value. For such material properties as the ultimate strength, the procedures for estimating its value at a particular confidence level is well defined if the measured values follow a normal or a log-normal distribution. Namely, based upon the number of sample points and their standard deviation, a commonly-found table may be used to determine the survival percentage at a particular confidence level with respect to its mean value. The same is true for fatigue data at a constant stress level (the number of cycles to failure N at stress level S(sub 1)). However, when the stress level is allowed to vary, as with a typical S-N fatigue curve, the procedures for determining confidence limits are not as well defined. This paper outlines techniques for determining confidence limits of fatigue data. Different approaches to estimating the 95/95 level are compared. Data from the MSU/DOE and the FACT fatigue databases are used to illustrate typical results

  20. Empirical Approach for Determining Axial Strength of Circular Concrete Filled Steel Tubular Columns

    Science.gov (United States)

    Jayalekshmi, S.; Jegadesh, J. S. Sankar; Goel, Abhishek

    2018-03-01

    The concrete filled steel tubular (CFST) columns are highly regarded in recent years as an interesting option in the construction field by designers and structural engineers, due to their exquisite structural performance, with enhanced load bearing capacity and energy absorption capacity. This study presents a new approach to simulate the capacity of circular CFST columns under axial loading condition, using a large database of experimental results by applying artificial neural network (ANN). A well trained network is established and is used to simulate the axial capacity of CFST columns. The validation and testing of the ANN is carried out. The current study is focused on proposing a simplified equation that can predict the ultimate strength of the axially loaded columns with high level of accuracy. The predicted results are compared with five existing analytical models which estimate the strength of the CFST column. The ANN-based equation has good prediction with experimental data, when compared with the analytical models.

  1. Empirical Approach for Determining Axial Strength of Circular Concrete Filled Steel Tubular Columns

    Science.gov (United States)

    Jayalekshmi, S.; Jegadesh, J. S. Sankar; Goel, Abhishek

    2018-06-01

    The concrete filled steel tubular (CFST) columns are highly regarded in recent years as an interesting option in the construction field by designers and structural engineers, due to their exquisite structural performance, with enhanced load bearing capacity and energy absorption capacity. This study presents a new approach to simulate the capacity of circular CFST columns under axial loading condition, using a large database of experimental results by applying artificial neural network (ANN). A well trained network is established and is used to simulate the axial capacity of CFST columns. The validation and testing of the ANN is carried out. The current study is focused on proposing a simplified equation that can predict the ultimate strength of the axially loaded columns with high level of accuracy. The predicted results are compared with five existing analytical models which estimate the strength of the CFST column. The ANN-based equation has good prediction with experimental data, when compared with the analytical models.

  2. Factors controlling strength of structures, and anticipated overstrength for seismic load conditions

    International Nuclear Information System (INIS)

    Singh, A.K.

    1985-01-01

    This paper discusses how the safe shutdown earthquake level, the ratio of operating basis earthquake to safe shutdown earthquake level, the shape of the earthquake spectra and the modeling of the structure affect the seismic overstrength of structures. The relationship between actual mean strength and the minimum specified strength of concrete and structural steel is also presented. The paper identifies which concrete and steel structures are generally sized for earthquake loads and which are generally sized for other factors, e.g., tornado missiles, loss of coolant accident pressure loads, equipment laydown loads and radiation shielding. The results of a study evaluating the mean ultimate capacity of a pressurized water reactor containment are presented to show that in terms of a ground motion, the seismic capacity may be four to five times the design safe shutdown earthquake level

  3. Fatigue strength of repaired cracks in welded connections made of very high strength steels

    NARCIS (Netherlands)

    Akyel, A.

    2017-01-01

    For cyclically loaded structures, fatigue design becomes one of the important design criteria. The state of art shows that with modification of the conventional structural design methodology, the use of very high strength steels may have a positive effect on fatigue strength of welded connections.

  4. High-strength beryllium block

    International Nuclear Information System (INIS)

    Pinto, N.P.; Keith, G.H.

    1977-01-01

    Beryllium billets hot isopressed using fine powder of high purity have exceptionally attractive properties; average tensile ultimate, 0.2% offset yield strength and elongation are 590 MPa, 430 MPa and 4.0% respectively. Properties are attributed to the fine grain size (about 4.0 μm average diameter) and the relatively low levels of BeO present as fine, well-dispersed particles. Dynamic properties, e.g., fracture toughness, are similar to those of standard grade, high-purity beryllium. The modulus of beryllium is retained to very high stress levels, and the microyield stress or precision elastic limit is higher than for other grades, including instrument grades. Limited data for billets made from normal-purity fine powders show similar room temperature properties. (author)

  5. Withdrawal Strength and Bending Yield Strength of Stainless Steel Nails

    Science.gov (United States)

    Douglas R. Rammer; Samuel L. Zelinka

    2015-01-01

    It has been well established that stainless steel nails have superior corrosion performance compared to carbon steel or galvanized nails in treated wood; however, their mechanical fastening behavior is unknown. In this paper, the performance of stainless steel nails is examined with respect to two important properties used in wood connection design: withdrawal strength...

  6. Cemented materials: accounting for compaction delays and minimising strength loss with time

    CSIR Research Space (South Africa)

    Bredenhann, SJ

    2012-08-01

    Full Text Available In South Africa extensive use is made of cement stabilized materials in the structural layers of both new road and construction works and pavement rehabilitation. The construction process plays a role in the ultimate strength obtained...

  7. Residual-strength determination in polymetric materials

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, R.M.

    1981-10-01

    Kinetic theory of crack growth is used to predict the residual strength of polymetric materials acted upon by a previous history. Specifically, the kinetic theory is used to characterize the state of growing damage that occurs under a constant-stress (load) state. The load is removed before failure under creep-rupture conditions, and the residual instantaneous strength is determined from the theory by taking account of the damage accumulation under the preceding constant-load history. The rate of change of residual strength is found to be strongest when the duration of the preceding load history is near the ultimate lifetime under that condition. Physical explanations for this effect are given, as are numerical examples. Also, the theoretical prediction is compared with experimental data.

  8. Residual-strength determination in polymetric materials

    International Nuclear Information System (INIS)

    Christensen, R.M.

    1981-01-01

    Kinetic theory of crack growth is used to predict the residual strength of polymetric materials acted upon by a previous history. Specifically, the kinetic theory is used to characterize the state of growing damage that occurs under a constant-stress (load) state. The load is removed before failure under creep-rupture conditions, and the residual instantaneous strength is determined from the theory by taking account of the damage accumulation under the preceding constant-load history. The rate of change of residual strength is found to be strongest when the duration of the preceding load history is near the ultimate lifetime under that condition. Physical explanations for this effect are given, as are numerical examples. Also, the theoretical prediction is compared with experimental data

  9. Thermal performance experiments on ultimate heat sinks, spray ponds, and cooling ponds

    International Nuclear Information System (INIS)

    Hadlock, R.K.

    1976-12-01

    A program of measurement on a Battelle-Northwest (BNW) spray pond has been completed to prove an integrated instrumentation system for application in future field experiments. The measurement programs in the field will produce data of relevance to the design and understanding of performance for ultimate heat sinks as components of emergency core cooling systems. In the absence of active emergency cooling systems, the data will be obtained on analog systems--prime candidates among these are the naturally-occurring hot ponds at Yellowstone National Park and man-made hot cooling ponds at Savannah River National Laboratory as well as spray ponds at various industrial facilities. The proof experiment has provided data that not only illustrate the effectiveness of the instrumentation system but also display interesting site-specific heat transfer processes. The data to be obtained in the field will also be site specific but must be of generic applicability in modeling for design and performance purposes. The integrated instrumentation system will evolve, through modest modifications and substantial supplementation, to provide the requisite data for the more demanding situation of work in and about hot water

  10. Ultimate architecture

    CERN Multimedia

    Jencks, Charles

    2007-01-01

    "European physics hothouse CERN recently unveiled Atlas, the world's most powerful particle detector, which it will use to search for the fundamental building blocks of nature from May next year. Charles Jencks describes the experience of getting up clsoe to the engineering marvel that could en up creating a mini-black hole."(5 pages with photos).

  11. Ultimate energy

    International Nuclear Information System (INIS)

    1994-01-01

    An explanation is given of the complexity faced by the scientific researcher in an effort to achieve fusion power. Outlines the theory and current experiments being pursued in this complex project, including visits to five major fusion research laboratories, and interviews with physicists

  12. The Association between Maximal Bench Press Strength and Isometric Handgrip Strength among Breast Cancer Survivors

    Science.gov (United States)

    Rogers, Benjamin H.; Brown, Justin C.; Gater, David R.; Schmitz, Kathryn H.

    2016-01-01

    Objective One-repetition maximum (1-RM) bench press strength is considered the gold standard to quantify upper-body muscular strength. Isometric handgrip strength is frequently used as a surrogate for 1-RM bench press strength among breast cancer (BrCa) survivors. The relationship between 1-RM bench press strength and isometric handgrip strength, however, has not been characterized among BrCa survivors. Design Cross-sectional study. Setting Laboratory. Participants Community-dwelling BrCa survivors. Interventions Not applicable. Main Outcome Measure 1-RM bench press strength was measured with a barbell and exercise bench. Isometric handgrip strength was measured using an isometric dynamometer with three maximal contractions of left and right hands. All measures were conducted by staff with training in clinical exercise testing. Results Among 295 BrCa survivors, 1-RM bench press strength was 18.2±6.1 kg (range: 2.2-43.0) and isometric handgrip strength was 23.5±5.8 kg (range: 9.0-43.0). The strongest correlate of 1-RM bench press strength was the average isometric handgrip strength of both hands (r=0.399; Pisometric handgrip strength of both hands overestimated 1-RM bench press strength by 4.7 kg (95% limits of agreement: −8.2 to 17.6). In a multivariable linear regression model, the average isometric handgrip strength of both hands (β=0.31; Pstrength (R2=0.23). Conclusions Isometric handgrip strength is a poor surrogate for 1-RM bench press strength among BrCa survivors. 1-RM bench press and isometric handgrip strength quantify distinct components of muscular strength. PMID:27543047

  13. 75 FR 76746 - Agency Information Collection Activities: Declaration of Ultimate Consignee That Articles Were...

    Science.gov (United States)

    2010-12-09

    ... Activities: Declaration of Ultimate Consignee That Articles Were Exported for Temporary Scientific or... That Articles Were Exported for Temporary Scientific or Educational Purposes. This is a proposed... forms of information. Title: Declaration of Ultimate Consignee That Articles Were Exported for Temporary...

  14. 7 CFR 4280.21 - Eligible REDG Ultimate Recipients and Projects.

    Science.gov (United States)

    2010-01-01

    ... care providers; (5) Projects that utilize Advanced Telecommunications or computer networks to... 7 Agriculture 15 2010-01-01 2010-01-01 false Eligible REDG Ultimate Recipients and Projects. 4280... Economic Development Loan and Grant Programs § 4280.21 Eligible REDG Ultimate Recipients and Projects. The...

  15. 78 FR 55117 - Ultimate Heat Sink for Nuclear Power Plants; Draft Regulatory Guide

    Science.gov (United States)

    2013-09-09

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0203] Ultimate Heat Sink for Nuclear Power Plants; Draft... (DG), DG-1275, ``Ultimate Heat Sink for Nuclear Power Plants.'' This regulatory guide (RG) describes methods and procedures acceptable to the NRC staff that nuclear power plant facility licensees and...

