WorldWideScience

Sample records for ubiquitin carrier protein

  1. The predictive role of E2-EPF ubiquitin carrier protein in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Chen, Miao-Fen; Lee, Kuan-Der; Lu, Ming-Shian; Chen, Chih-Cheng; Hsieh, Ming-Ju; Liu, Yun-Hen; Lin, Paul-Yang; Chen, Wen-Cheng

    2009-03-01

    The ubiquitin proteasome pathway has been implicated in carcinogenesis. However, the role of E2-EPF ubiquitin carrier protein (UCP) in esophageal cancer remains relatively unstudied. In the study, we examined the mRNA level of circulating tumor cells from 60 esophageal cancer patients by membrane arrays consisting of a panel of potential markers including UCP, compared to 40 normal populations. The predictive capacity of UCP was also assessed by immunohistochemical staining of a retrospective series of 84 biopsied esophageal squamous cell carcinomas in relation to clinical outcome. In addition, we studied in vitro biological changes including tumor growth, metastatic capacity, and the sensitivity to irradiation and cisplatin, after experimental manipulation of UCP expression in esophageal cancer cells. By the data of 25-gene membrane array analysis, UCP was the only factor significantly associated with the extent of tumor burden in esophageal cancer patients. Our immunochemistry findings further indicate that UCP positivity was linked to poor response to neoadjuvant therapy and worse survival. In cell culture, inhibited UCP significantly decrease tumor growth and the capacity for metastasis. The epithelial-mesenchymal transition (EMT) induced by VHL/HIF-1alpha-TGF-beta1 pathway might be the underlying mechanism responsible to the more aggressive tumor growth in UCP-positive esophageal cancer. Our results suggest that UCP was significantly associated with poor prognosis of esophageal cancer and may be a new molecular target for therapeutic intervention for esophageal squamous cell carcinoma.

  2. Deregulation of E2-EPF ubiquitin carrier protein in papillary renal cell carcinoma.

    Science.gov (United States)

    Roos, Frederik C; Evans, Andrew J; Brenner, Walburgis; Wondergem, Bill; Klomp, Jeffery; Heir, Pardeep; Roche, Olga; Thomas, Christian; Schimmel, Heiko; Furge, Kyle A; Teh, Bin T; Thüroff, Joachim W; Hampel, Christian; Ohh, Michael

    2011-02-01

    Molecular pathways associated with pathogenesis of sporadic papillary renal cell carcinoma (PRCC), the second most common form of kidney cancer, are poorly understood. We analyzed primary tumor specimens from 35 PRCC patients treated by nephrectomy via gene expression analysis and tissue microarrays constructed from an additional 57 paraffin-embedded PRCC samples via immunohistochemistry. Gene products were validated and further studied by Western blot analyses using primary PRCC tumor samples and established renal cell carcinoma cell lines, and potential associations with pathologic variables and survival in 27 patients with follow-up information were determined. We show that the expression of E2-EPF ubiquitin carrier protein, which targets the principal negative regulator of hypoxia-inducible factor (HIF), von Hippel-Lindau protein, for proteasome-dependent degradation, is markedly elevated in the majority of PRCC tumors exhibiting increased HIF1α expression, and is associated with poor prognosis. In addition, we identified multiple hypoxia-responsive elements within the E2-EPF promoter, and for the first time we demonstrated that E2-EPF is a hypoxia-inducible gene directly regulated via HIF1. These findings reveal deregulation of the oxygen-sensing pathway impinging on the positive feedback mechanism of HIF1-mediated regulation of E2-EPF in PRCC. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Terminating protein ubiquitination: Hasta la vista, ubiquitin.

    Science.gov (United States)

    Stringer, Daniel K; Piper, Robert C

    2011-09-15

    Ubiquitination is a post-translational modification that generally directs proteins for degradation by the proteasome or by lysosomes. However, ubiquitination has been implicated in many other cellular processes, including transcriptional regulation, DNA repair, regulation of protein-protein interactions and association with ubiquitin-binding scaffolds. Ubiquitination is a dynamic process. Ubiquitin is added to proteins by E3 ubiquitin ligases as a covalent modification to one or multiple lysine residues as well as non-lysine amino acids. Ubiquitin itself contains seven lysines, each of which can also be ubiquitinated, leading to polyubiquitin chains that are best characterized for linkages occurring through K48 and K63. Ubiquitination can also be reversed by the action of deubiquitination enzymes (DUbs). Like E3 ligases, DUbs play diverse and critical roles in cells. ( 1) Ubiquitin is expressed as a fusion protein, as a linear repeat or as a fusion to ribosomal subunits, and DUbs are necessary to liberate free ubiquitin, making them the first enzyme of the ubiquitin cascade. Proteins destined for degradation by the proteasome or by lysosomes are deubiquitinated prior to their degradation, which allows ubiquitin to be recycled by the cell, contributing to the steady-state pool of free ubiquitin. Proteins destined for degradation by lysosomes are also acted upon by both ligases and DUbs. Deubiquitination can also act as a means to prevent protein degradation, and many proteins are thought to undergo rounds of ubiquitination and deubiquitination, ultimately resulting in either the degradation or stabilization of those proteins. Despite years of study, examining the effects of the ubiquitination of proteins remains quite challenging. This is because the methods that are currently being employed to study ubiquitination are limiting. Here, we briefly examine current strategies to study the effects of ubiquitination and describe an additional novel approach that we have

  4. Ectopic High Expression of E2-EPF Ubiquitin Carrier Protein Indicates a More Unfavorable Prognosis in Brain Glioma.

    Science.gov (United States)

    Zhang, Xiaohui; Zhao, Fangbo; Zhang, Shujun; Song, Yichun

    2017-04-01

    Ubiquitination of proteins meant for elimination is a primary method of eukaryotic cellular protein degradation. The ubiquitin carrier protein E2-EPF is a key degradation enzyme that is highly expressed in many tumors. However, its expression and prognostic significance in brain glioma are still unclear. The aim of this study was to reveal how the level of E2-EPF relates to prognosis in brain glioma. Thirty low-grade and 30 high-grade brain glioma samples were divided into two tissue microarrays each. Levels of E2-EPF protein were examined by immunohistochemistry and immunofluorescence. Quantitative real-time polymerase chain reaction was used to analyze the level of E2-EPF in 60 glioma and 3 normal brain tissue samples. The relationship between E2-EPF levels and prognosis was analyzed by Kaplan-Meier survival curves. E2-EPF levels were low in normal brain tissue samples but high in glioma nuclei. E2-EPF levels gradually increased as glioma grade increased (p EPF levels in high-grade glioma were significantly higher than in low-grade glioma (p EPF levels was shorter than in patients with low expression (p EPF was significantly shorter than patients with only nuclear E2-EPF (p EPF levels, especially ectopic, are associated with higher grade glioma and shorter survival. E2-EPF levels may play a key role in predicting the prognosis for patients with brain glioma.

  5. Ubiquitin domain proteins in disease

    DEFF Research Database (Denmark)

    Klausen, Louise Kjær; Schulze, Andrea; Seeger, Michael

    2007-01-01

    The human genome encodes several ubiquitin-like (UBL) domain proteins (UDPs). Members of this protein family are involved in a variety of cellular functions and many are connected to the ubiquitin proteasome system, an essential pathway for protein degradation in eukaryotic cells. Despite...... and cancer. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com)....

  6. Non-degradative Ubiquitination of Protein Kinases.

    Directory of Open Access Journals (Sweden)

    K Aurelia Ball

    2016-06-01

    Full Text Available Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well.

  7. Ubiquitin--conserved protein or selfish gene?

    Science.gov (United States)

    Catic, André; Ploegh, Hidde L

    2005-11-01

    The posttranslational modifier ubiquitin is encoded by a multigene family containing three primary members, which yield the precursor protein polyubiquitin and two ubiquitin moieties, Ub(L40) and Ub(S27), that are fused to the ribosomal proteins L40 and S27, respectively. The gene encoding polyubiquitin is highly conserved and, until now, those encoding Ub(L40) and Ub(S27) have been generally considered to be equally invariant. The evolution of the ribosomal ubiquitin moieties is, however, proving to be more dynamic. It seems that the genes encoding Ub(L40) and Ub(S27) are actively maintained by homologous recombination with the invariant polyubiquitin locus. Failure to recombine leads to deterioration of the sequence of the ribosomal ubiquitin moieties in several phyla, although this deterioration is evidently constrained by the structural requirements of the ubiquitin fold. Only a few amino acids in ubiquitin are vital for its function, and we propose that conservation of all three ubiquitin genes is driven not only by functional properties of the ubiquitin protein, but also by the propensity of the polyubiquitin locus to act as a 'selfish gene'.

  8. Ubiquitination of specific mitochondrial matrix proteins

    International Nuclear Information System (INIS)

    Lehmann, Gilad; Ziv, Tamar; Braten, Ori; Admon, Arie; Udasin, Ronald G.; Ciechanover, Aaron

    2016-01-01

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  9. Ubiquitination of specific mitochondrial matrix proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Gilad [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ziv, Tamar [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Braten, Ori [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Admon, Arie [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Udasin, Ronald G. [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ciechanover, Aaron, E-mail: aaroncie@tx.technion.ac.il [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel)

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  10. Ubiquitin

    DEFF Research Database (Denmark)

    Vinther-Jensen, T.; Simonsen, A. H.; Budtz-Jorgensen, E.

    2015-01-01

    -expansion negative individuals using surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry. Differences in peak intensity from SELDI-TOF spectra were evaluated. RESULTS: Levels of 10 peaks were statistically significantly different between manifest gene-expansion carriers...... and controls. One of them identified as ubiquitin was shown to be dependent on the Unified Huntington Disease Rating Scale Total Functional Capacity, a pseudo-measure of disease severity (P = 0.001), and the Symbol Digit Modalities Test (0.04) in manifest and CAG-age product score (P = 0.019) in all gene......-expansion carriers. CONCLUSIONS AND RELEVANCE: Multiple studies have shown that the ubiquitin-proteasome system is involved in Huntington's disease pathogenesis and understanding of this involvement may have therapeutic potential in humans. This is the first study on cerebrospinal fluid to confirm the involvement...

  11. Heat shock induced change in protein ubiquitination in Chlamydomonas

    International Nuclear Information System (INIS)

    Shimogawara, K.; Muto, S.

    1989-01-01

    Ubiquitin was purified from pea (Pisum sativum L.) and its antibody was produced. Western blot analysis showed that the antibody cross-reacted with ubiquitins from a green alga Chlamydomonas reinhardtii, a brown alga Laminaria angustata and a red alga Porphyridium cruentum but not with ubiquitin from a blue-green alga Synechococcus sp. In Chlamydomonas, the antibody also reacted with some ubiquitinated proteins including 28- and 31-kDa polypeptides. The isoelectric points of Chlamydomonas ubiquitin and the 28- and 31-kDa ubiquitinated proteins were 8.0, 8.9 and 10.3, respectively. The ubiquitinated proteins, including the 28- and 31-kDa polypeptides were detected after in vitro ATP-dependent ubiquitination of Chlamydomonas cell extract with l25 I-labeled bovine ubiquitin. Heat treatment of Chlamydomonas cells (>40°C) caused drastic increase of ubiquitinated proteins with high mol wt (>60kDa), and coordinated redistribution or decrease of other ubiquitinated proteins and free ubiquitin. Quantitative analysis revealed that the 28- and 31-kDa ubiquitinated proteins showed different responses against heat stress, i.e. the former being more sensitive than the latter. (author)

  12. Chaperones, but not oxidized proteins, are ubiquitinated after oxidative stress

    DEFF Research Database (Denmark)

    Kästle, Marc; Reeg, Sandra; Rogowska-Wrzesinska, Adelina

    2012-01-01

    of these proteins by MALDI tandem mass spectrometry (MALDI MS/MS). As a result we obtained 24 different proteins which can be categorized into the following groups: chaperones, energy metabolism, cytoskeleton/intermediate filaments, and protein translation/ribosome biogenesis. The special set of identified......, ubiquitinated proteins confirm the thesis that ubiquitination upon oxidative stress is no random process to degrade the mass of oxidized proteins, but concerns a special group of functional proteins....

  13. Mcl-1 Ubiquitination: Unique Regulation of an Essential Survival Protein

    Directory of Open Access Journals (Sweden)

    Barbara Mojsa

    2014-05-01

    Full Text Available Mcl-1 is an anti-apoptotic protein of the Bcl-2 family that is essential for the survival of multiple cell lineages and that is highly amplified in human cancer. Under physiological conditions, Mcl-1 expression is tightly regulated at multiple levels, involving transcriptional, post-transcriptional and post-translational processes. Ubiquitination of Mcl-1, that targets it for proteasomal degradation, allows for rapid elimination of the protein and triggering of cell death, in response to various cellular events. In the last decade, a number of studies have elucidated different pathways controlling Mcl-1 ubiquitination and degradation. Four different E3 ubiquitin-ligases (e.g., Mule, SCFβ-TrCP, SCFFbw7 and Trim17 and one deubiquitinase (e.g., USP9X, that respectively mediate and oppose Mcl-1 ubiquitination, have been formerly identified. The interaction between Mule and Mcl-1 can be modulated by other Bcl-2 family proteins, while recognition of Mcl-1 by the other E3 ubiquitin-ligases and deubiquitinase is influenced by phosphorylation of specific residues in Mcl-1. The protein kinases and E3 ubiquitin-ligases that are involved in the regulation of Mcl-1 stability vary depending on the cellular context, highlighting the complexity and pivotal role of Mcl-1 regulation. In this review, we attempt to recapitulate progress in understanding Mcl-1 regulation by the ubiquitin-proteasome system.

  14. A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jiazhang; Yu, Kaiwen; Fei, Xiaowen; Liu, Yao; Nakayasu, Ernesto S.; Piehowski, Paul D.; Shaw, Jared B.; Puvar, Kedar; Das, Chittaranjan; Liu, Xiaoyun; Luo, Zhao-Qing

    2017-05-12

    Ubiquitination regulates many aspects of host immunity and thus is a common target for infectious agents. Recent studies revealed that members of the SidE effector family of the bacterial pathogen Legionella pneumophila attacked several small GTPases associated with the endoplasmic reticulum by a novel ubiquitination mechanism that does not require the E1 and E2 enzymes of the host ubiquitination machinery. Following ubiquitin activation by ADP- ribosylation via a mono-ADP-ribosylation motif, ADP-ribosylated ubiquitin is cleaved by a phosphodiesterasedomainwithinSdeA,whichisconcomitantwiththelinkof phosphoribosylated ubiquitin to serine residues in the substrate. Here we demonstrate that the activity of SidEs is regulated by SidJ, another effector encoded by a gene situated in the locus coding for three members of the SidE family (SdeC, SdeB and SdeA). SidJ functions to remove ubiquitin from SidEs-modified substrates by cleaving the phosphodiester bond that links phosphoribosylated ubiquitin to protein substrates. Further, the deubiquitinase activity of SidJ is essential for its role in L. pneumophila infection. Finally, the activity of SidJ is required for efficiently reducing the abundance of ubiquitinated Rab33b in infected cells within a few hours after bacterial uptake. Our results establish SidJ as a deubiquitinase that functions to impose temporal regulation of the activity of the SidE effectors. The identification of SidJ may shed light on future study of signaling cascades mediated by this unique ubiquitination that also potentially regulates cellular processes in eukaryotic cells.

  15. Ubiquitin Accumulation on Disease Associated Protein Aggregates Is Correlated with Nuclear Ubiquitin Depletion, Histone De-Ubiquitination and Impaired DNA Damage Response.

    Directory of Open Access Journals (Sweden)

    Adi Ben Yehuda

    Full Text Available Deposition of ubiquitin conjugates on inclusion bodies composed of protein aggregates is a definitive cytopathological hallmark of neurodegenerative diseases. We show that accumulation of ubiquitin on polyQ IB, associated with Huntington's disease, is correlated with extensive depletion of nuclear ubiquitin and histone de-ubiquitination. Histone ubiquitination plays major roles in chromatin regulation and DNA repair. Accordingly, we observe that cells expressing IB fail to respond to radiomimetic DNA damage, to induce gamma-H2AX phosphorylation and to recruit 53BP1 to damaged foci. Interestingly ubiquitin depletion, histone de-ubiquitination and impaired DNA damage response are not restricted to PolyQ aggregates and are associated with artificial aggregating luciferase mutants. The longevity of brain neurons depends on their capacity to respond to and repair extensive ongoing DNA damage. Impaired DNA damage response, even modest one, could thus lead to premature neuron aging and mortality.

  16. HUWE1 and TRIP12 collaborate in degradation of ubiquitin-fusion proteins and misframed ubiquitin.

    Directory of Open Access Journals (Sweden)

    Esben G Poulsen

    Full Text Available In eukaryotic cells an uncleavable ubiquitin moiety conjugated to the N-terminus of a protein signals the degradation of the fusion protein via the proteasome-dependent ubiquitin fusion degradation (UFD pathway. In yeast the molecular mechanism of the UFD pathway has been well characterized. Recently the human E3 ubiquitin-protein ligase TRIP12 was connected with the UFD pathway, but little is otherwise known about this system in mammalian cells. In the present work, we utilized high-throughput imaging on cells transfected with a targeted siRNA library to identify components involved in degradation of the UFD substrate Ub(G76V-YFP. The most significant hits from the screen were the E3 ubiquitin-protein ligase HUWE1, as well as PSMD7 and PSMD14 that encode proteasome subunits. Accordingly, knock down of HUWE1 led to an increase in the steady state level and a retarded degradation of the UFD substrate. Knock down of HUWE1 also led to a stabilization of the physiological UFD substrate UBB(+1. Precipitation experiments revealed that HUWE1 is associated with both the Ub(G76V-YFP substrate and the 26S proteasome, indicating that it functions late in the UFD pathway. Double knock down of HUWE1 and TRIP12 resulted in an additive stabilization of the substrate, suggesting that HUWE1 and TRIP12 function in parallel during UFD. However, even when both HUWE1 and TRIP12 are downregulated, ubiquitylation of the UFD substrate was still apparent, revealing functional redundancy between HUWE1, TRIP12 and yet other ubiquitin-protein ligases.

  17. Regulation of G Protein-Coupled Receptors by Ubiquitination

    Directory of Open Access Journals (Sweden)

    Kamila Skieterska

    2017-04-01

    Full Text Available G protein-coupled receptors (GPCRs comprise the largest family of membrane receptors that control many cellular processes and consequently often serve as drug targets. These receptors undergo a strict regulation by mechanisms such as internalization and desensitization, which are strongly influenced by posttranslational modifications. Ubiquitination is a posttranslational modification with a broad range of functions that is currently gaining increased appreciation as a regulator of GPCR activity. The role of ubiquitination in directing GPCRs for lysosomal degradation has already been well-established. Furthermore, this modification can also play a role in targeting membrane and endoplasmic reticulum-associated receptors to the proteasome. Most recently, ubiquitination was also shown to be involved in GPCR signaling. In this review, we present current knowledge on the molecular basis of GPCR regulation by ubiquitination, and highlight the importance of E3 ubiquitin ligases, deubiquitinating enzymes and β-arrestins. Finally, we discuss classical and newly-discovered functions of ubiquitination in controlling GPCR activity.

  18. HUWE1 and TRIP12 Collaborate in Degradation of Ubiquitin-Fusion Proteins and Misframed Ubiquitin

    DEFF Research Database (Denmark)

    Poulsen, Esben G; Steinhauer, Cornelia; Lees, Michael

    2012-01-01

    In eukaryotic cells an uncleavable ubiquitin moiety conjugated to the N-terminus of a protein signals the degradation of the fusion protein via the proteasome-dependent ubiquitin fusion degradation (UFD) pathway. In yeast the molecular mechanism of the UFD pathway has been well characterized...... in degradation of the UFD substrate Ub(G76V)-YFP. The most significant hits from the screen were the E3 ubiquitin-protein ligase HUWE1, as well as PSMD7 and PSMD14 that encode proteasome subunits. Accordingly, knock down of HUWE1 led to an increase in the steady state level and a retarded degradation of the UFD...... substrate. Knock down of HUWE1 also led to a stabilization of the physiological UFD substrate UBB(+1). Precipitation experiments revealed that HUWE1 is associated with both the Ub(G76V)-YFP substrate and the 26S proteasome, indicating that it functions late in the UFD pathway. Double knock down of HUWE1...

  19. Hydrophobic Collapse of Ubiquitin Generates Rapid Protein-Water Motions.

    Science.gov (United States)

    Wirtz, Hanna; Schäfer, Sarah; Hoberg, Claudius; Reid, Korey M; Leitner, David M; Havenith, Martina

    2018-06-04

    We report time-resolved measurements of the coupled protein-water modes of solvated ubiquitin during protein folding. Kinetic terahertz absorption (KITA) spectroscopy serves as a label-free technique for monitoring large scale conformational changes and folding of proteins subsequent to a sudden T-jump. We report here KITA measurements at an unprecedented time resolution of 500 ns, a resolution 2 orders of magnitude better than those of any previous KITA measurements, which reveal the coupled ubiquitin-solvent dynamics even in the initial phase of hydrophobic collapse. Complementary equilibrium experiments and molecular simulations of ubiquitin solutions are performed to clarify non-equilibrium contributions and reveal the molecular picture upon a change in structure, respectively. On the basis of our results, we propose that in the case of ubiquitin a rapid (<500 ns) initial phase of the hydrophobic collapse from the elongated protein to a molten globule structure precedes secondary structure formation. We find that these very first steps, including large-amplitude changes within the unfolded manifold, are accompanied by a rapid (<500 ns) pronounced change of the coupled protein-solvent response. The KITA response upon secondary structure formation exhibits an opposite sign, which indicates a distinct effect on the solvent-exposed surface.

  20. Proteolysis targeting peptide (PROTAP) strategy for protein ubiquitination and degradation.

    Science.gov (United States)

    Zheng, Jing; Tan, Chunyan; Xue, Pengcheng; Cao, Jiakun; Liu, Feng; Tan, Ying; Jiang, Yuyang

    2016-02-19

    Ubiquitination proteasome pathway (UPP) is the most important and selective way to degrade proteins in vivo. Here, a novel proteolysis targeting peptide (PROTAP) strategy, composed of a target protein binding peptide, a linker and a ubiquitin E3 ligase recognition peptide, was designed to recruit both target protein and E3 ligase and then induce polyubiquitination and degradation of the target protein through UPP. In our study, the PROTAP strategy was proved to be a general method with high specificity using Bcl-xL protein as model target in vitro and in cells, which indicates that the strategy has great potential for in vivo application. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Regulation of AMPA Receptor Trafficking by Protein Ubiquitination

    Directory of Open Access Journals (Sweden)

    Jocelyn Widagdo

    2017-10-01

    Full Text Available The molecular mechanisms underlying plastic changes in the strength and connectivity of excitatory synapses have been studied extensively for the past few decades and remain the most attractive cellular models of learning and memory. One of the major mechanisms that regulate synaptic plasticity is the dynamic adjustment of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA-type glutamate receptor content on the neuronal plasma membrane. The expression of surface AMPA receptors (AMPARs is controlled by the delicate balance between the biosynthesis, dendritic transport, exocytosis, endocytosis, recycling and degradation of the receptors. These processes are dynamically regulated by AMPAR interacting proteins as well as by various post-translational modifications that occur on their cytoplasmic domains. In the last few years, protein ubiquitination has emerged as a major regulator of AMPAR intracellular trafficking. Dysregulation of AMPAR ubiquitination has also been implicated in the pathophysiology of Alzheimer’s disease. Here we review recent advances in the field and provide insights into the role of protein ubiquitination in regulating AMPAR membrane trafficking and function. We also discuss how aberrant ubiquitination of AMPARs contributes to the pathogenesis of various neurological disorders, including Alzheimer’s disease, chronic stress and epilepsy.

  2. Preparation of ubiquitin-conjugated proteins using an insect cell-free protein synthesis system.

    Science.gov (United States)

    Suzuki, Takashi; Ezure, Toru; Ando, Eiji; Nishimura, Osamu; Utsumi, Toshihiko; Tsunasawa, Susumu

    2010-01-01

    Ubiquitination is one of the most significant posttranslational modifications (PTMs). To evaluate the ability of an insect cell-free protein synthesis system to carry out ubiquitin (Ub) conjugation to in vitro translated proteins, poly-Ub chain formation was studied in an insect cell-free protein synthesis system. Poly-Ub was generated in the presence of Ub aldehyde (UA), a de-ubiquitinating enzyme inhibitor. In vitro ubiquitination of the p53 tumor suppressor protein was also analyzed, and p53 was poly-ubiquitinated when Ub, UA, and Mdm2, an E3 Ub ligase (E3) for p53, were added to the in vitro reaction mixture. These results suggest that the insect cell-free protein synthesis system contains enzymatic activities capable of carrying out ubiquitination. CBB-detectable ubiquitinated p53 was easily purified from the insect cell-free protein synthesis system, allowing analysis of the Ub-conjugated proteins by mass spectrometry (MS). Lys 305 of p53 was identified as one of the Ub acceptor sites using this strategy. Thus, we conclude that the insect cell-free protein synthesis system is a powerful tool for studying various PTMs of eukaryotic proteins including ubiqutination presented here.

  3. The ubiquitin family meets the Fanconi anemia proteins.

    Science.gov (United States)

    Renaudin, Xavier; Koch Lerner, Leticia; Menck, Carlos Frederico Martins; Rosselli, Filippo

    2016-01-01

    Fanconi anaemia (FA) is a hereditary disorder characterized by bone marrow failure, developmental defects, predisposition to cancer and chromosomal abnormalities. FA is caused by biallelic mutations that inactivate genes encoding proteins involved in replication stress-associated DNA damage responses. The 20 FANC proteins identified to date constitute the FANC pathway. A key event in this pathway involves the monoubiquitination of the FANCD2-FANCI heterodimer by the collective action of at least 10 different proteins assembled in the FANC core complex. The FANC core complex-mediated monoubiquitination of FANCD2-FANCI is essential to assemble the heterodimer in subnuclear, chromatin-associated, foci and to regulate the process of DNA repair as well as the rescue of stalled replication forks. Several recent works have demonstrated that the activity of the FANC pathway is linked to several other protein post-translational modifications from the ubiquitin-like family, including SUMO and NEDD8. These modifications are related to DNA damage responses but may also affect other cellular functions potentially related to the clinical phenotypes of the syndrome. This review summarizes the interplay between the ubiquitin and ubiquitin-like proteins and the FANC proteins that constitute a major pathway for the surveillance of the genomic integrity and addresses the implications of their interactions in maintaining genome stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Qualitative ubiquitome unveils the potential significances of protein lysine ubiquitination in hyphal growth of Aspergillus nidulans.

    Science.gov (United States)

    Chu, Xin-Ling; Feng, Ming-Guang; Ying, Sheng-Hua

    2016-02-01

    Protein ubiquitination is an evolutionarily conserved post-translational modification process in eukaryotes, and it plays an important role in many biological processes. Aspergillus nidulans, a model filamentous fungus, contributes to our understanding of cellular physiology, metabolism and genetics, but its ubiquitination is not completely revealed. In this study, the ubiquitination sites in the proteome of A. nidulans were identified using a highly sensitive mass spectrometry combined with immuno-affinity enrichment of the ubiquitinated peptides. The 4816 ubiquitination sites were identified in 1913 ubiquitinated proteins, accounting for 18.1% of total proteins in A. nidulans. Bioinformatic analysis suggested that the ubiquitinated proteins associated with a number of biological functions and displayed various sub-cellular localisations. Meanwhile, seven motifs were revealed from the ubiquitinated peptides, and significantly over-presented in the different pathways. Comparison of the enriched functional catalogues indicated that the ubiquitination functions divergently during growth of A. nidulans and Saccharomyces cerevisiae. Additionally, the proteins in A. nidulans-specific sub-category (cell growth/morphogenesis) were subjected to the protein interaction analysis which demonstrated that ubiquitination is involved in the comprehensive protein interactions. This study presents a first proteomic view of ubiquitination in the filamentous fungus, and provides an initial framework for exploring the physiological roles of ubiquitination in A. nidulans.

  5. Ubiquitinated proteins enriched from tumor cells by a ubiquitin binding protein Vx3(A7) as a potent cancer vaccine.

    Science.gov (United States)

    Aldarouish, Mohanad; Wang, Huzhan; Zhou, Meng; Hu, Hong-Ming; Wang, Li-Xin

    2015-04-16

    Our previous studies have demonstrated that autophagosome-enriched vaccine (named DRibbles: DRiPs-containing blebs) induce a potent anti-tumor efficacy in different murine tumor models, in which DRibble-containing ubiquitinated proteins are efficient tumor-specific antigen source for the cross-presentation after being loaded onto dendritic cells. In this study, we sought to detect whether ubiquitinated proteins enriched from tumor cells could be used directly as a novel cancer vaccine. The ubiquitin binding protein Vx3(A7) was used to isolate ubiquitinated proteins from EL4 and B16-F10 tumor cells after blocking their proteasomal degradation pathway. C57BL/6 mice were vaccinated with different doses of Ub-enriched proteins via inguinal lymph nodes or subcutaneous injection and with DRibbles, Ub-depleted proteins and whole cell lysate as comparison groups, respectively. The lymphocytes from the vaccinated mice were re-stimulated with inactivated tumor cells and the levels of IFN-γ in the supernatant were detected by ELISA. Anti-tumor efficacy of Ub-enriched proteins vaccine was evaluated by monitoring tumor growth in established tumor mice models. Graphpad Prism 5.0 was used for all statistical analysis. We found that after stimulation with inactivated tumor cells, the lymphocytes from the Ub-enriched proteins-vaccinated mice secreted high level of IFN-γ in dose dependent manner, in which the priming vaccination via inguinal lymph nodes injection induced higher IFN-γ level than that via subcutaneous injection. Moreover, the level of secreted IFN-γ in the Ub-enriched proteins group was markedly higher than that in the whole cell lysate and Ub-depleted proteins. Interestingly, the lymphocytes from mice vaccinated with Ub-enriched proteins, but not Ub-depleted proteins and whole cell lysates, isolated from EL4 or B16-F10 tumor cells also produced an obvious level of IFN-γ when stimulated alternately with inactivated B16-F10 or EL4 tumor cells. Furthermore, Ub

  6. Ubiquitin in signaling and protein quality control

    DEFF Research Database (Denmark)

    Al-Saoudi, Sofie Vincents

    is related to the cancer-predisposition disease, Lynch syndrome. Of 24 different MSH2 variants, some of which have been linked to Lynch syndrome, we show that there is a strong correlation between the predicted structural stability and the protein half-life. We show that a predicted destabilization of 3 kcal....../mol is sufficient to cause proteasomal degradation of MSH2 variants. Importantly our calculations can, in addition to protein turnover, also predict pathogenicity of MSH2 variants, suggesting that this approach can be applied for Lynch syndrome diagnosis, and perhaps for other hereditary diseases....

  7. Protein carriers of conjugate vaccines

    Science.gov (United States)

    Pichichero, Michael E

    2013-01-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products. PMID:23955057

  8. Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy

    Directory of Open Access Journals (Sweden)

    Zhang Hui

    2007-02-01

    Full Text Available Abstract Recent investigation of Cullin 4 (CUL4 has ushered this class of multiprotein ubiquitin E3 ligases to center stage as critical regulators of diverse processes including cell cycle regulation, developmental patterning, DNA replication, DNA damage and repair, and epigenetic control of gene expression. CUL4 associates with DNA Damage Binding protein 1 (DDB1 to assemble an ubiquitin E3 ligase that targets protein substrates for ubiquitin-dependent proteolysis. CUL4 ligase activity is also regulated by the covalent attachment of the ubiquitin-like protein NEDD8 to CUL4, or neddylation, and the COP9 signalosome complex (CSN that removes this important modification. Recently, multiple WD40-repeat proteins (WDR were found to interact with DDB1 and serve as the substrate-recognition subunits of the CUL4-DDB1 ubiquitin ligase. As more than 150–300 WDR proteins exist in the human genome, these findings impact a wide array of biological processes through CUL4 ligase-mediated proteolysis. Here, we review the recent progress in understanding the mechanism of CUL4 ubiquitin E3 ligase and discuss the architecture of CUL4-assembled E3 ubiquitin ligase complexes by comparison to CUL1-based E3s (SCF. Then, we will review several examples to highlight the critical roles of CUL4 ubiquitin ligase in genome stability, cell cycle regulation, and histone lysine methylation. Together, these studies provide insights into the mechanism of this novel ubiquitin ligase in the regulation of important biological processes.

  9. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains

    DEFF Research Database (Denmark)

    Wilkinson, C R; Seeger, M; Hartmann-Petersen, R

    2001-01-01

    The UBA domain is a motif found in a variety of proteins, some of which are associated with the ubiquitin-proteasome system. We describe the isolation of a fission-yeast gene, mud1+, which encodes a UBA domain containing protein that is able to bind multi-ubiquitin chains. We show that the UBA do...

  10. Proteomes and Ubiquitylomes Analysis Reveals the Involvement of Ubiquitination in Protein Degradation in Petunias1

    Science.gov (United States)

    Liu, Juanxu; Wei, Qian; Wang, Rongmin; Yang, Weiyuan; Ma, Yueyue; Chen, Guoju

    2017-01-01

    Petal senescence is a complex programmed process. It has been demonstrated previously that treatment with ethylene, a plant hormone involved in senescence, can extensively alter transcriptome and proteome profiles in plants. However, little is known regarding the impact of ethylene on posttranslational modification (PTM) or the association between PTM and the proteome. Protein degradation is one of the hallmarks of senescence, and ubiquitination, a major PTM in eukaryotes, plays important roles in protein degradation. In this study, we first obtained reference petunia (Petunia hybrida) transcriptome data via RNA sequencing. Next, we quantitatively investigated the petunia proteome and ubiquitylome and the association between them in petunia corollas following ethylene treatment. In total, 51,799 unigenes, 3,606 proteins, and 2,270 ubiquitination sites were quantified 16 h after ethylene treatment. Treatment with ethylene resulted in 14,448 down-regulated and 6,303 up-regulated unigenes (absolute log2 fold change > 1 and false discovery rate petunia. Several putative ubiquitin ligases were up-regulated at the protein and transcription levels. Our results showed that the global proteome and ubiquitylome were negatively correlated and that ubiquitination could be involved in the degradation of proteins during ethylene-mediated corolla senescence in petunia. Ethylene regulates hormone signaling transduction pathways at both the protein and ubiquitination levels in petunia corollas. In addition, our results revealed that ethylene increases the ubiquitination levels of proteins involved in endoplasmic reticulum-associated degradation. PMID:27810942

  11. The Host E3-Ubiquitin Ligase TRIM6 Ubiquitinates the Ebola Virus VP35 Protein and Promotes Virus Replication.

    Science.gov (United States)

    Bharaj, Preeti; Atkins, Colm; Luthra, Priya; Giraldo, Maria Isabel; Dawes, Brian E; Miorin, Lisa; Johnson, Jeffrey R; Krogan, Nevan J; Basler, Christopher F; Freiberg, Alexander N; Rajsbaum, Ricardo

    2017-09-15

    Ebola virus (EBOV), a member of the Filoviridae family, is a highly pathogenic virus that causes severe hemorrhagic fever in humans and is responsible for epidemics throughout sub-Saharan, central, and West Africa. The EBOV genome encodes VP35, an important viral protein involved in virus replication by acting as an essential cofactor of the viral polymerase as well as a potent antagonist of the host antiviral type I interferon (IFN-I) system. By using mass spectrometry analysis and coimmunoprecipitation assays, we show here that VP35 is ubiquitinated on lysine 309 (K309), a residue located on its IFN antagonist domain. We also found that VP35 interacts with TRIM6, a member of the E3-ubiquitin ligase tripartite motif (TRIM) family. We recently reported that TRIM6 promotes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, to induce efficient antiviral IFN-I-mediated responses. Consistent with this notion, VP35 also associated noncovalently with polyubiquitin chains and inhibited TRIM6-mediated IFN-I induction. Intriguingly, we also found that TRIM6 enhances EBOV polymerase activity in a minigenome assay and TRIM6 knockout cells have reduced replication of infectious EBOV, suggesting that VP35 hijacks TRIM6 to promote EBOV replication through ubiquitination. Our work provides evidence that TRIM6 is an important host cellular factor that promotes EBOV replication, and future studies will focus on whether TRIM6 could be targeted for therapeutic intervention against EBOV infection. IMPORTANCE EBOV belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans and other mammals with high mortality rates (40 to 90%). Because of its high pathogenicity and lack of licensed antivirals and vaccines, EBOV is listed as a tier 1 select-agent risk group 4 pathogen. An important mechanism for the severity of EBOV infection is its suppression of innate immune responses. The EBOV VP35

  12. Gammaherpesviral Tegument Proteins, PML-Nuclear Bodies and the Ubiquitin-Proteasome System

    Directory of Open Access Journals (Sweden)

    Florian Full

    2017-10-01

    Full Text Available Gammaherpesviruses like Epstein-Barr virus (EBV and Kaposi’s sarcoma-associated herpesvirus (KSHV subvert the ubiquitin proteasome system for their own benefit in order to facilitate viral gene expression and replication. In particular, viral tegument proteins that share sequence homology to the formylglycineamide ribonucleotide amidotransferase (FGARAT, or PFAS, an enzyme in the cellular purine biosynthesis, are important for disrupting the intrinsic antiviral response associated with Promyelocytic Leukemia (PML protein-associated nuclear bodies (PML-NBs by proteasome-dependent and independent mechanisms. In addition, all herpesviruses encode for a potent ubiquitin protease that can efficiently remove ubiquitin chains from proteins and thereby interfere with several different cellular pathways. In this review, we discuss mechanisms and functional consequences of virus-induced ubiquitination and deubiquitination for early events in gammaherpesviral infection.

  13. Interplays between Sumoylation, SUMO-Targeted Ubiquitin Ligases, and the Ubiquitin-Adaptor Protein Ufd1 in Fission Yeast

    DEFF Research Database (Denmark)

    Køhler, Julie Bonne

    and the specific molecular interactions and sequence of events linking sumoylation, ubiquitylation and substrate degradation, has been largely uncovered. Using the fission yeast model organism I here present evidence for a role of the Ufd1 (ubiquitinfusion degradation 1) protein, and by extension of the Cdc48-Ufd1...... proteasome mediates direct cross-talk between the two modification systems. By contributing to the dynamic turnover of SUMO conjugated species these SUMO-targeted ubiquitin ligases (STUbLs) fulfills essential roles in both yeast and man. However, the specific sumoylated proteins affected by STUbL activity...... either in STUbL or Ufd1 function. In addition to identifying more than 900 unique sumoylated sites, these efforts revealed a number of proteins with upregulated sumoylation either in STUbL and/or Ufd1 mutant cells. These findings propose specific candidate substrates through which STUbL and Cdc48-Ufd1...

  14. Entropy Transfer between Residue Pairs and Allostery in Proteins: Quantifying Allosteric Communication in Ubiquitin.

    Directory of Open Access Journals (Sweden)

    Aysima Hacisuleyman

    2017-01-01

    Full Text Available It has recently been proposed by Gunasakaran et al. that allostery may be an intrinsic property of all proteins. Here, we develop a computational method that can determine and quantify allosteric activity in any given protein. Based on Schreiber's transfer entropy formulation, our approach leads to an information transfer landscape for the protein that shows the presence of entropy sinks and sources and explains how pairs of residues communicate with each other using entropy transfer. The model can identify the residues that drive the fluctuations of others. We apply the model to Ubiquitin, whose allosteric activity has not been emphasized until recently, and show that there are indeed systematic pathways of entropy and information transfer between residues that correlate well with the activities of the protein. We use 600 nanosecond molecular dynamics trajectories for Ubiquitin and its complex with human polymerase iota and evaluate entropy transfer between all pairs of residues of Ubiquitin and quantify the binding susceptibility changes upon complex formation. We explain the complex formation propensities of Ubiquitin in terms of entropy transfer. Important residues taking part in allosteric communication in Ubiquitin predicted by our approach are in agreement with results of NMR relaxation dispersion experiments. Finally, we show that time delayed correlation of fluctuations of two interacting residues possesses an intrinsic causality that tells which residue controls the interaction and which one is controlled. Our work shows that time delayed correlations, entropy transfer and causality are the required new concepts for explaining allosteric communication in proteins.

  15. Entropy Transfer between Residue Pairs and Allostery in Proteins: Quantifying Allosteric Communication in Ubiquitin.

    Science.gov (United States)

    Hacisuleyman, Aysima; Erman, Burak

    2017-01-01

    It has recently been proposed by Gunasakaran et al. that allostery may be an intrinsic property of all proteins. Here, we develop a computational method that can determine and quantify allosteric activity in any given protein. Based on Schreiber's transfer entropy formulation, our approach leads to an information transfer landscape for the protein that shows the presence of entropy sinks and sources and explains how pairs of residues communicate with each other using entropy transfer. The model can identify the residues that drive the fluctuations of others. We apply the model to Ubiquitin, whose allosteric activity has not been emphasized until recently, and show that there are indeed systematic pathways of entropy and information transfer between residues that correlate well with the activities of the protein. We use 600 nanosecond molecular dynamics trajectories for Ubiquitin and its complex with human polymerase iota and evaluate entropy transfer between all pairs of residues of Ubiquitin and quantify the binding susceptibility changes upon complex formation. We explain the complex formation propensities of Ubiquitin in terms of entropy transfer. Important residues taking part in allosteric communication in Ubiquitin predicted by our approach are in agreement with results of NMR relaxation dispersion experiments. Finally, we show that time delayed correlation of fluctuations of two interacting residues possesses an intrinsic causality that tells which residue controls the interaction and which one is controlled. Our work shows that time delayed correlations, entropy transfer and causality are the required new concepts for explaining allosteric communication in proteins.

  16. A Plastid Protein That Evolved from Ubiquitin and Is Required for Apicoplast Protein Import in Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Justin D. Fellows

    2017-06-01

    Full Text Available Apicomplexan parasites cause a variety of important infectious diseases, including malaria, toxoplasma encephalitis, and severe diarrhea due to Cryptosporidium. Most apicomplexans depend on an organelle called the apicoplast which is derived from a red algal endosymbiont. The apicoplast is essential for the parasite as the compartment of fatty acid, heme, and isoprenoid biosynthesis. The majority of the approximate 500 apicoplast proteins are nucleus encoded and have to be imported across the four membranes that surround the apicoplast. Import across the second outermost membrane of the apicoplast, the periplastid membrane, depends on an apicoplast-specific endoplasmic reticulum-associated protein degradation (ERAD complex and on enzymes of the associated ubiquitination cascade. However, identification of an apicoplast ubiquitin associated with this machinery has long been elusive. Here we identify a plastid ubiquitin-like protein (PUBL, an apicoplast protein that is derived from a ubiquitin ancestor but that has significantly changed in its primary sequence. PUBL is distinct from known ubiquitin-like proteins, and phylogenomic analyses suggest a clade specific to apicomplexans. We demonstrate that PUBL and the AAA ATPase CDC48AP both act to translocate apicoplast proteins across the periplastid membrane during protein import. Conditional null mutants and genetic complementation show that both proteins are critical for this process and for parasite survival. PUBL residues homologous to those that are required for ubiquitin conjugation onto target proteins are essential for this function, while those required for polyubiquitination and preprotein processing are dispensable. Our experiments provide a mechanistic understanding of the molecular machinery that drives protein import across the membranes of the apicoplast.

  17. Molecular chaperones in targeting misfolded proteins for ubiquitin-dependent degradation

    DEFF Research Database (Denmark)

    Kriegenburg, Franziska; Ellgaard, Lars; Hartmann-Petersen, Rasmus

    2012-01-01

    The accumulation of misfolded proteins presents a considerable threat to the health of individual cells and has been linked to severe diseases, including neurodegenerative disorders. Considering that, in nature, cells often are exposed to stress conditions that may lead to aberrant protein...... conformational changes, it becomes clear that they must have an efficient quality control apparatus to refold or destroy misfolded proteins. In general, cells rely on molecular chaperones to seize and refold misfolded proteins. If the native state is unattainable, misfolded proteins are targeted for degradation...... via the ubiquitin-proteasome system. The specificity of this proteolysis is generally provided by E3 ubiquitin-protein ligases, hundreds of which are encoded in the human genome. However, rather than binding the misfolded proteins directly, most E3s depend on molecular chaperones to recognize...

  18. A central role for ubiquitination within a circadian clock protein modification code

    Directory of Open Access Journals (Sweden)

    Katarina eStojkovic

    2014-08-01

    Full Text Available Circadian rhythms, endogenous cycles of about 24 h in physiology, are generated by a master clock located in the suprachiasmatic nucleus of the hypothalamus and other clocks located in the brain and peripheral tissues. Circadian disruption is known to increase the incidence of various illnesses, such as mental disorders, metabolic syndrome and cancer. At the molecular level, periodicity is established by a set of clock genes via autoregulatory translation-transcription feedback loops. This clock mechanism is regulated by post-translational modifications such as phosphorylation and ubiquitination, which set the pace of the clock. Ubiquitination in particular has been found to regulate the stability of core clock components, but also other clock protein functions. Mutation of genes encoding ubiquitin ligases can cause either elongation or shortening of the endogenous circadian period. Recent research has also started to uncover roles for deubiquitination in the molecular clockwork. Here we review the role of the ubiquitin pathway in regulating the circadian clock and we propose that ubiquitination is a key element in a clock protein modification code that orchestrates clock mechanisms and circadian behavior over the daily cycle.

  19. Ubiquitin-Mediated Regulation of Endocytosis by Proteins of the Arrestin Family

    Directory of Open Access Journals (Sweden)

    Michel Becuwe

    2012-01-01

    Full Text Available In metazoans, proteins of the arrestin family are key players of G-protein-coupled receptors (GPCRS signaling and trafficking. Following stimulation, activated receptors are phosphorylated, thus allowing the binding of arrestins and hence an “arrest” of receptor signaling. Arrestins act by uncoupling receptors from G proteins and contribute to the recruitment of endocytic proteins, such as clathrin, to direct receptor trafficking into the endocytic pathway. Arrestins also serve as adaptor proteins by promoting the recruitment of ubiquitin ligases and participate in the agonist-induced ubiquitylation of receptors, known to have impact on their subcellular localization and stability. Recently, the arrestin family has expanded following the discovery of arrestin-related proteins in other eukaryotes such as yeasts or fungi. Surprisingly, most of these proteins are also involved in the ubiquitylation and endocytosis of plasma membrane proteins, thus suggesting that the role of arrestins as ubiquitin ligase adaptors is at the core of these proteins' functions. Importantly, arrestins are themselves ubiquitylated, and this modification is crucial for their function. In this paper, we discuss recent data on the intricate connections between arrestins and the ubiquitin pathway in the control of endocytosis.

  20. Rsp5 ubiquitin ligase is required for protein trafficking in Saccharomyces cerevisiae COPI mutants.

    Directory of Open Access Journals (Sweden)

    Katarzyna Jarmoszewicz

    Full Text Available Retrograde trafficking from the Golgi to the endoplasmic reticulum (ER depends on the formation of vesicles coated with the multiprotein complex COPI. In Saccharomyces cerevisiae ubiquitinated derivatives of several COPI subunits have been identified. The importance of this modification of COPI proteins is unknown. With the exception of the Sec27 protein (β'COP neither the ubiquitin ligase responsible for ubiquitination of COPI subunits nor the importance of this modification are known. Here we find that the ubiquitin ligase mutation, rsp5-1, has a negative effect that is additive with ret1-1 and sec28Δ mutations, in genes encoding α- and ε-COP, respectively. The double ret1-1 rsp5-1 mutant is also more severely defective in the Golgi-to-ER trafficking compared to the single ret1-1, secreting more of the ER chaperone Kar2p, localizing Rer1p mostly to the vacuole, and increasing sensitivity to neomycin. Overexpression of ubiquitin in ret1-1 rsp5-1 mutant suppresses vacuolar accumulation of Rer1p. We found that the effect of rsp5 mutation on the Golgi-to-ER trafficking is similar to that of sla1Δ mutation in a gene encoding actin cytoskeleton proteins, an Rsp5p substrate. Additionally, Rsp5 and Sla1 proteins were found by co-immunoprecipitation in a complex containing COPI subunits. Together, our results show that Rsp5 ligase plays a role in regulating retrograde Golgi-to-ER trafficking.

  1. RYBP Is a K63-Ubiquitin-Chain-Binding Protein that Inhibits Homologous Recombination Repair

    Directory of Open Access Journals (Sweden)

    Mohammad A.M. Ali

    2018-01-01

    Full Text Available Summary: Ring1-YY1-binding protein (RYBP is a member of the non-canonical polycomb repressive complex 1 (PRC1, and like other PRC1 members, it is best described as a transcriptional regulator. However, several PRC1 members were recently shown to function in DNA repair. Here, we report that RYBP preferentially binds K63-ubiquitin chains via its Npl4 zinc finger (NZF domain. Since K63-linked ubiquitin chains are assembled at DNA double-strand breaks (DSBs, we examined the contribution of RYBP to DSB repair. Surprisingly, we find that RYBP is K48 polyubiquitylated by RNF8 and rapidly removed from chromatin upon DNA damage by the VCP/p97 segregase. High expression of RYBP competitively inhibits recruitment of BRCA1 repair complex to DSBs, reducing DNA end resection and homologous recombination (HR repair. Moreover, breast cancer cell lines expressing high endogenous RYBP levels show increased sensitivity to DNA-damaging agents and poly ADP-ribose polymerase (PARP inhibition. These data suggest that RYBP negatively regulates HR repair by competing for K63-ubiquitin chain binding. : Ali et al. find that RYBP binds K63-linked ubiquitin chains and is removed from DNA damage sites. This K63-ubiquitin binding allows RYBP to hinder the recruitment of BRCA1 and Rad51 to DNA double-strand breaks, thus inhibiting homologous recombination repair. Accordingly, cancer cells expressing high RYBP are more sensitive to DNA-damaging therapies. Keywords: DNA damage response, homologous recombination, ubiquitylation, RYBP, polycomb proteins, double-strand break repair, chromatin, histone modification

  2. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases

    Directory of Open Access Journals (Sweden)

    Wouter Boomsma

    2016-02-01

    Full Text Available The ubiquitin-proteasome system targets misfolded proteins for degradation. Since the accumulation of such proteins is potentially harmful for the cell, their prompt removal is important. E3 ubiquitin-protein ligases mediate substrate ubiquitination by bringing together the substrate with an E2 ubiquitin-conjugating enzyme, which transfers ubiquitin to the substrate. For misfolded proteins, substrate recognition is generally delegated to molecular chaperones that subsequently interact with specific E3 ligases. An important exception is San1, a yeast E3 ligase. San1 harbors extensive regions of intrinsic disorder, which provide both conformational flexibility and sites for direct recognition of misfolded targets of vastly different conformations. So far, no mammalian ortholog of San1 is known, nor is it clear whether other E3 ligases utilize disordered regions for substrate recognition. Here, we conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology of their ordered regions, and did not capture the unique disorder patterns that encode the functional mechanism of San1. However, by searching specifically for key features of the San1 sequence, such as long regions of intrinsic disorder embedded with short stretches predicted to be suitable for substrate interaction, we identified several E3 ligases with these characteristics. Our initial analysis revealed that another remarkable trait of San1 is shared with several candidate E3 ligases: long stretches of complete lysine suppression, which in San1 limits auto-ubiquitination. We encode these characteristic features into a San1 similarity-score, and present a set of proteins that are plausible candidates as San1 counterparts in humans. In conclusion, our work

  3. Motional properties of unfolded ubiquitin: a model for a random coil protein

    Energy Technology Data Exchange (ETDEWEB)

    Wirmer, Julia [Johann Wolfgang GoeUniversityFrankfurt, Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (Germany); Peti, Wolfgang [Brown University, Department of Molecular Pharmacology, Physiology and Biotechnology (United States); Schwalbe, Harald [Johann Wolfgang GoeUniversityFrankfurt, Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (Germany)], E-mail: schwalbe@nmr.uni-frankfurt.de

    2006-07-15

    The characterization of unfolded states of proteins has recently attracted considerable interest, as the residual structure present in these states may play a crucial role in determining their folding and misfolding behavior. Here, we investigated the dynamics in the denatured state of ubiquitin in 8 M urea at pH2. Under these conditions, ubiquitin does not have any detectable local residual structure, and uniform {sup 15}N relaxation rates along the sequence indicate the absence of motional restrictions caused by residual secondary structure and/or long-range interactions. A comparison of different models to predict relaxation data in unfolded proteins suggests that the subnanosecond dynamics in unfolded states depend on segmental motions only and do not show a dependence on the residue type but for proline and glycine residues.

  4. Cuz1/Ynl155w, a Zinc-dependent Ubiquitin-binding Protein, Protects Cells from Metalloid-induced Proteotoxicity*

    Science.gov (United States)

    Hanna, John; Waterman, David; Isasa, Marta; Elsasser, Suzanne; Shi, Yuan; Gygi, Steven; Finley, Daniel

    2014-01-01

    Protein misfolding is a universal threat to cells. The ubiquitin-proteasome system mediates a cellular stress response capable of eliminating misfolded proteins. Here we identify Cuz1/Ynl155w as a component of the ubiquitin system, capable of interacting with both the proteasome and Cdc48. Cuz1/Ynl155w is regulated by the transcription factor Rpn4, and is required for cells to survive exposure to the trivalent metalloids arsenic and antimony. A related protein, Yor052c, shows similar phenotypes, suggesting a multicomponent stress response pathway. Cuz1/Ynl155w functions as a zinc-dependent ubiquitin-binding protein. Thus, Cuz1/Ynl155w is proposed to protect cells from metalloid-induced proteotoxicity by delivering ubiquitinated substrates to Cdc48 and the proteasome for destruction. PMID:24297164

  5. Insulin alleviates degradation of skeletal muscle protein by inhibiting the ubiquitin-proteasome system in septic rats.

    Science.gov (United States)

    Chen, Qiyi; Li, Ning; Zhu, Weiming; Li, Weiqin; Tang, Shaoqiu; Yu, Wenkui; Gao, Tao; Zhang, Juanjuan; Li, Jieshou

    2011-06-03

    Hypercatabolism is common under septic conditions. Skeletal muscle is the main target organ for hypercatabolism, and this phenomenon is a vital factor in the deterioration of recovery in septic patients. In skeletal muscle, activation of the ubiquitin-proteasome system plays an important role in hypercatabolism under septic status. Insulin is a vital anticatabolic hormone and previous evidence suggests that insulin administration inhibits various steps in the ubiquitin-proteasome system. However, whether insulin can alleviate the degradation of skeletal muscle protein by inhibiting the ubiquitin-proteasome system under septic condition is unclear. This paper confirmed that mRNA and protein levels of the ubiquitin-proteasome system were upregulated and molecular markers of skeletal muscle proteolysis (tyrosine and 3-methylhistidine) simultaneously increased in the skeletal muscle of septic rats. Septic rats were infused with insulin at a constant rate of 2.4 mU.kg-1.min-1 for 8 hours. Concentrations of mRNA and proteins of the ubiquitin-proteasome system and molecular markers of skeletal muscle proteolysis were mildly affected. When the insulin infusion dose increased to 4.8 mU.kg-1.min-1, mRNA for ubiquitin, E2-14 KDa, and the C2 subunit were all sharply downregulated. At the same time, the levels of ubiquitinated proteins, E2-14KDa, and the C2 subunit protein were significantly reduced. Tyrosine and 3-methylhistidine decreased significantly. We concluded that the ubiquitin-proteasome system is important skeletal muscle hypercatabolism in septic rats. Infusion of insulin can reverse the detrimental metabolism of skeletal muscle by inhibiting the ubiquitin-proteasome system, and the effect is proportional to the insulin infusion dose.

  6. New strategy for renal fibrosis: Targeting Smad3 proteins for ubiquitination and degradation.

    Science.gov (United States)

    Wang, Xin; Feng, Shaozhen; Fan, Jinjin; Li, Xiaoyan; Wen, Qiong; Luo, Ning

    2016-09-15

    Smad3 is a critical signaling protein in renal fibrosis. Proteolysis targeting chimeric molecules (PROTACs) are small molecules designed to degrade target proteins via ubiquitination. They have three components: (1) a recognition motif for E3 ligase; (2) a linker; and (3) a ligand for the target protein. We aimed to design a new PROTAC to prevent renal fibrosis by targeting Smad3 proteins and using hydroxylated pentapeptide of hypoxia-inducible factor-1α as the recognition motif for von Hippel-Lindau (VHL) ubiquitin ligase (E3). Computer-aided drug design was used to find a specific ligand targeting Smad3. Surface plasmon resonance (SPR) was used to verify and optimize screening results. Synthesized PROTAC was validated by two-stage mass spectrometry. The PROTAC's specificity for VHL (E3 ligase) was proved with two human renal carcinoma cell lines, 786-0 (VHL(-)) and ACHN (VHL(+)), and its anti-fibrosis effect was tested in renal fibrosis cell models. Thirteen small molecular compounds (SMCs) were obtained from the Enamine library using GLIDE molecular docking program. SPR results showed that #8 SMC (EN300-72284) combined best with Smad3 (KD=4.547×10(-5)M). Mass spectrometry showed that synthesized PROTAC had the correct peptide molecular weights. Western blot showed Smad3 was degraded by PROTAC with whole-cell lysate of ACHN but not 786-0. Degradation, but not ubiquitination, of Smad3 was inhibited by proteasome inhibitor MG132. The upregulation of fibronectin and Collagen I induced by TGF-β1 in both renal fibroblast and mesangial cells were inhibited by PROTAC. The new PROTAC might prevent renal fibrosis by targeting Smad3 for ubiquitination and degradation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The F-box protein FBXO44 mediates BRCA1 ubiquitination and degradation.

    Science.gov (United States)

    Lu, Yunzhe; Li, Jiezhi; Cheng, Dongmei; Parameswaran, Balaji; Zhang, Shaohua; Jiang, Zefei; Yew, P Renee; Peng, Junmin; Ye, Qinong; Hu, Yanfen

    2012-11-30

    BRCA1 mutations account for a significant proportion of familial breast and ovarian cancers. In addition, reduced BRCA1 protein is associated with sporadic cancer cases in these tissues. At the cellular level, BRCA1 plays a critical role in multiple cellular functions such as DNA repair and cell cycle checkpoint control. Its protein level is regulated in a cell cycle-dependent manner. However, regulation of BRCA1 protein stability is not fully understood. Our earlier study showed that the amino terminus of BRCA1 harbors a degron sequence that is sufficient and necessary for conferring BRCA1 degradation. In the current study, we used mass spectrometry to identify Skp1 that regulates BRCA1 protein stability. Small interfering RNA screening that targets all human F-box proteins uncovered FBXO44 as an important protein that influences BRCA1 protein level. The Skp1-Cul1-F-box-protein44 (SCF(FBXO44)) complex ubiquitinates full-length BRCA1 in vitro. Furthermore, the N terminus of BRCA1 mediates the interaction between BRCA1 and FBXO44. Overexpression of SCF(FBXO44) reduces BRCA1 protein level. Taken together, our work strongly suggests that SCF(FBXO44) is an E3 ubiquitin ligase responsible for BRCA1 degradation. In addition, FBXO44 expression pattern in breast carcinomas suggests that SCF(FBXO44)-mediated BRCA1 degradation might contribute to sporadic breast tumor development.

  8. The F-box Protein FBXO44 Mediates BRCA1 Ubiquitination and Degradation*

    Science.gov (United States)

    Lu, Yunzhe; Li, Jiezhi; Cheng, Dongmei; Parameswaran, Balaji; Zhang, Shaohua; Jiang, Zefei; Yew, P. Renee; Peng, Junmin; Ye, Qinong; Hu, Yanfen

    2012-01-01

    BRCA1 mutations account for a significant proportion of familial breast and ovarian cancers. In addition, reduced BRCA1 protein is associated with sporadic cancer cases in these tissues. At the cellular level, BRCA1 plays a critical role in multiple cellular functions such as DNA repair and cell cycle checkpoint control. Its protein level is regulated in a cell cycle-dependent manner. However, regulation of BRCA1 protein stability is not fully understood. Our earlier study showed that the amino terminus of BRCA1 harbors a degron sequence that is sufficient and necessary for conferring BRCA1 degradation. In the current study, we used mass spectrometry to identify Skp1 that regulates BRCA1 protein stability. Small interfering RNA screening that targets all human F-box proteins uncovered FBXO44 as an important protein that influences BRCA1 protein level. The Skp1-Cul1-F-box-protein44 (SCFFBXO44) complex ubiquitinates full-length BRCA1 in vitro. Furthermore, the N terminus of BRCA1 mediates the interaction between BRCA1 and FBXO44. Overexpression of SCFFBXO44 reduces BRCA1 protein level. Taken together, our work strongly suggests that SCFFBXO44 is an E3 ubiquitin ligase responsible for BRCA1 degradation. In addition, FBXO44 expression pattern in breast carcinomas suggests that SCFFBXO44-mediated BRCA1 degradation might contribute to sporadic breast tumor development. PMID:23086937

  9. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases

    DEFF Research Database (Denmark)

    Wiborg, Jakob; O'Shea, Charlotte; Skriver, Karen

    2008-01-01

    of the distant U-box protein, AtPUB49, representing a large family of eukaryotic proteins containing a U-box linked to a cyclophilin-like peptidyl-prolyl cis-trans isomerase domain, was characterized biochemically. AtPUB49 functioned both as a prolyl isomerase and a chaperone by catalysing cis......The variance of the U-box domain in 64 Arabidopsis thaliana (thale cress) E3s (ubiquitin-protein ligases) was used to examine the interactions between E3s and E2s (ubiquitin-conjugating enzymes). E2s and E3s are components of the ubiquitin protein degradation pathway. Seven U-box proteins were...... analysed for their ability to ubiquitinate proteins in vitro in co-operation with different E2s. All U-box domains exhibited ubiquitination activity and interacted productively with UBC4/5-type E2s. Three and four of the U-box domains mediated ubiquitin addition in the presence of UBC13 and UBC7 E2s...

  10. Ubiquitin-specific Protease 11 (USP11) Deubiquitinates Hybrid Small Ubiquitin-like Modifier (SUMO)-Ubiquitin Chains to Counteract RING Finger Protein 4 (RNF4)

    DEFF Research Database (Denmark)

    Hendriks, Ivo A; Schimmel, Joost; Eifler, Karolin

    2015-01-01

    of RNF4 as a counterbalancing factor. In response to DNA damage induced by methyl methanesulfonate, USP11 could counteract RNF4 to inhibit the dissolution of nuclear bodies. Thus, we provide novel insight into cross-talk between ubiquitin and SUMO and uncover USP11 and RNF4 as a balanced SUMO...

  11. Curcumin ameliorates skeletal muscle atrophy in type 1 diabetic mice by inhibiting protein ubiquitination.

    Science.gov (United States)

    Ono, Taisuke; Takada, Shingo; Kinugawa, Shintaro; Tsutsui, Hiroyuki

    2015-09-01

    What is the central question of this study? We sought to examine whether curcumin could ameliorate skeletal muscle atrophy in diabetic mice by inhibiting protein ubiquitination, inflammatory cytokines and oxidative stress. What is the main finding and its importance? We found that curcumin ameliorated skeletal muscle atrophy in streptozotocin-induced diabetic mice by inhibiting protein ubiquitination without affecting protein synthesis. This favourable effect of curcumin was possibly due to the inhibition of inflammatory cytokines and oxidative stress. Curcumin may be beneficial for the treatment of muscle atrophy in type 1 diabetes mellitus. Skeletal muscle atrophy develops in patients with diabetes mellitus (DM), especially in type 1 DM, which is associated with chronic inflammation. Curcumin, the active ingredient of turmeric, has various biological actions, including anti-inflammatory and antioxidant properties. We hypothesized that curcumin could ameliorate skeletal muscle atrophy in mice with streptozotocin-induced type 1 DM. C57BL/6 J mice were injected with streptozotocin (200 mg kg(-1) i.p.; DM group) or vehicle (control group). Each group of mice was randomly subdivided into two groups of 10 mice each and fed a diet with or without curcumin (1500 mg kg(-1) day(-1)) for 2 weeks. There were significant decreases in body weight, skeletal muscle weight and cellular cross-sectional area of the skeletal muscle in DM mice compared with control mice, and these changes were significantly attenuated in DM+Curcumin mice without affecting plasma glucose and insulin concentrations. Ubiquitination of protein was increased in skeletal muscle from DM mice and decreased in DM+Curcumin mice. Gene expressions of muscle-specific ubiquitin E3 ligase atrogin-1/MAFbx and MuRF1 were increased in DM and inhibited in DM+Curcumin mice. Moreover, nuclear factor-κB activation, concentrations of the inflammatory cytokines tumour necrosis factor-α and interleukin-1β and oxidative

  12. Ret Finger Protein: An E3 Ubiquitin Ligase Juxtaposed to the XY Body in Meiosis

    Directory of Open Access Journals (Sweden)

    Isabelle Gillot

    2009-01-01

    Full Text Available During prophase I of male meiosis, the sex chromosomes form a compact structure called XY body that associates with the nuclear membrane of pachytene spermatocytes. Ret Finger Protein is a transcriptional repressor, able to interact with both nuclear matrix-associated proteins and double-stranded DNA. We report the precise and unique localization of Ret Finger Protein in pachytene spermatocytes, in which Ret Finger Protein takes place of lamin B1, between the XY body and the inner nuclear membrane. This localization of Ret Finger Protein does not seem to be associated with O-glycosylation or sumoylation. In addition, we demonstrate that Ret Finger Protein contains an E3 ubiquitin ligase activity. These observations lead to an attractive hypothesis in which Ret Finger Protein would be involved in the positioning and the attachment of XY body to the nuclear lamina of pachytene spermatocytes.

  13. The ubiquitin ligase tripartite-motif-protein 32 is induced in Duchenne muscular dystrophy.

    Science.gov (United States)

    Assereto, Stefania; Piccirillo, Rosanna; Baratto, Serena; Scudieri, Paolo; Fiorillo, Chiara; Massacesi, Manuela; Traverso, Monica; Galietta, Luis J; Bruno, Claudio; Minetti, Carlo; Zara, Federico; Gazzerro, Elisabetta

    2016-08-01

    Activation of the proteasome pathway is one of the secondary processes of cell damage, which ultimately lead to muscle degeneration and necrosis in Duchenne muscular dystrophy (DMD). In mdx mice, the proteasome inhibitor bortezomib up-regulates the membrane expression of members of the dystrophin complex and reduces the inflammatory reaction. However, chronic inhibition of the 26S proteasome may be toxic, as indicated by the systemic side-effects caused by this drug. Therefore, we sought to determine the components of the ubiquitin-proteasome pathway that are specifically activated in human dystrophin-deficient muscles. The analysis of a cohort of patients with genetically determined DMD or Becker muscular dystrophy (BMD) unveiled a selective up-regulation of the ubiquitin ligase tripartite motif-containing protein 32 (TRIM32). The induction of TRIM32 was due to a transcriptional effect and it correlated with disease severity in BMD patients. In contrast, atrogin1 and muscle RING-finger protein-1 (MuRF-1), which are strongly increased in distinct types of muscular atrophy, were not affected by the DMD dystrophic process. Knock-out models showed that TRIM32 is involved in ubiquitination of muscle cytoskeletal proteins as well as of protein inhibitor of activated STAT protein gamma (Piasγ) and N-myc downstream-regulated gene, two inhibitors of satellite cell proliferation and differentiation. Accordingly, we showed that in DMD/BMD muscle tissue, TRIM32 induction was more pronounced in regenerating myofibers rather than in necrotic muscle cells, thus pointing out a role of this protein in the regulation of human myoblast cell fate. This finding highlights TRIM32 as a possible therapeutic target to favor skeletal muscle regeneration in DMD patients.

  14. Cellular Cholesterol Regulates Ubiquitination and Degradation of the Cholesterol Export Proteins ABCA1 and ABCG1*

    Science.gov (United States)

    Hsieh, Victar; Kim, Mi-Jurng; Gelissen, Ingrid C.; Brown, Andrew J.; Sandoval, Cecilia; Hallab, Jeannette C.; Kockx, Maaike; Traini, Mathew; Jessup, Wendy; Kritharides, Leonard

    2014-01-01

    The objective of this study was to examine the influence of cholesterol in post-translational control of ABCA1 and ABCG1 protein expression. Using CHO cell lines stably expressing human ABCA1 or ABCG1, we observed that the abundance of these proteins is increased by cell cholesterol loading. The response to increased cholesterol is rapid, is independent of transcription, and appears to be specific for these membrane proteins. The effect is mediated through cholesterol-dependent inhibition of transporter protein degradation. Cell cholesterol loading similarly regulates degradation of endogenously expressed ABCA1 and ABCG1 in human THP-1 macrophages. Turnover of ABCA1 and ABCG1 is strongly inhibited by proteasomal inhibitors and is unresponsive to inhibitors of lysosomal proteolysis. Furthermore, cell cholesterol loading inhibits ubiquitination of ABCA1 and ABCG1. Our findings provide evidence for a rapid, cholesterol-dependent, post-translational control of ABCA1 and ABCG1 protein levels, mediated through a specific and sterol-sensitive mechanism for suppression of transporter protein ubiquitination, which in turn decreases proteasomal degradation. This provides a mechanism for acute fine-tuning of cholesterol transporter activity in response to fluctuations in cell cholesterol levels, in addition to the longer term cholesterol-dependent transcriptional regulation of these genes. PMID:24500716

  15. Augmentation of protein production by a combination of the T7 RNA polymerase system and ubiquitin fusion: Overproduction of the human DNA repair protein, ERCC1, as a ubiquitin fusion protein in Escherichia coli.

    NARCIS (Netherlands)

    M.H.M. Koken (Marcel); J.H. Odijk; M. van Duin (Mark); M.W.J. Fornerod (Maarten); D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan)

    1993-01-01

    textabstractThis article presents the development of a set of new expression vectors for overproduction of proteins in Escherichia coli. The vectors, pETUBI-ES1, 2 and 3, allow in-frame cloning of any sequence with the ubiquitin gene driven by the strong T7f10 promoter. Combination of the T7

  16. Tau protein degradation is catalyzed by the ATP/ubiquitin-independent 20S proteasome under normal cell conditions

    OpenAIRE

    Grune, Tilman; Botzen, Diana; Engels, Martina; Voss, Peter; Kaiser, Barbara; Jung, Tobias; Grimm, Stefanie; Ermak, Gennady; Davies, Kelvin J. A.

    2010-01-01

    Tau is the major protein exhibiting intracellular accumulation in Alzheimer disease. The mechanisms leading to its accumulation are not fully understood. It has been proposed that the proteasome is responsible for degrading tau but, since proteasomal inhibitors block both the ubiquitin-dependent 26S proteasome and the ubiqutin-independent 20S proteasome pathways, it is not clear which of these pathways is involved in tau degradation. Some involvement of the ubiquitin ligase, CHIP in tau degra...

  17. Exploitation of the host cell ubiquitin machinery by microbial effector proteins.

    Science.gov (United States)

    Lin, Yi-Han; Machner, Matthias P

    2017-06-15

    Pathogenic bacteria are in a constant battle for survival with their host. In order to gain a competitive edge, they employ a variety of sophisticated strategies that allow them to modify conserved host cell processes in ways that favor bacterial survival and growth. Ubiquitylation, the covalent attachment of the small modifier ubiquitin to target proteins, is such a pathway. Ubiquitylation profoundly alters the fate of a myriad of cellular proteins by inducing changes in their stability or function, subcellular localization or interaction with other proteins. Given the importance of ubiquitylation in cell development, protein homeostasis and innate immunity, it is not surprising that this post-translational modification is exploited by a variety of effector proteins from microbial pathogens. Here, we highlight recent advances in our understanding of the many ways microbes take advantage of host ubiquitylation, along with some surprising deviations from the canonical theme. The lessons learned from the in-depth analyses of these host-pathogen interactions provide a fresh perspective on an ancient post-translational modification that we thought was well understood.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Mechanisms of regulation and diversification of deubiquitylating enzyme function' by Pawel Leznicki and Yogesh Kulathu ( J. Cell Sci. 130 , 1997-2006). 'Cell scientist to watch - Mads Gyrd-Hansen' ( J. Cell Sci. 130 , 1981-1983). © 2017. Published by The Company of Biologists Ltd.

  18. Ubiquitin-like protein UBL5 promotes the functional integrity of the Fanconi anemia pathway.

    Science.gov (United States)

    Oka, Yasuyoshi; Bekker-Jensen, Simon; Mailand, Niels

    2015-05-12

    Ubiquitin and ubiquitin-like proteins (UBLs) function in a wide array of cellular processes. UBL5 is an atypical UBL that does not form covalent conjugates with cellular proteins and which has a known role in modulating pre-mRNA splicing. Here, we report an unexpected involvement of human UBL5 in promoting the function of the Fanconi anemia (FA) pathway for repair of DNA interstrand crosslinks (ICLs), mediated by a specific interaction with the central FA pathway component FANCI. UBL5-deficient cells display spliceosome-independent reduction of FANCI protein stability, defective FANCI function in response to DNA damage and hypersensitivity to ICLs. By mapping the sequence determinants underlying UBL5-FANCI binding, we generated separation-of-function mutants to demonstrate that key aspects of FA pathway function, including FANCI-FANCD2 heterodimerization, FANCD2 and FANCI monoubiquitylation and maintenance of chromosome stability after ICLs, are compromised when the UBL5-FANCI interaction is selectively inhibited by mutations in either protein. Together, our findings establish UBL5 as a factor that promotes the functionality of the FA DNA repair pathway. © 2015 The Authors.