  16. Utilization of Local Ingredients for the Production of High-Early-Strength Engineered Cementitious Composites

    Directory of Open Access Journals (Sweden)

    Hanwen Deng

    2018-01-01

    Full Text Available The rapid repair and retrofitting of existing transportation infrastructure requires dimensional stability and ductile repair material that can obtain sufficiently high strength in a few hours to accommodate the large loading and deformation at an early age. Engineering cementitious composites (ECCs is a class representative of the new generation of high-performance fiber-reinforced cement-based composites (HPFRCC with medium fiber content. The unique properties of tremendous ductility and tight multiple crack behavior indicate that ECC can be used as an effective retrofit material. The wide application of this material in China will require the use of all local ingredients. In this study, based on Chinese domestic ingredients, including matrix materials and all fibers, high-early-strength ECC (HES-ECC was designed under the guidance of strain-hardening criterion of ECC. The matrix properties and fiber/matrix interfacial micromechanics properties were obtained from three-point-bending test and single-fiber pullout test. The mechanical properties of HES-ECC were achieved by direct tensile test. The experimental results show that HES-ECC was successfully developed by using all Chinese materials. When using the domestic PVA fiber at 2%, the strength requirement can be achieved but only a low ductility. When using the domestic PE fiber at 0.8%, the strength and deformation requirement both can be obtained. The HES-ECC developed in this study exhibited compressive strength of more than 25 MPa within 6 hours, and an ultimate tensile strength of 5-6 MPa and tensile strain capacity of 3-4% after 60 days. Moreover, the cost of using domestic fiber can be largely reduced compared with using imported fiber, up to 70%; it is beneficial to the promotion of these high-early-strength ECCs in the Chinese market.

  17. Estimated strength of shear keys in concrete dams

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, D.D. [Hatch Energy, Niagara Falls, ON (Canada); Lum, K.K.Y. [BC Hydro, Burnaby, BC (Canada)

    2008-07-01

    BC Hydro requested that Hatch Energy review the seismic stability of Ruskin Dam which was constructed in 1930 at Hayward Lake in British Columbia. The concrete gravity dam is founded nearly entirely on rock in a narrow valley. The vertical joints between blocks are keyed and grouted. The strength of the shear keys was assessed when a non-linear finite element model found that significant forces were being transferred laterally to the abutments during an earthquake. The lateral transfer of loads to the abutment relies on the strength of the shear keys. The dynamic finite element analysis was used to determine the stability of the dam. A review of the shear strength measurements reported in literature showed that the measurements compared well to those obtained by BC Hydro from cores taken from Ruskin Dam. The cohesive strength obtained using the Griffith failure criteria was also in good agreement with both sets of measurements. A simple ultimate shear strength equation was developed using the Mohr-Coulomb failure criteria to determine combined cohesive and frictional strength of shear keys. Safety factors of 2.0 for static loads and 1.5 for seismic loads were proposed to reduce the ultimate strength to allowable values. It was concluded that given the relatively high shear strength established for the shear keys, the abutment rock or dam/abutment contact will control the amount of load which can arch to the abutments. 8 refs., 4 tabs., 5 figs.

  18. Strengths-based Learning

    DEFF Research Database (Denmark)

    Ledertoug, Mette Marie

    -being. The Ph.D.-project in Strength-based learning took place in a Danish school with 750 pupils age 6-16 and a similar school was functioning as a control group. The presentation will focus on both the aware-explore-apply processes and the practical implications for the schools involved, and on measurable......Strength-based learning - Children͛s Character Strengths as Means to their Learning Potential͛ is a Ph.D.-project aiming to create a strength-based mindset in school settings and at the same time introducing strength-based interventions as specific tools to improve both learning and well...

  19. A probabilistics safety assessment of ultimate response guidelines of Maanshan Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Wang, P-Y.; Lee, M. [National Tsing Hua Univ., Hsinchu, Taiwan (China); Chao, C-C. [Inst. of Nuclear Energy Research, Taoyuan, Taiwan (China)

    2014-07-01

    Ultimate Response Guidelines (URGs) was proposed to mitigate the so called 'Fukushima type accident' of nuclear power plants (NPPs). As specified in URGs, if it is necessary, operators will depressurize the secondary side of steam generators (SGs) to bring in the low pressure water. The injection damages the economic value of the plant. However, the injection prevents the cladding temperature from rising above 1500 F (1089 K), which is the temperature that release of volatile fission products from gap is initiated. In the present study, the impact of URGs on the Core Damage Frequency (CDF) in a SBO (Station Blackout) accident of a Pressurized Water Reactor (PWR) designed by Westinghouse and adopts large dry containment is quantified. In the Base Case analysis of the study, the actions in the URGs are not considered. The CDF of SBO in the base case calculation is 2.49x10{sup -7} year. The actions specified in URGs can reduce CDF by 62%. The strategies in URGs are very effective in enhancing the reliability of decay heat removal via SG secondary side. Therefore, the implementation of these strategies can reduce the CDF of sequences involving late failure of AFWS. After the incorporation URGs, the dominant sequences of SBO are the sequences with seal failure. (author)

  20. Ultimate intra-wafer critical dimension uniformity control by using lithography and etch tool corrections

    Science.gov (United States)

    Kubis, Michael; Wise, Rich; Reijnen, Liesbeth; Viatkina, Katja; Jaenen, Patrick; Luca, Melisa; Mernier, Guillaume; Chahine, Charlotte; Hellin, David; Kam, Benjamin; Sobieski, Daniel; Vertommen, Johan; Mulkens, Jan; Dusa, Mircea; Dixit, Girish; Shamma, Nader; Leray, Philippe

    2016-03-01

    With shrinking design rules, the overall patterning requirements are getting aggressively tighter. For the 7-nm node and below, allowable CD uniformity variations are entering the Angstrom region (ref [1]). Optimizing inter- and intra-field CD uniformity of the final pattern requires a holistic tuning of all process steps. In previous work, CD control with either litho cluster or etch tool corrections has been discussed. Today, we present a holistic CD control approach, combining the correction capability of the etch tool with the correction capability of the exposure tool. The study is done on 10-nm logic node wafers, processed with a test vehicle stack patterning sequence. We include wafer-to-wafer and lot-to-lot variation and apply optical scatterometry to characterize the fingerprints. Making use of all available correction capabilities (lithography and etch), we investigated single application of exposure tool corrections and of etch tool corrections as well as combinations of both to reach the lowest CD uniformity. Results of the final pattern uniformity based on single and combined corrections are shown. We conclude on the application of this holistic lithography and etch optimization to 7nm High-Volume manufacturing, paving the way to ultimate within-wafer CD uniformity control.

  1. PEP-X: An Ultimate Storage Ring Based on Fourth-Order Geometric Achromats

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai; Bane, Karl; Hettel, Robert; Nosochkov, Yuri; Wang, Min-Huey; /SLAC

    2012-04-06

    We have designed an 'ultimate' storage ring for the PEP-X light source that achieves the diffraction limited emittances (at 1.5 {angstrom}) of 12 pm-rad in both horizontal and vertical planes with a 4.5-GeV beam. These emittances include the contribution of intrabeam scattering at a nominal current of 200 mA in 3300 bunches. This quality beam in conjunction with a conventional 4-m undulator in a straight section can generate synchrotron radiation having a spectral brightness above 10{sup 22} [photons/s/mm{sup 2}/mrad{sup 2}/0.1% BW] at a 10 keV photon energy. The high coherence at the diffraction limit makes PEP-X competitive with 4th generation light sources based on an energy recovery linac. In addition, the beam lifetime is several hours and the dynamic aperture is large enough to allow off-axis injection. The alignment and stability tolerances, though challenging, are achievable. A ring with all these properties is only possible because of several major advances in mitigating the effects of nonlinear resonances.

  2. Pareto-Optimal Evaluation of Ultimate Limit States in Offshore Wind Turbine Structural Analysis

    Directory of Open Access Journals (Sweden)

    Michael Muskulus

    2015-12-01

    Full Text Available The ultimate capacity of support structures is checked with extreme loads. This is straightforward when the limit state equations depend on a single load component, and it has become common to report maxima for each load component. However, if more than one load component is influential, e.g., both axial force and bending moments, it is not straightforward how to define an extreme load. The combination of univariate maxima can be too conservative, and many different combinations of load components can result in the worst value of the limit state equations. The use of contemporaneous load vectors is typically non-conservative. Therefore, in practice, limit state checks are done for each possible load vector, from each time step of a simulation. This is not feasible when performing reliability assessments and structural optimization, where additional, time-consuming computations are involved for each load vector. We therefore propose to use Pareto-optimal loads, which are a small set of loads that together represent all possible worst case scenarios. Simulations with two reference wind turbines show that this approach can be very useful for jacket structures, whereas the design of monopiles is often governed by the bending moment only. Even in this case, the approach might be useful when approaching the structural limits during optimization.

  3. A study on nonlinear behavior of reactor containment structures during ultimate accident condition(I)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Hoon; Kim, Young Jin; Park, Joo Yeon [Youngdong Univ., Yeongdong (Korea, Republic of)] (and others)

    2003-03-15

    In this study, the following scope and contents are established for first year's study of determining ultimate pressure capacity of CANDU-type reactor containment. State-of-arts on the prediction of the ultimate pressure capacity of prestressed concrete reactor containment. Comparative study on structural characteristics and analysis model of CANDU-type reactor containment. State-of-arts on evaluation method of the ultimate pressure capacity of prestressed concrete reactor containment. Enhancement of evaluation method of the ultimate pressure capacity for PWR containment structure. In order to determine a realistic lower bound of a typical reactor containment structural capacity for internal pressure, modelling techniques and analytical investigation to predict its non-linear behavior up to ultimate capacity are required. Especially, the in-depth evaluation of modeling technique and analysis procedure for determining ultimate pressure capacity of CANDU-type reactor containment is required. Therefore, modelling techniques and analytical investigation to predict its non-linear behavior up to ultimate pressure capacity of CANDU-type reactor containment for internal pressure will be suggested in this study.

  4. A study on nonlinear behavior of reactor containment structures during ultimate accident condition(I)

    International Nuclear Information System (INIS)

    Kim, Sun Hoon; Kim, Young Jin; Park, Joo Yeon

    2003-03-01

    In this study, the following scope and contents are established for first year's study of determining ultimate pressure capacity of CANDU-type reactor containment. State-of-arts on the prediction of the ultimate pressure capacity of prestressed concrete reactor containment. Comparative study on structural characteristics and analysis model of CANDU-type reactor containment. State-of-arts on evaluation method of the ultimate pressure capacity of prestressed concrete reactor containment. Enhancement of evaluation method of the ultimate pressure capacity for PWR containment structure. In order to determine a realistic lower bound of a typical reactor containment structural capacity for internal pressure, modelling techniques and analytical investigation to predict its non-linear behavior up to ultimate capacity are required. Especially, the in-depth evaluation of modeling technique and analysis procedure for determining ultimate pressure capacity of CANDU-type reactor containment is required. Therefore, modelling techniques and analytical investigation to predict its non-linear behavior up to ultimate pressure capacity of CANDU-type reactor containment for internal pressure will be suggested in this study

  5. Tensile strengths of polyamide based 3D printed polymers in liquid nitrogen

    International Nuclear Information System (INIS)

    Cruz, P; Shoemake, E D; Adam, P; Leachman, J

    2015-01-01

    Advances in additive manufacturing technology have made 3D printing a viable solution for many industries, allowing for the manufacture of designs that could not be made through traditional subtractive methods. Applicability of additive manufacturing in cryogenic applications is hindered, however, by a lack of accurate material properties information. Nylon is available for printing using fused deposition modeling (FDM) and selective laser sintering (SLS). We selected 5 SLS (DuraForm® EX, DuraForm® HST, DuraForm® PA, PA 640-GSL, and PA 840-GSL) and 2 FDM (Nylon 12, ULTEM) nylon variants based on the bulk material properties and printed properties at room temperature. Tensile tests were performed on five samples of each material while immersed in liquid nitrogen at approximately 77 Kelvin. Samples were tested in XY and, where available, Z printing directions to determine influence on material properties. Results show typical SLS and FDM nylon ultimate strength retention at 77 K, when compared to (extruded or molded) nylon ultimate strength. (paper)

  6. Treatment of the loss of ultimate heat sink initiating events in the IRSN level 1 PSA

    International Nuclear Information System (INIS)