  19. The Role of RUB (related to ubiquitin) Family of Proteins in the Hormone Response. Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Callis, Judy [Univ. of California, Davis, CA (United States). Dept. of Molecular and Cellular Biology

    2013-03-22

    The Rub pathway is a conserved protein modification pathway. RUB (called Rubp1 in budding yeast, Nedd8 in animals and RUB in plants) is a ubiquitin-like 76-amino acid protein. It covalently attaches to protein using an enzymatic machinery analogous to the enzymes that attach ubiquitin to its substrate proteins. However, the nature of the complement of Rub-modified proteins in organisms was not clear. From bioinformatics analyses, one can identify a Rub activating enzymes and Rub conjugating enzymes. However, in many cases, their biochemical properties were not described. In DOE-funded work, we made major advances in our understanding of the Rub pathway in yeast and plants, work that is applicable to other organisms as well. There is a multi-subunit enzyme called SCF in all eukaryotes. The SCF consists of several subunits that serve as a scaffold (the cullin, SKP and RBX subunits) and one subunit that interacts with the substrate. This cullin protein (called Cdc53p in yeast and CULLIN 1 in plants and animals) was a known Rub target. In this work, we identified additional Rub targets in yeast as the other cullin-like proteins Cul3p and Rtt101p. Additionally we described the conservation of the Rub pathway because plant RUB1 can conjugated to yeast Cdc53p- in yeast. In the model plant Arabidopsis thaliana, we characterized the Rub activating enzymes and showed that they are not biochemically equivalent. We also showed that the Rub pathway is essential in plants and characterized plants with reduced levels of rub proteins. These plants are affected in multiple developmental processes. We discovered that they over-produce ethylene as dark-grown seedlings. We characterized a mutant allele of CULLIN1 in Arabidopsis with impaired interaction with RBX and showed that it is unstable in vivo. We used our knowledge of monitoring protein degradation to map the degradation determinants in a plant transcription factor. Finally, we took a mass spectrometric approach to identify

  20. Modification by Ubiquitin-Like Proteins: Significance in Apoptosis and Autophagy Pathways

    Directory of Open Access Journals (Sweden)

    Monde Ntwasa

    2012-09-01

    Full Text Available Ubiquitin-like proteins (Ubls confer diverse functions on their target proteins. The modified proteins are involved in various biological processes, including DNA replication, signal transduction, cell cycle control, embryogenesis, cytoskeletal regulation, metabolism, stress response, homeostasis and mRNA processing. Modifiers such as SUMO, ATG12, ISG15, FAT10, URM1, and UFM have been shown to modify proteins thus conferring functions related to programmed cell death, autophagy and regulation of the immune system. Putative modifiers such as Domain With No Name (DWNN have been identified in recent times but not fully characterized. In this review, we focus on cellular processes involving human Ubls and their targets. We review current progress in targeting these modifiers for drug design strategies.

  1. Signals in hepatitis A virus P3 region proteins recognized by the ubiquitin-mediated proteolytic system

    International Nuclear Information System (INIS)

    Losick, Vicki P.; Schlax, Peter E.; Emmons, Rebecca A.; Lawson, T. Glen

    2003-01-01

    The hepatitis A virus 3C protease and 3D RNA polymerase are present in low concentrations in infected cells. The 3C protease was previously shown to be rapidly degraded by the ubiquitin/26S proteasome system and we present evidence here that the 3D polymerase is also subject to ubiquitination-mediated proteolysis. Our results show that the sequence 32 LGVKDDWLLV 41 in the 3C protease serves as a protein destruction signal recognized by the ubiquitin-protein ligase E3α and that the destruction signal for the RNA polymerase does not require the carboxyl-terminal 137 amino acids. Both the viral 3ABCD polyprotein and the 3CD diprotein were also found to be substrates for ubiquitin-mediated proteolysis. Attempts to determine if the 3C protease or the 3D polymerase destruction signals trigger the ubiquitination and degradation of these precursors yielded evidence suggesting, but not unequivocally proving, that the recognition of the 3D polymerase by the ubiquitin system is responsible

  2. Ubiquitin Ligase gp78 Targets Unglycosylated Prion Protein PrP for Ubiquitylation and Degradation

    OpenAIRE

    Shao, Jia; Choe, Vitnary; Cheng, Haili; Tsai, Yien Che; Weissman, Allan M.; Luo, Shiwen; Rao, Hai

    2014-01-01

    Prion protein PrP is a central player in several devastating neurodegenerative disorders, including mad cow disease and Creutzfeltd-Jacob disease. Conformational alteration of PrP into an aggregation-prone infectious form PrPSc can trigger pathogenic events. How levels of PrP are regulated is poorly understood. Human PrP is known to be degraded by the proteasome, but the specific proteolytic pathway responsible for PrP destruction remains elusive. Here, we demonstrate that the ubiquitin ligas...

  3. Ubiquitinated Proteins Isolated From Tumor Cells Are Efficient Substrates for Antigen Cross-Presentation.

    Science.gov (United States)

    Yu, Guangjie; Moudgil, Tarsem; Cui, Zhihua; Mou, Yongbin; Wang, Lixin; Fox, Bernard A; Hu, Hong-Ming

    2017-06-01

    We have previously shown that inhibition of the proteasome causes defective ribosomal products to be shunted into autophagosomes and subsequently released from tumor cells as defective ribosomal products in Blebs (DRibbles). These DRibbles serve as an excellent source of antigens for cross-priming of tumor-specific T cells. Here, we examine the role of ubiquitinated proteins (Ub-proteins) in this pathway. Using purified Ub-proteins from tumor cells that express endogenous tumor-associated antigen or exogenous viral antigen, we tested the ability of these proteins to stimulate antigen-specific T-cell responses, by activation of monocyte-derived dendritic cells generated from human peripheral blood mononuclear cells. Compared with total cell lysates, we found that purified Ub-proteins from both a gp100-specific melanoma cell line and from a lung cancer cell line expressing cytomegalovirus pp65 antigen produced a significantly higher level of IFN-γ in gp100- or pp65-specific T cells, respectively. In addition, Ub-proteins from an allogeneic tumor cell line could be used to stimulate tumor-infiltrating lymphocytes isolated and expanded from non-small cell lung cancer patients. These results establish that Ub-proteins provide a relevant source of antigens for cross-priming of antitumor immune responses in a variety of settings, including endogenous melanoma and exogenous viral antigen presentation, as well as antigen-specific tumor-infiltrating lymphocytes. Thus, ubiquitin can be used as an affinity tag to enrich for unknown tumor-specific antigens from tumor cell lysates to stimulate tumor-specific T cells ex vivo or to be used as vaccines to target short-lived proteins.

  4. A new class of ubiquitin extension proteins secreted by the dorsal pharyngeal gland in plant parasitic cyst nematodes.

    Science.gov (United States)

    Tytgat, Tom; Vanholme, Bartel; De Meutter, Jan; Claeys, Myriam; Couvreur, Marjolein; Vanhoutte, Isabelle; Gheysen, Greetje; Van Criekinge, Wim; Borgonie, Gaetan; Coomans, August; Gheysen, Godelieve

    2004-08-01

    By performing cDNA AFLP on pre- and early parasitic juveniles, we identified genes encoding a novel type of ubiquitin extension proteins secreted by the dorsal pharyngeal gland in the cyst nematode Heterodera schachtii. The proteins consist of three domains, a signal peptide for secretion, a mono-ubiquitin domain, and a short C-terminal positively charged domain. A gfp-fusion of this protein is targeted to the nucleolus in tobacco BY-2 cells. We hypothesize that the C-terminal peptide might have a regulatory function during syncytium formation in plant roots.

  5. Armadillo Repeat Containing 8α Binds to HRS and Promotes HRS Interaction with Ubiquitinated Proteins

    Science.gov (United States)

    Tomaru, Koji; Ueda, Atsuhisa; Suzuki, Takeyuki; Kobayashi, Nobuaki; Yang, Jun; Yamamoto, Masaki; Takeno, Mitsuhiro; Kaneko, Takeshi; Ishigatsubo, Yoshiaki

    2010-01-01

    Recently, we reported that a complex with an essential role in the degradation of Fructose-1,6-bisphosphatase in yeast is well conserved in mammalian cells; we named this mammalian complex C-terminal to the Lissencephaly type-1-like homology (CTLH) complex. Although the function of the CTLH complex remains unclear, here we used yeast two-hybrid screening to isolate Hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) as a protein binding to a key component of CTLH complex, Armadillo repeat containing 8 (ARMc8) α. The association was confirmed by a yeast two-hybrid assay and a co-immunoprecipitation assay. The proline-rich domain of HRS was essential for the association. As demonstrated through immunofluorescence microscopy, ARMc8α co-localized with HRS. ARMc8α promoted the interaction of HRS with various ubiquitinated proteins through the ubiquitin-interacting motif. These findings suggest that HRS mediates protein endosomal trafficking partly through its interaction with ARMc8α. PMID:20224683

  6. Characterization of the "Escherichia Coli" Acyl Carrier Protein Phosphodiesterase

    Science.gov (United States)

    Thomas, Jacob

    2009-01-01

    Acyl carrier protein (ACP) is a small essential protein that functions as a carrier of the acyl intermediates of fatty acid synthesis. ACP requires the posttranslational attachment of a 4'phosphopantetheine functional group, derived from CoA, in order to perform its metabolic function. A Mn[superscript 2+] dependent enzymatic activity that removes…

  7. Beyond ubiquitination: the atypical functions of Fbxo7 and other F-box proteins.

    Science.gov (United States)

    Nelson, David E; Randle, Suzanne J; Laman, Heike

    2013-10-09

    F-box proteins (FBPs) are substrate-recruiting subunits of Skp1-cullin1-FBP (SCF)-type E3 ubiquitin ligases. To date, 69 FBPs have been identified in humans, but ubiquitinated substrates have only been identified for a few, with the majority of FBPs remaining 'orphans'. In recent years, a growing body of work has identified non-canonical, SCF-independent roles for about 12% of the human FBPs. These atypical FBPs affect processes as diverse as transcription, cell cycle regulation, mitochondrial dynamics and intracellular trafficking. Here, we provide a general review of FBPs, with a particular emphasis on these expanded functions. We review Fbxo7 as an exemplar of this special group as it has well-defined roles in both SCF and non-SCF complexes. We review its function as a cell cycle regulator, via its ability to stabilize p27 protein and Cdk6 complexes, and as a proteasome regulator, owing to its high affinity binding to PI31. We also highlight recent advances in our understanding of Fbxo7 function in Parkinson's disease, where it functions in the regulation of mitophagy with PINK1 and Parkin. We postulate that a few extraordinary FBPs act as platforms that seamlessly segue their canonical and non-canonical functions to integrate different cellular pathways and link their regulation.

  8. Using the Ubiquitin-modified Proteome to Monitor Distinct and Spatially Restricted Protein Homeostasis Dysfunction.

    Science.gov (United States)

    Gendron, Joshua M; Webb, Kristofor; Yang, Bing; Rising, Lisa; Zuzow, Nathan; Bennett, Eric J

    2016-08-01

    Protein homeostasis dysfunction has been implicated in the development and progression of aging related human pathologies. There is a need for the establishment of quantitative methods to evaluate global protein homoeostasis function. As the ubiquitin (ub) proteasome system plays a key role in regulating protein homeostasis, we applied quantitative proteomic methods to evaluate the sensitivity of site-specific ubiquitylation events as markers for protein homeostasis dysfunction. Here, we demonstrate that the ub-modified proteome can exceed the sensitivity of engineered fluorescent reporters as a marker for proteasome dysfunction and can provide unique signatures for distinct proteome challenges which is not possible with engineered reporters. We demonstrate that combining ub-proteomics with subcellular fractionation can effectively separate degradative and regulatory ubiquitylation events on distinct protein populations. Using a recently developed potent inhibitor of the critical protein homeostasis factor p97/VCP, we demonstrate that distinct insults to protein homeostasis function can elicit robust and largely unique alterations to the ub-modified proteome. Taken together, we demonstrate that proteomic approaches to monitor the ub-modified proteome can be used to evaluate global protein homeostasis and can be used to monitor distinct functional outcomes for spatially separated protein populations. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Iron Loading Selectively Increases Hippocampal Levels of Ubiquitinated Proteins and Impairs Hippocampus-Dependent Memory.

    Science.gov (United States)

    Figueiredo, Luciana Silva; de Freitas, Betânia Souza; Garcia, Vanessa Athaíde; Dargél, Vinícius Ayub; Köbe, Luiza Machado; Kist, Luiza Wilges; Bogo, Maurício Reis; Schröder, Nadja

    2016-11-01

    Alterations of brain iron levels have been observed in a number of neurodegenerative disorders. We have previously demonstrated that iron overload in the neonatal period results in severe and persistent memory deficits in the adulthood. Protein degradation mediated by the ubiquitin-proteasome system (UPS) plays a central regulatory role in several cellular processes. Impairment of the UPS has been implicated in the pathogenesis of neurodegenerative disorders. Here, we examined the effects of iron exposure in the neonatal period (12th-14th day of postnatal life) on the expression of proteasome β-1, β-2, and β-5 subunits, and ubiquitinated proteins in brains of 15-day-old rats, to evaluate the immediate effect of the treatment, and in adulthood to assess long-lasting effects. Two different memory types, emotionally motivated conditioning and object recognition were assessed in adult animals. We found that iron administered in the neonatal period impairs both emotionally motivated and recognition memory. Polyubiquitinated protein levels were increased in the hippocampus, but not in the cortex, of adult animals treated with iron. Gene expression of subunits β1 and β5 was affected by age, being higher in the early stages of development in the hippocampus, accompanied by an age-related increase in polyubiquitinated protein levels in adults. In the cortex, gene expression of the three proteasome subunits was significantly higher in adulthood than in the neonatal period. These findings suggest that expression of proteasome subunits and activity are age-dependently regulated. Iron exposure in the neonatal period produces long-lasting harmful effects on the UPS functioning, which may be related with iron-induced memory impairment.

  10. Novel E3 ubiquitin ligases that regulate histone protein levels in the budding yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Singh

    Full Text Available Core histone proteins are essential for packaging the genomic DNA into chromatin in all eukaryotes. Since multiple genes encode these histone proteins, there is potential for generating more histones than what is required for chromatin assembly. The positively charged histones have a very high affinity for negatively charged molecules such as DNA, and any excess of histone proteins results in deleterious effects on genomic stability and cell viability. Hence, histone levels are known to be tightly regulated via transcriptional, posttranscriptional and posttranslational mechanisms. We have previously elucidated the posttranslational regulation of histone protein levels by the ubiquitin-proteasome pathway involving the E2 ubiquitin conjugating enzymes Ubc4/5 and the HECT (Homologous to E6-AP C-Terminus domain containing E3 ligase Tom1 in the budding yeast. Here we report the identification of four additional E3 ligases containing the RING (Really Interesting New Gene finger domains that are involved in the ubiquitylation and subsequent degradation of excess histones in yeast. These E3 ligases are Pep5, Snt2 as well as two previously uncharacterized Open Reading Frames (ORFs YKR017C and YDR266C that we have named Hel1 and Hel2 (for Histone E3 Ligases respectively. Mutants lacking these E3 ligases are sensitive to histone overexpression as they fail to degrade excess histones and accumulate high levels of endogenous histones on histone chaperones. Co-immunoprecipitation assays showed that these E3 ligases interact with the major E2 enzyme Ubc4 that is involved in the degradation related ubiquitylation of histones. Using mutagenesis we further demonstrate that the RING domains of Hel1, Hel2 and Snt2 are required for histone regulation. Lastly, mutants corresponding to Hel1, Hel2 and Pep5 are sensitive to replication inhibitors. Overall, our results highlight the importance of posttranslational histone regulatory mechanisms that employ multiple E3

  11. Coordination of the recruitment of the FANCD2 and PALB2 Fanconi anemia proteins by an ubiquitin signaling network.

    Science.gov (United States)

    Bick, Gregory; Zhang, Fan; Meetei, A Ruhikanta; Andreassen, Paul R

    2017-06-01

    Fanconi anemia (FA) is a chromosome instability syndrome and the 20 identified FA proteins are organized into two main arms which are thought to function at distinct steps in the repair of DNA interstrand crosslinks (ICLs). These two arms include the upstream FA pathway, which culminates in the monoubiquitination of FANCD2 and FANCI, and downstream breast cancer (BRCA)-associated proteins that interact in protein complexes. How, and whether, these two groups of FA proteins are integrated is unclear. Here, we show that FANCD2 and PALB2, as indicators of the upstream and downstream arms, respectively, colocalize independently of each other in response to DNA damage induced by mitomycin C (MMC). We also show that ubiquitin chains are induced by MMC and colocalize with both FANCD2 and PALB2. Our finding that the RNF8 E3 ligase has a role in recruiting FANCD2 and PALB2 also provides support for the hypothesis that the two branches of the FA-BRCA pathway are coordinated by ubiquitin signaling. Interestingly, we find that the RNF8 partner, MDC1, as well as the ubiquitin-binding protein, RAP80, specifically recruit PALB2, while a different ubiquitin-binding protein, FAAP20, functions only in the recruitment of FANCD2. Thus, FANCD2 and PALB2 are not recruited in a single linear pathway, rather we define how their localization is coordinated and integrated by a network of ubiquitin-related proteins. We propose that such regulation may enable upstream and downstream FA proteins to act at distinct steps in the repair of ICLs.

  12. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity.

    Science.gov (United States)

    Rosebrock, Tracy R; Zeng, Lirong; Brady, Jennifer J; Abramovitch, Robert B; Xiao, Fangming; Martin, Gregory B

    2007-07-19

    Many bacterial pathogens of plants and animals use a type III secretion system to deliver diverse virulence-associated 'effector' proteins into the host cell. The mechanisms by which these effectors act are mostly unknown; however, they often promote disease by suppressing host immunity. One type III effector, AvrPtoB, expressed by the plant pathogen Pseudomonas syringae pv. tomato, has a carboxy-terminal domain that is an E3 ubiquitin ligase. Deletion of this domain allows an amino-terminal region of AvrPtoB (AvrPtoB(1-387)) to be detected by certain tomato varieties leading to immunity-associated programmed cell death. Here we show that a host kinase, Fen, physically interacts with AvrPtoB(1-387 )and is responsible for activating the plant immune response. The AvrPtoB E3 ligase specifically ubiquitinates Fen and promotes its degradation in a proteasome-dependent manner. This degradation leads to disease susceptibility in Fen-expressing tomato lines. Various wild species of tomato were found to exhibit immunity in response to AvrPtoB(1-387 )and not to full-length AvrPtoB. Thus, by acquiring an E3 ligase domain, AvrPtoB has thwarted a highly conserved host resistance mechanism.

  13. Ubiquitination is absolutely required for the degradation of hypoxia-inducible factor - 1 alpha protein in hypoxic conditions

    International Nuclear Information System (INIS)

    Wang, Ronghai; Zhang, Ping; Li, Jinhang; Guan, Hongzai; Shi, Guangjun

    2016-01-01

    The hypoxia-inducible factor (HIF) is recognized as the master regulator of hypoxia response. HIF-α subunits expression are tightly regulated. In this study, our data show that ts20 cells still expressed detectable E1 protein even at 39.5° C for 12 h, and complete depletion of E1 protein expression at 39.5° C by siRNA enhanced HIF-1α and P53 protein expression. Further inhibition of E1 at 39.5 °C by siRNA, or E1 inhibitor Ube1-41 completely blocked HIF-1α degradation. Moreover, immunoprecipitations of co-transfection of HA-ubiquitin and FLAG–HIF–1α plasmids directly confirmed the involvement of ubiquitin in the hypoxic degradation of HIF-1α. Additionally, hypoxic HIF-1 α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization. Taken together, our data suggest that constitutive HIF-1α protein degradation in hypoxia is absolutely ubiquitination-dependent, and unidentified E3 ligase may exist for this degradation pathway. - Highlights: • HIF-1α protein is constitutively degraded in hypoxic conditions. • Requirement of ubiquitination for HIF-1α degradation in hypoxia. • Hypoxic HIF-1α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization.

  14. Ubiquitination is absolutely required for the degradation of hypoxia-inducible factor - 1 alpha protein in hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ronghai [Department of Urology, Linzi District People' s Hospital, Zibo, 255400 (China); Zhang, Ping, E-mail: zpskx001@163.com [Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011 (China); Li, Jinhang [Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011 (China); Guan, Hongzai [Laboratory Department, School of Medicine, Qingdao University, Qingdao, 266071 (China); Shi, Guangjun, E-mail: qdmhshigj@yahoo.com [Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, 266071 (China)

    2016-01-29

    The hypoxia-inducible factor (HIF) is recognized as the master regulator of hypoxia response. HIF-α subunits expression are tightly regulated. In this study, our data show that ts20 cells still expressed detectable E1 protein even at 39.5° C for 12 h, and complete depletion of E1 protein expression at 39.5° C by siRNA enhanced HIF-1α and P53 protein expression. Further inhibition of E1 at 39.5 °C by siRNA, or E1 inhibitor Ube1-41 completely blocked HIF-1α degradation. Moreover, immunoprecipitations of co-transfection of HA-ubiquitin and FLAG–HIF–1α plasmids directly confirmed the involvement of ubiquitin in the hypoxic degradation of HIF-1α. Additionally, hypoxic HIF-1 α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization. Taken together, our data suggest that constitutive HIF-1α protein degradation in hypoxia is absolutely ubiquitination-dependent, and unidentified E3 ligase may exist for this degradation pathway. - Highlights: • HIF-1α protein is constitutively degraded in hypoxic conditions. • Requirement of ubiquitination for HIF-1α degradation in hypoxia. • Hypoxic HIF-1α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization.

  15. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases.

    Science.gov (United States)

    Wiborg, Jakob; O'Shea, Charlotte; Skriver, Karen

    2008-08-01

    The variance of the U-box domain in 64 Arabidopsis thaliana (thale cress) E3s (ubiquitin-protein ligases) was used to examine the interactions between E3s and E2s (ubiquitin-conjugating enzymes). E2s and E3s are components of the ubiquitin protein degradation pathway. Seven U-box proteins were analysed for their ability to ubiquitinate proteins in vitro in co-operation with different E2s. All U-box domains exhibited ubiquitination activity and interacted productively with UBC4/5-type E2s. Three and four of the U-box domains mediated ubiquitin addition in the presence of UBC13 and UBC7 E2s respectively, but no productive interaction was observed with the UBC15 E2 tested. The activity of AtPUB54 [Arabidopsis thaliana (thale cress) plant U-box 54 protein] was dependent on Trp(266) in the E2-binding cleft, and the E2 selectivity was changed by substitution of this position. The function of the distant U-box protein, AtPUB49, representing a large family of eukaryotic proteins containing a U-box linked to a cyclophilin-like peptidyl-prolyl cis-trans isomerase domain, was characterized biochemically. AtPUB49 functioned both as a prolyl isomerase and a chaperone by catalysing cis-trans isomerization of peptidyl-prolyl bonds and dissolving protein aggregates. In conclusion, both typical and atypical Arabidopsis U-box proteins were active E3s. The overlap in the E3/E2 selectivity suggests that in vivo specificity is not determined only by the E3-E2 interactions, but also by other parameters, e.g. co-existence or interactions with additional domains. The biochemical functions of AtPUB49 suggest that the protein can be involved in folding or degradation of protein substrates. Similar functions can also be retained within a protein complex with separate chaperone and U-box proteins.

  16. Linear ubiquitination in immunity.

    Science.gov (United States)

    Shimizu, Yutaka; Taraborrelli, Lucia; Walczak, Henning

    2015-07-01

    Linear ubiquitination is a post-translational protein modification recently discovered to be crucial for innate and adaptive immune signaling. The function of linear ubiquitin chains is regulated at multiple levels: generation, recognition, and removal. These chains are generated by the linear ubiquitin chain assembly complex (LUBAC), the only known ubiquitin E3 capable of forming the linear ubiquitin linkage de novo. LUBAC is not only relevant for activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in various signaling pathways, but importantly, it also regulates cell death downstream of immune receptors capable of inducing this response. Recognition of the linear ubiquitin linkage is specifically mediated by certain ubiquitin receptors, which is crucial for translation into the intended signaling outputs. LUBAC deficiency results in attenuated gene activation and increased cell death, causing pathologic conditions in both, mice, and humans. Removal of ubiquitin chains is mediated by deubiquitinases (DUBs). Two of them, OTULIN and CYLD, are constitutively associated with LUBAC. Here, we review the current knowledge on linear ubiquitination in immune signaling pathways and the biochemical mechanisms as to how linear polyubiquitin exerts its functions distinctly from those of other ubiquitin linkage types. © 2015 The Authors. Immunological Reviews Published by John Wiley & Sons Ltd.

  17. Human Adenovirus Infection Causes Cellular E3 Ubiquitin Ligase MKRN1 Degradation Involving the Viral Core Protein pVII.

    Science.gov (United States)

    Inturi, Raviteja; Mun, Kwangchol; Singethan, Katrin; Schreiner, Sabrina; Punga, Tanel

    2018-02-01

    Human adenoviruses (HAdVs) are common human pathogens encoding a highly abundant histone-like core protein, VII, which is involved in nuclear delivery and protection of viral DNA as well as in sequestering immune danger signals in infected cells. The molecular details of how protein VII acts as a multifunctional protein have remained to a large extent enigmatic. Here we report the identification of several cellular proteins interacting with the precursor pVII protein. We show that the cellular E3 ubiquitin ligase MKRN1 is a novel precursor pVII-interacting protein in HAdV-C5-infected cells. Surprisingly, the endogenous MKRN1 protein underwent proteasomal degradation during the late phase of HAdV-C5 infection in various human cell lines. MKRN1 protein degradation occurred independently of the HAdV E1B55K and E4orf6 proteins. We provide experimental evidence that the precursor pVII protein binding enhances MKRN1 self-ubiquitination, whereas the processed mature VII protein is deficient in this function. Based on these data, we propose that the pVII protein binding promotes MKRN1 self-ubiquitination, followed by proteasomal degradation of the MKRN1 protein, in HAdV-C5-infected cells. In addition, we show that measles virus and vesicular stomatitis virus infections reduce the MKRN1 protein accumulation in the recipient cells. Taken together, our results expand the functional repertoire of the HAdV-C5 precursor pVII protein in lytic virus infection and highlight MKRN1 as a potential common target during different virus infections. IMPORTANCE Human adenoviruses (HAdVs) are common pathogens causing a wide range of diseases. To achieve pathogenicity, HAdVs have to counteract a variety of host cell antiviral defense systems, which would otherwise hamper virus replication. In this study, we show that the HAdV-C5 histone-like core protein pVII binds to and promotes self-ubiquitination of a cellular E3 ubiquitin ligase named MKRN1. This mutual interaction between the pVII and

  18. The role of ubiquitin in down-regulation and intracellular sorting of membrane proteins: insights from yeast

    Czech Academy of Sciences Publication Activity Database

    Horák, Jaroslav

    2003-01-01

    Roč. 1614, č. 2 (2003), s. 139-155 ISSN 0005-2736 R&D Projects: GA ČR GA204/01/0272; GA ČR GA204/02/1240 Institutional research plan: CEZ:AV0Z5011922 Keywords : ubiquitin * membrane proteins * yeast Subject RIV: CE - Biochemistry Impact factor: 2.665, year: 2003

  19. The human ubiquitin-conjugating enzyme Cdc34 controls cellular proliferation through regulation of p27Kip1 protein levels

    International Nuclear Information System (INIS)

    Butz, Nicole; Ruetz, Stephan; Natt, Francois; Hall, Jonathan; Weiler, Jan; Mestan, Juergen; Ducarre, Monique; Grossenbacher, Rita; Hauser, Patrick; Kempf, Dominique; Hofmann, Francesco

    2005-01-01

    Ubiquitin-mediated degradation of the cyclin-dependent kinase inhibitor p27 Kip1 was shown to be required for the activation of key cyclin-dependent kinases, thereby triggering the onset of DNA replication and cell cycle progression. Although the SCF Skp2 ubiquitin ligase has been reported to mediate p27 Kip1 degradation, the nature of the human ubiquitin-conjugating enzyme involved in this process has not yet been determined at the cellular level. Here, we show that antisense oligonucleotides targeting the human ubiquitin-conjugating enzyme Cdc34 downregulate its expression, inhibit the degradation of p27 Kip1 , and prevent cellular proliferation. Elevation of p27 Kip1 protein level is found to be the sole requirement for the inhibition of cellular proliferation induced upon downregulation of Cdc34. Indeed, reducing the expression of p27 Kip1 with a specific antisense oligonucleotide is sufficient to reverse the anti-proliferative phenotype elicited by the Cdc34 antisense. Furthermore, downregulation of Cdc34 is found to specifically increase the abundance of the SCF Skp2 ubiquitin ligase substrate p27 Kip1 , but has no concomitant effect on the level of IkBα and β-catenin, which are known substrates of a closely related SCF ligase

  20. Efficacy of Food Proteins as Carriers for Flavonoids

    NARCIS (Netherlands)

    Bohin, M.C.; Vincken, J.P.; Hijden, H.T.W.M.; Gruppen, H.

    2012-01-01

    Enrichment of flavonoids in food is often limited by their off-tastes, which might be counteracted by the use of food proteins as carriers of flavonoids. Various milk proteins, egg proteins, and gelatin hydrolysates were compared for their binding characteristics to two flavan-3-ols. Among the

  1. Biotin Carboxyl Carrier Protein in Barley Chloroplast Membranes

    DEFF Research Database (Denmark)

    Kannangara, C. G.; Jense, C J

    1975-01-01

    Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained by solubil...... by solubilization of the lamellae in phenol/acetic acid/8 M urea. Feeding barley seedlings with [14C]-biotin revealed that the vitamin is not degraded into respiratory substrates by the plant, but is specifically incorporated into biotin carboxyl carrier protein....

  2. Novel Phosphorylation and Ubiquitination Sites Regulate Reactive Oxygen Species-dependent Degradation of Anti-apoptotic c-FLIP Protein*

    Science.gov (United States)

    Wilkie-Grantham, Rachel P.; Matsuzawa, Shu-Ichi; Reed, John C.

    2013-01-01

    The cytosolic protein c-FLIP (cellular Fas-associated death domain-like interleukin 1β-converting enzyme inhibitory protein) is an inhibitor of death receptor-mediated apoptosis that is up-regulated in a variety of cancers, contributing to apoptosis resistance. Several compounds found to restore sensitivity of cancer cells to TRAIL, a TNF family death ligand with promising therapeutic potential, act by targeting c-FLIP ubiquitination and degradation by the proteasome. The generation of reactive oxygen species (ROS) has been implicated in c-FLIP protein degradation. However, the mechanism by which ROS post-transcriptionally regulate c-FLIP protein levels is not well understood. We show here that treatment of prostate cancer PPC-1 cells with the superoxide generators menadione, paraquat, or buthionine sulfoximine down-regulates c-FLIP long (c-FLIPL) protein levels, which is prevented by the proteasome inhibitor MG132. Furthermore, pretreatment of PPC-1 cells with a ROS scavenger prevented ubiquitination and loss of c-FLIPL protein induced by menadione or paraquat. We identified lysine 167 as a novel ubiquitination site of c-FLIPL important for ROS-dependent degradation. We also identified threonine 166 as a novel phosphorylation site and demonstrate that Thr-166 phosphorylation is required for ROS-induced Lys-167 ubiquitination. The mutation of either Thr-166 or Lys-167 was sufficient to stabilize c-FLIP protein levels in PPC-1, HEK293T, and HeLa cancer cells treated with menadione or paraquat. Accordingly, expression of c-FLIP T166A or K167R mutants protected cells from ROS-mediated sensitization to TRAIL-induced cell death. Our findings reveal novel ROS-dependent post-translational modifications of the c-FLIP protein that regulate its stability, thus impacting sensitivity of cancer cells to TRAIL. PMID:23519470

  3. Alterations of ubiquitin related proteins in the pathology and development of schizophrenia: Evidence from human and animal studies.

    Science.gov (United States)

    Andrews, Jessica L; Goodfellow, Frederic J; Matosin, Natalie; Snelling, Mollie K; Newell, Kelly A; Huang, Xu-Feng; Fernandez-Enright, Francesca

    2017-07-01

    Gene expression analyses in post-mortem schizophrenia brains suggest that a number of ubiquitin proteasome system (UPS) genes are associated with schizophrenia; however the status of UPS proteins in the schizophrenia brain is largely unknown. Ubiquitin related proteins are inherently involved in memory, neuronal survival and morphology, which are processes implicated in neurodevelopmental disorders such as schizophrenia. We examined levels of five UPS proteins (Protein Inhibitor of Activated STAT2 [PIAS2], F-Box and Leucine rich repeat protein 21 [FBXL21], Mouse Double Minute 2 homolog [MDM2], Ubiquitin Carboxyl-Terminal Hydrolase-L1 [UCHL1] and Ubiquitin Conjugating Enzyme E2D1 [UBE2D1]) involved in these neuronal processes, within the dorsolateral prefrontal cortex of post-mortem schizophrenia subjects and matched controls (n = 30/group), in addition to across neurodevelopmental time-points (juvenile, adolescent and adult stages of life), utilizing a well-established neurodevelopmental phencyclidine (PCP) animal model of schizophrenia. We observed significant reductions in PIAS2, FBXL21 and MDM2 in schizophrenia subjects compared to controls (p-values ranging from 0.002 to 0.004). In our developmental PCP model, MDM2 protein was significantly reduced in adult PCP-treated rats compared to controls (p = 0.034). Additionally, FBXL21 (p = 0.022) and UCHL1 (p = 0.022) were significantly decreased, whilst UBE2D1 was increased (p = 0.022), in juvenile phencyclidine-treated rats compared to controls. This is the first study reporting alterations of UPS proteins in post-mortem human schizophrenia subjects and in a neurodevelopmental model of schizophrenia. The findings from this study provide strong support for a role of these UPS proteins in the pathology and development of schizophrenia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A

    Energy Technology Data Exchange (ETDEWEB)

    Lemak, Alexander; Yee, Adelinda [University of Toronto, and Northeast Structural Genomics Consortium, Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics (Canada); Bezsonova, Irina, E-mail: bezsonova@uchc.edu [University of Connecticut Health Center, Department of Molecular Microbial and Structural Biology (United States); Dhe-Paganon, Sirano, E-mail: sirano.dhepaganon@utoronto.ca [University of Toronto, Structural Genomics Consortium (Canada); Arrowsmith, Cheryl H., E-mail: carrow@uhnresearch.ca [University of Toronto, and Northeast Structural Genomics Consortium, Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics (Canada)

    2011-09-15

    Ube3A (also referred to as E6AP for E6 Associated Protein) is a E3 ubiquitin-protein ligase implicated in the development of Angelman syndrome by controlling degradation of synaptic protein Arc and oncogenic papilloma virus infection by controlling degradation of p53. This article describe the solution NMR structure of the conserved N-terminal domain of human Ube3A (residues 24-87) that contains two residues (Cys44 and Arg62) found to be mutated in patients with Angelman syndrome. The structure of this domain adopts a novel Zn-binding fold we called AZUL (Amino-terminal Zn-finger of Ube3a Ligase). The AZUL domain has a helix-loop-helix architecture with a Zn ion coordinated by four Cys residues arranged in Cys-X{sub 4}-Cys-X{sub 4}-Cys-X{sub 28}-Cys motif. Three of the Zn-bound residues are located in a 23-residue long and well structured loop that connects two {alpha}-helicies.

  5. Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A

    International Nuclear Information System (INIS)

    Lemak, Alexander; Yee, Adelinda; Bezsonova, Irina; Dhe-Paganon, Sirano; Arrowsmith, Cheryl H.

    2011-01-01

    Ube3A (also referred to as E6AP for E6 Associated Protein) is a E3 ubiquitin-protein ligase implicated in the development of Angelman syndrome by controlling degradation of synaptic protein Arc and oncogenic papilloma virus infection by controlling degradation of p53. This article describe the solution NMR structure of the conserved N-terminal domain of human Ube3A (residues 24-87) that contains two residues (Cys44 and Arg62) found to be mutated in patients with Angelman syndrome. The structure of this domain adopts a novel Zn-binding fold we called AZUL (Amino-terminal Zn-finger of Ube3a Ligase). The AZUL domain has a helix-loop-helix architecture with a Zn ion coordinated by four Cys residues arranged in Cys-X 4 -Cys-X 4 -Cys-X 28 -Cys motif. Three of the Zn-bound residues are located in a 23-residue long and well structured loop that connects two α-helicies.

  6. Actin and ubiquitin protein sequences support a cercozoan/foraminiferan ancestry for the plasmodiophorid plant pathogens.

    Science.gov (United States)

    Archibald, John M; Keeling, Patrick J

    2004-01-01

    The plasmodiophorids are a group of eukaryotic intracellular parasites that cause disease in a variety of economically significant crops. Plasmodiophorids have traditionally been considered fungi but have more recently been suggested to be members of the Cercozoa, a morphologically diverse group of amoeboid, flagellate, and amoeboflagellate protists. The recognition that Cercozoa constitute a monophyletic lineage has come from phylogenetic analyses of small subunit ribosomal RNA genes. Protein sequence data have suggested that the closest relatives of Cercozoa are the Foraminifera. To further test a cercozoan origin for the plasmodiophorids, we isolated actin genes from Plasmodiophora brassicae, Sorosphaera veronicae, and Spongospora subterranea, and polyubiquitin gene fragments from P. brassicae and S. subterranea. We also isolated actin genes from the chlorarachniophyte Lotharella globosa. In protein phylogenies of actin, the plasmodiophorid sequences consistently branch with Cercozoa and Foraminifera, and weakly branch as the sister group to the foraminiferans. The plasmodiophorid polyubiquitin sequences contain a single amino acid residue insertion at the functionally important processing point between ubiquitin monomers, the same place in which an otherwise unique insertion exists in the cercozoan and foraminiferan proteins. Taken together, these results indicate that plasmodiophorids are indeed related to Cercozoa and Foraminifera, although the relationships amongst these groups remain unresolved.

  7. The Prader-Willi syndrome proteins MAGEL2 and necdin regulate leptin receptor cell surface abundance through ubiquitination pathways.

    Science.gov (United States)

    Wijesuriya, Tishani Methsala; De Ceuninck, Leentje; Masschaele, Delphine; Sanderson, Matthea R; Carias, Karin Vanessa; Tavernier, Jan; Wevrick, Rachel

    2017-11-01

    In Prader-Willi syndrome (PWS), obesity is caused by the disruption of appetite-controlling pathways in the brain. Two PWS candidate genes encode MAGEL2 and necdin, related melanoma antigen proteins that assemble into ubiquitination complexes. Mice lacking Magel2 are obese and lack leptin sensitivity in hypothalamic pro-opiomelanocortin neurons, suggesting dysregulation of leptin receptor (LepR) activity. Hypothalamus from Magel2-null mice had less LepR and altered levels of ubiquitin pathway proteins that regulate LepR processing (Rnf41, Usp8, and Stam1). MAGEL2 increased the cell surface abundance of LepR and decreased their degradation. LepR interacts with necdin, which interacts with MAGEL2, which complexes with RNF41 and USP8. Mutations in the MAGE homology domain of MAGEL2 suppress RNF41 stabilization and prevent the MAGEL2-mediated increase of cell surface LepR. Thus, MAGEL2 and necdin together control LepR sorting and degradation through a dynamic ubiquitin-dependent pathway. Loss of MAGEL2 and necdin may uncouple LepR from ubiquitination pathways, providing a cellular mechanism for obesity in PWS. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Toponomics analysis of functional interactions of the ubiquitin ligase PAM (Protein Associated with Myc) during spinal nociceptive processing.

    Science.gov (United States)

    Pierre, Sandra; Maeurer, Christian; Coste, Ovidiu; Becker, Wiebke; Schmidtko, Achim; Holland, Sabrina; Wittpoth, Claus; Geisslinger, Gerd; Scholich, Klaus

    2008-12-01

    Protein associated with Myc (PAM) is a giant E3 ubiquitin ligase of 510 kDa. Although the role of PAM during neuronal development is well established, very little is known about its function in the regulation of synaptic strength. Here we used multiepitope ligand cartography (MELC) to study protein network profiles associated with PAM during the modulation of synaptic strength. MELC is a novel imaging technology that utilizes biomathematical tools to describe protein networks after consecutive immunohistochemical visualization of up to 100 proteins on the same sample. As an in vivo model to modulate synaptic strength we used the formalin test, a common model for acute and inflammatory pain. MELC analysis was performed with 37 different antibodies or fluorescence tags on spinal cord slices and led to the identification of 1390 PAM-related motifs that distinguish untreated and formalin-treated spinal cords. The majority of these motifs related to ubiquitin-dependent processes and/or the actin cytoskeleton. We detected an intermittent colocalization of PAM and ubiquitin with TSC2, a known substrate of PAM, and the glutamate receptors mGluR5 and GLUR1. Importantly these complexes were detected exclusively in the presence of F-actin. A direct PAM/F-actin interaction was confirmed by colocalization and cosedimentation. The binding of PAM toward F-actin varied strongly between the PAM splice forms found in rat spinal cords. PAM did not ubiquitylate actin or alter actin polymerization and depolymerization. However, F-actin decreased the ubiquitin ligase activity of purified PAM. Because PAM activation is known to involve its translocation, the binding of PAM to F-actin may serve to control its subcellular localization as well as its activity. Taken together we show that defining protein network profiles by topological proteomics analysis is a useful tool to identify previously unknown protein/protein interactions that underlie synaptic processes.

  9. Ubiquitination in apoptosis signaling

    NARCIS (Netherlands)

    van de Kooij, L.W.

    2014-01-01

    The work described in this thesis focuses on ubiquitination and protein degradation, with an emphasis on how these processes regulate apoptosis signaling. More specifically, our aims were: 1. To increase the understanding of ubiquitin-mediated regulation of apoptosis signaling. 2. To identify the E3

  10. Characterization of chicken riboflavin carrier protein gene structure ...

    Indian Academy of Sciences (India)

    The chicken riboflavin carrier protein (RCP) is an estrogen induced egg yolk and white protein. Eggs from hens which have a splice mutation in RCP gene fail to hatch, indicating an absolute requirement of RCP for the transport of riboflavin to the oocyte. In order to understand the mechanism of regulation of this gene by ...

  11. Mitochondrial associated ubiquitin fold modifier-1 mediated protein conjugation in Leishmania donovani.

    Directory of Open Access Journals (Sweden)

    Sreenivas Gannavaram

    2011-01-01

    Full Text Available In this report, we demonstrate the existence of the ubiquitin fold modifier-1 (Ufm1 and its conjugation pathway in trypanosomatid parasite Leishmania donovani. LdUfm1 is activated by E1-like enzyme LdUba5. LdUfc1 (E2 specifically interacted with LdUfm1 and LdUba5 to conjugate LdUfm1 to proteinaceous targets. Mass spectrometry analysis revealed that LdUfm1 is conjugated to Leishmania protein targets that are associated with mitochondria. Immunofluorescence experiments showed that Leishmania Ufm1, Uba5 and Ufc1 are associated with the mitochondria. The demonstration that all the components of this system as well as the substrates are associated with mitochondrion suggests it may have physiological roles not yet described in any other organism. Overexpression of a non-conjugatable form of LdUfm1 and an active site mutant of LdUba5 resulted in reduced survival of Leishmania in the macrophage. Since mitochondrial activities are developmentally regulated in the life cycle of trypanosomatids, Ufm1 mediated modifications of mitochondrial proteins may be important in such regulation. Thus, Ufm1 conjugation pathway in Leishmania could be explored as a potential drug target in the control of Leishmaniasis.

  12. A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection.

    Science.gov (United States)

    Troupin, Andrea; Londono-Renteria, Berlin; Conway, Michael J; Cloherty, Erin; Jameson, Samuel; Higgs, Stephen; Vanlandingham, Dana L; Fikrig, Erol; Colpitts, Tonya M

    2016-09-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant human disease and mortality in the tropics and subtropics. By examining the effects of virus infection on gene expression, and interactions between virus and vector, new targets for prevention of infection and novel treatments may be identified in mosquitoes. We previously performed a microarray analysis of the Aedes aegypti transcriptome during infection with DENV and found that mosquito ubiquitin protein Ub3881 (AAEL003881) was specifically and highly down-regulated. Ubiquitin proteins have multiple functions in insects, including marking proteins for proteasomal degradation, regulating apoptosis and mediating innate immune signaling. We used qRT-PCR to quantify gene expression and infection, and RNAi to reduce Ub3881 expression. Mosquitoes were infected with DENV through blood feeding. We transfected DENV protein expression constructs to examine the effect of Ub3881 on protein degradation. We used site-directed mutagenesis and transfection to determine what amino acids are involved in Ub3881-mediated protein degradation. Immunofluorescence, Co-immunoprecipitation and Western blotting were used to examine protein interactions and co-localization. The overexpression of Ub3881, but not related ubiquitin proteins, decreased DENV infection in mosquito cells and live Ae. aegypti. The Ub3881 protein was demonstrated to be involved in DENV envelope protein degradation and reduce the number of infectious virions released. We conclude that Ub3881 has several antiviral functions in the mosquito, including specific viral protein degradation. Our data highlights Ub3881 as a target for future DENV prevention strategies in the mosquito transmission vector. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Ubiquitination and degradation of the hominoid-specific oncoprotein TBC1D3 is regulated by protein palmitoylation

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Chen; Lange, Jeffrey J.; Samovski, Dmitri [Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Su, Xiong [Department of Internal Medicine, Center for Human Nutrition Washington University School of Medicine, St. Louis, MO 63110 (United States); Liu, Jialiu [Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Sundaresan, Sinju [Department of Internal Medicine, Center for Human Nutrition Washington University School of Medicine, St. Louis, MO 63110 (United States); Stahl, Philip D., E-mail: pstahl@wustl.edu [Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 (United States)

    2013-05-03

    Highlights: •Hominoid-specific oncogene TBC1D3 is targeted to plasma membrane by palmitoylation. •TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. •TBC1D3 palmitoylation governs growth factors-induced TBC1D3 degradation. •Post-translational modifications may regulate oncogenic properties of TBC1D3. -- Abstract: Expression of the hominoid-specific oncoprotein TBC1D3 promotes enhanced cell growth and proliferation by increased activation of signal transduction through several growth factors. Recently we documented the role of CUL7 E3 ligase in growth factors-induced ubiquitination and degradation of TBC1D3. Here we expanded our study to discover additional molecular mechanisms that control TBC1D3 protein turnover. We report that TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. The expression of double palmitoylation mutant TBC1D3:C318/325S resulted in protein mislocalization and enhanced growth factors-induced TBC1D3 degradation. Moreover, ubiquitination of TBC1D3 via CUL7 E3 ligase complex was increased by mutating the palmitoylation sites, suggesting that depalmitoylation of TBC1D3 makes the protein more available for ubiquitination and degradation. The results reported here provide novel insights into the molecular mechanisms that govern TBC1D3 protein degradation. Dysregulation of these mechanisms in vivo could potentially result in aberrant TBC1D3 expression and promote oncogenesis.

  14. Ubiquitination is absolutely required for the degradation of hypoxia-inducible factor--1 alpha protein in hypoxic conditions.

    Science.gov (United States)

    Wang, Ronghai; Zhang, Ping; Li, Jinhang; Guan, Hongzai; Shi, Guangjun

    2016-01-29

    The hypoxia-inducible factor (HIF) is recognized as the master regulator of hypoxia response. HIF-α subunits expression are tightly regulated. In this study, our data show that ts20 cells still expressed detectable E1 protein even at 39.5° C for 12 h, and complete depletion of E1 protein expression at 39.5° C by siRNA enhanced HIF-1α and P53 protein expression. Further inhibition of E1 at 39.5 °C by siRNA, or E1 inhibitor Ube1-41 completely blocked HIF-1α degradation. Moreover, immunoprecipitations of co-transfection of HA-ubiquitin and FLAG-HIF-1α plasmids directly confirmed the involvement of ubiquitin in the hypoxic degradation of HIF-1α. Additionally, hypoxic HIF-1 α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization. Taken together, our data suggest that constitutive HIF-1α protein degradation in hypoxia is absolutely ubiquitination-dependent, and unidentified E3 ligase may exist for this degradation pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Ubiquitin-Like Protein from Human Placental Extract Exhibits Collagenase Activity

    Science.gov (United States)

    De, Debashree; Datta Chakraborty, Piyali; Mitra, Jyotirmoy; Sharma, Kanika; Mandal, Somnath; Das, Aneesha; Chakrabarti, Saikat; Bhattacharyya, Debasish

    2013-01-01

    An aqueous extract of human placenta exhibits strong gelatinase/collagenase activity in zymography. 2-D gel electrophoresis of the extract with gelatin zymography in the second dimension displayed a single spot, identified as ubiquitin-like component upon MALDI/TOF MS/MS analysis. Immunoblot indicated presence of ubiquitin and absence of collagenase in the extract. Collagenase activity of the ubiquitin-like component was confirmed from the change in solubility of collagen in aqueous buffer, degradation of collagen by size-exclusion HPLC and atomic force microscopy. Quantification with DQ-gelatin showed that the extract contains 0.04 U/ml of collagenase activity that was inhibited up to 95% by ubiquitin antibody. Ubiquitin from bovine erythrocytes demonstrated mild collagenase activity. Bioinformatics studies suggest that placental ubiquitin and collagenase follow structurally divergent evolution. This thermostable intrinsic collagenase activity of placental extract might have wide physiological relevance in degrading and remodeling collagen as it is used as a drug for wound healing and pelvic inflammatory diseases. PMID:23555718

  16. Ubiquitination and sumoylation of the HTLV-2 Tax-2B protein regulate its NF-κB activity: a comparative study with the HTLV-1 Tax-1 protein

    Science.gov (United States)

    2012-01-01

    Background Retroviruses HTLV-1 and HTLV-2 have homologous genomic structures but differ significantly in pathogenicity. HTLV-1 is associated with Adult T cell Leukemia (ATL), whereas infection by HTLV-2 has no association with neoplasia. Transformation of T lymphocytes by HTLV-1 is linked to the capacity of its oncoprotein Tax-1 to alter cell survival and cell cycle control mechanisms. Among these functions, Tax-1-mediated activation of cellular gene expression via the NF-κB pathway depends on Tax-1 post-translational modifications by ubiquitination and sumoylation. The Tax-2 protein of HTLV-2B (Tax-2B) is also modified by ubiquitination and sumoylation and activates the NF-κB pathway to a level similar to that of Tax-1. The present study aims to understand whether ubiquitination and sumoylation modifications are involved in Tax-2B-mediated activation of the NF-κB pathway. Results The comparison of Tax-1 and Tax-2B lysine to arginine substitution mutants revealed conserved patterns and levels of ubiquitination with notable difference in the lysine usage for sumoylation. Neither Tax-1 nor Tax-2B ubiquitination and sumoylation deficient mutants could activate the NF-κB pathway and fusion of ubiquitin or SUMO-1 to the C-terminus of the ubiquitination and sumoylation deficient Tax-2B mutant strikingly restored transcriptional activity. In addition, ubiquitinated forms of Tax-2B colocalized with RelA and IKKγ in prominent cytoplasmic structures associated with the Golgi apparatus, whereas colocalization of Tax-2B with the RelA subunit of NF-κB and the transcriptional coactivator p300 in punctate nuclear structures was dependent on Tax-2B sumoylation, as previously observed for Tax-1. Conclusions Both Tax-1 and Tax-2 activate the NF-κB pathway via similar mechanisms involving ubiquitination and sumoylation. Therefore, the different transforming potential of HTLV-1 and HTLV-2 is unlikely to be related to different modes of activation of the canonical NF-κB pathway

  17. HIV-1 tat protein recruits CIS to the cytoplasmic tail of CD127 to induce receptor ubiquitination and proteasomal degradation

    Energy Technology Data Exchange (ETDEWEB)

    Sugden, Scott, E-mail: scott.sugden@ircm.qc.ca [The Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 (Canada); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5 (Canada); Ghazawi, Feras [The Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 (Canada); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5 (Canada); MacPherson, Paul, E-mail: pmacpherson@toh.on.ca [The Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 (Canada); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5 (Canada); Division of Infectious Diseases, The Ottawa Hospital General Campus, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 (Canada)

    2016-11-15

    HIV-1 Tat protein down regulates expression of the IL-7 receptor alpha-chain (CD127) from the surface of CD8 T cells resulting in impaired T cell proliferation and cytolytic capacity. We have previously shown that soluble Tat protein is taken up by CD8 T cells and interacts with the cytoplasmic tail of CD127 to induce receptor degradation. The N-terminal domain of Tat interacts with CD127 while the basic domain directs CD127 to the proteasome. We have also shown that upon IL-7 binding to its receptor, CD127 is phosphorylated resulting in CIS-mediated proteasomal degradation. Here, we show that Tat mimics this process by recruiting CIS to CD127 in the absence of IL-7 and receptor phosphorylation, leading to CD127 ubiquitination and degradation. Tat therefore acts as an adapter to induce cellular responses under conditions where they may not otherwise occur. Thusly, Tat reduces IL-7 signaling and impairs CD8 T cell survival and function. -- Highlights: •Soluble HIV-1 Tat decreases CD127 expression on CD8 T cells, causing dysfunction. •Tat induces CD127 ubiquitination without activating IL-7 signaling. •Tat binds CD127 and recruits the E3 ubiquitin ligase CIS via its basic domain. •Tat hijacks a normal cellular mechanism to degrade CD127 without IL-7 signaling.

  18. HIV-1 tat protein recruits CIS to the cytoplasmic tail of CD127 to induce receptor ubiquitination and proteasomal degradation

    International Nuclear Information System (INIS)

    Sugden, Scott; Ghazawi, Feras; MacPherson, Paul

    2016-01-01

    HIV-1 Tat protein down regulates expression of the IL-7 receptor alpha-chain (CD127) from the surface of CD8 T cells resulting in impaired T cell proliferation and cytolytic capacity. We have previously shown that soluble Tat protein is taken up by CD8 T cells and interacts with the cytoplasmic tail of CD127 to induce receptor degradation. The N-terminal domain of Tat interacts with CD127 while the basic domain directs CD127 to the proteasome. We have also shown that upon IL-7 binding to its receptor, CD127 is phosphorylated resulting in CIS-mediated proteasomal degradation. Here, we show that Tat mimics this process by recruiting CIS to CD127 in the absence of IL-7 and receptor phosphorylation, leading to CD127 ubiquitination and degradation. Tat therefore acts as an adapter to induce cellular responses under conditions where they may not otherwise occur. Thusly, Tat reduces IL-7 signaling and impairs CD8 T cell survival and function. -- Highlights: •Soluble HIV-1 Tat decreases CD127 expression on CD8 T cells, causing dysfunction. •Tat induces CD127 ubiquitination without activating IL-7 signaling. •Tat binds CD127 and recruits the E3 ubiquitin ligase CIS via its basic domain. •Tat hijacks a normal cellular mechanism to degrade CD127 without IL-7 signaling.

  19. F-box protein FBXL2 targets cyclin D2 for ubiquitination and degradation to inhibit leukemic cell proliferation

    Science.gov (United States)

    Chen, Bill B.; Glasser, Jennifer R.; Coon, Tiffany A.; Zou, Chunbin; Miller, Hannah L.; Fenton, Moon; McDyer, John F.; Boyiadzis, Michael

    2012-01-01

    Hematologic maligancies exhibit a growth advantage by up-regulation of components within the molecular apparatus involved in cell-cycle progression. The SCF (Skip-Cullin1-F-box protein) E3 ligase family provides homeostatic feedback control of cell division by mediating ubiquitination and degradation of cell-cycle proteins. By screening several previously undescribed E3 ligase components, we describe the behavior of a relatively new SCF subunit, termed FBXL2, that ubiquitinates and destabilizes cyclin D2 protein leading to G0 phase arrest and apoptosis in leukemic and B-lymphoblastoid cell lines. FBXL2 expression was strongly suppressed, and yet cyclin D2 protein levels were robustly expressed in acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) patient samples. Depletion of endogenous FBXL2 stabilized cyclin D2 levels, whereas ectopically expressed FBXL2 decreased cyclin D2 lifespan. FBXL2 did not bind a phosphodegron within its substrate, which is typical of other F-box proteins, but uniquely targeted a calmodulin-binding signature within cyclin D2 to facilitate its polyubiquitination. Calmodulin competes with the F-box protein for access to this motif where it bound and protected cyclin D2 from FBXL2. Calmodulin reversed FBXL2-induced G0 phase arrest and attenuated FBXL2-induced apoptosis of lymphoblastoid cells. These results suggest an antiproliferative effect of SCFFBXL2 in lymphoproliferative malignancies. PMID:22323446

  20. The ubiquitin-proteasome system

    Indian Academy of Sciences (India)

    ... the discovery of protein ubiquitination has led to the recognition of cellular proteolysis as a central area of research in biology. Eukaryotic proteins targeted for degradation by this pathway are first 'tagged' by multimers of a protein known as ubiquitin and are later proteolyzed by a giant enzyme known as the proteasome.

  1. Isolation and characterization of an ubiquitin extension protein gene (JcUEP) promoter from Jatropha curcas.

    Science.gov (United States)

    Tao, Yan-Bin; He, Liang-Liang; Niu, Long-Jian; Xu, Zeng-Fu

    2015-04-01

    The JcUEP promoter is active constitutively in the bio-fuel plant Jatropha curcas , and is an alternative to the widely used CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha. Well-characterized promoters are required for transgenic breeding of Jatropha curcas, a biofuel feedstock with great potential for production of bio-diesel and bio-jet fuel. In this study, an ubiquitin extension protein gene from Jatropha, designated JcUEP, was identified to be ubiquitously expressed. Thus, we isolated a 1.2 kb fragment of the 5' flanking region of JcUEP and evaluated its activity as a constitutive promoter in Arabidopsis and Jatropha using the β-glucuronidase (GUS) reporter gene. As expected, histochemical GUS assay showed that the JcUEP promoter was active in all Arabidopsis and Jatropha tissues tested. We also compared the activity of the JcUEP promoter with that of the cauliflower mosaic virus 35S (CaMV35S) promoter, a well-characterized constitutive promoter conferring strong transgene expression in dicot species, in various tissues of Jatropha. In a fluorometric GUS assay, the two promoters showed similar activities in stems, mature leaves and female flowers; while the CaMV35S promoter was more effective than the JcUEP promoter in other tissues, especially young leaves and inflorescences. In addition, the JcUEP promoter retained its activity under stress conditions in low temperature, high salt, dehydration and exogenous ABA treatments. These results suggest that the plant-derived JcUEP promoter could be an alternative to the CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha and other plants.

  2. Legionella pneumophila secretes a mitochondrial carrier protein during infection.

    Directory of Open Access Journals (Sweden)

    Pavel Dolezal

    2012-01-01

    Full Text Available The Mitochondrial Carrier Family (MCF is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionellanucleotide carrier Protein (LncP, encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms.

  3. Protein carriers of conjugate vaccines: characteristics, development, and clinical trials.

    Science.gov (United States)

    Pichichero, Michael E

    2013-12-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products.

  4. Role of the ubiquitin ligase E6AP/UBE3A in controlling levels of the synaptic protein Arc

    Science.gov (United States)

    Kühnle, Simone; Mothes, Benedikt; Matentzoglu, Konstantin; Scheffner, Martin

    2013-01-01

    Inactivation of the ubiquitin ligase E6 associated protein (E6AP) encoded by the UBE3A gene has been associated with development of the Angelman syndrome. Recently, it was reported that in mice, loss of E6AP expression results in increased levels of the synaptic protein Arc and a concomitant impaired synaptic function, providing an explanation for some phenotypic features of Angelman syndrome patients. Accordingly, E6AP has been shown to negatively regulate activity-regulated cytoskeleton-associated protein (Arc) and it has been suggested that E6AP targets Arc for ubiquitination and degradation. In our study, we provide evidence that Arc is not a direct substrate for E6AP and binds only weakly to E6AP, if at all. Furthermore, we show that down-regulation of E6AP expression stimulates estradiol-induced transcription of the Arc gene. Thus, we propose that Arc protein levels are controlled by E6AP at the transcriptional rather than at the posttranslational level. PMID:23671107

  5. Atomic structure of the APC/C and its mechanism of protein ubiquitination

    Science.gov (United States)

    Yang, Jing; McLaughlin, Stephen H.; Barford, David

    2015-01-01

    The anaphase-promoting complex (APC/C) is a multimeric RING E3 ubiquitin ligase that controls chromosome segregation and mitotic exit. Its regulation by coactivator subunits, phosphorylation, the mitotic checkpoint complex, and interphase inhibitor Emi1 ensures the correct order and timing of distinct cell cycle transitions. Here, we used cryo-electron microscopy to determine atomic structures of APC/C-coactivator complexes with either Emi1 or a UbcH10-ubiquitin conjugate. These structures define the architecture of all APC/C subunits, the position of the catalytic module, and explain how Emi1 mediates inhibition of the two E2s UbcH10 and Ube2S. Definition of Cdh1 interactions with the APC/C indicates how they are antagonized by Cdh1 phosphorylation. The structure of the APC/C with UbcH10-ubiquitin reveals insights into the initiating ubiquitination reaction. Our results provide a quantitative framework for the design of experiments to further investigate APC/C functions in vivo. PMID:26083744

  6. Differential processing of Arabidopsis ubiquitin-like Atg8 autophagy proteins by Atg4 cysteine proteases

    Science.gov (United States)

    Woo, Jongchan; Park, Eunsook; Dinesh-Kumar, S. P.

    2014-01-01

    Autophagy is a highly conserved biological process during which double membrane bound autophagosomes carry intracellular cargo material to the vacuole or lysosome for degradation and/or recycling. Autophagosome biogenesis requires Autophagy 4 (Atg4) cysteine protease-mediated processing of ubiquitin-like Atg8 proteins. Unlike single Atg4 and Atg8 genes in yeast, the Arabidopsis genome contains two Atg4 (AtAtg4a and AtAtg4b) and nine Atg8 (AtAtg8a–AtAtg8i) genes. However, we know very little about specificity of different AtAtg4s for processing of different AtAtg8s. Here, we describe a unique bioluminescence resonance energy transfer-based AtAtg8 synthetic substrate to assess AtAtg4 activity in vitro and in vivo. In addition, we developed a unique native gel assay of superhRLUC catalytic activity assay to monitor cleavage of AtAtg8s in vitro. Our results indicate that AtAtg4a is the predominant protease and that it processes AtAtg8a, AtAtg8c, AtAtg8d, and AtAtg8i better than AtAtg4b in vitro. In addition, kinetic analyses indicate that although both AtAtg4s have similar substrate affinity, AtAtg4a is more active than AtAtg4b in vitro. Activity of AtAtg4s is reversibly inhibited in vitro by reactive oxygen species such as H2O2. Our in vivo bioluminescence resonance energy transfer analyses in Arabidopsis transgenic plants indicate that the AtAtg8 synthetic substrate is efficiently processed and this is AtAtg4 dependent. These results indicate that the synthetic AtAtg8 substrate is used efficiently in the biogenesis of autophagosomes in vivo. Transgenic Arabidopsis plants expressing the AtAtg8 synthetic substrate will be a valuable tool to dissect autophagy processes and the role of autophagy during different biological processes in plants. PMID:24379391

  7. Trans-Binding Mechanism of Ubiquitin-like Protein Activation Revealed by a UBA5-UFM1 Complex

    Directory of Open Access Journals (Sweden)

    Walaa Oweis

    2016-09-01

    Full Text Available Modification of proteins by ubiquitin or ubiquitin-like proteins (UBLs is a critical cellular process implicated in a variety of cellular states and outcomes. A prerequisite for target protein modification by a UBL is the activation of the latter by activating enzymes (E1s. Here, we present the crystal structure of the non-canonical homodimeric E1, UBA5, in complex with its cognate UBL, UFM1, and supporting biochemical experiments. We find that UBA5 binds to UFM1 via a trans-binding mechanism in which UFM1 interacts with distinct sites in both subunits of the UBA5 dimer. This binding mechanism requires a region C-terminal to the adenylation domain that brings UFM1 to the active site of the adjacent UBA5 subunit. We also find that transfer of UFM1 from UBA5 to the E2, UFC1, occurs via a trans mechanism, thereby requiring a homodimer of UBA5. These findings explicitly elucidate the role of UBA5 dimerization in UFM1 activation.

  8. A cancer-associated RING finger protein, RNF43, is a ubiquitin ligase that interacts with a nuclear protein, HAP95

    International Nuclear Information System (INIS)

    Sugiura, Takeyuki; Yamaguchi, Aya; Miyamoto, Kentaro

    2008-01-01

    RNF43 is a recently discovered RING finger protein that is implicated in colon cancer pathogenesis. This protein possesses growth-promoting activity but its mechanism remains unknown. In this study, to gain insight into the biological action of RNF43 we characterized it biochemically and intracellularly. A combination of indirect immunofluorescence analysis and biochemical fractionation experiments suggests that RNF43 resides in the endoplasmic reticulum (ER) as well as in the nuclear envelope. Sucrose density gradient fractionation demonstrates that RNF43 co-exists with emerin, a representative inner nuclear membrane protein in the nuclear subcompartment. The cell-free system with pure components reveals that recombinant RNF43 fused with maltose-binding protein has autoubiquitylation activity. By the yeast two-hybrid screening we identified HAP95, a chromatin-associated protein interfacing the nuclear envelope, as an RNF43-interacting protein and substantiated this interaction in intact cells by the co-immunoprecipitation experiments. HAP95 is ubiquitylated and subjected to a proteasome-dependent degradation pathway, however, the experiments in which 293 cells expressing both RNF43 and HAP95 were treated with a proteasome inhibitor, MG132, show that HAP95 is unlikely to serve as a substrate of RNF43 ubiquitin ligase. These results infer that RNF43 is a resident protein of the ER and, at least partially, the nuclear membrane, with ubiquitin ligase activity and may be involved in cell growth control potentially through the interaction with HAP95

  9. Direct ubiquitin independent recognition and degradation of a folded protein by the eukaryotic proteasomes-origin of intrinsic degradation signals.

    Directory of Open Access Journals (Sweden)

    Amit Kumar Singh Gautam

    Full Text Available Eukaryotic 26S proteasomes are structurally organized to recognize, unfold and degrade globular proteins. However, all existing model substrates of the 26S proteasome in addition to ubiquitin or adaptor proteins require unstructured regions in the form of fusion tags for efficient degradation. We report for the first time that purified 26S proteasome can directly recognize and degrade apomyoglobin, a globular protein, in the absence of ubiquitin, extrinsic degradation tags or adaptor proteins. Despite a high affinity interaction, absence of a ligand and presence of only helices/loops that follow the degradation signal, apomyoglobin is degraded slowly by the proteasome. A short floppy F-helix exposed upon ligand removal and in conformational equilibrium with a disordered structure is mandatory for recognition and initiation of degradation. Holomyoglobin, in which the helix is buried, is neither recognized nor degraded. Exposure of the floppy F-helix seems to sensitize the proteasome and primes the substrate for degradation. Using peptide panning and competition experiments we speculate that initial encounters through the floppy helix and additional strong interactions with N-terminal helices anchors apomyoglobin to the proteasome. Stabilizing helical structure in the floppy F-helix slows down degradation. Destabilization of adjacent helices accelerates degradation. Unfolding seems to follow the mechanism of helix unraveling rather than global unfolding. Our findings while confirming the requirement for unstructured regions in degradation offers the following new insights: a origin and identification of an intrinsic degradation signal in the substrate, b identification of sequences in the native substrate that are likely to be responsible for direct interactions with the proteasome, and c identification of critical rate limiting steps like exposure of the intrinsic degron and destabilization of an unfolding intermediate that are presumably

  10. Residues 240-250 in the C-terminus of the Pirh2 protein complement the function of the RING domain in self-ubiquitination of the Pirh2 protein.

    Directory of Open Access Journals (Sweden)

    Rami Abou Zeinab

    Full Text Available Pirh2 is a p53 inducible gene that encodes a RING-H2 domain and is proposed to be a main regulator of p53 protein, thus fine tuning the DNA damage response. Pirh2 interacts physically with p53 and promotes its MDM2-independent ubiquitination and subsequent degradation as well as participates in an auto-regulatory feedback loop that controls p53 function. Pirh2 also self-ubiquitinates. Interestingly, Pirh2 is overexpressed in a wide range of human tumors. In this study, we investigated the domains and residues essential for Pirh2 self-ubiquitination. Deletions were made in each of the three major domains of Pirh2: the N-terminal domain (NTD, Ring domain (RING, and C-terminal domain (CTD. The effects of these deletions on Pirh2 self-ubiquitination were then assessed using in vitro ubiquitination assays. Our results demonstrate that the RING domain is essential, but not sufficient, for Pirh2 self-ubiquitination and that residues 240-250 of the C-terminal domain are also essential. Our results demonstrate that Pirh2 mediated p53 polyubiquitination occurs mainly through the K48 residue of ubiquitin in vitro. Our data further our understanding of the mechanism of Pirh2 self-ubiquitination and may help identify valuable therapeutic targets that play roles in reducing the effects of the overexpression of Pirh2, thus maximizing p53's response to DNA damage.

  11. Decreased rate of protein synthesis, caspase-3 activity, and ubiquitin-proteasome proteolysis in soleus muscles from growing rats fed a low-protein, high-carbohydrate diet.

    Science.gov (United States)

    Batistela, Emanuele; Pereira, Mayara Peron; Siqueira, Juliany Torres; Paula-Gomes, Silvia; Zanon, Neusa Maria; Oliveira, Eduardo Brandt; Navegantes, Luiz Carlos Carvalho; Kettelhut, Isis C; Andrade, Claudia Marlise Balbinotti; Kawashita, Nair Honda; Baviera, Amanda Martins

    2014-06-01

    The aim of this study was to investigate the changes in the rates of both protein synthesis and breakdown, and the activation of intracellular effectors that control these processes in soleus muscles from growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The mass and the protein content, as well as the rate of protein synthesis, were decreased in the soleus from LPHC-fed rats. The availability of amino acids was diminished, since the levels of various essential amino acids were decreased in the plasma of LPHC-fed rats. Overall rate of proteolysis was also decreased, explained by reductions in the mRNA levels of atrogin-1 and MuRF-1, ubiquitin conjugates, proteasome activity, and in the activity of caspase-3. Soleus muscles from LPHC-fed rats showed increased insulin sensitivity, with increased levels of insulin receptor and phosphorylation levels of AKT, which probably explains the inhibition of both the caspase-3 activity and the ubiquitin-proteasome system. The fall of muscle proteolysis seems to represent an adaptive response that contributes to spare proteins in a condition of diminished availability of dietary amino acids. Furthermore, the decreased rate of protein synthesis may be the driving factor to the lower muscle mass gain in growing rats fed the LPHC diet.

  12. Arabidopsis SH3P2 is an ubiquitin-binding protein that functions together with ESCRT-I and the deubiquitylating enzyme AMSH3.

    Science.gov (United States)

    Nagel, Marie-Kristin; Kalinowska, Kamila; Vogel, Karin; Reynolds, Gregory D; Wu, Zhixiang; Anzenberger, Franziska; Ichikawa, Mie; Tsutsumi, Chie; Sato, Masa H; Kuster, Bernhard; Bednarek, Sebastian Y; Isono, Erika

    2017-08-22

    Clathrin-mediated endocytosis of plasma membrane proteins is an essential regulatory process that controls plasma membrane protein abundance and is therefore important for many signaling pathways, such as hormone signaling and biotic and abiotic stress responses. On endosomal sorting, plasma membrane proteins maybe recycled or targeted for vacuolar degradation, which is dependent on ubiquitin modification of the cargos and is driven by the endosomal sorting complexes required for transport (ESCRTs). Components of the ESCRT machinery are highly conserved among eukaryotes, but homologs of ESCRT-0 that are responsible for recognition and concentration of ubiquitylated proteins are absent in plants. Recently several ubiquitin-binding proteins have been identified that serve in place of ESCRT-0; however, their function in ubiquitin recognition and endosomal trafficking is not well understood yet. In this study, we identified Src homology-3 (SH3) domain-containing protein 2 (SH3P2) as a ubiquitin- and ESCRT-I-binding protein that functions in intracellular trafficking. SH3P2 colocalized with clathrin light chain-labeled punctate structures and interacted with clathrin heavy chain in planta , indicating a role for SH3P2 in clathrin-mediated endocytosis. Furthermore, SH3P2 cofractionates with clathrin-coated vesicles (CCVs), suggesting that it associates with CCVs in planta Mutants of SH3P2 and VPS23 genetically interact, suggesting that they could function in the same pathway. Based on these results, we suggest a role of SH3P2 as an ubiquitin-binding protein that binds and transfers ubiquitylated proteins to the ESCRT machinery.

  13. Ubiquitin-regulated nuclear-cytoplasmic trafficking of the Nipah virus matrix protein is important for viral budding.