    Dupuy, Patricia; Georgescu, Gabriel; Corenwinder, Francois

    2014-01-01

    The total loss of the ultimate heat sink is an initiating event which, even it is mainly of external origin, has been considered in the frame of internal events Level 1 PSA by IRSN. The on-going actions on the development of external hazards PSA and the recent incident of loss of the heat sink induced by the ingress of vegetable matter that occurred in France in 2009 have pointed out the need to improve the modeling of the loss of the heat sink initiating event and sequences to better take into account the fact that this loss may be induced by external hazards and thus affect all the site units. The paper presents the historical steps of the modeling of the total loss of the heat sink, the safety stakes of this modeling, the main assumptions used by IRSN in the associated PSA for the 900 MWe reactors and the results obtained. The total loss of the heat sink was not initially addressed in the safety demonstration of French NPPs. On the basis of the insights of the first probabilistic assessments performed in the 80's, the risks associated to this 'multiple failure situation' turned out to be very significant and design and organisational improvements were implemented on the plants. Reviews of the characterization of external hazards and of their consequences on the installations and French operating feedback have revealed that extreme hazards may induce a total loss of the heat sink. Moreover, the accident that occurred at Fukushima in 2011 has pointed out the risk of such a loss of long duration at all site units in case of extreme hazards. In this context, it seems relevant to further improve the modelling of the total loss of the heat sink by considering the external hazards that may cause this loss. In a first step, IRSN has improved the assumptions and data used in the loss of the heat sink PSA model, in particular by considering that such a loss may affect all the site units. The next challenge will be the deeper analysis of the impact of external hazards on

  7. Human performance evaluation: The procedures of ultimate response guideline for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kang-Hung, E-mail: alvinks@iner.gov.tw [Institute of Nuclear Energy Research, Atomic Engery Council, No. 1000, Whenhua Road, Jiaan Village, Longtan Township, Taoyuan County, Taiwan (China); Hwang, Sheue-Ling, E-mail: slhwang@ie.nthu.edu.tw [Department of Industrial Engineering and Engineering Management, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, Taiwan (China)

    2014-07-01

    Highlights: • This study adopts SPAR-H to evaluate HEPs in the URG procedures. • The involvement of URG procedures could reduce CDF significantly. • Upgrading the training level of staff will enhance the reliability effectively. • Aiding the plant manager in making URG decision will enhance the reliability. - Abstract: In the nuclear accident which occurred in Japan on March 11, 2011, several units of Fukushima conventional BWR experienced a total loss of power and water supply triggered by a heavy earthquake and subsequent Tsunami which were outside design models. In the past, when an accident occurred, operators in nuclear power plants (NPP) followed emergency operating procedures (EOPs) or severe accident management guidance (SAMG). However, EOP and SAMG are symptom-based procedures to cope with severe transients and accidents, depending on real-time operational parameters. Ultimate response guidelines (URG), a plant specific interim remedy action plan, was developed to manage accidents caused by compound disasters which exceed design models. The URG guides the plant operators’ conduct of reactor depressurization, core cooling water injection, and containment venting. This study adopts NUREG/CR-6883 (Standardized Plant Analysis Risk Human Reliability Analysis, SPAR-H) to evaluate human error probabilities (HEPs) of action and diagnosis in the current URG procedures. We found the human reliability of URG procedures analyzed by SPAR-H is about 85% (depending on different decision makers). Upgrading the training level of staff or enhancing plant managers ability to decide whether to execute URG will enhance the human reliability of URG procedures.

  8. Strength Tests on Hulls and Floats

    Science.gov (United States)

    Matthaes, K

    1942-01-01

    The present report deals with strength tests on hulls and floats intended in part for the collection of construction data for the design of these components and in part for the stress analysis of the finished hulls and floats.

  9. Shear strength of clay and silt embankments.

    Science.gov (United States)

    2009-09-01

    Highway embankment is one of the most common large-scale geotechnical facilities constructed in Ohio. In the past, the design of these embankments was largely based on soil shear strength properties that had been estimated from previously published e...

  10. Concurrent engineering solution for the design of ship and offshore bracket parts and fabrication process

    Directory of Open Access Journals (Sweden)

    Tae-Won Kim

    2013-09-01

    Full Text Available Brackets in ships and offshore structures are added structures that can endure stress concentrations. In this study, a concurrent engineering solution was proposed, and a high strength low carbon cast steel alloy applicable to offshore structures was designed and developed. The yield strength and ultimate tensile strength of the designed steel were 480 and 600 MPa, respectively. The carbon equivalent of the steel was 0.446 with a weld crack susceptibility index of 0.219. The optimal structural design of the brackets for offshore structures was evaluated using ANSYS commercial software. The possibility of replacing an assembly of conventional built-up brackets with a single casting bulb bracket was verified. The casting process was simulated using MAGMAsoft commercial software, and a casting fabrication process was designed. For the proposed bulb bracket, it was possible to reduce the size and weight by approximately 30% and 50%, respectively, compared to the conventional type of bracket.

  11. [Deniss Hanovs, Valdis Tēraudkalns: Ultimate Freedom - no choice] / Olaf Mertelsmann

    Index Scriptorium Estoniae

    Mertelsmann, Olaf, 1969-

    2014-01-01

    Arvustus: Deniss Hanovs, Valdis Tēraudkalns: Ultimate Freedom - no choice. The culture of authoritarianism in Latvia, 1934-1940. (Central and Eastern Europe. Reginal perspectives in global context, Bd. 2.) Brill. Leiden-Boston 2013

  12. Tensile strength of woven yarn kenaf fiber reinforced polyester composites

    Directory of Open Access Journals (Sweden)

    A.E. Ismail

    2015-12-01

    Full Text Available This paper presents the tensile strength of woven kenaf fiber reinforced polyester composites. The as-received yarn kenaf fiber is weaved and then aligned into specific fiber orientations before it is hardened with polyester resin. The composite plates are shaped according to the standard geometry and uni-axially loaded in order to investigate the tensile responses. Two important parameters are studied such as fiber orientations and number of layers. According to the results, it is shown that fiber orientations greatly affected the ultimate tensile strength but it is not for modulus of elasticity for both types of layers. It is estimated that the reductions of both ultimate tensile strength and Young’s modulus are in the range of 27.7-30.9% and 2.4-3.7% respectively, if the inclined fibers are used with respect to the principal axis.

  13. Design

    DEFF Research Database (Denmark)

    Volf, Mette

    This publication is unique in its demystification and operationalization of the complex and elusive nature of the design process. The publication portrays the designer’s daily work and the creative process, which the designer is a part of. Apart from displaying the designer’s work methods...... and design parameters, the publication shows examples from renowned Danish design firms. Through these examples the reader gets an insight into the designer’s reality....

  14. Give Me Strength.

    Institute of Scientific and Technical Information of China (English)

    维拉

    1996-01-01

    Mort had an absolutely terrible day at the office.Everythingthat could go wrong did go wrong.As he walked home he could beheard muttering strange words to himself:“Oh,give me strength,give me strength.”Mort isn’t asking for the kind of strength thatbuilds strong muscles:he’s asking for the courage or ability to

  15. Recommendation for basis for decision on a Danish ultimate storage for low and intermediate radioactive wastes

    International Nuclear Information System (INIS)

    2006-12-01

    In 2003 the Danish Parliament consented to let the government start the preparation of a basis for decision on a Danish ultimate storage for low and intermediate radioactive wastes. The present report is the result of the preparation process, and it describes the fundamental safety and environmental principles for establishing an ultimate storage, including determining the principles for the site selection, storage construction, and safety analyses. (LN)

  16. A Technique for Temperature and Ultimate Load Calculations of Thin Targets in a Pulsed Electron Beam

    DEFF Research Database (Denmark)

    Hansen, Jørgen-Walther; Lundsager, Per

    1979-01-01

    A technique is presented for the calculation of transient temperature distributions and ultimate load of rotationally symmetric thin membranes with uniform lateral load and exposed to a pulsed electron beam from a linear accelerator. Heat transfer by conduction is considered the only transfer...... mechanism. The ultimate load is calculated on the basis of large plastic strain analysis. Analysis of one aluminum and one titanium membrane is shown....

  17. Educational attainment and ultimate fertility among Swedish women born in 1955-59

    Directory of Open Access Journals (Sweden)

    Gerda Neyer

    2006-05-01

    Full Text Available This is the second of two companion papers addressing the association between educational attainment and fertility for some sixty educational groups of Swedish women, defined according to field of education as well as level of education. The first paper is about childlessness and education, the present one about the mean number of children ever born. We find that ultimate fertility decreases somewhat with an increasing educational level, but its dependence on the field of education is much more impressive. In general, educational groups with relatively little childlessness also have relatively high ultimate fertility, and educational groups with much childlessness have relatively low ultimate fertility. In particular, women educated for the teaching or health-care professions have less childlessness and a higher ultimate fertility than others. Conversely, women with an education for esthetic or (non-teacher humanist occupations have unusually high fractions childless and low ultimate fertility. Women with religious educations stand out by having very high fractions childless but quite ordinary mean ultimate fertility nevertheless; such women have very little childbearing outside of marriage. Women with research degrees have remarkably ordinary childbearing behavior; they do not forego motherhood to the extent that some theories would predict.

  18. Excess glycogen does not resolve high ultimate pH of oxidative muscle.

    Science.gov (United States)

    England, Eric M; Matarneh, Sulaiman K; Oliver, Emily M; Apaoblaza, Ariel; Scheffler, Tracy L; Shi, Hao; Gerrard, David E

    2016-04-01

    Skeletal muscle glycogen content can impact the extent of postmortem pH decline. Compared to glycolytic muscles, oxidative muscles contain lower glycogen levels antemortem which may contribute to the higher ultimate pH. In an effort to explore further the participation of glycogen in postmortem metabolism, we postulated that increasing the availability of glycogen would drive additional pH decline in oxidative muscles to equivalent pH values similar to the ultimate pH of glycolytic muscles. Glycolysis and pH declines were compared in porcine longissimus lumborum (glycolytic) and masseter (oxidative) muscles using an in vitro system in the presence of excess glycogen. The ultimate pH of the system containing longissimus lumborum reached a value similar to that observed in intact muscle. The pH decline of the system containing masseter samples stopped prematurely resulting in a higher ultimate pH which was similar to that of intact masseter muscle. To investigate further, we titrated powdered longissimus lumborum and masseter samples in the reaction buffer. As the percentage of glycolytic sample increased, the ultimate pH decreased. These data show that oxidative muscle produces meat with a high ultimate pH regardless of glycogen content and suggest that inherent muscle factors associated with glycolytic muscle control the extent of pH decline in pig muscles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. [Comparative study on the strength of different mechanisms of operation of multidirectionally angle-stable distal radius plates].

    Science.gov (United States)

    Rausch, S; Hoffmeier, K; Gueorguiev, B G; Klos, K; Gras, F; Hofmann, G O; Mückley, T

    2011-12-01

    Polyaxial angle-stable plating is thought to be particularly beneficial in the management of complex intra-articular fractures of the distal radius. The present study was performed to investigate the strength of polyaxial locking interfaces of distal radius plates. We tested the polyaxial interfaces of 3 different distal radius plates (2.4 mm Variable Angle LCP Two-Column Volar Distal Radius Plate, Synthes, Palmar Classic, Königsee Implantate and VariAx Plate Stryker). The strength of 0° and 10° screw locking angle was obtained during static loading. The strength of Palmar Classic with a 0° locking angle is significantly the best of all tested systems. With a 10° locking angle there is no significant difference between Palmar Classic, Two column Plate and VariAx Plate. The strength of polyaxial interfaces differs between the tested systems. A reduction of ultimate strength is due to increases of screw locking angle. The design of polyaxial locking interfaces should be investigated in human bone models. © Georg Thieme Verlag KG Stuttgart · New York.

  20. INFLUENCE OF STRENGTH TRAINING PROGRAM ON ISOMETRIC MUSCLE STRENGTH IN YOUNG ATHLETES

    Directory of Open Access Journals (Sweden)

    Dragan Radovanovic

    2007-10-01

    Full Text Available Strength training, or resistance training, is a form of physical conditioning used to increase the ability to resist force. Since muscular strength is required for success in many sports, it is logical to assume that stronger and more powerful young athletes will achieve better results. The aim of the study was to examine the effects of strength training on young athletes. An eight-week strength training program for developing muscle strength was performed in this study. Training protocol was designed specifically for young adolescent’s athletes. The program consisted of exercises for lower and upper body, abdominal and lower back muscles. The programs did not involve the maximal (1-3 repetitions maximum and other very hard intensity exercises that may had negative effect on young athletes. The results showed that strength training program had positive effects on maximal isometric muscle force (Fmax and motor skill. The increase presents the combined influence of strength training and growth.

  1. Burst strength of tubing and casing based on twin shear unified strength theory.

    Science.gov (United States)

    Lin, Yuanhua; Deng, Kuanhai; Sun, Yongxing; Zeng, Dezhi; Liu, Wanying; Kong, Xiangwei; Singh, Ambrish

    2014-01-01

    The internal pressure strength of tubing and casing often cannot satisfy the design requirements in high pressure, high temperature and high H2S gas wells. Also, the practical safety coefficient of some wells is lower than the design standard according to the current API 5C3 standard, which brings some perplexity to the design. The ISO 10400: 2007 provides the model which can calculate the burst strength of tubing and casing better than API 5C3 standard, but the calculation accuracy is not desirable because about 50 percent predictive values are remarkably higher than real burst values. So, for the sake of improving strength design of tubing and casing, this paper deduces the plastic limit pressure of tubing and casing under internal pressure by applying the twin shear unified strength theory. According to the research of the influence rule of yield-to-tensile strength ratio and mechanical properties on the burst strength of tubing and casing, the more precise calculation model of tubing-casing's burst strength has been established with material hardening and intermediate principal stress. Numerical and experimental comparisons show that the new burst strength model is much closer to the real burst values than that of other models. The research results provide an important reference to optimize the tubing and casing design of deep and ultra-deep wells.

  2. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  3. High strength ferritic alloy

    International Nuclear Information System (INIS)

    1977-01-01

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  4. Photon strength functions

    International Nuclear Information System (INIS)

    Bergqvist, I.

    1976-01-01

    Methods for extracting photon strength functions are briefly discussed. We follow the Brink-Axel approach to relate the strength functions to the giant resonances observed in photonuclear work and summarize the available data on the E1, E2 and M1 resonances. Some experimental and theoretical problems are outlined. (author)

  5. Interviewing to Understand Strengths

    Science.gov (United States)

    Hass, Michael R.

    2018-01-01

    Interviewing clients about their strengths is an important part of developing a complete understanding of their lives and has several advantages over simply focusing on problems and pathology. Prerequisites for skillfully interviewing for strengths include the communication skills that emerge from a stance of not knowing, developing a vocabulary…

  6. Squat Biomechanical Modeling Results from Exercising on the Hybrid Ultimate Lifting Kit

    Science.gov (United States)

    Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen M.

    2016-01-01

    Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. The computational models currently under development utilize the OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from test subjects for estimation of muscle and joint loads. The subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. Test variables include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data is also obtained using free weights for a comparison to the resistively loaded exercise device. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. The focus of this presentation is to summarize the results from the full squat exercises

  7. Comparison and Analysis of Steel Frame Based on High Strength Column and Normal Strength Column

    Science.gov (United States)

    Liu, Taiyu; An, Yuwei

    2018-01-01

    The anti-seismic performance of high strength steel has restricted its industrialization in civil buildings. In order to study the influence of high strength steel column on frame structure, three models are designed through MIDAS/GEN finite element software. By comparing the seismic performance and economic performance of the three models, the three different structures are comprehensively evaluated to provide some references for the development of high strength steel in steel structure.

  8. Functional and rheological properties of proteins in frozen turkey breast meat with different ultimate pH.

    Science.gov (United States)

    Chan, J T Y; Omana, D A; Betti, M

    2011-05-01

    Functional and rheological properties of proteins from frozen turkey breast meat with different ultimate pH at 24 h postmortem (pH(24)) have been studied. Sixteen breast fillets from Hybrid Tom turkeys were initially selected based on lightness (L*) values for each color group (pale, normal, and dark), with a total of 48 breast fillets. Further selection of 8 breast samples was made within each class of meat according to the pH(24). The average L* and pH values of the samples were within the following range: pale (L* >52; pH ≤5.7), normal (46 meat, respectively. Ultimate pH did not cause major changes in the emulsifying and foaming properties of the extracted sarcoplasmic and myofibrillar proteins. An SDS-PAGE profile of proteins from low and normal pH meat was similar, which revealed that the extent of protein denaturation was the same. Low pH meat had the lowest water-holding capacity compared with normal and high pH meat as shown by the increase in cooking loss, which can be explained by factors other than protein denaturation. Gel strength analysis and folding test revealed that gel-forming ability was better for high pH meat compared with low and normal pH meat.Dynamic viscoelastic behavior showed that myosin denaturation temperature was independent of pH(24). Normal and high pH meat had similar hardness, springiness, and chewiness values as revealed by texture profile analysis. The results from this study indicate that high pH meat had similar or better functional properties than normal pH meat. Therefore, high pH meat is suitable for further processed products, whereas low pH meat may need additional treatment or ingredient formulations to improve its functionality.

  9. Impact design of reinforced concrete fuel storage structures

    International Nuclear Information System (INIS)

    Nickell, R.E.; Rashid, Y.R.; Williams, R.F.

    1987-01-01

    We characterize the loading experienced by reinforced concrete slabs, as the result of a drop or a tip-over of a dry storage cask, and we provide simple design charts and formulas by which the margin of safety of such slabs can be readily demonstrated. These charts are based on the calculation of crack patterns in the concrete and yielding in the reinforcement as the pad is loaded by the dropping or tip-over of a dry storage cask to a point of collapse. This ultimate-strength design approach is appropriate for unlikely loading events provided that adequate margin against slab collapse is maintained. (orig./HP)

  10. Reliability of nondestructive testing of metal strength properties for power equipment

    International Nuclear Information System (INIS)

    Bugaj, N.V.; Lebedev, A.A.; Sharko, A.V.

    1985-01-01

    Ultrasonic control which is a constituent part of a complex control system which includes specimen-free (by hardness) tests, random breaking tests and acoustic measurements is stUdied for its reliability with respect to strength properties of power-equipment metal. Quantitative and alternative criteria are developed to estimate quality of elements for power-equipment according to results of metal strength properties. Acoustic control results are presented for ultimate strength in 12Kh1MF-steel

  11. Berm Breakwater Design

    DEFF Research Database (Denmark)

    Hald, Tue; Frigaard, Peter; Burcharth, H. F.

    1996-01-01

    Traditionally, conventional rubble mound breakwaters are designed with stable armour units, and consequently, very large stones or even artificial armour units are required. Reshaping breakwater designs allow reshaping of the seward slope thus involving stone movements. Ultimately, dependent...

  12. Dataset of the relationship between unconfined compressive strength and tensile strength of rock mass

    International Nuclear Information System (INIS)

    Sugita, Yutaka; Yui, Mikazu

    2002-02-01

    This report summary the dataset of the relationship between unconfined compressive strength and tensile strength of the rock mass described in supporting report 2; repository design and engineering technology of second progress report (H12 report) on research and development for the geological disposal of HLW in Japan. (author)

  13. Ultimate dynamics of the Kirschner-Panetta model: Tumor eradication and related problems

    Science.gov (United States)

    Starkov, Konstantin E.; Krishchenko, Alexander P.

    2017-10-01

    In this paper we consider the ultimate dynamics of the Kirschner-Panetta model which was created for studying the immune response to tumors under special types of immunotherapy. New ultimate upper bounds for compact invariant sets of this model are given, as well as sufficient conditions for the existence of a positively invariant polytope. We establish three types of conditions for the nonexistence of compact invariant sets in the domain of the tumor-cell population. Our main results are two types of conditions for global tumor elimination depending on the ratio between the proliferation rate of the immune cells and their mortality rate. These conditions are described in terms of simple algebraic inequalities imposed on model parameters and treatment parameters. Our theoretical studies of ultimate dynamics are complemented by numerical simulation results.

  14. Revisiting perceptions of quality of hospice care: managing for the ultimate referral.

    Science.gov (United States)

    Churchman, Richard; York, Grady S; Woodard, Beth; Wainright, Charles; Rau-Foster, Mary

    2014-08-01

    Hospice services provided in the final months of life are delivered through complex interpersonal relationships between caregivers, patients, and families. Often, service value and quality are defined by these interpersonal interactions. This understanding provides hospice leaders with an enormous opportunity to create processes that provide the optimal level of care during the last months of life. The authors argue that the ultimate referral is attained when a family member observes the care of a loved one, and the family member conveys a desire to receive the same quality of services their loved one received at that facility. The point of this article is to provide evidence that supports the methods to ultimately enhance the patient's and family's experience and increase the potential for the ultimate referral. © The Author(s) 2013.

  15. Ultimate Owner and Firm Performance - Evidence from Romanian Mining and Quarrying Listed Firms

    Directory of Open Access Journals (Sweden)

    Cosmin MIHAI

    2012-08-01

    Full Text Available The main objectives of this paper are to describe the necessary steps to identify the ultimate owner and to investigate the relation between the ultimate ownership and the financial performance of Romanian mining and quarrying listed firms. The study was conducted for the companies listed on Bucharest Stock Exchange, in both regulated and non-regulated segments. The final sample included 17 companies of mining and quarrying. Return on Equity was used for measuring the financial performance of the firms. The ultimate ownership was measured by the percentage of voting rights held by a shareholder. Econometric tools like multiple linear regression analysis were used for analysis. The results of the study suggest that there is a significant negative link between financial performance and divergence between voting rights and cash-flow rights.

  16. On the decrease of ultimate elongation of gum elastomer by irradiation

    International Nuclear Information System (INIS)

    Ito, Masayuki

    1986-01-01

    The reason why the ultimate elongation of gum elastomer decreases by irradiation was studied. The sample used is tetrafluoroethylenepropylene copolymer vulcanized which is a heat resistant elastomer. The sample was irradiated by a electron beam at room temperature. Cross-linking predominate in the operation. (Case 1) Scission predominant condition (Case 2) was given by irradiation of Co-60 γ ray at 100 deg C. Alternative irradiation of γ ray and electron beam under above condition can keep the original cross-linking density by the appropriate choice of each of the doses. (Case 3) The three cases mentioned above involve all of the cases of radiation induced aging of elastomers. Therefor, the following explanation for three cases shows the reason why the ultimate elongation of gum elastomer decreases by irradiation. Case 1. Cross-linking predominant condition. Ultimate elongation is proportional to -0.5 power of the dose. This fact can be explicable by the model of Buche, i.e. the breaking of a short chain causes another to break and that so on throughout the whole sample. Case 2. Chain scission predominant condition. Ultimate elongation increases by irradiation for a certain dose. This fact can understand by the model of Buche. But from a certain dose ultimate elongation does not increase. In the period the structure of the sample turned to be the same structure as the low molecular weight amorphose polymer vulcanized. Case 3. Rate of cross-linking and scission is the same. The average chain length does not chainge in the condition. But the distribution of chain length became wider and wider by irradiation. The increase of short chain result the decrease in ultimate elongation. (author)

  17. Behaviour of concrete nuclear containment structures upto ultimate failure with special reference to MAPP-1 containment

    International Nuclear Information System (INIS)

    Appa Rao, T.V.S.R.