    Directory of Open Access Journals (Sweden)

    Yao E Wang

    2010-11-01

    Full Text Available Paramyxoviruses are known to replicate in the cytoplasm and bud from the plasma membrane. Matrix is the major structural protein in paramyxoviruses that mediates viral assembly and budding. Curiously, the matrix proteins of a few paramyxoviruses have been found in the nucleus, although the biological function associated with this nuclear localization remains obscure. We report here that the nuclear-cytoplasmic trafficking of the Nipah virus matrix (NiV-M protein and associated post-translational modification play a critical role in matrix-mediated virus budding. Nipah virus (NiV is a highly pathogenic emerging paramyxovirus that causes fatal encephalitis in humans, and is classified as a Biosafety Level 4 (BSL4 pathogen. During live NiV infection, NiV-M was first detected in the nucleus at early stages of infection before subsequent localization to the cytoplasm and the plasma membrane. Mutations in the putative bipartite nuclear localization signal (NLS and the leucine-rich nuclear export signal (NES found in NiV-M impaired its nuclear-cytoplasmic trafficking and also abolished NiV-M budding. A highly conserved lysine residue in the NLS served dual functions: its positive charge was important for mediating nuclear import, and it was also a potential site for monoubiquitination which regulates nuclear export of the protein. Concordantly, overexpression of ubiquitin enhanced NiV-M budding whereas depletion of free ubiquitin in the cell (via proteasome inhibitors resulted in nuclear retention of NiV-M and blocked viral budding. Live Nipah virus budding was exquisitely sensitive to proteasome inhibitors: bortezomib, an FDA-approved proteasome inhibitor for treating multiple myeloma, reduced viral titers with an IC(50 of 2.7 nM, which is 100-fold less than the peak plasma concentration that can be achieved in humans. This opens up the possibility of using an "off-the-shelf" therapeutic against acute NiV infection.

  14. Feline immunodeficiency virus OrfA alters gene expression of splicing factors and proteasome-ubiquitination proteins

    International Nuclear Information System (INIS)

    Sundstrom, Magnus; Chatterji, Udayan; Schaffer, Lana; Rozieres, Sohela de; Elder, John H.

    2008-01-01

    Expression of the feline immunodeficiency virus (FIV) accessory protein OrfA (or Orf2) is critical for efficient viral replication in lymphocytes, both in vitro and in vivo. OrfA has been reported to exhibit functions in common with the human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) accessory proteins Vpr and Tat, although the function of OrfA has not been fully explained. Here, we use microarray analysis to characterize how OrfA modulates the gene expression profile of T-lymphocytes. The primary IL-2-dependent T-cell line 104-C1 was transduced to express OrfA. Functional expression of OrfA was demonstrated by trans complementation of the OrfA-defective clone, FIV-34TF10. OrfA-expressing cells had a slightly reduced cell proliferation rate but did not exhibit any significant alteration in cell cycle distribution. Reverse-transcribed RNA from cells expressing green fluorescent protein (GFP) or GFP + OrfA were hybridized to Affymetrix HU133 Plus 2.0 microarray chips representing more than 47,000 genome-wide transcripts. By using two statistical approaches, 461 (Rank Products) and 277 (ANOVA) genes were identified as modulated by OrfA expression. The functional relevance of the differentially expressed genes was explored by Ingenuity Pathway Analysis. The analyses revealed alterations in genes critical for RNA post-transcriptional modifications and protein ubiquitination as the two most significant functional outcomes of OrfA expression. In these two groups, several subunits of the spliceosome, cellular splicing factors and family members of the proteasome-ubiquitination system were identified. These findings provide novel information on the versatile function of OrfA during FIV infection and indicate a fine-tuning mechanism of the cellular environment by OrfA to facilitate efficient FIV replication

  15. Establishment of a Wheat Cell-Free Synthesized Protein Array Containing 250 Human and Mouse E3 Ubiquitin Ligases to Identify Novel Interaction between E3 Ligases and Substrate Proteins.

    Directory of Open Access Journals (Sweden)

    Hirotaka Takahashi

    Full Text Available Ubiquitination is a key post-translational modification in the regulation of numerous biological processes in eukaryotes. The primary roles of ubiquitination are thought to be the triggering of protein degradation and the regulation of signal transduction. During protein ubiquitination, substrate specificity is mainly determined by E3 ubiquitin ligase (E3. Although more than 600 genes in the human genome encode E3, the E3s of many target proteins remain unidentified owing to E3 diversity and the instability of ubiquitinated proteins in cell. We demonstrate herein a novel biochemical analysis for the identification of E3s targeting specific proteins. Using wheat cell-free protein synthesis system, a protein array containing 227 human and 23 mouse recombinant E3s was synthesized. To establish the high-throughput binding assay using AlphaScreen technology, we selected MDM2 and p53 as the model combination of E3 and its target protein. The AlphaScreen assay specifically detected the binding of p53 and MDM2 in a crude translation mixture. Then, a comprehensive binding assay using the E3 protein array was performed. Eleven of the E3s showed high binding activity, including four previously reported E3s (e.g., MDM2, MDM4, and WWP1 targeting p53. This result demonstrated the reliability of the assay. Another interactors, RNF6 and DZIP3-which there have been no report to bind p53-were found to ubiquitinate p53 in vitro. Further analysis showed that RNF6 decreased the amount of p53 in H1299 cells in E3 activity-dependent manner. These results suggest the possibility that the RNF6 ubiquitinates and degrades p53 in cells. The novel in vitro screening system established herein is a powerful tool for finding novel E3s of a target protein.

  16. Self-assembling bubble carriers for oral protein delivery.

    Science.gov (United States)

    Chuang, Er-Yuan; Lin, Kun-Ju; Lin, Po-Yen; Chen, Hsin-Lung; Wey, Shiaw-Pyng; Mi, Fwu-Long; Hsiao, Hsu-Chan; Chen, Chiung-Tong; Sung, Hsing-Wen

    2015-09-01

    Successful oral delivery of therapeutic proteins such as insulin can greatly improve the quality of life of patients. This study develops a bubble carrier system by loading diethylene triamine pentaacetic acid (DTPA) dianhydride, a foaming agent (sodium bicarbonate; SBC), a surfactant (sodium dodecyl sulfate; SDS), and a protein drug (insulin) in an enteric-coated gelatin capsule. Following oral administration to diabetic rats, the intestinal fluid that has passed through the gelatin capsule saturates the mixture; concomitantly, DTPA dianhydride produces an acidic environment, while SBC decomposes to form CO2 bubbles at acidic pH. The gas bubbles grow among the surfactant molecules (SDS) owing to the expansion of the generated CO2. The walls of the CO2 bubbles consist of a self-assembled film of water that is in nanoscale and may serve as a colloidal carrier to transport insulin and DTPA. The grown gas bubbles continue to expand until they bump into the wall and burst, releasing their transported insulin, DTPA, and SDS into the mucosal layer. The released DTPA and SDS function as protease inhibitors to protect the insulin molecules as well as absorption enhancers to augment their epithelial permeability and eventual absorption into systemic circulation, exerting their hypoglycemic effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. E2-EPF UCP Possesses E3 Ubiquitin Ligase Activity via Its Cysteine 118 Residue.

    Science.gov (United States)

    Lim, Jung Hwa; Shin, Hee Won; Chung, Kyung-Sook; Kim, Nam-Soon; Kim, Ju Hee; Jung, Hong-Ryul; Im, Dong-Soo; Jung, Cho-Rok

    Here, we show that E2-EPF ubiquitin carrier protein (UCP) elongated E3-independent polyubiquitin chains on the lysine residues of von Hippel-Lindau protein (pVHL) and its own lysine residues both in vitro and in vivo. The initiation of the ubiquitin reaction depended on not only Lys11 linkage but also the Lys6, Lys48 and Lys63 residues of ubiquitin, which were involved in polyubiquitin chain formation on UCP itself. UCP self-association occurred through the UBC domain, which also contributed to the interaction with pVHL. The polyubiquitin chains appeared on the N-terminus of UCP in vivo, which indicated that the N-terminus of UCP contains target lysines for polyubiquitination. The Lys76 residue of UCP was the most critical site for auto-ubiquitination, whereas the polyubiquitin chain formation on pVHL occurred on all three of its lysines (Lys159, Lys171 and Lys196). A UCP mutant in which Cys118 was changed to alanine (UCPC118A) did not form a polyubiquitin chain but did strongly accumulate mono- and di-ubiquitin via auto-ubiquitination. Polyubiquitin chain formation required the coordination of Cys95 and Cys118 between two interacting molecules. The mechanism of the polyubiquitin chain reaction of UCP may involve the transfer of ubiquitin from Cys95 to Cys118 by trans-thiolation, with polyubiquitin chains forming at Cys118 by reversible thioester bonding. The polyubiquitin chains are then moved to the lysine residues of the substrate by irreversible isopeptide bonding. During the elongation of the ubiquitin chain, an active Cys118 residue is required in both parts of UCP, namely, the catalytic enzyme and the substrate. In conclusion, UCP possesses not only E2 ubiquitin conjugating enzyme activity but also E3 ubiquitin ligase activity, and Cys118 is critical for polyubiquitin chain formation.

  18. E2-EPF UCP Possesses E3 Ubiquitin Ligase Activity via Its Cysteine 118 Residue.

    Directory of Open Access Journals (Sweden)

    Jung Hwa Lim

    Full Text Available Here, we show that E2-EPF ubiquitin carrier protein (UCP elongated E3-independent polyubiquitin chains on the lysine residues of von Hippel-Lindau protein (pVHL and its own lysine residues both in vitro and in vivo. The initiation of the ubiquitin reaction depended on not only Lys11 linkage but also the Lys6, Lys48 and Lys63 residues of ubiquitin, which were involved in polyubiquitin chain formation on UCP itself. UCP self-association occurred through the UBC domain, which also contributed to the interaction with pVHL. The polyubiquitin chains appeared on the N-terminus of UCP in vivo, which indicated that the N-terminus of UCP contains target lysines for polyubiquitination. The Lys76 residue of UCP was the most critical site for auto-ubiquitination, whereas the polyubiquitin chain formation on pVHL occurred on all three of its lysines (Lys159, Lys171 and Lys196. A UCP mutant in which Cys118 was changed to alanine (UCPC118A did not form a polyubiquitin chain but did strongly accumulate mono- and di-ubiquitin via auto-ubiquitination. Polyubiquitin chain formation required the coordination of Cys95 and Cys118 between two interacting molecules. The mechanism of the polyubiquitin chain reaction of UCP may involve the transfer of ubiquitin from Cys95 to Cys118 by trans-thiolation, with polyubiquitin chains forming at Cys118 by reversible thioester bonding. The polyubiquitin chains are then moved to the lysine residues of the substrate by irreversible isopeptide bonding. During the elongation of the ubiquitin chain, an active Cys118 residue is required in both parts of UCP, namely, the catalytic enzyme and the substrate. In conclusion, UCP possesses not only E2 ubiquitin conjugating enzyme activity but also E3 ubiquitin ligase activity, and Cys118 is critical for polyubiquitin chain formation.

  19. Protein Interaction Screening for the Ankyrin Repeats and Suppressor of Cytokine Signaling (SOCS) Box (ASB) Family Identify Asb11 as a Novel Endoplasmic Reticulum Resident Ubiquitin Ligase

    DEFF Research Database (Denmark)

    Andresen, Christina Aaen; Smedegaard, Stine; Sylvestersen, Kathrine Beck

    2014-01-01

    The Ankyrin and SOCS (Suppressor of Cytokine Signaling) box (ASB) family of proteins function as the substrate recognition subunit in a subset of Elongin-Cullin-SOCS (ECS) E3 ubiquitin ligases. Despite counting with 18 members in humans, the identity of the physiological targets of the Asb protei...

  20. Ageing has no effect on the regulation of the ubiquitin proteasome-related genes and proteins following resistance exercise

    Directory of Open Access Journals (Sweden)

    Renae Jane Stefanetti

    2014-01-01

    Full Text Available Skeletal muscle atrophy is a critical component of the ageing process. Age-related muscle wasting is due to disrupted muscle protein turnover, a process mediated in part by the ubiquitin proteasome pathway (UPP. Additionally, older subjects have been observed to have an attenuated anabolic response, at both the molecular and physiological levels, following a single-bout of resistance exercise (RE. We investigated the expression levels of the UPP-related genes and proteins involved in muscle protein degradation in 10 older (60-75 years versus 10 younger (18-30 years healthy male subjects at basal as well as 2 hours after a single-bout of RE. MURF1, atrogin-1 and FBXO40, their substrate targets PKM2, myogenin, MYOD, MHC and EIF3F as well as MURF1 and atrogin-1 transcriptional regulators FOXO1 and FOXO3 gene and/or protein expression levels were measured via real time PCR and western blotting, respectively. At basal, no age-related difference was observed in the gene/protein levels of atrogin-1, MURF1, myogenin, MYOD and FOXO1/3. However, a decrease in FBXO40 mRNA and protein levels was observed in older subjects, while PKM2 protein was increased in older subjects. In response to RE, MURF1, atrogin-1 and FBXO40 mRNA were upregulated in both the younger and older subjects, with changes observed in protein levels. In conclusion, UPP-related gene/protein expression is comparably regulated in healthy young and old male subjects at basal and following RE. These findings suggest that UPP signalling plays a limited role in the process of age-related muscle wasting. Future studies are required to investigate additional proteolytic mechanisms in conjunction with skeletal muscle protein breakdown measurements following RE in older versus younger subjects.

  1. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    International Nuclear Information System (INIS)

    Economou, Nicoleta J.; Zentner, Isaac J.; Lazo, Edwin; Jakoncic, Jean; Stojanoff, Vivian; Weeks, Stephen D.; Grasty, Kimberly C.; Cocklin, Simon; Loll, Patrick J.

    2013-01-01

    Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance

  2. Catabolic signaling pathways, atrogenes, and ubiquitinated proteins are regulated by the nutritional status in the muscle of the fine flounder.

    Directory of Open Access Journals (Sweden)

    Eduardo N Fuentes

    Full Text Available A description of the intracellular mechanisms that modulate skeletal muscle atrophy in early vertebrates is still lacking. In this context, we used the fine flounder, a unique and intriguing fish model, which exhibits remarkably slow growth due to low production of muscle-derived IGF-I, a key growth factor that has been widely acknowledged to prevent and revert muscle atrophy. Key components of the atrophy system were examined in this species using a detailed time-course of sampling points, including two contrasting nutritional periods. Under basal conditions high amounts of the atrogenes MuRF-1 and Atrogin-1 were observed. During fasting, the activation of the P38/MAPK and Akt/FoxO signaling pathways decreased; whereas, the activation of the IκBα/NFκB pathway increased. These changes in signal transduction activation were concomitant with a strong increase in MuRF-1, Atrogin-1, and protein ubiquitination. During short-term refeeding, the P38/MAPK and Akt/FoxO signaling pathways were strongly activated, whereas the activation of the IκBα/NFκB pathway decreased significantly. The expression of both atrogenes, as well as the ubiquitination of proteins, dropped significantly during the first hour of refeeding, indicating a strong anti-atrophic condition during the onset of refeeding. During long-term refeeding, Akt remained activated at higher than basal levels until the end of refeeding, and Atrogin-1 expression remained significantly lower during this period. This study shows that the components of the atrophy system in skeletal muscle appeared early in the evolution of vertebrates and some mechanisms have been conserved, whereas others have not. These results represent an important achievement for the area of fish muscle physiology, showing an integrative view of the atrophy system in a non-mammalian species and contributing to novel insights on the molecular basis of muscle growth regulation in earlier vertebrates.

  3. echinus, required for interommatidial cell sorting and cell death in the Drosophila pupal retina, encodes a protein with homology to ubiquitin-specific proteases

    Directory of Open Access Journals (Sweden)

    Gorski Sharon M

    2007-07-01

    Full Text Available Abstract Background Programmed cell death is used to remove excess cells between ommatidia in the Drosophila pupal retina. This death is required to establish the crystalline, hexagonal packing of ommatidia that characterizes the adult fly eye. In previously described echinus mutants, interommatidial cell sorting, which precedes cell death, occurred relatively normally. Interommatidial cell death was partially suppressed, resulting in adult eyes that contained excess pigment cells, and in which ommatidia were mildly disordered. These results have suggested that echinus functions in the pupal retina primarily to promote interommatidial cell death. Results We generated a number of new echinus alleles, some likely null mutants. Analysis of these alleles provides evidence that echinus has roles in cell sorting as well as cell death. echinus encodes a protein with homology to ubiquitin-specific proteases. These proteins cleave ubiquitin-conjugated proteins at the ubiquitin C-terminus. The echinus locus encodes multiple splice forms, including two proteins that lack residues thought to be critical for deubiquitination activity. Surprisingly, ubiquitous expression in the eye of versions of Echinus that lack residues critical for ubiquitin specific protease activity, as well as a version predicted to be functional, rescue the echinus loss-of-function phenotype. Finally, genetic interactions were not detected between echinus loss and gain-of-function and a number of known apoptotic regulators. These include Notch, EGFR, the caspases Dronc, Drice, Dcp-1, Dream, the caspase activators, Rpr, Hid, and Grim, the caspase inhibitor DIAP1, and Lozenge or Klumpfuss. Conclusion The echinus locus encodes multiple splice forms of a protein with homology to ubiquitin-specific proteases, but protease activity is unlikely to be required for echinus function, at least when echinus is overexpressed. Characterization of likely echinus null alleles and genetic interactions

  4. Mutation of cysteine-88 in the Saccharomyces cerevisiae RAD6 protein abolishes its ubiquitin-conjugating activity and its various biological functions

    International Nuclear Information System (INIS)

    Sung, P.; Prakash, S.; Prakash, L.

    1990-01-01

    The RAD6 gene of Saccharomyces cerevisiae is required for DNA repair, DNA damage-induced mutagenesis, and sporulation. RAD6 protein is a ubiquitin-conjugating enzyme (E2) that has been shown to attach multiple molecules of ubiquitin to histones H2A and H2B. We have now examined whether the E2 activity of RAD6 is involved in its various biological functions. Since the formation of a thioester adduct between E2 and ubiquitin is necessary for E2 activity, the single cysteine residue (Cys-88) present in RAD6 was changed to alanine or valine. The mutant proteins were overproduced in yeast cells and purified to near homogeneity. We show that the rad6 Ala-88 and rad6 Val-88 mutant proteins lack the capacity for thioester formation with ubiquitin and, as a consequence, are totally devoid of any E2 activity. The rad6 Ala-88 and rad6 Val-88 mutations confer a defect in DNA repair, mutagenesis, and sporulation equivalent to that in the rad6 null allele. We suggest that the biological functions of RAD6 require its E2 activity. (author)

  5. The Us2 gene product of herpes simplex virus 2 is a membrane-associated ubiquitin-interacting protein.

    Science.gov (United States)

    Kang, Ming-Hsi; Roy, Bibhuti B; Finnen, Renée L; Le Sage, Valerie; Johnston, Susan M; Zhang, Hui; Banfield, Bruce W

    2013-09-01

    The Us2 gene encodes a tegument protein that is conserved in most members of the Alphaherpesvirinae. Previous studies on the pseudorabies virus (PRV) Us2 ortholog indicated that it is prenylated, associates with membranes, and spatially regulates the enzymatic activity of the MAP (mitogen-activated protein) kinase ERK (extracellular signal-related kinase) through direct binding and sequestration of ERK at the cytoplasmic face of the plasma membrane. Here we present an analysis of the herpes simplex virus 2 (HSV-2) Us2 ortholog and demonstrate that, like PRV Us2, HSV-2 Us2 is a virion component and that, unlike PRV Us2, it does not interact with ERK in yeast two-hybrid assays. HSV-2 Us2 lacks prenylation signals and other canonical membrane-targeting motifs yet is tightly associated with detergent-insoluble membranes and localizes predominantly to recycling endosomes. Experiments to identify cellular proteins that facilitate HSV-2 Us2 membrane association were inconclusive; however, these studies led to the identification of HSV-2 Us2 as a ubiquitin-interacting protein, providing new insight into the functions of HSV-2 Us2.

  6. Protein-based nanostructures as carriers for photo-physically active molecules in biosystems

    OpenAIRE

    Delcanale, Pietro

    2017-01-01

    In nature, many proteins function as carriers, being able to bind, transport and possibly release a ligand within a biological system. Protein-based carriers are interesting systems for drug delivery, with the remarkable advantage of being water-soluble and, as inherent components of biosystems, highly bio-compatible. This work focuses on the use of protein-based carriers for the delivery of hydrophobic photo-physically active molecules, whose structure and chemical properties lead to spontan...

  7. Memory formation for trace fear conditioning requires ubiquitin-proteasome mediated protein degradation in the prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    David S Reis

    2013-10-01

    Full Text Available The cellular mechanisms supporting plasticity during memory consolidation have been a subject of considerable interest. De novo protein and mRNA synthesis in several brain areas are critical, and more recently protein degradation, mediated by the ubiquitin-proteasome system (UPS, has been shown to be important. Previous work clearly establishes a relationship between protein synthesis and protein degradation in the amygdala, but it is unclear whether cortical mechanisms of memory consolidation are similar to those in the amygdala. Recent work demonstrating a critical role for prefrontal cortex (PFC in the acquisition and consolidation of fear memory allows us to address this question. Here we use a PFC-dependent fear conditioning protocol to determine whether UPS mediated protein degradation is necessary for memory consolidation in PFC. Groups of rats were trained with auditory delay or trace fear conditioning and sacrificed 60 min after training. PFC tissue was then analyzed to quantify the amount of polyubiquinated protein. Other animals were trained with similar procedures but were infused with either a proteasome inhibitor (clasto-lactacystin β-lactone or a translation inhibitor (anisomycin in the PFC immediately after training. Our results show increased UPS-mediated protein degradation in the PFC following trace but not delay fear conditioning. Additionally, post-training proteasome or translation inhibition significantly impaired trace but not delay fear memory when tested the next day. Our results further support the idea that the PFC is critical for trace but not delay fear conditioning highlight the role of UPS-mediated degradation as critical for synaptic plasticity.

  8. The ubiquitin-homology protein, DAP-1, associates with tumor necrosis factor receptor (p60) death domain and induces apoptosis.

    Science.gov (United States)

    Liou, M L; Liou, H C

    1999-04-09

    The tumor necrosis factor receptor, p60 (TNF-R1), transduces death signals via the association of its cytoplasmic domain with several intracellular proteins. By screening a mammalian cDNA library using the yeast two-hybrid cloning technique, we isolated a ubiquitin-homology protein, DAP-1, which specifically interacts with the cytoplasmic death domain of TNF-R1. Sequence analysis reveals that DAP-1 shares striking sequence homology with the yeast SMT3 protein that is essential for the maintenance of chromosome integrity during mitosis (Meluh, P. B., and Koshland, D. (1995) Mol. Biol. Cell 6, 793-807). DAP-1 is nearly identical to PIC1, a protein that interacts with the PML tumor suppressor implicated in acute promyelocytic leukemia (Boddy, M. N., Howe, K., Etkin, L. D., Solomon, E., and Freemont, P. S. (1996) Oncogene 13, 971-982), and the sentrin protein, which associates with the Fas death receptor (Okura, T., Gong, L., Kamitani, T., Wada, T., Okura, I., Wei, C. F., Chang, H. M., and Yeh, E. T. (1996) J. Immunol. 157, 4277-4281). The in vivo interaction between DAP-1 and TNF-R1 was further confirmed in mammalian cells. In transient transfection assays, overexpression of DAP-1 suppresses NF-kappaB/Rel activity in 293T cells, a human kidney embryonic carcinoma cell line. Overexpression of either DAP-1 or sentrin causes apoptosis of TNF-sensitive L929 fibroblast cell line, as well as TNF-resistant osteosarcoma cell line, U2OS. Furthermore, the dominant negative Fas-associated death domain protein (FADD) protein blocks the cell death induced by either DAP-1 or FADD. Collectively, these observations highly suggest a role for DAP-1 in mediating TNF-induced cell death signaling pathways, presumably through the recruitment of FADD death effector.

  9. SUMO-targeted ubiquitin ligases.

    Science.gov (United States)

    Sriramachandran, Annie M; Dohmen, R Jürgen

    2014-01-01

    Covalent posttranslational modification with SUMO (small ubiquitin-related modifier) modulates functions of a wide range of proteins in eukaryotic cells. Sumoylation affects the activity, interaction properties, subcellular localization and the stability of its substrate proteins. The recent discovery of a novel class of ubiquitin ligases (E3), termed ULS (E3-S) or STUbL, that recognize sumoylated proteins, links SUMO modification to the ubiquitin/proteasome system. Here we review recent insights into the properties and function of these ligases and their roles in regulating sumoylated proteins. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf. © 2013. Published by Elsevier B.V. All rights reserved.

  10. Ubiquitin-fusion as a strategy to modulate protein half-life: A3G antiviral activity revisited

    International Nuclear Information System (INIS)

    Cadima-Couto, Iris; Freitas-Vieira, Acilino; Nowarski, Roni; Britan-Rosich, Elena; Kotler, Moshe; Goncalves, Joao

    2009-01-01

    The human APOBEC3G (A3G) is a potent inhibitor of HIV-1 replication and its activity is suppressed by HIV-1 virion infectivity factor (Vif). Vif neutralizes A3G mainly by inducing its degradation in the proteasome and blocking its incorporation into HIV-1 virions. Assessing the time needed for A3G incorporation into virions is, therefore, important to determine how quickly Vif must act to induce its degradation. We show that modelling the intracellular half-life of A3G can induce its Vif-independent targeting to the ubiquitin-proteasome system. By using various amino acids (X) in a cleavable ubiquitin-X-A3G fusion, we demonstrate that the half-life (t1/2) of X-A3G can be manipulated. We show that A3G molecules with a half-life of 13 min are incorporated into virions, whereas those with a half-life shorter than 5 min were not. The amount of X-A3G incorporated into virions increases from 13 min (Phe-A3G) to 85 min (Asn-A3G) and remains constant after this time period. Interestingly, despite the presence of similar levels of Arg-A3G (t1/2 = 28 min) and Asp-A3G (t1/2 = 65 min) into HIV-1 Δvif virions, inhibition of viral infectivity was only evident in the presence of A3G proteins with a longer half-life (t1/2 ≥ 65 min).

  11. Structural model of the hUbA1-UbcH10 quaternary complex: in silico and experimental analysis of the protein-protein interactions between E1, E2 and ubiquitin.

    Directory of Open Access Journals (Sweden)

    Stefania Correale

    Full Text Available UbcH10 is a component of the Ubiquitin Conjugation Enzymes (Ubc; E2 involved in the ubiquitination cascade controlling the cell cycle progression, whereby ubiquitin, activated by E1, is transferred through E2 to the target protein with the involvement of E3 enzymes. In this work we propose the first three dimensional model of the tetrameric complex formed by the human UbA1 (E1, two ubiquitin molecules and UbcH10 (E2, leading to the transthiolation reaction. The 3D model was built up by using an experimentally guided incremental docking strategy that combined homology modeling, protein-protein docking and refinement by means of molecular dynamics simulations. The structural features of the in silico model allowed us to identify the regions that mediate the recognition between the interacting proteins, revealing the active role of the ubiquitin crosslinked to E1 in the complex formation. Finally, the role of these regions involved in the E1-E2 binding was validated by designing short peptides that specifically interfere with the binding of UbcH10, thus supporting the reliability of the proposed model and representing valuable scaffolds for the design of peptidomimetic compounds that can bind selectively to Ubcs and inhibit the ubiquitylation process in pathological disorders.

  12. BACE1 protein endocytosis and trafficking are differentially regulated by ubiquitination at lysine 501 and the Di-leucine motif in the carboxyl terminus.

    Science.gov (United States)

    Kang, Eugene L; Biscaro, Barbara; Piazza, Fabrizio; Tesco, Giuseppina

    2012-12-14

    β-Site amyloid precursor protein-cleaving enzyme (BACE1) is a membrane-tethered member of the aspartyl proteases that has been identified as β-secretase. BACE1 is targeted through the secretory pathway to the plasma membrane and then is internalized to endosomes. Sorting of membrane proteins to the endosomes and lysosomes is regulated by the interaction of signals present in their carboxyl-terminal fragment with specific trafficking molecules. The BACE1 carboxyl-terminal fragment contains a di-leucine sorting signal ((495)DDISLL(500)) and a ubiquitination site at Lys-501. Here, we report that lack of ubiquitination at Lys-501 (BACE1K501R) does not affect the rate of endocytosis but produces BACE1 stabilization and accumulation of BACE1 in early and late endosomes/lysosomes as well as at the cell membrane. In contrast, the disruption of the di-leucine motif (BACE1LLAA) greatly impairs BACE1 endocytosis and produces a delayed retrograde transport of BACE1 to the trans-Golgi network (TGN) and a delayed delivery of BACE1 to the lysosomes, thus decreasing its degradation. Moreover, the combination of the lack of ubiquitination at Lys-501 and the disruption of the di-leucine motif (BACE1LLAA/KR) produces additive effects on BACE1 stabilization and defective internalization. Finally, BACE1LLAA/KR accumulates in the TGN, while its levels are decreased in EEA1-positive compartments indicating that both ubiquitination at Lys-501 and the di-leucine motif are necessary for the trafficking of BACE1 from the TGN to early endosomes. Our studies have elucidated a differential role for the di-leucine motif and ubiquitination at Lys-501 in BACE1 endocytosis, trafficking, and degradation and suggest the involvement of multiple adaptor molecules.

  13. BACE1 Protein Endocytosis and Trafficking Are Differentially Regulated by Ubiquitination at Lysine 501 and the Di-leucine Motif in the Carboxyl Terminus*

    Science.gov (United States)

    Kang, Eugene L.; Biscaro, Barbara; Piazza, Fabrizio; Tesco, Giuseppina

    2012-01-01

    β-Site amyloid precursor protein-cleaving enzyme (BACE1) is a membrane-tethered member of the aspartyl proteases that has been identified as β-secretase. BACE1 is targeted through the secretory pathway to the plasma membrane and then is internalized to endosomes. Sorting of membrane proteins to the endosomes and lysosomes is regulated by the interaction of signals present in their carboxyl-terminal fragment with specific trafficking molecules. The BACE1 carboxyl-terminal fragment contains a di-leucine sorting signal (495DDISLL500) and a ubiquitination site at Lys-501. Here, we report that lack of ubiquitination at Lys-501 (BACE1K501R) does not affect the rate of endocytosis but produces BACE1 stabilization and accumulation of BACE1 in early and late endosomes/lysosomes as well as at the cell membrane. In contrast, the disruption of the di-leucine motif (BACE1LLAA) greatly impairs BACE1 endocytosis and produces a delayed retrograde transport of BACE1 to the trans-Golgi network (TGN) and a delayed delivery of BACE1 to the lysosomes, thus decreasing its degradation. Moreover, the combination of the lack of ubiquitination at Lys-501 and the disruption of the di-leucine motif (BACE1LLAA/KR) produces additive effects on BACE1 stabilization and defective internalization. Finally, BACE1LLAA/KR accumulates in the TGN, while its levels are decreased in EEA1-positive compartments indicating that both ubiquitination at Lys-501 and the di-leucine motif are necessary for the trafficking of BACE1 from the TGN to early endosomes. Our studies have elucidated a differential role for the di-leucine motif and ubiquitination at Lys-501 in BACE1 endocytosis, trafficking, and degradation and suggest the involvement of multiple adaptor molecules. PMID:23109336

  14. Genome-wide identification and characterization of the apple (Malus domestica) HECT ubiquitin-protein ligase family and expression analysis of their responsiveness to abiotic stresses.

    Science.gov (United States)

    Xu, Jianing; Xing, Shanshan; Cui, Haoran; Chen, Xuesen; Wang, Xiaoyun

    2016-04-01

    The ubiquitin-protein ligases (E3s) directly participate in ubiquitin (Ub) transferring to the target proteins in the ubiquitination pathway. The HECT ubiquitin-protein ligase (UPL), one type of E3s, is characterized as containing a conserved HECT domain of approximately 350 amino acids in the C terminus. Some UPLs were found to be involved in trichome development and leaf senescence in Arabidopsis. However, studies on plant UPLs, such as characteristics of the protein structure, predicted functional motifs of the HECT domain, and the regulatory expression of UPLs have all been limited. Here, we present genome-wide identification of the genes encoding UPLs (HECT gene) in apple. The 13 genes (named as MdUPL1-MdUPL13) from ten different chromosomes were divided into four groups by phylogenetic analysis. Among these groups, the encoding genes in the intron-exon structure and the included additional functional domains were quite different. Notably, the F-box domain was first found in MdUPL7 in plant UPLs. The HECT domain in different MdUPL groups also presented different spatial features and three types of conservative motifs were identified. The promoters of each MdUPL member carried multiple stress-response related elements by cis-acting element analysis. Experimental results demonstrated that the expressions of several MdUPLs were quite sensitive to cold-, drought-, and salt-stresses by qRT-PCR assay. The results of this study helped to elucidate the functions of HECT proteins, especially in Rosaceae plants.

  15. Biogenesis of mitochondrial carrier proteins: molecular mechanisms of import into mitochondria.

    Science.gov (United States)

    Ferramosca, Alessandra; Zara, Vincenzo

    2013-03-01

    Mitochondrial metabolite carriers are hydrophobic proteins which catalyze the flux of several charged or hydrophilic substrates across the inner membrane of mitochondria. These proteins, like most mitochondrial proteins, are nuclear encoded and after their synthesis in the cytosol are transported into the inner mitochondrial membrane. Most metabolite carriers, differently from other nuclear encoded mitochondrial proteins, are synthesized without a cleavable presequence and contain several, poorly characterized, internal targeting signals. However, an interesting aspect is the presence of a positively charged N-terminal presequence in a limited number of mitochondrial metabolite carriers. Over the last few years the molecular mechanisms of import of metabolite carrier proteins into mitochondria have been thoroughly investigated. This review summarizes the present knowledge and discusses recent advances on the import and sorting of mitochondrial metabolite carriers. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Effect of prolonged intravenous glucose and essential amino acid infusion on nitrogen balance, muscle protein degradation and ubiquitin-conjugating enzyme gene expression in calves

    Directory of Open Access Journals (Sweden)

    Scaife Jes R

    2008-02-01

    Full Text Available Abstract Background Intravenous infusions of glucose and amino acids increase both nitrogen balance and muscle accretion. We hypothesised that co-infusion of glucose (to stimulate insulin and essential amino acids (EAA would act additively to improve nitrogen balance by decreasing muscle protein degradation in association with alterations in muscle expression of components of the ubiquitin-proteasome proteolytic pathway. Methods We examined the effect of a 5 day intravenous infusions of saline, glucose, EAA and glucose + EAA, on urinary nitrogen excretion and muscle protein degradation. We carried out the study in 6 restrained calves since ruminants offer the advantage that muscle protein degradation can be assessed by excretion of 3 methyl-histidine and multiple muscle biopsies can be taken from the same animal. On the final day of infusion blood samples were taken for hormone and metabolite measurement and muscle biopsies for expression of ubiquitin, the 14-kDa E2 ubiquitin conjugating enzyme, and proteasome sub-units C2 and C8. Results On day 5 of glucose infusion, plasma glucose, insulin and IGF-1 concentrations were increased while urea nitrogen excretion and myofibrillar protein degradation was decreased. Co-infusion of glucose + EAA prevented the loss of urinary nitrogen observed with EAA infusions alone and enhanced the increase in plasma IGF-1 concentration but there was no synergistic effect of glucose + EAA on the decrease in myofibrillar protein degradation. Muscle mRNA expression of the ubiquitin conjugating enzyme, 14-kDa E2 and proteasome sub-unit C2 were significantly decreased, after glucose but not amino acid infusions, and there was no further response to the combined infusions of glucose + EAA. Conclusion Prolonged glucose infusion decreases myofibrillar protein degradation, prevents the excretion of infused EAA, and acts additively with EAA to increase plasma IGF-1 and improve net nitrogen balance. There was no evidence of

  17. Regulating ehrlich and demethiolation pathways for alcohols production by the expression of ubiquitin-protein ligase gene HUWE1.

    Science.gov (United States)

    Zhang, Quan; Jia, Kai-Zhi; Xia, Shi-Tao; Xu, Yang-Hua; Liu, Rui-Sang; Li, Hong-Mei; Tang, Ya-Jie

    2016-02-10

    Ehrlich and demethiolation pathways as two competing branches converted amino acid into alcohols. Controlling both pathways offers considerable potential for industrial applications including alcohols overproduction, flavor-quality control and developing new flavors. While how to regulate ehrlich and demethiolation pathways is still not applicable. Taking the conversion of methionine into methionol and methanethiol for example, we constructed two suppression subtractive cDNA libraries of Clonostachys rosea by using suppression subtractive hybridization (SSH) technology for screening regulators controlling the conversion. E3 ubiquitin-protein ligase gene HUWE1 screened from forward SSH library was validated to be related with the biosynthesis of end products. Overexpressing HUWE1 in C. rosea and S. cerevisiae significantly increased the biosynthesis of methanethiol and its derivatives in demethiolation pathway, while suppressed the biosynthesis of methional and methionol in ehrlich pathway. These results attained the directional regulation of both pathways by overexpressing HUWE1. Thus, HUWE1 has potential to be a key target for controlling and enhancing alcohols production by metabolic engineering.

  18. Time-resolved Fourier transform infrared spectrometry using a microfabricated continuous flow mixer: application to protein conformation study using the example of ubiquitin.

    Science.gov (United States)

    Kakuta, Masaya; Hinsmann, Peter; Manz, Andreas; Lendl, Bernhard

    2003-05-01

    We report on the use of time-resolved Fourier transform infrared spectroscopy (FT-IR) to study chemically induced conformational changes of proteins using the example of ubiquitin. For this purpose a micromachined mixer is coupled to a conventional IR transmission cell with a pathlength of 25 microm and operated in both the continuous and the stopped-flow mode. This experimental set-up allows the elucidation of reaction pathways in the time frame of about 500 milliseconds to seconds with little reagent consumption and low pressure. For continuous flow measurements employed in the time frame from 0.5 to 1.4 s the reaction time is determined by the flow rate used as the connection between the point of confluence in the micromixer and the flow cell was kept constant in all experiments. For stopped-flow experiments (>1.4 s) the time is determined by data acquisition of the rapid scanning infrared spectrometer. Ubiquitin, a small well-known protein with 76 amino acid residues, changes its conformation from native to A-state with the addition of methanol under low pH conditions. We investigated the conformational change in the time frame from 0.5 to 10 s by mixing ubiquitin (20% methanol-d(4)) with an 80% methanol-d(4) solution at pD 2 by evaluating the time dependent changes in the amide I band of the protein.

  19. Salivary protein histatin 3 regulates cell proliferation by enhancing p27{sup Kip1} and heat shock cognate protein 70 ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Yasuhiro, E-mail: yimamura@po.mdu.ac.jp [Department of Pharmacology, Matsumoto Dental University, Shiojiri, Nagano 399-0781 (Japan); Wang, Pao-Li [Department of Bacteriology, Osaka Dental University, Hirakata, Osaka 573-1121 (Japan); Masuno, Kazuya [Department of Dental Education Innovation, Osaka Dental University, Hirakata, Osaka 573-1121 (Japan); Sogawa, Norio [Department of Pharmacology, Matsumoto Dental University, Shiojiri, Nagano 399-0781 (Japan)

    2016-02-05

    Histatins are salivary proteins with antimicrobial activities. We previously reported that histatin 3 binds to heat shock cognate protein 70 (HSC70), which is constitutively expressed, and induces DNA synthesis stimulation and promotes human gingival fibroblast (HGF) survival. However, the underlying mechanisms of histatin 3 remain largely unknown. Here, we found that the KRHH sequence of histatin 3 at the amino acid positions 5–8 was essential for enhancing p27{sup Kip1} (a cyclin-dependent kinase inhibitor) binding to HSC70 that occurred in a dose-dependent manner; histatin 3 enhanced the binding between p27{sup Kip1} and HSC70 during the G{sub 1}/S transition of HGFs as opposed to histatin 3-M(5–8) (substitution of KRHH for EEDD in histatin 3). Histatin 3, but not histatin 3-M(5–8), stimulated DNA synthesis and promoted HGF survival. Histatin 3 dose-dependently enhanced both p27{sup Kip1} and HSC70 ubiquitination, whereas histatin 3-M(5–8) did not. These findings provide further evidence that histatin 3 may be involved in the regulation of cell proliferation, particularly during G{sub 1}/S transition, via the ubiquitin–proteasome system of p27{sup Kip1} and HSC70. - Highlights: • KRHH amino acid sequence was required in histatin 3 to bind HSC70. • Histatin 3 enhanced HSC70 binding to p27{sup Kip1} during the G{sub 1}/S transition in HGFs. • KRHH sequence stimulated DNA synthesis and promoted cell survival. • Histatin 3 dose-dependently enhanced both p27{sup Kip1} and HSC70 ubiquitination. • Histatin 3 stimulates cell proliferation via the ubiquitin–proteasome system.

  20. Stearoyl-Acyl Carrier Protein and Unusual Acyl-Acyl Carrier Protein Desaturase Activities Are Differentially Influenced by Ferredoxin1

    Science.gov (United States)

    Schultz, David J.; Suh, Mi Chung; Ohlrogge, John B.

    2000-01-01

    Acyl-acyl carrier protein (ACP) desaturases function to position a single double bond into an acyl-ACP substrate and are best represented by the ubiquitous Δ9 18:0-ACP desaturase. Several variant acyl-ACP desaturases have also been identified from species that produce unusual monoenoic fatty acids. All known acyl-ACP desaturase enzymes use ferredoxin as the electron-donating cofactor, and in almost all previous studies the photosynthetic form of ferredoxin rather than the non-photosynthetic form has been used to assess activity. We have examined the influence of different forms of ferredoxin on acyl-ACP desaturases. Using combinations of in vitro acyl-ACP desaturase assays and [14C]malonyl-coenzyme A labeling studies, we have determined that heterotrophic ferredoxin isoforms support up to 20-fold higher unusual acyl-ACP desaturase activity in coriander (Coriandrum sativum), Thunbergia alata, and garden geranium (Pelargonium × hortorum) when compared with photosynthetic ferredoxin isoforms. Heterotrophic ferredoxin also increases activity of the ubiquitous Δ9 18:0-ACP desaturase 1.5- to 3.0-fold in both seed and leaf extracts. These results suggest that ferredoxin isoforms may specifically interact with acyl-ACP desaturases to achieve optimal enzyme activity and that heterotrophic isoforms of ferredoxin may be the in vivo electron donor for this reaction. PMID:11027717

  1. Stearoyl-acyl carrier protein and unusual acyl-acyl carrier protein desaturase activities are differentially influenced by ferredoxin.

    Science.gov (United States)

    Schultz, D J; Suh, M C; Ohlrogge, J B

    2000-10-01

    Acyl-acyl carrier protein (ACP) desaturases function to position a single double bond into an acyl-ACP substrate and are best represented by the ubiquitous Delta9 18:0-ACP desaturase. Several variant acyl-ACP desaturases have also been identified from species that produce unusual monoenoic fatty acids. All known acyl-ACP desaturase enzymes use ferredoxin as the electron-donating cofactor, and in almost all previous studies the photosynthetic form of ferredoxin rather than the non-photosynthetic form has been used to assess activity. We have examined the influence of different forms of ferredoxin on acyl-ACP desaturases. Using combinations of in vitro acyl-ACP desaturase assays and [(14)C]malonyl-coenzyme A labeling studies, we have determined that heterotrophic ferredoxin isoforms support up to 20-fold higher unusual acyl-ACP desaturase activity in coriander (Coriandrum sativum), Thunbergia alata, and garden geranium (Pelargonium x hortorum) when compared with photosynthetic ferredoxin isoforms. Heterotrophic ferredoxin also increases activity of the ubiquitous Delta9 18:0-ACP desaturase 1.5- to 3.0-fold in both seed and leaf extracts. These results suggest that ferredoxin isoforms may specifically interact with acyl-ACP desaturases to achieve optimal enzyme activity and that heterotrophic isoforms of ferredoxin may be the in vivo electron donor for this reaction.

  2. HSPB8 and BAG3 cooperate to promote spatial sequestration of ubiquitinated proteins and coordinate the cellular adaptive response to proteasome insufficiency.

    Science.gov (United States)

    Guilbert, Solenn M; Lambert, Herman; Rodrigue, Marc-Antoine; Fuchs, Margit; Landry, Jacques; Lavoie, Josée N

    2018-02-05

    BCL2-associated athanogene (BAG)-3 is viewed as a platform that would physically and functionally link distinct classes of molecular chaperones of the heat shock protein (HSP) family for the stabilization and clearance of damaged proteins. In this study, we show that HSPB8, a member of the small heat shock protein subfamily, cooperates with BAG3 to coordinate the sequestration of harmful proteins and the cellular adaptive response upon proteasome inhibition. Silencing of HSPB8, like depletion of BAG3, inhibited targeting of ubiquitinated proteins to the juxtanuclear aggresome, a mammalian system of spatial quality control. However, aggresome targeting was restored in BAG3-depleted cells by a mutant BAG3 defective in HSPB8 binding, uncoupling HSPB8 function from its binding to BAG3. Depletion of HSPB8 impaired formation of ubiquitinated microaggregates in an early phase and interfered with accurate modifications of the stress sensor p62/sequestosome (SQSTM)-1. This impairment correlated with decreased coupling of BAG3 to p62/SQSTM1 in response to stress, hindering Kelch-like ECH-associated protein (KEAP)-1 sequestration and stabilization of nuclear factor E2-related factor (Nrf)-2, an important arm of the antioxidant defense. Notably, the myopathy-associated mutation of BAG3 (P209L), which lies within the HSPB8-binding motif, deregulated the association between BAG3 and p62/SQSTM1 and the KEAP1-Nrf2 signaling axis. Together, our findings support a so-far-unrecognized role for the HSPB8-BAG3 connection in mounting of an efficient stress response, which may be involved in BAG3-related human diseases.-Guilbert, S. M., Lambert, H., Rodrigue, M.-A., Fuchs, M., Landry, J., Lavoie, J. N. HSPB8 and BAG3 cooperate to promote spatial sequestration of ubiquitinated proteins and coordinate the cellular adaptive response to proteasome insufficiency.

  3. A comprehensive platform for the analysis of ubiquitin-like protein modifications using in vivo biotinylation

    DEFF Research Database (Denmark)

    Pirone, Lucia; Xolalpa, Wendy; Sigurdsson, Jón Otti

    2017-01-01

    L conjugates from interactors, and low quantities of modified substrates. Here we describe bioUbLs, a comprehensive set of tools for studying modifications in Drosophila and mammals, based on multicistronic expression and in vivo biotinylation using the E. coli biotin protein ligase BirA. While the bio...

  4. Ubiquitin-like protein UBL5 promotes the functional integrity of the Fanconi anemia pathway

    DEFF Research Database (Denmark)

    Oka, Yasuyoshi; Bekker-Jensen, Simon; Mailand, Niels

    2015-01-01

    in promoting the function of the Fanconi anemia (FA) pathway for repair of DNA interstrand crosslinks (ICLs), mediated by a specific interaction with the central FA pathway component FANCI. UBL5-deficient cells display spliceosome-independent reduction of FANCI protein stability, defective FANCI function...

  5. Lipidation of BmAtg8 is required for autophagic degradation of p62 bodies containing ubiquitinated proteins in the silkworm, Bombyx mori.

    Science.gov (United States)

    Ji, Ming-Ming; Lee, Jae Man; Mon, Hiroaki; Iiyama, Kazuhiro; Tatsuke, Tsuneyuki; Morokuma, Daisuke; Hino, Masato; Yamashita, Mami; Hirata, Kazuma; Kusakabe, Takahiro

    2017-10-01

    p62/Sequestosome-1 (p62/SQSTM1, hereafter referred to as p62) is a major adaptor that allows ubiquitinated proteins to be degraded by autophagy, and Atg8 homologs are required for p62-mediated autophagic degradation, but their relationship is still not understood in Lepidopteran insects. Here it is clearly demonstrated that the silkworm homolog of mammalian p62, Bombyx mori p62 (Bmp62), forms p62 bodies depending on its Phox and Bem1p (PB1) and ubiquitin-associated (UBA) domains. These two domains are associated with Bmp62 binding to ubiquitinated proteins to form the p62 bodies, and the UBA domain is essential for the binding, but Bmp62 still self-associates without the PB1 or UBA domain. The p62 bodies in Bombyx cells are enclosed by BmAtg9-containing membranes and degraded via autophagy. It is revealed that the interaction between the Bmp62 AIM motif and BmAtg8 is critical for the autophagic degradation of the p62 bodies. Intriguingly, we further demonstrate that lipidation of BmAtg8 is required for the Bmp62-mediated complete degradation of p62 bodies by autophagy. Our results should be useful in future studies of the autophagic mechanism in Lepidopteran insects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Stage-associated overexpression of the ubiquitin-like protein, ISG15, in bladder cancer

    DEFF Research Database (Denmark)

    Andersen, JB; Jensen, Mads Aaboe; Borden, EC

    2006-01-01

    Bladder cancer is among the most prevalent malignancies, and is characterised by frequent tumour recurrences and localised inflammation, which may promote tissue invasion and metastasis. Microarray analysis was used to compare gene expression in normal bladder urothelium with that in tumours...... at different stages of progression. The innate immune response gene, interferon-stimulated gene 15 kDa (ISG15, GIP2), was highly expressed at all stages of bladder cancer as compared to normal urothelium. Western blotting revealed a tumour-associated expression of ISG15 protein. ISG15 exhibited a stage...... component of bladder cancer-associated gene expression....

  7. Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase-L1 as Outcome Predictors in Traumatic Brain Injury.

    Science.gov (United States)

    Takala, Riikka S K; Posti, Jussi P; Runtti, Hilkka; Newcombe, Virginia F; Outtrim, Joanne; Katila, Ari J; Frantzén, Janek; Ala-Seppälä, Henna; Kyllönen, Anna; Maanpää, Henna-Riikka; Tallus, Jussi; Hossain, Md Iftakher; Coles, Jonathan P; Hutchinson, Peter; van Gils, Mark; Menon, David K; Tenovuo, Olli

    2016-03-01

    Biomarkers ubiquitin C-terminal hydrolase-L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) may help detect brain injury, assess its severity, and improve outcome prediction. This study aimed to evaluate the prognostic value of these biomarkers during the first days after brain injury. Serum UCH-L1 and GFAP were measured in 324 patients with traumatic brain injury (TBI) enrolled in a prospective study. The outcome was assessed using the Glasgow Outcome Scale (GOS) or the extended version, Glasgow Outcome Scale-Extended (GOSE). Patients with full recovery had lower UCH-L1 concentrations on the second day and patients with favorable outcome had lower UCH-L1 concentrations during the first 2 days compared with patients with incomplete recovery and unfavorable outcome. Patients with full recovery and favorable outcome had significantly lower GFAP concentrations in the first 2 days than patients with incomplete recovery or unfavorable outcome. There was a strong negative correlation between outcome and UCH-L1 in the first 3 days and GFAP levels in the first 2 days. On arrival, both UCH-L1 and GFAP distinguished patients with GOS score 1-3 from patients with GOS score 4-5, but not patients with GOSE score 8 from patients with GOSE score 1-7. For UCH-L1 and GFAP to predict unfavorable outcome (GOS score ≤ 3), the area under the receiver operating characteristic curve was 0.727, and 0.723, respectively. Neither UCHL-1 nor GFAP was independently able to predict the outcome when age, worst Glasgow Coma Scale score, pupil reactivity, Injury Severity Score, and Marshall score were added into the multivariate logistic regression model. GFAP and UCH-L1 are significantly associated with outcome, but they do not add predictive power to commonly used prognostic variables in a population of patients with TBI of varying severities. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The long N-terminus of the human monocarboxylate transporter 8 is a target of ubiquitin-dependent proteasomal degradation which regulates protein expression and oligomerization capacity.

    Science.gov (United States)

    Zwanziger, Denise; Schmidt, Mathias; Fischer, Jana; Kleinau, Gunnar; Braun, Doreen; Schweizer, Ulrich; Moeller, Lars Christian; Biebermann, Heike; Fuehrer, Dagmar

    2016-10-15

    Monocarboxylate transporter 8 (MCT8) equilibrates thyroid hormones between the extra- and the intracellular sides. MCT8 exists either with a short or a long N-terminus, but potential functional differences between both variants are yet not known. We, therefore, generated MCT8 constructs which are different in N-terminal length: MCT8(1-613), MCT8(25-613), MCT8(49-613) and MCT8(75-613). The M75G substitution prevents translation of MCT8(75-613) and ensures expression of full-length MCT8 protein. The K56G substitution was made to prevent ubiquitinylation. Cell-surface expression, localization and proteasomal degradation were investigated using C-terminally GFP-tagged MCT8 constructs (HEK293 and MDCK1 cells) and oligomerization capacity was determined using N-terminally HA- and C-terminally FLAG-tagged MCT8 constructs (COS7 cells). MCT8(1-613)-GFP showed a lower protein expression than the shorter MCT8(75-613)-GFP protein. The proteasome inhibitor lactacystin increased MCT8(1-613)-GFP protein amount, suggesting proteasomal degradation of MCT8 with the long N-terminus. Ubiquitin conjugation of MCT8(1-613)-GFP was found by immuno-precipitation. A diminished ubiquitin conjugation caused by K56G substitution resulted in increased MCT8(1-613)-GFP protein expression. Sandwich ELISA was performed to investigate if the bands at higher molecular weight observed in Western blot analysis are due to MCT8 oligomerization, which was indeed shown. Our data imply a role of the long N-terminus of MCT8 as target of ubiquitin-dependent proteasomal degradation affecting MCT8 amount and subsequently oligomerization capacity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Determination of protein-carbonyls and ubiquitin-mediated proteolysis as biomarkers of oxidative-stress in bivalvia and anthozoa

    International Nuclear Information System (INIS)

    Walker, Stephen Thomas

    2002-01-01

    This study describes the investigation of biomarkers of oxidative-stress in the bivalves Mytilus edulis and Dosinia lupinus, together with host and symbiont tissues of the scleractinian Anthozoa Agaricia agaricites. The biomarkers used were assay of total (via spectrophotometry) and individual (via Western blotting; Oxyblot kit) protein-carbonyls (PC=Os) and content of ubiquitin protein conjugates (UPC) via Western blotting (Bivalvia and Anthozoa) and immunohistochemistry (Anthozoa only). Additional assays for Bivalvia were Trolox equivalent antioxidant capacity (TEAC); and post γ-irradiation survival rates. Experimental stressors for Bivalvia were increased seawater temperature, H 2 O 2 and 60 Co γ-radiation (latter two were used in vivo and in vitro). Comparisons of clean and polluted marine sites are included. Stressors used for Anthozoa were increased solar irradiation concomitant with elevated seawater temperature. Results and conclusions were as follows: individual samples showed considerable variation, pooling of samples improved consistency. Controls for both biomarkers had detectable background levels in each phylum, against which relatively small differences were assessed. In M. edulis, no measurable differences in PC=Os could be determined when elevated seawater temperature or dilute H 2 O 2 ( 2 O 2 (30% v/v) produced a small difference. 60 Co γ-radiation produced clearer differences via Oxyblot and spectrophotometric assays. Comparison of four different tissues from the two bivalves found considerable species-specific and tissue-specific differences. Post-irradiation mortality between species was significantly different (<0.001), D. lupinus was more susceptible than M. edulis. TEAC values generally showed a decrease following irradiation (except for digestive gland). UPCs were clearly different between tissues and between species. PC=Os can be detected by DNPH-reactivity/Western blotting assay in host A. agaricites. UPCs can be assayed via Western

  10. Determination of protein-carbonyls and ubiquitin-mediated proteolysis as biomarkers of oxidative-stress in bivalvia and anthozoa

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Stephen Thomas

    2002-07-01

    This study describes the investigation of biomarkers of oxidative-stress in the bivalves Mytilus edulis and Dosinia lupinus, together with host and symbiont tissues of the scleractinian Anthozoa Agaricia agaricites. The biomarkers used were assay of total (via spectrophotometry) and individual (via Western blotting; Oxyblot kit) protein-carbonyls (PC=Os) and content of ubiquitin protein conjugates (UPC) via Western blotting (Bivalvia and Anthozoa) and immunohistochemistry (Anthozoa only). Additional assays for Bivalvia were Trolox equivalent antioxidant capacity (TEAC); and post {gamma}-irradiation survival rates. Experimental stressors for Bivalvia were increased seawater temperature, H{sub 2}O{sub 2} and {sup 60}Co {gamma}-radiation (latter two were used in vivo and in vitro). Comparisons of clean and polluted marine sites are included. Stressors used for Anthozoa were increased solar irradiation concomitant with elevated seawater temperature. Results and conclusions were as follows: individual samples showed considerable variation, pooling of samples improved consistency. Controls for both biomarkers had detectable background levels in each phylum, against which relatively small differences were assessed. In M. edulis, no measurable differences in PC=Os could be determined when elevated seawater temperature or dilute H{sub 2}O{sub 2} (<30% v/v) stressors were used, nor with between-site comparisons. Concentrated H{sub 2}O{sub 2} (30% v/v) produced a small difference. {sup 60}Co {gamma}-radiation produced clearer differences via Oxyblot and spectrophotometric assays. Comparison of four different tissues from the two bivalves found considerable species-specific and tissue-specific differences. Post-irradiation mortality between species was significantly different (<0.001), D. lupinus was more susceptible than M. edulis. TEAC values generally showed a decrease following irradiation (except for digestive gland). UPCs were clearly different between tissues and

  11. A large complement of the predicted Arabidopsis ARM repeat proteins are members of the U-box E3 ubiquitin ligase family.

    Science.gov (United States)

    Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L; Salt, Jennifer N; Goring, Daphne R

    2004-01-01

    The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis.

  12. A Large Complement of the Predicted Arabidopsis ARM Repeat Proteins Are Members of the U-Box E3 Ubiquitin Ligase Family1[w

    Science.gov (United States)

    Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L.; Salt, Jennifer N.; Goring, Daphne R.

    2004-01-01

    The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis. PMID:14657406

  13. High-throughput bioscreening system utilizing high-performance affinity magnetic carriers exhibiting minimal non-specific protein binding

    International Nuclear Information System (INIS)

    Hanyu, Naohiro; Nishio, Kosuke; Hatakeyama, Mamoru; Yasuno, Hiroshi; Tanaka, Toshiyuki; Tada, Masaru; Nakagawa, Takashi; Sandhu, Adarsh; Abe, Masanori; Handa, Hiroshi

    2009-01-01

    For affinity purification of drug target protein we have developed magnetic carriers, narrow in size distribution (184±9 nm), which exhibit minimal non-specific binding of unwanted proteins. The carriers were highly dispersed in aqueous solutions and highly resistant to organic solvents, which enabled immobilization of various hydrophobic chemicals as probes on the carrier surfaces. Utilizing the carriers we have automated the process of separation and purification of the target proteins that had been done by manual operation previously.

  14. Detection of carriers and genetic counseling in duchenne muscular dystrophy by ribosomal protein synthesis.

    Science.gov (United States)

    Ionasescu, V; Zellweger, H; Burmeister, L

    1976-11-01

    The in vitro protein synthesis by polyribosomes extracted from biopsied muscle (vastus lateralis) was studied in 47 known carriers, 87 possible carriers and in 60 normal females. A significant increase in specific activity of monomeric ribosomes, total polyribosomes and collagen synthesis was found in 46 (97.8 per cent) known carriers and 47 (54 per cent) possible carriers of Duchenne muscular dytrophy. The latter showed an increase in ribosomal protein synthesis in 10 (52.6 per cent) of 19 mothers of isolated cases, 31 (53.3 per cent) of 58 sisters, and 6 (60 per cent) of other female relatives. Serum creatine phosphokinase was increased in 30 (63.8 per cent) of 47 known carriers.

  15. Ubiquitin Signaling: Extreme Conservation as a Source of Diversity

    Directory of Open Access Journals (Sweden)

    Alice Zuin

    2014-07-01

    Full Text Available Around 2 × 103–2.5 × 103 million years ago, a unicellular organism with radically novel features, ancestor of all eukaryotes, dwelt the earth. This organism, commonly referred as the last eukaryotic common ancestor, contained in its proteome the same functionally capable ubiquitin molecule that all eukaryotic species contain today. The fact that ubiquitin protein has virtually not changed during all eukaryotic evolution contrasts with the high expansion of the ubiquitin system, constituted by hundreds of enzymes, ubiquitin-interacting proteins, protein complexes, and cofactors. Interestingly, the simplest genetic arrangement encoding a fully-equipped ubiquitin signaling system is constituted by five genes organized in an operon-like cluster, and is found in archaea. How did ubiquitin achieve the status of central element in eukaryotic physiology? We analyze here the features of the ubiquitin molecule and the network that it conforms, and propose notions to explain the complexity of the ubiquitin signaling system in eukaryotic cells.

  16. A ubiquitin carboxyl extension protein secreted from a plant-parasitic nematode Globodera rostochiensis is cleaved in planta to promote plant parasitism.

    Science.gov (United States)

    Chronis, Demosthenis; Chen, Shiyan; Lu, Shunwen; Hewezi, Tarek; Carpenter, Sara C D; Loria, Rosemary; Baum, Thomas J; Wang, Xiaohong

    2013-04-01

    Nematode effector proteins originating from esophageal gland cells play central roles in suppressing plant defenses and in formation of the plant feeding cells that are required for growth and development of cyst nematodes. A gene (GrUBCEP12) encoding a unique ubiquitin carboxyl extension protein (UBCEP) that consists of a signal peptide for secretion, a mono-ubiquitin domain, and a 12 amino acid carboxyl extension protein (CEP12) domain was cloned from the potato cyst nematode Globodera rostochiensis. This GrUBCEP12 gene was expressed exclusively within the nematode's dorsal esophageal gland cell, and was up-regulated in the parasitic second-stage juvenile, correlating with the time when feeding cell formation is initiated. We showed that specific GrUBCEP12 knockdown via RNA interference reduced nematode parasitic success, and that over-expression of the secreted Gr(Δ) (SP) UBCEP12 protein in potato resulted in increased nematode susceptibility, providing direct evidence that this secreted effector is involved in plant parasitism. Using transient expression assays in Nicotiana benthamiana, we found that Gr(Δ) (SP) UBCEP12 is processed into free ubiquitin and a CEP12 peptide (GrCEP12) in planta, and that GrCEP12 suppresses resistance gene-mediated cell death. A target search showed that expression of RPN2a, a gene encoding a subunit of the 26S proteasome, was dramatically suppressed in Gr(Δ) (SP) UBCEP12 but not GrCEP12 over-expression plants when compared with control plants. Together, these results suggest that, when delivered into host plant cells, Gr(Δ) (SP) UBCEP12 becomes two functional units, one acting to suppress plant immunity and the other potentially affecting the host 26S proteasome, to promote feeding cell formation. © 2013 The Authors The Plant Journal © 2013 Blackwell Publishing Ltd.

  17. Downregulation of the proapoptotic protein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin

    Science.gov (United States)

    Matsuura, K; Huang, N-J; Cocce, K; Zhang, L; Kornbluth, S

    2017-01-01

    Evasion of apoptosis allows many cancers to resist chemotherapy. Apoptosis is mediated by the serial activation of caspase family proteins. These proteases are often activated upon the release of cytochrome c from the mitochondria, which is promoted by the proapoptotic Bcl-2 family protein, Bax. This function of Bax is enhanced by the MOAP-1 (modulator of apoptosis protein 1) protein in response to DNA damage. Previously, we reported that MOAP-1 is targeted for ubiquitylation and degradation by the APC/CCdh1 ubiquitin ligase. In this study, we identify the HECT (homologous to the E6-AP carboxyl terminus) family E3 ubiquitin ligase, UBR5, as a novel ubiquitin ligase for MOAP-1. We demonstrate that UBR5 interacts physically with MOAP-1, ubiquitylates MOAP-1 in vitro and inhibits MOAP-1 stability in cultured cells. In addition, we show that Dyrk2 kinase, a reported UBR5 interactor, cooperates with UBR5 in mediating MOAP-1 ubiquitylation. Importantly, we found that cisplatin-resistant ovarian cancer cell lines exhibit lower levels of MOAP-1 accumulation than their sensitive counterparts upon cisplatin treatment, consistent with the previously reported role of MOAP-1 in modulating cisplatin-induced apoptosis. Accordingly, UBR5 knockdown increased MOAP-1 expression, enhanced Bax activation and sensitized otherwise resistant cells to cisplatin-induced apoptosis. Furthermore, UBR5 expression was higher in ovarian cancers from cisplatin-resistant patients than from cisplatin-responsive patients. These results show that UBR5 downregulates proapoptotic MOAP-1 and suggest that UBR5 can confer cisplatin resistance in ovarian cancer. Thus UBR5 may be an attractive therapeutic target for ovarian cancer treatment. PMID:27721409

  18. The tomato DWD motif-containing protein DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses

    International Nuclear Information System (INIS)

    Miao, Min; Zhu, Yunye; Qiao, Maiju; Tang, Xiaofeng; Zhao, Wei; Xiao, Fangming; Liu, Yongsheng

    2014-01-01

    Highlights: • We identify DDI1 as a DAMAGED DNA BINDING PROTEIN1 (DDB1)-interacting protein. • DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase in the nucleus. • DDI1 plays a positive role in regulating abiotic stress response in tomato. - Abstract: CULLIN4(CUL4)–DAMAGED DNA BINDING PROTEIN1 (DDB1)-based ubiquitin ligase plays significant roles in multiple physiological processes via ubiquitination-mediated degradation of relevant target proteins. The DDB1–CUL4-associated factor (DCAF) acts as substrate receptor in the CUL4–DDB1 ubiquitin ligase complex and determines substrate specificity. In this study, we identified a tomato (Solanum lycopersicum) DDB1-interacting (DDI1) protein as a DCAF protein involved in response to abiotic stresses, including UV radiation, high salinity and osmotic stress. Co-immunoprecipitation and bimolecular fluorescence complementation assay indicated that DDI1 associates with CUL4–DDB1 in the nucleus. Quantitative RT-PCR analysis indicated the DDI1 gene is induced by salt, mannitol and UV-C treatment. Moreover, transgenic tomato plants with overexpression or knockdown of the DDI1 gene exhibited enhanced or attenuated tolerance to salt/mannitol/UV-C, respectively. Thus, our data suggest that DDI1 functions as a substrate receptor of the CUL4–DDB1 ubiquitin ligase, positively regulating abiotic stress response in tomato

  19. The tomato DWD motif-containing protein DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Min [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339 (United States); Zhu, Yunye [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Qiao, Maiju [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); Tang, Xiaofeng [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Zhao, Wei [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Xiao, Fangming [Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339 (United States); Liu, Yongsheng, E-mail: liuyongsheng1122@hfut.edu.cn [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China)

    2014-08-08

    Highlights: • We identify DDI1 as a DAMAGED DNA BINDING PROTEIN1 (DDB1)-interacting protein. • DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase in the nucleus. • DDI1 plays a positive role in regulating abiotic stress response in tomato. - Abstract: CULLIN4(CUL4)–DAMAGED DNA BINDING PROTEIN1 (DDB1)-based ubiquitin ligase plays significant roles in multiple physiological processes via ubiquitination-mediated degradation of relevant target proteins. The DDB1–CUL4-associated factor (DCAF) acts as substrate receptor in the CUL4–DDB1 ubiquitin ligase complex and determines substrate specificity. In this study, we identified a tomato (Solanum lycopersicum) DDB1-interacting (DDI1) protein as a DCAF protein involved in response to abiotic stresses, including UV radiation, high salinity and osmotic stress. Co-immunoprecipitation and bimolecular fluorescence complementation assay indicated that DDI1 associates with CUL4–DDB1 in the nucleus. Quantitative RT-PCR analysis indicated the DDI1 gene is induced by salt, mannitol and UV-C treatment. Moreover, transgenic tomato plants with overexpression or knockdown of the DDI1 gene exhibited enhanced or attenuated tolerance to salt/mannitol/UV-C, respectively. Thus, our data suggest that DDI1 functions as a substrate receptor of the CUL4–DDB1 ubiquitin ligase, positively regulating abiotic stress response in tomato.

  20. Ubiquitination in Periodontal Disease: A Review.

    Science.gov (United States)

    Tsuchida, Sachio; Satoh, Mamoru; Takiwaki, Masaki; Nomura, Fumio

    2017-07-10

    Periodontal disease (periodontitis) is a chronic inflammatory condition initiated by microbial infection that leads to gingival tissue destruction and alveolar bone resorption. The periodontal tissue's response to dental plaque is characterized by the accumulation of polymorphonuclear leukocytes, macrophages, and lymphocytes, all of which release inflammatory mediators and cytokines to orchestrate the immunopathogenesis of periodontal disease. Ubiquitination is achieved by a mechanism that involves a number of factors, including an ubiquitin-activating enzyme, ubiquitin-conjugating enzyme, and ubiquitin-protein ligase. Ubiquitination is a post-translational modification restricted to eukaryotes that are involved in essential host processes. The ubiquitin system has been implicated in the immune response, development, and programmed cell death. Increasing numbers of recent reports have provided evidence that many approaches are delivering promising reports for discovering the relationship between ubiquitination and periodontal disease. The scope of this review was to investigate recent progress in the discovery of ubiquitinated protein in diseased periodontium and to discuss the ubiquitination process in periodontal diseases.

  1. Time-of-day- and light-dependent expression of ubiquitin protein ligase E3 component N-recognin 4 (UBR4 in the suprachiasmatic nucleus circadian clock.

    Directory of Open Access Journals (Sweden)

    Harrod H Ling

    Full Text Available Circadian rhythms of behavior and physiology are driven by the biological clock that operates endogenously but can also be entrained to the light-dark cycle of the environment. In mammals, the master circadian pacemaker is located in the suprachiasmatic nucleus (SCN, which is composed of individual cellular oscillators that are driven by a set of core clock genes interacting in transcriptional/translational feedback loops. Light signals can trigger molecular events in the SCN that ultimately impact on the phase of expression of core clock genes to reset the master pacemaker. While transcriptional regulation has received much attention in the field of circadian biology in the past, other mechanisms including targeted protein degradation likely contribute to the clock timing and entrainment process. In the present study, proteome-wide screens of the murine SCN led to the identification of ubiquitin protein ligase E3 component N-recognin 4 (UBR4, a novel E3 ubiquitin ligase component of the N-end rule pathway, as a time-of-day-dependent and light-inducible protein. The spatial and temporal expression pattern of UBR4 in the SCN was subsequently characterized by immunofluorescence microscopy. UBR4 is expressed across the entire rostrocaudal extent of the SCN in a time-of-day-dependent fashion. UBR4 is localized exclusively to arginine vasopressin (AVP-expressing neurons of the SCN shell. Upon photic stimulation in the early subjective night, the number of UBR4-expressing cells within the SCN increases. This study is the first to identify a novel E3 ubiquitin ligase component, UBR4, in the murine SCN and to implicate the N-end rule degradation pathway as a potential player in regulating core clock mechanisms and photic entrainment.

  2. Ubiquitin-dependent system controls radiation induced apoptosis

    International Nuclear Information System (INIS)

    Delic, J.; Magdelenat, H.; Glaisner, S.; Magdelenat, H.; Maciorowski, Z.

    1997-01-01

    The selective proteolytic pathway, dependent upon 'N-end rule' protein recognition/ubiquitination and on the subsequent proteasome dependent processing of ubiquitin conjugates, operates in apoptosis induced by γ-irradiation. The proteasome inhibitor peptide aldehyde, MG132, efficiently induced apoptosis and was also able (at doses lower than those required for apoptosis induction) to potentiate apoptosis induced by DNA damage. Its specificity is suggested by the induction of the ubiquitin (UbB and UbC) and E1 (ubiquitin activating enzyme) genes and by an altered ubiquitination pattern. More selectively, a di-peptide competitor of the 'N-end rule' of ubiquitin dependent protein processing inhibited radiation induced apoptosis. This inhibition is also followed by an altered ubiquitination pattern and by activation of Poly (ADP-ribose) polymerase (PARP). These data strongly suggest that early apoptosis radiation induced events are controlled by ubiquitin-dependent proteolytic processing. (author)

  3. ρ0 Cells Feature De-Ubiquitination of SLC Transporters and Increased Levels and Fluxes of Amino Acids

    Directory of Open Access Journals (Sweden)

    André Bordinassi Medina

    2017-04-01

    Full Text Available Solute carrier (SLC transporters are a diverse group of membrane transporter proteins that regulate the cellular flux and distribution of endogenous and xenobiotic compounds. Post-translational modifications (PTMs, such as ubiquitination, have recently emerged as one of the major regulatory mechanisms in protein function and localization. Previously, we showed that SLC amino acid transporters were on average 6-fold de-ubiquitinated and increased amino acid levels were detected in ρ0 cells (lacking mitochondrial DNA, mtDNA compared to parental cells. Here, we elucidated the altered functionality of SLC transporters and their dynamic ubiquitination status by measuring the uptake of several isotopically labeled amino acids in both human osteosarcoma 143B.TK- and ρ0 cells. Our pulse chase analysis indicated that de-ubiquitinated amino acid transporters in ρ0 cells were accompanied by an increased transport rate, which leads to higher levels of amino acids in the cell. Finding SLC transport enhancers is an aim of the pharmaceutical industry in order to compensate for loss of function mutations in these genes. Thus, the ubiquitination status of SLC transporters could be an indicator for their functionality, but evidence for a direct connection between de-ubiquitination and transporter activity has to be further elucidated.