    1975-01-01

    Theoretical and experimental methods for investigating the behaviour of concrete secondary containment structures subjected to loads upto their ultimate failure have been discussed in the paper. Need for inelastic nonlinear analysis of containments has been emphasized. Different contitutive models of concrete that can be employed in the nonlinear analysis of concrete structures were briefly reviewed. Based on the experimental results obtained in a 1:12 scale model test conducted at the Structural Engineering Research (Regional) Centre, Madras, behaviour of the MAPP-1 containment to internal pressure loading upto its ultimate failure has been discussed. (author)

  18. Decision basis for a Danish ultimate storage for low and intermediate radioactive wastes

    International Nuclear Information System (INIS)

    2008-11-01

    In 2003 the Danish Parliament consented to let the government start the preparation of a basis for decision on a Danish ultimate storage for low and intermediate radioactive wastes. The present report was prepared by a working group and it presents the final proposal for such a decision basis. The report describes the fundamental safety and environmental principles for establishing an ultimate storage, including determining the principles for site selection, storage construction, and safety analysis. In an appendix, the amount, types, and activity level of the Danish radioactive wastes are presented. (ln)

  19. Conception of electron beam-driven subcritical molten salt ultimate safety reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abalin, S.S.; Alekseev, P.N.; Ignat`ev, V.V. [Kurchatov Institute, Moscow (Russian Federation)] [and others

    1995-10-01

    This paper is a preliminary sketch of a conception to develop the {open_quotes}ultimate safety reactor{close_quotes} using modern reactor and accelerator technologies. This approach would not require a long-range R&D program. The ultimate safety reactor could produce heat and electric energy, expand the production of fuel, or be used for the transmutation of long-lived wastes. The use of the combined double molten salt reactor system allows adequate neutron multiplication to permit using an electron accelerator for the initial neutron flux. The general parameters of such a system are discussed in this paper.

  20. Temperature Effects on Adhesive Bond Strengths and Modulus for Commonly Used Spacecraft Structural Adhesives

    Science.gov (United States)

    Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.

    2011-01-01

    A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.

  1. Influence of Post Weld Heat Treatment on Strength of Three Aluminum Alloys Used in Light Poles

    Directory of Open Access Journals (Sweden)

    Craig C. Menzemer

    2016-03-01

    Full Text Available The conjoint influence of welding and artificial aging on mechanical properties were investigated for extrusions of aluminum alloy 6063, 6061, and 6005A. Uniaxial tensile tests were conducted on the aluminum alloys 6063-T4, 6061-T4, and 6005A-T1 in both the as-received (AR and as-welded (AW conditions. Tensile tests were also conducted on the AR and AW alloys, subsequent to artificial aging. The welding process used was gas metal arc (GMAW with spray transfer using 120–220 A of current at 22 V. The artificial aging used was a precipitation heat treatment for 6 h at 182 °C (360 °F. Tensile tests revealed the welded aluminum alloys to have lower strength, both for yield and ultimate tensile strength, when compared to the as-received un-welded counterpart. The beneficial influence of post weld heat treatment (PWHT on strength and ductility is presented and discussed in terms of current design provisions for welded aluminum light pole structures.

  2. High-Strength Low-Alloy (HSLA) Mg-Zn-Ca Alloys with Excellent Biodegradation Performance

    Science.gov (United States)

    Hofstetter, J.; Becker, M.; Martinelli, E.; Weinberg, A. M.; Mingler, B.; Kilian, H.; Pogatscher, S.; Uggowitzer, P. J.; Löffler, J. F.

    2014-04-01

    This article deals with the development of fine-grained high-strength low-alloy (HSLA) magnesium alloys intended for use as biodegradable implant material. The alloys contain solely low amounts of Zn and Ca as alloying elements. We illustrate the development path starting from the high-Zn-containing ZX50 (MgZn5Ca0.25) alloy with conventional purity, to an ultrahigh-purity ZX50 modification, and further to the ultrahigh-purity Zn-lean alloy ZX10 (MgZn1Ca0.3). It is shown that alloys with high Zn-content are prone to biocorrosion in various environments, most probably because of the presence of the intermetallic phase Mg6Zn3Ca2. A reduction of the Zn content results in (Mg,Zn)2Ca phase formation. This phase is less noble than the Mg-matrix and therefore, in contrast to Mg6Zn3Ca2, does not act as cathodic site. A fine-grained microstructure is achieved by the controlled formation of fine and homogeneously distributed (Mg,Zn)2Ca precipitates, which influence dynamic recrystallization and grain growth during hot forming. Such design scheme is comparable to that of HSLA steels, where low amounts of alloying elements are intended to produce a very fine dispersion of particles to increase the material's strength by refining the grain size. Consequently our new, ultrapure ZX10 alloy exhibits high strength (yield strength R p = 240 MPa, ultimate tensile strength R m = 255 MPa) and simultaneously high ductility (elongation to fracture A = 27%), as well as low mechanical anisotropy. Because of the anodic nature of the (Mg,Zn)2Ca particles used in the HSLA concept, the in vivo degradation in a rat femur implantation study is very slow and homogeneous without clinically observable hydrogen evolution, making the ZX10 alloy a promising material for biodegradable implants.

  3. Strength evaluation code STEP for brittle materials

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Futakawa, Masatoshi.

    1997-12-01

    In a structural design using brittle materials such as graphite and/or ceramics it is necessary to evaluate the strength of component under complex stress condition. The strength of ceramic materials is said to be influenced by the stress distribution. However, in the structural design criteria simplified stress limits had been adopted without taking account of the strength change with the stress distribution. It is, therefore, important to evaluate the strength of component on the basis of the fracture model for brittle material. Consequently, the strength evaluation program, STEP, on a brittle fracture of ceramic materials based on the competing risk theory had been developed. Two different brittle fracture modes, a surface layer fracture mode dominated by surface flaws and an internal fracture mode by internal flaws, are treated in the STEP code in order to evaluate the strength of brittle fracture. The STEP code uses stress calculation results including complex shape of structures analyzed by the generalized FEM stress analysis code, ABAQUS, so as to be possible to evaluate the strength of brittle fracture for the structures having complicate shapes. This code is, therefore, useful to evaluate the structural integrity of arbitrary shapes of components such as core graphite components in the HTTR, heat exchanger components made of ceramics materials etc. This paper describes the basic equations applying to the STEP code, code system with a combination of the STEP and the ABAQUS codes and the result of the verification analysis. (author)

  4. Geometry and gravity influences on strength capability

    Science.gov (United States)

    Poliner, Jeffrey; Wilmington, Robert P.; Klute, Glenn K.

    1994-01-01

    Strength, defined as the capability of an individual to produce an external force, is one of the most important determining characteristics of human performance. Knowledge of strength capabilities of a group of individuals can be applied to designing equipment and workplaces, planning procedures and tasks, and training individuals. In the manned space program, with the high risk and cost associated with spaceflight, information pertaining to human performance is important to ensuring mission success and safety. Knowledge of individual's strength capabilities in weightlessness is of interest within many areas of NASA, including workplace design, tool development, and mission planning. The weightless environment of space places the human body in a completely different context. Astronauts perform a variety of manual tasks while in orbit. Their ability to perform these tasks is partly determined by their strength capability as demanded by that particular task. Thus, an important step in task planning, development, and evaluation is to determine the ability of the humans performing it. This can be accomplished by utilizing quantitative techniques to develop a database of human strength capabilities in weightlessness. Furthermore, if strength characteristics are known, equipment and tools can be built to optimize the operators' performance. This study examined strength in performing a simple task, specifically, using a tool to apply a torque to a fixture.

  5. Design

    DEFF Research Database (Denmark)

    Volf, Mette

    Design - proces & metode iBog®  er enestående i sit fokus på afmystificering og operationalisering af designprocessens flygtige og komplekse karakter. Udgivelsen går bag om designerens daglige arbejde og giver et indblik i den kreative skabelsesproces, som designeren er en del af. Udover et bredt...... indblik i designerens arbejdsmetoder og designparametre giver Design - proces & metode en række eksempler fra anerkendte designvirksomheder, der gør det muligt at komme helt tæt på designerens virkelighed....

  6. Strength properties of concrete at elevated temperatures

    International Nuclear Information System (INIS)

    Freskakis, G.N.; Burrow, R.C.; Debbas, E.B.

    1979-01-01

    A study is presented concerning the compressive strength, modulus of elasticity, and stress-strain relationships of concrete at elevated temperatures. A review of published results provides information for the development of upper and lower bound relationships for compressive strength and the modulus of elasticity and establishes exposure conditions for a lower bound thermal response. The relationships developed from the literature review are confirmed by the results of a verification test program. The strength and elasticity relationships provide a basis for the development of design stress-strain curves for concrete exposed to elevated temperatures

  7. Ultimate storage of spent fuel elements from the AVR experimental nuclear power plant in the Asse Salt Mine

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, J.

    1975-02-15

    The present paper is intended to serve as the basis for the licensing procedures both in respect of the transport and storage techniques and also for the ultimate storage itself. In regard to the technique it will be shown on the basis of design drawings and calculations that the handling, transport and storage of the fuel elements can be safely carried out in accordance with the regulations in force. In regard to the ultimate storage itself, since no highly radioactive wastes with a long-lived actinide content have yet been stored, it will be necessary to show that an unacceptable contamination of the biosphere will be avoided even in the long term under all anticipated conditions. It will further be necessary to show by calculations and suitable tests, in view of the radioactive gas and fissile material content, that no danger due to gas release from the fuel elements will arise during the operating life of the mine and that a nuclear criticality risk can be excluded for all time.

  8. Percentage Level of Tannin fur Rabbit for Leather Concerning Stitch Tearing Strength, Tearing Strength and Flexibility

    Directory of Open Access Journals (Sweden)

    Mustakim Mustakim

    2012-02-01

    Full Text Available The purpose of this study was to find out the appropriate of tannin level for rabbit fur leather concerning stitch tearing strength, tearing strength, and flexibility. The result were expected to contribute good information for the society, leather craftsman, and further researchers about fur leather tanning especially rabbit fur leather with tannin concerning stitch tearing strength, tearing strength and flexibility. The material that used were 12 pieces of four months of rabbit skin. The research method was Completely Randomized Design, consist of three treatments of tannin, they were: M1 (mimosa 15%, M2 (mimosa 20%, and M3 (mimosa 25%. Each of treatment hold on four repetition, the variables which measured were stitch tearing strength, tearing strength, and flexibility of fur leather. Data were  analysed by analysis variance followed by Duncan’s Multiple Range Test. The result of this research indicate that the use level of tannin give significant influence (P<0.05 among stitch tearing strength, tearing strength. It gave a very significant influence (P<0.01 for flexibility of rabbit fur leather. Based on the result, can be concluded that 25 % of tannin (mimosa, produce the best  result on stitch tearing strength and tearing strength. The increase of tannin offer will decrease the flexibility of fur leather but the lowest tannin produced the best flexibility of fur leather (15 percent. The best quality of rabbit fur leather produced by 25 % of tannin.   Keywords : leather, tannin, quality

  9. Design

    Science.gov (United States)

    Buchanan, Richard; Cross, Nigel; Durling, David; Nelson, Harold; Owen, Charles; Valtonen, Anna; Boling, Elizabeth; Gibbons, Andrew; Visscher-Voerman, Irene

    2013-01-01

    Scholars representing the field of design were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Richard Buchanan, Nigel Cross, David Durling, Harold Nelson, Charles Owen, and Anna Valtonen. Scholars…

  10. Molar mass of poly(ethylene terephthalate) (PET) during ultimate uniaxial drawing

    NARCIS (Netherlands)

    Göschel, U.; Cools, P.J.C.H.

    2000-01-01

    The changes of the average molar mass Mw, Mn, Mz, and molar mass distributions during multistep uniaxial drawing of poly(ethylene terephthalate) (PET) to achieve ultimate mechanical properties have been studied in detail by means of size exclusion chromatography (SEC) with triple detection:

  11. Molar-Mass of Poly(Ethylene-Terephthalate) (PET) During Ultimate Uniaxial Drawing

    NARCIS (Netherlands)

    Göschel, A.G.P.U.; Cools, P.J.C.H.

    2000-01-01

    The changes of the average molar mass Mw, Mn, Mz, and molar mass distributions during multistep uniaxial drawing of poly(ethylene terephthalate) (PET) to achieve ultimate mechanical properties have been studied in detail by means of size exclusion chromatography (SEC) with triple detection:

  12. Prisoner Fasting as Symbolic Speech: The Ultimate Speech-Action Test.

    Science.gov (United States)

    Sneed, Don; Stonecipher, Harry W.

    The ultimate test of the speech-action dichotomy, as it relates to symbolic speech to be considered by the courts, may be the fasting of prison inmates who use hunger strikes to protest the conditions of their confinement or to make political statements. While hunger strikes have been utilized by prisoners for years as a means of protest, it was…

  13. Magnetic surfaces, particle orbits and neutral injection in conventional and ultimate torsatrons

    International Nuclear Information System (INIS)

    Anderson, D.T.; Derr, J.A.; Kruckewitt, T.; Shohet, J.L.; Rehker, S.; Tataronis, J.A.

    1979-01-01

    Capabilities in fully non-axisymmetric numerical methods have resulted in a parametric study of various conventional and ultimate torsatron configurations. No superbananas are found in torsatrons without local magnetic wells. Neutral injection calculations show that, if the vacuum magnetic surfaces are well defined, tangential injection is very efficient

  14. Study of ultimate heat sink to Angra-1,2 and 3 Nuclear Power Plants

    International Nuclear Information System (INIS)

    Moreira, R.M.; Pinto, A.M.F.

    1985-03-01

    This report presents the premises, results and conclusion of study done to ultimate heat sink of Angra 1,2 and 3 units, with base in postulated accidents that generate transient heat discharges to environment. It's explicitily presumed the eventuality of discharging heat water recirculation. (C.M.) [pt

  15. Method for ultimate disposition of borate containing radioactive wastes by vitrification

    International Nuclear Information System (INIS)

    Bege, D.; Faust, H.J.; Puthawala, A.; Stunkel, H.

    1984-01-01

    Method for the ultimate disposition of radioactive wastes by vitrification, in which weak to medium radioactive waste concentrates from borate-containing radioactive liquids are mixed with added glass-forming materials, maximally in a ratio of 1:3, and the mixture heated to obtain a glass-forming melt

  16. 26 CFR 48.6427-10 - Kerosene; claims by registered ultimate vendors (blocked pumps).

    Science.gov (United States)

    2010-04-01

    ... (blocked pumps). 48.6427-10 Section 48.6427-10 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE...; claims by registered ultimate vendors (blocked pumps). (a) Overview. This section provides rules under... allowed by section 6427(l)(5)(B)(i). These claims relate to kerosene sold from a blocked pump. Claims...

  17. Discussion of the Method to Determine the Ultimate Bearing Capacity of Soil Foundation

    Science.gov (United States)

    Du, Peng; Liu, Xiaoling; Zhang, Yangfu

    2017-12-01

    Combining literature examples, this paper has carried out Contrastive analysis of the theoretical formula method and finite element method about the ultimate bearing capacity of foundation, To verify rationality and superiority of the incremental load method in finite element ABAQUS in solving the bearing capacity of foundation soil. The study can provide certain reference for practical engineering calculation and analysis of foundation bearing capacity.

  18. Too many journals? Towards a theory of repeated rejections and ultimate acceptance

    NARCIS (Netherlands)

    Oosterhaven, Jan

    Under a set of reasonable assumptions, it is shown that all manuscripts submitted to any journal will ultimately be published, either by the first journal or by one of the following journals to which a manuscript is resubmitted. This suggests that low quality manuscripts may also be published, which

  19. A comparison of international criteria for the ultimate storage of radioactive wastes

    International Nuclear Information System (INIS)

    Mielke, H.

    1985-01-01

    In countries other than the Federal Republic of Germany and internationally there are no comprehensive codes referring to criteria and safety requirements except those of the IAEA and USA. In other countries there exist safety goals for the ultimate storage or for purely geological criteria. The degree of detailing regulations differs widely abroad and internationally. Safety goals abroad and internationally as well as measures for their realisation in the ultimate storage of radioactive wastes in deep geological formations are in line with the German safety goals. The IAEA refers to general aspects of geological, waste technology and ultimate storage technology criteria. In the USA, ultimate storage technology criteria have been quantified in part. The quantitative geological criteria existing in Great Britain and in the Netherlands are only relevant in as much as safety analyses must be performed for a specific site to provide evidence for the safety of this site. The comparison shows that most requirements pronounced abroad are also made for the Federal Republic of Germany. Some requirements are more specified in the Federal Republic of Germany, some are more detailed abroad. (orig./HP) [de

  20. proximate and ultimate analysis of fuel pellets from oil palm residues

    African Journals Online (AJOL)

    HOD

    Keywords: Oil Palm Residues, Fuel Pellets, Proximate Analysis, Ultimate Analysis. 1. INTRODUCTION ... Pelletizing of this biomass resources into pellets is a way of ensuring a ... demand for pellets [3], and alternative feed-stocks such as palm kernel ... agro-residues, selection of the best pellets has to be made based on ...

  1. 7 CFR 4280.29 - Supplemental financing required for the Ultimate Recipient Project.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Supplemental financing required for the Ultimate Recipient Project. 4280.29 Section 4280.29 Agriculture Regulations of the Department of Agriculture... AND GRANTS Rural Economic Development Loan and Grant Programs § 4280.29 Supplemental financing...

  2. Pinch Strengths in Healthy Iranian Children and Young Adult Population

    Directory of Open Access Journals (Sweden)

    Iman Dianat

    2015-03-01

    Full Text Available Background: Data on the physical strength capabilities are essential for design-ing safe and usable products and are useful in a wide range of clinical settings especially during treatment of disease affecting the function of the hand. The purpose of this study was to determine peak lateral pinch strength, key pinch strength, tip-to-tip pinch strength and three-jaw pinch strength exertions in a healthy Iranian children and young adult population.Methods: The study was conducted among 511 participants (242 males and 269 females aged 7-30 years. Measurements were carried out with both dominant and non-dominant hands in standard sitting posture using a B&L pinch gauge. Two repetitions of each strength measurement were recorded for each condition and the average value of the two trials was used in the subsequent analysis.Results: The results showed significant differences in the pinch strength data in terms of the age, gender and hand dominance. The lateral pinch strength, key pinch strength, tip-to-tip pinch strength and three-jaw pinch strength exertions by females were 68.4%, 68.8%, 78.8% and 81.8% of those exerted by males, respectively. Strength exertions with the non-dominant hand were 6.4%, 5.2%, 6.6% and 5.1% lower than strength exertions of the dominant hand for the lat-eral pinch strength, key pinch strength, tip-to-tip pinch strength and three-jaw pinch strength exertions, respectively.Conclusion: These findings can be used to fill the gaps in strength data for Iranian population.

  3. Shear strength of end slabs of prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Cheung, K.C.; Gotschall, H.L.; Liu, T.C.

    1975-01-01

    Prestressed concrete reactor vessels (PCRV's) have been adopted for primary containments in most large high-temperature gas-cooled reactor installations. The most common configuration for PCRVs is a right-vertical cylinder with thick end slabs. In order to assess the integrity of a PCRV it is necessary to predict the ultimate strength of the end slabs. The complexity of the basic mechanism of shear failure in the PCRV end slabs has thus far prohibited the development of a completely analytical solution. However, many experimental investigations of PCRV end slabs have been conducted over the past decade. This information makes it possible to establish empirical formulae for the ultimate strength of PCRV end slabs. The basis and development of an empirical shear-flexure interaction expression is presented. (Auth.)

  4. Behavior of hybrid high-strength fiber reinforced concrete slab-column connections under the effect of high tempera

    Directory of Open Access Journals (Sweden)

    Reham H. Ahmed

    2016-04-01

    Full Text Available Concrete can be modified to perform in a more ductile form by the addition of randomly distributed discrete fibers in the concrete matrix. The combined effect of the addition of two types of fibers (steel fiber and polypropylene fiber with different percentages to concrete matrix, which is called hybrid effect is currently under investigation worldwide. The current research work presents the conducted experimental program to observe the behavior of hybrid high strength reinforced concrete slab-column connections under the effect of high temperature. For this purpose, ten slab-column connections were casted and tested. The experimental program was designed to investigate the effect of different variables such as concrete mixture, column location and temperature fighting system. All specimens were exposed to a temperature of 500 °C for duration of two hours. To observe the effect of each variable, specimens were divided into four groups according to the studied parameters. The test results revealed that using hybrid high strength concrete HFHSC produced more strength in punching failure compared with high strength concrete HSC when exposed to elevated temperature. Fighting by air had higher initial crack load compared with that for without fighting and fighting by water. On the other hand, fighting by water decreased the ultimate load.

  5. Rotating bending fatigue strength evaluation of ceramic materials

    International Nuclear Information System (INIS)

    Govila, R.K.; Swank, L.R.

    1995-01-01

    Cyclic fatigue under rotary bending tests were conducted on partially stabilized zirconia (PSZ) from NGK and Nilsen, and silicon nitride from NGK and Norton. Fractography was performed on the failed specimens to determine the fracture structure and morphology. The results showed that the cyclic fatigue fracture was the same as the fracture structure previously observed in bending tests. The cyclic fatigue data indicated that structural ceramic could function in fatigue stress levels at a higher percentage of their average fast fracture strength than the fifty percent of ultimate strength used for wrought steels

  6. Evaluation of ultimate load bearing capacity of the primary containment of a typical 540 MWe Indian PHWR

    International Nuclear Information System (INIS)

    Ray, Indrajit; Roy, Raghupati; Verma, U.S.P.; Warudkar, A.S.

    2003-01-01

    This paper presents the analysis of the Inner Containment Structure (ICS) of a typical 540 MWe Indian PHWR for the purpose of evaluating its ultimate load bearing capacity (ULBC) under beyond postulated design basis accident (DBA) scenario. The methodology adopted for the non-linear analysis of the prestressed concrete ICS including the various issues, viz. behaviour of concrete under compression and tension, tension stiffening, cracked shear modulus etc. have also been discussed in this paper. The effect of accident temperature on ULBC has been studied and discussed in this paper. This paper also discusses about the study carried out for mesh sensitivity of the finite element (FE) discretization on ULBC of ICS in the non-linear range. Based on the detailed analysis, the factor of safety of the ICS under beyond postulated DBA scenario has been evaluated. (author)

  7. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  8. An analytical method to assess the damage and predict the residual strength of a ship in a shoal grounding accident scenario

    Directory of Open Access Journals (Sweden)

    Sun Bin

    2016-04-01

    Full Text Available In this paper, a simplified analytical method used to predict the residual ultimate strength of a ship hull after a shoal grounding accident is proposed. Shoal grounding accidents always lead to severe denting, though not tearing, of the ship bottom structure, which may threaten the global hull girder resistance and result in even worse consequences, such as hull collapse. Here, the degree of damage of the bottom structure is predicted by a series of analytical methods based on the plastic-elastic deformation mechanism. The energy dissipation of a ship bottom structure is obtained from individual components to determine the sliding distance of the seabed obstruction. Then, a new approach to assess the residual strength of the damaged ship subjected to shoal grounding is proposed based on the improved Smith's method. This analytical method is verified by comparing the results of the proposed method and those generated by numerical simulation using the software ABAQUS. The proposed analytical method can be used to assess the safety of a ship with a double bottom during its design phase and predict the residual ultimate strength of a ship after a shoal grounding accident occurs.

  9. Ultimate Limit State Model Basis for Assessment of Offshore Wind Energy Converters

    DEFF Research Database (Denmark)

    Thöns, Sebastian; Faber, M. H.; Rücker, W.