  4. SCF Ubiquitin Ligase F-box Protein Fbx15 Controls Nuclear Co-repressor Localization, Stress Response and Virulence of the Human Pathogen Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Bastian Jöhnk

    2016-09-01

    Full Text Available F-box proteins share the F-box domain to connect substrates of E3 SCF ubiquitin RING ligases through the adaptor Skp1/A to Cul1/A scaffolds. F-box protein Fbx15 is part of the general stress response of the human pathogenic mold Aspergillus fumigatus. Oxidative stress induces a transient peak of fbx15 expression, resulting in 3x elevated Fbx15 protein levels. During non-stress conditions Fbx15 is phosphorylated and F-box mediated interaction with SkpA preferentially happens in smaller subpopulations in the cytoplasm. The F-box of Fbx15 is required for an appropriate oxidative stress response, which results in rapid dephosphorylation of Fbx15 and a shift of the cellular interaction with SkpA to the nucleus. Fbx15 binds SsnF/Ssn6 as part of the RcoA/Tup1-SsnF/Ssn6 co-repressor and is required for its correct nuclear localization. Dephosphorylated Fbx15 prevents SsnF/Ssn6 nuclear localization and results in the derepression of gliotoxin gene expression. fbx15 deletion mutants are unable to infect immunocompromised mice in a model for invasive aspergillosis. Fbx15 has a novel dual molecular function by controlling transcriptional repression and being part of SCF E3 ubiquitin ligases, which is essential for stress response, gliotoxin production and virulence in the opportunistic human pathogen A. fumigatus.

  5. Principles of ubiquitin and SUMO modifications in DNA repair

    NARCIS (Netherlands)

    Bergink, Steven; Jentsch, Stefan

    2009-01-01

    With the discovery in the late 1980s that the DNA-repair gene RAD6 encodes a ubiquitin-conjugating enzyme, it became clear that protein modification by ubiquitin conjugation has a much broader significance than had previously been assumed. Now, two decades later, ubiquitin and its cousin SUMO are

  6. The ubiquitin proteasome system in glia and its role in neurodegenerative diseases

    NARCIS (Netherlands)

    Jansen, Anne H. P.; Reits, Eric A. J.; Hol, Elly M.

    2014-01-01

    The ubiquitin proteasome system (UPS) is crucial for intracellular protein homeostasis and for degradation of aberrant and damaged proteins. The accumulation of ubiquitinated proteins is a hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's, Parkinson's,

  7. Adaptor Protein Complex-2 (AP-2) and Epsin-1 Mediate Protease-activated Receptor-1 Internalization via Phosphorylation- and Ubiquitination-dependent Sorting Signals*

    Science.gov (United States)

    Chen, Buxin; Dores, Michael R.; Grimsey, Neil; Canto, Isabel; Barker, Breann L.; Trejo, JoAnn

    2011-01-01

    Signaling by protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is regulated by desensitization and internalization. PAR1 desensitization is mediated by β-arrestins, like most classic GPCRs. In contrast, internalization of PAR1 occurs through a clathrin- and dynamin-dependent pathway independent of β-arrestins. PAR1 displays two modes of internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), where the μ2-adaptin subunit binds directly to a tyrosine-based motif localized within the receptor C-tail domain. However, AP-2 depletion only partially inhibits agonist-induced internalization of PAR1, suggesting a function for other clathrin adaptors in this process. Here, we now report that AP-2 and epsin-1 are both critical mediators of agonist-stimulated PAR1 internalization. We show that ubiquitination of PAR1 and the ubiquitin-interacting motifs of epsin-1 are required for epsin-1-dependent internalization of activated PAR1. In addition, activation of PAR1 promotes epsin-1 de-ubiquitination, which may increase its endocytic adaptor activity to facilitate receptor internalization. AP-2 also regulates activated PAR1 internalization via recognition of distal C-tail phosphorylation sites rather than the canonical tyrosine-based motif. Thus, AP-2 and epsin-1 are both required to promote efficient internalization of activated PAR1 and recognize discrete receptor sorting signals. This study defines a new pathway for internalization of mammalian GPCRs. PMID:21965661

  8. Cooperativity of the SUMO and Ubiquitin Pathways in Genome Stability

    Directory of Open Access Journals (Sweden)

    Minghua Nie

    2016-02-01

    Full Text Available Covalent attachment of ubiquitin (Ub or SUMO to DNA repair proteins plays critical roles in maintaining genome stability. These structurally related polypeptides can be viewed as distinct road signs, with each being read by specific protein interaction motifs. Therefore, via their interactions with selective readers in the proteome, ubiquitin and SUMO can elicit distinct cellular responses, such as directing DNA lesions into different repair pathways. On the other hand, through the action of the SUMO-targeted ubiquitin ligase (STUbL family proteins, ubiquitin and SUMO can cooperate in the form of a hybrid signal. These mixed SUMO-ubiquitin chains recruit “effector” proteins such as the AAA+ ATPase Cdc48/p97-Ufd1-Npl4 complex that contain both ubiquitin and SUMO interaction motifs. This review will summarize recent key findings on collaborative and distinct roles that ubiquitin and SUMO play in orchestrating DNA damage responses.

  9. Reprogramming Acyl Carrier Protein Interactions of an Acyl-CoA Promiscuous trans-Acyltransferase

    DEFF Research Database (Denmark)

    Ye, Zhixia; Musiol-Kroll, Ewa Maria; Weber, Tilmann

    2014-01-01

    Protein interactions between acyl carrier proteins (ACPs) and trans-acting acyltransferase domains (trans-ATs) are critical for regioselective extender unit installation by many polyketide synthases, yet little is known regarding the specificity of these interactions, particularly for trans-ATs w...

  10. Copper carrier protein in copper toxic sheep liver

    Energy Technology Data Exchange (ETDEWEB)

    Harris, A L; Dean, P D.G.

    1973-01-01

    The livers of copper-toxic sheep have been analyzed by gel electrophoresis followed by staining the gels for copper with diethyldithiocarbamate and for protein with amido schwartz. These gels were compared with similar gels obtained from the livers of normal and copper-deficient animals. The copper-toxic livers contained an extra protein band which possessed relatively weakly bound copper. Possible origins of this protein are discussed. 8 references, 1 figure, 2 tables.

  11. Regulation of nucleotide excision repair through ubiquitination

    Institute of Scientific and Technical Information of China (English)

    Jia Li; Audesh Bhat; Wei Xiao

    2011-01-01

    Nucleotide excision repair (NER) is the most versatile DNA-repair pathway in all organisms.While bacteria require only three proteins to complete the incision step of NER,eukaryotes employ about 30 proteins to complete the same step.Here we summarize recent studies demonstrating that ubiquitination,a post-translational modification,plays critical roles in regulating the NER activity either dependent on or independent of ubiquitin-proteolysis.Several NER components have been shown as targets of ubiquitination while others are actively involved in the ubiquitination process.We argue through this analysis that ubiquitination serves to coordinate various steps of NER and meanwhile connect NER with other related pathways to achieve the efficient global DNA-damage response.

  12. Hepatitis C Virus Proteins Interact with the Endosomal Sorting Complex Required for Transport (ESCRT) Machinery via Ubiquitination To Facilitate Viral Envelopment.

    Science.gov (United States)

    Barouch-Bentov, Rina; Neveu, Gregory; Xiao, Fei; Beer, Melanie; Bekerman, Elena; Schor, Stanford; Campbell, Joseph; Boonyaratanakornkit, Jim; Lindenbach, Brett; Lu, Albert; Jacob, Yves; Einav, Shirit

    2016-11-01

    Enveloped viruses commonly utilize late-domain motifs, sometimes cooperatively with ubiquitin, to hijack the endosomal sorting complex required for transport (ESCRT) machinery for budding at the plasma membrane. However, the mechanisms underlying budding of viruses lacking defined late-domain motifs and budding into intracellular compartments are poorly characterized. Here, we map a network of hepatitis C virus (HCV) protein interactions with the ESCRT machinery using a mammalian-cell-based protein interaction screen and reveal nine novel interactions. We identify HRS (hepatocyte growth factor-regulated tyrosine kinase substrate), an ESCRT-0 complex component, as an important entry point for HCV into the ESCRT pathway and validate its interactions with the HCV nonstructural (NS) proteins NS2 and NS5A in HCV-infected cells. Infectivity assays indicate that HRS is an important factor for efficient HCV assembly. Specifically, by integrating capsid oligomerization assays, biophysical analysis of intracellular viral particles by continuous gradient centrifugations, proteolytic digestion protection, and RNase digestion protection assays, we show that HCV co-opts HRS to mediate a late assembly step, namely, envelopment. In the absence of defined late-domain motifs, K63-linked polyubiquitinated lysine residues in the HCV NS2 protein bind the HRS ubiquitin-interacting motif to facilitate assembly. Finally, ESCRT-III and VPS/VTA1 components are also recruited by HCV proteins to mediate assembly. These data uncover involvement of ESCRT proteins in intracellular budding of a virus lacking defined late-domain motifs and a novel mechanism by which HCV gains entry into the ESCRT network, with potential implications for other viruses. Viruses commonly bud at the plasma membrane by recruiting the host ESCRT machinery via conserved motifs termed late domains. The mechanism by which some viruses, such as HCV, bud intracellularly is, however, poorly characterized. Moreover, whether

  13. Sperm surface protein AQ1 spermadhesin and ubiquitin-proteasome pathway in porcine anti-polyspermy defense

    Czech Academy of Sciences Publication Activity Database

    Jonáková, Věra; Postlerová, Pavla; Young-Joo, Y.; Sutovsky, P.; Pěknicová, Jana

    2012-01-01

    Roč. 67, Issue Supplement s1 (2012), s. 8-9 ISSN 1046-7408. [13th International Symposium for Immunology of reproduction "From the roots to the tops of Reproductive Immunology". 22.06.2012-24.06.2012, Varna] R&D Projects: GA ČR(CZ) GA523/09/1793; GA ČR(CZ) GAP503/12/1834 Institutional research plan: CEZ:AV0Z50520701 Keywords : spermadhesin * ubiquitin * proteasome Subject RIV: CE - Biochemistry

  14. Hepatitis C Virus Proteins Interact with the Endosomal Sorting Complex Required for Transport (ESCRT Machinery via Ubiquitination To Facilitate Viral Envelopment

    Directory of Open Access Journals (Sweden)

    Rina Barouch-Bentov

    2016-11-01

    Full Text Available Enveloped viruses commonly utilize late-domain motifs, sometimes cooperatively with ubiquitin, to hijack the endosomal sorting complex required for transport (ESCRT machinery for budding at the plasma membrane. However, the mechanisms underlying budding of viruses lacking defined late-domain motifs and budding into intracellular compartments are poorly characterized. Here, we map a network of hepatitis C virus (HCV protein interactions with the ESCRT machinery using a mammalian-cell-based protein interaction screen and reveal nine novel interactions. We identify HRS (hepatocyte growth factor-regulated tyrosine kinase substrate, an ESCRT-0 complex component, as an important entry point for HCV into the ESCRT pathway and validate its interactions with the HCV nonstructural (NS proteins NS2 and NS5A in HCV-infected cells. Infectivity assays indicate that HRS is an important factor for efficient HCV assembly. Specifically, by integrating capsid oligomerization assays, biophysical analysis of intracellular viral particles by continuous gradient centrifugations, proteolytic digestion protection, and RNase digestion protection assays, we show that HCV co-opts HRS to mediate a late assembly step, namely, envelopment. In the absence of defined late-domain motifs, K63-linked polyubiquitinated lysine residues in the HCV NS2 protein bind the HRS ubiquitin-interacting motif to facilitate assembly. Finally, ESCRT-III and VPS/VTA1 components are also recruited by HCV proteins to mediate assembly. These data uncover involvement of ESCRT proteins in intracellular budding of a virus lacking defined late-domain motifs and a novel mechanism by which HCV gains entry into the ESCRT network, with potential implications for other viruses.

  15. Transmembrane and ubiquitin-like domain-containing protein 1 (Tmub1/HOPS facilitates surface expression of GluR2-containing AMPA receptors.

    Directory of Open Access Journals (Sweden)

    Hyunjeong Yang

    Full Text Available Some ubiquitin-like (UBL domain-containing proteins are known to play roles in receptor trafficking. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs undergo constitutive cycling between the intracellular compartment and the cell surface in the central nervous system. However, the function of UBL domain-containing proteins in the recycling of the AMPARs to the synaptic surface has not yet been reported.Here, we report that the Transmembrane and ubiquitin-like domain-containing 1 (Tmub1 protein, formerly known as the Hepatocyte Odd Protein Shuttling (HOPS protein, which is abundantly expressed in the brain and which exists in a synaptosomal membrane fraction, facilitates the recycling of the AMPAR subunit GluR2 to the cell surface. Neurons transfected with Tmub1/HOPS-RNAi plasmids showed a significant reduction in the AMPAR current as compared to their control neurons. Consistently, the synaptic surface expression of GluR2, but not of GluR1, was significantly decreased in the neurons transfected with the Tmub1/HOPS-RNAi and increased in the neurons overexpressing EGFP-Tmub1/HOPS. The altered surface expression of GluR2 was speculated to be due to the altered surface-recycling of the internalized GluR2 in our recycling assay. Eventually, we found that GluR2 and glutamate receptor interacting protein (GRIP were coimmunoprecipitated by the anti-Tmub1/HOPS antibody from the mouse brain. Taken together, these observations show that the Tmub1/HOPS plays a role in regulating basal synaptic transmission; it contributes to maintain the synaptic surface number of the GluR2-containing AMPARs by facilitating the recycling of GluR2 to the plasma membrane.

  16. Single nucleotide polymorphism analysis of ubiquitin extension protein genes (ubq) of gossypium arboreum and gossypium herbaceum in comparison with arabidopsis thaliana

    International Nuclear Information System (INIS)

    Shaheen, T.; Zafar, Y.; Rahman, M.

    2014-01-01

    Single nucleotide polymorphism analysis is an expedient way to study polymorphisms at genomic level. In the present study we have explored Ubiquitin extension protein gene of G. arboreum (A2) and G. herbaceum (A1) of cotton which is a multiple copy gene. We have found SNPs at 16 positions in 200 bp region within A genome of cotton indicating frequency of SNPs 1/13 bp. Both sequences from cotton have shown maximum similarity with UBQ5 and UBQ6 of Arabidopsis thaliana. Sequence obtained from G. arboreum has shown SNPs at 28 positions in comparison with each UBQ5 and UBQ6 of Arabidopsis thaliana while sequence obtained from G. herbaceum has shown SNPs at 31 positions in comparison with each UBQ5 and UBQ6 of Arabidopsis thaliana. In conclusion although during pace of evolution ubiquitin extension protein genes of both A genome species have got some mutations from nature but still most of their sequence is similar. Single nucleotide polymorphism study can prove a vital tool to identify gene type in case of Multicopy genes. (author)

  17. Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Warangkana Lohcharoenkal

    2014-01-01

    Full Text Available Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.

  18. Protein nanoparticles as drug delivery carriers for cancer therapy.

    Science.gov (United States)

    Lohcharoenkal, Warangkana; Wang, Liying; Chen, Yi Charlie; Rojanasakul, Yon

    2014-01-01

    Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.

  19. Ubiquitin ligase RNF123 mediates degradation of heterochromatin protein 1α and β in lamin A/C knock-down cells.

    Directory of Open Access Journals (Sweden)

    Pankaj Chaturvedi

    Full Text Available The nuclear lamina is a key determinant of nuclear architecture, integrity and functionality in metazoan nuclei. Mutations in the human lamin A gene lead to highly debilitating genetic diseases termed as laminopathies. Expression of lamin A mutations or reduction in levels of endogenous A-type lamins leads to nuclear defects such as abnormal nuclear morphology and disorganization of heterochromatin. This is accompanied by increased proteasomal degradation of certain nuclear proteins such as emerin, nesprin-1α, retinoblastoma protein and heterochromatin protein 1 (HP1. However, the pathways of proteasomal degradation have not been well characterized.To investigate the mechanisms underlying the degradation of HP1 proteins upon lamin misexpression, we analyzed the effects of shRNA-mediated knock-down of lamins A and C in HeLa cells. Cells with reduced levels of expression of lamins A and C exhibited proteasomal degradation of HP1α and HP1β but not HP1γ. Since specific ubiquitin ligases are upregulated in lamin A/C knock-down cells, further studies were carried out with one of these ligases, RNF123, which has a putative HP1-binding motif. Ectopic expression of GFP-tagged RNF123 directly resulted in degradation of HP1α and HP1β. Mutational analysis showed that the canonical HP1-binding pentapeptide motif PXVXL in the N-terminus of RNF123 was required for binding to HP1 proteins and targeting them for degradation. The role of endogenous RNF123 in the degradation of HP1 isoforms was confirmed by RNF123 RNAi experiments. Furthermore, FRAP analysis suggested that HP1β was displaced from chromatin in laminopathic cells.Our data support a role for RNF123 ubiquitin ligase in the degradation of HP1α and HP1β upon lamin A/C knock-down. Hence lamin misexpression can cause degradation of mislocalized proteins involved in key nuclear processes by induction of specific components of the ubiquitin-proteasome system.

  20. Updates on smart polymeric carrier systems for protein delivery.

    Science.gov (United States)

    El-Sherbiny, Ibrahim; Khalil, Islam; Ali, Isra; Yacoub, Magdi

    2017-10-01

    Smart materials are those materials that are responsive to chemical (organic molecules, chemical agents or specific agents), biochemical (protein, enzymes, growth factors, substrates or ligands), physical (electric field, magnetic field, temperature, pH, ionic strength or radiation) or mechanical (pressure or mechanical stress) signals. These responsive materials interact with the stimuli by changing their properties or conformational structures in a predictable manner. Recently, smart polymers have been utilized in various biomedical applications. Particularly, they have been used as a platform to synthesize stimuli-responsive systems that could deliver therapeutics to a specific site for a specific period with minimal adverse effects. For instance, stimuli-responsive polymers-based systems have been recently reported to deliver different bioactive molecules such as carbohydrates (heparin), chemotherapeutic agents (doxorubicin), small organic molecules (anti-coagulants), nucleic acids (siRNA), and proteins (growth factors and hormones). Protein therapeutics played a fundamental role in treatment of various chronic and some autoimmune diseases. For instance insulin has been used in treatment of diabetes. However, being a protein in nature, insulin delivery is limited by its instability, short half-life, and easy denaturation when administered orally. To overcome these challenges, and as highlighted in this review article, much research efforts have been recently devoted to design and develop convenient smart controlled nanosystems for protein therapeutics delivery.

  1. Mitochondrial carrier protein biogenesis: role of the chaperones Hsc70 and Hsp90.

    Science.gov (United States)

    Zara, Vincenzo; Ferramosca, Alessandra; Robitaille-Foucher, Philippe; Palmieri, Ferdinando; Young, Jason C

    2009-04-15

    Metabolite carrier proteins of the mitochondrial inner membrane share homology in their transmembrane domains, which also carries their targeting information. In addition, some carriers have cleavable presequences which are not essential for targeting, but have some other function before import. The cytosolic chaperones Hsc70 (heat-shock cognate 70) and Hsp90 (heat-shock protein 90) complex with carrier precursors and interact specifically with the Tom (translocase of the mitochondrial outer membrane) 70 import receptor to promote import. We analysed how the presequences of the PiC (phosphate carrier) and CIC (citrate carrier) relate to the mechanisms of chaperone-mediated import. Deletion of the PiC presequence reduced the efficiency of import but, notably, not by causing aggregation. Instead, binding of the protein to Hsc70 was reduced, as well as the dependence on Hsc70 for import. Hsp90 binding and function in import was not greatly affected, but it could not entirely compensate for the lack of Hsc70 interaction. Deletion of the presequence from CIC was shown to cause its aggregation, but had little effect on the contribution to import of either Hsc70 or Hsp90. The presequence of PiC, but not that of CIC, conferred Hsc70 binding to dihydrofolate reductase fusion proteins. In comparison, OGC (oxoglutarate carrier) lacks a presequence and was more soluble, though it is still dependent on both Hsc70 and Hsp90. We propose that carrier presequences evolved to improve targeting competence by different mechanisms, depending on physical properties of the precursors in the cytosolic targeting environment.

  2. Development of a stealth carrier system for structural studies of membrane proteins in solution

    DEFF Research Database (Denmark)

    Maric, Selma

    Structural studies of membrane proteins remain a great experimental challenge. Functional reconstitution into artificial carriers that mimic the native bilayer environment allows for the handling of membrane proteins in solution and enables the use of small-angle scattering techniques for fast...... and reliable structural analysis. The difficulty with this approach is that the carrier discs contribute to the measured scattering intensity in a highly non-trivial fashion, making subsequent data analysis challenging. This thesis presents the development of a specifically deuterated, stealth nanodisc system...

  3. Pollen S-locus F-box proteins of Petunia involved in S-RNase-based self-incompatibility are themselves subject to ubiquitin-mediated degradation.

    Science.gov (United States)

    Sun, Penglin; Li, Shu; Lu, Dihong; Williams, Justin S; Kao, Teh-Hui

    2015-07-01

    Many flowering plants show self-incompatibility, an intra-specific reproductive barrier by which pistils reject self-pollen to prevent inbreeding and accept non-self pollen to promote out-crossing. In Petunia, the polymorphic S-locus determines self/non-self recognition. The locus contains a gene encoding an S-RNase, which controls pistil specificity, and multiple S-locus F-box (SLF) genes that collectively control pollen specificity. Each SLF is a component of an SCF (Skp1/Cullin/F-box) complex that is responsible for mediating degradation of non-self S-RNase(s), with which the SLF interacts, via the ubiquitin-26S proteasome pathway. A complete set of SLFs is required to detoxify all non-self S-RNases to allow cross-compatible pollination. Here, we show that SLF1 of Petunia inflata is itself subject to degradation via the ubiquitin-26S proteasome pathway, and identify an 18 amino acid sequence in the C-terminal region of S2 -SLF1 (SLF1 of S2 haplotype) that contains a degradation motif. Seven of the 18 amino acids are conserved among all 17 SLF proteins of S2 haplotype and S3 haplotype involved in pollen specificity, suggesting that all SLF proteins are probably subject to similar degradation. Deleting the 18 amino acid sequence from S2 -SLF1 stabilized the protein but abolished its function in self-incompatibility, suggesting that dynamic cycling of SLF proteins is an integral part of their function in self-incompatibility. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  4. Profiling of Ubiquitination Pathway Genes in Peripheral Cells from Patients with Frontotemporal Dementia due to C9ORF72 and GRN Mutations

    Directory of Open Access Journals (Sweden)

    Maria Serpente

    2015-01-01

    Full Text Available We analysed the expression levels of 84 key genes involved in the regulated degradation of cellular protein by the ubiquitin-proteasome system in peripheral cells from patients with frontotemporal dementia (FTD due to C9ORF72 and GRN mutations, as compared with sporadic FTD and age-matched controls. A SABiosciences PCR array was used to investigate the transcription profile in a discovery population consisting of six patients each in C9ORF72, GRN, sporadic FTD and age-matched control groups. A generalized down-regulation of gene expression compared with controls was observed in C9ORF72 expansion carriers and sporadic FTD patients. In particular, in both groups, four genes, UBE2I, UBE2Q1, UBE2E1 and UBE2N, were down-regulated at a statistically significant (p < 0.05 level. All of them encode for members of the E2 ubiquitin-conjugating enzyme family. In GRN mutation carriers, no statistically significant deregulation of ubiquitination pathway genes was observed, except for the UBE2Z gene, which displays E2 ubiquitin conjugating enzyme activity, and was found to be statistically significant up-regulated (p = 0.006. These preliminary results suggest that the proteasomal degradation pathway plays a role in the pathogenesis of FTD associated with TDP-43 pathology, although different proteins are altered in carriers of GRN mutations as compared with carriers of the C9ORF72 expansion.

  5. Structural and bioinformatic characterization of an Acinetobacter baumannii type II carrier protein

    International Nuclear Information System (INIS)

    Allen, C. Leigh; Gulick, Andrew M.

    2014-01-01

    The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA-003406–ABBFA-003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented. Microorganisms produce a variety of natural products via secondary metabolic biosynthetic pathways. Two of these types of synthetic systems, the nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), use large modular enzymes containing multiple catalytic domains in a single protein. These multidomain enzymes use an integrated carrier protein domain to transport the growing, covalently bound natural product to the neighboring catalytic domains for each step in the synthesis. Interestingly, some PKS and NRPS clusters contain free-standing domains that interact intermolecularly with other proteins. Being expressed outside the architecture of a multi-domain protein, these so-called type II proteins present challenges to understand the precise role they play. Additional structures of individual and multi-domain components of the NRPS enzymes will therefore provide a better understanding of the features that govern the domain interactions in these interesting enzyme systems. The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA-003406–ABBFA-003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented here. Comparison with the closest structural homologs of other carrier proteins identifies the requirements for a conserved glycine residue and additional important sequence and structural requirements within the regions that interact with partner proteins

  6. Structural and bioinformatic characterization of an Acinetobacter baumannii type II carrier protein

    Energy Technology Data Exchange (ETDEWEB)

    Allen, C. Leigh; Gulick, Andrew M., E-mail: gulick@hwi.buffalo.edu [University at Buffalo, Buffalo, NY 14203 (United States)

    2014-06-01

    The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA-003406–ABBFA-003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented. Microorganisms produce a variety of natural products via secondary metabolic biosynthetic pathways. Two of these types of synthetic systems, the nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), use large modular enzymes containing multiple catalytic domains in a single protein. These multidomain enzymes use an integrated carrier protein domain to transport the growing, covalently bound natural product to the neighboring catalytic domains for each step in the synthesis. Interestingly, some PKS and NRPS clusters contain free-standing domains that interact intermolecularly with other proteins. Being expressed outside the architecture of a multi-domain protein, these so-called type II proteins present challenges to understand the precise role they play. Additional structures of individual and multi-domain components of the NRPS enzymes will therefore provide a better understanding of the features that govern the domain interactions in these interesting enzyme systems. The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA-003406–ABBFA-003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented here. Comparison with the closest structural homologs of other carrier proteins identifies the requirements for a conserved glycine residue and additional important sequence and structural requirements within the regions that interact with partner proteins.

  7. Studies on the relation between thyroid hormones and their carrier proteines

    International Nuclear Information System (INIS)

    Doepp, M.; Medau, H.J.; Grebe, S.F.

    1976-01-01

    This study represents a confrontation between TBG, TBPA and albumen on one hand, and T 4 , T 3 , RT 3 U, total-balance of free thyroid hormones and basal-TSH on the other. Women receiving contraceptive drugs show increased values for all parameters, pat, suffering from chronic hepatitis increased TBG among the carrier proteins, nephrotic pat, decreased TBG combined with increased TBPA. It is concluded that alterations of carrier proteins are concordant when initialized exogenously whereas discordant when caused by endogenous diseases. This implies different influences on the feedback mechanism. The relation between ST 3 U and TBG is displayed with good correlation. The signifiance of TBPA as T 4 -carrier is stressed to be similar to TBG. Thus direct measurement of TBG is not advantageous for clinical routine work. (orig.) [de

  8. MTOR signaling and ubiquitin-proteosome gene expression in the preservation of fat free mass following high protein, calorie restricted weight loss

    Directory of Open Access Journals (Sweden)

    McIver Cassandra M

    2012-09-01

    Full Text Available Abstract Caloric restriction is one of the most efficient ways to promote weight loss and is known to activate protective metabolic pathways. Frequently reported with weight loss is the undesirable consequence of fat free (lean muscle mass loss. Weight loss diets with increased dietary protein intake are popular and may provide additional benefits through preservation of fat free mass compared to a standard protein, high carbohydrate diet. However, the precise mechanism by which a high protein diet may mitigate dietary weight loss induced reductions in fat free mass has not been fully elucidated. Maintenance of fat free mass is dependent upon nutrient stimulation of protein synthesis via the mTOR complex, although during caloric restriction a decrease (atrophy in skeletal muscle may be driven by a homeostatic shift favouring protein catabolism. This review evaluates the relationship between the macronutrient composition of calorie restricted diets and weight loss using metabolic indicators. Specifically we evaluate the effect of increased dietary protein intake and caloric restricted diets on gene expression in skeletal muscle, particularly focusing on biosynthesis, degradation and the expression of genes in the ubiquitin-proteosome (UPP and mTOR signaling pathways, including MuRF-1, MAFbx/atrogin-1, mTORC1, and S6K1.

  9. Riboflavin carrier protein-targeted fluorescent USPIO for the assessment of vascular metabolism in tumors

    NARCIS (Netherlands)

    Jayapaul, J.; Arns, S.; Lederle, W.; Lammers, Twan Gerardus Gertudis Maria; Comba, P.; Gätjens, J.; Kiessling, F.

    2012-01-01

    Abstract Riboflavin (Rf) and its metabolic analogs flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are essential for normal cellular growth and function. Their intracellular transport is regulated by the riboflavin carrier protein (RCP), which has been shown to be over-expressed by

  10. Transient isotachophoresis in carrier ampholyte-based capillary electrophoresis for protein analysis

    Czech Academy of Sciences Publication Activity Database

    Busnel, J. M.; Descroix, S.; Godfrin, D.; Hennion, M. C.; Kašička, Václav; Peltre, G.

    2006-01-01

    Roč. 27, č. 18 (2006), s. 3591-3598 ISSN 0173-0835 Institutional research plan: CEZ:AV0Z40550506 Keywords : carrier ampholyte-based capillary electrophoresis * transient isotachophoresis * proteins Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.101, year: 2006

  11. A Rational Approach to Identify Inhibitors of Mycobacterium tuberculosis Enoyl Acyl Carrier Protein Reductase

    Czech Academy of Sciences Publication Activity Database

    Chhabria, M. T.; Parmar, K. B.; Brahmkshatriya, Pathik

    2013-01-01

    Roč. 19, č. 21 (2013), s. 3878-3883 ISSN 1381-6128 Institutional support: RVO:61388963 Keywords : mycobacterium tuberculosis * enoyl acyl carrier protein reductase * pharmacophore modeling * molecular docking * binding interactions Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.288, year: 2013

  12. The Biological Activity of alpha-Mangostin, a Larvicidal Botanic Mosquito Sterol Carrier Protein-2 Inhibitor

    Science.gov (United States)

    2010-01-01

    it is known that esterase aids in the detoxiÞcation of or- ganophosphates ( Hemingway and Ransom 2000). In- terestingly, we found that -mangostin...Disruption of the sterol carrier protein 2 gene in mice impairs biliary lipid and hepatic cholesterol metabolism. J. Biol. Chem. 276: 48058Ð48065. Hemingway

  13. Interactions between co-expressed Arabidopsis sucrose transporters in the split-ubiquitin system

    Directory of Open Access Journals (Sweden)

    Lalonde Sylvie

    2003-03-01

    Full Text Available Abstract Background The Arabidopsis genome contains nine sucrose transporter paralogs falling into three clades: SUT1-like, SUT2 and SUT4. The carriers differ in their kinetic properties. Many transport proteins are known to exist as oligomers. The yeast-based split ubiquitin system can be used to analyze the ability of membrane proteins to interact. Results Promoter-GUS fusions were used to analyze the cellular expression of the three transporter genes in transgenic Arabidopsis plants. All three fusion genes are co-expressed in companion cells. Protein-protein interactions between Arabidopsis sucrose transporters were tested using the split ubiquitin system. Three paralogous sucrose transporters are capable of interacting as either homo- or heteromers. The interactions are specific, since a potassium channel and a glucose transporter did not show interaction with sucrose transporters. Also the biosynthetic and metabolizing enzymes, sucrose phosphate phosphatase and sucrose synthase, which were found to be at least in part bound to the plasma membrane, did not specifically interact with sucrose transporters. Conclusions The split-ubiquitin system provides a powerful tool to detect potential interactions between plant membrane proteins by heterologous expression in yeast, and can be used to screen for interactions with membrane proteins as baits. Like other membrane proteins, the Arabidopsis sucrose transporters are able to form oligomers. The biochemical approaches are required to confirm the in planta interaction.

  14. Ubiquitin-mediated proteolysis in Xenopus extract.

    Science.gov (United States)

    McDowell, Gary S; Philpott, Anna

    2016-01-01

    The small protein modifier, ubiquitin, can be covalently attached to proteins in the process of ubiquitylation, resulting in a variety of functional outcomes. In particular, the most commonly-associated and well-studied fate for proteins modified with ubiquitin is their ultimate destruction: degradation by the 26S proteasome via the ubiquitin-proteasome system, or digestion in lysosomes by proteolytic enzymes. From the earliest days of ubiquitylation research, a reliable and versatile "cell-in-a-test-tube" system has been employed in the form of cytoplasmic extracts from the eggs and embryos of the frog Xenopus laevis. Biochemical studies of ubiquitin and protein degradation using this system have led to significant advances particularly in the study of ubiquitin-mediated proteolysis, while the versatility of Xenopus as a developmental model has allowed investigation of the in vivo consequences of ubiquitylation. Here we describe the use and history of Xenopus extract in the study of ubiquitin-mediated protein degradation, and highlight the versatility of this system that has been exploited to uncover mechanisms and consequences of ubiquitylation and proteolysis.

  15. Structural basis for ubiquitin recognition by ubiquitin-binding zinc finger of FAAP20.

    Directory of Open Access Journals (Sweden)

    Aya Toma

    Full Text Available Several ubiquitin-binding zinc fingers (UBZs have been reported to preferentially bind K63-linked ubiquitin chains. In particular, the UBZ domain of FAAP20 (FAAP20-UBZ, a member of the Fanconi anemia core complex, seems to recognize K63-linked ubiquitin chains, in order to recruit the complex to DNA interstrand crosslinks and mediate DNA repair. By contrast, it is reported that the attachment of a single ubiquitin to Rev1, a translesion DNA polymerase, increases binding of Rev1 to FAAP20. To clarify the specificity of FAAP20-UBZ, we determined the crystal structure of FAAP20-UBZ in complex with K63-linked diubiquitin at 1.9 Å resolution. In this structure, FAAP20-UBZ interacts only with one of the two ubiquitin moieties. Consistently, binding assays using surface plasmon resonance spectrometry showed that FAAP20-UBZ binds ubiquitin and M1-, K48- and K63-linked diubiquitin chains with similar affinities. Residues in the vicinity of Ala168 within the α-helix and the C-terminal Trp180 interact with the canonical Ile44-centered hydrophobic patch of ubiquitin. Asp164 within the α-helix and the C-terminal loop mediate a hydrogen bond network, which reinforces ubiquitin-binding of FAAP20-UBZ. Mutations of the ubiquitin-interacting residues disrupted binding to ubiquitin in vitro and abolished the accumulation of FAAP20 to DNA damage sites in vivo. Finally, structural comparison among FAAP20-UBZ, WRNIP1-UBZ and RAD18-UBZ revealed distinct modes of ubiquitin binding. UBZ family proteins could be divided into at least three classes, according to their ubiquitin-binding modes.

  16. Regulation of CNKSR2 protein stability by the HECT E3 ubiquitin ligase Smurf2, and its role in breast cancer progression.

    Science.gov (United States)

    David, Diana; Surendran, Arun; Thulaseedharan, Jissa V; Nair, Asha S

    2018-03-13

    Smurf2 E3 ubiquitin ligase physically associates with and regulate the stability of distinct cellular protein substrates. The multi-functional scaffold protein Connector enhancer of kinase suppressor of ras 2 (CNKSR2) plays a key role in regulating cell proliferation, and differentiation through multiple receptor tyrosine kinase pathways. The aim of this study was to investigate whether the interaction between Smurf2 and CNKSR2 has any significant role in the post transcriptional regulation of CNKSR2 expression in breast cancer. Here we demonstrate a novel interaction of CNKSR2 with Smurf2 by co-immunoprecipitation, indirect immunofluorescence studies, and surface plasmon resonance (SPR) analysis, which can ubiquitinate, but stabilize CNKSR2 by protecting it from proteasome mediated degradation. CNKSR2 protein levels were significantly increased upon forced overexpression of Smurf2, indicating the role of Smurf2 in regulating the stability of CNKSR2. Conversely, Smurf2 knockdown resulted in a marked decrease in the protein level expression of CNKSR2 by facilitating enhanced polyubiquitination and proteasomal degradation and reduced the proliferation and clonogenic survival of MDA-MB-231 breast cancer cell lines. Tissue microarray data from 84 patients with various stages of mammary carcinoma, including (in order of increasing malignant potential) normal, usual hyperplasia, fibrocystic changes, fibroadenoma, carcinoma-in-situ, and invasive ductal carcinoma showed a statistically significant association between Smurf2 and CNKSR2 expression, which is also well correlated with the ER, PR, and HER2 status of the tissue samples. A comparatively high expression of Smurf2 and CNKSR2 was observed when the expression of ER and PR was low, and HER2 was high. Consistently, both Smurf2 and CNKSR2 showed an integrated expression in MCF10 breast progression model cell lines. Altogether, our findings reveal that Smurf2 is a novel positive regulator of CNKSR2 and suggest that Smurf

  17. Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins.

    Science.gov (United States)

    Palmieri, Ferdinando; Agrimi, Gennaro; Blanco, Emanuela; Castegna, Alessandra; Di Noia, Maria A; Iacobazzi, Vito; Lasorsa, Francesco M; Marobbio, Carlo M T; Palmieri, Luigi; Scarcia, Pasquale; Todisco, Simona; Vozza, Angelo; Walker, John

    2006-01-01

    The inner membranes of mitochondria contain a family of carrier proteins that are responsible for the transport in and out of the mitochondrial matrix of substrates, products, co-factors and biosynthetic precursors that are essential for the function and activities of the organelle. This family of proteins is characterized by containing three tandem homologous sequence repeats of approximately 100 amino acids, each folded into two transmembrane alpha-helices linked by an extensive polar loop. Each repeat contains a characteristic conserved sequence. These features have been used to determine the extent of the family in genome sequences. The genome of Saccharomyces cerevisiae contains 34 members of the family. The identity of five of them was known before the determination of the genome sequence, but the functions of the remaining family members were not. This review describes how the functions of 15 of these previously unknown transport proteins have been determined by a strategy that consists of expressing the genes in Escherichia coli or Saccharomyces cerevisiae, reconstituting the gene products into liposomes and establishing their functions by transport assay. Genetic and biochemical evidence as well as phylogenetic considerations have guided the choice of substrates that were tested in the transport assays. The physiological roles of these carriers have been verified by genetic experiments. Various pieces of evidence point to the functions of six additional members of the family, but these proposals await confirmation by transport assay. The sequences of many of the newly identified yeast carriers have been used to characterize orthologs in other species, and in man five diseases are presently known to be caused by defects in specific mitochondrial carrier genes. The roles of eight yeast mitochondrial carriers remain to be established.

  18. Protein encapsulated magnetic carriers for micro/nanoscale drug delivery systems.

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Y.; Kaminski, M. D.; Mertz, C. J.; Finck, M. R.; Guy, S. G.; Chen, H.; Rosengart, A. J.; Chemical Engineering; Univ. of Chicago, Pritzker School of Medicine

    2005-01-01

    Novel methods for drug delivery may be based on nanotechnology using non-invasive magnetic guidance of drug loaded magnetic carriers to the targeted site and thereafter released by external ultrasound energy. The key building block of this system is to successfully synthesize biodegradable, magnetic drug carriers. Magnetic carriers using poly(D,L-lactide-co-glycolide) (PLGA) or poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) as matrix materials were loaded with bovine serum albumin (BSA) by a double-emulsion technique. BSA-loaded magnetic microspheres were characterized for size, morphology, surface charge, and magnetization. The BSA encapsulation efficiency was determined by recovering albumin from the microspheres using dimethyl sulfoxide and 0.05N NaOH/0.5% SDS then quantifying with the Micro-BCA protein assay. BSA release profiles were also determined by the Micro-BCA protein assay. The microspheres had drug encapsulation efficiencies up to 90% depending on synthesis parameters. Particles were spherical with a smooth or porous surface having a size range less than 5 {mu}m. The surface charge (expressed as zeta potential) was near neutral, optimal for prolonged intravascular survival. The magnetization of these BSA loaded magnetic carriers was 2 to 6 emu/g, depending on the specific magnetic materials used during synthesis.

  19. Analysis of the Protein Kinase A-Regulated Proteome of Cryptococcus neoformans Identifies a Role for the Ubiquitin-Proteasome Pathway in Capsule Formation

    Directory of Open Access Journals (Sweden)

    J. M. H. Geddes

    2016-01-01

    Full Text Available The opportunistic fungal pathogen Cryptococcus neoformans causes life-threatening meningitis in immunocompromised individuals. The expression of virulence factors, including capsule and melanin, is in part regulated by the cyclic-AMP/protein kinase A (cAMP/PKA signal transduction pathway. In this study, we investigated the influence of PKA on the composition of the intracellular proteome to obtain a comprehensive understanding of the regulation that underpins virulence. Through quantitative proteomics, enrichment and bioinformatic analyses, and an interactome study, we uncovered a pattern of PKA regulation for proteins associated with translation, the proteasome, metabolism, amino acid biosynthesis, and virulence-related functions. PKA regulation of the ubiquitin-proteasome pathway in C. neoformans showed a striking parallel with connections between PKA and protein degradation in chronic neurodegenerative disorders and other human diseases. Further investigation of proteasome function with the inhibitor bortezomib revealed an impact on capsule production as well as hypersusceptibility for strains with altered expression or activity of PKA. Parallel studies with tunicamycin also linked endoplasmic reticulum stress with capsule production and PKA. Taken together, the data suggest a model whereby expression of PKA regulatory and catalytic subunits and the activation of PKA influence proteostasis and the function of the endoplasmic reticulum to control the elaboration of the polysaccharide capsule. Overall, this study revealed both broad and conserved influences of the cAMP/PKA pathway on the proteome and identified proteostasis as a potential therapeutic target for the treatment of cryptococcosis.

  20. An overview on the delivery of antitumor drug doxorubicin by carrier proteins.

    Science.gov (United States)

    Agudelo, D; Bérubé, G; Tajmir-Riahi, H A

    2016-07-01

    Serum proteins play an increasing role as drug carriers in the clinical settings. In this review, we have compared the binding modalities of anticancer drug doxorubicin (DOX) to three model carrier proteins, human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (β-LG) in order to determine the potential application of these model proteins in DOX delivery. Molecular modeling studies showed stronger binding of DOX with HSA than BSA and β-LG with the free binding energies of -10.75 (DOX-HSA), -9.31 (DOX-BSA) and -8.12kcal/mol (DOX-β-LG). Extensive H-boding network stabilizes DOX-protein conjugation and played a major role in drug-protein complex formation. DOX complexation induced major alterations of HSA and BSA conformations, while did not alter β-LG secondary structure. The literature review shows that these proteins can potentially be used for delivery of DOX in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Hijacking of the Host Ubiquitin Network by Legionella pneumophila

    Directory of Open Access Journals (Sweden)

    Jiazhang Qiu

    2017-12-01

    Full Text Available Protein ubiquitination is critical for regulation of numerous eukaryotic cellular processes such as protein homeostasis, cell cycle progression, immune response, DNA repair, and vesicular trafficking. Ubiquitination often leads to the alteration of protein stability, subcellular localization, or interaction with other proteins. Given the importance of ubiquitination in the regulation of host immunity, it is not surprising that many infectious agents have evolved strategies to interfere with the ubiquitination network with sophisticated mechanisms such as functional mimicry. The facultative intracellular pathogen Legionella pneumophila is the causative agent of Legionnaires' disease. L. pneumophila is phagocytosed by macrophages and is able to replicate within a niche called Legionella-containing vacuole (LCV. The biogenesis of LCV is dependent upon the Dot/Icm type IV secretion system which delivers more than 330 effector proteins into host cytosol. The optimal intracellular replication of L. pneumophila requires the host ubiquitin-proteasome system. Furthermore, membranes of the bacterial phagosome are enriched with ubiquitinated proteins in a way that requires its Dot/Icm type IV secretion system, suggesting the involvement of effectors in the manipulation of the host ubiquitination machinery. Here we summarize recent advances in our understanding of mechanisms exploited by L. pneumophila effector proteins to hijack the host ubiquitination pathway.

  2. Induction of the lac carrier and an associated membrane protein in Escherichia coli

    International Nuclear Information System (INIS)

    Lagarias, D.M.

    1985-01-01

    Induction of the lac operon in wild type Escherichia coli strains results in synthesis of a 16 kilodalton inner membrane protein in addition to the known products of the lacZ, lacY and lacA genes. Cells carrying the lacY gene on a plasmid over produce this 16 kilodalton polypeptide as well as the Lac carrier, the membrane protein product of the lacY gene. However, [ 35 S]methionine labeling of minicells carrying the lacY plasmid shows that the 16 kDa protein is not synthesized from the plasmid DNA. The 16 kDa protein was purified and partially characterized. It is an acidic membrane protein of apparent molecular weight 15,800 whose amino terminal sequence (NH 2 -Met-Arg-Asn-Phe-Asp-Leu-) does not correspond to any nucleotide sequence known in lac operon DNA. Using antibody prepared to the purified 16 kDa protein, a quantitative analysis of conditions under which this protein is made was accomplished, and reveals that the amount of 16 kDa protein which appears in the membrane is proportional to lac operon expression. Hybridization of a synthetic oligonucleotide probe complementary to the 5' end of 16 kDa protein mRNA shows that its synthesis is regulated at the level of transcription. A description of attempts to clone this gene is given. Possible functional roles for the 16 kDa protein are discussed

  3. Epidermal Growth Factor Cytoplasmic Domain Affects ErbB Protein Degradation by the Lysosomal and Ubiquitin-Proteasome Pathway in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Aleksandra Glogowska

    2012-05-01

    Full Text Available The cytoplasmic domains of EGF-like ligands, including EGF cytoplasmic domain (EGFcyt, have important biological functions. Using specific constructs and peptides of human EGF cytoplasmic domain, we demonstrate that EGFcyt facilitates lysosomal and proteasomal protein degradation, and this coincided with growth inhibition of human thyroid and glioma carcinoma cells. EGFcyt and exon 22–23-encoded peptide (EGF22.23 enhanced procathepsin B (procathB expression and procathB-mediated lysosomal degradation of EGFR/ErbB1 as determined by inhibitors for procathB and the lysosomal ATPase inhibitor BafA1. Presence of mbEGFctF, EGFcyt, EGF22.23, and exon 23-encoded peptides suppressed the expression of the deubiqitinating enzyme ubiquitin C-terminal hydrolase-L1 (UCH-L1. This coincided with hyperubiquitination of total cellular proteins and ErbB1/2 and reduced proteasome activity. Upon small interfering RNA-mediated silencing of endogenously expressed UCH-L1, a similar hyperubiquitinylation phenotype, reduced ErbB1/2 content, and attenuated growth was observed. The exon 23-encoded peptide region of EGFcyt was important for these biologic actions. Structural homology modeling of human EGFcyt showed that this molecular region formed an exposed surface loop. Peptides derived from this EGFcyt loop structure may aid in the design of novel peptide therapeutics aimed at inhibiting growth of cancer cells.

  4. Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems.

    Science.gov (United States)

    Malekzad, Hedieh; Mirshekari, Hamed; Sahandi Zangabad, Parham; Moosavi Basri, S M; Baniasadi, Fazel; Sharifi Aghdam, Maryam; Karimi, Mahdi; Hamblin, Michael R

    2018-02-01

    For thousands of years, plants and their products have been used as the mainstay of medicinal therapy. In recent years, besides attempts to isolate the active ingredients of medicinal plants, other new applications of plant products, such as their use to prepare drug delivery vehicles, have been discovered. Nanobiotechnology is a branch of pharmacology that can provide new approaches for drug delivery by the preparation of biocompatible carrier nanoparticles (NPs). In this article, we review recent studies with four important plant proteins that have been used as carriers for targeted delivery of drugs and genes. Zein is a water-insoluble protein from maize; Gliadin is a 70% alcohol-soluble protein from wheat and corn; legumin is a casein-like protein from leguminous seeds such as peas; lectins are glycoproteins naturally occurring in many plants that recognize specific carbohydrate residues. NPs formed from these proteins show good biocompatibility, possess the ability to enhance solubility, and provide sustained release of drugs and reduce their toxicity and side effects. The effects of preparation methods on the size and loading capacity of these NPs are also described in this review.

  5. Fas-associated factor 1 is a scaffold protein that promotes β-transducin repeat-containing protein (β-TrCP)-mediated β-catenin ubiquitination and degradation.

    Science.gov (United States)

    Zhang, Long; Zhou, Fangfang; Li, Yihao; Drabsch, Yvette; Zhang, Juan; van Dam, Hans; ten Dijke, Peter

    2012-08-31

    FAS-associated factor 1 (FAF1) antagonizes Wnt signaling by stimulating β-catenin degradation. However, the molecular mechanism underlying this effect is unknown. Here, we demonstrate that the E3 ubiquitin ligase β-transducin repeat-containing protein (β-TrCP) is required for FAF1 to suppress Wnt signaling and that FAF1 specifically associates with the SCF (Skp1-Cul1-F-box protein)-β-TrCP complex. Depletion of β-TrCP reduced FAF1-mediated β-catenin polyubiquitination and impaired FAF1 in antagonizing Wnt/β-catenin signaling. FAF1 was shown to act as a scaffold for β-catenin and β-TrCP and thereby to potentiate β-TrCP-mediated β-catenin ubiquitination and degradation. Data mining revealed that FAF1 expression is statistically down-regulated in human breast carcinoma compared with normal breast tissue. Consistent with this, FAF1 expression is higher in epithelial-like MCF7 than mesenchymal-like MDA-MB-231 human breast cancer cells. Depletion of FAF1 in MCF7 cells resulted in increased β-catenin accumulation and signaling. Importantly, FAF1 knockdown promoted a decrease in epithelial E-cadherin and an increase in mesenchymal vimentin expression, indicative for an epithelial to mesenchymal transition. Moreover, ectopic FAF1 expression reduces breast cancer cell migration in vitro and invasion/metastasis in vivo. Thus, our studies strengthen a tumor-suppressive function for FAF1.

  6. Structure, High Affinity, and Negative Cooperativity of the Escherichia coli Holo-(Acyl Carrier Protein):Holo-(Acyl Carrier Protein) Synthase Complex

    Energy Technology Data Exchange (ETDEWEB)

    Marcella, Aaron M.; Culbertson, Sannie J.; Shogren-Knaak, Michael A.; Barb, Adam W.

    2017-11-01

    The Escherichia coli holo-(acyl carrier protein) synthase (ACPS) catalyzes the coenzyme A-dependent activation of apo-ACPP to generate holo-(acyl carrier protein) (holo-ACPP) in an early step of fatty acid biosynthesis. E. coli ACPS is sufficiently different from the human fatty acid synthase to justify the development of novel ACPS-targeting antibiotics. Models of E. coli ACPS in unliganded and holo-ACPP-bound forms solved by X-ray crystallography to 2.05 and 4.10 Å, respectively, revealed that ACPS bound three product holo-ACPP molecules to form a 3:3 hexamer. Solution NMR spectroscopy experiments validated the ACPS binding interface on holo-ACPP using chemical shift perturbations and by determining the relative orientation of holo-ACPP to ACPS by fitting residual dipolar couplings. The binding interface is organized to arrange contacts between positively charged ACPS residues and the holo-ACPP phosphopantetheine moiety, indicating product contains more stabilizing interactions than expected in the enzyme:substrate complex. Indeed, holo-ACPP bound the enzyme with greater affinity than the substrate, apo-ACPP, and with negative cooperativity. The first equivalent of holo-ACPP bound with a KD = 62 ± 13 nM, followed by the binding of two more equivalents of holo-ACPP with KD = 1.2 ± 0.2 μM. Cooperativity was not observed for apo-ACPP which bound with KD = 2.4 ± 0.1 μM. Strong product binding and high levels of holo-ACPP in the cell identify a potential regulatory role of ACPS in fatty acid biosynthesis.

  7. Structure, High Affinity, and Negative Cooperativity of the Escherichia coli Holo-(Acyl Carrier Protein):Holo-(Acyl Carrier Protein) Synthase Complex.

    Science.gov (United States)

    Marcella, Aaron M; Culbertson, Sannie J; Shogren-Knaak, Michael A; Barb, Adam W

    2017-11-24

    The Escherichia coli holo-(acyl carrier protein) synthase (ACPS) catalyzes the coenzyme A-dependent activation of apo-ACPP to generate holo-(acyl carrier protein) (holo-ACPP) in an early step of fatty acid biosynthesis. E. coli ACPS is sufficiently different from the human fatty acid synthase to justify the development of novel ACPS-targeting antibiotics. Models of E. coli ACPS in unliganded and holo-ACPP-bound forms solved by X-ray crystallography to 2.05and 4.10Å, respectively, revealed that ACPS bound three product holo-ACPP molecules to form a 3:3 hexamer. Solution NMR spectroscopy experiments validated the ACPS binding interface on holo-ACPP using chemical shift perturbations and by determining the relative orientation of holo-ACPP to ACPS by fitting residual dipolar couplings. The binding interface is organized to arrange contacts between positively charged ACPS residues and the holo-ACPP phosphopantetheine moiety, indicating product contains more stabilizing interactions than expected in the enzyme:substrate complex. Indeed, holo-ACPP bound the enzyme with greater affinity than the substrate, apo-ACPP, and with negative cooperativity. The first equivalent of holo-ACPP bound with a K D =62±13nM, followed by the binding of two more equivalents of holo-ACPP with K D =1.2±0.2μM. Cooperativity was not observed for apo-ACPP which bound with K D =2.4±0.1μM. Strong product binding and high levels of holo-ACPP in the cell identify a potential regulatory role of ACPS in fatty acid biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Participation of Low Molecular Weight Electron Carriers in Oxidative Protein Folding

    Directory of Open Access Journals (Sweden)

    József Mandl

    2009-03-01

    Full Text Available Oxidative protein folding is mediated by a proteinaceous electron relay system, in which the concerted action of protein disulfide isomerase and Ero1 delivers the electrons from thiol groups to the final acceptor. Oxygen appears to be the final oxidant in aerobic living organisms, although the existence of alternative electron acceptors, e.g. fumarate or nitrate, cannot be excluded. Whilst the protein components of the system are well-known, less attention has been turned to the role of low molecular weight electron carriers in the process. The function of ascorbate, tocopherol and vitamin K has been raised recently. In vitro and in vivo evidence suggests that these redox-active compounds can contribute to the functioning of oxidative folding. This review focuses on the participation of small molecular weight redox compounds in oxidative protein folding.

  9. HTLV-1 Tax Stimulates Ubiquitin E3 Ligase, Ring Finger Protein 8, to Assemble Lysine 63-Linked Polyubiquitin Chains for TAK1 and IKK Activation.

    Science.gov (United States)

    Ho, Yik-Khuan; Zhi, Huijun; Bowlin, Tara; Dorjbal, Batsukh; Philip, Subha; Zahoor, Muhammad Atif; Shih, Hsiu-Ming; Semmes, Oliver John; Schaefer, Brian; Glover, J N Mark; Giam, Chou-Zen

    2015-08-01

    Human T lymphotropic virus type 1 (HTLV-1) trans-activator/oncoprotein, Tax, impacts a multitude of cellular processes, including I-κB kinase (IKK)/NF-κB signaling, DNA damage repair, and mitosis. These activities of Tax have been implicated in the development of adult T-cell leukemia (ATL) in HTLV-1-infected individuals, but the underlying mechanisms remain obscure. IKK and its upstream kinase, TGFβ-activated kinase 1 (TAK1), contain ubiquitin-binding subunits, NEMO and TAB2/3 respectively, which interact with K63-linked polyubiquitin (K63-pUb) chains. Recruitment to K63-pUb allows cross auto-phosphorylation and activation of TAK1 to occur, followed by TAK1-catalyzed IKK phosphorylation and activation. Using cytosolic extracts of HeLa and Jurkat T cells supplemented with purified proteins we have identified ubiquitin E3 ligase, ring finger protein 8 (RNF8), and E2 conjugating enzymes, Ubc13:Uev1A and Ubc13:Uev2, to be the cellular factors utilized by Tax for TAK1 and IKK activation. In vitro, the combination of Tax and RNF8 greatly stimulated TAK1, IKK, IκBα and JNK phosphorylation. In vivo, RNF8 over-expression augmented while RNF8 ablation drastically reduced canonical NF-κB activation by Tax. Activation of the non-canonical NF-κB pathway by Tax, however, is unaffected by the loss of RNF8. Using purified components, we further demonstrated biochemically that Tax greatly stimulated RNF8 and Ubc13:Uev1A/Uev2 to assemble long K63-pUb chains. Finally, co-transfection of Tax with increasing amounts of RNF8 greatly induced K63-pUb assembly in a dose-dependent manner. Thus, Tax targets RNF8 and Ubc13:Uev1A/Uev2 to promote the assembly of K63-pUb chains, which signal the activation of TAK1 and multiple downstream kinases including IKK and JNK. Because of the roles RNF8 and K63-pUb chains play in DNA damage repair and cytokinesis, this mechanism may also explain the genomic instability of HTLV-1-transformed T cells and ATL cells.

  10. Mechanisms of mono- and poly-ubiquitination: Ubiquitination specificity depends on compatibility between the E2 catalytic core and amino acid residues proximal to the lysine

    Directory of Open Access Journals (Sweden)

    Sadowski Martin

    2010-08-01

    Full Text Available Abstract Ubiquitination involves the attachment of ubiquitin to lysine residues on substrate proteins or itself, which can result in protein monoubiquitination or polyubiquitination. Ubiquitin attachment to different lysine residues can generate diverse substrate-ubiquitin structures, targeting proteins to different fates. The mechanisms of lysine selection are not well understood. Ubiquitination by the largest group of E3 ligases, the RING-family E3 s, is catalyzed through co-operation between the non-catalytic ubiquitin-ligase (E3 and the ubiquitin-conjugating enzyme (E2, where the RING E3 binds the substrate and the E2 catalyzes ubiquitin transfer. Previous studies suggest that ubiquitination sites are selected by E3-mediated positioning of the lysine toward the E2 active site. Ultimately, at a catalytic level, ubiquitination of lysine residues within the substrate or ubiquitin occurs by nucleophilic attack of the lysine residue on the thioester bond linking the E2 catalytic cysteine to ubiquitin. One of the best studied RING E3/E2 complexes is the Skp1/Cul1/F box protein complex, SCFCdc4, and its cognate E2, Cdc34, which target the CDK inhibitor Sic1 for K48-linked polyubiquitination, leading to its proteasomal degradation. Our recent studies of this model system demonstrated that residues surrounding Sic1 lysines or lysine 48 in ubiquitin are critical for ubiquitination. This sequence-dependence is linked to evolutionarily conserved key residues in the catalytic region of Cdc34 and can determine if Sic1 is mono- or poly-ubiquitinated. Our studies indicate that amino acid determinants in the Cdc34 catalytic region and their compatibility to those surrounding acceptor lysine residues play important roles in lysine selection. This may represent a general mechanism in directing the mode of ubiquitination in E2 s.

  11. Characterization of ubiquitination dependent dynamics in growth factor receptor signaling by quantitative proteomics

    DEFF Research Database (Denmark)

    Akimov, Vyacheslav; Rigbolt, Kristoffer T G; Nielsen, Mogens M

    2011-01-01

    Protein ubiquitination is a dynamic reversible post-translational modification that plays a key role in the regulation of numerous cellular processes including signal transduction, endocytosis, cell cycle control, DNA repair and gene transcription. The conjugation of the small protein ubiquitin...... investigating ubiquitination on a proteomic scale, mainly due to the inherited complexity and heterogeneity of ubiquitination. We describe here a quantitative proteomics strategy based on the specificity of ubiquitin binding domains (UBDs) and Stable Isotope Labeling by Amino acids in Cell culture (SILAC...... as ubiquitination-dependent events in signaling pathways. In addition to a detailed seven time-point profile of EGFR ubiquitination over 30 minutes of ligand stimulation, our data determined prominent involvement of Lysine-63 ubiquitin branching in EGF signaling. Furthermore, we found two centrosomal proteins, PCM1...

  12. Interplay between Molecular Chaperones and the Ubiquitin-Proteasome System in Targeting of Misfolded Proteins for Degradation

    DEFF Research Database (Denmark)

    Poulsen, Esben Guldahl

    interacting with purified 26S proteasomes, and the subsequent characterization of two novel proteasome interacting proteins. The third study was aimed at analyzing the chaperone-assisted pathway leading to degradation of misfolded kinetochore proteins in S. pombe. In this study chaperones, E2s, E3s and DUBs...

  13. Np9, a cellular protein of retroviral ancestry restricted to human, chimpanzee and gorilla, binds and regulates ubiquitin ligase MDM2

    Science.gov (United States)

    Heyne, Kristina; Kölsch, Kathrin; Bruand, Marine; Kremmer, Elisabeth; Grässer, Friedrich A; Mayer, Jens; Roemer, Klaus

    2015-01-01

    Humans and primates are long-lived animals with long reproductive phases. One factor that appears to contribute to longevity and fertility in humans, as well as to cancer-free survival, is the transcription factor and tumor suppressor p53, controlled by its main negative regulator MDM2. However, p53 and MDM2 homologs are found throughout the metazoan kingdom from Trichoplacidae to Hominidae. Therefore the question arises, if p53/MDM2 contributes to the shaping of primate features, then through which mechanisms. Previous findings have indicated that the appearances of novel p53-regulated genes and wild-type p53 variants during primate evolution are important in this context. Here, we report on another mechanism of potential relevance. Human endogenous retrovirus K subgroup HML-2 (HERV-K(HML-2)) type 1 proviral sequences were formed in the genomes of the predecessors of contemporary Hominoidea and can be identified in the genomes of Nomascus leucogenys (gibbon) up to Homo sapiens. We previously reported on an alternative splicing event in HERV-K(HML-2) type 1 proviruses that can give rise to nuclear protein of 9 kDa (Np9). We document here the evolution of Np9-coding capacity in human, chimpanzee and gorilla, and show that the C-terminal half of Np9 binds directly to MDM2, through a domain of MDM2 that is known to be contacted by various cellular proteins in response to stress. Np9 can inhibit the MDM2 ubiquitin ligase activity toward p53 in the cell nucleus, and can support the transactivation of genes by p53. Our findings point to the possibility that endogenous retrovirus protein Np9 contributes to the regulation of the p53-MDM2 pathway specifically in humans, chimpanzees and gorillas. PMID:26103464

  14. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hotaru [Course for Biological Sciences, Faculty of Science, Kumamoto University, Kumamoto (Japan); Saitoh, Hisato, E-mail: hisa@kumamoto-u.ac.jp [Course for Biological Sciences, Faculty of Science, Kumamoto University, Kumamoto (Japan); Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto (Japan)

    2016-07-29

    We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of the SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. -- Highlights: •Puromycin exhibits the O-propargyl-puromycin effect. •Puromycin induces SUMO redistribution upon proteasome inhibition. •Ubiquitin and RNF4 accumulate at PML-nuclear bodies with SUMO-2/3. •The ubiquitin family may function in nuclear sequestration of immature proteins.

  15. Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types

    Directory of Open Access Journals (Sweden)

    Zhongqi Ge

    2018-04-01

    Full Text Available Summary: Protein ubiquitination is a dynamic and reversible process of adding single ubiquitin molecules or various ubiquitin chains to target proteins. Here, using multidimensional omic data of 9,125 tumor samples across 33 cancer types from The Cancer Genome Atlas, we perform comprehensive molecular characterization of 929 ubiquitin-related genes and 95 deubiquitinase genes. Among them, we systematically identify top somatic driver candidates, including mutated FBXW7 with cancer-type-specific patterns and amplified MDM2 showing a mutually exclusive pattern with BRAF mutations. Ubiquitin pathway genes tend to be upregulated in cancer mediated by diverse mechanisms. By integrating pan-cancer multiomic data, we identify a group of tumor samples that exhibit worse prognosis. These samples are consistently associated with the upregulation of cell-cycle and DNA repair pathways, characterized by mutated TP53, MYC/TERT amplification, and APC/PTEN deletion. Our analysis highlights the importance of the ubiquitin pathway in cancer development and lays a foundation for developing relevant therapeutic strategies. : Ge et al. analyze a cohort of 9,125 TCGA samples across 33 cancer types to provide a comprehensive characterization of the ubiquitin pathway. They detect somatic driver candidates in the ubiquitin pathway and identify a cluster of patients with poor survival, highlighting the importance of this pathway in cancer development. Keywords: ubiquitin pathway, pan-cancer analysis, The Cancer Genome Atlas, tumor subtype, cancer prognosis, therapeutic targets, biomarker, FBXW7

  16. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition

    International Nuclear Information System (INIS)

    Matsumoto, Hotaru; Saitoh, Hisato

    2016-01-01

    We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of the SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. -- Highlights: •Puromycin exhibits the O-propargyl-puromycin effect. •Puromycin induces SUMO redistribution upon proteasome inhibition. •Ubiquitin and RNF4 accumulate at PML-nuclear bodies with SUMO-2/3. •The ubiquitin family may function in nuclear sequestration of immature proteins.

  17. K63-Linked Ubiquitination in Kinase Activation and Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guocan [Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Gao, Yuan [Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (United States); Li, Liren [Department of Genomic Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Jin, Guoxiang; Cai, Zhen [Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (United States); Chao, Jui-I [Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan (China); Lin, Hui-Kuan, E-mail: hklin@mdanderson.org [Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (United States)

    2012-01-31

    Ubiquitination has been demonstrated to play a pivotal role in multiple biological functions, which include cell growth, proliferation, apoptosis, DNA damage response, innate immune response, and neuronal degeneration. Although the role of ubiquitination in targeting proteins for proteasome-dependent degradation have been extensively studied and well-characterized, the critical non-proteolytic functions of ubiquitination, such as protein trafficking and kinase activation, involved in cell survival and cancer development, just start to emerge, In this review, we will summarize recent progresses in elucidating the non-proteolytic function of ubiquitination signaling in protein kinase activation and its implications in human cancers. The advancement in the understanding of the novel functions of ubiquitination in signal transduction pathways downstream of growth factor receptors may provide novel paradigms for the treatment of human cancers.

  18. K63-Linked Ubiquitination in Kinase Activation and Cancer

    International Nuclear Information System (INIS)

    Wang, Guocan; Gao, Yuan; Li, Liren; Jin, Guoxiang; Cai, Zhen; Chao, Jui-I; Lin, Hui-Kuan

    2012-01-01

    Ubiquitination has been demonstrated to play a pivotal role in multiple biological functions, which include cell growth, proliferation, apoptosis, DNA damage response, innate immune response, and neuronal degeneration. Although the role of ubiquitination in targeting proteins for proteasome-dependent degradation have been extensively studied and well-characterized, the critical non-proteolytic functions of ubiquitination, such as protein trafficking and kinase activation, involved in cell survival and cancer development, just start to emerge, In this review, we will summarize recent progresses in elucidating the non-proteolytic function of ubiquitination signaling in protein kinase activation and its implications in human cancers. The advancement in the understanding of the novel functions of ubiquitination in signal transduction pathways downstream of growth factor receptors may provide novel paradigms for the treatment of human cancers.

  19. The human otubain2-ubiquitin structure provides insights into the cleavage specificity of poly-ubiquitin-linkages.

    Directory of Open Access Journals (Sweden)

    Mikael Altun

    Full Text Available Ovarian tumor domain containing proteases cleave ubiquitin (Ub and ubiquitin-like polypeptides from proteins. Here we report the crystal structure of human otubain 2 (OTUB2 in complex with a ubiquitin-based covalent inhibitor, Ub-Br2. The ubiquitin binding mode is oriented differently to how viral otubains (vOTUs bind ubiquitin/ISG15, and more similar to yeast and mammalian OTUs. In contrast to OTUB1 which has exclusive specificity towards Lys48 poly-ubiquitin chains, OTUB2 cleaves different poly-Ub linked chains. N-terminal tail swapping experiments between OTUB1 and OTUB2 revealed how the N-terminal structural motifs in OTUB1 contribute to modulating enzyme activity and Ub-chain selectivity, a trait not observed in OTUB2, supporting the notion that OTUB2 may affect a different spectrum of substrates in Ub-dependent pathways.

  20. Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Gilon, T; Chomsky, O; Kulka, R G

    1998-01-01

    Combinations of different ubiquitin-conjugating (Ubc) enzymes and other factors constitute subsidiary pathways of the ubiquitin system, each of which ubiquitinates a specific subset of proteins. There is evidence that certain sequence elements or structural motifs of target proteins are degradation signals which mark them for ubiquitination by a particular branch of the ubiquitin system and for subsequent degradation. Our aim was to devise a way of searching systematically for degradation signals and to determine to which ubiquitin system subpathways they direct the proteins. We have constructed two reporter gene libraries based on the lacZ or URA3 genes which, in Saccharomyces cerevisiae, express fusion proteins with a wide variety of C-terminal extensions. From these, we have isolated clones producing unstable fusion proteins which are stabilized in various ubc mutants. Among these are 10 clones whose products are stabilized in ubc6, ubc7 or ubc6ubc7 double mutants. The C-terminal extensions of these clones, which vary in length from 16 to 50 amino acid residues, are presumed to contain degradation signals channeling proteins for degradation via the UBC6 and/or UBC7 subpathways of the ubiquitin system. Some of these C-terminal tails share similar sequence motifs, and a feature common to almost all of these sequences is a highly hydrophobic region such as is usually located inside globular proteins or inserted into membranes. PMID:9582269

  1. Ubiquitin-specific protease 11 (USP11) functions as a tumor suppressor through deubiquitinating and stabilizing VGLL4 protein

    Science.gov (United States)

    Zhang, Encheng; Shen, Bing; Mu, Xingyu; Qin, Yan; Zhang, Fang; Liu, Yong; Xiao, Jiantao; Zhang, Pingzhao; Wang, Chenji; Tan, Mingyue; Fan, Yu

    2016-01-01

    VGLL4 is a transcriptional repressor that interacts with transcription factors TEADs and inhibits YAP-induced overgrowth and tumorigenesis. VGLL4 protein was dramatically reduced in various types of human cancers. But how VGLL4 protein is post-transcriptional regulated is poorly understood. In this study, we identify deubiquitinating enzyme USP11 as a novel VGLL4 interactor. We reveal that the USP domain of USP11 and the N-terminal region of VGLL4 are required for mutual binding. USP11 controls VGLL4 protein stability by promoting its deubiquitination. Furthermore, our results show that knockdown of USP11 promotes cell growth, migration, and invasion in a YAP-dependent manner. Together, our results suggest that USP11 may exert its tumor suppressor role by modulating VGLL4/YAP-TEADs regulatory loop. PMID:28042509

  2. MMS2, Encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway

    International Nuclear Information System (INIS)

    Broomfield, S.; Chow, B.L.; Xiao, W.

    1998-01-01

    Among the three Saccharomyces cerevisiae DNA repair epistasis groups, the RAD6 group is the most complicated and least characterized, primarily because it consists of two separate repair pathways: an error-free postreplication repair pathway, and a mutagenesis pathway. The rad6 and rad18 mutants are defective in both pathways, and the rev3 mutant affects only the mutagenesis pathway, but a yeast gene that is involved only in error-free postreplication repair has not been reported. We cloned the MMS2 gene from a yeast genomic library by functional complementation of the mms2-1 mutant [Prakash, L. and Prakash, S. (1977) Genetics 86, 33-55]. MMS2 encodes a 137-amino acid, 15.2-kDa protein with significant sequence homology to a conserved family of ubiquitin-conjugating (Ubc) proteins. However, Mms2 does not appear to possess Ubc activity. Genetic analyses indicate that the mms2 mutation is hypostatic to rad6 and rad18 but is synergistic with the rev3 mutation, and the mms2 mutant is proficient in UV-induced mutagenesis. These phenotypes are reminiscent of a pol30-46 mutant known to be impaired in postreplication repair. The mms2 mutant also displayed a REV3-dependent mutator phenotype, strongly suggesting that the MMS2 gene functions in the error-free postreplication repair pathway, parallel to the REV3 mutagenesis pathway. Furthermore, with respect to UV sensitivity, mms2 was found to be hypostatic to the rad6 delta 1-9 mutation, which results in the absence of the first nine amino acids of Rad6. On the basis of these collective results, we propose that the mms2 null mutation and two other allele-specific mutations, rad6 delta 1-9 and pol30-46, define the error-free mode of DNA postreplication repair, and that these mutations may enhance both spontaneous and DNA damage-induced mutagenesis

  3. Purification of nonspecific lipid transfer protein (sterol carrier protein 2) from human liver and its deficiency in livers from patients with cerebro-hepato-renal (Zellweger) syndrome

    NARCIS (Netherlands)

    Amerongen, A. van; Helms, J.B.; Krift, T.P. van der; Schutgens, R.B.H.; Wirtz, K.W.A.

    1987-01-01

    The nonspecific lipid transfer protein (i.e., sterol carrier protein 2) from human liver was purified to homogeneity using ammonium sulfate precipitation, CM-cellulose chromatography, molecular sieve chromatography and fast protein liquid chromatography. Its amino acid composition was determined and

  4. Detection of ubiquitinated huntingtin species in intracellular aggregates

    Directory of Open Access Journals (Sweden)

    Katrin eJuenemann

    2015-01-01

    Full Text Available Protein conformation diseases, including polyglutamine diseases, result from the accumulation and aggregation of misfolded proteins. Huntington’s disease is one of nine diseases caused by an expanded polyglutamine repeat within the affected protein and is hallmarked by intracellular inclusion bodies composed of aggregated N-terminal huntingtin fragments and other sequestered proteins. Fluorescence microscopy and filter trap assay are conventional methods to study protein aggregates, but cannot be used to analyze the presence and levels of post-translational modifications of aggregated huntingtin such as ubiquitination. Ubiquitination of proteins can be a signal for degradation and intracellular localization, but also affects protein activity and protein-protein interactions. The function of ubiquitination relies on its mono- and polymeric isoforms attached to protein substrates. Studying the ubiquitination pattern of aggregated huntingtin fragments offers an important possibility to understand huntingtin degradation and aggregation processes within the cell. For the identification of aggregated huntingtin and its ubiquitinated species, solubilization of the cellular aggregates is mandatory. Here we describe methods to identify post-translational modifications such as ubiquitination of aggregated mutant huntingtin. This approach is specifically described for use with mammalian cell culture and is suitable to study other disease-related proteins prone to aggregate.

  5. The mimivirus R355 gene product: preliminary crystallographic analysis of a putative ubiquitin-like protein-specific protease

    International Nuclear Information System (INIS)

    Jeudy, Sandra; Lartigue, Audrey; Mansuelle, Pascal; Ogata, Yuki; Abergel, Chantal

    2010-01-01

    The genome sequence of mimivirus, the largest known double-stranded DNA virus, encodes a putative protease: the R355 gene product. Its expression in E. coli, its crystallization and the preliminary phasing of a MAD data set using the selenium signal present in a crystal of recombinant selenomethionine-substituted protein are reported. The complete genome sequence of the largest known double-stranded DNA virus, mimivirus, reveals the presence of a gene (denoted R355) that potentially encodes a cysteine protease that is expressed late (after 6 h) in the infectious cycle of the virus. In order to verify a sequence-based functional prediction and understand its role during the infectious process, the R355 protein was produced to assay its proteolytic activity and solve its three-dimensional structure. Here, the preliminary crystallographic analysis of the recombinant viral protein is reported. The crystals belonged to the orthorhombic space group P2 1 2 1 2 1 , with a monomer in the asymmetric unit. A MAD data set was used for preliminary phasing using the selenium signal from a selenomethionine-substituted protein crystal

  6. Molecular characterization and functional analysis of ubiquitin extension genes from the potato cyst nematode Globodera rostochiensis

    Science.gov (United States)

    Ubiquitin is a highly conserved 76-amino acid protein found in every eukaryotic cell. It has been proposed that ubiquitin has many cellular functions including DNA repair, transcription regulation, regulation of cell cycle and apoptosis. We identified two ubiquitin extension genes (Gr-Ubi1 and Gr-Ub...

  7. The N-end rule pathway catalyzes a major fraction of the protein degradation in skeletal muscle

    Science.gov (United States)

    Solomon, V.; Lecker, S. H.; Goldberg, A. L.

    1998-01-01

    In skeletal muscle, overall protein degradation involves the ubiquitin-proteasome system. One property of a protein that leads to rapid ubiquitin-dependent degradation is the presence of a basic, acidic, or bulky hydrophobic residue at its N terminus. However, in normal cells, substrates for this N-end rule pathway, which involves ubiquitin carrier protein (E2) E214k and ubiquitin-protein ligase (E3) E3alpha, have remained unclear. Surprisingly, in soluble extracts of rabbit muscle, we found that competitive inhibitors of E3alpha markedly inhibited the 125I-ubiquitin conjugation and ATP-dependent degradation of endogenous proteins. These inhibitors appear to selectively inhibit E3alpha, since they blocked degradation of 125I-lysozyme, a model N-end rule substrate, but did not affect the degradation of proteins whose ubiquitination involved other E3s. The addition of several E2s or E3alpha to the muscle extracts stimulated overall proteolysis and ubiquitination, but only the stimulation by E3alpha or E214k was sensitive to these inhibitors. A similar general inhibition of ubiquitin conjugation to endogenous proteins was observed with a dominant negative inhibitor of E214k. Certain substrates of the N-end rule pathway are degraded after their tRNA-dependent arginylation. We found that adding RNase A to muscle extracts reduced the ATP-dependent proteolysis of endogenous proteins, and supplying tRNA partially restored this process. Finally, although in muscle extracts the N-end rule pathway catalyzes most ubiquitin conjugation, it makes only a minor contribution to overall protein ubiquitination in HeLa cell extracts.

  8. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Halavaty, Andrei S. [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States); Kim, Youngchang [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Minasov, George; Shuvalova, Ludmilla; Dubrovska, Ievgeniia; Winsor, James [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States); Zhou, Min [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Onopriyenko, Olena; Skarina, Tatiana [Center for Structural Genomics of Infectious Diseases, (United States); University of Toronto, Toronto, Ontario M5G 1L6 (Canada); Papazisi, Leka; Kwon, Keehwan; Peterson, Scott N. [Center for Structural Genomics of Infectious Diseases, (United States); J. Craig Venter Institute, Rockville, MD 20850 (United States); Joachimiak, Andrzej [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Savchenko, Alexei [Center for Structural Genomics of Infectious Diseases, (United States); University of Toronto, Toronto, Ontario M5G 1L6 (Canada); Anderson, Wayne F., E-mail: wf-anderson@northwestern.edu [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States)

    2012-10-01

    The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS. Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS{sub SA}), Vibrio cholerae (AcpS{sub VC}) and Bacillus anthracis (AcpS{sub BA}) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS{sub BA} is emphasized because of the two 3′, 5′-adenosine diphosphate (3′, 5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′, 5′-ADP is bound as the 3′, 5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′, 5′-ADP–AcpS binary complexes. The position of the second 3′, 5′-ADP has never been described before. It is in close proximity to the first 3′, 5′-ADP and the ACP-binding site. The coordination of two ADPs in AcpS{sub BA} may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.

  9. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria

    International Nuclear Information System (INIS)

    Halavaty, Andrei S.; Kim, Youngchang; Minasov, George; Shuvalova, Ludmilla; Dubrovska, Ievgeniia; Winsor, James; Zhou, Min; Onopriyenko, Olena; Skarina, Tatiana; Papazisi, Leka; Kwon, Keehwan; Peterson, Scott N.; Joachimiak, Andrzej; Savchenko, Alexei; Anderson, Wayne F.

    2012-01-01

    The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS. Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS SA ), Vibrio cholerae (AcpS VC ) and Bacillus anthracis (AcpS BA ) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS BA is emphasized because of the two 3′, 5′-adenosine diphosphate (3′, 5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′, 5′-ADP is bound as the 3′, 5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′, 5′-ADP–AcpS binary complexes. The position of the second 3′, 5′-ADP has never been described before. It is in close proximity to the first 3′, 5′-ADP and the ACP-binding site. The coordination of two ADPs in AcpS BA may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP

  10. Electrospun fish protein fibers as a biopolymer-based carrier – implications for oral protein delivery

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; García-Díaz, María; Jessen, Flemming

    2014-01-01

    Purpose: Protein-based electrospun fibers have emerged as novel nanostructured materials for tissue engineering and drug delivery due to their unique structural characteristics, biocompatibility and biodegradability. The aim of this study was to explore the use of electrospun fibers based on fish...... sarcoplasmic proteins as an oral delivery platform for biopharmaceuticals, using insulin as a model protein. Methods: Fish sarcoplasmic proteins (FSP) were isolated from fresh cod and electrospun into nanomicrofibers using insulin as a model payload. The morphology of FSP fibers was characterized using...... differentiated Caco-2 cell monolayers was followed by RP-HPLC and ELISA, and the transepithelial electrical resistance (TEER) was measured before and after the experiment. Cell viability was assessed by the MTS/PMS assay. Results: Insulin was encapsulated in the electrospun FSP fibers with high efficiency, high...

  11. Preparation of bioconjugates by solid-phase conjugation to ion exchange matrix-adsorbed carrier proteins

    DEFF Research Database (Denmark)

    Houen, G.; Olsen, D.T.; Hansen, P.R.

    2003-01-01

    A solid-phase conjugation method utilizing carrier protein bound to an ion exchange matrix was developed. Ovalbumin was adsorbed to an anion exchange matrix using a batch procedure, and the immobilized protein was then derivatized with iodoacetic acid N-hydroxysuccinimid ester. The activated......, and immunization experiments with the eluted conjugates showed that the more substituted conjugates gave rise to the highest titers of glutathione antibodies. Direct immunization with the conjugates adsorbed to the ion exchange matrix was possible and gave rise to high titers of glutathione antibodies. Conjugates...... of ovalbumin and various peptides were prepared in a similar manner and used for production of peptide antisera by direct immunization with the conjugates bound to the ion exchanger. Advantages of the method are its solid-phase nature, allowing fast and efficient reactions and intermediate washings...

  12. Rescuing the Rescuer: On the Protein Complex between the Human Mitochondrial Acyl Carrier Protein and ISD11.

    Science.gov (United States)

    Herrera, María Georgina; Pignataro, María Florencia; Noguera, Martín Ezequiel; Cruz, Karen Magalí; Santos, Javier

    2018-05-16

    Iron-sulfur clusters are essential cofactors in many biochemical processes. ISD11, one of the subunits of the protein complex that carries out the cluster assembly in mitochondria, is necessary for cysteine desulfurase NFS1 stability and function. Several authors have recently provided evidence showing that ISD11 interacts with the acyl carrier protein (ACP). We carried out the coexpression of human mitochondrial ACP and ISD11 in E. coli. This work shows that ACP and ISD11 form a soluble, structured, and stable complex able to bind to the human NFS1 subunit modulating its activity. Results suggest that ACP plays a key-role in ISD11 folding and stability in vitro. These findings offer the opportunity to study the mechanism of interaction between ISD11 and NFS1.

  13. Catalytically-active inclusion bodies-Carrier-free protein immobilizates for application in biotechnology and biomedicine.

    Science.gov (United States)

    Krauss, Ulrich; Jäger, Vera D; Diener, Martin; Pohl, Martina; Jaeger, Karl-Erich

    2017-09-20

    Bacterial inclusion bodies (IBs) consist of unfolded protein aggregates and represent inactive waste products often accumulating during heterologous overexpression of recombinant genes in Escherichia coli. This general misconception has been challenged in recent years by the discovery that IBs, apart from misfolded polypeptides, can also contain substantial amounts of active and thus correctly or native-like folded protein. The corresponding catalytically-active inclusion bodies (CatIBs) can be regarded as a biologically-active sub-micrometer sized biomaterial or naturally-produced carrier-free protein immobilizate. Fusion of polypeptide (protein) tags can induce CatIB formation paving the way towards the wider application of CatIBs in synthetic chemistry, biocatalysis and biomedicine. In the present review we summarize the history of CatIBs, present the molecular-biological tools that are available to induce CatIB formation, and highlight potential lines of application. In the second part findings regarding the formation, architecture, and structure of (Cat)IBs are summarized. Finally, an overview is presented about the available bioinformatic tools that potentially allow for the prediction of aggregation and thus (Cat)IB formation. This review aims at demonstrating the potential of CatIBs for biotechnology and hopefully contributes to a wider acceptance of this promising, yet not widely utilized, protein preparation. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Ubiquitination dynamics in the early-branching eukaryote Giardia intestinalis

    Science.gov (United States)

    Niño, Carlos A; Chaparro, Jenny; Soffientini, Paolo; Polo, Simona; Wasserman, Moises

    2013-01-01

    Ubiquitination is a highly dynamic and versatile posttranslational modification that regulates protein function, stability, and interactions. To investigate the roles of ubiquitination in a primitive eukaryotic lineage, we utilized the early-branching eukaryote Giardia intestinalis. Using a combination of biochemical, immunofluorescence-based, and proteomics approaches, we assessed the ubiquitination status during the process of differentiation in Giardia. We observed that different types of ubiquitin modifications present specific cellular and temporal distribution throughout the Giardia life cycle from trophozoites to cyst maturation. Ubiquitin signal was detected in the wall of mature cysts, and enzymes implicated in cyst wall biogenesis were identified as substrates for ubiquitination. Interestingly, inhibition of proteasome activity did not affect trophozoite replication and differentiation, while it caused a decrease in cyst viability, arguing for proteasome involvement in cyst wall maturation. Using a proteomics approach, we identified around 200 high-confidence ubiquitinated candidates that vary their ubiquitination status during differentiation. Our results indicate that ubiquitination is critical for several cellular processes in this primitive eukaryote. PMID:23613346

  15. Carrier protein influences immunodominance of a known epitope: implication in peptide vaccine design.

    Science.gov (United States)

    Ghosh, Moumita; Solanki, Ashish K; Roy, Koushik; Dhoke, Reema R; Ashish; Roy, Syamal

    2013-09-23

    We investigated how the processing of a given antigen by antigen presenting cells (APC) is dictated by the conformation of the antigen and how this governs the immunodominance hierarchy. To address the question, a known immunodominant sequence of bacteriophage lambda repressor N-terminal sequence 12-26 [λR(12-26)] was engineered at the N and C termini of a heterologous leishmanial protein, Kinetoplastid membrane protein-11 (KMP-11); the resulting proteins were defined as N-KMP-11 and C-KMP-11 respectively. The presence of λR(12-26) in N-KMP-11 and C-KMP-11 was established by western blot analysis with antibody to λR(12-26) peptide. N-KMP-11 but not C-KMP-11 could stimulate the anti λR(12-26) T-cell clonal population very efficiently in the presence of APCs. Priming of BALB/c mice with N-KMP-11 or C-KMP-11 generated similar levels of anti-KMP-11 IgG, but anti-λR(12-26) specific IgG was observed only upon priming with N-KMP-11. Interestingly, uptake of both N-KMP-11 and C-KMP-11 by APCs was similar but catabolism of N-KMP-11 but not C-KMP-11 was biphasic and fast at the initial time point. Kratky plots of small angle X-ray scattering showed that while N-KMP-11 adopts flexible Gaussian type of topology, C-KMP-11 prefers Globular nature. To show that KMP-11 is not unique as a carrier protein, an epitope (SPITBTNLBTMBK) of Plasmodium yoelii (PY) apical membrane protein 1[AMA-1 (136-148)], is placed at the C and N terminals of a dominant T-cell epitope of ovalbumin protein OVA(323-339) and the resulting peptides are defined as PY-OVA and OVA-PY respectively. Interestingly, only OVA-PY could stimulate anti-OVA T-cells and produce IgG response upon priming of BALB/c mice with it. Thus for rational design of peptide vaccine it is important to place the dominant epitope appropriately in the context of the carrier protein. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Involvement of Ubiquitin-Editing Protein A20 in Modulating Inflammation in Rat Cochlea Associated with Silver Nanoparticle-Induced CD68 Upregulation and TLR4 Activation

    Science.gov (United States)

    Feng, Hao; Pyykkö, Ilmari; Zou, Jing

    2016-05-01

    Silver nanoparticles (AgNPs) were shown to temporarily impair the biological barriers in the skin of the external ear canal, mucosa of the middle ear, and inner ear, causing partially reversible hearing loss after delivery into the middle ear. The current study aimed to elucidate the molecular mechanism, emphasizing the TLR signaling pathways in association with the potential recruitment of macrophages in the cochlea and the modulation of inflammation by ubiquitin-editing protein A20. Molecules potentially involved in these signaling pathways were thoroughly analysed using immunohistochemistry in the rat cochlea exposed to AgNPs at various concentrations through intratympanic injection. The results showed that 0.4 % AgNPs but not 0.02 % AgNPs upregulated the expressions of CD68, TLR4, MCP1, A20, and RNF11 in the strial basal cells, spiral ligament fibrocytes, and non-sensory supporting cells of Corti's organ. 0.4 % AgNPs had no effect on CD44, TLR2, MCP2, Rac1, myosin light chain, VCAM1, Erk1/2, JNK, p38, IL-1β, TNF-α, TNFR1, TNFR2, IL-10, or TGF-β. This study suggested that AgNPs might confer macrophage-like functions on the strial basal cells and spiral ligament fibrocytes and enhance the immune activities of non-sensory supporting cells of Corti's organ through the upregulation of CD68, which might be involved in TLR4 activation. A20 and RNF11 played roles in maintaining cochlear homeostasis via negative regulation of the expressions of inflammatory cytokines.

  17. ATL9, a RING zinc finger protein with E3 ubiquitin ligase activity implicated in chitin- and NADPH oxidase-mediated defense responses.

    Directory of Open Access Journals (Sweden)

    Marta Berrocal-Lobo

    2010-12-01

    Full Text Available Pathogen associated molecular patterns (PAMPs are signals detected by plants that activate basal defenses. One of these PAMPs is chitin, a carbohydrate present in the cell walls of fungi and in insect exoskeletons. Previous work has shown that chitin treatment of Arabidopsis thaliana induced defense-related genes in the absence of a pathogen and that the response was independent of the salicylic acid (SA, jasmonic acid (JA and ethylene (ET signaling pathways. One of these genes is ATL9 ( = ATL2G, which encodes a RING zinc-finger like protein. In the current work we demonstrate that ATL9 has E3 ubiquitin ligase activity and is localized to the endoplasmic reticulum. The expression pattern of ATL9 is positively correlated with basal defense responses against Golovinomyces cichoracearum, a biotrophic fungal pathogen. The basal levels of expression and the induction of ATL9 by chitin, in wild type plants, depends on the activity of NADPH oxidases suggesting that chitin-mediated defense response is NADPH oxidase dependent. Although ATL9 expression is not induced by treatment with known defense hormones (SA, JA or ET, full expression in response to chitin is compromised slightly in mutants where ET- or SA-dependent signaling is suppressed. Microarray analysis of the atl9 mutant revealed candidate genes that appear to act downstream of ATL9 in chitin-mediated defenses. These results hint at the complexity of chitin-mediated signaling and the potential interplay between elicitor-mediated signaling, signaling via known defense pathways and the oxidative burst.

  18. Zipper-interacting protein kinase is involved in regulation of ubiquitination of the androgen receptor, thereby contributing to dynamic transcription complex assembly.

    Science.gov (United States)

    Felten, A; Brinckmann, D; Landsberg, G; Scheidtmann, K H

    2013-10-10

    We have recently identified apoptosis-antagonizing transcription factor (AATF), tumor-susceptibility gene 101 (TSG101) and zipper-interacting protein kinase (ZIPK) as novel coactivators of the androgen receptor (AR). The mechanisms of coactivation remained obscure, however. Here we investigated the interplay and interdependence between these coactivators and the AR using the endogenous prostate specific antigen (PSA) gene as model for AR-target genes. Chromatin immunoprecipitation in combination with siRNA-mediated knockdown revealed that recruitment of AATF and ZIPK to the PSA enhancer was dependent on AR, whereas recruitment of TSG101 was dependent on AATF. Association of AR and its coactivators with the PSA enhancer or promoter occurred in cycles. Dissociation of AR-transcription complexes was due to degradation because inhibition of the proteasome system by MG132 caused accumulation of AR at enhancer/promoter elements. Moreover, inhibition of degradation strongly reduced transcription, indicating that continued and efficient transcription is based on initiation, degradation and reinitiation cycles. Interestingly, knockdown of ZIPK by siRNA had a similar effect as MG132, leading to reduced transcription but enhanced accumulation of AR at androgen-response elements. In addition, knockdown of ZIPK, as well as overexpression of a dominant-negative ZIPK mutant, diminished polyubiquitination of AR. Furthermore, ZIPK cooperated with the E3 ligase Mdm2 in AR-dependent transactivation, assembled into a single complex on chromatin and phosphorylated Mdm2 in vitro. These results suggest that ZIPK has a crucial role in regulation of ubiquitination and degradation of the AR, and hence promoter clearance and efficient transcription.

  19. Haploinsufficiency of the E3 ubiquitin ligase C-terminus of heat shock cognate 70 interacting protein (CHIP produces specific behavioral impairments.

    Directory of Open Access Journals (Sweden)

    Bethann McLaughlin

    Full Text Available The multifunctional E3 ubiquitin ligase CHIP is an essential interacting partner of HSP70, which together promote the proteasomal degradation of client proteins. Acute CHIP overexpression provides neuroprotection against neurotoxic mitochondrial stress, glucocorticoids, and accumulation of toxic amyloid fragments, as well as genetic mutations in other E3 ligases, which have been shown to result in familial Parkinson's disease. These studies have created a great deal of interest in understanding CHIP activity, expression and modulation. While CHIP knockout mice have the potential to provide essential insights into the molecular control of cell fate and survival, the animals have been difficult to characterize in vivo due to severe phenotypic and behavioral dysfunction, which have thus far been poorly characterized. Therefore, in the present study we conducted a battery of neurobehavioral and physiological assays of adult CHIP heterozygotic (HET mutant mice to provide a better understanding of the functional consequence of CHIP deficiency. We found that CHIP HET mice had normal body and brain weight, body temperature, muscle tone and breathing patterns, but do have a significant elevation in baseline heart rate. Meanwhile basic behavioral screens of sensory, motor, emotional and cognitive functions were normative. We observed no alterations in performance in the elevated plus maze, light-dark preference and tail suspension assays, or two simple cognitive tasks: novel object recognition and spontaneous alternation in a Y maze. Significant deficits were found, however, when CHIP HET mice performed wire hang, inverted screen, wire maneuver, and open field tasks. Taken together, our data indicate a clear subset of behaviors that are altered at baseline in CHIP deficient animals, which will further guide whole animal studies of the effects of CHIP dysregulation on cardiac function, brain circuitry and function, and responsiveness to environmental and

  20. The Ubiquitin Binding Domain ZnF UBP Recognizes the C-Terminal Diglycine Motif of Unanchored Ubiquitin

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Turcu,F.; Horton, J.; Mullally, J.; Heroux, A.; Cheng, X.; Wilkinson, K.

    2006-01-01

    Ubiquitin is a highly versatile post-translational modification that controls virtually all types of cellular events. Over the past ten years we have learned that diverse forms of ubiquitin modifications and of ubiquitin binding modules co-exist in the cell, giving rise to complex networks of protein:protein interactions. A central problem that continues to puzzle ubiquitinologists is how cells translate this myriad of stimuli into highly specific responses. This is a classical signaling problem. Here, we draw parallels with the phosphorylation signaling pathway and we discuss the expanding repertoire of ubiquitin signals, signal tranducers and signaling-regulated E3 enzymes. We examine recent advances in the field, including a new mechanism of regulation of E3 ligases that relies on ubiquitination.

  1. Higher insulin sensitivity in EDL muscle of rats fed a low-protein, high-carbohydrate diet inhibits the caspase-3 and ubiquitin-proteasome proteolytic systems but does not increase protein synthesis.

    Science.gov (United States)

    Dos Santos, Maísa Pavani; Batistela, Emanuele; Pereira, Mayara Peron; Paula-Gomes, Silvia; Zanon, Neusa Maria; Kettelhut, Isis do Carmo; Karatzaferi, Christina; Andrade, Claudia Marlise Balbinotti; de França, Suélem Aparecida; Baviera, Amanda Martins; Kawashita, Nair Honda

    2016-08-01

    Compared with the extensor digitorum longus (EDL) muscle of control rats (C), the EDL muscle of rats fed a low-protein, high-carbohydrate diet (LPHC) showed a 36% reduction in mass. Muscle mass is determined by the balance between protein synthesis and proteolysis; thus, the aim of this work was to evaluate the components involved in these processes. Compared with the muscle from C rats, the EDL muscle from LPHC diet-fed rats showed a reduction (34%) in the in vitro basal protein synthesis and a 22% reduction in the in vitro basal proteolysis suggesting that the reduction in the mass can be associated with a change in the rate of the two processes. Soon after euthanasia, in the EDL muscles of the rats fed the LPHC diet for 15days, the activity of caspase-3 and that of components of the ubiquitin-proteasome system (atrogin-1 content and chymotrypsin-like activity) were decreased. The phosphorylation of p70(S6K) and 4E-BP1, proteins involved in protein synthesis, was also decreased. We observed an increase in the insulin-stimulated protein content of p-Akt. Thus, the higher insulin sensitivity in the EDL muscle of LPHC rats seemed to contribute to the lower proteolysis in LPHC rats. However, even with the higher insulin sensitivity, the reduction in p-E4-BP1 and p70(S6K) indicates a reduction in protein synthesis, showing that factors other than insulin can have a greater effect on the control of protein synthesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Sunflower (Helianthus annuus) fatty acid synthase complex: β-hydroxyacyl-[acyl carrier protein] dehydratase genes.

    Science.gov (United States)

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Sánchez, Rosario; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2016-02-01

    Two sunflower hydroxyacyl-[acyl carrier protein] dehydratases evolved into two different isoenzymes showing distinctive expression levels and kinetics' efficiencies. β-Hydroxyacyl-[acyl carrier protein (ACP)]-dehydratase (HAD) is a component of the type II fatty acid synthase complex involved in 'de novo' fatty acid biosynthesis in plants. This complex, formed by four intraplastidial proteins, is responsible for the sequential condensation of two-carbon units, leading to 16- and 18-C acyl-ACP. HAD dehydrates 3-hydroxyacyl-ACP generating trans-2-enoyl-ACP. With the aim of a further understanding of fatty acid biosynthesis in sunflower (Helianthus annuus) seeds, two β-hydroxyacyl-[ACP] dehydratase genes have been cloned from developing seeds, HaHAD1 (GenBank HM044767) and HaHAD2 (GenBank GU595454). Genomic DNA gel blot analyses suggest that both are single copy genes. Differences in their expression patterns across plant tissues were detected. Higher levels of HaHAD2 in the initial stages of seed development inferred its key role in seed storage fatty acid synthesis. That HaHAD1 expression levels remained constant across most tissues suggest a housekeeping function. Heterologous expression of these genes in E. coli confirmed both proteins were functional and able to interact with the bacterial complex 'in vivo'. The large increase of saturated fatty acids in cells expressing HaHAD1 and HaHAD2 supports the idea that these HAD genes are closely related to the E. coli FabZ gene. The proposed three-dimensional models of HaHAD1 and HaHAD2 revealed differences at the entrance to the catalytic tunnel attributable to Phe166/Val1159, respectively. HaHAD1 F166V was generated to study the function of this residue. The 'in vitro' enzymatic characterization of the three HAD proteins demonstrated all were active, with the mutant having intermediate K m and V max values to the wild-type proteins.

  3. Dengue Virus Genome Uncoating Requires Ubiquitination

    Directory of Open Access Journals (Sweden)

    Laura A. Byk

    2016-06-01

    Full Text Available The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process.

  4. Study of different coupling agents in the conjugation of a V3-based synthetic MAP to carrier proteins.

    Science.gov (United States)

    Cruz, L J; Iglesias, E; Aguilar, J C; Quintana, D; Garay, H E; Duarte, C; Reyes, O

    2001-09-01

    The conjugation of synthetic peptides to carrier proteins is a widely used method for immunological studies. Different coupling agents have been described to form the conjugate with carrier proteins. In this paper, we demonstrate that the antibody response toward V3-based synthetic MAPs derived from HIV-1, JY1 isolate, conjugated to two different carrier proteins using either m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) or beta-maleimidopropionic acid N-hydroxysuccinimide ester (MPS), or succinic anhydride (SA) show different behaviors. An excellent anti-JY1 response without a strong response to the coupling agent is observed in the case of succinic anhydride spacer. In contrast, MBS produces total abrogation of the antibody response with a high response toward the coupling agent.

  5. Purified reconstituted lac carrier protein from Escherichia coli is fully functional.

    Science.gov (United States)

    Viitanen, P; Garcia, M L; Kaback, H R

    1984-03-01

    Proteoliposomes reconstituted with lac carrier protein purified from the plasma membrane of Escherichia coli catalyze each of the translocation reactions typical of the beta-galactoside transport system (i.e., active transport, counterflow, facilitated influx and efflux) with turnover numbers and apparent Km values comparable to those observed in right-side-out membrane vesicles. Furthermore, detailed kinetic studies show that the reconstituted system exhibits properties analogous to those observed in membrane vesicles. Imposition of a membrane potential (delta psi, interior negative) causes a marked decrease in apparent Km (by a factor of 7 to 10) with a smaller increase in Vmax (approximately equal to 3-fold). At submaximal values of delta psi, the reconstituted carrier exhibits biphasic kinetics, with one component manifesting the kinetic parameters of active transport and the other exhibiting the characteristics of facilitated diffusion. Finally, at low lactose concentrations, the initial velocity of influx varies linearly with the square of the proton electro-chemical gradient. The results provide quantitative support for the contention that a single polypeptide species, the product of the lac y gene, is responsible for each of the transport reactions typical of the beta-galactoside transport system.

  6. Secretory leukocyte protease inhibitor protein regulates the penetrance of frontotemporal lobar degeneration in progranulin mutation carriers.

    Science.gov (United States)

    Ghidoni, Roberta; Flocco, Rosa; Paterlini, Anna; Glionna, Michela; Caruana, Loredana; Tonoli, Elisa; Binetti, Giuliano; Benussi, Luisa

    2014-01-01

    The discovery that mutations in the gene encoding for progranulin (GRN) cause frontotemporal lobar degeneration (FTLD) and other neurodegenerative diseases leading to dementia has brought renewed interest in progranulin and its functions in the central nervous system. Full length progranulin is preserved from cleavage by secretory leukocyte protease inhibitor (SLPI), one of the smallest serine protease inhibitor circulating in plasma. Herein, we investigated the relationship between circulating SLPI and progranulin in affected and unaffected subjects belonging to 26 Italian pedigrees carrying GRN null mutations. In GRN null mutation carriers, we demonstrated: i) an increase of circulating SLPI levels in affected subjects; ii) an age-related upregulation of the serine-protease inhibitor in response to lifetime progranulin shortage; and iii) a delay in the age of onset in subjects with the highest SLPI protein levels. The study of SLPI and its relation to progranulin suggests the existence of unexpected molecular players in progranulin-associated neurodegeneration.

  7. Effect of increased CRM₁₉₇ carrier protein dose on meningococcal C bactericidal antibody response.

    Science.gov (United States)

    Lee, Lucia H; Blake, Milan S

    2012-04-01

    New multivalent CRM(197)-based conjugate vaccines are available for childhood immunization. Clinical studies were reviewed to assess meningococcal group C (MenC) antibody responses following MenC-CRM(197) coadministration with CRM(197)-based pneumococcal or Haemophilus influenzae type b conjugate vaccines. Infants receiving a total CRM(197) carrier protein dose of ∼50 μg and concomitant diphtheria-tetanus-acellular pertussis (DTaP)-containing vaccine tended to have lower MenC geometric mean antibody titers and continued to have low titers after the toddler dose. Nevertheless, at least 95% of children in the reported studies achieved a MenC serum bactericidal antibody (SBA) titer of ≥ 1:8 after the last infant or toddler dose. SBA was measured using an assay with a baby rabbit or human complement source. Additional studies are needed to assess long-term antibody persistence and MenC CRM(197) conjugate vaccine immunogenicity using alternative dosing schedules.

  8. Evaluation of Enoyl-Acyl Carrier Protein Reductase Inhibitors as Pseudomonas aeruginosa Quorum-Quenching Reagents

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Sternberg, Claus

    2010-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen which is responsible for a wide range of infections. Production of virulence factors and biofilm formation by P. aeruginosa are partly regulated by cell-to-cell communication quorum-sensing systems. Identification of quorum-quenching reagents...... which block the quorum-sensing process can facilitate development of novel treatment strategies for P. aeruginosa infections. We have used molecular dynamics simulation and experimental studies to elucidate the efficiencies of two potential quorum-quenching reagents, triclosan and green tea...... epigallocatechin gallate (EGCG), which both function as inhibitors of the enoyl-acyl carrier protein (ACP) reductase (ENR) from the bacterial type II fatty acid synthesis pathway. Our studies suggest that EGCG has a higher binding affinity towards ENR of P. aeruginosa and is an efficient quorum-quenching reagent...

  9. Binding of 7-dehydrocholesterol to sterol carrier protein and vitamin D3 effect

    International Nuclear Information System (INIS)

    Takase, Sachiko; Oizumi, Kumiko; Moriuchi, Sachiko; Hosoya, Norimasa

    1975-01-01

    It was confirmed that deltasup(5,7)-sterol delta 7 -reductase activity was suppressed by cholecalciferol (vitamin D 3 ) in the enzyme system consisted of microsomes and sterol carrier protein (SCP). The enzyme activity was significantly decreased in the combination with microsomes obtained from either vitamin D-deficient or vitamin D 3 -treated rat liver and with SCP obtained from vitamin D 3 -treated rat. It was also demonstrated by the binding assay of the dextran-charcoal technique that 7-dehydrocholesterol binding to SCP could be specifically displaced by vitamin D 3 . The inhibition of cholecalciferol on 7-dehydro-cholesterol binding to liver SCP was confirmed to be non-competitive inhibition. (auth.)

  10. Nedd4 family interacting protein 1 (Ndfip1) is required for ubiquitination and nuclear trafficking of BRCA1-associated ATM activator 1 (BRAT1) during the DNA damage response.

    Science.gov (United States)

    Low, Ley-Hian; Chow, Yuh-Lit; Li, Yijia; Goh, Choo-Peng; Putz, Ulrich; Silke, John; Ouchi, Toru; Howitt, Jason; Tan, Seong-Seng

    2015-03-13

    During injury, cells are vulnerable to apoptosis from a variety of stress conditions including DNA damage causing double-stranded breaks. Without repair, these breaks lead to aberrations in DNA replication and transcription, leading to apoptosis. A major response to DNA damage is provided by the protein kinase ATM (ataxia telangiectasia mutated) that is capable of commanding a plethora of signaling networks for DNA repair, cell cycle arrest, and even apoptosis. A key element in the DNA damage response is the mobilization of activating proteins into the cell nucleus to repair damaged DNA. BRAT1 is one of these proteins, and it functions as an activator of ATM by maintaining its phosphorylated status while also keeping other phosphatases at bay. However, it is unknown how BRAT1 is trafficked into the cell nucleus to maintain ATM phosphorylation. Here we demonstrate that Ndfip1-mediated ubiquitination of BRAT1 leads to BRAT1 trafficking into the cell nucleus. Without Ndfip1, BRAT1 failed to translocate to the nucleus. Under genotoxic stress, cells showed increased expression of both Ndfip1 and phosphorylated ATM. Following brain injury, neurons show increased expression of Ndfip1 and nuclear translocation of BRAT1. These results point to Ndfip1 as a sensor protein during cell injury and Ndfip1 up-regulation as a cue for BRAT1 ubiquitination by Nedd4 E3 ligases, followed by nuclear translocation of BRAT1. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Protosappanin B protects PC12 cells against oxygen-glucose deprivation-induced neuronal death by maintaining mitochondrial homeostasis via induction of ubiquitin-dependent p53 protein degradation.

    Science.gov (United States)

    Zeng, Ke-Wu; Liao, Li-Xi; Zhao, Ming-Bo; Song, Fang-Jiao; Yu, Qian; Jiang, Yong; Tu, Peng-Fei

    2015-03-15

    Protosappanin B (PTB) is a bioactive dibenzoxocin derivative isolated from Caesalpinia sappan L. Here, we investigated the neuroprotective effects and the potential mechanisms of PTB on oxygen-glucose deprivation (OGD)-injured PC12 cells. Results showed that PTB significantly increased cell viability, inhibited cell apoptosis and up-regulated the expression of growth-associated protein 43 (a marker of neural outgrowth). Moreover, our study revealed that PTB effectively maintained mitochondrial homeostasis by up-regulation of mitochondrial membrane potential (MMP), inhibition of cytochrome c release from mitochondria and inactivation of mitochondrial caspase-9/3 apoptosis pathway. Further study showed that PTB significantly promoted cytoplasmic component degradation of p53 protein, a key negative regulator for mitochondrial function, resulting in a release of Bcl-2 from p53-Bcl-2 complex and an enhancing translocation of Bcl-2 to mitochondrial outer membrane. Finally, we found the degradation of p53 protein was induced by PTB via activation of a MDM2-dependent ubiquitination process. Taken together, our findings provided a new viewpoint of neuronal protection strategy for anoxia and ischemic injury with natural small molecular dibenzoxocin derivative by activating ubiquitin-dependent p53 protein degradation as well as increasing mitochondrial function. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Tragacanth as an oral peptide and protein delivery carrier: Characterization and mucoadhesion.

    Science.gov (United States)

    Nur, M; Ramchandran, L; Vasiljevic, T

    2016-06-05

    Biopolymers such as tragacanth, an anionic polysaccharide gum, can be alternative polymeric carrier for physiologically important peptides and proteins. Characterization of tragacanth is thus essential for providing a foundation for possible applications. Rheological studies colloidal solution of tragacanth at pH 3, 5 or 7 were carried out by means of steady shear and small amplitude oscillatory measurements. Tragacanth mucoadhesivity was also analyzed using an applicable rheological method and compared to chitosan, alginate and PVP. The particle size and zeta potential were measured by a zetasizer. Thermal properties of solutions were obtained using a differential scanning calorimetry. The solution exhibited shear-thinning characteristics. The value of the storage modulus (G') and the loss modulus (G″) increased with an increase in angular frequency (Ω). In all cases, loss modulus values were higher than storage values (G″>G') and viscous character was, therefore, dominant. Tragacanth and alginate showed a good mucoadhesion. Tragacanth upon dispersion created particles of a submicron size with a negative zeta potential (-7.98 to -11.92 mV). These properties were pH dependant resulting in acid gel formation at pH 3.5. Tragacanth has thus a potential to be used as an excipient for peptide/protein delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. PKC-Dependent GlyT1 Ubiquitination Occurs Independent of Phosphorylation: Inespecificity in Lysine Selection for Ubiquitination.

    Directory of Open Access Journals (Sweden)

    Susana P Barrera

    Full Text Available Neurotransmitter transporter ubiquitination is emerging as the main mechanism for endocytosis and sorting of cargo into lysosomes. In this study, we demonstrate PKC-dependent ubiquitination of three different isoforms of the glycine transporter 1 (GlyT1. Incubation of cells expressing transporter with the PKC activator phorbol ester induced a dramatic, time-dependent increase in GlyT1 ubiquitination, followed by accumulation of GlyT1 in EEA1 positive early endosomes. This occurred via a mechanism that was abolished by inhibition of PKC. GlyT1 endocytosis was confirmed in both retinal sections and primary cultures of mouse amacrine neurons. Replacement of only all lysines in the N-and C-termini to arginines prevented ubiquitination and endocytosis, displaying redundancy in the mechanism of ubiquitination. Interestingly, a 40-50% reduction in glycine uptake was detected in phorbol-ester stimulated cells expressing the WT-GlyT1, whereas no significant change was for the mutant protein, demonstrating that endocytosis participates in the reduction of uptake. Consistent with previous findings for the dopamine transporter DAT, ubiquitination of GlyT1 tails functions as sorting signal to deliver transporter into the lysosome and removal of ubiquitination sites dramatically attenuated the rate of GlyT1 degradation. Finally, we showed for the first time that PKC-dependent GlyT1 phosphorylation was not affected by removal of ubiquitination sites, suggesting separate PKC-dependent signaling events for these posttranslational modifications.

  14. A Biphasic Calcium Sulphate/Hydroxyapatite Carrier Containing Bone Morphogenic Protein-2 and Zoledronic Acid Generates Bone

    DEFF Research Database (Denmark)

    Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner

    2016-01-01

    -the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay...

  15. Lysine(63)-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth

    Czech Academy of Sciences Publication Activity Database

    Leitner, J.; Petrášek, Jan; Tomanov, K.; Retzer, K.; Pařezová, Markéta; Korbei, B.; Bachmair, A.; Zažímalová, Eva; Luschnig, Ch.

    2012-01-01

    Roč. 109, č. 21 (2012), s. 8322-8327 ISSN 0027-8424 R&D Projects: GA ČR(CZ) GAP305/11/2476 Institutional research plan: CEZ:AV0Z50380511 Keywords : PLASMA-MEMBRANE PROTEIN * EFFLUX CARRIER * INTRACELLULAR TRAFFICKING Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.737, year: 2012

  16. The E3 ubiquitin ligase protein associated with Myc (Pam) regulates mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling in vivo through N- and C-terminal domains.

    Science.gov (United States)

    Han, Sangyeul; Kim, Sun; Bahl, Samira; Li, Lin; Burande, Clara F; Smith, Nicole; James, Marianne; Beauchamp, Roberta L; Bhide, Pradeep; DiAntonio, Aaron; Ramesh, Vijaya

    2012-08-31

    Pam and its homologs (the PHR protein family) are large E3 ubiquitin ligases that function to regulate synapse formation and growth in mammals, zebrafish, Drosophila, and Caenorhabditis elegans. Phr1-deficient mouse models (Phr1(Δ8,9) and Phr1(Magellan), with deletions in the N-terminal putative guanine exchange factor region and the C-terminal ubiquitin ligase region, respectively) exhibit axon guidance/outgrowth defects and striking defects of major axon tracts in the CNS. Our earlier studies identified Pam to be associated with tuberous sclerosis complex (TSC) proteins, ubiquitinating TSC2 and regulating mammalian/mechanistic target of rapamycin (mTOR) signaling. Here, we examine the potential involvement of the TSC/mTOR complex 1(mTORC1) signaling pathway in Phr1-deficient mouse models. We observed attenuation of mTORC1 signaling in the brains of both Phr1(Δ8,9) and Phr1(Magellan) mouse models. Our results establish that Pam regulates TSC/mTOR signaling in vitro and in vivo through two distinct domains. To further address whether Pam regulates mTORC1 through two functionally independent domains, we undertook heterozygous mutant crossing between Phr1(Δ8,9) and Phr1(Magellan) mice to generate a compound heterozygous model to determine whether these two domains can complement each other. mTORC1 signaling was not attenuated in the brains of double mutants (Phr1(Δ8,9/Mag)), confirming that Pam displays dual regulation of the mTORC1 pathway through two functional domains. Our results also suggest that although dysregulation of mTORC1 signaling may be responsible for the corpus callosum defects, other neurodevelopmental defects observed with Phr1 deficiency are independent of mTORC1 signaling. The ubiquitin ligase complex containing Pam-Fbxo45 likely targets additional synaptic and axonal proteins, which may explain the overlapping neurodevelopmental defects observed in Phr1 and Fbxo45 deficiency.

  17. Protein: MPB2 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB2 Ubiquitin ligases SMURF1 KIAA1625 SMURF1 E3 ubiquitin-protein ligase SMURF1 SM...AD ubiquitination regulatory factor 1, SMAD-specific E3 ubiquitin-protein ligase 1 9606 Homo sapiens Q9HCE7 57154 2LB1, 2LAZ, 2LB0, 3PYC 57154 Q9HCE7 ...

  18. The mechanism of OTUB1-mediated inhibition of ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Wiener, Reuven; Zhang, Xiangbin; Wang, Tao; Wolberger, Cynthia (JHU)

    2013-04-08

    Histones are ubiquitinated in response to DNA double-strand breaks (DSB), promoting recruitment of repair proteins to chromatin. UBC13 (also known as UBE2N) is a ubiquitin-conjugating enzyme (E2) that heterodimerizes with UEV1A (also known as UBE2V1) and synthesizes K63-linked polyubiquitin (K63Ub) chains at DSB sites in concert with the ubiquitin ligase (E3), RNF168 (ref. 3). K63Ub synthesis is regulated in a non-canonical manner by the deubiquitinating enzyme, OTUB1 (OTU domain-containing ubiquitin aldehyde-binding protein 1), which binds preferentially to the UBC13-Ub thiolester. Residues amino-terminal to the OTU domain, which had been implicated in ubiquitin binding, are required for binding to UBC13-Ub and inhibition of K63Ub synthesis. Here we describe structural and biochemical studies elucidating how OTUB1 inhibits UBC13 and other E2 enzymes. We unexpectedly find that OTUB1 binding to UBC13-Ub is allosterically regulated by free ubiquitin, which binds to a second site in OTUB1 and increases its affinity for UBC13-Ub, while at the same time disrupting interactions with UEV1A in a manner that depends on the OTUB1 N terminus. Crystal structures of an OTUB1-UBC13 complex and of OTUB1 bound to ubiquitin aldehyde and a chemical UBC13-Ub conjugate show that binding of free ubiquitin to OTUB1 triggers conformational changes in the OTU domain and formation of a ubiquitin-binding helix in the N terminus, thus promoting binding of the conjugated donor ubiquitin in UBC13-Ub to OTUB1. The donor ubiquitin thus cannot interact with the E2 enzyme, which has been shown to be important for ubiquitin transfer. The N-terminal helix of OTUB1 is positioned to interfere with UEV1A binding to UBC13, as well as with attack on the thiolester by an acceptor ubiquitin, thereby inhibiting K63Ub synthesis. OTUB1 binding also occludes the RING E3 binding site on UBC13, thus providing a further component of inhibition. The general features of the inhibition mechanism explain how OTUB1

  19. Plasma protein corona modulates the vascular wall interaction of drug carriers in a material and donor specific manner.

    Directory of Open Access Journals (Sweden)

    Daniel J Sobczynski

    Full Text Available The nanoscale plasma protein interaction with intravenously injected particulate carrier systems is known to modulate their organ distribution and clearance from the bloodstream. However, the role of this plasma protein interaction in prescribing the adhesion of carriers to the vascular wall remains relatively unknown. Here, we show that the adhesion of vascular-targeted poly(lactide-co-glycolic-acid (PLGA spheres to endothelial cells is significantly inhibited in human blood flow, with up to 90% reduction in adhesion observed relative to adhesion in simple buffer flow, depending on the particle size and the magnitude and pattern of blood flow. This reduced PLGA adhesion in blood flow is linked to the adsorption of certain high molecular weight plasma proteins on PLGA and is donor specific, where large reductions in particle adhesion in blood flow (>80% relative to buffer is seen with ∼60% of unique donor bloods while others exhibit moderate to no reductions. The depletion of high molecular weight immunoglobulins from plasma is shown to successfully restore PLGA vascular wall adhesion. The observed plasma protein effect on PLGA is likely due to material characteristics since the effect is not replicated with polystyrene or silica spheres. These particles effectively adhere to the endothelium at a higher level in blood over buffer flow. Overall, understanding how distinct plasma proteins modulate the vascular wall interaction of vascular-targeted carriers of different material characteristics would allow for the design of highly functional delivery vehicles for the treatment of many serious human diseases.

  20. Characterization of a structurally and functionally diverged acyl-acyl carrier protein desaturase from milkweed seed.

    Science.gov (United States)

    Cahoon, E B; Coughlan, S J; Shanklin, J

    1997-04-01

    A cDNA for a structurally variant acyl-acyl carrier protein (ACP) desaturase was isolated from milkweed (Asclepias syriaca) seed, a tissue enriched in palmitoleic (16:1delta9)* and cis-vaccenic (18:1delta11) acids. Extracts of Escherichia coli that express the milkweed cDNA catalyzed delta9 desaturation of acyl-ACP substrates, and the recombinant enzyme exhibited seven- to ten-fold greater specificity for palmitoyl (16:0)-ACP and 30-fold greater specificity for myristoyl (14:0)-ACP than did known delta9-stearoyl (18:0)-ACP desaturases. Like other variant acyl-ACP desaturases reported to date, the milkweed enzyme contains fewer amino acids near its N-terminus compared to previously characterized delta9-18:0-ACP desaturases. Based on the activity of an N-terminal deletion mutant of a delta9-18:0-ACP desaturase, this structural feature likely does not account for differences in substrate specificities.

  1. Stearoyl-acyl carrier protein desaturases are associated with floral isolation in sexually deceptive orchids

    Energy Technology Data Exchange (ETDEWEB)

    Schluter, P.M.; Shanklin, J.; Xu, S.; Gagliardini, V.; Whittle, E.; Grossniklaus, U.; Schiestl, F. P.

    2011-04-05

    The orchids Ophrys sphegodes and O. exaltata are reproductively isolated from each other by the attraction of two different, highly specific pollinator species. For pollinator attraction, flowers chemically mimic the pollinators sex pheromones, the key components of which are alkenes with different double-bond positions. This study identifies genes likely involved in alkene biosynthesis, encoding stearoyl-acyl carrier protein (ACP) desaturase (SAD) homologs. The expression of two isoforms, SAD1 and SAD2, is flower-specific and broadly parallels alkene production during flower development. SAD2 shows a significant association with alkene production, and in vitro assays show that O. sphegodes SAD2 has activity both as an 18:0-ACP {Delta}{sup 9} and a 16:0-ACP {Delta}{sup 4} desaturase. Downstream metabolism of the SAD2 reaction products would give rise to alkenes with double-bonds at position 9 or position 12, matching double-bond positions observed in alkenes in the odor bouquet of O. sphegodes. SAD1 and SAD2 show evidence of purifying selection before, and positive or relaxed purifying selection after gene duplication. By contributing to the production of species-specific alkene bouquets, SAD2 is suggested to contribute to differential pollinator attraction and reproductive isolation among these species. Taken together, these data are consistent with the hypothesis that SAD2 is a florally expressed barrier gene of large phenotypic effect and, possibly, a genic target of pollinator-mediated selection.

  2. Functional interchangeability of late domains, late domain cofactors and ubiquitin in viral budding.

    Directory of Open Access Journals (Sweden)

    Maria Zhadina

    2010-10-01

    Full Text Available The membrane scission event that separates nascent enveloped virions from host cell membranes often requires the ESCRT pathway, which can be engaged through the action of peptide motifs, termed late (L- domains, in viral proteins. Viral PTAP and YPDL-like L-domains bind directly to the ESCRT-I and ALIX components of the ESCRT pathway, while PPxY motifs bind Nedd4-like, HECT-domain containing, ubiquitin ligases (e.g. WWP1. It has been unclear precisely how ubiquitin ligase recruitment ultimately leads to particle release. Here, using a lysine-free viral Gag protein derived from the prototypic foamy virus (PFV, where attachment of ubiquitin to Gag can be controlled, we show that several different HECT domains can replace the WWP1 HECT domain in chimeric ubiquitin ligases and drive budding. Moreover, artificial recruitment of isolated HECT domains to Gag is sufficient to stimulate budding. Conversely, the HECT domain becomes dispensable if the other domains of WWP1 are directly fused to an ESCRT-1 protein. In each case where budding is driven by a HECT domain, its catalytic activity is essential, but Gag ubiquitination is dispensable, suggesting that ubiquitin ligation to trans-acting proteins drives budding. Paradoxically, however, we also demonstrate that direct fusion of a ubiquitin moiety to the C-terminus of PFV Gag can also promote budding, suggesting that ubiquitination of Gag can substitute for ubiquitination of trans-acting proteins. Depletion of Tsg101 and ALIX inhibits budding that is dependent on ubiquitin that is fused to Gag, or ligated to trans-acting proteins through the action of a PPxY motif. These studies underscore the flexibility in the ways that the ESCRT pathway can be engaged, and suggest a model in which the identity of the protein to which ubiquitin is attached is not critical for subsequent recruitment of ubiquitin-binding components of the ESCRT pathway and viral budding to proceed.

  3. Sunflower (Helianthus annuus) fatty acid synthase complex: enoyl-[acyl carrier protein]-reductase genes.

    Science.gov (United States)

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2015-01-01

    Enoyl-[acyl carrier protein]-reductases from sunflower. A major factor contributing to the amount of fatty acids in plant oils are the first steps of their synthesis. The intraplastidic fatty acid biosynthetic pathway in plants is catalysed by type II fatty acid synthase (FAS). The last step in each elongation cycle is carried out by the enoyl-[ACP]-reductase, which reduces the dehydrated product of β-hydroxyacyl-[ACP] dehydrase using NADPH or NADH. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus) seeds, two enoyl-[ACP]-reductase genes have been identified and cloned from developing seeds with 75 % identity: HaENR1 (GenBank HM021137) and HaENR2 (HM021138). The two genes belong to the ENRA and ENRB families in dicotyledons, respectively. The genetic duplication most likely originated after the separation of di- and monocotyledons. RT-qPCR revealed distinct tissue-specific expression patterns. Highest expression of HaENR1 was in roots, stems and developing cotyledons whereas that of H a ENR2 was in leaves and early stages of seed development. Genomic DNA gel blot analyses suggest that both are single-copy genes. In vivo activity of the ENR enzymes was tested by complementation experiments with the JP1111 fabI(ts) E. coli strain. Both enzymes were functional demonstrating that they interacted with the bacterial FAS components. That different fatty acid profiles resulted infers that the two Helianthus proteins have different structures, substrate specificities and/or reaction rates. The latter possibility was confirmed by in vitro analysis with affinity-purified heterologous-expressed enzymes that reduced the crotonyl-CoA substrate using NADH with different V max.

  4. Only Acyl Carrier Protein 1 (AcpP1 Functions in Pseudomonas aeruginosa Fatty Acid Synthesis

    Directory of Open Access Journals (Sweden)

    Jin-Cheng Ma

    2017-11-01

    Full Text Available The genome of Pseudomonas aeruginosa contains three open reading frames, PA2966, PA1869, and PA3334, which encode putative acyl carrier proteins, AcpP1, AcpP2, and AcpP3, respectively. In this study, we found that, although these apo-ACPs were successfully phosphopantetheinylated by P. aeruginosa phosphopantetheinyl transferase (PcpS and all holo-forms of these proteins could be acylated by Vibrio harveyi acyl-ACP synthetase (AasS, only AcpP1 could be used as a substrate for the synthesis of fatty acids, catalyzed by P. aeruginosa cell free extracts in vitro, and only acpP1 gene could restore growth in the Escherichia coliacpP mutant strain CY1877. And P. aeruginosaacpP1 could not be deleted, while disruption of acpP2 or acpP3 in the P. aeruginosa genome allowed mutant strains to grow as well as the wild type strain. These findings confirmed that only P. aeruginosa AcpP1 functions in fatty acid biosynthesis, and that acpP2 and acpP3 do not play roles in the fatty acid synthetic pathway. Moreover, disruption of acpP2 and acpP3 did not affect the ability of P. aeruginosa to produce N-acylhomoserine lactones (AHL, but replacement of P. aeruginosaacpP1 with E. coliacpP caused P. aeruginosa to reduce the production of AHL molecules, which indicated that neither P. aeruginosa AcpP2 nor AcpP3 can act as a substrate for synthesis of AHL molecules in vivo. Furthermore, replacement of acpP1 with E. coliacpP reduced the ability of P. aeruginosa to produce some exo-products and abolished swarming motility in P. aeruginosa.

  5. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 4: intercellular bridges, mitochondria, nuclear envelope, apoptosis, ubiquitination, membrane/voltage-gated channels, methylation/acetylation, and transcription factors.

    Science.gov (United States)

    Hermo, Louis; Pelletier, R-Marc; Cyr, Daniel G; Smith, Charles E

    2010-04-01

    As germ cells divide and differentiate from spermatogonia to spermatozoa, they share a number of structural and functional features that are common to all generations of germ cells and these features are discussed herein. Germ cells are linked to one another by large intercellular bridges which serve to move molecules and even large organelles from the cytoplasm of one cell to another. Mitochondria take on different shapes and features and topographical arrangements to accommodate their specific needs during spermatogenesis. The nuclear envelope and pore complex also undergo extensive modifications concomitant with the development of germ cell generations. Apoptosis is an event that is normally triggered by germ cells and involves many proteins. It occurs to limit the germ cell pool and acts as a quality control mechanism. The ubiquitin pathway comprises enzymes that ubiquitinate as well as deubiquitinate target proteins and this pathway is present and functional in germ cells. Germ cells express many proteins involved in water balance and pH control as well as voltage-gated ion channel movement. In the nucleus, proteins undergo epigenetic modifications which include methylation, acetylation, and phosphorylation, with each of these modifications signaling changes in chromatin structure. Germ cells contain specialized transcription complexes that coordinate the differentiation program of spermatogenesis, and there are many male germ cell-specific differences in the components of this machinery. All of the above features of germ cells will be discussed along with the specific proteins/genes and abnormalities to fertility related to each topic. Copyright 2009 Wiley-Liss, Inc.

  6. UUCD: a family-based database of ubiquitin and ubiquitin-like conjugation.

    Science.gov (United States)

    Gao, Tianshun; Liu, Zexian; Wang, Yongbo; Cheng, Han; Yang, Qing; Guo, Anyuan; Ren, Jian; Xue, Yu

    2013-01-01

    In this work, we developed a family-based database of UUCD (http://uucd.biocuckoo.org) for ubiquitin and ubiquitin-like conjugation, which is one of the most important post-translational modifications responsible for regulating a variety of cellular processes, through a similar E1 (ubiquitin-activating enzyme)-E2 (ubiquitin-conjugating enzyme)-E3 (ubiquitin-protein ligase) enzyme thioester cascade. Although extensive experimental efforts have been taken, an integrative data resource is still not available. From the scientific literature, 26 E1s, 105 E2s, 1003 E3s and 148 deubiquitination enzymes (DUBs) were collected and classified into 1, 3, 19 and 7 families, respectively. To computationally characterize potential enzymes in eukaryotes, we constructed 1, 1, 15 and 6 hidden Markov model (HMM) profiles for E1s, E2s, E3s and DUBs at the family level, separately. Moreover, the ortholog searches were conducted for E3 and DUB families without HMM profiles. Then the UUCD database was developed with 738 E1s, 2937 E2s, 46 631 E3s and 6647 DUBs of 70 eukaryotic species. The detailed annotations and classifications were also provided. The online service of UUCD was implemented in PHP + MySQL + JavaScript + Perl.

  7. Dengue Virus Genome Uncoating Requires Ubiquitination.

    Science.gov (United States)

    Byk, Laura A; Iglesias, Néstor G; De Maio, Federico A; Gebhard, Leopoldo G; Rossi, Mario; Gamarnik, Andrea V

    2016-06-28

    The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process. Dengue is the most significant arthropod-borne viral infection in humans. Although the number of cases increases every year, there are no approved therapeutics available for the treatment of dengue infection, and many basic aspects of the viral biology remain elusive. After entry, the viral membrane must fuse with the endosomal membrane to deliver the viral genome into the cytoplasm for translation and replication. A great deal of information has been obtained in the last decade

  8. RFWD3-Dependent Ubiquitination of RPA Regulates Repair at Stalled Replication Forks.

    Science.gov (United States)

    Elia, Andrew E H; Wang, David C; Willis, Nicholas A; Boardman, Alexander P; Hajdu, Ildiko; Adeyemi, Richard O; Lowry, Elizabeth; Gygi, Steven P; Scully, Ralph; Elledge, Stephen J

    2015-10-15

    We have used quantitative proteomics to profile ubiquitination in the DNA damage response (DDR). We demonstrate that RPA, which functions as a protein scaffold in the replication stress response, is multiply ubiquitinated upon replication fork stalling. Ubiquitination of RPA occurs on chromatin, involves sites outside its DNA binding channel, does not cause proteasomal degradation, and increases under conditions of fork collapse, suggesting a role in repair at stalled forks. We demonstrate that the E3 ligase RFWD3 mediates RPA ubiquitination. RFWD3 is necessary for replication fork restart, normal repair kinetics during replication stress, and homologous recombination (HR) at stalled replication forks. Mutational analysis suggests that multisite ubiquitination of the entire RPA complex is responsible for repair at stalled forks. Multisite protein group sumoylation is known to promote HR in yeast. Our findings reveal a similar requirement for multisite protein group ubiquitination during HR at stalled forks in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels.

    Science.gov (United States)

    Cruchaga, Carlos; Graff, Caroline; Chiang, Huei-Hsin; Wang, Jun; Hinrichs, Anthony L; Spiegel, Noah; Bertelsen, Sarah; Mayo, Kevin; Norton, Joanne B; Morris, John C; Goate, Alison

    2011-05-01

    To test whether rs1990622 (TMEM106B) is associated with age at onset (AAO) in granulin (GRN) mutation carriers and with plasma GRN levels in mutation carriers and healthy, elderly individuals. Rs1990622 (TMEM106B) was identified as a risk factor for frontotemporal lobar degeneration with TAR DNA-binding protein inclusions (FTLD-TDP) in a recent genome-wide association. Rs1990622 was genotyped in GRN mutation carriers and tested for association with AAO using the Kaplan-Meier method and a Cox proportional hazards model. Alzheimer's Disease Research Center. Subjects  We analyzed 50 affected and unaffected GRN mutation carriers from 4 previously reported FTLD-TDP families (HDDD1, FD1, HDDD2, and the Karolinska family). The GRN plasma levels were also measured in 73 healthy, elderly individuals. Age at onset and GRN plasma levels. The risk allele of rs1990622 was associated with a mean decrease of the AAO of 13 years (P = 9.9 × 10(-7)) and with lower plasma GRN levels in both healthy older adults (P = 4 × 10(-4)) and GRN mutation carriers (P = .0027). Analysis of the HapMap database identified a nonsynonymous single-nucleotide polymorphism rs3173615 (T185S) in perfect linkage disequilibrium with rs1990622. The association of rs1990622 with AAO explains, in part, the wide range in the AAO of disease among GRN mutation carriers. We hypothesize that rs1990622 or another variant in linkage disequilibrium could act in a manner similar to APOE in Alzheimer disease, increasing risk for disease in the general population and modifying AAO in mutation carriers. Our results also suggest that genetic variation in TMEM106B may influence risk for FTLD-TDP by modulating secreted levels of GRN.

  10. TMEM106B gene polymorphism is associated with age at onset in granulin mutation carriers and plasma granulin protein levels

    Science.gov (United States)

    Cruchaga, Carlos; Graff, Caroline; Chiang, Huei-Hsin; Wang, Jun; Hinrichs, Anthony L.; Spiegel, Noah; Bertelsen, Sarah; Mayo, Kevin; Norton, Joanne B.; Morris, John C.; Goate, Alison

    2011-01-01

    Objective A recent genome-wide association study for frontotemporal lobar degeneration with TAR DNA-binding protein inclusions (FTLD-TDP), identified rs1990622 (TMEM106B) as a risk factor for FTLD-TDP. In this study we tested whether rs1990622 is associated with age at onset (AAO) in granulin (GRN) mutation carriers and with plasma GRN levels in mutation carriers and healthy elderly individuals. Design Rs1990622 was genotyped in GRN mutation carriers and tested for association with AAO using the Kaplan-Meier and a Cox proportional hazards model. Subjects We analyzed 50 affected and unaffected GRN mutation carriers from four previously reported FTLD-TDP families (HDDD1, FD1, HDDD2 and the Karolinska family). GRN plasma levels were also measured in 73 healthy, elderly individuals. Results The risk allele of rs1990622 is associated with a mean decrease of the age at onset of thirteen years (p=9.9×10−7), with lower plasma granulin levels in both healthy older adults (p = 4×10−4) and GRN mutation carriers (p=0.0027). Analysis of the HAPMAP database identified a non-synonymous single nucleotide polymorphism, rs3173615 (T185S) in perfect linkage disequilibrium with rs1990622. Conclusions The association of rs1990622 with AAO explains, in part, the wide range in the age at onset of disease among GRN mutation carriers. We hypothesize that rs1990622 or another variant in linkage disequilibrium could act in a manner similar to APOE in Alzheimer’s disease, increasing risk for disease in the general population and modifying AAO in mutation carriers. Our results also suggest that genetic variation in TMEM106B may influence risk for FTLD-TDP by modulating secreted levels of GRN. PMID:21220649

  11. Ubiquitin Proteasome System in Parkinson Disease: a keeper or a witness?

    Science.gov (United States)

    Martins-Branco, Diogo; Esteves, Ana R.; Santos, Daniel; Arduino, Daniela M.; Swerdlow, Russell H.; Oliveira, Catarina R.; Januario, Cristina; Cardoso, Sandra M.

    2014-01-01

    Objective The aim of this work was to evaluate the role of Ubiquitin-Proteasome System (UPS) on mitochondrial-driven alpha-synuclein (aSN) clearance in in vitro, ex vivo and in vivo Parkinson disease (PD) cellular models. Method We used SH-SY5Y ndufa2 knock-down (KD) cells, PD cybrids and peripheral blood mononuclear cells (PBMC) from patients meeting the diagnostic criteria for PD. We quantified aSN aggregation, proteasome activity and protein ubiquitination levels. In PBMC of PD patients population we evaluated aSN levels in plasma and the influence of several demographic characteristics in the above mentioned determinations. Results We found that ubiquitin-independent proteasome activity was up-regulated in SH-SY5Y ndufa2 KD cells while a down regulation was observed in PD cybrids and PBMC. Moreover, we observed an increase in protein ubiquitination that correlates with a decrease in ubiquitin-dependent proteasome activity. Accordingly, proteasome inhibition prevented ubiquitin-dependent aSN clearance. Ubiquitin-independent proteasome activity was positively correlated with ubiquitination in PBMC. We also report a negative correlation of chymotrypsin-like activity with age in control and late-onset PD groups. Total ubiquitin content is positively correlated with aSN oligomers levels, which leads to an age-dependent increase of aSN ubiquitination in LOPD. Moreover, aSN levels are increased in the plasma of PD patients. Interpretation aSN oligomers are ubiquitinated and we identified an ubiquitin-dependent clearance insufficiency with accumulation of both aSN and ubiquitin. However, SH-SY5Y ndufa2 KD cells showed a significant up-regulation of ubiquitin-independent proteasomal enzymatic activity that could mean a cell rescue attempt. Moreover, we identified that UPS function is age-dependent in PBMC. PMID:22921536

  12. (Glyco)-protein drug carriers with an intrinsic therapeutic activity : The concept of dual targeting

    NARCIS (Netherlands)

    Meijer, D.K F; Molema, Ingrid; Moolenaar, Frits; de Zeeuw, D; Swart, P.J

    Dual targeting can in principle be achieved by using intrinsically active carriers that not only deliver the conjugated drug but also otherwise influence the pathological process. Potential carriers of this kind are monoclonal antibodies, certain interferons and interleukins, as well as certain

  13. Crystallization and preliminary X-ray diffraction studies of the ubiquitin-like (UbL) domain of the human homologue A of Rad23 (hHR23A) protein.

    Science.gov (United States)

    Chen, Yu Wai; Tajima, Toshitaka; Rees, Martin; Garcia-Maya, Mitla

    2009-09-01

    Human homologue A of Rad23 (hHR23A) plays dual roles in DNA repair as well as serving as a shuttle vehicle targeting polyubiquitinated proteins for degradation. Its N-terminal ubiquitin-like (UbL) domain interacts with the 19S proteasomal cap and provides the docking mechanism for protein delivery. Pyramidal crystals of the UbL domain of hHR23A were obtained by the hanging-drop vapour-diffusion method with ammonium sulfate as the crystallizing agent. The crystals diffracted to beyond 2 A resolution and belonged to the hexagonal space group P6(5)22, with unit-cell parameters a = b = 78.48, c = 63.57 A. The structure was solved by molecular replacement using the UbL domain of yeast Dsk2 as the search model.

  14. Enoyl-Acyl Carrier Protein Reductase I (FabI) Is Essential for the Intracellular Growth of Listeria monocytogenes

    Science.gov (United States)

    Ericson, Megan E.; Frank, Matthew W.

    2016-01-01

    Enoyl-acyl carrier protein reductase catalyzes the last step in each elongation cycle of type II bacterial fatty acid synthesis and is a key regulatory protein in bacterial fatty acid synthesis. Genes of the facultative intracellular pathogen Listeria monocytogenes encode two functional enoyl-acyl carrier protein isoforms based on their ability to complement the temperature-sensitive growth phenotype of Escherichia coli strain JP1111 [fabI(Ts)]. The FabI isoform was inactivated by the FabI selective inhibitor AFN-1252, but the FabK isoform was not affected by the drug, as expected. Inhibition of FabI by AFN-1252 decreased endogenous fatty acid synthesis by 80% and lowered the growth rate of L. monocytogenes in laboratory medium. Robust exogenous fatty acid incorporation was not detected in L. monocytogenes unless the pathway was partially inactivated by AFN-1252 treatment. However, supplementation with exogenous fatty acids did not restore normal growth in the presence of AFN-1252. FabI inactivation prevented the intracellular growth of L. monocytogenes, showing that neither FabK nor the incorporation of host cellular fatty acids was sufficient to support the intracellular growth of L. monocytogenes. Our results show that FabI is the primary enoyl-acyl carrier protein reductase of type II bacterial fatty acid synthesis and is essential for the intracellular growth of L. monocytogenes. PMID:27736774

  15. The Peroxisomal Targeting Signal 1 in sterol carrier protein 2 is autonomous and essential for receptor recognition

    Directory of Open Access Journals (Sweden)

    Bond Charles S

    2011-03-01

    Full Text Available Abstract Background The majority of peroxisomal matrix proteins destined for translocation into the peroxisomal lumen are recognised via a C-terminal Peroxisomal Target Signal type 1 by the cycling receptor Pex5p. The only structure to date of Pex5p in complex with a cargo protein is that of the C-terminal cargo-binding domain of the receptor with sterol carrier protein 2, a small, model peroxisomal protein. In this study, we have tested the contribution of a second, ancillary receptor-cargo binding site, which was found in addition to the characterised Peroxisomal Target Signal type 1. Results To investigate the function of this secondary interface we have mutated two key residues from the ancillary binding site and analyzed the level of binding first by a yeast-two-hybrid assay, followed by quantitative measurement of the binding affinity and kinetics of purified protein components and finally, by in vivo measurements, to determine translocation capability. While a moderate but significant reduction of the interaction was found in binding assays, we were not able to measure any significant defects in vivo. Conclusions Our data therefore suggest that at least in the case of sterol carrier protein 2 the contribution of the second binding site is not essential for peroxisomal import. At this stage, however, we cannot rule out that other cargo proteins may require this ancillary binding site.

  16. Immunization of mice by Hollow Mesoporous Silica Nanoparticles as carriers of Porcine Circovirus Type 2 ORF2 Protein

    Directory of Open Access Journals (Sweden)

    Guo Hui-Chen

    2012-06-01

    Full Text Available Abstract Backgroud Porcine circovirus type 2 (PCV2 is a primary etiological agent of post-weaning multi-systemic wasting syndrome (PMWS, which is a disease of increasing importance to the pig industry worldwide. Hollow mesoporous silica nanoparticles (HMSNs have gained increasing interest for use in vaccines. Methods To study the potential of HMSNs for use as a protein delivery system or vaccine carriers. HMSNs were synthesized by a sol–gel/emulsion(oil-in-water/ethanol method, purified PCV2 GST-ORF2-E protein was loaded into HMSNs, and the resulting HMSN/protein mixture was injected into mice. The uptake and release profiles of protein by HMSNs in vitro were investigated. PCV2 GST-ORF2-E specific antibodies and secretion of IFN-γ were detected by enzyme-linked immunosorbent assays, spleen lymphocyte proliferation was measured by the MTS method, and the percentage of CD4+ and CD8+ were determined by flow cytometry. Results HMSNs were found to yield better binding capacities and delivery profiles of proteins; the specific immune response induced by PCV2 GST-ORF2-E was maintained for a relatively long period of time after immunization with the HMSN/protein complex. Conclusion The findings suggest that HMSNs are good protein carriers and have high potential for use in future applications in therapeutic drug delivery.

  17. Intact protein analysis of ubiquitin in cerebrospinal fluid by multiple reaction monitoring reveals differences in Alzheimer's disease and frontotemporal lobar degeneration.

    Science.gov (United States)

    Oeckl, Patrick; Steinacker, Petra; von Arnim, Christine A F; Straub, Sarah; Nagl, Magdalena; Feneberg, Emily; Weishaupt, Jochen H; Ludolph, Albert C; Otto, Markus

    2014-11-07

    The impairment of the ubiquitin-proteasome system (UPS) is thought to be an early event in neurodegeneration, and monitoring UPS alterations might serve as a disease biomarker. Our aim was to establish an alternate method to antibody-based assays for the selective measurement of free monoubiquitin in cerebrospinal fluid (CSF). Free monoubiquitin was measured with liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MS/MS) in CSF of patients with Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), behavioral variant of frontotemporal dementia (bvFTD), Creutzfeldt-Jakob disease (CJD), Parkinson's disease (PD), primary progressive aphasia (PPA), and progressive supranuclear palsy (PSP). The LC-MS/MS method showed excellent intra- and interassay precision (4.4-7.4% and 4.9-10.3%) and accuracy (100-107% and 100-106%). CSF ubiquitin concentration was increased compared with that of controls (33.0 ± 9.7 ng/mL) in AD (47.5 ± 13.1 ng/mL, p < 0.05) and CJD patients (171.5 ± 103.5 ng/mL, p < 0.001) but not in other neurodegenerative diseases. Receiver operating characteristic curve (ROC) analysis of AD vs control patients revealed an area under the curve (AUC) of 0.832, and the specificity and sensitivity were 75 and 75%, respectively. ROC analysis of AD and FTLD patients yielded an AUC of 0.776, and the specificity and sensitivity were 53 and 100%, respectively. In conclusion, our LC-MS/MS method may facilitate ubiquitin determination to a broader community and might help to discriminate AD, CJD, and FTLD patients.

  18. High-throughput siRNA screening applied to the ubiquitin-proteasome system

    DEFF Research Database (Denmark)

    Poulsen, Esben Guldahl; Nielsen, Sofie V.; Pietras, Elin J.

    2016-01-01

    The ubiquitin-proteasome system is the major pathway for intracellular protein degradation in eukaryotic cells. Due to the large number of genes dedicated to the ubiquitin-proteasome system, mapping degradation pathways for short lived proteins is a daunting task, in particular in mammalian cells...