    2012-01-01

    then in combina-tion with the ultimate limit state requirements leads to the specific constitutive relations. As a result finite element models based on shell elements incorporating a structural and a loading model are introduced and described in detail. Applying these models the ultimate capacity of the support...... on the basis of literature review and measurement data from a prototype Multibrid M5000 support structure. In combination with the developed structural and loading models, sensitivity analyses in regard to the responses are peiformed to enhance the understanding and to refine the developed models. To this end...... variables on the responses including nonlinearity the refinement of the model is performed on a quantitative basis....

  10. Evaluation of time-accelerated irradiation method of elastomer by modulus-ultimate elongation profile

    International Nuclear Information System (INIS)

    Ito, Masayuki; Oka, Toshitaka; Hama, Yosimasa

    2009-01-01

    'Generalized modulus-ultimate elongation profile' was induced from the relationship between the modulus and the ultimate elongation of an elastomer that was quantitatively added crosslinking and scission. This profile can be used to evaluate the time-accelerated irradiation methods of ethylene-propylene-diene elastomer. The irradiation under low dose rate (0.33 kGy/h) at room temperature was the reference condition. The short-time irradiation condition was 4.2 kGy/h in 0.5 MPa oxygen at room temperature and 5.0 kGy/h in air at 70 o C. The former tended to bring about the higher ratio of scission than the reference condition; the latter tended to bring about the higher ratio of crosslinking.

  11. Design

    DEFF Research Database (Denmark)

    Jensen, Ole B.; Pettiway, Keon

    2017-01-01

    In this chapter, Ole B. Jensen takes a situational approach to mobilities to examine how ordinary life activities are structured by technology and design. Using “staging mobilities” as a theoretical approach, Jensen considers mobilities as overlapping, actions, interactions and decisions by desig...... by providing ideas about future research for investigating mobilities in situ as a kind of “staging,” which he notes is influenced by the “material turn” in social sciences....... with a brief description of how movement is studied within social sciences after the “mobilities turn” versus the idea of physical movement in transport geography and engineering. He then explains how “mobilities design” was derived from connections between traffic and architecture. Jensen concludes...

  12. Compressive strength of thick composite panels

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter

    2011-01-01

    The aim of this study is to investigate how much the compressive strength of thick composite panels is reduced due to delaminations and to investigate under which conditions a delamination will grow. Understanding of this is essential in order to move forward the design limits used in the structu......The aim of this study is to investigate how much the compressive strength of thick composite panels is reduced due to delaminations and to investigate under which conditions a delamination will grow. Understanding of this is essential in order to move forward the design limits used...

  13. Lifetime and residual strength of materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    of load amplitude, load average, fractional time under maximum load, and load frequency.The analysis includes prediction of residual strength (re-cycle strength) during the process of load cycling. It is concluded that number of cycles to failure is a very poor design criterion. It is demonstrated how...... the theory developed can be generalized also to consider non-harmonic load variations.Algorithms are presented for design purposes which may be suggested as qualified alternatives to the Palmgren-Miner's methods normally used in fatigue analysis of materials under arbitrary load variations. Prediction...

  14. Qualtum cosmics-and-chaotics--the ultimate tortoise in physics and modern medicine.

    Directory of Open Access Journals (Sweden)

    Kothari M

    1997-10-01

    Full Text Available Qualtum cosmics is the qualitative opposite of quantum mechanics. The flip-side of qualtum cosmics is qualtum chaotics, the two governing much of what is seen as inscrutable in medicine. The Ultimate (Last Tortoise is close to Einsteinean idea of a Unified Theory, a single concept that can explain whatsoever there is in physics, (and in medicine, or what have you.

  15. Utilization of metal scrap for the production of waste drums for ultimate disposal

    International Nuclear Information System (INIS)

    Janberg, K.; Rittscher, D.

    1988-01-01

    The contribution reviews the history of development of the techniques for treatment of decommissioning scrap from the beginning of the 1980's onwards (decommissioning of the Niederaichbach and Gundremmingen nuclear power stations), together with the radiological measuring methods required for regulatory purposes. The advantages of the recycling of the metal scrap by means of melting, and of materials utilization for production of waste containers for ultimate storage are discussed together with product quality assurance criteria. (RB) [de

  16. The ultimate safe (US) Reactor: A concept for the third millenium

    International Nuclear Information System (INIS)

    Gat, U.

    1986-01-01

    The Ultimate Safe (U.S.) Reactor is based on a novel safety concept. Fission products in the reactor are allowed to accumulate only to a level at which they would constitute a harmless source term. Removal of fission products also removes the decay heat - the driving force for the source term. The reactor has no excess criticality and is controlled by the reactivity temperature coefficient. Safety is inherent and passive. Waste is removed from the site promptly

  17. Modeling and simulation of loss of the ultimate heat sink in a typical material testing reactor

    International Nuclear Information System (INIS)

    El-Khatib, Hisham; El-Morshedy, Salah El-Din; Higazy, Maher G.; El-Shazly, Karam

    2013-01-01

    Highlights: ► A thermal–hydraulic model has been developed to simulate loss of the ultimate heat sink in MTR. ► The model involves three coupled sub-models for core, heat exchanger and cooling tower. ► The model is validated against PARET for steady-state and verified by operation data for transients. ► The model is used to simulate the behavior of the reactor under a loss of the ultimate heat sink. ► The model results are analyzed and discussed. -- Abstract: A thermal–hydraulic model has been developed to simulate loss of the ultimate heat sink in a typical material testing reactor (MTR). The model involves three interactively coupled sub-models for reactor core, heat exchanger and cooling tower. The model is validated against PARET code for steady-state operation and verified by the reactor operation records for transients. Then, the model is used to simulate the thermal–hydraulic behavior of the reactor under a loss of the ultimate heat sink event. The simulation is performed for two operation regimes: regime I representing 11 MW power and three cooling tower cells operated, and regime II representing 22 MW power and six cooling tower cells operated. In regime I, the simulation is performed for 1, 2 and 3 cooling tower cells failed while in regime II, it is performed for 1, 2, 3, 4, 5 and 6 cooling tower cells failed. The simulation is performed under protected conditions where the safety action called power reduction is triggered by reactor protection system to decrease the reactor power by 20% when the coolant inlet temperature to the core reaches 43 °C and scram is triggered if the core inlet temperature reaches 44 °C. The model results are analyzed and discussed.

  18. Tasks of radiation protection in the centralized collection and ultimate disposal of radioactive waste

    International Nuclear Information System (INIS)

    Boerst, F.M.; Fasten, C.; Koerner, W.; Oppermann, U.; Werner, H.J.; Zappe, D.

    1988-01-01

    In the GDR, the ERAM (Endlager fuer radioaktive Abfaelle, Morsleben), an operating unit of Volkseigenes Kombinat Kernkraftwerke 'Bruno Leuschner' in Greifswald, is responsible for the central collection and ultimate disposal of radioactive waste. From the licensing body's point of view an assessment is given of the legislation for radioactive wastes, especially as to their collection, transport to and handling in the final repository. As a result, some conclusions are drawn concerning future work in this field. 9 tabs., 34 refs. (author)

  19. Effects of urbanization on animal behaviour : patterns, underlying mechanisms and ultimate causes

    OpenAIRE

    Miranda, Ana Catarina Sequeira Nunes Coutinho de

    2014-01-01

    Human-altered environmental conditions affect many species at the global scale. An extreme form of anthropogenic alteration is the existence and rapid increase of urban areas. A key question is how animals cope with urbanization. In order to live in cities, animals have to adjust their behaviour and life histories to the urban novel environment.The main objectives of this thesis were to investigate (i) the existence of behavioural changes related to the urbanization process, (ii) the ultimate...

  20. Probe tests microweld strength

    Science.gov (United States)

    1965-01-01

    Probe is developed to test strength of soldered, brazed or microwelded joints. It consists of a spring which may be adjusted to the desired test pressure by means of a threaded probe head, and an indicator lamp. Device may be used for electronic equipment testing.

  1. Transition to the Ultimate Regime in Two-Dimensional Rayleigh-Bénard Convection

    Science.gov (United States)

    Zhu, Xiaojue; Mathai, Varghese; Stevens, Richard J. A. M.; Verzicco, Roberto; Lohse, Detlef

    2018-04-01

    The possible transition to the so-called ultimate regime, wherein both the bulk and the boundary layers are turbulent, has been an outstanding issue in thermal convection, since the seminal work by Kraichnan [Phys. Fluids 5, 1374 (1962), 10.1063/1.1706533]. Yet, when this transition takes place and how the local flow induces it is not fully understood. Here, by performing two-dimensional simulations of Rayleigh-Bénard turbulence covering six decades in Rayleigh number Ra up to 1 014 for Prandtl number Pr =1 , for the first time in numerical simulations we find the transition to the ultimate regime, namely, at Ra*=1013 . We reveal how the emission of thermal plumes enhances the global heat transport, leading to a steeper increase of the Nusselt number than the classical Malkus scaling Nu ˜Ra1 /3 [Proc. R. Soc. A 225, 196 (1954), 10.1098/rspa.1954.0197]. Beyond the transition, the mean velocity profiles are logarithmic throughout, indicating turbulent boundary layers. In contrast, the temperature profiles are only locally logarithmic, namely, within the regions where plumes are emitted, and where the local Nusselt number has an effective scaling Nu ˜Ra0.38 , corresponding to the effective scaling in the ultimate regime.

  2. Determination of deformation and strength characteristics of artificial geomaterial having step-shaped discontinuities under uniaxial compression

    Science.gov (United States)

    Tsoy, PA

    2018-03-01

    In order to determine the empirical relationship between the linear dimensions of step-shaped macrocracks in geomaterials as well as deformation and strength characteristics of geomaterials (ultimate strength, modulus of deformation) under uniaxial compression, the artificial flat alabaster specimens with the through discontinuities have been manufactured and subjected to a series of the related physical tests.

  3. THE USE OF DISPERSION STRENGTHENED COPPER IN ACCELERATOR DESIGNS

    International Nuclear Information System (INIS)

    VALDIVIEZ, R.; SCHRAGE, D.

    2000-01-01

    Dispersion strengthened copper, known by the trade name GLIDCOP(reg sign), has found various applications in accelerator designs. Glidcop has material properties similar to OFE copper, such as thermal and electrical conductivity. Unlike OFE, however, Glidcop has yield and ultimate strengths equivalent to those of mild-carbon steel, making it a good structural material. This paper covers some accelerator components fabricated with Glidcop, material properties measured from room to brazing temperatures, and a furnace-brazing process that has produced good, consistent results with Glidcop

  4. Preparation and properties of high-strength recycled concrete in cold areas

    Directory of Open Access Journals (Sweden)

    Haitao, Y.

    2015-06-01

    Full Text Available Concrete waste was processed into recycled coarse aggregate (RCA, subsequently used to prepare high-strength (> 50 MPa recycled concrete. The resulting material was tested for mechanical performance (ULS. The recycled concrete was prepared to the required design strength by adjusting the water/cement ratio. Concrete containing 0, 20, 50, 80 and 100% recycled aggregate was prepared and studied for workability, deformability and durability. The ultimate aim of the study was to prepare high-strength recycled concrete apt for use in cold climates as a theoretical and experimental basis for the deployment of recycled high-strength concrete in civil engineering and building construction.En este estudio se preparó un hormigón de altas resistencias (> 50 MPa utilizando residuos de hormigón como árido grueso reciclado (RCA. El material resultante se ensayó para determinar sus prestaciones mecánicas (ULS. Para adaptarse a los requerimientos resistentes, se ajustó la relación agua/cemento del hormigón reciclado. Se estudió la trabajabilidad, deformabilidad y durabilidad del hormigón con contenidos del 0, 20, 50, 80 y 100% de árido reciclado. El objetivo final del estudio fue preparar hormigón reciclado de altas resistencias apto para su uso en climas fríos como base teórica y experimental para el desarrollo de este tipo de materiales en obra civil y edificación.