  19. Ubiquitination of the common cytokine receptor γc and regulation of expression by an ubiquitination/deubiquitination machinery

    International Nuclear Information System (INIS)

    Gesbert, Franck; Malarde, Valerie; Dautry-Varsat, Alice

    2005-01-01

    The common cytokine receptor γ c is shared by the interleukin-2, -4, -7, -9, -15, and -21 receptors, and is essential for lymphocyte proliferation and survival. The regulation of γ c receptor expression level is therefore critical for the ability of cells to respond to these cytokines. We previously reported that γ c is efficiently constitutively internalized and addressed towards a degradation endocytic compartment. We show that γ c is ubiquitinated and also associated to ubiquitinated proteins. We report that the ubiquitin-ligase c-Cbl induces γ c down-regulation. In addition, the ubiquitin-hydrolase, DUB-2, counteracts the effect of c-Cbl on γ c expression. We show that an increase in DUB-2 expression correlates with an increased γ c half-life, resulting in the up-regulation of the receptor. Altogether, we show that γ c is the target of an ubiquitination mechanism and its expression level can be regulated through the activities of a couple of ubiquitin-ligase/ubiquitin-hydrolase enzymes, namely c-Cbl/DUB-2

  20. Cloning and expression of a cDNA encoding human sterol carrier protein 2

    International Nuclear Information System (INIS)

    Yamamoto, Ritsu; Kallen, C.B.; Babalola, G.O.; Rennert, H.; Strauss, J.F. III; Billheimer, J.T.

    1991-01-01

    The authors report the cloning and expression of a cDNA encoding human sterol carrier protein 2 (SCP 2 ). The 1.3-kilobase (kb) cDNA contains an open reading frame which encompasses a 143-amino acid sequence which is 89% identical to the rat SCP 2 amino acid sequence. The deduced amino acid sequence of the polypeptide reveals a 20-residue amino-terminal leader sequence in front of the mature polypeptide, which contains a carboxyl-terminal tripeptide (Ala-Lys-Leu) related to the peroxisome targeting sequence. The expressed cDNA in COS-7 cells yields a 15.3-kDa polypeptide and increased amounts of a 13.2-kDa polypeptide, both reacting with a specific rabbit antiserum to rat liver SCP 2 . The cDNA insert hybridizes with 3.2- and 1.8-kb mRNA species in human liver poly(A) + RNA. In human fibroblasts and placenta the 1.8-kb mRNA was most abundant. Southern blot analysis suggests either that there are multiple copies of the SCP 2 gene in the human genome or that the SCP 2 gene is very large. Coexpression of the SCP 2 cDNA with expression vectors for cholesterol side-chain cleavage enzyme and adrenodoxin resulted in a 2.5-fold enhancement of progestin synthesis over that obtained with expression of the steroidogenic enzyme system alone. These findings are concordant with the notion that SCP 2 plays a role in regulating steroidogenesis, among other possible functions

  1. Remote control of regioselectivity in acyl-acyl carrier protein-desaturases.

    Science.gov (United States)

    Guy, Jodie E; Whittle, Edward; Moche, Martin; Lengqvist, Johan; Lindqvist, Ylva; Shanklin, John

    2011-10-04

    Regiospecific desaturation of long-chain saturated fatty acids has been described as approaching the limits of the discriminatory power of enzymes because the substrate entirely lacks distinguishing features close to the site of dehydrogenation. To identify the elusive mechanism underlying regioselectivity, we have determined two crystal structures of the archetypal Δ9 desaturase from castor in complex with acyl carrier protein (ACP), which show the bound ACP ideally situated to position C9 and C10 of the acyl chain adjacent to the diiron active site for Δ9 desaturation. Analysis of the structures and modeling of the complex between the highly homologous ivy Δ4 desaturase and ACP, identified a residue located at the entrance to the binding cavity, Asp280 in the castor desaturase (Lys275 in the ivy desaturase), which is strictly conserved within Δ9 and Δ4 enzymes but differs between them. We hypothesized that interaction between Lys275 and the phosphate of the pantetheine, seen in the ivy model, is key to positioning C4 and C5 adjacent to the diiron center for Δ4 desaturation. Mutating castor Asp280 to Lys resulted in a major shift from Δ9 to Δ4 desaturation. Thus, interaction between desaturase side-chain 280 and phospho-serine 38 of ACP, approximately 27 Å from the site of double-bond formation, predisposes ACP binding that favors either Δ9 or Δ4 desaturation via repulsion (acidic side chain) or attraction (positively charged side chain), respectively. Understanding the mechanism underlying remote control of regioselectivity provides the foundation for reengineering desaturase enzymes to create designer chemical feedstocks that would provide alternatives to those currently obtained from petrochemicals.

  2. A soluble fatty acyl-acyl carrier protein synthetase from the bioluminescent bacterium Vibrio harveyi.

    Science.gov (United States)

    Byers, D M; Holmes, C G

    1990-01-01

    An enzyme catalyzing the ligation of long chain fatty acids to bacterial acyl carrier protein (ACP) has been detected and partially characterized in cell extracts of the bioluminescent bacterium Vibrio harveyi. Acyl-ACP synthetase activity (optimal pH 7.5-8.0) required millimolar concentrations of ATP and Mg2+ and was slightly activated by Ca2+, but was inhibited at high ionic strength and by Triton X-100. ACP from either Escherichia coli (apparent Km = 20 microM) or V. harveyi was used as a substrate. Of the [14C]fatty acids tested as substrates (8-18 carbons), a preference for fatty acids less than or equal to 14 carbons in length was observed. Vibrio harveyi acyl-ACP synthetase appears to be a soluble hydrophilic enzyme on the basis of subcellular fractionation and Triton X-114 phase partition assay. The enzyme was not coinduced with luciferase activity or light emission in vivo during the late exponential growth phase in liquid culture. Acyl-ACP synthetase activity was also detected in extracts from the luminescent bacterium Vibrio fischeri, but not Photobacterium phosphoreum. The cytosolic nature and enzymatic properties of V. harveyi acyl-ACP synthetase indicate that it may have a different physiological role than the membrane-bound activity of E. coli, which has been implicated in phosphatidylethanolamine turnover. Acyl-ACP synthetase activity in V. harveyi could be involved in the intracellular activation and elongation of exogenous fatty acids that occurs in this species or in the reactivation of free myristic acid generated by luciferase.

  3. Development of amphiphilic gamma-PGA-nanoparticle based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier.

    Science.gov (United States)

    Yoshikawa, Tomoaki; Okada, Naoki; Oda, Atsushi; Matsuo, Kazuhiko; Matsuo, Keisuke; Mukai, Yohei; Yoshioka, Yasuo; Akagi, Takami; Akashi, Mitsuru; Nakagawa, Shinsaku

    2008-02-08

    Nanoscopic therapeutic systems that incorporate biomacromolecules, such as protein and peptides, are emerging as the next generation of nanomedicine aimed at improving the therapeutic efficacy of biomacromolecular drugs. In this study, we report that poly(gamma-glutamic acid)-based nanoparticles (gamma-PGA NPs) are excellent protein delivery carriers for tumor vaccines that delivered antigenic proteins to antigen-presenting cells and elicited potent immune responses. Importantly, gamma-PGA NPs efficiently delivered entrapped antigenic proteins through cytosolic translocation from the endosomes, which is a key process of gamma-PGA NP-mediated anti-tumor immune responses. Our findings suggest that the gamma-PGA NP system is suitable for the intracellular delivery of protein-based drugs as well as tumor vaccines.

  4. Mastermind-Like 1 Is Ubiquitinated: Functional Consequences for Notch Signaling.

    Directory of Open Access Journals (Sweden)

    Mozhgan Farshbaf

    Full Text Available Early studies demonstrated the involvement of ubiquitination of the Notch intracellular domain for rapid turnover of the transcriptional complex at Notch target genes. It was shown that this ubiquitination was promoted by the co-activator Mastermind like 1 (MAML1. MAML1 also contains numerous lysine residues that may also be ubiquitinated and necessary for protein regulation. In this study, we show that over-expressed MAML1 is ubiquitinated and identify eight conserved lysine residues which are required for ubiquitination. We also show that p300 stimulates ubiquitination and that Notch inhibits ubiquitination. Furthermore, we show that a mutant MAML1 that has decreased ubiquitination shows increased output from a HES1 reporter gene assay. Therefore, we speculate that ubiquitination of MAML1 might be a mechanism to maintain low levels of the protein until needed for transcriptional activation. In summary, this study identifies that MAML1 is ubiquitinated in the absence of Notch signaling to maintain low levels of MAML1 in the cell. Our data supports the notion that a precise and tight regulation of the Notch pathway is required for this signaling pathway.

  5. Isoforms of acyl carrier protein involved in seed-specific fatty acid synthesis.

    Science.gov (United States)

    Suh, M C; Schultz, D J; Ohlrogge, J B

    1999-03-01

    Seeds of coriandrum sativum (coriander) and Thunbergia alata (black-eyed Susan vine) produce unusual monoenoic fatty acids which constitute over 80% of the total fatty acids of the seed oil. The initial step in the formation of these fatty acids is the desaturation of palmitoyl-ACP (acyl carrier protein) at the delta(4) or delta(6) positions to produce delta(4)-hexadecenoic acid (16:1(delta(4)) or delta(6)-hexadecenoic acid (16:1(delta(6)), respectively. The involvement of specific forms of ACP in the production of these novel monoenoic fatty acids was studied. ACPs were partially purified from endosperm of coriander and T. alata and used to generate 3H- and 14C-labelled palmitoyl-ACP substrates. In competition assays with labelled palmitoyl-ACP prepared from spinach (Spinacia oleracea), delta(4)-acyl-ACP desaturase activity was two- to threefold higher with coriander ACP than with spinach ACP. Similarly, the T. alata delta(6) desaturase favoured T. alata ACP over spinach ACP. A cDNA clone, Cs-ACP-1, encoding ACP was isolated from a coriander endosperm cDNA library. Cs-ACP-1 mRNA was predominantly expressed in endosperm rather than leaves. The Cs-ACP-1 mature protein was expressed in E. coli and comigrated on SDS-PAGE with the most abundant ACP expressed in endosperm tissues. In in vitro delta(4)-palmitoyl-ACP desaturase assays, the Cs-ACP-1 expressed from E. coli was four- and 10-fold more active than spinach ACP or E. coli ACP, respectively, in the synthesis of delta(4)-hexadecenoic acid from palmitoyl-ACP. In contrast, delta(9)-stearoyl-ACP desaturase activity from coriander endosperm did not discriminate strongly between different ACP species. These results indicate that individual ACP isoforms are specifically involved in the biosynthesis of unusual seed fatty acids and further suggest that expression of multiple ACP isoforms may participate in determining the products of fatty acid biosynthesis.

  6. Origin and diversification of TRIM ubiquitin ligases.

    Directory of Open Access Journals (Sweden)

    Ignacio Marín

    Full Text Available Most proteins of the TRIM family (also known as RBCC family are ubiquitin ligases that share a peculiar protein structure, characterized by including an N-terminal RING finger domain closely followed by one or two B-boxes. Additional protein domains found at their C termini have been used to classify TRIM proteins into classes. TRIMs are involved in multiple cellular processes and many of them are essential components of the innate immunity system of animal species. In humans, it has been shown that mutations in several TRIM-encoding genes lead to diverse genetic diseases and contribute to several types of cancer. They had been hitherto detected only in animals. In this work, by comprehensively analyzing the available diversity of TRIM and TRIM-like protein sequences and evaluating their evolutionary patterns, an improved classification of the TRIM family is obtained. Members of one of the TRIM subfamilies defined, called Subfamily A, turn to be present not only in animals, but also in many other eukaryotes, such as fungi, apusozoans, alveolates, excavates and plants. The rest of subfamilies are animal-specific and several of them originated only recently. Subfamily A proteins are characterized by containing a MATH domain, suggesting a potential evolutionary connection between TRIM proteins and a different type of ubiquitin ligases, known as TRAFs, which contain quite similar MATH domains. These results indicate that the TRIM family emerged much earlier than so far thought and contribute to our understanding of its origin and diversification. The structural and evolutionary links with the TRAF family of ubiquitin ligases can be experimentally explored to determine whether functional connections also exist.

  7. Physical Stability of Octenyl Succinate-Modified Polysaccharides and Whey Proteins for Potential Use as Bioactive Carriers in Food Systems.

    Science.gov (United States)

    Puerta-Gomez, Alex F; Castell-Perez, M Elena

    2015-06-01

    The high cost and potential toxicity of biodegradable polymers like poly(lactic-co-glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate-modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α-lactalbumin (α-L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim-Andersen-de Boer model indicated that native waxy corn had significantly (P whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%-OSA modification had a "melted" appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA-modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications. © 2015 Institute of Food Technologists®

  8. Cellular Assays for Ferredoxins: A Strategy for Understanding Electron Flow through Protein Carriers That Link Metabolic Pathways.

    Science.gov (United States)

    Atkinson, Joshua T; Campbell, Ian; Bennett, George N; Silberg, Jonathan J

    2016-12-27

    The ferredoxin (Fd) protein family is a structurally diverse group of iron-sulfur proteins that function as electron carriers, linking biochemical pathways important for energy transduction, nutrient assimilation, and primary metabolism. While considerable biochemical information about individual Fd protein electron carriers and their reactions has been acquired, we cannot yet anticipate the proportion of electrons shuttled between different Fd-partner proteins within cells using biochemical parameters that govern electron flow, such as holo-Fd concentration, midpoint potential (driving force), molecular interactions (affinity and kinetics), conformational changes (allostery), and off-pathway electron leakage (chemical oxidation). Herein, we describe functional and structural gaps in our Fd knowledge within the context of a sequence similarity network and phylogenetic tree, and we propose a strategy for improving our understanding of Fd sequence-function relationships. We suggest comparing the functions of divergent Fds within cells whose growth, or other measurable output, requires electron transfer between defined electron donor and acceptor proteins. By comparing Fd-mediated electron transfer with biochemical parameters that govern electron flow, we posit that models that anticipate energy flow across Fd interactomes can be built. This approach is expected to transform our ability to anticipate Fd control over electron flow in cellular settings, an obstacle to the construction of synthetic electron transfer pathways and rational optimization of existing energy-conserving pathways.

  9. The Ubiquitin System and Jasmonate Signaling

    Directory of Open Access Journals (Sweden)

    Astrid Nagels Durand

    2016-01-01

    Full Text Available The ubiquitin (Ub system is involved in most, if not all, biological processes in eukaryotes. The major specificity determinants of this system are the E3 ligases, which bind and ubiquitinate specific sets of proteins and are thereby responsible for target recruitment to the proteasome or other cellular processing machineries. The Ub system contributes to the regulation of the production, perception and signal transduction of plant hormones. Jasmonic acid (JA and its derivatives, known as jasmonates (JAs, act as signaling compounds regulating plant development and plant responses to various biotic and abiotic stress conditions. We provide here an overview of the current understanding of the Ub system involved in JA signaling.

  10. Lys48 ubiquitination during the intraerythrocytic cycle of the rodent malaria parasite, Plasmodium chabaudi.

    Science.gov (United States)

    González-López, Lorena; Carballar-Lejarazú, Rebeca; Arrevillaga Boni, Gerardo; Cortés-Martínez, Leticia; Cázares-Raga, Febe Elena; Trujillo-Ocampo, Abel; Rodríguez, Mario H; James, Anthony A; Hernández-Hernández, Fidel de la Cruz

    2017-01-01

    Ubiquitination tags proteins for different functions within the cell. One of the most abundant and studied ubiquitin modification is the Lys48 polyubiquitin chain that modifies proteins for their destruction by proteasome. In Plasmodium is proposed that post-translational regulation is fundamental for parasite development during its complex life-cycle; thus, the objective of this work was to analyze the ubiquitination during Plasmodium chabaudi intraerythrocytic stages. Ubiquitinated proteins were detected during intraerythrocytic stages of Plasmodium chabaudi by immunofluorescent microscopy, bidimensional electrophoresis (2-DE) combined with immunoblotting and mass spectrometry. All the studied stages presented protein ubiquitination and Lys48 polyubiquitination with more abundance during the schizont stage. Three ubiquitinated proteins were identified for rings, five for trophozoites and twenty for schizonts. Only proteins detected with a specific anti- Lys48 polyubiquitin antibody were selected for Mass Spectrometry analysis and two of these identified proteins were selected in order to detect the specific amino acid residues where ubiquitin is placed. Ubiquitinated proteins during the ring and trophozoite stages were related with the invasion process and in schizont proteins were related with nucleic acid metabolism, glycolysis and protein biosynthesis. Most of the ubiquitin detection was during the schizont stage and the Lys48 polyubiquitination during this stage was related to proteins that are expected to be abundant during the trophozoite stage. The evidence that these Lys48 polyubiquitinated proteins are tagged for destruction by the proteasome complex suggests that this type of post-translational modification is important in the regulation of protein abundance during the life-cycle and may also contribute to the parasite cell-cycle progression.

  11. A clinical trial examining the effect of increased total CRM(197) carrier protein dose on the antibody response to Haemophilus influenzae type b CRM(197) conjugate vaccine.

    Science.gov (United States)

    Usonis, Vytautas; Bakasenas, Vytautas; Lockhart, Stephen; Baker, Sherryl; Gruber, William; Laudat, France

    2008-08-18

    CRM(197) is a carrier protein in certain conjugate vaccines. When multiple conjugate vaccines with the same carrier protein are administered simultaneously, reduced response to vaccines and/or antigens related to the carrier protein may occur. This study examined responses of infants who, in addition to diphtheria toxoid/tetanus toxoid/acellular pertussis vaccine (DTaP) received either diphtheria CRM(197)-based Haemophilus influenzae type b conjugate vaccine (HbOC) or HbOC and a diphtheria CRM(197)-based combination 9-valent pneumococcal conjugate vaccine/meningococcal group C conjugate vaccine. Administration of conjugate vaccines with CRM(197) carrier protein load >50 microg did not reduce response to CRM(197) conjugate vaccines or immunogenicity to immunologically cross-reactive diphtheria toxoid.

  12. Carrier ampholyte-free isoelectric focusing on a paper-based analytical device for the fractionation of proteins.

    Science.gov (United States)

    Xie, Song-Fang; Gao, Han; Niu, Li-Li; Xie, Zhen-Sheng; Fang, Fang; Wu, Zhi-Yong; Yang, Fu-Quan

    2018-01-25

    Isoelectric focusing plays a critical role in the analysis of complex protein samples. Conventionally, isoelectric focusing is implemented with carrier ampholytes in capillary or immobilized pH gradient gel. In this study, we successfully exhibited a carrier ampholyte-free isoelectric focusing on paper-based analytical device. Proof of the concept was visually demonstrated with color model proteins. Experimental results showed that not only a pH gradient was well established along the open paper fluidic channel as confirmed by pH indicator strip, the pH gradient range could also be tuned by the catholyte or anolyte. Furthermore, the isoelectric focusing fractions from the paper channel can be directly cut and recovered into solutions for post analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. This paper-based isoelectric focusing method is fast, cheap, simple and easy to operate, and could potentially be used as a cost-effective protein sample clean-up method for target protein analysis with mass spectrometry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Simulated pressure denaturation thermodynamics of ubiquitin.

    Science.gov (United States)

    Ploetz, Elizabeth A; Smith, Paul E

    2017-12-01

    Simulations of protein thermodynamics are generally difficult to perform and provide limited information. It is desirable to increase the degree of detail provided by simulation and thereby the potential insight into the thermodynamic properties of proteins. In this study, we outline how to analyze simulation trajectories to decompose conformation-specific, parameter free, thermodynamically defined protein volumes into residue-based contributions. The total volumes are obtained using established methods from Fluctuation Solution Theory, while the volume decomposition is new and is performed using a simple proximity method. Native and fully extended ubiquitin are used as the test conformations. Changes in the protein volumes are then followed as a function of pressure, allowing for conformation-specific protein compressibility values to also be obtained. Residue volume and compressibility values indicate significant contributions to protein denaturation thermodynamics from nonpolar and coil residues, together with a general negative compressibility exhibited by acidic residues. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The effect of acetaminophen on ubiquitin homeostasis in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Angelina Huseinovic

    Full Text Available Acetaminophen (APAP, although considered a safe drug, is one of the major causes of acute liver failure by overdose, and therapeutic chronic use can cause serious health problems. Although the reactive APAP metabolite N-acetyl-p-benzoquinoneimine (NAPQI is clearly linked to liver toxicity, toxicity of APAP is also found without drug metabolism of APAP to NAPQI. To get more insight into mechanisms of APAP toxicity, a genome-wide screen in Saccharomyces cerevisiae for APAP-resistant deletion strains was performed. In this screen we identified genes related to the DNA damage response. Next, we investigated the link between genotype and APAP-induced toxicity or resistance by performing a more detailed screen with a library containing mutants of 1522 genes related to nuclear processes, like DNA repair and chromatin remodelling. We identified 233 strains that had an altered growth rate relative to wild type, of which 107 showed increased resistance to APAP and 126 showed increased sensitivity. Gene Ontology analysis identified ubiquitin homeostasis, regulation of transcription of RNA polymerase II genes, and the mitochondria-to-nucleus signalling pathway to be associated with APAP resistance, while histone exchange and modification, and vesicular transport were connected to APAP sensitivity. Indeed, we observed a link between ubiquitin levels and APAP resistance, whereby ubiquitin deficiency conferred resistance to APAP toxicity while ubiquitin overexpression resulted in sensitivity. The toxicity profile of various chemicals, APAP, and its positional isomer AMAP on a series of deletion strains with ubiquitin deficiency showed a unique resistance pattern for APAP. Furthermore, exposure to APAP increased the level of free ubiquitin and influenced the ubiquitination of proteins. Together, these results uncover a role for ubiquitin homeostasis in APAP-induced toxicity.

  15. Stealth carriers for low-resolution structure determination of membrane proteins in solution

    DEFF Research Database (Denmark)

    Maric, Selma; Skar-Gislinge, Nicholas; Midtgaard, Søren

    2014-01-01

    techniques for fast and reliable structural analysis. The difficulty with this approach is that the carrier discs contribute to the measured scattering intensity in a highly nontrivial fashion, making subsequent data analysis challenging. Here, an elegant solution to circumvent the intrinsic complexity...

  16. NEOGLYCOPROTEINS AS CARRIERS FOR ANTIVIRAL DRUGS - SYNTHESIS AND ANALYSIS OF PROTEIN DRUG CONJUGATES

    NARCIS (Netherlands)

    Molema, Grietje; Jansen, Robert W.; Visser, Jan; Herdewijn, Piet; Moolenaar, Frits; Meijer, Dirk K.F.

    In order to investigate whether neoglycoproteins can potentially act as carriers for targeting of antiviral drugs to certain cell types in the body, various neoglycoproteins were synthesized using thiophosgene-activated p-aminophenyl sugar derivatives. These neoglycoproteins were conjugated with the

  17. Herp regulates Hrd1-mediated ubiquitylation in a ubiquitin-like domain-dependent manner

    DEFF Research Database (Denmark)

    Kny, Melanie; Standera, Sybille; Hartmann-Petersen, Rasmus

    2011-01-01

    in ER-associated protein degradation (ERAD) and interacts directly with the ubiquitin ligase Hrd1, which is found in high molecular mass complexes of the ER membrane. Here we present the first evidence that Herp regulates Hrd1-mediated ubiquitylation in a ubiquitin-like (UBL) domain-dependent manner. We...

  18. Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria*

    Science.gov (United States)

    Yao, Jiangwei; Bruhn, David F.; Frank, Matthew W.; Lee, Richard E.; Rock, Charles O.

    2016-01-01

    Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria. PMID:26567338

  19. Structure of 3-ketoacyl-(acyl-carrier-protein) reductase from Rickettsia prowazekii at 2.25 Å resolution

    International Nuclear Information System (INIS)

    Subramanian, Sandhya; Abendroth, Jan; Phan, Isabelle Q. H.; Olsen, Christian; Staker, Bart L.; Napuli, A.; Van Voorhis, Wesley C.; Stacy, Robin; Myler, Peter J.

    2011-01-01

    The R. prowazekii 3-ketoacyl-(acyl-carrier-protein) reductase is similar to those from other prokaryotic pathogens but differs significantly from the mammalian orthologue, strengthening its case as a potential drug target. Rickettsia prowazekii, a parasitic Gram-negative bacterium, is in the second-highest biodefense category of pathogens of the National Institute of Allergy and Infectious Diseases, but only a handful of structures have been deposited in the PDB for this bacterium; to date, all of these have been solved by the SSGCID. Owing to its small genome (about 800 protein-coding genes), it relies on the host for many basic biosynthetic processes, hindering the identification of potential antipathogenic drug targets. However, like many bacteria and plants, its metabolism does depend upon the type II fatty-acid synthesis (FAS) pathway for lipogenesis, whereas the predominant form of fatty-acid biosynthesis in humans is via the type I pathway. Here, the structure of the third enzyme in the FAS pathway, 3-ketoacyl-(acyl-carrier-protein) reductase, is reported at a resolution of 2.25 Å. Its fold is highly similar to those of the existing structures from some well characterized pathogens, such as Mycobacterium tuberculosis and Burkholderia pseudomallei, but differs significantly from the analogous mammalian structure. Hence, drugs known to target the enzymes of pathogenic bacteria may serve as potential leads against Rickettsia, which is responsible for spotted fever and typhus and is found throughout the world

  20. Reliability of nine programs of topological predictions and their application to integral membrane channel and carrier proteins.

    Science.gov (United States)

    Reddy, Abhinay; Cho, Jaehoon; Ling, Sam; Reddy, Vamsee; Shlykov, Maksim; Saier, Milton H

    2014-01-01

    We evaluated topological predictions for nine different programs, HMMTOP, TMHMM, SVMTOP, DAS, SOSUI, TOPCONS, PHOBIUS, MEMSAT-SVM (hereinafter referred to as MEMSAT), and SPOCTOPUS. These programs were first evaluated using four large topologically well-defined families of secondary transporters, and the three best programs were further evaluated using topologically more diverse families of channels and carriers. In the initial studies, the order of accuracy was: SPOCTOPUS > MEMSAT > HMMTOP > TOPCONS > PHOBIUS > TMHMM > SVMTOP > DAS > SOSUI. Some families, such as the Sugar Porter Family (2.A.1.1) of the Major Facilitator Superfamily (MFS; TC #2.A.1) and the Amino Acid/Polyamine/Organocation (APC) Family (TC #2.A.3), were correctly predicted with high accuracy while others, such as the Mitochondrial Carrier (MC) (TC #2.A.29) and the K(+) transporter (Trk) families (TC #2.A.38), were predicted with much lower accuracy. For small, topologically homogeneous families, SPOCTOPUS and MEMSAT were generally most reliable, while with large, more diverse superfamilies, HMMTOP often proved to have the greatest prediction accuracy. We next developed a novel program, TM-STATS, that tabulates HMMTOP, SPOCTOPUS or MEMSAT-based topological predictions for any subdivision (class, subclass, superfamily, family, subfamily, or any combination of these) of the Transporter Classification Database (TCDB; www.tcdb.org) and examined the following subclasses: α-type channel proteins (TC subclasses 1.A and 1.E), secreted pore-forming toxins (TC subclass 1.C) and secondary carriers (subclass 2.A). Histograms were generated for each of these subclasses, and the results were analyzed according to subclass, family and protein. The results provide an update of topological predictions for integral membrane transport proteins as well as guides for the development of more reliable topological prediction programs, taking family-specific characteristics into account. © 2014 S. Karger AG, Basel.

  1. Amplitudes and time scales of picosecond-to-microsecond motion in proteins studied by solid-state NMR: a critical evaluation of experimental approaches and application to crystalline ubiquitin

    International Nuclear Information System (INIS)

    Haller, Jens D.; Schanda, Paul

    2013-01-01

    Solid-state NMR provides insight into protein motion over time scales ranging from picoseconds to seconds. While in solution state the methodology to measure protein dynamics is well established, there is currently no such consensus protocol for measuring dynamics in solids. In this article, we perform a detailed investigation of measurement protocols for fast motions, i.e. motions ranging from picoseconds to a few microseconds, which is the range covered by dipolar coupling and relaxation experiments. We perform a detailed theoretical investigation how dipolar couplings and relaxation data can provide information about amplitudes and time scales of local motion. We show that the measurement of dipolar couplings is crucial for obtaining accurate motional parameters, while systematic errors are found when only relaxation data are used. Based on this realization, we investigate how the REDOR experiment can provide such data in a very accurate manner. We identify that with accurate rf calibration, and explicit consideration of rf field inhomogeneities, one can obtain highly accurate absolute order parameters. We then perform joint model-free analyses of 6 relaxation data sets and dipolar couplings, based on previously existing, as well as new data sets on microcrystalline ubiquitin. We show that nanosecond motion can be detected primarily in loop regions, and compare solid-state data to solution-state relaxation and RDC analyses. The protocols investigated here will serve as a useful basis towards the establishment of a routine protocol for the characterization of ps–μs motions in proteins by solid-state NMR

  2. Amplitudes and time scales of picosecond-to-microsecond motion in proteins studied by solid-state NMR: a critical evaluation of experimental approaches and application to crystalline ubiquitin

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Jens D.; Schanda, Paul, E-mail: paul.schanda@ibs.fr [Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS) (France)

    2013-10-09

    Solid-state NMR provides insight into protein motion over time scales ranging from picoseconds to seconds. While in solution state the methodology to measure protein dynamics is well established, there is currently no such consensus protocol for measuring dynamics in solids. In this article, we perform a detailed investigation of measurement protocols for fast motions, i.e. motions ranging from picoseconds to a few microseconds, which is the range covered by dipolar coupling and relaxation experiments. We perform a detailed theoretical investigation how dipolar couplings and relaxation data can provide information about amplitudes and time scales of local motion. We show that the measurement of dipolar couplings is crucial for obtaining accurate motional parameters, while systematic errors are found when only relaxation data are used. Based on this realization, we investigate how the REDOR experiment can provide such data in a very accurate manner. We identify that with accurate rf calibration, and explicit consideration of rf field inhomogeneities, one can obtain highly accurate absolute order parameters. We then perform joint model-free analyses of 6 relaxation data sets and dipolar couplings, based on previously existing, as well as new data sets on microcrystalline ubiquitin. We show that nanosecond motion can be detected primarily in loop regions, and compare solid-state data to solution-state relaxation and RDC analyses. The protocols investigated here will serve as a useful basis towards the establishment of a routine protocol for the characterization of ps–μs motions in proteins by solid-state NMR.

  3. E1AF degradation by a ubiquitin-proteasome pathway

    International Nuclear Information System (INIS)

    Takahashi, Akiko; Higashino, Fumihiro; Aoyagi, Mariko; Yoshida, Koichi; Itoh, Miyuki; Kobayashi, Masanobu; Totsuka, Yasunori; Kohgo, Takao; Shindoh, Masanobu

    2005-01-01

    E1AF is a member of the ETS family of transcription factors. In mammary tumors, overexpression of E1AF is associated with tumorigenesis, but E1AF protein has hardly been detected and its degradation mechanism is not yet clear. Here we show that E1AF protein is stabilized by treatment with the 26S protease inhibitor MG132. We found that E1AF was modified by ubiquitin through the C-terminal region and ubiquitinated E1AF aggregated in nuclear dots, and that the inhibition of proteasome-activated transcription from E1AF target promoters. These results suggest that E1AF is degraded via the ubiquitin-proteasome pathway, which has some effect on E1AF function

  4. Sculpting ion channel functional expression with engineered ubiquitin ligases

    Science.gov (United States)

    Kanner, Scott A; Morgenstern, Travis

    2017-01-01

    The functional repertoire of surface ion channels is sustained by dynamic processes of trafficking, sorting, and degradation. Dysregulation of these processes underlies diverse ion channelopathies including cardiac arrhythmias and cystic fibrosis. Ubiquitination powerfully regulates multiple steps in the channel lifecycle, yet basic mechanistic understanding is confounded by promiscuity among E3 ligase/substrate interactions and ubiquitin code complexity. Here we targeted the catalytic domain of E3 ligase, CHIP, to YFP-tagged KCNQ1 ± KCNE1 subunits with a GFP-nanobody to selectively manipulate this channel complex in heterologous cells and adult rat cardiomyocytes. Engineered CHIP enhanced KCNQ1 ubiquitination, eliminated KCNQ1 surface-density, and abolished reconstituted K+ currents without affecting protein expression. A chemo-genetic variation enabling chemical control of ubiquitination revealed KCNQ1 surface-density declined with a ~ 3.5 hr t1/2 by impaired forward trafficking. The results illustrate utility of engineered E3 ligases to elucidate mechanisms underlying ubiquitin regulation of membrane proteins, and to achieve effective post-translational functional knockdown of ion channels. PMID:29256394

  5. Bacterial Effectors and Their Functions in the Ubiquitin-Proteasome System: Insight from the Modes of Substrate Recognition

    Directory of Open Access Journals (Sweden)

    Minsoo Kim

    2014-08-01

    Full Text Available Protein ubiquitination plays indispensable roles in the regulation of cell homeostasis and pathogenesis of neoplastic, infectious, and neurodegenerative diseases. Given the importance of this modification, it is to be expected that several pathogenic bacteria have developed the ability to utilize the host ubiquitin system for their own benefit. Modulation of the host ubiquitin system by bacterial effector proteins inhibits innate immune responses and hijacks central signaling pathways. Bacterial effectors mimic enzymes of the host ubiquitin system, but may or may not be structurally similar to the mammalian enzymes. Other effectors bind and modify components of the host ubiquitin system, and some are themselves subject to ubiquitination. This review will describe recent findings, based on structural analyses, regarding how pathogens use post-translational modifications of proteins to establish an infection.

  6. Bacterial effectors and their functions in the ubiquitin-proteasome system: insight from the modes of substrate recognition.

    Science.gov (United States)

    Kim, Minsoo; Otsubo, Ryota; Morikawa, Hanako; Nishide, Akira; Takagi, Kenji; Sasakawa, Chihiro; Mizushima, Tsunehiro

    2014-08-18

    Protein ubiquitination plays indispensable roles in the regulation of cell homeostasis and pathogenesis of neoplastic, infectious, and neurodegenerative diseases. Given the importance of this modification, it is to be expected that several pathogenic bacteria have developed the ability to utilize the host ubiquitin system for their own benefit. Modulation of the host ubiquitin system by bacterial effector proteins inhibits innate immune responses and hijacks central signaling pathways. Bacterial effectors mimic enzymes of the host ubiquitin system, but may or may not be structurally similar to the mammalian enzymes. Other effectors bind and modify components of the host ubiquitin system, and some are themselves subject to ubiquitination. This review will describe recent findings, based on structural analyses, regarding how pathogens use post-translational modifications of proteins to establish an infection.

  7. Distinct ubiquitin binding modes exhibited by SH3 domains: molecular determinants and functional implications.

    Directory of Open Access Journals (Sweden)

    Jose L Ortega Roldan

    Full Text Available SH3 domains constitute a new type of ubiquitin-binding domains. We previously showed that the third SH3 domain (SH3-C of CD2AP binds ubiquitin in an alternative orientation. We have determined the structure of the complex between first CD2AP SH3 domain and ubiquitin and performed a structural and mutational analysis to decipher the determinants of the SH3-C binding mode to ubiquitin. We found that the Phe-to-Tyr mutation in CD2AP and in the homologous CIN85 SH3-C domain does not abrogate ubiquitin binding, in contrast to previous hypothesis and our findings for the first two CD2AP SH3 domains. The similar alternative binding mode of the SH3-C domains of these related adaptor proteins is characterised by a higher affinity to C-terminal extended ubiquitin molecules. We conclude that CD2AP/CIN85 SH3-C domain interaction with ubiquitin constitutes a new ubiquitin-binding mode involved in a different cellular function and thus changes the previously established mechanism of EGF-dependent CD2AP/CIN85 mono-ubiquitination.

  8. Downregulation of the proapoptotic protein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin

    OpenAIRE

    Matsuura, K; Huang, N-J; Cocce, K; Zhang, L; Kornbluth, S

    2016-01-01

    Evasion of apoptosis allows many cancers to resist chemotherapy. Apoptosis is mediated by the serial activation of caspase family proteins. These proteases are often activated upon the release of cytochrome c from the mitochondria, which is promoted by the proapoptotic Bcl-2 family protein, Bax. This function of Bax is enhanced by the MOAP-1 (modulator of apoptosis protein 1) protein in response to DNA damage. Previously, we reported that MOAP-1 is targeted for ubiquitylation and degradation ...

  9. Escherichia coli fusion carrier proteins act as solubilizing agents for recombinant uncoupling protein 1 through interactions with GroEL

    International Nuclear Information System (INIS)

    Douette, Pierre; Navet, Rachel; Gerkens, Pascal; Galleni, Moreno; Levy, Daniel; Sluse, Francis E.

    2005-01-01

    Fusing recombinant proteins to highly soluble partners is frequently used to prevent aggregation of recombinant proteins in Escherichia coli. Moreover, co-overexpression of prokaryotic chaperones can increase the amount of properly folded recombinant proteins. To understand the solubility enhancement of fusion proteins, we designed two recombinant proteins composed of uncoupling protein 1 (UCP1), a mitochondrial membrane protein, in fusion with MBP or NusA. We were able to express soluble forms of MBP-UCP1 and NusA-UCP1 despite the high hydrophobicity of UCP1. Furthermore, the yield of soluble fusion proteins depended on co-overexpression of GroEL that catalyzes folding of polypeptides. MBP-UCP1 was expressed in the form of a non-covalent complex with GroEL. MBP-UCP1/GroEL was purified and characterized by dynamic light scattering, gel filtration, and electron microscopy. Our findings suggest that MBP and NusA act as solubilizing agents by forcing the recombinant protein to pass through the bacterial chaperone pathway in the context of fusion protein

  10. System-wide Analysis of SUMOylation Dynamics in Response to Replication Stress Reveals Novel Small Ubiquitin-like Modified Target Proteins and Acceptor Lysines Relevant for Genome Stability

    DEFF Research Database (Denmark)

    Xiao, Zhenyu; Chang, Jer-Gung; Hendriks, Ivo A

    2015-01-01

    . Following statistical analysis on five biological replicates, a total of 566 SUMO-2 targets were identified. After 2 hours of Hydroxyurea treatment, 10 proteins were up-regulated for SUMOylation and 2 proteins were down-regulated for SUMOylation, whereas after 24 hours, 35 proteins were up...

  11. The functional interplay between the HIF pathway and the ubiquitin system - more than a one-way road.

    Science.gov (United States)

    Günter, Julia; Ruiz-Serrano, Amalia; Pickel, Christina; Wenger, Roland H; Scholz, Carsten C

    2017-07-15

    The hypoxia inducible factor (HIF) pathway and the ubiquitin system represent major cellular processes that are involved in the regulation of a plethora of cellular signaling pathways and tissue functions. The ubiquitin system controls the ubiquitination of proteins, which is the covalent linkage of one or several ubiquitin molecules to specific targets. This ubiquitination is catalyzed by approximately 1000 different E3 ubiquitin ligases and can lead to different effects, depending on the type of internal ubiquitin chain linkage. The best-studied function is the targeting of proteins for proteasomal degradation. The activity of E3 ligases is antagonized by proteins called deubiquitinases (or deubiquitinating enzymes), which negatively regulate ubiquitin chains. This is performed in most cases by the catalytic removal of these chains from the targeted protein. The HIF pathway is regulated in an oxygen-dependent manner by oxygen-sensing hydroxylases. Covalent modification of HIFα subunits leads to the recruitment of an E3 ligase complex via the von Hippel-Lindau (VHL) protein and the subsequent polyubiquitination and proteasomal degradation of HIFα subunits, demonstrating the regulation of the HIF pathway by the ubiquitin system. This unidirectional effect of an E3 ligase on the HIF pathway is the best-studied example for the interplay between these two important cellular processes. However, additional regulatory mechanisms of the HIF pathway through the ubiquitin system are emerging and, more recently, also the reciprocal regulation of the ubiquitin system through components of the HIF pathway. Understanding these mechanisms and their relevance for the activity of each other is of major importance for the comprehensive elucidation of the oxygen-dependent regulation of cellular processes. This review describes the current knowledge of the functional bidirectional interplay between the HIF pathway and the ubiquitin system on the protein level. Copyright © 2017

  12. The Ubiquitin-Specific Protease 14 (USP14) Is a Critical Regulator of Long-Term Memory Formation

    Science.gov (United States)

    Jarome, Timothy J.; Kwapis, Janine L.; Hallengren, Jada J.; Wilson, Scott M.; Helmstetter, Fred J.

    2014-01-01

    Numerous studies have suggested a role for ubiquitin-proteasome-mediated protein degradation in learning-dependent synaptic plasticity; however, very little is known about how protein degradation is regulated at the level of the proteasome during memory formation. The ubiquitin-specific protease 14 (USP14) is a proteasomal deubiquitinating enzyme…

  13. Bioreducible poly(amidoamine)s as carriers for intracellular protein delivery to intestinal cells

    NARCIS (Netherlands)

    Cohen, S.; Coué, G.M.J.P.C.; Beno, D.; Korenstein, R.; Engbersen, Johannes F.J.

    2012-01-01

    An effective intracellular protein delivery system was developed based on linear poly(amidoamine)s (PAAs) that form self-assembled cationic nanocomplexes with oppositely charged proteins. Two differently functionalized PAAs were synthesized by Michael-type polyaddition of 4-amino-1-butanol (ABOL) to

  14. Crystallization and preliminary X-ray crystallographic studies of the biotin carboxyl carrier protein and biotin protein ligase complex from Pyrococcus horikoshii OT3

    International Nuclear Information System (INIS)

    Bagautdinov, Bagautdin; Matsuura, Yoshinori; Bagautdinova, Svetlana; Kunishima, Naoki

    2007-01-01

    A truncated form of biotin carboxyl carrier protein containing the C-terminal half fragment (BCCPΔN76) and the biotin protein ligase (BPL) with the mutation R48A (BPL*) or the double mutation R48A K111A (BPL**) were successfully cocrystallized in the presence of ATP and biotin. The BPL*–BCCPΔN76 and BPL**–BCCPΔN76 crystals belong to space group P2 1 and diffract X-rays to 2.7 and 2.0 Å resolution, respectively. Biotin protein ligase (BPL) catalyses the biotinylation of the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase. To elucidate the exact details of the protein–protein interactions in the biotinylation function, the C-terminal half fragment of BCCP (BCCPΔN76), the R48A mutant of BPL (BPL*) and the R48A K111A double mutant of BPL (BPL**), all of which are from Pyrococcus horikoshii OT3, have been expressed, purified and successfully cocrystallized. Cocrystals of the BPL*–BCCPΔN76 and BPL**–BCCPΔN76 complexes as well as crystals of BPL*, BPL** and BCCPΔN76 were obtained by the oil-microbatch method using PEG 20 000 as a precipitant at 295 K. Complete X-ray diffraction data sets for BPL*–BCCPΔN76 and BPL**–BCCPΔN76 crystals were collected at 100 K to 2.7 and 2.0 Å resolution, respectively, using synchrotron radiation. They belong to the monoclinic space group P2 1 , with similar unit-cell parameters a = 69.85, b = 63.12, c = 75.64 Å, β = 95.9°. Assuming two subunits of the complex per asymmetric unit gives a V M value of 2.45 Å 3 Da −1 and a solvent content of 50%

  15. Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs

    International Nuclear Information System (INIS)

    Shanklin, J.; Somerville, C.

    1991-01-01

    Stearoyl-acyl-carrier-protein (ACP) desaturase was purified to homogeneity from avocado mesocarp, and monospecific polyclonal antibodies directed against the protein were used to isolate full-length cDNA clones from Ricinus communis (castor) seed and Cucumis sativus (cucumber). The nucleotide sequence of the castor clone pRCD1 revealed an open reading frame of 1.2 kilobases encoding a 396-amino acid protein of 45 kDa. The cucumber clone pCSD1 encoded a homologous 396-amino acid protein with 88% amino acid identity to the castor clone. Expression of pRCD1 in Saccharomyces cerevisiae resulted in the accumulation of a functional stearoyl-ACP desaturase, demonstrating that the introduction of this single gene product was sufficient to confer soluble desaturase activity to yeast. There was a 48-residue region of 29% amino acid sequence identity between residues 53 and 101 of the castor desaturase and the proximal border of the dehydratase region of the fatty acid synthase from yeast. Stearoyl-ACP mRNA was present at substantially higher levels in developing seeds than in leaf and root tissue, suggesting that expression of the Δ 9 desaturase is developmentally regulated

  16. FANCL ubiquitinates β-catenin and enhances its nuclear function.

    Science.gov (United States)

    Dao, Kim-Hien T; Rotelli, Michael D; Petersen, Curtis L; Kaech, Stefanie; Nelson, Whitney D; Yates, Jane E; Hanlon Newell, Amy E; Olson, Susan B; Druker, Brian J; Bagby, Grover C

    2012-07-12

    Bone marrow failure is a nearly universal complication of Fanconi anemia. The proteins encoded by FANC genes are involved in DNA damage responses through the formation of a multisubunit nuclear complex that facilitates the E3 ubiquitin ligase activity of FANCL. However, it is not known whether loss of E3 ubiquitin ligase activity accounts for the hematopoietic stem cell defects characteristic of Fanconi anemia. Here we provide evidence that FANCL increases the activity and expression of β-catenin, a key pluripotency factor in hematopoietic stem cells. We show that FANCL ubiquitinates β-catenin with atypical ubiquitin chain extension known to have nonproteolytic functions. Specifically, β-catenin modified with lysine-11 ubiquitin chain extension efficiently activates a lymphocyte enhancer-binding factor-T cell factor reporter. We also show that FANCL-deficient cells display diminished capacity to activate β-catenin leading to reduced transcription of Wnt-responsive targets c-Myc and Cyclin D1. Suppression of FANCL expression in normal human CD34(+) stem and progenitor cells results in fewer β-catenin active cells and inhibits expansion of multilineage progenitors. Together, these results suggest that diminished Wnt/β-catenin signaling may be an underlying molecular defect in FANCL-deficient hematopoietic stem cells leading to their accelerated loss.

  17. Polycomb protein SCML2 associates with USP7 and counteracts histone H2A ubiquitination in the XY chromatin during male meiosis

    NARCIS (Netherlands)

    Luo, Mengcheng; Zhou, Jian; Leu, N. Adrian; Abreu, Carla M.; Wang, Jianle; Anguera, Montserrat C.; de Rooij, Dirk G.; Jasin, Maria; Wang, P. Jeremy

    2015-01-01

    Polycomb group proteins mediate transcriptional silencing in diverse developmental processes. Sex chromosomes undergo chromosome-wide transcription silencing during male meiosis. Here we report that mouse SCML2 (Sex comb on midleg-like 2), an X chromosome-encoded polycomb protein, is specifically

  18. A systems wide mass spectrometric based linear motif screen to identify dominant in-vivo interacting proteins for the ubiquitin ligase MDM2.

    Science.gov (United States)

    Nicholson, Judith; Scherl, Alex; Way, Luke; Blackburn, Elizabeth A; Walkinshaw, Malcolm D; Ball, Kathryn L; Hupp, Ted R

    2014-06-01

    Linear motifs mediate protein-protein interactions (PPI) that allow expansion of a target protein interactome at a systems level. This study uses a proteomics approach and linear motif sub-stratifications to expand on PPIs of MDM2. MDM2 is a multi-functional protein with over one hundred known binding partners not stratified by hierarchy or function. A new linear motif based on a MDM2 interaction consensus is used to select novel MDM2 interactors based on Nutlin-3 responsiveness in a cell-based proteomics screen. MDM2 binds a subset of peptide motifs corresponding to real proteins with a range of allosteric responses to MDM2 ligands. We validate cyclophilin B as a novel protein with a consensus MDM2 binding motif that is stabilised by Nutlin-3 in vivo, thus identifying one of the few known interactors of MDM2 that is stabilised by Nutlin-3. These data invoke two modes of peptide binding at the MDM2 N-terminus that rely on a consensus core motif to control the equilibrium between MDM2 binding proteins. This approach stratifies MDM2 interacting proteins based on the linear motif feature and provides a new biomarker assay to define clinically relevant Nutlin-3 responsive MDM2 interactors. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Potential protective immunogenicity of tetanus toxoid, diphtheria toxoid and Cross Reacting Material 197 (CRM197) when used as carrier proteins in glycoconjugates.

    Science.gov (United States)

    Bröker, Michael

    2016-03-03

    When tetanus toxoid (TT), diphtheria toxoid (DT) or Cross Reacting Material 197 (CRM197), a non-toxic diphtheria toxin mutant protein, are used as carrier proteins in glycoconjugate vaccines, these carriers induce a protein specific antibody response as measured by in vitro assays. Here, it was evaluated whether or not glycoconjugates based on TT, DT or CRM197 can induce a protective immune response as measured by potency tests according to the European Pharmacopoeia. It could be shown, that the conjugate carriers TT and DT can induce a protective immune response against a lethal challenge by toxins in animals, while glycoconjugates based on CRM197 failed to induce a protective immune response. Opportunities for new applications of glycoconjugates are discussed.

  20. Lactose carrier protein of Escherichia coli. Structure and expression of plasmids carrying the Y gene of the lac operon.

    Science.gov (United States)

    Teather, R M; Bramhall, J; Riede, I; Wright, J K; Fürst, M; Aichele, G; Wilhelm, U; Overath, P

    1980-01-01

    The previously described hybrid plasmid pC7 which carries lacI+O+delta(Z)Y+A+ on a 12.3 X 10(6)-Mr DNA fragment [Teather et al. (1978) Mol. Gen. Genet. 159, 239-248] was partially digested with the restriction endonuclease EcoRI under conditions reducing the recognition sequence to d(A-A-T-T) and ligated to the vector pB322. lac Y-carrying inserts of various sized (Mr 1.5-4.7 X 10(6)) were obtained. Hybrid plasmid pTE18 (2300-base-pair insert) carries part of the I (repressor) gene, the promotor-operator region, part of the Z (beta-galactosidase) gene, the Y (lactose carrier) gene and part of the A (transacetylase) gene. Upon induction of pTE18-harbouring strains the Y-gene product is expressed at a nearly constant rate for several generations and accumulates to a level of 12-16% of the total cytoplasmic membrane protein. Integration into the membrane leads to active carrier as judged by binding and transport measurements.

  1. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis.

    Science.gov (United States)

    Maier, Alexander; Schrader, Andrea; Kokkelink, Leonie; Falke, Christian; Welter, Bastian; Iniesto, Elisa; Rubio, Vicente; Uhrig, Joachim F; Hülskamp, Martin; Hoecker, Ute

    2013-05-01

    Anthocyanins are natural pigments that accumulate only in light-grown and not in dark-grown Arabidopsis plants. Repression of anthocyanin accumulation in darkness requires the CONSTITUTIVELY PHOTOMORPHOGENIC1/SUPPRESSOR OF PHYA-105 (COP1/SPA) ubiquitin ligase, as cop1 and spa mutants produce anthocyanins also in the dark. Here, we show that COP1 and SPA proteins interact with the myeloblastosis (MYB) transcription factors PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP)1 and PAP2, two members of a small protein family that is required for anthocyanin accumulation and for the expression of structural genes in the anthocyanin biosynthesis pathway. The increased anthocyanin levels in cop1 mutants requires the PAP1 gene family, indicating that COP1 functions upstream of the PAP1 gene family. PAP1 and PAP2 proteins are degraded in the dark and this degradation is dependent on the proteasome and on COP1. Hence, the light requirement for anthocyanin biosynthesis results, at least in part, from the light-mediated stabilization of PAP1 and PAP2. Consistent with this conclusion, moderate overexpression of PAP1 leads to an increase in anthocyanin levels only in the light and not in darkness. Here we show that SPA genes are also required for reducing PAP1 and PAP2 transcript levels in dark-grown seedlings. Taken together, these results indicate that the COP1/SPA complex affects PAP1 and PAP2 both transcriptionally and post-translationally. Thus, our findings have identified mechanisms via which the COP1/SPA complex controls anthocyanin levels in Arabidopsis that may be useful for applications in biotechnology directed towards increasing anthocyanin content in plants. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  2. Dynamic ubiquitin signaling in cell cycle regulation.

    Science.gov (United States)

    Gilberto, Samuel; Peter, Matthias

    2017-08-07

    The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation. © 2017 Gilberto and Peter.

  3. KF-1 ubiquitin ligase: an anxiety suppressor

    Directory of Open Access Journals (Sweden)

    Tamotsu Hashimoto-Gotoh

    2009-05-01

    Full Text Available Anxiety is an instinct that may have developed to promote adaptive survival by evading unnecessary danger. However, excessive anxiety is disruptive and can be a basic disorder of other psychiatric diseases such as depression. The KF-1, a ubiquitin ligase located to the endoplasmic reticulum (ER, may prevent excessive anxiety; kf-1−/− mice exhibit selectively elevated anxiety-like behavior against light or heights. Thus, KF-1 may degrade some target proteins, responsible for promoting anxiety, through the ER-associated degradation pathway, similar to Parkin in Parkinson's disease (PD. Parkin, another ER-ubiquitin ligase, prevents the degeneration of dopaminergic neurons by degrading the target proteins responsible for PD. Molecular phylogenetic studies have revealed that the prototype of kf-1 appeared in the very early phase of animal evolution but was lost, unlike parkin, in the lineage leading up to Drosophila. Therefore, kf-1−/− mice, be a powerful tool for elucidating the molecular mechanisms involved in emotional regulation, and for screening novel anxiolytic/antidepressant compounds.

  4. Direct Sensing and Discrimination among Ubiquitin and Ubiquitin Chains Using Solid-State Nanopores.

    Science.gov (United States)

    Nir, Iftach; Huttner, Diana; Meller, Amit

    2015-05-05

    Nanopore sensing involves an electrophoretic transport of analytes through a nanoscale pore, permitting label-free sensing at the single-molecule level. However, to date, the detection of individual small proteins has been challenging, primarily due to the poor signal/noise ratio that these molecules produce during passage through the pore. Here, we show that fine adjustment of the buffer pH, close to the isoelectric point, can be used to slow down the translocation speed of the analytes, hence permitting sensing and characterization of small globular proteins. Ubiquitin (Ub) is a small protein of 8.5 kDa, which is well conserved in all eukaryotes. Ub conjugates to proteins as a posttranslational modification called ubiquitination. The immense diversity of Ub substrates, as well as the complexity of Ub modification types and the numerous physiological consequences of these modifications, make Ub and Ub chains an interesting and challenging subject of study. The ability to detect Ub and to identify Ub linkage type at the single-molecule level may provide a novel tool for investigation in the Ub field. This is especially adequate because, for most ubiquitinated substrates, Ub modifies only a few molecules in the cell at a given time. Applying our method to the detection of mono- and poly-Ub molecules, we show that we can analyze their characteristics using nanopores. Of particular importance is that two Ub dimers that are equal in molecular weight but differ in 3D structure due to their different linkage types can be readily discriminated. Thus, to our knowledge, our method offers a novel approach for analyzing proteins in unprecedented detail using solid-state nanopores. Specifically, it provides the basis for development of single-molecule sensing of differently ubiquitinated substrates with different biological significance. Finally, our study serves as a proof of concept for approaching nanopore detection of sub-10-kDa proteins and demonstrates the ability of

  5. Rates of ubiquitin conjugation increase when muscles atrophy, largely through activation of the N-end rule pathway

    Science.gov (United States)

    Solomon, V.; Baracos, V.; Sarraf, P.; Goldberg, A. L.

    1998-01-01

    The rapid loss of muscle mass that accompanies many disease states, such as cancer or sepsis, is primarily a result of increased protein breakdown in muscle, and several observations have suggested an activation of the ubiquitin-proteasome system. Accordingly, in extracts of atrophying muscles from tumor-bearing or septic rats, rates of 125I-ubiquitin conjugation to endogenous proteins were found to be higher than in control extracts. On the other hand, in extracts of muscles from hypothyroid rats, where overall proteolysis is reduced below normal, the conjugation of 125I-ubiquitin to soluble proteins decreased by 50%, and treatment with triiodothyronine (T3) restored ubiquitination to control levels. Surprisingly, the N-end rule pathway, which selectively degrades proteins with basic or large hydrophobic N-terminal residues, was found to be responsible for most of these changes in ubiquitin conjugation. Competitive inhibitors of this pathway that specifically block the ubiquitin ligase, E3alpha, suppressed most of the increased ubiquitin conjugation in the muscle extracts from tumor-bearing and septic rats. These inhibitors also suppressed ubiquitination in normal extracts toward levels in hypothyroid extracts, which showed little E3alpha-dependent ubiquitination. Thus, the inhibitors eliminated most of the differences in ubiquitination under these different pathological conditions. Moreover, 125I-lysozyme, a model N-end rule substrate, was ubiquitinated more rapidly in extracts from tumor-bearing and septic rats, and more slowly in those from hypothyroid rats, than in controls. Thus, the rate of ubiquitin conjugation increases in atrophying muscles, and these hormone- and cytokine-dependent responses are in large part due to activation of the N-end rule pathway.

  6. Hydroxyapatite nanorod-assembled porous hollow polyhedra as drug/protein carriers.

    Science.gov (United States)

    Yu, Ya-Dong; Zhu, Ying-Jie; Qi, Chao; Jiang, Ying-Ying; Li, Heng; Wu, Jin

    2017-06-15

    Hydroxyapatite (HAP) with a porous hollow structure is an ideal biomaterial owing to its excellent biocompatibility and unique architecture. In this study, HAP nanorod-assembled porous hollow polyhedra, consisting of nanorod building blocks, have been successfully prepared at room temperature or under hydrothermal circumstances using a self-sacrificing Ca(OH) 2 template strategy. The hydrothermal treatment (at 180°C for 1h) can promote the HAP nanorods to be arranged with their axial direction normal to the polyhedron surface. The HAP nanorod-assembled porous hollow polyhedra have been explored for the potential application in drug/protein delivery, using ibuprofen (IBU) as a model drug and hemoglobin (Hb) as a model protein. The experimental results indicate that the HAP nanorod-assembled porous hollow polyhedra have a relatively high drug loading capacity and protein adsorption ability, and sustained drug and protein release. The HAP nanorod-assembled porous hollow polyhedra have promising applications in various biomedical fields such as the drug and protein delivery. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Stressing the ubiquitin-proteasome system without 20S proteolytic inhibition selectively kills cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Ravi K Anchoori

    Full Text Available Cervical cancer cells exhibit an increased requirement for ubiquitin-dependent protein degradation associated with an elevated metabolic turnover rate, and for specific signaling pathways, notably HPV E6-targeted degradation of p53 and PDZ proteins. Natural compounds with antioxidant properties including flavonoids and triterpenoids hold promise as anticancer agents by interfering with ubiquitin-dependent protein degradation. An increasing body of evidence indicates that their α-β unsaturated carbonyl system is the molecular determinant for inhibition of ubiquitin-mediated protein degradation up-stream of the catalytic sites of the 20S proteasome. Herein we report the identification and characterization of a new class of chalcone-based, potent and cell permeable chemical inhibitors of ubiquitin-dependent protein degradation, and a lead compound RAMB1. RAMB1 inhibits ubiquitin-dependent protein degradation without compromising the catalytic activities of the 20S proteasome, a mechanism distinct from that of Bortezomib. Treatment of cervical cancer cells with RAMB1 triggers unfolded protein responses, including aggresome formation and Hsp90 stabilization, and increases p53 steady state levels. RAMB1 treatment results in activation of lysosomal-dependent degradation pathways as a mechanism to compensate for increasing levels of poly-ubiquitin enriched toxic aggregates. Importantly, RAMB1 synergistically triggers cell death of cervical cancer cells when combined with the lysosome inhibitor Chloroquine.

  8. Direct observation of a single nanoparticle-ubiquitin corona formation

    Science.gov (United States)

    Ding, Feng; Radic, Slaven; Chen, Ran; Chen, Pengyu; Geitner, Nicholas K.; Brown, Jared M.; Ke, Pu Chun

    2013-09-01

    The advancement of nanomedicine and the increasing applications of nanoparticles in consumer products have led to administered biological exposure and unintentional environmental accumulation of nanoparticles, causing concerns over the biocompatibility and sustainability of nanotechnology. Upon entering physiological environments, nanoparticles readily assume the form of a nanoparticle-protein corona that dictates their biological identity. Consequently, understanding the structure and dynamics of a nanoparticle-protein corona is essential for predicting the fate, transport, and toxicity of nanomaterials in living systems and for enabling the vast applications of nanomedicine. Here we combined multiscale molecular dynamics simulations and complementary experiments to characterize the silver nanoparticle-ubiquitin corona formation. Notably, ubiquitins competed with citrates for the nanoparticle surface, governed by specific electrostatic interactions. Under a high protein/nanoparticle stoichiometry, ubiquitins formed a multi-layer corona on the particle surface. The binding exhibited an unusual stretched-exponential behavior, suggesting a rich binding kinetics. Furthermore, the binding destabilized the α-helices while increasing the β-sheet content of the proteins. This study revealed the atomic and molecular details of the structural and dynamic characteristics of nanoparticle-protein corona formation.The advancement of nanomedicine and the increasing applications of nanoparticles in consumer products have led to administered biological exposure and unintentional environmental accumulation of nanoparticles, causing concerns over the biocompatibility and sustainability of nanotechnology. Upon entering physiological environments, nanoparticles readily assume the form of a nanoparticle-protein corona that dictates their biological identity. Consequently, understanding the structure and dynamics of a nanoparticle-protein corona is essential for predicting the fate

  9. Effects of exogenous ubiquitin in a polytrauma model with blunt chest trauma

    Science.gov (United States)

    Baker, Todd A.; Romero, Jacqueline; Bach, Harold H.; Strom, Joel A.; Gamelli, Richard L.; Majetschak, Matthias

    2013-01-01

    Objective To determine whether treatment with the CXC chemokine receptor (CXCR) 4 agonist ubiquitin results in beneficial effects in a polytrauma model consisting of bilateral femur fractures plus blunt chest trauma (Injury Severity Score 18-25). Design Treatment study. Setting Research Laboratory. Subjects Seventeen Yorkshire pigs. Interventions Intravenous (i.v.) injection of 1.5 mg/kg ubiquitin or albumin (=control) at 60 min after polytrauma. Measurements and Main Results Anesthetized, mechanically ventilated pigs underwent polytrauma, followed by a simulated 60 min shock phase. At the end of the shock phase ubiquitin or albumin were administered and animals were resuscitated to a mean arterial blood pressure of 70 mmHg until t = 420 min. After i.v. ubiquitin, ubiquitin plasma concentrations increased sixteen-fold to 2870 ± 1015 ng/mL at t = 90 min and decreased with t1/2 = 60 min. Endogenous plasma ubiquitin increased two-fold in the albumin group with peak levels of 359 ± 210 ng/mL. Plasma levels of the cognate CXCR4 ligand stromal cell-derived factor (SDF)-1α were unchanged in both groups. Ubiquitin treatment reduced arterial lactate levels and prevented a continuous decrease in arterial oxygenation, which occurred in the albumin group during resuscitation. Wet weight to dry weight ratios of the lung contralateral from the injury, heart, spleen and jejunum were lower with ubiquitin. With ubiquitin treatment, tissue levels of IL-8, IL-10, TNFα and SDF-1α were reduced in the injured lung and of IL-8 in the contralateral lung, respectively. Conclusions Administration of exogenous ubiquitin modulates the local inflammatory response, improves resuscitation, reduces fluid shifts into tissues and preserves arterial oxygenation after blunt polytrauma with lung injury. This study further supports the notion that ubiquitin is a promising protein therapeutic and implies CXCR4 as a drug target after polytrauma. PMID:22622399

  10. Molecular cloning and characterization of two β-ketoacyl-acyl carrier protein synthase I genes from Jatropha curcas L.

    Science.gov (United States)

    Xiong, Wangdan; Wei, Qian; Wu, Pingzhi; Zhang, Sheng; Li, Jun; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2017-07-01

    The β-ketoacyl-acyl carrier protein synthase I (KASI) is involved in de novo fatty acid biosynthesis in many organisms. Two putative KASI genes, JcKASI-1 and JcKASI-2, were isolated from Jatropha curcas. The deduced amino acid sequences of JcKASI-1 and JcKASI-2 exhibit around 83.8% and 72.5% sequence identities with AtKASI, respectively, and both contain conserved Cys-His-Lys-His-Phe catalytic active sites. Phylogenetic analysis indicated that JcKASI-2 belongs to a clade with several KASI proteins from dicotyledonous plants. Both JcKASI genes were expressed in multiple tissues, most strongly in filling stage seeds of J. curcas. Additionally, the JcKASI-1 and JcKASI-2 proteins were both localized to the plastids. Expressing JcKASI-1 in the Arabidopsis kasI mutant rescued the mutant's phenotype and restored the fatty acid composition and oil content in seeds to wild-type, but expressing JcKASI-2 in the Arabidopsis kasI mutant resulted in only partial rescue. This implies that JcKASI-1 and JcKASI-2 exhibit partial functional redundancy and KASI genes play a universal role in regulating fatty acid biosynthesis, growth, and development in plants. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT--relationship to newly identified mitochondrial pyruvate carrier proteins.

    Directory of Open Access Journals (Sweden)

    Jerry R Colca

    Full Text Available Thiazolidinedione (TZD insulin sensitizers have the potential to effectively treat a number of human diseases, however the currently available agents have dose-limiting side effects that are mediated via activation of the transcription factor PPARγ. We have recently shown PPARγ-independent actions of TZD insulin sensitizers, but the molecular target of these molecules remained to be identified. Here we use a photo-catalyzable drug analog probe and mass spectrometry-based proteomics to identify a previously uncharacterized mitochondrial complex that specifically recognizes TZDs. These studies identify two well-conserved proteins previously known as brain protein 44 (BRP44 and BRP44 Like (BRP44L, which recently have been renamed Mpc2 and Mpc1 to signify their function as a mitochondrial pyruvate carrier complex. Knockdown of Mpc1 or Mpc2 in Drosophila melanogaster or pre-incubation with UK5099, an inhibitor of pyruvate transport, blocks the crosslinking of mitochondrial membranes by the TZD probe. Knockdown of these proteins in Drosophila also led to increased hemolymph glucose and blocked drug action. In isolated brown adipose tissue (BAT cells, MSDC-0602, a PPARγ-sparing TZD, altered the incorporation of (13C-labeled carbon from glucose into acetyl CoA. These results identify Mpc1 and Mpc2 as components of the mitochondrial target of TZDs (mTOT and suggest that understanding the modulation of this complex, which appears to regulate pyruvate entry into the mitochondria, may provide a viable target for insulin sensitizing pharmacology.

  12. Structure of the Francisella tularensis enoyl-acyl carrier protein reductase (FabI) in complex with NAD+ and triclosan

    International Nuclear Information System (INIS)

    Mehboob, Shahila; Truong, Kent; Santarsiero, Bernard D.; Johnson, Michael E.

    2010-01-01

    Structure of the ternary complex of F. tularensis enoyl-acyl carrier protein reductase reveals the structure of the substrate binding loop whose electron density was missing in an earlier structure, and demonstrates a shift in the position of the NAD + cofactor. Enoyl-acyl carrier protein reductase (FabI) catalyzes the last rate-limiting step in the elongation cycle of the fatty-acid biosynthesis pathway and has been validated as a potential antimicrobial drug target in Francisella tularensis. The development of new antibiotic therapies is important both to combat potential drug-resistant bioweapons and to address the broader societal problem of increasing antibiotic resistance among many pathogenic bacteria. The crystal structure of FabI from F. tularensis (FtuFabI) in complex with the inhibitor triclosan and the cofactor NAD + has been solved to a resolution of 2.1 Å. Triclosan is known to effectively inhibit FabI from different organisms. Precise characterization of the mode of triclosan binding is required to develop highly specific inhibitors. Comparison of our structure with the previously determined FtuFabI structure which is bound to only NAD + reveals the conformation of the substrate-binding loop, electron density for which was missing in the earlier structure, and demonstrates a shift in the conformation of the NAD + cofactor. This shift in the position of the phosphate groups allows more room in the active site for substrate or inhibitor to bind and be better accommodated. This information will be crucial for virtual screening studies to identify novel scaffolds for development into new active inhibitors

  13. Cycle Inhibiting Factors (Cifs: Cyclomodulins That Usurp the Ubiquitin-Dependent Degradation Pathway of Host Cells

    Directory of Open Access Journals (Sweden)

    Eric Oswald

    2011-03-01

    Full Text Available Cycle inhibiting factors (Cifs are type III secreted effectors produced by diverse pathogenic bacteria. Cifs are “cyclomodulins” that inhibit the eukaryotic host cell cycle and also hijack other key cellular processes such as those controlling the actin network and apoptosis. This review summarizes current knowledge on Cif since its first characterization in enteropathogenic Escherichia coli, the identification of several xenologues in distant pathogenic bacteria, to its structure elucidation and the recent deciphering of its mode of action. Cif impairs the host ubiquitin proteasome system through deamidation of ubiquitin or the ubiquitin-like protein NEDD8 that regulates Cullin-Ring-ubiquitin Ligase (CRL complexes. The hijacking of the ubiquitin-dependent degradation pathway of host cells results in the modulation of various cellular functions such as epithelium renewal, apoptosis and immune response. Cif is therefore a powerful weapon in the continuous arm race that characterizes host-bacteria interactions.

  14. A small-molecule inhibitor of the ubiquitin activating enzyme for cancer treatment.

    Science.gov (United States)

    Hyer, Marc L; Milhollen, Michael A; Ciavarri, Jeff; Fleming, Paul; Traore, Tary; Sappal, Darshan; Huck, Jessica; Shi, Judy; Gavin, James; Brownell, Jim; Yang, Yu; Stringer, Bradley; Griffin, Robert; Bruzzese, Frank; Soucy, Teresa; Duffy, Jennifer; Rabino, Claudia; Riceberg, Jessica; Hoar, Kara; Lublinsky, Anya; Menon, Saurabh; Sintchak, Michael; Bump, Nancy; Pulukuri, Sai M; Langston, Steve; Tirrell, Stephen; Kuranda, Mike; Veiby, Petter; Newcomb, John; Li, Ping; Wu, Jing Tao; Powe, Josh; Dick, Lawrence R; Greenspan, Paul; Galvin, Katherine; Manfredi, Mark; Claiborne, Chris; Amidon, Benjamin S; Bence, Neil F

    2018-02-01

    The ubiquitin-proteasome system (UPS) comprises a network of enzymes that is responsible for maintaining cellular protein homeostasis. The therapeutic potential of this pathway has been validated by the clinical successes of a number of UPS modulators, including proteasome inhibitors and immunomodulatory imide drugs (IMiDs). Here we identified TAK-243 (formerly known as MLN7243) as a potent, mechanism-based small-molecule inhibitor of the ubiquitin activating enzyme (UAE), the primary mammalian E1 enzyme that regulates the ubiquitin conjugation cascade. TAK-243 treatment caused depletion of cellular ubiquitin conjugates, resulting in disruption of signaling events, induction of proteotoxic stress, and impairment of cell cycle progression and DNA damage repair pathways. TAK-243 treatment caused death of cancer cells and, in primary human xenograft studies, demonstrated antitumor activity at tolerated doses. Due to its specificity and potency, TAK-243 allows for interrogation of ubiquitin biology and for assessment of UAE inhibition as a new approach for cancer treatment.

  15. Linear ubiquitination signals in adaptive immune responses.

    Science.gov (United States)

    Ikeda, Fumiyo

    2015-07-01

    Ubiquitin can form eight different linkage types of chains using the intrinsic Met 1 residue or one of the seven intrinsic Lys residues. Each linkage type of ubiquitin chain has a distinct three-dimensional topology, functioning as a tag to attract specific signaling molecules, which are so-called ubiquitin readers, and regulates various biological functions. Ubiquitin chains linked via Met 1 in a head-to-tail manner are called linear ubiquitin chains. Linear ubiquitination plays an important role in the regulation of cellular signaling, including the best-characterized tumor necrosis factor (TNF)-induced canonical nuclear factor-κB (NF-κB) pathway. Linear ubiquitin chains are specifically generated by an E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) and hydrolyzed by a deubiquitinase (DUB) called ovarian tumor (OTU) DUB with linear linkage specificity (OTULIN). LUBAC linearly ubiquitinates critical molecules in the TNF pathway, such as NEMO and RIPK1. The linear ubiquitin chains are then recognized by the ubiquitin readers, including NEMO, which control the TNF pathway. Accumulating evidence indicates an importance of the LUBAC complex in the regulation of apoptosis, development, and inflammation in mice. In this article, I focus on the role of linear ubiquitin chains in adaptive immune responses with an emphasis on the TNF-induced signaling pathways. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Regulating the 20S Proteasome Ubiquitin-Independent Degradation Pathway

    Directory of Open Access Journals (Sweden)

    Gili Ben-Nissan

    2014-09-01

    Full Text Available For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by the core 20S proteasome itself. Degradation by the 20S proteasome does not require ubiquitin tagging or the presence of the 19S regulatory particle; rather, it relies on the inherent structural disorder of the protein being degraded. Thus, proteins that contain unstructured regions due to oxidation, mutation, or aging, as well as naturally, intrinsically unfolded proteins, are susceptible to 20S degradation. Unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome, relatively little is known about the means by which 20S-mediated proteolysis is controlled. Here, we describe our current understanding of the regulatory mechanisms that coordinate 20S proteasome-mediated degradation, and highlight the gaps in knowledge that remain to be bridged.

  17. The BAH domain of BAF180 is required for PCNA ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Niimi, Atsuko [Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Hopkins, Suzanna R; Downs, Jessica A [Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ (United Kingdom); Masutani, Chikahide, E-mail: masutani@riem.nagoya-u.ac.jp [Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2015-09-15

    Highlights: • The expression of BAF180 promotes UV-induced PCNA ubiquitination during S phase. • The BAH domains of BAF180 alone are sufficient to promote PCNA ubiquitination. • The BAH domains are not assembled into the PBAF in the absence of the C-terminus. - Abstract: Monoubiquitination of proliferating cell nuclear antigen (PCNA) is a critical regulator of post replication repair (PRR). The depletion of BAF180, a unique subunit of the PBAF chromatin remodeling complex in human cells results in reduced PCNA ubiquitination leading to less efficient fork progression following DNA damage, but little is known about the mechanism. Here, we report that the expression of exogenous BAF180 in cells promotes PCNA ubiquitination during S-phase after UV irradiation and it persists for many hours. No correlation was observed between the protein level of ubiquitin-specific protease 1 (USP1) and ubiquitinated PCNA in BAF180 expressing cells. Analysis of cells expressing BAF180 deletion mutants showed that the bromo-adjacent homology (BAH) domains are responsible for this effect. Surprisingly, a deletion construct encoding only the BAH domain region is able to increase the level of ubiquitinated PCNA, even though it is unable to be assembled into the PBAF complex. These results suggest that the ATPase-dependent chromatin remodeling activity of PBAF is not necessary, but instead the BAH domains are sufficient to promote PCNA ubiquitination.

  18. The ubiquitin ligase SEVEN IN ABSENTIA (SINA) ubiquitinates a defense-related NAC transcription factor and is involved in defense signaling.

    Science.gov (United States)

    Miao, Min; Niu, Xiangli; Kud, Joanna; Du, Xinran; Avila, Julian; Devarenne, Timothy P; Kuhl, Joseph C; Liu, Yongsheng; Xiao, Fangming

    2016-07-01

    We recently identified a defense-related tomato (Solanum lycopersicum) NAC (NAM, ATAF1,2, CUC2) transcription factor, NAC1, that is subjected to ubiquitin-proteasome system-dependent degradation in plant cells. In this study, we identified a tomato ubiquitin ligase (termed SEVEN IN ABSENTIA3; SINA3) that ubiquitinates NAC1, promoting its degradation. We conducted coimmunoprecipitation and bimolecular fluorescence complementation to determine that SINA3 specifically interacts with the NAC1 transcription factor in the nucleus. Moreover, we found that SINA3 ubiquitinates NAC1 in vitro and promotes NAC1 degradation via polyubiquitination in vivo, indicating that SINA3 is a ubiquitin ligase that ubiquitinates NAC1, promoting its degradation. Our real-time PCR analysis indicated that, in contrast to our previous finding that NAC1 mRNA abundance increases upon Pseudomonas infection, the SINA3 mRNA abundance decreases in response to Pseudomonas infection. Moreover, using Agrobacterium-mediated transient expression, we found that overexpression of SINA3 interferes with the hypersensitive response cell death triggered by multiple plant resistance proteins. These results suggest that SINA3 ubiquitinates a defense-related NAC transcription factor for degradation and plays a negative role in defense signaling. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Ubiquitin specific peptidase 5 mediates Histidine-rich protein Hpn induced cell apoptosis in hepatocellular carcinoma through P14-P53 signaling.

    Science.gov (United States)

    Liu, Yi; Wang, Wei-Mao; Zou, Li-Yi; Li, Li; Feng, Lu; Pan, Ming-Zhu; Lv, Min-Yi; Cao, Ying; Wang, Hua; Kung, Hsiang-Fu; Pang, Jian-Xin; Fu, Wei-Ming; Zhang, Jin-Fang

    2017-06-01

    Hpn is a small histidine-rich cytoplasmic protein from Helicobacter pylori and has been recognized as a high-risk factor for several cancers including gastric cancer, colorectal cancer, and MALT lymphoma. However, the relationship between Hpn and cancers remains elusive. In this study, we discovered that Hpn protein effectively suppressed cell growth and induced apoptosis in hepatocellular carcinoma (HCC). A two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics was performed to find the molecular targets of Hpn in HCC cells. It was identified that twelve proteins were differentially expressed, with USP5 being one of the most significantly downregulated protein. The P14 ARF -P53 signaling was activated by USP5 knockdown in HCC cells. Furthermore, USP5 overexpression significantly rescued the suppressive effect of Hpn on the viability of HCC cells. In conclusion, our study suggests that Hpn plays apoptosis-inducing roles through suppressing USP5 expression and activating the P14 ARF -P53 signaling. Therefore, Hpn may be a potential candidate for developing novel anti-HCC drugs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Roles for the ubiquitin-proteasome pathway in protein quality control and signaling in the retina: implications in the pathogenesis of age-related macular degeneration

    Science.gov (United States)

    The accumulation of damaged or postsynthetically modified proteins and dysregulation of inflammatory responses and angiogenesis in the retina/RPE are thought be etiologically related to formation of drusen and choroidal neovascularization (CNV), hallmarks of age-related macular degeneration (AMD). T...

  1. Selective Transgenic Expression of Mutant Ubiquitin in Purkinje Cell Stripes in the Cerebellum.

    Science.gov (United States)

    Verheijen, Bert M; Gentier, Romina J G; Hermes, Denise J H P; van Leeuwen, Fred W; Hopkins, David A

    2017-06-01

    The ubiquitin-proteasome system (UPS) is one of the major mechanisms for protein breakdown in cells, targeting proteins for degradation by enzymatically conjugating them to ubiquitin molecules. Intracellular accumulation of ubiquitin-B +1 (UBB +1 ), a frameshift mutant of ubiquitin-B, is indicative of a dysfunctional UPS and has been implicated in several disorders, including neurodegenerative disease. UBB +1 -expressing transgenic mice display widespread labeling for UBB +1 in brain and exhibit behavioral deficits. Here, we show that UBB +1 is specifically expressed in a subset of parasagittal stripes of Purkinje cells in the cerebellar cortex of a UBB +1 -expressing mouse model. This expression pattern is reminiscent of that of the constitutively expressed Purkinje cell antigen HSP25, a small heat shock protein with neuroprotective properties.

  2. Properties of the mitochondrial carrier of adenine-nucleotide after purification. Study of the transport protein under isolated form and reincorporated form in phospho-lipidic vesicles

    International Nuclear Information System (INIS)

    Brandolin, Gerard

    1983-01-01

    The first part of this research thesis addresses the reconstitution of the ADP/ATP transport by incorporation of the specific carrier, isolated in presence of detergent, in phospholipids vesicles. Fundamental properties of the reconstituted transport are identical to that of transport in mitochondria, notably as far as the exchange stoichiometry, the turn over and the transport Km are concerned, as well as the asymmetric orientation of the carrier in the membrane. The second part of this research addresses the study of interactions of specific ligands with the ADP/ATP transport protein in presence of detergent. The study of the variations of the intrinsic fluorescence of the isolated ADP/ATP carrier highlights conformational changes exclusively induced by the presence of transportable nucleotides which are modulated in a different manner by carboxy-atractyloside or bongkrekic acid. Moreover, by using the isolated protein, a detailed analysis of binding parameters of fluorescent analogues of ATP is reported [fr

  3. Mechanism for the selective conjugation of ubiquitin to phytochrome

    Energy Technology Data Exchange (ETDEWEB)

    Vierstra, R.D.

    1990-01-01

    The goal of this project is to understand at the molecular level how phytochrome functions and how intracellular proteins are degraded. Phytochrome is marked for degradation by covalent attachment of ubiquitin. Ubiquitin-phytochrome conjugates (UbP) were characterized with respect to formation kinetics, subcellular localization and site of ubiquitin attachment. UbP appears to be a general phenomenon during phytochrome degradation in a variety of species. UbP was isolated from oat seedlings and characterized. Residues 747-830 of phytochrome have been identified as a possible attachment site for ubiquitin. By placing the gene for etiolated phytochrome in tobacco we have created a transgenic system for over expressing phytochrome. The effects of this over expression are described, and it appears that tobacco degrades this foreign protein through formation of UbP. We have created a series of site-directed mutants of the oat phytochrome gene, and are in the process of characterizing them to determine sequence requirements for ubiquination. 8 refs., 1 fig. (MHB)

  4. Hyaluronan microgel as a potential carrier for protein sustained delivery by tailoring the crosslink network

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunhong [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Zhao, Jianhao, E-mail: jhzhao@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Tu, Mei; Zeng, Rong; Rong, Jianhua [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2014-03-01

    Hyaluronan (HA) microgels with different crosslink network, i.e. HGPs-1, HGPs-1.5, HGPs-3, HGPs-6 and HGPs-15, were synthesized using divinyl sulfone (DVS) as the crosslinker in an inverse microemulsion system for controlling the sustained delivery of bovine serum albumin (BSA). With increasing the crosslinker content, the average particle size slightly increased from 1.9 ± 0.3 μm to 3.6 ± 0.5 μm by dynamic laser scattering analysis. However, the crosslinker content had no significant effect on the morphology of HA microgels by scanning and transmission electron microscopes. Fourier transform infrared spectroscopy and elemental analysis proved more sulfur participated in the crosslink reaction when raising the crosslinker amount. The water swelling test confirmed the increasing crosslink density with the crosslinker content by calculating the average molecular weight between two crosslink points to be 8.25 ± 2.51 × 10{sup 5}, 1.26 ± 0.43 × 10{sup 5}, 0.96 ± 0.09 × 10{sup 5}, 0.64 ± 0.03 × 10{sup 5}, and 0.11 ± 0.01 × 10{sup 5} respectively. The degradation of HA microgels by hyaluronidase slowed down by enhancing the crosslink density, only about 5% of HGPs-15 was degraded as opposed to over 90% for HGPs-1. BSA loading had no obvious influence on the surface morphology of HA microgels but seemed to induce their aggregation. The increase of crosslink density decreased the BSA loading capacity but facilitated its long-term sustained delivery. When the molar ratio of DVS to repeating unit of HA reached 3 or higher, similar delivery profiles were obtained. Among all these HA microgels, HGPs-3 was the optimal carrier for BSA sustained delivery in this system because it possessed both high BSA loading capacity and long-term delivery profile simultaneously. - Highlights: • HA microgels with different crosslink densities were prepared. • The crosslinker content had little effect on the morphology and size of HA microgels. • The crosslink density

  5. Dynamic survey of mitochondria by ubiquitin

    Science.gov (United States)

    Escobar-Henriques, Mafalda; Langer, Thomas

    2014-01-01

    Ubiquitin is a post-translational modifier with proteolytic and non-proteolytic roles in many biological processes. At mitochondria, it performs regulatory homeostatic functions and contributes to mitochondrial quality control. Ubiquitin is essential for mitochondrial fusion, regulates mitochondria-ER contacts, and participates in maternal mtDNA inheritance. Under stress, mitochondrial dysfunction induces ubiquitin-dependent responses that involve mitochondrial proteome remodeling and culminate in organelle removal by mitophagy. In addition, many ubiquitin-dependent mechanisms have been shown to regulate innate immune responses and xenophagy. Here, we review the emerging roles of ubiquitin at mitochondria. PMID:24569520

  6. The Crystal Structure and Conformations of an Unbranched Mixed Tri-Ubiquitin Chain Containing K48 and K63 Linkages.

    Science.gov (United States)

    Padala, Prasanth; Soudah, Nadine; Giladi, Moshe; Haitin, Yoni; Isupov, Michail N; Wiener, Reuven

    2017-12-08

    The ability of ubiquitin to function in a wide range of cellular processes is ascribed to its capacity to cause a diverse spectrum of modifications. While a target protein can be modified with monoubiquitin, it can also be modified with ubiquitin chains. The latter include seven types of homotypic chains as well as mixed ubiquitin chains. In a mixed chain, not all the isopeptide bonds are restricted to a specific lysine of ubiquitin, resulting in a chain possessing more than one type of linkage. While structural characterization of homotypic chains has been well elucidated, less is known about mixed chains. Here we present the crystal structure of a mixed tri-ubiquitin chain at 3.1-Å resolution. In the structure, the proximal ubiquitin is connected to the middle ubiquitin via K48 and these two ubiquitins adopt a compact structure as observed in K48 di-ubiquitin. The middle ubiquitin links to the distal ubiquitin via its K63 and these ubiquitins adopt two conformations, suggesting a flexible structure. Using small-angle X-ray scattering, we unexpectedly found differences between the conformational ensembles of the above tri-ubiquitin chains and chains possessing the same linkages but in the reverse order. In addition, cleavage of the K48 linkage by DUB is faster if this linkage is at the distal end. Taken together, our results suggest that in mixed chains, not only the type of the linkages but also their sequence determine the structural and functional properties of the chain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. BTB-BACK Domain Protein POB1 Suppresses Immune Cell Death by Targeting Ubiquitin E3 ligase PUB17 for Degradation.

    Directory of Open Access Journals (Sweden)

    Beatriz Orosa

    2017-01-01

    Full Text Available Hypersensitive response programmed cell death (HR-PCD is a critical feature in plant immunity required for pathogen restriction and prevention of disease development. The precise control of this process is paramount to cell survival and an effective immune response. The discovery of new components that function to suppress HR-PCD will be instrumental in understanding the regulation of this fundamental mechanism. Here we report the identification and characterisation of a BTB domain E3 ligase protein, POB1, that functions to suppress HR-PCD triggered by evolutionarily diverse pathogens. Nicotiana benthamiana and tobacco plants with reduced POB1 activity show accelerated HR-PCD whilst those with increased POB1 levels show attenuated HR-PCD. We demonstrate that POB1 dimerization and nuclear localization are vital for its function in HR-PCD suppression. Using protein-protein interaction assays, we identify the Plant U-Box E3 ligase PUB17, a well established positive regulator of plant innate immunity, as a target for POB1-mediated proteasomal degradation. Using confocal imaging and in planta immunoprecipitation assays we show that POB1 interacts with PUB17 in the nucleus and stimulates its degradation. Mutated versions of POB1 that show reduced interaction with PUB17 fail to suppress HR-PCD, indicating that POB1-mediated degradation of PUB17 U-box E3 ligase is an important step for negative regulation of specific immune pathways in plants. Our data reveals a new mechanism for BTB domain proteins in suppressing HR-PCD in plant innate immune responses.

  8. Ubiquitin regulates GGA3-mediated degradation of BACE1.

    Science.gov (United States)

    Kang, Eugene L; Cameron, Andrew N; Piazza, Fabrizio; Walker, Kendall R; Tesco, Giuseppina

    2010-07-30

    BACE1 (beta-site amyloid precursor protein-cleaving enzyme 1) is a membrane-tethered member of the aspartyl proteases, essential for the production of beta-amyloid, a toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. The BACE1 C-terminal fragment contains a DXXLL motif that has been shown to bind the VHS (VPS27, Hrs, and STAM) domain of GGA1-3 (Golgi-localized gamma-ear-containing ARF-binding proteins). GGAs are trafficking molecules involved in the transport of proteins containing the DXXLL signal from the Golgi complex to endosomes. Moreover, GGAs bind ubiquitin and traffic synthetic and endosomal ubiquitinated cargoes to lysosomes. We have previously shown that depletion of GGA3 results in increased BACE1 levels and activity because of impaired lysosomal degradation. Here, we report that the accumulation of BACE1 is rescued by the ectopic expression of GGA3 in H4 neuroglioma cells depleted of GGA3. Accordingly, the overexpression of GGA3 reduces the levels of BACE1 and beta-amyloid. We then established that mutations in the GGA3 VPS27, Hrs, and STAM domain (N91A) or in BACE1 di-leucine motif (L499A/L500A), able to abrogate their binding, did not affect the ability of ectopically expressed GGA3 to rescue BACE1 accumulation in cells depleted of GGA3. Instead, we found that BACE1 is ubiquitinated at lysine 501 and is mainly monoubiquitinated and Lys-63-linked polyubiquitinated. Finally, a GGA3 mutant with reduced ability to bind ubiquitin (GGA3L276A) was unable to regulate BACE1 levels both in rescue and overexpression experiments. These findings indicate that levels of GGA3 tightly and inversely regulate BACE1 levels via interaction with ubiquitin sorting machinery.

  9. Ubiquitin Regulates GGA3-mediated Degradation of BACE1*

    Science.gov (United States)

    Kang, Eugene L.; Cameron, Andrew N.; Piazza, Fabrizio; Walker, Kendall R.; Tesco, Giuseppina

    2010-01-01

    BACE1 (β-site amyloid precursor protein-cleaving enzyme 1) is a membrane-tethered member of the aspartyl proteases, essential for the production of β-amyloid, a toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. The BACE1 C-terminal fragment contains a DXXLL motif that has been shown to bind the VHS (VPS27, Hrs, and STAM) domain of GGA1–3 (Golgi-localized γ-ear-containing ARF-binding proteins). GGAs are trafficking molecules involved in the transport of proteins containing the DXXLL signal from the Golgi complex to endosomes. Moreover, GGAs bind ubiquitin and traffic synthetic and endosomal ubiquitinated cargoes to lysosomes. We have previously shown that depletion of GGA3 results in increased BACE1 levels and activity because of impaired lysosomal degradation. Here, we report that the accumulation of BACE1 is rescued by the ectopic expression of GGA3 in H4 neuroglioma cells depleted of GGA3. Accordingly, the overexpression of GGA3 reduces the levels of BACE1 and β-amyloid. We then established that mutations in the GGA3 VPS27, Hrs, and STAM domain (N91A) or in BACE1 di-leucine motif (L499A/L500A), able to abrogate their binding, did not affect the ability of ectopically expressed GGA3 to rescue BACE1 accumulation in cells depleted of GGA3. Instead, we found that BACE1 is ubiquitinated at lysine 501 and is mainly monoubiquitinated and Lys-63-linked polyubiquitinated. Finally, a GGA3 mutant with reduced ability to bind ubiquitin (GGA3L276A) was unable to regulate BACE1 levels both in rescue and overexpression experiments. These findings indicate that levels of GGA3 tightly and inversely regulate BACE1 levels via interaction with ubiquitin sorting machinery. PMID:20484053

  10. Carbohydrate particles as protein carriers and scaffolds: physico-chemical characterization and collagen stability

    International Nuclear Information System (INIS)

    Peres, Ivone; Rocha, Sandra; Loureiro, Joana A.; Carmo Pereira, Maria do; Ivanova, Galya; Coelho, Manuel

    2012-01-01

    The preservation of protein properties after entrapping into polymeric matrices and the effects of drying the emulsions still remains uncertain and controversial. Carbohydrate particles were designed and prepared by homogenization of gum arabic and maltodextrin mixture, with collagen hydrolysate (CH) followed by spray-drying. The encapsulation of CH in the carbohydrate matrix was achieved with an efficiency of 85 ± 2 %. The morphology and the size of the particles, before (40–400 nm) and after spray-drying (<20 μm), were characterized by scanning electron microscopy and dynamic light scattering. Measurements of the nuclear relaxation times and application of diffusion ordered spectroscopy, obtained through pulsed field gradient NMR experiments, have been performed to determine the structure of the CH–polysaccharide conjugates and to clarify the mechanism of CH immobilization in the polysaccharide matrix. In vitro release profiles in ultrapure water and in cellular medium reveal that the diffusion rate of CH from the polymeric matrix to the dialysis solution decreases in average 30–50 % over time, compared to free CH molecules. In cellular medium at 37 °C, the complete release of CH from the particles is achieved only after 24 h, demonstrating a significant decrease in the CH mass transfer process when compared with free CH. The findings of this study outline the ability of gum arabic/maltodextrin matrices to entrap and preserve CH original properties after the spray-drying process and support the potential of the polymeric scaffold for protein delivery and tissue engineering.

  11. Carbohydrate particles as protein carriers and scaffolds: physico-chemical characterization and collagen stability

    Energy Technology Data Exchange (ETDEWEB)

    Peres, Ivone; Rocha, Sandra; Loureiro, Joana A.; Carmo Pereira, Maria do [University of Porto, LEPAE, Chemical Engineering Department, Faculty of Engineering (Portugal); Ivanova, Galya [Universidade do Porto, REQUIMTE, Departamento de Quimica, Faculdade de Ciencias (Portugal); Coelho, Manuel, E-mail: mcoelho@fe.up.pt [University of Porto, LEPAE, Chemical Engineering Department, Faculty of Engineering (Portugal)

    2012-09-15

    The preservation of protein properties after entrapping into polymeric matrices and the effects of drying the emulsions still remains uncertain and controversial. Carbohydrate particles were designed and prepared by homogenization of gum arabic and maltodextrin mixture, with collagen hydrolysate (CH) followed by spray-drying. The encapsulation of CH in the carbohydrate matrix was achieved with an efficiency of 85 {+-} 2 %. The morphology and the size of the particles, before (40-400 nm) and after spray-drying (<20 {mu}m), were characterized by scanning electron microscopy and dynamic light scattering. Measurements of the nuclear relaxation times and application of diffusion ordered spectroscopy, obtained through pulsed field gradient NMR experiments, have been performed to determine the structure of the CH-polysaccharide conjugates and to clarify the mechanism of CH immobilization in the polysaccharide matrix. In vitro release profiles in ultrapure water and in cellular medium reveal that the diffusion rate of CH from the polymeric matrix to the dialysis solution decreases in average 30-50 % over time, compared to free CH molecules. In cellular medium at 37 Degree-Sign C, the complete release of CH from the particles is achieved only after 24 h, demonstrating a significant decrease in the CH mass transfer process when compared with free CH. The findings of this study outline the ability of gum arabic/maltodextrin matrices to entrap and preserve CH original properties after the spray-drying process and support the potential of the polymeric scaffold for protein delivery and tissue engineering.

  12. Correlation of acidic and basic carrier ampholyte and immobilized pH gradient two-dimensional gel electrophoresis patterns based on mass spectrometric protein identification

    DEFF Research Database (Denmark)

    Nawrocki, A; Larsen, Martin Røssel; Podtelejnikov, A V

    1998-01-01

    Separation of proteins on either carrier ampholyte-based or immobilized pH gradient-based two-dimensional (2-D) gels gives rise to electrophoretic patterns that are difficult to compare visually. In this paper we have used matrix-assisted laser desorption/ionization mass spectrometry (MALDI......-MS) to determine the identities of 335 protein spots in these two 2-D gel systems, including a substantial number of basic proteins which had never been identified before. Proteins that were identified in both gel systems allowed us to cross-reference the gel patterns. Vector analysis of these cross...

  13. Fatty acid-binding proteins (FABPs) are intracellular carriers for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD).

    Science.gov (United States)

    Elmes, Matthew W; Kaczocha, Martin; Berger, William T; Leung, KwanNok; Ralph, Brian P; Wang, Liqun; Sweeney, Joseph M; Miyauchi, Jeremy T; Tsirka, Stella E; Ojima, Iwao; Deutsch, Dale G

    2015-04-03

    Δ(9)-Tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex. Although it is known that these hydrophobic compounds can be transported in blood by albumin or lipoproteins, the intracellular carrier has not been identified. Recent reports suggest that CBD and THC elevate the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance. Fatty acid-binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH). By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption. Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy toward epilepsy and other neurological disorders. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. [Cloning, expression and transcriptional analysis of biotin carboxyl carrier protein gene (accA) from Amycolatopsis mediterranei U32 ].

    Science.gov (United States)

    Lu, Jie; Yao, Yufeng; Jiang, Weihong; Jiao, Ruishen

    2003-02-01

    Acetyl CoA carboxylase (EC 6.4.1.2, ACC) catalyzes the ATP-dependent carboxylation of acetyl CoA to yield malonyl CoA, which is the first committed step in fatty acid synthesis. A pair of degenerate PCR primers were designed according to the conserved amino acid sequence of AccA from M. tuberculosis and S. coelicolor. The product of the PCR amplification, a DNA fragment of 250bp was used as a probe for screening the U32 genomic cosmid library and its gene, accA, coding the biotinylated protein subunit of acetyl CoA carboxylase, was successfully cloned from U32. The accA ORF encodes a 598-amino-acid protein with the calculated molecular mass of 63.7kD, with 70.1% of G + C content. A typical Streptomyces RBS sequence, AGGAGG, was found at the - 6 position upstream of the start codon GTG. Analysis of the deduced amino acid sequence showed the presence of biotin-binding site and putative ATP-bicarbonate interaction region, which suggested the U32 AccA may act as a biotin carboxylase as well as a biotin carrier protein. Gene accA was then cloned into the pET28 (b) vector and expressed solubly in E. coli BL21 (DE3) by 0.1 mmol/L IPTG induction. Western blot confirmed the covalent binding of biotin with AccA. Northern blot analyzed transcriptional regulation of accA by 5 different nitrogen sources.

  15. UbSRD: The Ubiquitin Structural Relational Database.

    Science.gov (United States)

    Harrison, Joseph S; Jacobs, Tim M; Houlihan, Kevin; Van Doorslaer, Koenraad; Kuhlman, Brian

    2016-02-22

    The structurally defined ubiquitin-like homology fold (UBL) can engage in several unique protein-protein interactions and many of these complexes have been characterized with high-resolution techniques. Using Rosetta's structural classification tools, we have created the Ubiquitin Structural Relational Database (UbSRD), an SQL database of features for all 509 UBL-containing structures in the PDB, allowing users to browse these structures by protein-protein interaction and providing a platform for quantitative analysis of structural features. We used UbSRD to define the recognition features of ubiquitin (UBQ) and SUMO observed in the PDB and the orientation of the UBQ tail while interacting with certain types of proteins. While some of the interaction surfaces on UBQ and SUMO overlap, each molecule has distinct features that aid in molecular discrimination. Additionally, we find that the UBQ tail is malleable and can adopt a variety of conformations upon binding. UbSRD is accessible as an online resource at rosettadesign.med.unc.edu/ubsrd. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Ubiquitin regulates TORC1 in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Hu, Kejin; Guo, Shuguang; Yan, Gonghong; Yuan, Wenjie; Zheng, Yin; Jiang, Yu

    2016-04-01

    In the yeast Saccharomyces cerevisiae the TOR complex 1 (TORC1) controls many growth-related cellular processes and is essential for cell growth and proliferation. Macrolide antibiotic rapamycin, in complex with a cytosol protein named FKBP12, specifically inhibits TORC1, causing growth arrest. The FKBP12-rapamycin complex interferes with TORC1 function by binding to the FRB domain of the TOR proteins. In an attempt to understand the role of the FRB domain in TOR function, we identified a single point mutation (Tor2(W2041R) ) in the FRB domain of Tor2 that renders yeast cells rapamycin resistant and temperature sensitive. At the permissive temperature, the Tor2 mutant protein is partially defective for binding with Kog1 and TORC1 is impaired for membrane association. At the restrictive temperature, Kog1 but not the Tor2 mutant protein, is rapidly degraded. Overexpression of ubiquitin stabilizes Kog1 and suppresses the growth defect associated with the tor2 mutant at the nonpremissive temperature. We find that ubiquitin binds non-covalently to Kog1, prevents Kog1 from degradation and stabilizes TORC1. Our data reveal a unique role for ubiquitin in regulation of TORC1 and suggest that Kog1 requires association with the Tor proteins for stabilization. © 2016 John Wiley & Sons Ltd.

  17. Aβ-Induced Synaptic Alterations Require the E3 Ubiquitin Ligase Nedd4-1.

    Science.gov (United States)

    Rodrigues, Elizabeth M; Scudder, Samantha L; Goo, Marisa S; Patrick, Gentry N

    2016-02-03

    Alzheimer's disease (AD) is a neurodegenerative disease in which patients experience progressive cognitive decline. A wealth of evidence suggests that this cognitive impairment results from synaptic dysfunction in affected brain regions caused by cleavage of amyloid precursor protein into the pathogenic peptide amyloid-β (Aβ). Specifically, it has been shown that Aβ decreases surface AMPARs, dendritic spine density, and synaptic strength, and also alters synaptic plasticity. The precise molecular mechanisms by which this occurs remain unclear. Here we demonstrate a role for ubiquitination in Aβ-induced synaptic dysfunction in cultured rat neurons. We find that Aβ promotes the ubiquitination of AMPARs, as well as the redistribution and recruitment of Nedd4-1, a HECT E3 ubiquitin ligase we previously demonstrated to target AMPARs for ubiquitination and degradation. Strikingly, we show that Nedd4-1 is required for Aβ-induced reductions in surface AMPARs, synaptic strength, and dendritic spine density. Our findings, therefore, indicate an important role for Nedd4-1 and ubiquitin in the synaptic alterations induced by Aβ. Synaptic changes in Alzheimer's disease (AD) include surface AMPAR loss, which can weaken synapses. In a cell culture model of AD, we found that AMPAR loss correlates with increased AMPAR ubiquitination. In addition, the ubiquitin ligase Nedd4-1, known to ubiquitinate AMPARs, is recruited to synapses in response to Aβ. Strikingly, reducing Nedd4-1 levels in this model prevented surface AMPAR loss and synaptic weakening. These findings suggest that, in AD, Nedd4-1 may ubiquitinate AMPARs to promote their internalization and weaken synaptic strength, similar to what occurs in Nedd4-1's established role in homeostatic synaptic scaling. This is the first demonstration of Aβ-mediated control of a ubiquitin ligase to regulate surface AMPAR expression. Copyright © 2016 the authors 0270-6474/16/361590-06$15.00/0.

  18. Nickel compounds induce histone ubiquitination by inhibiting histone deubiquitinating enzyme activity

    International Nuclear Information System (INIS)

    Ke Qingdong; Ellen, Thomas P.; Costa, Max

    2008-01-01

    Nickel (Ni) compounds are known carcinogens but underlying mechanisms are not clear. Epigenetic changes are likely to play an important role in nickel ion carcinogenesis. Previous studies have shown epigenetic effects of nickel ions, including the loss of histone acetylation and a pronounced increase in dimethylated H3K9 in nickel-exposed cells. In this study, we demonstrated that both water-soluble and insoluble nickel compounds induce histone ubiquitination (uH2A and uH2B) in a variety of cell lines. Investigations of the mechanism by which nickel increases histone ubiquitination in cells reveal that nickel does not affect cellular levels of the substrates of this modification, i.e., ubiquitin, histones, and other non-histone ubiquitinated proteins. In vitro ubiquitination and deubiquitination assays have been developed to further investigate possible effects of nickel on enzymes responsible for histone ubiquitination. Results from the in vitro assays demonstrate that the presence of nickel did not affect the levels of ubiquitinated histones in the ubiquitinating assay. Instead, the addition of nickel significantly prevents loss of uH2A and uH2B in the deubiquitinating assay, suggesting that nickel-induced histone ubiquitination is the result of inhibition of (a) putative deubiquitinating enzyme(s). Additional supporting evidence comes from the comparison of the response to nickel ions with a known deubiquitinating enzyme inhibitor, iodoacetamide (IAA). This study is the first to demonstrate such effects of nickel ions on histone ubiquitination. It also sheds light on the possible mechanisms involved in altering the steady state of this modification. The study provides further evidence that supports the notion that nickel ions alter epigenetic homeostasis in cells, which may lead to altered programs of gene expression and carcinogenesis

  19. The tomato Fni3 lysine-63-specific ubiquitin-conjugating enzyme and suv ubiquitin E2 variant positively regulate plant immunity.

    Science.gov (United States)

    Mural, Ravi V; Liu, Yao; Rosebrock, Tracy R; Brady, Jennifer J; Hamera, Sadia; Connor, Richard A; Martin, Gregory B; Zeng, Lirong

    2013-09-01

    The activation of an immune response in tomato (Solanum lycopersicum) against Pseudomonas syringae relies on the recognition of E3 ligase-deficient forms of AvrPtoB by the host protein kinase, Fen. To investigate the mechanisms by which Fen-mediated immunity is regulated, we characterize in this study a Fen-interacting protein, Fni3, and its cofactor, S. lycoperiscum Uev (Suv). Fni3 encodes a homolog of the Ubc13-type ubiquitin-conjugating enzyme that catalyzes exclusively Lys-63-linked ubiquitination, whereas Suv is a ubiquitin-conjugating enzyme variant. The C-terminal region of Fen was necessary for interaction with Fni3, and this interaction was required for cell death triggered by overexpression of Fen in Nicotiana benthamiana leaves. Fni3 was shown to be an active E2 enzyme, but Suv displayed no ubiquitin-conjugating activity; Fni3 and Suv together directed Lys-63-linked ubiquitination. Decreased expression of Fni3, another tomato Ubc13 homolog, Sl-Ubc13-2, or Suv in N. benthamiana leaves diminished cell death associated with Fen-mediated immunity and cell death elicited by several other resistance (R) proteins and their cognate effectors. We also discovered that coexpression of Fen and other R proteins/effectors with a Fni3 mutant that is compromised for ubiquitin-conjugating activity diminished the cell death. These results suggest that Fni3/Sl-Ubc13-2 and Suv regulate the immune response mediated by Fen and other R proteins through Lys-63-linked ubiquitination.

  20. The Tomato Fni3 Lysine-63–Specific Ubiquitin-Conjugating Enzyme and Suv Ubiquitin E2 Variant Positively Regulate Plant Immunity[C][W

    Science.gov (United States)

    Mural, Ravi V.; Liu, Yao; Rosebrock, Tracy R.; Brady, Jennifer J.; Hamera, Sadia; Connor, Richard A.; Martin, Gregory B.; Zeng, Lirong

    2013-01-01

    The activation of an immune response in tomato (Solanum lycopersicum) against Pseudomonas syringae relies on the recognition of E3 ligase–deficient forms of AvrPtoB by the host protein kinase, Fen. To investigate the mechanisms by which Fen-mediated immunity is regulated, we characterize in this study a Fen-interacting protein, Fni3, and its cofactor, S. lycoperiscum Uev (Suv). Fni3 encodes a homolog of the Ubc13-type ubiquitin-conjugating enzyme that catalyzes exclusively Lys-63–linked ubiquitination, whereas Suv is a ubiquitin-conjugating enzyme variant. The C-terminal region of Fen was necessary for interaction with Fni3, and this interaction was required for cell death triggered by overexpression of Fen in Nicotiana benthamiana leaves. Fni3 was shown to be an active E2 enzyme, but Suv displayed no ubiquitin-conjugating activity; Fni3 and Suv together directed Lys-63–linked ubiquitination. Decreased expression of Fni3, another tomato Ubc13 homolog, Sl-Ubc13-2, or Suv in N. benthamiana leaves diminished cell death associated with Fen-mediated immunity and cell death elicited by several other resistance (R) proteins and their cognate effectors. We also discovered that coexpression of Fen and other R proteins/effectors with a Fni3 mutant that is compromised for ubiquitin-conjugating activity diminished the cell death. These results suggest that Fni3/Sl-Ubc13-2 and Suv regulate the immune response mediated by Fen and other R proteins through Lys-63–linked ubiquitination. PMID:24076975

  1. Interchangeability of meningococcal group C conjugate vaccines with different carrier proteins in the United Kingdom infant immunisation schedule.

    Science.gov (United States)

    Ladhani, Shamez N; Andrews, Nick J; Waight, Pauline; Hallis, Bassam; Matheson, Mary; England, Anna; Findlow, Helen; Bai, Xilian; Borrow, Ray; Burbidge, Polly; Pearce, Emma; Goldblatt, David; Miller, Elizabeth

    2015-01-29

    An open, non-randomised study was undertaken in England during 2011-12 to evaluate vaccine antibody responses in infants after completion of the routine primary infant immunisation schedule, which included two doses of meningococcal group C (MenC) conjugate (MCC) vaccine at 3 and 4 months. Any of the three licensed MCC vaccines could be used for either dose, depending on local availability. Healthy term infants registered at participating general practices (GPs) in Hertfordshire and Gloucestershire, UK, were recruited prospectively to provide a single blood sample four weeks after primary immunisation, which was administered by the GP surgery. Vaccination history was obtained at blood sampling. MenC serum bactericidal antibody (SBA) and IgG antibodies against Haemophilus influenzae b (Hib), pertussis toxin (PT), diphtheria toxoid (DT), tetanus toxoid (TT) and thirteen pneumococcal serotypes were analysed according to MCC vaccines received. MenC SBA responses differed significantly (Pvaccine schedule as follows: MenC SBA geometric mean titres (GMTs) were significantly lower in infants receiving a diphtheria cross-reacting material-conjugated MCC (MCC-CRM) vaccine followed by TT-conjugated MCC (MCC-TT) vaccine (82.0; 95% CI, 39-173; n=14) compared to those receiving two MCC-CRM (418; 95% CI, 325-537; n=82), two MCC-TT (277; 95% CI, 223-344; n=79) or MCC-TT followed by MCC-CRM (553; 95% CI, 322-949; n=18). The same group also had the lowest Hib geometric mean concentrations (0.60 μg/mL, 0.27-1.34) compared to 1.85 μg/mL (1.23-2.78), 2.86 μg/mL (2.02-4.05) and 4.26 μg/mL (1.94-9.36), respectively. Our results indicate that MCC vaccines with different carrier proteins are not interchangeable. When several MCC vaccines are available, children requiring more than one dose should receive MCC vaccines with the same carrier protein or, alternatively, receive MCC-TT first wherever possible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation*

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-01-01

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  4. Protein nanocoatings on synthetic polymeric nanofibrous membranes designed as carriers for skin cells.

    Science.gov (United States)

    Bacakova, Marketa; Pajorova, Julia; Stranska, Denisa; Hadraba, Daniel; Lopot, Frantisek; Riedel, Tomas; Brynda, Eduard; Zaloudkova, Margit; Bacakova, Lucie

    2017-01-01

    Protein-coated resorbable synthetic polymeric nanofibrous membranes are promising for the fabrication of advanced skin substitutes. We fabricated electrospun polylactic acid and poly(lactide- co -glycolic acid) nanofibrous membranes and coated them with fibrin or collagen I. Fibronectin was attached to a fibrin or collagen nanocoating, in order further to enhance the cell adhesion and spreading. Fibrin regularly formed a coating around individual nanofibers in the membranes, and also formed a thin noncontinuous nanofibrous mesh on top of the membranes. Collagen also coated most of the fibers of the membrane and randomly created a soft gel on the membrane surface. Fibronectin predominantly adsorbed onto a thin fibrin mesh or a collagen gel, and formed a thin nanofibrous structure. Fibrin nanocoating greatly improved the attachment, spreading, and proliferation of human dermal fibroblasts, whereas collagen nanocoating had a positive influence on the behavior of human HaCaT keratinocytes. In addition, fibrin stimulated the fibroblasts to synthesize fibronectin and to deposit it as an extracellular matrix. Fibrin coating also showed a tendency to improve the ultimate tensile strength of the nanofibrous membranes. Fibronectin attached to fibrin or to a collagen coating further enhanced the adhesion, spreading, and proliferation of both cell types.

  5. Photoaffinity labeling of the dopamine reuptake carrier protein with 3-azido 3H GBR-12935

    International Nuclear Information System (INIS)

    Berger, S.P.; Martenson, R.E.; Laing, P.; Thurkauf, A.; Decosta, B.; Rice, K.C.; Paul, S.M.

    1991-01-01

    A high affinity tritiated azido-diphenylpiperazine derivative, 3-azido 3 H GBR-12935, was synthesized as a potential photoaffinity probe of the dopamine transporter. Initially, the reversible binding of 3-azido 3 H GBR-12935 to crude synaptosomal membranes from the rat striatum was characterized. Specific binding was sodium dependent and inhibited by a variety of drugs that are known to potently inhibit dopamine uptake. Other neurotransmitter uptake inhibitors, as well as cis-flupenthixol, a potent inhibitor of 3 H GBR-12935 binding to piperazine binding sites, failed to inhibit specific binding at concentrations of less than or equal to 10 microM. A good correlation was observed between the relative potencies of these drugs in inhibiting dopamine uptake into synaptosomes and in inhibiting specific 3-azido 3 H GBR-12935 binding to rat striatal membranes. These data suggest that 3-azido 3 H GBR-12935, like other diphenylpiperazines such as 3 H GBR-12935 and 3 H GBR-12909, binds primarily to the dopamine transporter under defined assay conditions. After UV photolysis of crude synaptosomal membranes preincubated with 3-azido 3 H GBR-12935 (1-2 nM), a single radiolabeled polypeptide with an apparent molecular mass of 80 kDa was observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. Photoincorporation of 3-azido 3 H GBR-12935 into this polypeptide was inhibited selectively by compounds that inhibit the uptake of dopamine and was completely dependent on the presence of Na+. No photolabeled proteins were observed when cerebellar membranes were substituted for striatal membranes. Essentially complete adsorption of the radiolabeled 80-kDa polypeptide to wheat germ agglutinin and elution with N-acetyl-D-glucosamine strongly suggest that the dopamine transporter polypeptide photolabeled by 3-azido 3 H GBR-12935 is glycosylated

  6. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  7. Solute carrier protein family 11 member 1 (Slc11a1) activation efficiently inhibits Leishmania donovani survival in host macrophages.

    Science.gov (United States)

    Singh, Nisha; Gedda, Mallikarjuna Rao; Tiwari, Neeraj; Singh, Suya P; Bajpai, Surabhi; Singh, Rakesh K

    2017-09-01

    Visceral leishmaniasis (kala-azar), a life threatening disease caused by L. donovani , is a latent threat to more than 147 million people living in disease endemic South East Asia region of the Indian subcontinent. The therapeutic option to control leishmanial infections are very limited, and at present comprise only two drugs, an antifungal amphotericin B and an antitumor miltefosine, which are also highly vulnerable for parasitic resistance. Therefore, identification and development of alternate control measures is an exigent requirement to control leishmanial infections. In this study, we report that functionally induced expression of solute carrier protein family 11 member 1 ( Slc11a1), a transmembrane divalent cationic transporter recruited on the surface of phagolysosomes after phagocytosis of parasites, effectively inhibits Leishmania donovani growth in host macrophages. Further, the increased Slc11a1 functionality also resulted in increased production of NOx, TNF-α and IL-12 by activated macrophages. The findings of this study signify the importance of interplay between Slc11a1 expression and macrophages activation that can be effectively used to control of Leishmania growth and survival.

  8. Bioinformatic evidence for a widely distributed, ribosomally produced electron carrier precursor, its maturation proteins, and its nicotinoprotein redox partners

    Directory of Open Access Journals (Sweden)

    Haft Daniel H

    2011-01-01

    as N,N-dimethyl-4-nitrosoaniline (NDMA for the enzyme to cycle. Conclusions Taken together, these findings suggest that the mycofactocin precursor is modified by the Rv0693 family rSAM protein and other enzymes in its cluster. It becomes an electron carrier molecule that serves in vivo as NDMA and other artificial electron acceptors do in vitro. Subclasses from three different nicotinoprotein families show "only-if" relationships to mycofactocin because they require its presence. This framework suggests a segregated redox pool in which mycofactocin mediates communication among enzymes with non-exchangeable cofactors.

  9. Viral Mimicry to Usurp Ubiquitin and SUMO Host Pathways

    Directory of Open Access Journals (Sweden)

    Peter Wimmer

    2015-08-01

    Full Text Available Posttranslational modifications (PTMs of proteins include enzymatic changes by covalent addition of cellular regulatory determinants such as ubiquitin (Ub and small ubiquitin-like modifier (SUMO moieties. These modifications are widely used by eukaryotic cells to control the functional repertoire of proteins. Over the last decade, it became apparent that the repertoire of ubiquitiylation and SUMOylation regulating various biological functions is not restricted to eukaryotic cells, but is also a feature of human virus families, used to extensively exploit complex host-cell networks and homeostasis. Intriguingly, besides binding to host SUMO/Ub control proteins and interfering with the respective enzymatic cascade, many viral proteins mimic key regulatory factors to usurp this host machinery and promote efficient viral outcomes. Advanced detection methods and functional studies of ubiquitiylation and SUMOylation during virus-host interplay have revealed that human viruses have evolved a large arsenal of strategies to exploit these specific PTM processes. In this review, we highlight the known viral analogs orchestrating ubiquitin and SUMO conjugation events to subvert and utilize basic enzymatic pathways.

  10. Roles of mono-ubiquitinated Smad4 in the formation of Smad transcriptional complexes

    International Nuclear Information System (INIS)

    Wang Bei; Suzuki, Hiroyuki; Kato, Mitsuyasu

    2008-01-01

    TGF-β activates receptor-regulated Smad (R-Smad) through phosphorylation by type I receptors. Activated R-Smad binds to Smad4 and the complex translocates into the nucleus and stimulates the transcription of target genes through association with co-activators including p300. It is not clear, however, how activated Smad complexes are removed from target genes. In this study, we show that TGF-β enhances the mono-ubiquitination of Smad4. Smad4 mono-ubiquitination was promoted by p300 and suppressed by the c-Ski co-repressor. Smad4 mono-ubiquitination disrupted the interaction with Smad2 in the presence of constitutively active TGF-β type I receptor. Furthermore, mono-ubiquitinated Smad4 was not found in DNA-binding Smad complexes. A Smad4-Ubiquitin fusion protein, which mimics mono-ubiquitinated Smad4, enhanced localization to the cytoplasm. These results suggest that mono-ubiquitination of Smad4 occurs in the transcriptional activator complex and facilitates the turnover of Smad complexes at target genes

  11. Gravistimulation changes expression of genes encoding putative carrier proteins of auxin polar transport in etiolated pea epicotyls

    Science.gov (United States)

    Hoshino, T.; Hitotsubashi, R.; Miyamoto, K.; Tanimoto, E.; Ueda, J.

    STS-95 space experiment has showed that auxin polar transport in etiolated epicotyls of pea (Pisum sativum L. cv. Alaska) seedlings is controlled by gravistimulation. In Arabidopsis thaliana auxin polar transport has considered to be regulated by efflux and influx carrier proteins in plasma membranes, AtPIN1 and AtAUX1, respectively. In order to know how gravistimuli control auxin polar transport in etiolated pea epicotyls at molecular levels, strenuous efforts have been made, resulting in successful isolation of full-length cDNAs of a putative auxin efflux and influx carriers, PsPIN2 and PsAUX1, respectively. Significantly high levels in homology were found on nucleotide and deduced amino acid sequences among PsPIN2, PsPIN1 (accession no. AY222857, Chawla and DeMason, 2003) and AtPINs, and also among PsAUX1, AtAUX1 and their related genes. Phylogenetic analyses based on the deduced amino acid sequences revealed that PsPIN2 belonged to a subclade including AtPIN3, AtPIN4 relating to lateral transport of auxin, while PsPIN1 belonged to the same clade as AtPIN1 relating to auxin polar transport. In the present study, we examined the effects of gravistimuli on the expression of PsPINs and PsAUX1 in etiolated pea seedlings by northern blot analysis. Expression of PsPIN1, PsPIN2 and PsAUX1 in hook region of 3.5-d-old etiolated pea seedlings grown under simulated microgravity conditions on a 3-D clinostat increased as compared with that of the seedlings grown under 1 g conditions. On the other hand, that of PsPIN1 and PsAUX1 in the 1st internode region under simulated microgravity conditions on a 3-D clinostat also increased, while that of PsPIN2 was affected little. These results suggest that expression of PsPIN1, PsPIN2 and PsAUX1 regulating polar/lateral transport of auxin is substantially under the control of gravity. A possible role of PsPINs and PsAUX1 of auxin polar transport in etiolated pea seedlings will also be discussed.

  12. Auto-ubiquitination of Mdm2 Enhances Its Substrate Ubiquitin Ligase Activity*

    Science.gov (United States)

    Ranaweera, Ruchira S.; Yang, Xiaolu

    2013-01-01

    The RING domain E3 ubiquitin ligase Mdm2 is the master regulator of the tumor suppressor p53. It targets p53 for proteasomal degradation, restraining the potent activity of p53 and enabling cell survival and proliferation. Like most E3 ligases, Mdm2 can also ubiquitinate itself. How Mdm2 auto-ubiquitination may influence its substrate ubiquitin ligase activity is undefined. Here we show that auto-ubiquitination of Mdm2 is an activating event. Mdm2 that has been conjugated to polyubiquitin chains, but not to single ubiquitins, exhibits substantially enhanced activity to polyubiquitinate p53. Mechanistically, auto-ubiquitination of Mdm2 facilitates the recruitment of the E2 ubiquitin-conjugating enzyme. This occurs through noncovalent interactions between the ubiquitin chains on Mdm2 and the ubiquitin binding domain on E2s. Mutations that diminish the noncovalent interactions render auto-ubiquitination unable to stimulate Mdm2 substrate E3 activity. These results suggest a model in which polyubiquitin chains on an E3 increase the local concentration of E2 enzymes and permit the processivity of substrate ubiquitination. They also support the notion that autocatalysis may be a prevalent mode for turning on the activity of latent enzymes. PMID:23671280

  13. Ubiquitin-specific protease 14 regulates cell proliferation and apoptosis in oral squamous cell carcinoma.

    Science.gov (United States)

    Chen, Xiangyun; Wu, Jingjing; Chen, Yitian; Ye, Dongxia; Lei, Hu; Xu, Hanzhang; Yang, Li; Wu, Yingli; Gu, Wenli

    2016-10-01

    Ubiquitin-specific protease 14, a deubiquitinating enzyme, has been implicated in the tumorigenesis and progression of several cancers, but its role in oral squamous cell carcinoma remains to be elucidated. The aim of this study was to explore the expression pattern and roles of Ubiquitin-specific protease 14 in the occurrence and development of oral squamous cell carcinoma. Interestingly, Ubiquitin-specific protease 14 was overexpressed in oral cancer tissues and cell lines at both mRNA and protein levels. b-AP15, a specific inhibitor of Ubiquitin-specific protease 14, significantly inhibited the growth of cancer cells and increased cell apoptosis in a dose-dependent manner. Moreover, knockdown of Ubiquitin-specific protease 14 by shRNA significantly inhibited the proliferation and migration of cancer cells in vitro. Finally, using a xenograft mouse model of oral squamous cell carcinoma, knockdown of Ubiquitin-specific protease 14 markedly inhibited tumor growth and triggered the cancer cell apoptosis in vivo, supporting previous results. In conclusion, for the first time we have demonstrated the expression pattern of Ubiquitin-specific protease 14 in oral squamous cell carcinoma and verified a relationship with tumor growth and metastasis. These results may highlight new therapeutic strategies for tumor treatment, application of Ubiquitin-specific protease 14 selective inhibitor, such as b-AP15, or knockdown by shRNA. Collectively, Ubiquitin-specific protease 14 could be a potential therapeutic target for oral squamous cell carcinoma patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Purification, crystallization and preliminary X-ray diffraction analysis of enoyl-acyl carrier protein reductase (FabK) from Streptococcus mutans strain UA159

    International Nuclear Information System (INIS)

    Kim, Tae-O; Im, Dong-Won; Jung, Ha Yun; Kwon, Seong Jung; Heo, Yong-Seok

    2012-01-01

    Enoyl-acyl carrier protein reductase (FabK) from S. mutans strain UA159 was cloned, overexpressed, purified and crystallized. X-ray diffraction data were collected to a resolution of 2.40 Å. A triclosan-resistant flavoprotein termed FabK is the sole enoyl-acyl carrier protein reductase in Streptococcus pneumoniae and Streptococcus mutans. In this study, FabK from S. mutans strain UA159 was overexpressed in Escherichia coli, purified and crystallized. Diffraction data were collected to 2.40 Å resolution using a synchrotron-radiation source. The crystal belonged to space group P6 2 , with unit-cell parameters a = b = 105.79, c = 44.15 Å. The asymmetric unit contained one molecule, with a corresponding V M of 2.05 Å 3 Da −1 and a solvent content of 39.9%

  15. Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree, Theobroma cacao L

    Science.gov (United States)

    Zhang, Yufan; Maximova, Siela N.; Guiltinan, Mark J.

    2015-01-01

    In plants, the conversion of stearoyl-ACP to oleoyol-ACP is catalyzed by a plastid-localized soluble stearoyl-acyl carrier protein (ACP) desaturase (SAD). The activity of SAD significantly impacts the ratio of saturated and unsaturated fatty acids, and is thus a major determinant of fatty acid composition. The cacao genome contains eight putative SAD isoforms with high amino acid sequence similarities and functional domain conservation with SAD genes from other species. Sequence variation in known functional domains between different SAD family members suggested that these eight SAD isoforms might have distinct functions in plant development, a hypothesis supported by their diverse expression patterns in various cacao tissues. Notably, TcSAD1 is universally expressed across all the tissues, and its expression pattern in seeds is highly correlated with the dramatic change in fatty acid composition during seed maturation. Interestingly, TcSAD3 and TcSAD4 appear to be exclusively and highly expressed in flowers, functions of which remain unknown. To test the function of TcSAD1 in vivo, transgenic complementation of the Arabidopsis ssi2 mutant was performed, demonstrating that TcSAD1 successfully rescued all AtSSI2 related phenotypes further supporting the functional orthology between these two genes. The identification of the major SAD gene responsible for cocoa butter biosynthesis provides new strategies for screening for novel genotypes with desirable fatty acid compositions, and for use in breeding programs to help pyramid genes for quality and other traits such as disease resistance. PMID:25926841

  16. The R117A variant of the Escherichia coli transacylase FabD synthesizes novel acyl-(acyl carrier proteins).

    Science.gov (United States)

    Marcella, Aaron M; Barb, Adam W

    2017-12-01

    The commercial impact of fermentation systems producing novel and biorenewable chemicals will flourish with the expansion of enzymes engineered to synthesize new molecules. Though a small degree of natural variability exists in fatty acid biosynthesis, the molecular space accessible through enzyme engineering is fundamentally limitless. Prokaryotic fatty acid biosynthesis enzymes build carbon chains on a functionalized acyl carrier protein (ACP) that provides solubility, stability, and a scaffold for interactions with the synthetic enzymes. Here, we identify the malonyl-coenzyme A (CoA)/holo-ACP transacylase (FabD) from Escherichia coli as a platform enzyme for engineering to diversify microbial fatty acid biosynthesis. The FabD R117A variant produced novel ACP-based primer and extender units for fatty acid biosynthesis. Unlike the wild-type enzyme that is highly specific for malonyl-CoA to produce malonyl-ACP, the R117A variant synthesized acetyl-ACP, succinyl-ACP, isobutyryl-ACP, 2-butenoyl-ACP, and β-hydroxybutyryl-ACP among others from holo-ACP and the corresponding acyl-CoAs with specific activities from 3.7 to 120 nmol min -1  mg -1 . FabD R117A maintained K M values for holo-ACP (~ 40 μM) and displayed small changes in K M for acetoacetyl-CoA (110 ± 30 μM) and acetyl-CoA (200 ± 70 μM) when compared to malonyl-CoA (80 ± 30 μM). FabD R117A represents a novel catalyst that synthesizes a broad range of acyl-acyl-ACPs.

  17. Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree, Theobroma cacao L.

    Science.gov (United States)

    Zhang, Yufan; Maximova, Siela N; Guiltinan, Mark J

    2015-01-01

    In plants, the conversion of stearoyl-ACP to oleoyol-ACP is catalyzed by a plastid-localized soluble stearoyl-acyl carrier protein (ACP) desaturase (SAD). The activity of SAD significantly impacts the ratio of saturated and unsaturated fatty acids, and is thus a major determinant of fatty acid composition. The cacao genome contains eight putative SAD isoforms with high amino acid sequence similarities and functional domain conservation with SAD genes from other species. Sequence variation in known functional domains between different SAD family members suggested that these eight SAD isoforms might have distinct functions in plant development, a hypothesis supported by their diverse expression patterns in various cacao tissues. Notably, TcSAD1 is universally expressed across all the tissues, and its expression pattern in seeds is highly correlated with the dramatic change in fatty acid composition during seed maturation. Interestingly, TcSAD3 and TcSAD4 appear to be exclusively and highly expressed in flowers, functions of which remain unknown. To test the function of TcSAD1 in vivo, transgenic complementation of the Arabidopsis ssi2 mutant was performed, demonstrating that TcSAD1 successfully rescued all AtSSI2 related phenotypes further supporting the functional orthology between these two genes. The identification of the major SAD gene responsible for cocoa butter biosynthesis provides new strategies for screening for novel genotypes with desirable fatty acid compositions, and for use in breeding programs to help pyramid genes for quality and other traits such as disease resistance.

  18. Half-of-the-Sites Reactivity of the Castor Δ9-18:0-Acyl Carrier Protein Desaturase.

    Science.gov (United States)

    Liu, Qin; Chai, Jin; Moche, Martin; Guy, Jodie; Lindqvist, Ylva; Shanklin, John

    2015-09-01

    Fatty acid desaturases regulate the unsaturation status of cellular lipids. They comprise two distinct evolutionary lineages, a soluble class found in the plastids of higher plants and an integral membrane class found in plants, yeast (Saccharomyces cerevisiae), animals, and bacteria. Both classes exhibit a dimeric quaternary structure. Here, we test the functional significance of dimeric organization of the soluble castor Δ9-18:0-acyl carrier protein desaturase, specifically, the hypothesis that the enzyme uses an alternating subunit half-of-the-sites reactivity mechanism whereby substrate binding to one subunit is coordinated with product release from the other subunit. Using a fluorescence resonance energy transfer assay, we demonstrated that dimers stably associate at concentrations typical of desaturase assays. An active site mutant T104K/S202E, designed to occlude the substrate binding cavity, was expressed, purified, and its properties validated by x-ray crystallography, size exclusion chromatography, and activity assay. Heterodimers comprising distinctly tagged wild-type and inactive mutant subunits were purified at 1:1 stoichiometry. Despite having only one-half the number of active sites, purified heterodimers exhibit equivalent activity to wild-type homodimers, consistent with half-of-the-sites reactivity. However, because multiple rounds of turnover were observed, we conclude that substrate binding to one subunit is not required to facilitate product release from the second subunit. The observed half-of-the-sites reactivity could potentially buffer desaturase activity from oxidative inactivation. That soluble desaturases require only one active subunit per dimer for full activity represents a mechanistic difference from the membrane class of desaturases such as the Δ9-acyl-CoA, Ole1p, from yeast, which requires two catalytically competent subunits for activity. © 2015 American Society of Plant Biologists. All Rights Reserved.

  19. Half-of-the-Sites Reactivity of the Castor Δ9-18:0-Acyl Carrier Protein Desaturase1[OPEN

    Science.gov (United States)

    Liu, Qin; Chai, Jin; Moche, Martin; Guy, Jodie; Lindqvist, Ylva; Shanklin, John

    2015-01-01

    Fatty acid desaturases regulate the unsaturation status of cellular lipids. They comprise two distinct evolutionary lineages, a soluble class found in the plastids of higher plants and an integral membrane class found in plants, yeast (Saccharomyces cerevisiae), animals, and bacteria. Both classes exhibit a dimeric quaternary structure. Here, we test the functional significance of dimeric organization of the soluble castor Δ9-18:0-acyl carrier protein desaturase, specifically, the hypothesis that the enzyme uses an alternating subunit half-of-the-sites reactivity mechanism whereby substrate binding to one subunit is coordinated with product release from the other subunit. Using a fluorescence resonance energy transfer assay, we demonstrated that dimers stably associate at concentrations typical of desaturase assays. An active site mutant T104K/S202E, designed to occlude the substrate binding cavity, was expressed, purified, and its properties validated by x-ray crystallography, size exclusion chromatography, and activity assay. Heterodimers comprising distinctly tagged wild-type and inactive mutant subunits were purified at 1:1 stoichiometry. Despite having only one-half the number of active sites, purified heterodimers exhibit equivalent activity to wild-type homodimers, consistent with half-of-the-sites reactivity. However, because multiple rounds of turnover were observed, we conclude that substrate binding to one subunit is not required to facilitate product release from the second subunit. The observed half-of-the-sites reactivity could potentially buffer desaturase activity from oxidative inactivation. That soluble desaturases require only one active subunit per dimer for full activity represents a mechanistic difference from the membrane class of desaturases such as the Δ9-acyl-CoA, Ole1p, from yeast, which requires two catalytically competent subunits for activity. PMID:26224800

  20. Structural rearrangements occurring upon cofactor binding in the Mycobacterium smegmatis β-ketoacyl-acyl carrier protein reductase MabA.

    Science.gov (United States)

    Küssau, Tanja; Flipo, Marion; Van Wyk, Niel; Viljoen, Albertus; Olieric, Vincent; Kremer, Laurent; Blaise, Mickaël

    2018-05-01

    In mycobacteria, the ketoacyl-acyl carrier protein (ACP) reductase MabA (designated FabG in other bacteria) catalyzes the NADPH-dependent reduction of β-ketoacyl-ACP substrates to β-hydroxyacyl-ACP products. This first reductive step in the fatty-acid biosynthesis elongation cycle is essential for bacteria, which makes MabA/FabG an interesting drug target. To date, however, very few molecules targeting FabG have been discovered and MabA remains the only enzyme of the mycobacterial type II fatty-acid synthase that lacks specific inhibitors. Despite the existence of several MabA/FabG crystal structures, the structural rearrangement that occurs upon cofactor binding is still not fully understood. Therefore, unlocking this knowledge gap could help in the design of new inhibitors. Here, high-resolution crystal structures of MabA from Mycobacterium smegmatis in its apo, NADP + -bound and NADPH-bound forms are reported. Comparison of these crystal structures reveals the structural reorganization of the lid region covering the active site of the enzyme. The crystal structure of the apo form revealed numerous residues that trigger steric hindrance to the binding of NADPH and substrate. Upon NADPH binding, these residues are pushed away from the active site, allowing the enzyme to adopt an open conformation. The transition from an NADPH-bound to an NADP + -bound form is likely to facilitate release of the product. These results may be useful for subsequent rational drug design and/or for in silico drug-screening approaches targeting MabA/FabG.

  1. Role of the Ubiquitin Proteasome System in Regulating Skin Pigmentation

    Directory of Open Access Journals (Sweden)

    Hideya Ando

    2009-10-01

    Full Text Available Pigmentation of the skin, hair and eyes is regulated by tyrosinase, the critical rate-limiting enzyme in melanin synthesis by melanocytes. Tyrosinase is degraded endogenously, at least in part, by the ubiquitin proteasome system (UPS. Several types of inherited hypopigmentary diseases, such as oculocutaneous albinism and Hermansky-Pudlak syndrome, involve the aberrant processing and/or trafficking of tyrosinase and its subsequent degradation which can occur due to the quality-control machinery. Studies on carbohydrate modifications have revealed that tyrosinase in the endoplasmic reticulum (ER is proteolyzed via ER-associated protein degradation and that tyrosinase degradation can also occur following its complete maturation in the Golgi. Among intrinsic factors that regulate the UPS, fatty acids have been shown to modulate tyrosinase degradation in contrasting manners through increased or decreased amounts of ubiquitinated tyrosinase that leads to its accelerated or decelerated degradation by proteasomes.

  2. RMND5 from Xenopus laevis Is an E3 Ubiquitin-Ligase and Functions in Early Embryonic Forebrain Development

    OpenAIRE

    Pfirrmann, Thorsten; Villavicencio-Lorini, Pablo; Subudhi, Abinash K.; Menssen, Ruth; Wolf, Dieter H.; Hollemann, Thomas

    2015-01-01

    In Saccharomyces cerevisiae the Gid-complex functions as an ubiquitin-ligase complex that regulates the metabolic switch between glycolysis and gluconeogenesis. In higher organisms six conserved Gid proteins form the CTLH protein-complex with unknown function. Here we show that Rmnd5, the Gid2 orthologue from Xenopus laevis, is an ubiquitin-ligase embedded in a high molecular weight complex. Expression of rmnd5 is strongest in neuronal ectoderm, prospective brain, eyes and ciliated cells of t...

  3. Ubiquitin C-terminal electrophiles are activity-based probes for identification and mechanistic study of ubiquitin conjugating machinery.

    Science.gov (United States)

    Love, Kerry Routenberg; Pandya, Renuka K; Spooner, Eric; Ploegh, Hidde L

    2009-04-17

    Protein modification by ubiquitin (Ub) and ubiquitin-like modifiers (Ubl) requires the action of activating (E1), conjugating (E2), and ligating (E3) enzymes and is a key step in the specific destruction of proteins. Deubiquitinating enzymes (DUBs) deconjugate substrates modified with Ub/Ubl's and recycle Ub inside the cell. Genome mining based on sequence homology to proteins with known function has assigned many enzymes to this pathway without confirmation of either conjugating or DUB activity. Function-dependent methodologies are still the most useful for rapid identification or assessment of biological activity of expressed proteins from cells. Activity-based protein profiling uses chemical probes that are active-site-directed for the classification of protein activities in complex mixtures. Here we show that the design and use of an expanded set of Ub-based electrophilic probes allowed us to recover and identify members of each enzyme class in the ubiquitin-proteasome system, including E3 ligases and DUBs with previously unverified activity. We show that epitope-tagged Ub-electrophilic probes can be used as activity-based probes for E3 ligase identification by in vitro labeling and activity studies of purified enzymes identified from complex mixtures in cell lysate. Furthermore, the reactivity of our probe with the HECT domain of the E3 Ub ligase ARF-BP1 suggests that multiple cysteines may be in the vicinity of the E2-binding site and are capable of the transfer of Ub to self or to a substrate protein.

  4. Human cytomegalovirus IE1 downregulates Hes1 in neural progenitor cells as a potential E3 ubiquitin ligase.

    Directory of Open Access Journals (Sweden)

    Xi-Juan Liu

    2017-07-01

    Full Text Available Congenital human cytomegalovirus (HCMV infection is the leading cause of neurological disabilities in children worldwide, but the mechanisms underlying these disorders are far from well-defined. HCMV infection has been shown to dysregulate the Notch signaling pathway in human neural progenitor cells (NPCs. As an important downstream effector of Notch signaling, the transcriptional regulator Hairy and Enhancer of Split 1 (Hes1 is essential for governing NPC fate and fetal brain development. In the present study, we report that HCMV infection downregulates Hes1 protein levels in infected NPCs. The HCMV 72-kDa immediate-early 1 protein (IE1 is involved in Hes1 degradation by assembling a ubiquitination complex and promoting Hes1 ubiquitination as a potential E3 ubiquitin ligase, followed by proteasomal degradation of Hes1. Sp100A, an important component of PML nuclear bodies, is identified to be another target of IE1-mediated ubiquitination. A C-terminal acidic region in IE1, spanning amino acids 451 to 475, is required for IE1/Hes1 physical interaction and IE1-mediated Hes1 ubiquitination, but is dispensable for IE1/Sp100A interaction and ubiquitination. Our study suggests a novel mechanism linking downregulation of Hes1 protein to neurodevelopmental disorders caused by HCMV infection. Our findings also complement the current knowledge of herpesviruses by identifying IE1 as the first potential HCMV-encoded E3 ubiquitin ligase.

  5. ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response.

    Science.gov (United States)

    Malakhova, Oxana A; Zhang, Dong-Er

    2008-04-04

    Interferons regulate diverse immune functions through the transcriptional activation of hundreds of genes involved in anti-viral responses. The interferon-inducible ubiquitin-like protein ISG15 is expressed in cells in response to a variety of stress conditions like viral or bacterial infection and is present in its free form or is conjugated to cellular proteins. In addition, protein ubiquitination plays a regulatory role in the immune system. Many viruses modulate the ubiquitin (Ub) pathway to alter cellular signaling and the antiviral response. Ubiquitination of retroviral group-specific antigen precursors and matrix proteins of the Ebola, vesicular stomatitis, and rabies viruses by Nedd4 family HECT domain E3 ligases is an important step in facilitating viral release. We found that Nedd4 is negatively regulated by ISG15. Free ISG15 specifically bound to Nedd4 and blocked its interaction with Ub-E2 molecules, thus preventing further Ub transfer from E2 to E3. Furthermore, overexpression of ISG15 diminished the ability of Nedd4 to ubiquitinate viral matrix proteins and led to a decrease in the release of Ebola VP40 virus-like particles from the cells. These results point to a mechanistically novel function of ISG15 in the enhancement of the innate anti-viral response through specific inhibition of Nedd4 Ub-E3 activity. To our knowledge, this is the first example of a Ub-like protein with the ability to interfere with Ub-E2 and E3 interaction to inhibit protein ubiquitination.

  6. Estrogen regulation of chicken riboflavin carrier protein gene is mediated by ERE half sites without direct binding of estrogen receptor.

    Science.gov (United States)

    Bahadur, Urvashi; Ganjam, Goutham K; Vasudevan, Nandini; Kondaiah, Paturu

    2005-02-28

    Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2), which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-alpha) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ERalpha antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the

  7. ERK5 signaling gets XIAPed: a role for ubiquitin in the disassembly of a MAPK cascade

    Science.gov (United States)

    Klein, Aileen M; Cobb, Melanie H

    2014-01-01

    Mitogen-activated protein kinase (MAPK) cascades are tightly controlled through a series of well-characterized phospho-regulatory events. In this issue, Takeda et al (2014) identify the inhibitor of apoptosis protein, XIAP, as a key regulator of ERK5 activation via uncoupling of upstream kinase activity by non-degradative ubiquitination. PMID:25012518

  8. TDP-43 in Familial and Sporadic Frontotemporal Lobar Degeneration with Ubiquitin Inclusions

    NARCIS (Netherlands)

    Cairns, Nigel J.; Neumann, Manuela; Bigio, Eileen H.; Holm, Ida E.; Troost, Dirk; Hatanpaa, Kimmo J.; Foong, Chan; White, Charles L.; Schneider, Julie A.; Kretzschmar, Hans A.; Carter, Deborah; Taylor-Reinwald, Lisa; Paulsmeyer, Katherine; Strider, Jeffrey; Gitcho, Michael; Goate, Alison M.; Morris, John C.; Mishrall, Manjari; Kwong, Linda K.; Stieber, Anna; Xu, Yan; Forman, Mark S.; Trojanowski, John Q.; Lee, Virginia M.-Y.; Mackenzie, Ian R. A.

    2007-01-01

    TAR DNA-binding protein 43 (TDP-43) is a major pathological protein of sporadic and familial frontotemporal lobar degeneration with ubiquitin-positive, tau-negative inclusions (FTLD-U) with or without motor neuron disease (MND). Thus, TDP-43 defines a novel class of neurodegenerative diseases called

  9. Modulating Endoplasmic Reticulum-Golgi Cargo Receptors for Improving Secretion of Carrier-Fused Heterologous Proteins in the Filamentous Fungus Aspergillus oryzae

    Science.gov (United States)

    Hoang, Huy-Dung; Maruyama, Jun-ichi

    2014-01-01

    Filamentous fungi are excellent hosts for industrial protein production due to their superior secretory capacity; however, the yield of heterologous eukaryotic proteins is generally lower than that of fungal or endogenous proteins. Although activating protein folding machinery in the endoplasmic reticulum (ER) improves the yield, the importance of intracellular transport machinery for heterologous protein secretion is poorly understood. Here, using Aspergillus oryzae as a model filamentous fungus, we studied the involvement of two putative lectin-like cargo receptors, A. oryzae Vip36 (AoVip36) and AoEmp47, in the secretion of heterologous proteins expressed in fusion with the endogenous enzyme α-amylase as the carrier. Fluorescence microscopy revealed that mDsRed-tagged AoVip36 localized in the Golgi compartment, whereas AoEmp47 showed localization in both the ER and the Golgi compartment. Deletion of AoVip36 and AoEmp47 improved heterologous protein secretion, but only AoVip36 deletion had a negative effect on the secretion of α-amylase. Analysis of ER-enriched cell fractions revealed that AoVip36 and AoEmp47 were involved in the retention of heterologous proteins in the ER. However, the overexpression of each cargo receptor had a different effect on heterologous protein secretion: AoVip36 enhanced the secretion, whereas AoEmp47 promoted the intracellular retention. Taken together, our data suggest that AoVip36 and AoEmp47 hinder the secretion of heterologous proteins by promoting their retention in the ER but that AoVip36 also promotes the secretion of heterologous proteins. Moreover, we found that genetic deletion of these putative ER-Golgi cargo receptors significantly improves heterologous protein production. The present study is the first to propose that ER-Golgi transport is a bottleneck for heterologous protein production in filamentous fungi. PMID:25362068

  10. Structure and catalytic regulatory function of ubiquitin specific protease 11 N-terminal and ubiquitin-like domains.

    Science.gov (United States)

    Harper, Stephen; Gratton, Hayley E; Cornaciu, Irina; Oberer, Monika; Scott, David J; Emsley, Jonas; Dreveny, Ingrid

    2014-05-13

    The ubiquitin specific protease 11 (USP11) is implicated in DNA repair, viral RNA replication, and TGFβ signaling. We report the first characterization of the USP11 domain architecture and its role in regulating the enzymatic activity. USP11 consists of an N-terminal "domain present in USPs" (DUSP) and "ubiquitin-like" (UBL) domain, together referred to as DU domains, and the catalytic domain harboring a second UBL domain. Crystal structures of the DU domains show a tandem arrangement with a shortened β-hairpin at the two-domain interface and altered surface characteristics compared to the homologues USP4 and USP15. A conserved VEVY motif is a signature feature at the two-domain interface that shapes a potential protein interaction site. Small angle X-ray scattering and gel filtration experiments are consistent with the USP11DU domains and full-length USP11 being monomeric. Unexpectedly, we reveal, through kinetic assays of a series of deletion mutants, that the catalytic activity of USP11 is not regulated through intramolecular autoinhibition or activation by the N-terminal DU or UBL domains. Moreover, ubiquitin chain cleavage assays with all eight linkages reveal a preference for Lys(63)-, Lys(6)-, Lys(33)-, and Lys(11)-linked chains over Lys(27)-, Lys(29)-, and Lys(48)-linked and linear chains consistent with USP11's function in DNA repair pathways that is mediated by the protease domain. Our data support a model whereby USP11 domains outside the catalytic core domain serve as protein interaction or trafficking modules rather than a direct regulatory function of the proteolytic activity. This highlights the diversity of USPs in substrate recognition and regulation of ubiquitin deconjugation.