  5. Dose-dependent effects of an immune challenge at both ultimate and proximate levels in Drosophila melanogaster.

    Science.gov (United States)

    Nystrand, M; Dowling, D K

    2014-05-01

    Immune responses are highly dynamic. The magnitude and efficiency of an immune response to a pathogen can change markedly across individuals, and such changes may be influenced by variance in a range of intrinsic (e.g. age, genotype, sex) and external (e.g. abiotic stress, pathogen identity, strain) factors. Life history theory predicts that up-regulation of the immune system will come at a physiological cost, and studies have confirmed that increased investment in immunity can reduce reproductive output and survival. Furthermore, males and females often have divergent reproductive strategies, and this might drive the evolution of sex-specific life history trade-offs involving immunity, and sexual dimorphism in immune responses per se. Here, we employ an experiment design to elucidate dose-dependent and sex-specific responses to exposure to a nonpathogenic immune elicitor at two scales--the 'ultimate' life history and the underlying 'proximate' immune level in Drosophila melanogaster. We found dose-dependent effects of immune challenges on both male and female components of reproductive success, but not on survival, as well as a response in antimicrobial activity. These results indicate that even in the absence of the direct pathogenic effects that are associated with actual disease, individual life histories respond to a perceived immune challenge--but with the magnitude of this response being contingent on the initial dose of exposure. Furthermore, the results indicate that immune responses at the ultimate life history level may indeed reflect underlying processes that occur at the proximate level. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  6. Degradation of the compressive strength of unstiffened/stiffened steel plates due to both-sides randomly distributed corrosion wastage

    Directory of Open Access Journals (Sweden)

    Zorareh Hadj Mohammad

    Full Text Available The paper addresses the problem of the influence of randomly distributed corrosion wastage on the collapse strength and behaviour of unstiffened/stiffened steel plates in longitudinal compression. A series of elastic-plastic large deflection finite element analyses is performed on both-sides randomly corroded steel plates and stiffened plates. The effects of general corrosion are introduced into the finite element models using a novel random thickness surface model. Buckling strength, post-buckling behaviour, ultimate strength and post-ultimate behaviour of the models are investigated as results of both-sides random corrosion.

  7. Redox Buffer Strength

    Science.gov (United States)

    de Levie, Robert

    1999-04-01

    The proper functioning of enzymes in bodily fluids requires that the pH be maintained within rather narrow limits. The first line of defense against large pH fluctuations in such fluids is the passive control provided by the presence of pH buffers. The ability of pH buffers to stabilize the pH is indicated by the buffer value b introduced in 1922 by van Slyke. It is equally important for many enzymes that the redox potential is kept within a narrow range. In that case, stability of the potential is most readily achieved with a redox buffer. In this communication we define the redox buffer strength by analogy with acid-base buffer strength.

  8. Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network.

    Science.gov (United States)

    De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Facchini, Francesco; Mummolo, Giovanni; Ludovico, Antonio Domenico

    2016-11-10

    A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW) process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable) and the mechanical properties (output responses) of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls). The simulation model was based on the adoption of the Artificial Neural Networks (ANNs) characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration.

  9. Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Luigi Alberto Ciro De Filippis

    2016-11-01

    Full Text Available A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable and the mechanical properties (output responses of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls. The simulation model was based on the adoption of the Artificial Neural Networks (ANNs characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration.

  10. Corium crust strength measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lomperski, S. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439-4840 (United States)], E-mail: lomperski@anl.gov; Farmer, M.T. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439-4840 (United States)], E-mail: farmer@anl.gov

    2009-11-15

    Corium strength is of interest in the context of a severe reactor accident in which molten core material melts through the reactor vessel and collects on the containment basemat. Some accident management strategies involve pouring water over the melt to solidify it and halt corium/concrete interactions. The effectiveness of this method could be influenced by the strength of the corium crust at the interface between the melt and coolant. A strong, coherent crust anchored to the containment walls could allow the yet-molten corium to fall away from the crust as it erodes the basemat, thereby thermally decoupling the melt from the coolant and sharply reducing the cooling rate. This paper presents a diverse collection of measurements of the mechanical strength of corium. The data is based on load tests of corium samples in three different contexts: (1) small blocks cut from the debris of the large-scale MACE experiments, (2) 30 cm-diameter, 75 kg ingots produced by SSWICS quench tests, and (3) high temperature crusts loaded during large-scale corium/concrete interaction (CCI) tests. In every case the corium consisted of varying proportions of UO{sub 2}, ZrO{sub 2}, and the constituents of concrete to represent a LWR melt at different stages of a molten core/concrete interaction. The collection of data was used to assess the strength and stability of an anchored, plant-scale crust. The results indicate that such a crust is likely to be too weak to support itself above the melt. It is therefore improbable that an anchored crust configuration could persist and the melt become thermally decoupled from the water layer to restrict cooling and prolong an attack of the reactor cavity concrete.

  11. 15 CFR Supplement No. 3 to Part 748 - BIS-711, Statement by Ultimate Consignee and Purchaser Instructions

    Science.gov (United States)

    2010-01-01

    ...” include: contractual, franchise, distributor, wholesaler, continuing and regular individual business, etc... persons, other than employees of the ultimate consignee or purchaser, who assisted in the preparation of...

  12. Strength capability while kneeling.

    Science.gov (United States)

    Haslegrave, C M; Tracy, M F; Corlett, E N

    1997-12-01

    Work sometimes has to be carried out kneeling, particularly where jobs are performed in confined spaces as is common for miners, aircraft baggage handlers and maintenance workers. In order to assess the risks in performing forceful tasks under such conditions, data is needed on strength capabilities of kneeling subjects. A study was undertaken to measure isometric strength in single-handed exertions for male subjects and to investigate the effects on this of task layout factors (direction of force exertion, reach distance, height of the workpiece and orientation relative to the subject's sagittal plane). The data has been tabulated to show the degree to which strength may be reduced in different situations and analysis of the task factors showed their influence to be complex with direction of exertion and reach distance having the greatest effect. The results also suggest that exertions are weaker when subjects are kneeling on two knees than when kneeling on one knee, although this needs to be confirmed by direct experimental comparison.

  13. Designer biomaterials for mechanobiology

    Science.gov (United States)

    Li, Linqing; Eyckmans, Jeroen; Chen, Christopher S.

    2017-12-01

    Biomaterials engineered with specific bioactive ligands, tunable mechanical properties and complex architecture have emerged as powerful tools to probe cell sensing and response to physical properties of their material surroundings, and ultimately provide designer approaches to control cell function.

  14. Ultimate pressures achieved in TiZrV sputter-coated vacuum chambers

    CERN Document Server

    Benvenuti, Cristoforo; Ruzinov, V

    2001-01-01

    Two metre long, cylindrical vacuum chambers of diameter ranging from 34 to 100 mm, coated with TiZrV getter films by sputtering, have been baked for about 24 h at temperatures from 120 to 250 degrees C. The ultimate pressures achieved after bakeout were found to correspond to the ratio of the pressure gauge degassing to the effective pumping speed provided by the chamber at the location of the gauge. The results covering a pressure range from 10/sup -11/ Torr down to 10 /sup -13/ Torr are presented and discussed. (6 refs).

  15. DHC in Helsinki - The Ultimate Heating and Cooling Solution for a Large Urban Area

    Energy Technology Data Exchange (ETDEWEB)

    Wirgentius, Niko; Riipinen, Marko

    2010-09-15

    Since the 1950s there has been successful district energy business in Helsinki. It has been the main factor for superior energy efficiency and low CO2 emissions both in heating and cooling as well as providing clean air for the metropolitan area. The system has been grown by commercial basis based on customers' own willingness to select district energy solution. It also provided a profitable energy business to local energy company, Helsinki Energy. Helsinki DHC system is a good example of ultimate urban energy solution that provides benefits for the customer, energy company, metropolitan area and for the whole society as well.

  16. Lava ultimate resin nano ceramic for CAD/ CAM: customization case study.

    Science.gov (United States)

    Koller, M; Arnetzl, G V; Holly, L; Arnetzl, G

    2012-01-01

    Lava Ultimate Resin Nano Ceramic (RNC) blocks are innovative new CAD/CAM materials that make it possible to achieve superior esthetic results in easy steps. The blocks are made of nano ceramic particles embedded in a highly cured resin matrix. Therefore, composite materials can be used to characterize and adjust resin nano ceramic restorations after milling. The milled RNC restorations can be individualized intra-orally or extra-orally, either before or after insertion. Unlike conventional ceramic restorations, customization and glaze firing is neither necessary nor possible with RNC restorations. This opens up the opportunity for intraoral individualization and adaptation of the restorations.

  17. The legal ensurance of underground ultimate storage of radioactive wastes without risk

    International Nuclear Information System (INIS)

    Prasse, R.

    1974-01-01

    1. The legal position towards the property owner: a) with a view to the freedom of property claim, b) in the light of the influence of the property owner. 2. The legal position towards the neighbouring property owners: a) resistance rights of the body corporate responsible for the ultimate storage, b) resistance rights of the neighbouring property owner. 3. The legal position towards those authorized to mine: a) mining free minerals, b) mining minerals reserved for the state. 4. The legal position towards prospectors. (orig./HP) [de

  18. Weight Training for Strength and Power.

    Science.gov (United States)

    President's Council on Physical Fitness and Sports, Washington, DC.

    This paper begins by defining the terms "weight training,""weight lifting,""strength,""power," and "muscular endurance.""Weight training" is differentiated from "weight lifting" and defined as a systematic series of resistance exercises designed to promote physical development and conditioning or to rehabilitate persons who have suffered injury or…

  19. Strength and fracture behavior of aluminide matrix composites with ceramic fibers

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, M.; Suganuma, K.; Niihara, K.

    1999-07-01

    This paper investigates the fracture behavior of FeAl and Ni{sub 3}Al matrix composites with ceramic continuous fibers 8.5--10 {micro}m in diameter. When stress is applied to these composites, multiple-fracture of fibers predominantly occurs before matrix cracking, because the load carried by the fibers reaches their fracture strength. Fragments which remain longer than the critical length can provide significant strengthening through load bearing even though fiber breaking has occurred. The ultimate fracture strength of the composites also depends on stress relaxation by plastic deformation of the matrix at a crack tip in the multiple-fractured fibers. Ductilizing of the matrix by B doping improves the ultimate strength at ambient temperatures in both composites. However, their mechanical properties at elevated temperatures are quite different. In the case of Ni{sub 3}Al matrix composites, embrittlement of the matrix is undesirable for high strength and reliability at 873--973 K.

  20. Study of the Ultimate Error of the Axis Tolerance Feature and Its Pose Decoupling Based on an Area Coordinate System

    Directory of Open Access Journals (Sweden)

    Qungui Du

    2018-03-01

    Full Text Available Manufacturing error and assembly error should be taken into consideration during evaluation and analysis of accurate product performance in the design phase. Traditional tolerance analysis methods establish error propagation model based on dimension chains with tolerance values being regarded as error boundaries, and obtain the limit of target feature error through optimization methods or conducting statistical analysis with the tolerance domain being the boundary. As deviations of the tolerance feature (TF on degrees of freedom (DOF have coupling relations, accurate deviations on all DOF may not be obtained, even though these deviations constitute the basis for product performance analysis. Therefore, taking the widely used shaft-hole fit as an example, a pose decoupling model of the axis TF was proposed based on an area coordinate system. This model realized decoupling analysis of any pose of the axis TF within the tolerance domain. As proposed by the authors, by combining a tolerance analysis model based on tracking local coordinate systems, ultimate pose analysis of the closed-loop system, namely the target feature, as well as statistical analysis could be further implemented. This method contributed to analysis of true product performance with arbitrary error in the product design phase from the angle of tolerance, therefore, shortening the product research and development cycle. This method is demonstrated through applying it to a real-life example.