  11. Fine-tuning the ubiquitin code at DNA double-strand breaks: deubiquitinating enzymes at work

    Directory of Open Access Journals (Sweden)

    Elisabetta eCitterio

    2015-09-01

    Full Text Available Ubiquitination is a reversible protein modification broadly implicated in cellular functions. Signaling processes mediated by ubiquitin are crucial for the cellular response to DNA double-strand breaks (DSBs, one of the most dangerous types of DNA lesions. In particular, the DSB response critically relies on active ubiquitination by the RNF8 and RNF168 ubiquitin ligases at the chromatin, which is essential for proper DSB signaling and repair. How this pathway is fine-tuned and what the functional consequences are of its deregulation for genome integrity and tissue homeostasis are subject of intense investigation. One important regulatory mechanism is by reversal of substrate ubiquitination through the activity of specific deubiquitinating enzymes (DUBs, as supported by the implication of a growing number of DUBs in DNA damage response (DDR processes. Here, we discuss the current knowledge of how ubiquitin-mediated signaling at DSBs is controlled by deubiquitinating enzymes, with main focus on DUBs targeting histone H2A and on their recent implication in stem cell biology and cancer.

  12. Construction and functional characterization of double and triple mutants of parallel beta-bulge of ubiquitin.

    Science.gov (United States)

    Sharma, Mrinal; Prabha, C Ratna

    2011-12-01

    Ubiquitin, a small eukaryotic protein serving as a post-translational modification on many important proteins, plays central role in cellular homeostasis and cell cycle regulation. Ubiquitin features two beta-bulges, the second beta-bulge, located at the C-terminal region of the protein along with type II turn, holds 3 residues Glu64(1), Ser65(2) and Gln2(X). Percent frequency of occurrence of such a sequence in parallel beta-bulge is very low. However, the sequence and structure have been conserved in ubiquitin through out the evolution. Present study involves replacement of residues in unusual beta-bulge of ubiquitin by introducing mutations in combination through site directed mutagenesis, generating double and triple mutants and their functional characterization. Mutant ubiquitins cloned in yeast expression vector YEp96 tested for growth profile, viability assay and heat stress complementation study have revealed significant decrease in growth rate, loss of viability and non-complementation of heat sensitive phenotype with UbE64G-S65D and UbQ2N-E64G-S65D mutations. However, UbQ2N-S65D did not show any negative effects in the above assays. Present results show that, replacement of residues in beta-bulge of ubiquitin exerts severe effects on growth and viability in Saccharomyces cerevisiae due to functional failure of the mutant ubiquitins UbE64G-S65D and UbQ2N-E64G-S65D.

  13. The nuclear import of the human T lymphotropic virus type I (HTLV-1) tax protein is carrier- and energy-independent.

    Science.gov (United States)

    Tsuji, Takahiro; Sheehy, Noreen; Gautier, Virginie W; Hayakawa, Hitoshi; Sawa, Hirofumi; Hall, William W

    2007-05-04

    HTLV-1 is the etiologic agent of the adult T cell leukemialymphoma (ATLL). The viral regulatory protein Tax plays a central role in leukemogenesis as a transcriptional transactivator of both viral and cellular gene expression, and this requires Tax activity in both the cytoplasm and the nucleus. In the present study, we have investigated the mechanisms involved in the nuclear localization of Tax. Employing a GFP fusion expression system and a range of Tax mutants, we could confirm that the N-terminal 60 amino acids, and specifically residues within the zinc finger motif in this region, are important for nuclear localization. Using an in vitro nuclear import assay, it could be demonstrated that the transportation of Tax to the nucleus required neither energy nor carrier proteins. Specific and direct binding between Tax and p62, a nucleoporin with which the importin beta family of proteins have been known to interact was also observed. The nuclear import activity of wild type Tax and its mutants and their binding affinity for p62 were also clearly correlated, suggesting that the entry of Tax into the nucleus involves a direct interaction with nucleoporins within the nuclear pore complex (NPC). The nuclear export of Tax was also shown to be carrier independent. It could be also demonstrated that Tax it self may have a carrier function and that the NF-kappaB subunit p65 could be imported into the nucleus by Tax. These studies suggest that Tax could alter the nucleocytoplasmic distribution of cellular proteins, and this could contribute to the deregulation of cellular processes observed in HTLV-1 infection.

  14. Binding of 2,2',4,4',6-pentabromodiphenyl ether (BDE-100) and/or its metabolites to mammalian biliary carrier proteins

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.; Huwe, J.; Hakk, H. [USDA ARS Biosciences Research Lab, Fargo, ND (United States); Low, M.; Rutherford, D. [Concordia College, Moorhead, MN (United States)

    2004-09-15

    Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in the textile and electronics industries and are globally produced in the range of 150,000 tons annually. Because they are very lipophilic, structurally similar to polychlorinated dibenzo-p-dioxins and biphenyls, environmentally persistent, and display an increasing number of toxicological effects, there is growing concern that this class of compounds may be emerging as a new environmental contaminant. Recent reports have documented their presence in human plasma, milk, and adipose tissue and in aquatic species such as sperm whales, harbor seals, and whitebeaked dolphins. Only a few PBDE congeners are consistently found and reported in the environment, e.g. BDE-47, 99, 100, 153 and 154, and 209. Of this group, only BDE-47 and 99 have been studied in mammals. Halogenated aromatic hydrocarbons can associate with endogenous carrier proteins in the urine and bile of rats, either as the parent or as metabolites. Toxic and non-toxic dioxins, PCB's, and PBDE's all have this capacity. Based on its lipophilicity, BDE-100 would be expected to require carrier proteins for mammalian in vivo transport. The purpose of the association has not been established but may be part of the process involved in mammalian elimination of these xenobiotics. However, the association may affect the normal function of these carrier proteins. One of the purposes of the present research was to administer a single oral dose of BDE-100 to male rats and measure the amount eliminated in the urine and bile, as well as characterize the nature and extent of binding to any proteins in these excreta.

  15. TRIM37 defective in mulibrey nanism is a novel RING finger ubiquitin E3 ligase

    International Nuclear Information System (INIS)

    Kallijaervi, Jukka; Lahtinen, Ulla; Haemaelaeinen, Riikka; Lipsanen-Nyman, Marita; Palvimo, Jorma J.; Lehesjoki, Anna-Elina

    2005-01-01

    Mulibrey nanism is an autosomal recessive prenatal-onset growth disorder characterized by dysmorphic features, cardiomyopathy, and hepatomegaly. Mutations in TRIM37 encoding a tripartite motif (TRIM, RING-B-box-coiled-coil)-family protein underlie mulibrey nanism. We investigated the ubiquitin ligase activity predicted for the RING domain of TRIM37 by analyzing its autoubiquitination. Full-length TRIM37 and its TRIM domain were highly polyubiquitinated when co-expressed with ubiquitin. Polyubiquitination was decreased in a mutant protein with disrupted RING domain (Cys35Ser;Cys36Ser) and in the Leu76Pro mutant protein, a disease-associated missense mutation affecting the TRIM domain of TRIM37. Bacterially produced GST-TRIM domain fusion protein, but not its Cys35Ser;Cys36Ser or Leu76Pro mutants, were polyubiquitinated in cell-free conditions, implying RING-dependent modification. Ubiquitin was also identified as an interaction partner for TRIM37 in a yeast two-hybrid screen. Ectopically expressed TRIM37 rapidly formed aggregates that were ubiquitin-, proteasome subunit-, and chaperone-positive in immunofluorescence analysis, defining them as aggresomes. The Cys35Ser;Cys36Ser mutant and the Leu76Pro and Gly322Val patient mutant proteins were markedly less prone to aggregation, implying that aggresomal targeting reflects a physiological function of TRIM37. These findings suggest that TRIM37 acts as a TRIM domain-dependent E3 ubiquitin ligase and imply defective ubiquitin-dependent degradation of an as-yet-unidentified target protein in the pathogenesis of mulibrey nanism

  16. Membrane-localized ubiquitin ligase ATL15 functions in sugar-responsive growth regulation in Arabidopsis.

    Science.gov (United States)

    Aoyama, Shoki; Terada, Saki; Sanagi, Miho; Hasegawa, Yoko; Lu, Yu; Morita, Yoshie; Chiba, Yukako; Sato, Takeo; Yamaguchi, Junji

    2017-09-09

    Ubiquitin ligases play important roles in regulating various cellular processes by modulating the protein function of specific ubiquitination targets. The Arabidopsis Tóxicos en Levadura (ATL) family is a group of plant-specific RING-type ubiquitin ligases that localize to membranes via their N-terminal transmembrane-like domains. To date, 91 ATL isoforms have been identified in the Arabidopsis genome, with several ATLs reported to be involved in regulating plant responses to environmental stresses. However, the functions of most ATLs remain unknown. This study, involving transcriptome database analysis, identifies ATL15 as a sugar responsive ATL gene in Arabidopsis. ATL15 expression was rapidly down-regulated in the presence of sugar. The ATL15 protein showed ubiquitin ligase activity in vitro and localized to plasma membrane and endomembrane compartments. Further genetic analyses demonstrated that the atl15 knockout mutants are insensitive to high glucose concentrations, whereas ATL15 overexpression depresses plant growth. In addition, endogenous glucose and starch amounts were reciprocally affected in the atl15 knockout mutants and the ATL15 overexpressors. These results suggest that ATL15 protein plays a significant role as a membrane-localized ubiquitin ligase that regulates sugar-responsive plant growth in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Dissecting the function of Cullin-RING ubiquitin ligase complex genes in planarian regeneration.

    Science.gov (United States)

    Strand, Nicholas S; Allen, John M; Ghulam, Mahjoobah; Taylor, Matthew R; Munday, Roma K; Carrillo, Melissa; Movsesyan, Artem; Zayas, Ricardo M

    2018-01-15

    The ubiquitin system plays a role in nearly every aspect of eukaryotic cell biology. The enzymes responsible for transferring ubiquitin onto specific substrates are the E3 ubiquitin ligases, a large and diverse family of proteins, for which biological roles and target substrates remain largely undefined. Studies using model organisms indicate that ubiquitin signaling mediates key steps in developmental processes and tissue regeneration. Here, we used the freshwater planarian, Schmidtea mediterranea, to investigate the role of Cullin-RING ubiquitin ligase (CRL) complexes in stem cell regulation during regeneration. We identified six S. mediterranea cullin genes, and used RNAi to uncover roles for homologs of Cullin-1, -3 and -4 in planarian regeneration. The cullin-1 RNAi phenotype included defects in blastema formation, organ regeneration, lesions, and lysis. To further investigate the function of cullin-1-mediated cellular processes in planarians, we examined genes encoding the adaptor protein Skp1 and F-box substrate-recognition proteins that are predicted to partner with Cullin-1. RNAi against skp1 resulted in phenotypes similar to cullin-1 RNAi, and an RNAi screen of the F-box genes identified 19 genes that recapitulated aspects of cullin-1 RNAi, including ones that in mammals are involved in stem cell regulation and cancer biology. Our data provides evidence that CRLs play discrete roles in regenerative processes and provide a platform to investigate how CRLs regulate stem cells in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy?

    Science.gov (United States)

    Jagoe, R. T.; Goldberg, A. L.

    2001-01-01

    Studies of many different rodent models of muscle wasting have indicated that accelerated proteolysis via the ubiquitin-proteasome pathway is the principal cause of muscle atrophy induced by fasting, cancer cachexia, metabolic acidosis, denervation, disuse, diabetes, sepsis, burns, hyperthyroidism and excess glucocorticoids. However, our understanding about how muscle proteins are degraded, and how the ubiquitin-proteasome pathway is activated in muscle under these conditions, is still very limited. The identities of the important ubiquitin-protein ligases in skeletal muscle, and the ways in which they recognize substrates are still largely unknown. Recent in-vitro studies have suggested that one set of ubquitination enzymes, E2(14K) and E3(alpha), which are responsible for the 'N-end rule' system of ubiquitination, plays an important role in muscle, especially in catabolic states. However, their functional significance in degrading different muscle proteins is still unclear. This review focuses on the many gaps in our understanding of the functioning of the ubiquitin-proteasome pathway in muscle atrophy, and highlights the strengths and limitations of the different experimental approaches used in such studies.

  19. Ubiquitome Analysis Reveals PCNA-Associated Factor 15 (PAF15) as a Specific Ubiquitination Target of UHRF1 in Embryonic Stem Cells.

    Science.gov (United States)

    Karg, Elisabeth; Smets, Martha; Ryan, Joel; Forné, Ignasi; Qin, Weihua; Mulholland, Christopher B; Kalideris, Georgia; Imhof, Axel; Bultmann, Sebastian; Leonhardt, Heinrich

    2017-12-08

    Ubiquitination is a multifunctional posttranslational modification controlling the activity, subcellular localization and stability of proteins. The E3 ubiquitin ligase ubiquitin-like PHD and RING finger domain-containing protein 1 (UHRF1) is an essential epigenetic factor that recognizes repressive histone marks as well as hemi-methylated DNA and recruits DNA methyltransferase 1. To explore enzymatic functions of UHRF1 beyond epigenetic regulation, we conducted a comprehensive screen in mouse embryonic stem cells to identify novel ubiquitination targets of UHRF1 and its paralogue UHRF2. We found differentially ubiquitinated peptides associated with a variety of biological processes such as transcriptional regulation and DNA damage response. Most prominently, we identified PCNA-associated factor 15 (PAF15; also known as Pclaf, Ns5atp9, KIAA0101 and OEATC-1) as a specific ubiquitination target of UHRF1. Although the function of PAF15 ubiquitination in translesion DNA synthesis is well characterized, the respective E3 ligase had been unknown. We could show that UHRF1 ubiquitinates PAF15 at Lys 15 and Lys 24 and promotes its binding to PCNA during late S-phase. In summary, we identified novel ubiquitination targets that link UHRF1 to transcriptional regulation and DNA damage response. Copyright © 2017. Published by Elsevier Ltd.

  20. Ubiquitin C-Terminal Hydrolase L1 in Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jennifer Hurst-Kennedy

    2012-01-01

    Full Text Available Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1, aka PGP9.5 is an abundant, neuronal deubiquitinating enzyme that has also been suggested to possess E3 ubiquitin-protein ligase activity and/or stabilize ubiquitin monomers in vivo. Recent evidence implicates dysregulation of UCH-L1 in the pathogenesis and progression of human cancers. Although typically only expressed in neurons, high levels of UCH-L1 have been found in many nonneuronal tumors, including breast, colorectal, and pancreatic carcinomas. UCH-L1 has also been implicated in the regulation of metastasis and cell growth during the progression of nonsmall cell lung carcinoma, colorectal cancer, and lymphoma. Together these studies suggest UCH-L1 has a potent oncogenic role and drives tumor development. Conversely, others have observed promoter methylation-mediated silencing of UCH-L1 in certain tumor subtypes, suggesting a potential tumor suppressor role for UCH-L1. In this paper, we provide an overview of the evidence supporting the involvement of UCH-L1 in tumor development and discuss the potential mechanisms of action of UCH-L1 in oncogenesis.

  1. Protein: FBA8 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA8 LUBAC (linear ubiquitin chain-assembly complex) RNF31 ZIBRA RNF31 RING finger pr...otein 31 HOIL-1-interacting protein, Zinc in-between-RING-finger ubiquitin-associated domain protein 9606 Homo sapiens Q96EP0 55072 2CT7 55072 Q96EP0 ...

  2. Protein: FBA3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA3 Ubiquitination CBLB RNF56 CBLB E3 ubiquitin-protein ligase CBL-B Casitas B-lineage lymphoma pr...oto-oncogene b, RING finger protein 56, SH3-binding protein CBL-B, Signal transduction prote

  3. Protein: MPB2 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB2 Ubiquitin ligases WWP1 WWP1 NEDD4-like E3 ubiquitin-protein ligase WWP1 Atrophin-1-interacting pr...otein 5, WW domain-containing protein 1 9606 Homo sapiens Q9H0M0 11059 2OP7, 1ND7 11059 ...

  4. Role of the ubiquitin-proteasome system in brain ischemia: friend or foe?

    Science.gov (United States)

    Caldeira, Margarida V; Salazar, Ivan L; Curcio, Michele; Canzoniero, Lorella M T; Duarte, Carlos B

    2014-01-01

    The ubiquitin-proteasome system (UPS) is a catalytic machinery that targets numerous cellular proteins for degradation, thus being essential to control a wide range of basic cellular processes and cell survival. Degradation of intracellular proteins via the UPS is a tightly regulated process initiated by tagging a target protein with a specific ubiquitin chain. Neurons are particularly vulnerable to any change in protein composition, and therefore the UPS is a key regulator of neuronal physiology. Alterations in UPS activity may induce pathological responses, ultimately leading to neuronal cell death. Brain ischemia triggers a complex series of biochemical and molecular mechanisms, such as an inflammatory response, an exacerbated production of misfolded and oxidized proteins, due to oxidative stress, and the breakdown of cellular integrity mainly mediated by excitotoxic glutamatergic signaling. Brain ischemia also damages protein degradation pathways which, together with the overproduction of damaged proteins and consequent upregulation of ubiquitin-conjugated proteins, contribute to the accumulation of ubiquitin-containing proteinaceous deposits. Despite recent advances, the factors leading to deposition of such aggregates after cerebral ischemic injury remain poorly understood. This review discusses the current knowledge on the role of the UPS in brain function and the molecular mechanisms contributing to UPS dysfunction in brain ischemia with consequent accumulation of ubiquitin-containing proteins. Chemical inhibitors of the proteasome and small molecule inhibitors of deubiquitinating enzymes, which promote the degradation of proteins by the proteasome, were both shown to provide neuroprotection in brain ischemia, and this apparent contradiction is also discussed in this review. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Identification of Sumoylated Proteins in the Silkworm Bombyx mori

    Science.gov (United States)

    Tang, Xudong; Fu, Xuliang; Hao, Bifang; Zhu, Feng; Xiao, Shengyan; Xu, Li; Shen, Zhongyuan

    2014-01-01

    Small ubiquitin-like modifier (SUMO) modification (SUMOylation) is an important and widely used reversible modification system in eukaryotic cells. It regulates various cell processes, including protein targeting, transcriptional regulation, signal transduction, and cell division. To understand its role in the model lepidoptera insect Bombyx mori, a recombinant baculovirus was constructed to express an enhanced green fluorescent protein (eGFP)-SUMO fusion protein along with ubiquitin carrier protein 9 of Bombyx mori (BmUBC9). SUMOylation substrates from Bombyx mori cells infected with this baculovirus were isolated by immunoprecipitation and identified by LC–ESI-MS/MS. A total of 68 candidate SUMOylated proteins were identified, of which 59 proteins were functionally categorized to gene ontology (GO) terms. Analysis of kyoto encyclopedia of genes and genomes (KEGG) pathways showed that 46 of the identified proteins were involved in 76 pathways that mainly play a role in metabolism, spliceosome and ribosome functions, and in RNA transport. Furthermore, SUMOylation of four candidates (polyubiquitin-C-like isoform X1, 3-hydroxyacyl-CoA dehydrogenase, cyclin-related protein FAM58A-like and GTP-binding nuclear protein Ran) were verified by co-immunoprecipitation in Drosophila schneide 2 cells. In addition, 74% of the identified proteins were predicted to have at least one SUMOylation site. The data presented here shed light on the crucial process of protein sumoylation in Bombyx mori. PMID:25470021

  6. Met1-linked Ubiquitination in Immune Signalling

    DEFF Research Database (Denmark)

    Fiil, Berthe Katrine; Gyrd-Hansen, Mads

    2014-01-01

    Methionine 1-linked ubiquitin chains (Met1-Ub), or linear ubiquitin, has emerged as a central post-translational modification in innate immune signalling. Molecular machinery that assembles, senses and, more recently, disassembles Met1-Ub has been identified, and technical advances have enabled...... identification of physiological substrates for Met1-Ub in response to activation of innate immune receptors. These discoveries have significantly advanced our understanding of how non-degradative ubiquitin modifications control pro-inflammatory responses mediated by nuclear factor κB and mitogen...

  7. Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification.

    NARCIS (Netherlands)

    J. van Klaveren; J. de Wit (Jan); C.G. van Gurp; M.H.M. Koken (Marcel); M. Vermey; J.H. van Roijen (Jan Herman); J.T.M. Vreeburg (Jan); W.M. Baarends (Willy); D. Bootsma (Dirk); J.A. Grootegoed (Anton); J.H.J. Hoeijmakers (Jan); H.P. Roest (Henk)

    1996-01-01

    textabstractThe ubiquitin-conjugating yeast enzyme RAD6 and its human homologs hHR6A and hHR6B are implicated in postreplication repair and damage-induced mutagenesis. The yeast protein is also required for sporulation and may modulate chromatin structure via histone ubiquitination. We report the

  8. Ubiquitin-aldehyde: a general inhibitor of ubiquitin-recycling processes

    International Nuclear Information System (INIS)

    Hershko, A.; Rose, I.A.

    1987-01-01

    The generation and characterization of ubiquitin (Ub)-aldehyde, a potent inhibitor of Ub-C-terminal hydrolase, has previously been reported. The authors examine the action of this compound on the Ub-mediated proteolytic pathway using the system derived from rabbit reticulocytes. Addition of Ub-aldehyde was found to strongly inhibit breakdown of added 125 I-labeled lysozyme, but inhibition was overcome by increasing concentrations of Ub. The following evidence shows the effect of Ub-aldehyde on protein breakdown to be indirectly caused by its interference with the recycling of Ub, leading to exhaustion of the supply of free Ub: (i) Ub-aldehyde markedly increased the accumulation of Ub-protein conjugates coincident with a much decreased rate of conjugate breakdown; (ii) release of Ub from isolated Ub-protein conjugates in the absence of ATP (and therefore not coupled to protein degradation) is markedly inhibited by Ub-aldehyde. On the other hand, the ATP-dependent degradation of the protein moiety of Ub conjugates, which is an integral part of the proteolytic process, is not inhibited by this agent; (iii) direct measurement of levels of free Ub showed a rapid disappearance caused by the inhibitor. The Ub is found to be distributed in derivatives of a wide range of molecular weight classes. It thus seems that Ub-aldehyde, previously demonstrated to inhibit the hydrolysis of Ub conjugates of small molecules, also inhibits the activity of a series of enzymes that regenerate free Ub from adducts with proteins and intermediates in protein breakdown

  9. Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1.

    Science.gov (United States)

    Cartier, Anna E; Djakovic, Stevan N; Salehi, Afshin; Wilson, Scott M; Masliah, Eliezer; Patrick, Gentry N

    2009-06-17

    Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We found that UCH-L1 activity is rapidly upregulated by NMDA receptor activation, which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of presynaptic and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1-inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling, most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner.

  10. Regulation of Synaptic Structure by the Ubiquitin C-terminal Hydrolase UCH-L1

    Science.gov (United States)

    Cartier, Anna E.; Djakovic, Stevan N.; Salehi, Afshin; Wilson, Scott M.; Masliah, Eliezer; Patrick, Gentry N.

    2009-01-01

    UCH-L1 is a de-ubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We have found that UCH-L1 activity is rapidly up-regulated by NMDA receptor activation which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of pre and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1 inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner. PMID:19535597

  11. The role of the ubiquitin proteasome system in the memory process.

    Science.gov (United States)

    Lip, Philomena Z Y; Demasi, Marilene; Bonatto, Diego

    2017-01-01

    Quite intuitive is the notion that memory formation and consolidation is orchestrated by protein synthesis because of the synaptic plasticity necessary for those processes. Nevertheless, recent advances have begun accumulating evidences of a high requirement for protein degradation on the molecular mechanisms of the memory process in the mammalian brain. Because degradation determines protein half-life, degradation has been increasingly recognized as an important intracellular regulatory mechanism. The proteasome is the main player in the degradation of intracellular proteins. Proteasomal substrates are mainly degraded after a post-translational modification by a poly-ubiquitin chain. Latter process, namely poly-ubiquitination, is highly regulated at the step of the ubiquitin molecule transferring to the protein substrate mediated by a set of proteins whose genes represent almost 2% of the human genome. Understanding the role of polyubiquitin-mediated protein degradation has challenging researchers in many fields of investigation as a new source of targets for therapeutic intervention, e.g. E3 ligases that transfer ubiquitin moieties to the substrate. The goal of present work was to uncover mechanisms underlying memory processes regarding the role of the ubiquitin-proteasome system (UPS). For that purpose, preceded of a short review on UPS and memory processes a top-down systems biology approach was applied to establish central proteins involved in memory formation and consolidation highlighting their cross-talking with the UPS. According to that approach, the pattern of expression of several elements of the UPS were found overexpressed in regions of the brain involved in processing cortical inputs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The study of fkbp and ubiquitin reveals interesting aspects of Artemia stress history.

    Science.gov (United States)

    Maniatsi, Stefania; Farmaki, Theodora; Abatzopoulos, Theodore J

    2015-08-01

    Research on stress responses in animals has increased greatly during the last decades. Though most studies focus on the cellular and molecular bases of the stress response mechanisms, the ecological and evolutionary aspects of stress responses gain more and more interest. Here, we use species and parthenogenetic strains of the genus Artemia, an extremophile model organism, to study, for the first time, a protein well known for its chaperone activity and its involvement in stress responses. More specifically, transcription and protein accumulation of an FK506-Binding Protein (FKBP) homologue were investigated under heat and salt stresses. Additionally, the mRNA levels of ubiquitin, a heat-inducible protein related to the proteasomal pathway, were quantitated under these conditions. Biochemical and phylogenetic analyses showed that the studied FKBP orthologue is a typical representative of the family that clusters with other crustacean sequences. The expression was increased in both fkbp and ubiquitin genes after salt and heat stresses. However, our results in combination with the fact that Artemia species and parthenogenetic strains, selected for this study, exhibit different heat or salt tolerance provide useful hints about the evolutionary significance of FKBP and ubiquitin. Regarding FKBP, mRNA expression and protein accumulation seem to depend on the environmental conditions and the evolutionary history of each Artemia population while ubiquitin has a clear and more conserved role under heat shock. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. A novel approach for over-expression, characterization, and isotopic enrichment of a homogeneous species of acyl carrier protein from Plasmodium falciparum

    International Nuclear Information System (INIS)

    Sharma, Shailendra Kumar; Modak, Rahul; Sharma, Shilpi; Sharma, Alok Kumar; Sarma, Siddhartha P.; Surolia, Avadhesha; Surolia, Namita

    2005-01-01

    Acyl carrier protein (ACP) plays a central role in fatty acid biosynthesis by transferring the acyl groups from one enzyme to another for the completion of the fatty acid synthesis cycle. Holo-ACP is the obligatory substrate for the synthesis of acyl-ACPs which act as the carrier and donor for various metabolic reactions. Despite its interactions with numerous proteins in the cell, its mode of interaction is poorly understood. Here, we report the over-expression of PfACP in minimal medium solely in its holo form and in high yield. Expression in minimal media provides a means to isotopically label PfACP for high resolution multi-nuclear and multi-dimensional NMR studies. Indeed, the proton-nitrogen correlated NMR spectrum exhibits very high chemical shift dispersion and resolution. We also show that holo-PfACP thus expressed is amenable to acylation reactions using Escherichia coli acyl-ACP synthetase as well as by standard chemical methods

  14. Expression, purification, crystallization and preliminary X-ray analysis of the d-alanyl carrier protein DltC from Staphylococcus epidermidis

    International Nuclear Information System (INIS)

    Huang, Chi-Hung; Kao, Chao-Hung; Yang, Chia-Shin; Chang, Chi-Huang; Chen, Sheng-Chia; Kuan, Shu-Min; Su, Yen-Chao; Huang, Yu-Han; Chang, Ming-Chung; Chen, Yeh

    2012-01-01

    The S. epidermidis carrier protein DltC has been crystallized in order to elucidate the functional role of DltC in the alanylation of lipoteichoic acids in bacteria. The d-alanyl lipoteichoic acids (d-alanyl LTAs) present in the cell walls of Gram-positive bacteria play crucial roles in autolysis, cation homeostasis and biofilm formation. The alanylation of LTAs requires the d-alanyl carrier protein DltC to transfer d-Ala onto a membrane-associated LTA. Here, DltC from Staphylococcus epidermidis (SeDltC) was purified and crystallized using the sitting-drop vapour-diffusion method. The crystals diffracted to a resolution of 1.83 Å and belonged to space group P2, with unit-cell parameters a = 66.26, b = 53.28, c = 88.05 Å, β = 98.22°. The results give a preliminary crystallographic analysis of SeDltC and shed light on the functional role of DltC in the alanylation of LTAs

  15. A Review on Ubiquitination of Neurotrophin Receptors: Facts and Perspectives

    Science.gov (United States)

    Sánchez-Sánchez, Julia; Arévalo, Juan Carlos

    2017-01-01

    Ubiquitination is a reversible post-translational modification involved in a plethora of different physiological functions. Among the substrates that are ubiquitinated, neurotrophin receptors (TrkA, TrkB, TrkC, and p75NTR) have been studied recently. TrkA is the most studied receptor in terms of its ubiquitination, and different E3 ubiquitin ligases and deubiquitinases have been implicated in its ubiquitination, whereas not much is known about the other neurotrophin receptors aside from their ubiquitination. Additional studies are needed that focus on the ubiquitination of TrkB, TrkC, and p75NTR in order to further understand the role of ubiquitination in their physiological and pathological functions. Here we review what is currently known regarding the ubiquitination of neurotrophin receptors and its physiological and pathological relevance. PMID:28335430

  16. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers

    DEFF Research Database (Denmark)

    Schwertman, Petra; Bekker-Jensen, Simon; Mailand, Niels

    2016-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. The swift recognition and faithful repair of such damage is crucial for the maintenance of genomic stability, as well as for cell and organismal fitness. Signalling by ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs...

  17. An ethanolic extract of Artemisia dracunculus L. regulates gene expression of ubiquitin-proteasome system enzymes in skeletal muscle: potential role in the treatment of sarcopenic obesity.

    Science.gov (United States)

    Kirk-Ballard, Heather; Kilroy, Gail; Day, Britton C; Wang, Zhong Q; Ribnicky, David M; Cefalu, William T; Floyd, Z Elizabeth

    2014-01-01

    Obesity is linked to insulin resistance, a primary component of metabolic syndrome and type 2 diabetes. The problem of obesity-related insulin resistance is compounded when age-related skeletal muscle loss, called sarcopenia, occurs with obesity. Skeletal muscle loss results from elevated levels of protein degradation and prevention of obesity-related sarcopenic muscle loss will depend on strategies that target pathways involved in protein degradation. An extract from Artemisia dracunculus, termed PMI 5011, improves insulin signaling and increases skeletal muscle myofiber size in a rodent model of obesity-related insulin resistance. The aim of this study was to examine the effect of PMI 5011 on the ubiquitin-proteasome system, a central regulator of muscle protein degradation. Gastrocnemius and vastus lateralis skeletal muscle was obtained from KK-A(y) obese diabetic mice fed a control or 1% (w/w) PMI 5011-supplemented diet. Regulation of genes encoding enzymes of the ubiquitin-proteasome system was determined using real-time quantitative reverse transcriptase polymerase chain reaction. Although MuRF-1 ubiquitin ligase gene expression is consistently down-regulated in skeletal muscle, atrogin-1, Fbxo40, and Traf6 expression is differentially regulated by PMI 5011. Genes encoding other enzymes of the ubiquitin-proteasome system ranging from ubiquitin to ubiquitin-specific proteases are also regulated by PMI 5011. Additionally, expression of the gene encoding the microtubule-associated protein-1 light chain 3 (LC3), a ubiquitin-like protein pivotal to autophagy-mediated protein degradation, is down-regulated by PMI 5011 in the vastus lateralis. PMI 5011 alters the gene expression of ubiquitin-proteasome system enzymes that are essential regulators of skeletal muscle mass. This suggests that PMI 5011 has therapeutic potential in the treatment of obesity-linked sarcopenia by regulating ubiquitin-proteasome-mediated protein degradation. Copyright © 2014 Elsevier Inc

  18. The role of the ubiquitination–proteasome pathway in breast cancer: Use of mouse models for analyzing ubiquitination processes

    International Nuclear Information System (INIS)

    Rossi, Sabrina; Loda, Massimo

    2003-01-01

    Turnover of several regulatory proteins results from targeted destruction via ubiquitination and subsequent degradation through the proteosome. The timely and irreversible degradation of critical regulators is essential for normal cellular function. The precise biochemical mechanisms that are involved in protein turnover by ubiquitin-mediated degradation have been elucidated using in vitro assays and cell culture systems. However, pathways that lead to ubiquitination of critical regulatory proteins in vivo are more complex, and have both temporal and tissue-specific differences. In vivo models will allow identification of substrates and enzymes of the ubiquitin–proteosome pathway that play important roles in selected tissues and diseases. In addition, assessment of the therapeutic efficacy of drugs designed to inhibit or enhance protein turnover by ubiquitination requires in vivo models. In the present review we describe selected examples of transgenic and knockout models of proteins that are known either to be regulated by ubiquitin-mediated degradation or to have a catalytic function in this process, and to play an important role in breast cancer. We outline the functions of these proteins in vivo and focus on knowledge gained in the comparison of in vivo behavior predicted from cell-free in vitro data or from experiments conducted in cell culture systems

  19. Deciphering the ubiquitin-mediated pathway in apicomplexan parasites: a potential strategy to interfere with parasite virulence.

    Science.gov (United States)

    Ponts, Nadia; Yang, Jianfeng; Chung, Duk-Won Doug; Prudhomme, Jacques; Girke, Thomas; Horrocks, Paul; Le Roch, Karine G

    2008-06-11

    Reversible modification of proteins through the attachment of ubiquitin or ubiquitin-like modifiers is an essential post-translational regulatory mechanism in eukaryotes. The conjugation of ubiquitin or ubiquitin-like proteins has been demonstrated to play roles in growth, adaptation and homeostasis in all eukaryotes, with perturbation of ubiquitin-mediated systems associated with the pathogenesis of many human diseases, including cancer and neurodegenerative disorders. Here we describe the use of an HMM search of functional Pfam domains found in the key components of the ubiquitin-mediated pathway necessary to activate and reversibly modify target proteins in eight apicomplexan parasitic protozoa for which complete or late-stage genome projects exist. In parallel, the same search was conducted on five model organisms, single-celled and metazoans, to generate data to validate both the search parameters employed and aid paralog classification in Apicomplexa. For each of the 13 species investigated, a set of proteins predicted to be involved in the ubiquitylation pathway has been identified and demonstrates increasing component members of the ubiquitylation pathway correlating with organism and genome complexity. Sequence homology and domain architecture analyses facilitated prediction of apicomplexan-specific protein function, particularly those involved in regulating cell division during these parasite's complex life cycles. This study provides a comprehensive analysis of proteins predicted to be involved in the apicomplexan ubiquitin-mediated pathway. Given the importance of such pathway in a wide variety of cellular processes, our data is a key step in elucidating the biological networks that, in part, direct the pathogenicity of these parasites resulting in a massive impact on global health. Moreover, apicomplexan-specific adaptations of the ubiquitylation pathway may represent new therapeutic targets for much needed drugs against apicomplexan parasites.

  20. Interplay between Ubiquitin, SUMO, and Poly(ADP-Ribose) in the Cellular Response to Genotoxic Stress

    Science.gov (United States)

    Pellegrino, Stefania; Altmeyer, Matthias

    2016-01-01

    Cells employ a complex network of molecular pathways to cope with endogenous and exogenous genotoxic stress. This multilayered response ensures that genomic lesions are efficiently detected and faithfully repaired in order to safeguard genome integrity. The molecular choreography at sites of DNA damage relies heavily on post-translational modifications (PTMs). Protein modifications with ubiquitin and the small ubiquitin-like modifier SUMO have recently emerged as important regulatory means to coordinate DNA damage signaling and repair. Both ubiquitylation and SUMOylation can lead to extensive chain-like protein modifications, a feature that is shared with yet another DNA damage-induced PTM, the modification of proteins with poly(ADP-ribose) (PAR). Chains of ubiquitin, SUMO, and PAR all contribute to the multi-protein assemblies found at sites of DNA damage and regulate their spatio-temporal dynamics. Here, we review recent advancements in our understanding of how ubiquitin, SUMO, and PAR coordinate the DNA damage response and highlight emerging examples of an intricate interplay between these chain-like modifications during the cellular response to genotoxic stress. PMID:27148359

  1. Ubiquitin-SUMO Circuitry Controls Activated Fanconi Anemia ID Complex Dosage in Response to DNA Damage

    DEFF Research Database (Denmark)

    Gibbs-Seymour, Ian; Oka, Yasuyoshi; Rajendra, Eeson

    2015-01-01

    We show that central components of the Fanconi anemia (FA) DNA repair pathway, the tumor suppressor proteins FANCI and FANCD2 (the ID complex), are SUMOylated in response to replication fork stalling. The ID complex is SUMOylated in a manner that depends on the ATR kinase, the FA ubiquitin ligase...

  2. IFT20 modulates ciliary PDGFRα signaling by regulating the stability of Cbl E3 ubiquitin ligases

    DEFF Research Database (Denmark)

    Schmid, Fabian Marc; Schou, Kenneth Bødtker; Vilhelm, Martin Juel

    2018-01-01

    ciliogenesis, and ciliary localization of the receptor is required for its appropriate ligand-mediated activation by PDGF-AA. However, the mechanisms regulating sorting of PDGFRα and feedback inhibition of PDGFRα signaling at the cilium are unknown. Here, we provide evidence that intraflagellar transport...... protein 20 (IFT20) interacts with E3 ubiquitin ligases c-Cbl and Cbl-b and is required for Cbl-mediated ubiquitination and internalization of PDGFRα for feedback inhibition of receptor signaling. In wild-type cells treated with PDGF-AA, c-Cbl becomes enriched in the cilium, and the receptor...

  3. Protein: MPB2 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB2 Ubiquitin ligases STUB1 CHIP STUB1 E3 ubiquitin-protein ligase CHIP Antigen NY...-CO-7, CLL-associated antigen KW-8, Carboxy terminus of Hsp70-interacting protein, STIP1 homology and U box-containing pr

  4. Radionuclide carrier

    International Nuclear Information System (INIS)

    Hartman, F.A.; Kretschmar, H.C.; Tofe, A.J.

    1978-01-01

    A physiologically acceptable particulate radionuclide carrier is described. It comprises a modified anionic starch derivative with 0.1% to 1.5% by weight of a reducing agent and 1 to 20% by weight of anionic substituents

  5. Carrier Screening

    Science.gov (United States)

    ... How accurate is carrier screening? No test is perfect. In a small number of cases, test results ... in which an egg is removed from a woman’s ovary, fertilized in a laboratory with the man’s ...

  6. The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation

    Science.gov (United States)

    Rodgers, Mary A.; Bowman, James W.; Fujita, Hiroaki; Orazio, Nicole; Shi, Mude; Liang, Qiming; Amatya, Rina; Kelly, Thomas J.; Iwai, Kazuhiro; Ting, Jenny

    2014-01-01

    Linear ubiquitination is a newly discovered posttranslational modification that is currently restricted to a small number of known protein substrates. The linear ubiquitination assembly complex (LUBAC), consisting of HOIL-1L, HOIP, and Sharpin, has been reported to activate NF-κB–mediated transcription in response to receptor signaling by ligating linear ubiquitin chains to Nemo and Rip1. Despite recent advances, the detailed roles of LUBAC in immune cells remain elusive. We demonstrate a novel HOIL-1L function as an essential regulator of the activation of the NLRP3/ASC inflammasome in primary bone marrow–derived macrophages (BMDMs) independently of NF-κB activation. Mechanistically, HOIL-1L is required for assembly of the NLRP3/ASC inflammasome and the linear ubiquitination of ASC, which we identify as a novel LUBAC substrate. Consequently, we find that HOIL-1L−/− mice have reduced IL-1β secretion in response to in vivo NLRP3 stimulation and survive lethal challenge with LPS. Together, these data demonstrate that linear ubiquitination is required for NLRP3 inflammasome activation, defining the molecular events of NLRP3 inflammasome activation and expanding the role of LUBAC as an innate immune regulator. Furthermore, our observation is clinically relevant because patients lacking HOIL-1L expression suffer from pyogenic bacterial immunodeficiency, providing a potential new therapeutic target for enhancing inflammation in immunodeficient patients. PMID:24958845

  7. Constitutive endocytosis and turnover of the neuronal glycine transporter GlyT2 is dependent on ubiquitination of a C-terminal lysine cluster.

    Directory of Open Access Journals (Sweden)

    Jaime de Juan-Sanz

    Full Text Available Inhibitory glycinergic neurotransmission is terminated by sodium and chloride-dependent plasma membrane glycine transporters (GlyTs. The mainly glial glycine transporter GlyT1 is primarily responsible for the completion of inhibitory neurotransmission and the neuronal glycine transporter GlyT2 mediates the reuptake of the neurotransmitter that is used to refill synaptic vesicles in the terminal, a fundamental role in the physiology and pathology of glycinergic neurotransmission. Indeed, inhibitory glycinergic neurotransmission is modulated by the exocytosis and endocytosis of GlyT2. We previously reported that constitutive and Protein Kinase C (PKC-regulated endocytosis of GlyT2 is mediated by clathrin and that PKC accelerates GlyT2 endocytosis by increasing its ubiquitination. However, the role of ubiquitination in the constitutive endocytosis and turnover of this protein remains unexplored. Here, we show that ubiquitination of a C-terminus four lysine cluster of GlyT2 is required for constitutive endocytosis, sorting into the slow recycling pathway and turnover of the transporter. Ubiquitination negatively modulates the turnover of GlyT2, such that increased ubiquitination driven by PKC activation accelerates transporter degradation rate shortening its half-life while decreased ubiquitination increases transporter stability. Finally, ubiquitination of GlyT2 in neurons is highly responsive to the free pool of ubiquitin, suggesting that the deubiquitinating enzyme (DUB ubiquitin C-terminal hydrolase-L1 (UCHL1, as the major regulator of neuronal ubiquitin homeostasis, indirectly modulates the turnover of GlyT2. Our results contribute to the elucidation of the mechanisms underlying the dynamic trafficking of this important neuronal protein which has pathological relevance since mutations in the GlyT2 gene (SLC6A5 are the second most common cause of human hyperekplexia.

  8. Activity-Dependent Ubiquitination of GluA1 Mediates a Distinct AMPAR Endocytosis and Sorting Pathway

    Science.gov (United States)

    Schwarz, Lindsay A.; Hall, Benjamin J.; Patrick, Gentry N.

    2010-01-01

    The accurate trafficking of AMPA receptors (AMPARs) to and from the synapse is a critical component of learning and memory in the brain, while dysfunction of AMPAR trafficking is hypothesized to be an underlying mechanism of Alzheimer’s disease. Previous work has shown that ubiquitination of integral membrane proteins is a common post-translational modification used to mediate endocytosis and endocytic sorting of surface proteins in eukaryotic cells. Here we report that mammalian AMPARs become ubiquitinated in response to their activation. Using a mutant of GluA1 that is unable to be ubiquitinated at lysines on its carboxy-terminus, we demonstrate that ubiquitination is required for internalization of surface AMPARs and their trafficking to the lysosome in response to the AMPAR agonist AMPA, but not for internalization of AMPARs in response to the NMDA receptor (NMDAR) agonist NMDA. Through over-expression or RNAi-mediated knockdown, we identify that a specific E3 ligase, Nedd4-1, is necessary for this process. Finally, we show that ubiquitination of GluA1 by Nedd4-1 becomes more prevalent as neurons mature. Together, these data show that ubiquitination of GluA1-containing AMPARs by Nedd4-1 mediates their endocytosis and trafficking to the lysosome. Furthermore, these results provide insight into how hippocampal neurons regulate AMPAR trafficking and degradation with high specificity in response to differing neuronal signaling cues, and suggest that changes to this pathway may occur as neurons mature. PMID:21148011

  9. Ubiquitin fusion expression and tissue-dependent targeting of hG-CSF in transgenic tobacco

    Science.gov (United States)

    2011-01-01

    Background Human granulocyte colony-stimulating factor (hG-CSF) is an important human cytokine which has been widely used in oncology and infection protection. To satisfy clinical needs, expression of recombinant hG-CSF has been studied in several organisms, including rice cell suspension culture and transient expression in tobacco leaves, but there was no published report on its expression in stably transformed plants which can serve as a more economical expression platform with potential industrial application. Results In this study, hG-CSF expression was investigated in transgenic tobacco leaves and seeds in which the accumulation of hG-CSF could be enhanced through fusion with ubiquitin by up to 7 fold in leaves and 2 fold in seeds, leading to an accumulation level of 2.5 mg/g total soluble protein (TSP) in leaves and 1.3 mg/g TSP in seeds, relative to hG-CSF expressed without a fusion partner. Immunoblot analysis showed that ubiquitin was processed from the final protein product, and ubiquitination was up-regulated in all transgenic plants analyzed. Driven by CaMV 35S promoter and phaseolin signal peptide, hG-CSF was observed to be secreted into apoplast in leaves but deposited in protein storage vacuole (PSV) in seeds, indicating that targeting of the hG-CSF was tissue-dependent in transgenic tobacco. Bioactivity assay showed that hG-CSF expressed in both seeds and leaves was bioactive to support the proliferation of NFS-60 cells. Conclusions In this study, the expression of bioactive hG-CSF in transgenic plants was improved through ubiquitin fusion strategy, demonstrating that protein expression can be enhanced in both plant leaves and seeds through fusion with ubiquitin and providing a typical case of tissue-dependent expression of recombinant protein in transgenic plants. PMID:21985646

  10. Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines.

    Science.gov (United States)

    Aburahma, Mona Hassan

    2016-07-01

    Most of the new drugs, biological therapeutics (proteins/peptides) and vaccines have poor performance after oral administration due to poor solubility or degradation in the gastrointestinal tract (GIT). Though, vesicular carriers exemplified by liposomes or niosomes can protect the entrapped agent to a certain extent from degradation. Nevertheless, the harsh GIT environment exemplified by low pH, presence of bile salts and enzymes limits their capabilities by destabilizing them. In response to that, more resistant bile salts-containing vesicles (BS-vesicles) were developed by inclusion of bile salts into lipid bilayers constructs. The effectiveness of orally administrated BS-vesicles in improving the performance of vesicles has been demonstrated in researches. Yet, these attempts did not gain considerable attention. This is the first review that provides a comprehensive overview of utilizing BS-vesicles as a promising pharmaceutical carrier with a special focus on their successful applications in oral delivery of therapeutic macromolecules and vaccines. Insights on the possible mechanisms by which BS-vesicles improve the oral bioavailability of the encapsulated drug or immunological response of entrapped vaccine are explained. In addition, methods adopted to prepare and characterize BS-vesicles are described. Finally, the gap in the scientific researches tackling BS-vesicles that needs to be addressed is highlighted.

  11. The dynamics of histone H2A ubiquitination in HeLa cells exposed to rapamycin, ethanol, hydroxyurea, ER stress, heat shock and DNA damage.

    Science.gov (United States)

    Nakata, Shiori; Watanabe, Tadashi; Nakagawa, Koji; Takeda, Hiroshi; Ito, Akihiro; Fujimuro, Masahiro

    2016-03-25

    Polyubiquitination plays key roles in proteasome-dependent and independent cellular events, whereas monoubiquitination is involved in gene expression, DNA repair, protein-protein interaction, and protein trafficking. We previously developed an FK2 antibody, which specifically recognizes poly-Ub moieties but not free Ub. To elucidate the role of Ub conjugation in response to cellular stress, we used FK2 to investigate whether chemical stress (rapamycin, ethanol, or hydroxyurea), ER stress (thapsigargin or tunicamycin), heat shock or DNA damage (H2O2 or methyl methanesulfonate) affect the formation of Ub conjugates including histone H2A (hH2A) ubiquitination. First, we found that all forms of stress tested increased poly-ubiquitinated proteins in HeLa cells. Furthermore, rapamycin and hydroxyurea treatment, and ER stress increased ubiquitination of hH2A, while methyl methanesulfonate (MMS) treatment induced deubiquitination of hH2A. The ethanol and H2O2 treatments, and heat shock transiently induced hH2A de-ubiquitination, although deubiquitinated hH2A were ubiquitinated again by subsequent cultivation. We also revealed that FK2 reacts with not only polyubiquitinated proteins but also mono-ubiquitinated hH2A. With the exception of MMS, all forms of stress tested increased the acetylation of K5-hH2A, K9-hH3 and K8-hH4 in addition to ubiquitination. K118 and K119 of hH2A were ubiquitinated in cells under normal conditions, and K119 was the major ubiquitination site. The MMS-treatment and heat shock induced the deubiquitination of both K118 and K119-histone H2A. Interestingly, MMS treatment did not affect cell HeLa cell viability expressing double-mutant hH2A (KK118,119AA-hH2A), while heat shock slightly but significantly decreased viability of double-mutant hH2A expressing cells, indicating that ubiquitination of both sites associates with recovery from heat shock but not MMS treatment. Thus, we characterized FK2 reactivity and demonstrated that various stresses alter

  12. HSV-1 ICP0: An E3 Ubiquitin Ligase That Counteracts Host Intrinsic and Innate Immunity

    Directory of Open Access Journals (Sweden)

    Mirna Perusina Lanfranca

    2014-05-01

    Full Text Available The herpes simplex virus type 1 (HSV-1 encoded E3 ubiquitin ligase, infected cell protein 0 (ICP0, is required for efficient lytic viral replication and regulates the switch between the lytic and latent states of HSV-1. As an E3 ubiquitin ligase, ICP0 directs the proteasomal degradation of several cellular targets, allowing the virus to counteract different cellular intrinsic and innate immune responses. In this review, we will focus on how ICP0’s E3 ubiquitin ligase activity inactivates the host intrinsic defenses, such as nuclear domain 10 (ND10, SUMO, and the DNA damage response to HSV-1 infection. In addition, we will examine ICP0’s capacity to impair the activation of interferon (innate regulatory mediators that include IFI16 (IFN γ-inducible protein 16, MyD88 (myeloid differentiation factor 88, and Mal (MyD88 adaptor-like protein. We will also consider how ICP0 allows HSV-1 to evade activation of the NF-κB (nuclear factor kappa B inflammatory signaling pathway. Finally, ICP0’s paradoxical relationship with USP7 (ubiquitin specific protease 7 and its roles in intrinsic and innate immune responses to HSV-1 infection will be discussed.

  13. The APC/C Ubiquitin Ligase: From Cell Biology to Tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Penas, Clara; Ramachandran, Vimal [John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL (United States); Ayad, Nagi George, E-mail: nayad@med.miami.edu [John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL (United States); Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL (United States)

    2012-01-09

    The ubiquitin proteasome system (UPS) is required for normal cell proliferation, vertebrate development, and cancer cell transformation. The UPS consists of multiple proteins that work in concert to target a protein for degradation via the 26S proteasome. Chains of an 8.5-kDa protein called ubiquitin are attached to substrates, thus allowing recognition by the 26S proteasome. Enzymes called ubiquitin ligases or E3s mediate specific attachment to substrates. Although there are over 600 different ubiquitin ligases, the Skp1–Cullin–F-box (SCF) complexes and the anaphase promoting complex/cyclosome (APC/C) are the most studied. SCF involvement in cancer has been known for some time while APC/C’s cancer role has recently emerged. In this review we will discuss the importance of APC/C to normal cell proliferation and development, underscoring its possible contribution to transformation. We will also examine the hypothesis that modulating a specific interaction of the APC/C may be therapeutically attractive in specific cancer subtypes. Finally, given that the APC/C pathway is relatively new as a cancer target, therapeutic interventions affecting APC/C activity may be beneficial in cancers that are resistant to classical chemotherapy.

  14. The APC/C Ubiquitin Ligase: From Cell Biology to Tumorigenesis

    International Nuclear Information System (INIS)

    Penas, Clara; Ramachandran, Vimal; Ayad, Nagi George

    2012-01-01

    The ubiquitin proteasome system (UPS) is required for normal cell proliferation, vertebrate development, and cancer cell transformation. The UPS consists of multiple proteins that work in concert to target a protein for degradation via the 26S proteasome. Chains of an 8.5-kDa protein called ubiquitin are attached to substrates, thus allowing recognition by the 26S proteasome. Enzymes called ubiquitin ligases or E3s mediate specific attachment to substrates. Although there are over 600 different ubiquitin ligases, the Skp1–Cullin–F-box (SCF) complexes and the anaphase promoting complex/cyclosome (APC/C) are the most studied. SCF involvement in cancer has been known for some time while APC/C’s cancer role has recently emerged. In this review we will discuss the importance of APC/C to normal cell proliferation and development, underscoring its possible contribution to transformation. We will also examine the hypothesis that modulating a specific interaction of the APC/C may be therapeutically attractive in specific cancer subtypes. Finally, given that the APC/C pathway is relatively new as a cancer target, therapeutic interventions affecting APC/C activity may be beneficial in cancers that are resistant to classical chemotherapy.

  15. The APC/C Ubiquitin Ligase: From Cell Biology to Tumorigenesis

    Science.gov (United States)

    Penas, Clara; Ramachandran, Vimal; Ayad, Nagi George

    2011-01-01

    The ubiquitin proteasome system (UPS) is required for normal cell proliferation, vertebrate development, and cancer cell transformation. The UPS consists of multiple proteins that work in concert to target a protein for degradation via the 26S proteasome. Chains of an 8.5-kDa protein called ubiquitin are attached to substrates, thus allowing recognition by the 26S proteasome. Enzymes called ubiquitin ligases or E3s mediate specific attachment to substrates. Although there are over 600 different ubiquitin ligases, the Skp1–Cullin–F-box (SCF) complexes and the anaphase promoting complex/cyclosome (APC/C) are the most studied. SCF involvement in cancer has been known for some time while APC/C’s cancer role has recently emerged. In this review we will discuss the importance of APC/C to normal cell proliferation and development, underscoring its possible contribution to transformation. We will also examine the hypothesis that modulating a specific interaction of the APC/C may be therapeutically attractive in specific cancer subtypes. Finally, given that the APC/C pathway is relatively new as a cancer target, therapeutic interventions affecting APC/C activity may be beneficial in cancers that are resistant to classical chemotherapy. PMID:22655255

  16. Tax secretion from peripheral blood mononuclear cells and Tax detection in plasma of patients with human T-lymphotropic virus-type 1-associated myelopathy/tropical spastic paraparesis and asymptomatic carriers.

    Science.gov (United States)

    Medina, Fernando; Quintremil, Sebastián; Alberti, Carolina; Godoy, Fabián; Pando, María E; Bustamante, Andrés; Barriga, Andrés; Cartier, Luis; Puente, Javier; Tanaka, Yuetsu; Valenzuela, María A; Ramírez, Eugenio

    2016-03-01

    Human T-lymphotropic virus-type 1 (HTLV-1) is the etiologic agent of the neurologic disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Tax viral protein plays a critical role in viral pathogenesis. Previous studies suggested that extracellular Tax might involve cytokine-like extracellular effects. We evaluated Tax secretion in 18 h-ex vivo peripheral blood mononuclear cells (PBMCs) cultures from 15 HAM/TSP patients and 15 asymptomatic carriers. Futhermore, Tax plasma level was evaluated from other 12 HAM/TSP patients and 10 asymptomatic carriers. Proviral load and mRNA encoding Tax were quantified by PCR and real-time RT-PCR, respectively. Intracellular Tax in CD4(+)CD25(+) cells occurred in 100% and 86.7% of HAM/TSP patients and asymptomatic carriers, respectively. Percentage of CD4(+)CD25(+) Tax+, proviral load and mRNA encoding Tax were significantly higher in HAM/TSP patients. Western blot analyses showed higher secretion levels of ubiquitinated Tax in HAM/TSP patients than in asymptomatic carriers. In HTLV-1-infected subjects, Western blot of plasma Tax showed higher levels in HAM/TSP patients than in asymptomatic carriers, whereas no Tax was found in non-infected subjects. Immunoprecipitated plasma Tax resolved on SDS-PAGE gave two major bands of 57 and 48 kDa allowing identification of Tax and Ubiquitin peptides by mass spectrometry. Relative percentage of either CD4(+)CD25(+) Tax+ cells, or Tax protein released from PBMCs, or plasma Tax, correlates neither with tax mRNA nor with proviral load. This fact could be explained by a complex regulation of Tax expression. Tax secreted from PBMCs or present in plasma could potentially become a biomarker to distinguish between HAM/TSP patients and asymptomatic carriers. © 2015 Wiley Periodicals, Inc.

  17. Ubiquitination of HTLV-I Tax in response to DNA damage regulates nuclear complex formation and nuclear export

    Directory of Open Access Journals (Sweden)

    Marriott Susan J

    2007-12-01

    Full Text Available Abstract Background The HTLV-I oncoprotein, Tax, is a pleiotropic protein whose activity is partially regulated by its ability to interact with, and perturb the functions of, numerous cellular proteins. Tax is predominantly a nuclear protein that localizes to nuclear foci known as Tax Speckled Structures (TSS. We recently reported that the localization of Tax and its interactions with cellular proteins are altered in response to various forms of genotoxic and cellular stress. The level of cytoplasmic Tax increases in response to stress and this relocalization depends upon the interaction of Tax with CRM1. Cellular pathways and signals that regulate the subcellular localization of Tax remain to be determined. However, post-translational modifications including sumoylation and ubiquitination are known to influence the subcellular localization of Tax and its interactions with cellular proteins. The sumoylated form of Tax exists predominantly in the nucleus while ubiquitinated Tax exists predominantly in the cytoplasm. Therefore, we hypothesized that post-translational modifications of Tax that occur in response to DNA damage regulate the localization of Tax and its interactions with cellular proteins. Results We found a significant increase in mono-ubiquitination of Tax in response to UV irradiation. Mutation of specific lysine residues (K280 and K284 within Tax inhibited DNA damage-induced ubiquitination. In contrast to wild-type Tax, which undergoes transient nucleocytoplasmic shuttling in response to DNA damage, the K280 and K284 mutants were retained in nuclear foci following UV irradiation and remained co-localized with the cellular TSS protein, sc35. Conclusion This study demonstrates that the localization of Tax, and its interactions with cellular proteins, are dynamic following DNA damage and depend on the post-translational modification status of Tax. Specifically, DNA damage induces the ubiquitination of Tax at K280 and K284

  18. Opposing roles of RNF8/RNF168 and deubiquitinating enzymes in ubiquitination-dependent DNA double-strand break response signaling and DNA-repair pathway choice

    International Nuclear Information System (INIS)

    Nakada, Shinichiro

    2016-01-01

    The E3 ubiquitin ligases ring finger protein (RNF) 8 and RNF168 transduce the DNA double-strand break (DSB) response (DDR) signal by ubiquitinating DSB sites. The depletion of RNF8 or RNF168 suppresses the accumulation of DNA-repair regulating factors such as 53BP1 and RAP80 at DSB sites, suggesting roles for RNF8- and RNF168-mediated ubiquitination in DSB repair. This mini-review provides a brief overview of the RNF8- and RNF168-dependent DDR-signaling and DNA-repair pathways. The choice of DNA-repair pathway when RNF8- and RNF168-mediated ubiquitination-dependent DDR signaling is negatively regulated by deubiquitinating enzymes (DUBs) is reviewed to clarify how the opposing roles of RNF8/RNF168 and DUBs regulate ubiquitination-dependent DDR signaling and the choice of DNA-repair pathway

  19. Solute carrier transporters: Pharmacogenomics research ...

    African Journals Online (AJOL)

    Aghogho

    2010-12-27

    Dec 27, 2010 ... This paper reviews the solute carrier transporters and highlights the fact that there is much to be learnt from .... transporters, drug targets, effect or proteins and meta- ... basolateral or apical plasma membrane of polarized cells,.

  20. Differential Impact of Plasma Proteins on the Adhesion Efficiency of Vascular-Targeted Carriers (VTCs) in Blood of Common Laboratory Animals.

    Science.gov (United States)

    Namdee, Katawut; Sobczynski, Daniel J; Onyskiw, Peter J; Eniola-Adefeso, Omolola

    2015-12-16

    Vascular-targeted carrier (VTC) interaction with human plasma is known to reduce targeted adhesion efficiency in vitro. However, the role of plasma proteins on the adhesion efficiency of VTCs in laboratory animals remains unknown. Here, in vitro blood flow assays are used to explore the effects of plasma from mouse, rabbit, and porcine on VTC adhesion. Porcine blood exhibited a strong negative plasma effect on VTC adhesion while no significant plasma effect was found with rabbit and mouse blood. A brush density poly(ethylene glycol) (PEG) on VTCs was effective at improving adhesion of microsized, but not nanosized, VTCs in porcine blood. Overall, the results suggest that porcine models, as opposed to mouse, can serve as better models in preclinical research for predicting the in vivo functionality of VTCs for use in humans. These considerations hold great importance for the design of various pharmaceutical products and development of reliable drug delivery systems.

  1. Functional and in vitro gastric digestibility of the whey protein hydrogel loaded with nanostructured lipid carriers and gelled via citric acid-mediated crosslinking.

    Science.gov (United States)

    Hashemi, Behnaz; Madadlou, Ashkan; Salami, Maryam

    2017-12-15

    Nanostructured lipid carriers (NLCs) with mean size of 347nm were fabricated and added into a heat-denatured whey protein solution. The subsequent crosslinking of proteins by citric acid or CaCl 2 resulted in the formation of cold-set hydrogels. Fourier transform infrared spectroscopy (FTIR) proposed formation of more hydrogen bonds in gel due to NLC loading or citric acid-mediated gelation. It was also found based on FITR spectroscopy that citric acid crosslinking disordered whey proteins. Scanning electron microscopy (SEM) imaging showed a non-porous and finely meshed microstructure for the crosslinked gels compared to non-crosslinked counterparts. Crosslinking also increased the firmness and water-holding capacity of gels. In pepsin-free fluid, a strong correlation existed between reduction in gel swellability and digestibility over periods up to 60min due to NLC loading and citric acid gelation. However, in peptic fluid, NLC loading and citric acid crosslinking brought about much higher decrease in digestibility than swellability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Evaluation of pH-sensitive poly(β-amino ester)-graft-poly(ethylene glycol) and its usefulness as a pH-sensor and protein carrier.

    Science.gov (United States)

    Kim, Min Sang; Gao, Guang Hui; Kang, Seong Woo; Lee, Doo Sung

    2011-07-07

    In this study, some possible biomedical applications of a pH-sensitive and amphiphilic copolymer as a pH sensor and protein delivery system are reported. PAE-g-PEG was used as a pH-sensitive polymer that can exhibit a sharp pH-dependent transition. Various fluorescent dyes including pyrene and RITC can be used to label the pH-sensitive polymer PAE-g-PEG, which was evaluated for protein encapsulation. pH-sensing was possible by observing excimer formation of the labeled pyrene via pH-dependent expansion of the polymeric chain. Also, it was confirmed that FITC-BSA could be entrapped in RITC-labeled pH-sensitive micelles of PAE-g-PEG by FRET. As a result, PAE-g-PEG can be a pH sensor and carrier for protein delivery. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The role of ß-ketoacyl-acyl carrier protein synthase III in the condensation steps of fatty acid biosynthesis in sunflower

    DEFF Research Database (Denmark)

    González-Mellado, Damián; von Wettstein, Penny; Garcés, Rafael

    2010-01-01

    The ß-ketoacyl-acyl carrier protein synthase III (KAS III; EC 2.3.1.180) is a condensing enzyme catalyzing the initial step of fatty acid biosynthesis using acetyl-CoA as primer. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus L.) developing...... seeds, a cDNA coding for HaKAS III (EF514400) was isolated, cloned and sequenced. Its protein sequence is as much as 72% identical to other KAS III-like ones such as those from Perilla frutescens, Jatropha curcas, Ricinus communis or Cuphea hookeriana. Phylogenetic study of the HaKAS III homologous...... proteins infers its origin from cyanobacterial ancestors. A genomic DNA gel blot analysis revealed that HaKAS III is a single copy gene. Expression levels of this gene, examined by Q-PCR, revealed higher levels in developing seeds storing oil than in leaves, stems, roots or seedling cotyledons...

  4. Evaluation of the in vitro differential protein adsorption patterns of didanosine-loaded nanostructured lipid carriers (NLCs) for potential targeting to the brain.

    Science.gov (United States)

    Kasongo, Kasongo Wa; Jansch, Mirko; Müller, Rainer H; Walker, Roderick B

    2011-09-01

    The preferential in vitro adsorption of apolipoprotein E (Apo E) onto the surface of colloidal drug carriers may be used as a strategy to evaluate the in vivo potential for such systems to transport drugs to the brain. The aim of this research was to investigate the in vitro protein adsorption patterns of didanosine-loaded nanostructured lipid carriers (DDI-NLCs), using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), in order to establish the potential for NLCs to deliver DDI to the brain. NLC formulations were manufactured using high-pressure homogenization using a lipid matrix consisting of a mixture of Precirol(®) ATO 5 and Transcutol(®) HP. The 2-D PAGE analysis revealed that NLCs in formulations stabilized using Solutol(®) HS 15 alone or with a ternary surfactant system consisting of Solutol(®) HS 15, Tween(®) 80, and Lutrol(®) F68, preferentially adsorbed proteins, such as Apo E. Particles stabilized with Tween(®) 80 and Lutrol(®) F68 did not adsorb Apo E in these studies, which could be related to the relatively large particle size and hence small surface area observed for these NLCs. These findings have revealed that DDI-loaded NLCs may have the potential to deliver DDI to the brain in vivo and, in addition, to Tween(®) 80, which has already been shown to have the ability to facilitate the targeting of colloidal drug delivery systems to the brain. Solutol(®) HS 15-stabilized nanoparticles may also achieve a similar purpose.

  5. Solution Structure of the Tandem Acyl Carrier Protein Domains from a Polyunsaturated Fatty Acid Synthase Reveals Beads-on-a-String Configuration

    KAUST Repository

    Trujillo, Uldaeliz

    2013-02-28

    The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP

  6. Solution Structure of the Tandem Acyl Carrier Protein Domains from a Polyunsaturated Fatty Acid Synthase Reveals Beads-on-a-String Configuration

    KAUST Repository

    Trujillo, Uldaeliz; Vá zquez-Rosa, Edwin; Oyola-Robles, Delise; Stagg, Loren J.; Vassallo, David A.; Vega, Irving E.; Arold, Stefan T.; Baerga-Ortiz, Abel

    2013-01-01

    The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP

  7. Solution structure of the tandem acyl carrier protein domains from a polyunsaturated fatty acid synthase reveals beads-on-a-string configuration.

    Directory of Open Access Journals (Sweden)

    Uldaeliz Trujillo

    Full Text Available The polyunsaturated fatty acid (PUFA synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect and in structural stabilization of the multidomain protein (synergistic effect. While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of

  8. The Sumo-targeted ubiquitin ligase RNF4 regulates the localization and function of the HTLV-1 oncoprotein Tax

    Science.gov (United States)

    Fryrear, Kimberly A.; Guo, Xin

    2012-01-01

    The Really Interesting New Gene (RING) Finger Protein 4 (RNF4) represents a class of ubiquitin ligases that target Small Ubiquitin-like Modifier (SUMO)–modified proteins for ubiquitin modification. To date, the regulatory function of RNF4 appears to be ubiquitin-mediated degradation of sumoylated cellular proteins. In the present study, we show that the Human T-cell Leukemia Virus Type 1 (HTLV-1) oncoprotein Tax is a substrate for RNF4 both in vivo and in vitro. We mapped the RNF4-binding site to a region adjacent to the Tax ubiquitin/SUMO modification sites K280/K284. Interestingly, RNF4 modification of Tax protein results in relocalization of the oncoprotein from the nucleus to the cytoplasm. Overexpression of RNF4, but not the RNF4 RING mutant, resulted in cytoplasmic enrichment of Tax. The RNF4-induced nucleus-to-cytoplasm relocalization was associated with increased NF-κB–mediated and decreased cAMP Response Element-Binding (CREB)–mediated Tax activity. Finally, depletion of RNF4 by RNAi prevented the DNA damage–induced nuclear/cytoplasmic translocation of Tax. These results provide important new insight into STUbL-mediated pathways that regulate the subcellular localization and functional dynamics of viral oncogenes. PMID:22106342

  9. Denervation-Induced Activation of the Ubiquitin-Proteasome System Reduces Skeletal Muscle Quantity Not Quality.

    Science.gov (United States)

    Baumann, Cory W; Liu, Haiming M; Thompson, LaDora V

    2016-01-01

    It is well known that the ubiquitin-proteasome system is activated in response to skeletal muscle wasting and functions to degrade contractile proteins. The loss of these proteins inevitably reduces skeletal muscle size (i.e., quantity). However, it is currently unknown whether activation of this pathway also affects function by impairing the muscle's intrinsic ability to produce force (i.e., quality). Therefore, the purpose of this study was twofold, (1) document how the ubiquitin-proteasome system responds to denervation and (2) identify the physiological consequences of these changes. To induce soleus muscle atrophy, C57BL6 mice underwent tibial nerve transection of the left hindlimb for 7 or 14 days (n = 6-8 per group). At these time points, content of several proteins within the ubiquitin-proteasome system were determined via Western blot, while ex vivo whole muscle contractility was specifically analyzed at day 14. Denervation temporarily increased several key proteins within the ubiquitin-proteasome system, including the E3 ligase MuRF1 and the proteasome subunits 19S, α7 and β5. These changes were accompanied by reductions in absolute peak force and power, which were offset when expressed relative to physiological cross-sectional area. Contrary to peak force, absolute and relative forces at submaximal stimulation frequencies were significantly greater following 14 days of denervation. Taken together, these data represent two keys findings. First, activation of the ubiquitin-proteasome system is associated with reductions in skeletal muscle quantity rather than quality. Second, shortly after denervation, it appears the muscle remodels to compensate for the loss of neural activity via changes in Ca2+ handling.

  10. Binding specificity of the juvenile hormone carrier protein from the hemolymph of the tobacco hornworm Manduca sexta Johannson (Lepidoptera: Sphingidae).

    Science.gov (United States)

    Peterson, R C; Reich, M F; Dunn, P E; Law, J H; Katzenellnbogen, J A

    1977-05-17

    A series of analogues of insect juvenile hormone (four geometric isomers of methyl epoxyfarnesenate, several para-substituted epoxygeranyl phenyl ethers, and epoxyfarnesol and its acetate and haloacetate derivatives) was prepared to investigate the binding specificity of the hemolymph juvenile hormone binding protein from the tobacco hornworm Manduct sexta. The relative binding affinities were determined by a competition assay against radiolabeled methyl (E,E)-3,11-dimethyl-7-ethyl-cis-10,11-epoxytrideca-2,6-dienoate (JH I). The ratio of dissociation constants was estimated by plotting competitor data according to a linear transformation of the dissociation equations describing competition of two ligands for a binding protein. The importance of the geometry of the sesquiterpene hydrocarbon chain is indicated by the fact that the binding affinity is decreased as Z (cis) double bonds are substituted for E (trans) double bonds in the methyl epoxyfarnesenate series; the unepoxidized analogues do not bind. A carboxylic ester function is important although its orientation can be reversed, as indicated by the good binding of epoxyfarnesyl acetate. In the monoterpene series, methyl epoxygeranoate shows no affinity for the binding protein, but substitution of a phenyl or p-carbomethoxyphenyl ether for the ester function imparts a low, but significant affinity. These data taken together with earlier results indicate that the binding site for juvenile hormone in the hemolymph binding protein is characterized by a sterically defined hydrophobic region with polar sites that recognize the epoxide and the ester functions.

  11. Disposable Amperometric Immunosensor for the Determination of Human P53 Protein in Cell Lysates Using Magnetic Micro-Carriers

    Directory of Open Access Journals (Sweden)

    María Pedrero

    2016-11-01

    Full Text Available An amperometric magnetoimmunosensor for the determination of human p53 protein is described in this work using a sandwich configuration involving the covalent immobilization of a specific capture antibody onto activated carboxylic-modified magnetic beads (HOOC-MBs and incubation of the modified MBs with a mixture of the target protein and horseradish peroxidase-labeled antibody (HRP-anti-p53. The resulting modified MBs are captured by a magnet placed under the surface of a disposable carbon screen-printed electrode (SPCE and the amperometric responses are measured at −0.20 V (vs. an Ag pseudo-reference electrode, upon addition of hydroquinone (HQ as a redox mediator and H2O2 as the enzyme substrate. The magnetoimmunosensing platform was successfully applied for the detection of p53 protein in different cell lysates without any matrix effect after a simple sample dilution. The results correlated accurately with those provided by a commercial ELISA kit, thus confirming the immunosensor as an attractive alternative for rapid and simple determination of this protein using portable and affordable instrumentation.

  12. Changes in blood levels of proteinase inhibitors, pregnancy zone protein, steroid carriers and complement factors induced by oral contraceptives

    DEFF Research Database (Denmark)

    Nielsen, C H; Poulsen, H K; Teisner, B

    1993-01-01

    levels of antithrombin III (AT III), alpha 2-macroglobulin (alpha 2M) alpha 1-antitrypsin (alpha 1at), complement factors (factor B, C3, C4), pregnancy zone protein (PZP), corticosteroid binding globulin (CBG), sex hormone binding globulin (SHBG) and albumin were measured before treatment and during...

  13. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers.

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Dolder, J. van den; Yang, F.; Bian, Z.; Fan, M.; Jansen, J.A.

    2008-01-01

    Calcium phosphate nanoparticles have shown potential as non-viral vectors for gene delivery. The aim of this study was to induce bone morphogenetic protein (Bmp)2 transfection in rat dental pulp stem cells using calcium phosphate nanoparticles as a gene vector and then to evaluate the efficiency and

  14. The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks