WorldWideScience

Sample records for u-87 astrocytoma cells

  1. Errantum: Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins

    Directory of Open Access Journals (Sweden)

    Lai JCK

    2010-12-01

    Full Text Available Lai JCK, Ananthakrishnan G, Jandhyam S, et al. Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins. Int J Nanomedicine. 2010;5:715–723.The wrong image was used in Figure 5 on page 719.

  2. Inhibition of STAT3 reduces astrocytoma cell invasion and constitutive activation of STAT3 predicts poor prognosis in human astrocytoma.

    Directory of Open Access Journals (Sweden)

    Qinchuan Liang

    Full Text Available Astrocytoma cells characteristically possess high invasion potentials. Recent studies have revealed that knockdown of signal transducers and activators of transcription 3 (STAT3 expression by RNAi induces apoptosis in astrocytoma cell. Nevertheless, the distinct roles of STAT3 in astrocytoma's invasion and recurrence have not been elucidated. In this study, we silenced STAT3 using Small interfering RNAs in two human glioblastoma multiforme (GBM cell lines (U251 and U87, and investigated the effect on GBM cell adhesion and invasion. Our results demonstrate that disruption of STAT3 inhibits GBM cell's adhesion and invasion. Knockdown of STAT3 significantly increased E-cadherin but decreased N-cadherin, vascular endothelial growth factor, matrix metalloproteinase 2 and matrix metalloproteinase 9. Additionally, expression of pSTAT3(Tyr705 correlates with astrocytoma WHO classification, Karnofsky performance status scale score, tumor recurrence and survival. Furthermore, pSTAT3(Tyr705 is a significant prognostic factor in astrocytoma. In conclusion, STAT3 may affect astrocytoma invasion, expression of pSTAT3(Tyr705 is a significant prognostic factor in tumor recurrence and overall survival in astrocytoma patients. Therefore, STAT3 may provide a potential target for molecular therapy in human astrocytoma, and pSTAT3(Tyr705could be an important biomarker for astrocytoma prognosis.

  3. The microRNA and messengerRNA profile of the RNA-induced silencing complex in human primary astrocyte and astrocytoma cells.

    Science.gov (United States)

    Moser, Joanna J; Fritzler, Marvin J

    2010-10-18

    GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA)-mediated messenger RNA (mRNA) silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC). To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells. RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1) miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2) astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3) miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4) the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells. The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies.

  4. The microRNA and messengerRNA profile of the RNA-induced silencing complex in human primary astrocyte and astrocytoma cells.

    Directory of Open Access Journals (Sweden)

    Joanna J Moser

    2010-10-01

    Full Text Available GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA-mediated messenger RNA (mRNA silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC. To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells.RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1 miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2 astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3 miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4 the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells.The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies.

  5. Expression of delta-catenin is associated with progression of human astrocytoma

    International Nuclear Information System (INIS)

    MingHao, Wang; Qianze, Dong; Di, Zhang; YunJie, Wang

    2011-01-01

    δ-Catenin (CTNND2), which encodes a scaffold protein in humans, has been found in a few malignancies. However, the expression pattern and contribution of δ-catenin to astrocytoma progression are unclear. We investigated δ-catenin expression in human astrocytoma samples and its function in astrocytoma cell lines using immunohistochemistry, siRNA knockdown, transfection, MTT, transwell migration and Rac1 pulldown techniques. δ-Catenin protein expression was detected in cytoplasm of astrocytoma cells by immunohistochemistry. Analysis showed that grade I astrocytoma (0%, 0/11) and glial cells from normal brain tissue exhibited negative staining. δ-Catenin expression was significantly higher in grade III-IV (35%, 29/84) compared to grade II astrocytoma cells (18%, 11/61); p < 0.01). In addition, CTNND2 overexpression promoted proliferation, invasion and Rac1 activity of U251 astrocytoma cells. Treatment of δ-catenin-transfected cells with a Rac1 inhibitor decreased Rac1 activity and invasion. δ-Catenin knockdown in U87 glioblastoma cell decreased cell proliferation, invasion and Rac1 activity. The results suggest that δ-catenin expression is associated with the malignant progression of astrocytoma and promotes astrocytoma cell invasion through upregulation of Rac1 activity. δ-Catenin expression levels may serve as a useful marker of the biological behavior of astrocytoma cells

  6. Resveratrol represses YKL-40 expression in human glioma U87 cells

    International Nuclear Information System (INIS)

    Zhang, Wei; Tamiya, Takashi; Murao, Koji; Zhang, Xiang; Matsumoto, Kensuke; Diah, Suwarni; Okada, Masaki; Miyake, Keisuke; Kawai, Nobuyuki; Fei, Zhou

    2010-01-01

    Glioblastoma multiforme (GBM) is the most malignant intracranial tumour that develops in both adults and children. Microarray gene analyses have confirmed that the human YKL-40 gene is one of the most over-expressed genes in these tumours but not in normal brain tissue. Clinical studies have shown that serum YKL-40 levels are positively correlated with tumour burden in addition to being an independent prognostic factor of a short relapse-free interval as well as short overall survival in patients with various cancers. Our previous study revealed that YKL-40 was closely correlated with the pathological grades of human primary astrocytomas and played a crucial role in glioma cell proliferation. Hence, YKL-40 could be an attractive target in the design of anti-cancer therapies. Cell viability and invasion assays were performed to detect the cell proliferation and invasive ability of U87 cells induced by resveratrol (3, 5, 4'-trihydroxystilbene; Res) or YKL-40 small-interfering RNAs (siRNAs). In addition, the luciferase assay, real-time RT-PCR, western blotting, and ELISA were used to measure YKL-40 promoter activity, mRNA, and protein expression, respectively. The expressions of phosphor-ERK1/2 and ERK1/2 were determined by western blotting. Res inhibited U87 cell proliferation and invasion in vitro and repressed YKL-40 in U87 cells by decreasing the activity of its promoter and reducing mRNA transcription and protein expression in vitro. YKL-40 siRNA treatment also impaired the invasiveness of U87 cells. When U87 cells were cultured with 20 μM PD98059 (an ERK1/2 inhibitor) alone, with 20 μM PD98059 and 100 μM Res, or with 100 μM Res alone for 48 h, YKL-40 protein expression decreased most significantly in the Res-treated group. PD98059 partially reversed the decrease of YKL-40 protein expression induced by Res. Furthermore, phosphor-ERK1/2 expression was reduced by Res treatment in a time-dependent manner. We demonstrated for the first time that Res

  7. Xenograft transplantation of human malignant astrocytoma cells into immunodeficient rats: an experimental model of glioblastoma.

    Science.gov (United States)

    Miura, Flávio Key; Alves, Maria Jose Ferreira; Rocha, Mussya Cisotto; da Silva, Roseli; Oba-Shinjo, Sueli Mieko; Marie, Suely Kazue Nagahashi

    2010-03-01

    Astrocytic gliomas are the most common intracranial central nervous system neoplasias, accounting for about 60% of all primary central nervous system tumors. Despite advances in the treatment of gliomas, no effective therapeutic approach is yet available; hence, the search for a more realistic model to generate more effective therapies is essential. To develop an experimental malignant astrocytoma model with the characteristics of the human tumor. Primary cells from subcutaneous xenograft tumors produced with malignant astrocytoma U87MG cells were inoculated intracerebrally by stereotaxis into immunosuppressed (athymic) Rowett rats. All four injected animals developed non-infiltrative tumors, although other glioblastoma characteristics, such as necrosis, pseudopalisading cells and intense mitotic activity, were observed. A malignant astrocytoma intracerebral xenograft model with poorly invasive behavior was achieved in athymic Rowett rats. Tumor invasiveness in an experimental animal model may depend on a combination of several factors, including the cell line used to induce tumor formation, the rat strains and the status of the animal's immune system.

  8. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei; Lei, Hui; Chang, Ming-Ze; Liu, Zhi-Qin [Department of Neurological Disease, Xi' an Central Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710000 (China); Bie, Xiao-Hua, E-mail: biexiaohua_xjtu@126.com [Department of Functional Neurosurgery, Xi' an Red Cross Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710054 (China)

    2015-07-10

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation.

  9. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    International Nuclear Information System (INIS)

    Cao, Lei; Lei, Hui; Chang, Ming-Ze; Liu, Zhi-Qin; Bie, Xiao-Hua

    2015-01-01

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation

  10. Human U87 astrocytoma cell invasion induced by interaction of βig-h3 with integrin α5β1 involves calpain-2.

    Directory of Open Access Journals (Sweden)

    Jie Ma

    Full Text Available It is known that βig-h3 is involved in the invasive process of many types of tumors, but its mechanism in glioma cells has not been fully clarified. Using immunofluorescent double-staining and confocal imaging analysis, and co-immunoprecipitation assays, we found that βig-h3 co-localized with integrin α5β1 in U87 cells. We sought to elucidate the function of this interaction by performing cell invasion assays and gelatin zymography experiments. We found that siRNA knockdowns of βig-h3 and calpain-2 impaired cell invasion and MMP secretion. Moreover, βig-h3, integrins and calpain-2 are known to be regulated by Ca(2+, and they are also involved in tumor cell invasion. Therefore, we further investigated if calpain-2 was relevant to βig-h3-integrin α5β1 interaction to affect U87 cell invasion. Our data showed that βig-h3 co-localized with integrin α5β1 to enhance the invasion of U87 cells, and that calpain-2, is involved in this process, acting as a downstream molecule.

  11. The inhibitory effect of CIL-102 on the growth of human astrocytoma cells is mediated by the generation of reactive oxygen species and induction of ERK1/2 MAPK

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Chih-Chuan [Institute of Nursing and Department of Nursing, Chang Gung University of Science and Technology, Chronic Diseases and Health Promotion Research Center, CGUST, Taiwan (China); Institute of Basic Medicine Science, National Cheng Kung University, Tainan, Taiwan (China); Kuo, Hsing-Chun [Institute of Nursing and Department of Nursing, Chang Gung University of Science and Technology, Chronic Diseases and Health Promotion Research Center, CGUST, Taiwan (China); Cheng, Ho-Chen [Department of General Education, Chang Gung University of Science and Technology, CGUST, Taiwan (China); Wang, Ting-Chung [Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Center, Chiayi, Taiwan (China); Graduate Institute of Clinical Medical Sciences, Chang Gung University, Gueishan, Taiwan (China); Sze, Chun-I, E-mail: szec@mail.ncku.edu.tw [Institute of Basic Medicine Science, Department of Cell Biology and Anatomy and Pathology, National Cheng Kung University, Tainan, Taiwan (China)

    2012-08-15

    CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone) is the major active agent of the alkaloid derivative of Camptotheca acuminata, with multiple pharmacological activities, including anticancer effects and promotion of apoptosis. The mechanism by which CIL-102 inhibits growth remains poorly understood in human astrocytoma cells. Herein, we investigated the molecular mechanisms by which CIL-102 affects the generation of reactive oxygen species (ROS) and cell cycle G2/M arrest in glioma cells. Treatment of U87 cells with 1.0 μM CIL-102 resulted in phosphorylation of extracellular signal-related kinase (ERK1/2), downregulation of cell cycle-related proteins (cyclin A, cyclin B, cyclin D1, and cdk1), and phosphorylation of cdk1Tyr{sup 15} and Cdc25cSer{sup 216}. Furthermore, treatment with the ERK1/2 inhibitor PD98059 abolished CIL-102-induced Cdc25cSer{sup 216} expression and reversed CIL-102-inhibited cdk1 activation. In addition, N-acetyl cysteine (NAC), an ROS scavenger, blocked cell cycle G2/M arrest and phosphorylation of ERK1/2 and Cdc25cSer{sup 216} in U87 cells. CIL-102-mediated ERK1/2 and ROS production, and cell cycle arrest were blocked by treatment with specific inhibitors. In conclusion, we have identified a novel CIL-102-inhibited proliferation in U87 cells by activating the ERK1/2 and Cdc25cSer{sup 216} cell cycle-related proteins and inducing ROS production; this might be a new mechanism in human astrocytoma cells. -- Highlights: ► We show the effects of CIL-102 on the G2/M arrest of human astrocytoma cells. ► ROS and the Ras/ERK1/2 triggering pathways are involved in the CIL-102 treatment. ► CIL-102 induces sustained activation of ERK1/2 and Cdc25c and ROS are required.

  12. The inhibitory effect of CIL-102 on the growth of human astrocytoma cells is mediated by the generation of reactive oxygen species and induction of ERK1/2 MAPK

    International Nuclear Information System (INIS)

    Teng, Chih-Chuan; Kuo, Hsing-Chun; Cheng, Ho-Chen; Wang, Ting-Chung; Sze, Chun-I

    2012-01-01

    CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone) is the major active agent of the alkaloid derivative of Camptotheca acuminata, with multiple pharmacological activities, including anticancer effects and promotion of apoptosis. The mechanism by which CIL-102 inhibits growth remains poorly understood in human astrocytoma cells. Herein, we investigated the molecular mechanisms by which CIL-102 affects the generation of reactive oxygen species (ROS) and cell cycle G2/M arrest in glioma cells. Treatment of U87 cells with 1.0 μM CIL-102 resulted in phosphorylation of extracellular signal-related kinase (ERK1/2), downregulation of cell cycle-related proteins (cyclin A, cyclin B, cyclin D1, and cdk1), and phosphorylation of cdk1Tyr 15 and Cdc25cSer 216 . Furthermore, treatment with the ERK1/2 inhibitor PD98059 abolished CIL-102-induced Cdc25cSer 216 expression and reversed CIL-102-inhibited cdk1 activation. In addition, N-acetyl cysteine (NAC), an ROS scavenger, blocked cell cycle G2/M arrest and phosphorylation of ERK1/2 and Cdc25cSer 216 in U87 cells. CIL-102-mediated ERK1/2 and ROS production, and cell cycle arrest were blocked by treatment with specific inhibitors. In conclusion, we have identified a novel CIL-102-inhibited proliferation in U87 cells by activating the ERK1/2 and Cdc25cSer 216 cell cycle-related proteins and inducing ROS production; this might be a new mechanism in human astrocytoma cells. -- Highlights: ► We show the effects of CIL-102 on the G2/M arrest of human astrocytoma cells. ► ROS and the Ras/ERK1/2 triggering pathways are involved in the CIL-102 treatment. ► CIL-102 induces sustained activation of ERK1/2 and Cdc25c and ROS are required.

  13. [Cell-ELA-based determination of binding affinity of DNA aptamer against U87-EGFRvIII cell].

    Science.gov (United States)

    Tan, Yan; Liang, Huiyu; Wu, Xidong; Gao, Yubo; Zhang, Xingmei

    2013-05-01

    A15, a DNA aptamer with binding specificity for U87 glioma cells stably overexpressing the epidermal growth factor receptor variant III (U87-EGFRvIII), was generated by cell systematic evolution of ligands by exponential enrichment (cell-SELEX) using a random nucleotide library. Subsequently, we established a cell enzyme-linked assay (cell-ELA) to detect the affinity of A15 compared to an EGFR antibody. We used A15 as a detection probe and cultured U87-EGFRvIII cells as targets. Our data indicate that the equilibrium dissociation constants (K(d)) for A15 were below 100 nmol/L and had similar affinity compared to an EGFR antibody for U87-EGFRvIII. We demonstrated that the cell-ELA was a useful method to determine the equilibrium dissociation constants (K(d)) of aptamers generated by cell-SELEX.

  14. EMMPRIN expression positively correlates with WHO grades of astrocytomas and meningiomas.

    Science.gov (United States)

    Tsai, Wen-Chiuan; Chen, Ying; Huang, Li-Chun; Lee, Herng-Sheng; Ma, Hsin-I; Huang, Shih-Ming; Sytwu, Huey-Kang; Hueng, Dueng-Yuan

    2013-09-01

    High-grade primary brain tumors possessed poor outcome due to invasiveness. Extracellular matrix metalloproteinase inducer (EMMPRIN) stimulates peri-tumoral fibroblasts to secrete matrix metalloproteinase and promote invasiveness. This study hypothesized that high-grade brain tumors overexpress EMMPRIN. Analyzing the public delinked database from the Gene Expression Omnibus profile, the results showed that the EMMPRIN mRNA level was higher in WHO grade IV (n = 81) than in grade III (n = 19, p EMMPRIN levels positively correlated with WHO grades for astrocytomas (p = 0.008) and meningiomas (p = 0.048). EMMPRIN mRNA levels in conventional glioma cell lines (n = 36) was not less than those in glioma primary culture cells (n = 27) and glioblastoma stem-like cells (n = 12). The GBM8401, U87MG, and LN229 human glioma cell lines also overexpressed EMMPRIN. Hematoxylin and eosin, IHC, and immunofluorescence staining of xenografts confirmed that high-grade brain tumors overexpressed EMMPRIN. Lastly, Kaplan-Meier analysis revealed poorer survival in WHO grade IV (n = 56) than in grade III astrocytomas (n = 21, by log-rank test; p = 0.0001, 95 % CI: 1.842-3.053). However, in high-grade astrocytomas, there was no difference in survival between high and low EMMPRIN mRNA levels. Thus, this study identified that high-grade brain tumors overexpress EMMPRIN, which positively correlates with WHO grades in human astrocytomas and meningiomas, and suggests that EMMPRIN may be a therapeutic target of brain tumor.

  15. [RITA combined with temozolomide inhibits the proliferation of human glioblastoma U87 cells].

    Science.gov (United States)

    He, Xiao-Yan; Feng, Xiao-Li; Song, Xin-Pei; Zeng, Huan-Chao; Cao, Zhong-Xu; Xiao, Wei-Wei; Zhang, Bao; Wu, Qing-Hua

    2016-10-20

    To observe the effect of RITA, a small molecule that targets p53, combined with temozolomide (TMZ) on proliferation, colony formation and apoptosis of human glioblastoma U87 cells and explore the underlying mechanism. Cultured U87 cells were treated with RITA (1, 5, 10, 20 µmol/L), TMZ, or RITA+TMZ (half dose) for 24, 48 or 72 h. MTS assay were used to detect the cell proliferation, and the cell proliferation rate and inhibitory rate were calculated. The effect of combined treatments was evaluated by the q value. The expressions of p53, p21 and other apoptosis-associated genes were detected by qRT-PCR and Western blotting; cell apoptosis was assayed using flow cytometry with Annexin V/PI double staining; colony formation of the cells was detected with crystal violet staining. MTS assay showed that RITA at the 4 doses more potently inhibited U87 cell viability than TMZ at 72 h (P=0.000) with inhibitory rates of 25.94%-41.38% and 3.84%-8.20%, respectively. RITA combined with TMZ caused a more significant inhibition of U87 cells (29.21%-52.11%) than RITA (PRITA+TMZ for 48 h resulted in q values exceeding 1.2 and showed an obvious synergistic effect of the drugs. Both RITA and TMZ, especially the latter, significantly increased the expressions of p53, p21, puma, and other apoptosis-associated genes to accelerate apoptosis and inhibit the growth and colony formation of U87 cells, and the effect was more obvious with a combined treatment. RITA inhibits the growth of human glioblastoma cells and enhance their sensitivity to TMZ by up-regulating p53 expression, and when combined, RITA and TMZ show a synergistic effect to cause a stronger cell inhibition.

  16. Metabolic impact of anti-angiogenic agents on U87 glioma cells.

    Directory of Open Access Journals (Sweden)

    Tanja Mesti

    Full Text Available BACKGROUND: Glioma cells not only secrete high levels of vascular endothelial growth factor (VEGF but also express VEGF receptors (VEGFR, supporting the existence of an autocrine loop. The direct impact on glioma cells metabolism of drugs targeting the VEGF pathway, such as Bevacizumab (Bev or VEGFR Tyrosine Kinase Inhibitor (TKI, is poorly known. MATERIAL AND METHODS: U87 cells were treated with Bev or SU1498, a selective VEGFR2 TKI. VEGFR expression was checked with FACS flow cytometry and Quantitative Real-Time PCR. VEGF secretion into the medium was assessed with an ELISA kit. Metabolomic studies on cells were performed using High Resolution Magic Angle Spinning Spectroscopy (HR-MAS. RESULTS: U87 cells secreted VEGF and expressed low level of VEGFR2, but no detectable VEGFR1. Exposure to SU1498, but not Bev, significantly impacted cell proliferation and apoptosis. Metabolomic studies with HR MAS showed that Bev had no significant effect on cell metabolism, while SU1498 induced a marked increase in lipids and a decrease in glycerophosphocholine. Accordingly, accumulation of lipid droplets was seen in the cytoplasm of SU1498-treated U87 cells. CONCLUSION: Although both drugs target the VEGF pathway, only SU1498 showed a clear impact on cell proliferation, cell morphology and metabolism. Bevacizumab is thus less likely to modify glioma cells phenotype due to a direct therapeutic pressure on the VEGF autocrine loop. In patients treated with VEGFR TKI, monitoring lipids with magnetic resonance spectroscopic (MRS might be a valuable marker to assess drug cytotoxicity.

  17. Epigenetic Silencing of the Protocadherin Family Member PCDH-γ-All in Astrocytomas

    Directory of Open Access Journals (Sweden)

    Anke Waha

    2005-03-01

    Full Text Available In a microarray-based methylation analysis of astrocytomas [World Health Organization (WHO grade II], we identified a CpG island within the first exon of the protocadherin-γ subfamily A11 (PCDH-γ-A11 gene that showed hypermethylation compared to normal brain tissue. Bisulfite sequencing and combined bisulfite restriction analysis (COBRA was performed to screen low- and high-grade astrocytomas for the methylation status of this CpG island. Hypermethylation was detected in 30 of 34 (88% astrocytomas (WHO grades II and III, 20 of 23 (87% glioblastomas (WHO grade IV, 8 of 8 (100% glioma cell lines. There was a highly significant correlation (P = .00028 between PCDH-γ-A11 hypermethylation and decreased transcription as determined by competitive reverse transcription polymerase chain reaction in WHO grades II and III astrocytomas. After treatment of glioma cell lines with a demethylating agent, transcription of PCDH-γ-A11 was restored. In summary, we have identified PCDH-γ-A11 as a new target silenced epigenetically in astrocytic gliomas. The inactivation of this cell-cell contact molecule might be involved in the invasive growth of astrocytoma cells into normal brain parenchyma.

  18. Identification of astrocytoma associated genes including cell surface markers

    International Nuclear Information System (INIS)

    Boon, Kathy; Edwards, Jennifer B; Eberhart, Charles G; Riggins, Gregory J

    2004-01-01

    Despite intense effort the treatment options for the invasive astrocytic tumors are still limited to surgery and radiation therapy, with chemotherapy showing little or no increase in survival. The generation of Serial Analysis of Gene Expression (SAGE) profiles is expected to aid in the identification of astrocytoma-associated genes and highly expressed cell surface genes as molecular therapeutic targets. SAGE tag counts can be easily added to public expression databases and quickly disseminated to research efforts worldwide. We generated and analyzed the SAGE transcription profiles of 25 primary grade II, III and IV astrocytomas [1]. These profiles were produced as part of the Cancer Genome Anatomy Project's SAGE Genie [2], and were used in an in silico search for candidate therapeutic targets by comparing astrocytoma to normal brain transcription. Real-time PCR and immunohistochemistry were used for the validation of selected candidate target genes in 2 independent sets of primary tumors. A restricted set of tumor-associated genes was identified for each grade that included genes not previously associated with astrocytomas (e.g. VCAM1, SMOC1, and thymidylate synthetase), with a high percentage of cell surface genes. Two genes with available antibodies, Aquaporin 1 and Topoisomerase 2A, showed protein expression consistent with transcript level predictions. This survey of transcription in malignant and normal brain tissues reveals a small subset of human genes that are activated in malignant astrocytomas. In addition to providing insights into pathway biology, we have revealed and quantified expression for a significant portion of cell surface and extra-cellular astrocytoma genes

  19. Ammonium-induced calcium mobilization in 1321N1 astrocytoma cells

    International Nuclear Information System (INIS)

    Hillmann, Petra; Koese, Meryem; Soehl, Kristina; Mueller, Christa E.

    2008-01-01

    High blood levels of ammonium/ammonia (NH 4 + /NH 3 ) are associated with severe neurotoxicity as observed in hepatic encephalopathy (HE). Astrocytes are the main targets of ammonium toxicity, while neuronal cells are less vulnerable. In the present study, an astrocytoma cell line 1321N1 and a neuroblastoma glioma hybrid cell line NG108-15 were used as model systems for astrocytes and neuronal cells, respectively. Ammonium salts evoked a transient increase in intracellular calcium concentrations ([Ca 2+ ] i ) in astrocytoma (EC 50 = 6.38 mM), but not in NG108-15 cells. The ammonium-induced increase in [Ca 2+ ] i was due to an intracellular effect of NH 4 + /NH 3 and was independent of extracellular calcium. Acetate completely inhibited the ammonium effect. Ammonium potently reduced calcium signaling by G q protein-coupled receptors (H 1 and M3) expressed on the cells. Ammonium (5 mM) also significantly inhibited the proliferation of 1321N1 astrocytoma cells. While mRNA for the mammalian ammonium transporters RhBG and RhCG could not be detected in 1321N1 astrocytoma cells, both transporters were expressed in NG108-15 cells. RhBG and RhBC in brain may promote the excretion of NH 3 /NH 4 + from neuronal cells. Cellular uptake of NH 4 + /NH 3 was mainly by passive diffusion of NH 3 . Human 1321N1 astrocytoma cells appear to be an excellent, easily accessible human model for studying HE, which can substitute animal studies, while NG108-15 cells may be useful for investigating the role of the recently discovered Rhesus family type ammonium transporters in neuronal cells. Our findings may contribute to the understanding of pathologic ammonium effects in different brain cells, and to the treatment of hyperammonemia

  20. The nitric oxide donor JS-K sensitizes U87 glioma cells to repetitive irradiation.

    Science.gov (United States)

    Heckler, Max; Osterberg, Nadja; Guenzle, Jessica; Thiede-Stan, Nina Kristin; Reichardt, Wilfried; Weidensteiner, Claudia; Saavedra, Joseph E; Weyerbrock, Astrid

    2017-06-01

    As a potent radiosensitizer nitric oxide (NO) may be a putative adjuvant in the treatment of malignant gliomas which are known for their radio- and chemoresistance. The NO donor prodrug JS-K (O2-(2.4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen-1-ium-1,2-diolate) allows cell-type specific intracellular NO release via enzymatic activation by glutathione-S-transferases overexpressed in glioblastoma multiforme. The cytotoxic and radiosensitizing efficacy of JS-K was assessed in U87 glioma cells in vitro focusing on cell proliferation, induction of DNA damage, and cell death. In vivo efficacy of JS-K and repetitive irradiation were investigated in an orthotopic U87 xenograft model in mice. For the first time, we could show that JS-K acts as a potent cytotoxic and radiosensitizing agent in U87 cells in vitro. This dose- and time-dependent effect is due to an enhanced induction of DNA double-strand breaks leading to mitotic catastrophe as the dominant form of cell death. However, this potent cytotoxic and radiosensitizing effect could not be confirmed in an intracranial U87 xenograft model, possibly due to insufficient delivery into the brain. Although NO donor treatment was well tolerated, neither a retardation of tumor growth nor an extended survival could be observed after JS-K and/or radiotherapy.

  1. GLUT-1-independent infection of the glioblastoma/astroglioma U87 cells by the human T cell leukemia virus type 1

    International Nuclear Information System (INIS)

    Jin Qingwen; Agrawal, Lokesh; VanHorn-Ali, Zainab; Alkhatib, Ghalib

    2006-01-01

    The human glucose transporter protein 1 (GLUT-1) functions as a receptor for human T cell leukemia virus (HTLV). GLUT-1 is a twelve-transmembrane cell surface receptor with six extracellular (ECL) and seven intracellular domains. To analyze HTLV-1 cytotropism, we utilized polyclonal antibodies to a synthetic peptide corresponding to the large extracellular domain of GLUT-1. The antibodies caused significant blocking of envelope (Env)-mediated fusion and pseudotyped virus infection of HeLa cells but had no significant effect on infection of U87 cells. This differential effect correlated with the detection of high-level surface expression of GLUT-1 on HeLa cells and very weak staining of U87 cells. To investigate this in terms of viral cytotropism, we cloned GLUT-1 cDNA from U87 cells and isolated two different versions of cDNA clones: the wild-type sequence (encoding 492 residues) and a mutant cDNA with a 5-base pair deletion (GLUT-1Δ5) between nucleotides 1329 and 1333. The deletion, also detected in genomic DNA, resulted in a frame-shift and premature termination producing a truncated protein of 463 residues. Transfection of the wild-type GLUT-1 but not GLUT-1Δ5 cDNA into CHO cells resulted in efficient surface expression of the human GLUT-1. Co-expression of GLUT-1 with GLUT-1Δ5 produces a trans-inhibition by GLUT-1Δ5 of GLUT-1-mediated HTLV-1 envelope (Env)-mediated fusion. Co-immunoprecipitation experiments demonstrated physical interaction of the wild-type and mutant proteins. Northern blot and RT-PCR analyses demonstrated lower GLUT-1 RNA expression in U87 cells. We propose two mechanisms to account for the impaired cell surface expression of GLUT-1 on U87 cells: low GLUT-1 RNA expression and the formation of GLUT-1/GLUT-1Δ5 heterodimers that are retained intracellularly. Significant RNAi-mediated reduction of endogenous GLUT-1 expression impaired HTLV-1 Env-mediated fusion with HeLa cells but not with U87 cells. We propose a GLUT-1-independent mechanism

  2. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zi-xuan [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Rao, Wei [Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Huan [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Nan-ding [Department of Cardiology, Xi' an Traditional Chinese Medicine Hospital, Xi' an, 710032 (China); Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Zong-ren, E-mail: zongren@fmmu.edu.cn [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China)

    2015-02-13

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion.

  3. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    International Nuclear Information System (INIS)

    Shi, Zi-xuan; Rao, Wei; Wang, Huan; Wang, Nan-ding; Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang; Wang, Zong-ren

    2015-01-01

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion

  4. Primary ciliogenesis defects are associated with human astrocytoma/glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Rattner Jerome B

    2009-12-01

    Full Text Available Abstract Background Primary cilia are non-motile sensory cytoplasmic organelles that have been implicated in signal transduction, cell to cell communication, left and right pattern embryonic development, sensation of fluid flow, regulation of calcium levels, mechanosensation, growth factor signaling and cell cycle progression. Defects in the formation and/or function of these structures underlie a variety of human diseases such as Alström, Bardet-Biedl, Joubert, Meckel-Gruber and oral-facial-digital type 1 syndromes. The expression and function of primary cilia in cancer cells has now become a focus of attention but has not been studied in astrocytomas/glioblastomas. To begin to address this issue, we compared the structure and expression of primary cilia in a normal human astrocyte cell line with five human astrocytoma/glioblastoma cell lines. Methods Cultured normal human astrocytes and five human astrocytoma/glioblastoma cell lines were examined for primary cilia expression and structure using indirect immunofluorescence and electron microscopy. Monospecific antibodies were used to detect primary cilia and map the relationship between the primary cilia region and sites of endocytosis. Results We show that expression of primary cilia in normal astrocytes is cell cycle related and the primary cilium extends through the cell within a unique structure which we show to be a site of endocytosis. Importantly, we document that in each of the five astrocytoma/glioblastoma cell lines fully formed primary cilia are either expressed at a very low level, are completely absent or have aberrant forms, due to incomplete ciliogenesis. Conclusions The recent discovery of the importance of primary cilia in a variety of cell functions raises the possibility that this structure may have a role in a variety of cancers. Our finding that the formation of the primary cilium is disrupted in cells derived from astrocytoma/glioblastoma tumors provides the first

  5. Wnt/β-catenin pathway involvement in ionizing radiation-induced invasion of U87 glioblastoma cells

    International Nuclear Information System (INIS)

    Dong, Zhen; Zhou, Lin; Han, Na; Zhang, Mengxian; Lyu, Xiaojuan

    2015-01-01

    Radiotherapy has been reported to promote the invasion of glioblastoma cells; however, the underlying mechanisms remain unclear. Here, we investigated the role of the Wnt/β-catenin pathway in radiation-induced invasion of glioblastoma cells. U87 cells were irradiated with 3 Gy or sham irradiated in the presence or absence of the Wnt/β-catenin pathway inhibitor XAV 939. Cell invasion was determined by an xCELLigence real-time cell analyser and matrigel invasion assays. The intracellular distribution of β-catenin in U87 cells with or without irradiation was examined by immunofluorescence and Western blotting of nuclear fractions. We next investigated the effect of irradiation on Wnt/β-catenin pathway activity using TOP/FOP flash luciferase assays and quantitative polymerase chain reaction analysis of β-catenin target genes. The expression levels and activities of two target genes, matrix metalloproteinase (MMP)-2 and MMP-9, were examined further by Western blotting and zymography. U87 cell invasiveness was increased significantly by ionizing radiation. Interestingly, ionizing radiation induced nuclear translocation and accumulation of β-catenin. Moreover, we found increased β-catenin/TCF transcriptional activities, followed by up-regulation of downstream genes in the Wnt/β-catenin pathway in irradiated U87 cells. Importantly, inhibition of the Wnt/β-catenin pathway by XAV 939, which promotes degradation of β-catenin, significantly abrogated the pro-invasion effects of irradiation. Mechanistically, XAV 939 suppressed ionizing radiation-triggered up-regulation of MMP-2 and MMP-9, and inhibited the activities of these gelatinases. Our data demonstrate a pivotal role of the Wnt/β-catenin pathway in ionizing radiation-induced invasion of glioblastoma cells, and suggest that targeting β-catenin is a promising therapeutic approach to overcoming glioma radioresistance. (orig.) [de

  6. Wnt/β-catenin pathway involvement in ionizing radiation-induced invasion of U87 glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Zhen [Huazhong University of Science and Technology, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Wuhan (China); Zhou, Lin [Huazhong University of Science and Technology, Department of Histoembryology, Tongji Medical College, Wuhan (China); Han, Na; Zhang, Mengxian [Huazhong University of Science and Technology, Department of Oncology, Tongji Hospital, Tongji Medical College, Wuhan (China); Lyu, Xiaojuan [Huazhong University of Science and Technology, Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Wuhan (China)

    2015-08-15

    Radiotherapy has been reported to promote the invasion of glioblastoma cells; however, the underlying mechanisms remain unclear. Here, we investigated the role of the Wnt/β-catenin pathway in radiation-induced invasion of glioblastoma cells. U87 cells were irradiated with 3 Gy or sham irradiated in the presence or absence of the Wnt/β-catenin pathway inhibitor XAV 939. Cell invasion was determined by an xCELLigence real-time cell analyser and matrigel invasion assays. The intracellular distribution of β-catenin in U87 cells with or without irradiation was examined by immunofluorescence and Western blotting of nuclear fractions. We next investigated the effect of irradiation on Wnt/β-catenin pathway activity using TOP/FOP flash luciferase assays and quantitative polymerase chain reaction analysis of β-catenin target genes. The expression levels and activities of two target genes, matrix metalloproteinase (MMP)-2 and MMP-9, were examined further by Western blotting and zymography. U87 cell invasiveness was increased significantly by ionizing radiation. Interestingly, ionizing radiation induced nuclear translocation and accumulation of β-catenin. Moreover, we found increased β-catenin/TCF transcriptional activities, followed by up-regulation of downstream genes in the Wnt/β-catenin pathway in irradiated U87 cells. Importantly, inhibition of the Wnt/β-catenin pathway by XAV 939, which promotes degradation of β-catenin, significantly abrogated the pro-invasion effects of irradiation. Mechanistically, XAV 939 suppressed ionizing radiation-triggered up-regulation of MMP-2 and MMP-9, and inhibited the activities of these gelatinases. Our data demonstrate a pivotal role of the Wnt/β-catenin pathway in ionizing radiation-induced invasion of glioblastoma cells, and suggest that targeting β-catenin is a promising therapeutic approach to overcoming glioma radioresistance. (orig.) [German] Studien haben gezeigt, dass eine Strahlentherapie die Invasivitaet von

  7. Investigation of platinum nanoparticle properties against U87 glioblastoma multiforme

    DEFF Research Database (Denmark)

    Kutwin, Marta; Sawosz, Ewa; Jaworski, Slawomir

    2017-01-01

    a harmful influence on viability of U87 glioblastoma multiforme (GBM) cells, but also showed genotoxic properties as well as a pro-apoptotic effect on cancer cells. It was found that NP-Pt decreased the weight and volume of U87 GBM tumor tissue and caused pathomorphological changes in the ultrastructure...

  8. Epigallocatechin-3-gallate increases intracellular [Ca2+] in U87 cells mainly by influx of extracellular Ca2+ and partly by release of intracellular stores.

    Science.gov (United States)

    Kim, Hee Jung; Yum, Keun Sang; Sung, Jong-Ho; Rhie, Duck-Joo; Kim, Myung-Jun; Min, Do Sik; Hahn, Sang June; Kim, Myung-Suk; Jo, Yang-Hyeok; Yoon, Shin Hee

    2004-02-01

    Green tea has been receiving considerable attention as a possible preventive agent against cancer and cardiovascular disease. Epigallocatechin-3-gallate (EGCG) is a major polyphenol component of green tea. Using digital calcium imaging and an assay for [3H]-inositol phosphates, we determined whether EGCG increases intracellular [Ca2+] ([Ca2+]i) in non-excitable human astrocytoma U87 cells. EGCG induced concentration-dependent increases in [Ca2+]i. The EGCG-induced [Ca2+]i increases were reduced to 20.9% of control by removal of extracellular Ca2+. The increases were also inhibited markedly by treatment with the non-specific Ca2+ channel inhibitors cobalt (3 mM) for 3 min and lanthanum (1 mM) for 5 min. The increases were not significantly inhibited by treatment for 10 min with the L-type Ca2+ channel blocker nifedipine (100 nM). Treatment with the inhibitor of endoplasmic reticulum Ca2+-ATPase thapsigargin (1 micro M) also significantly inhibited the EGCG-induced [Ca2+]i increases. Treatment for 15 min with the phospholipase C (PLC) inhibitor neomycin (300 micro M) attenuated the increases significantly, while the tyrosine kinase inhibitor genistein (30 micro M) had no effect. EGCG increased [3H]-inositol phosphates formation via PLC activation. Treatment for 10 min with mefenamic acid (100 micro M) and flufenamic acid (100 micro M), derivatives of diphenylamine-2-carboxylate, blocked the EGCG-induced [Ca2+]i increase in non-treated and thapsigargin-treated cells but indomethacin (100 micro M) did not affect the increases. Collectively, these data suggest that EGCG increases [Ca2+]i in non-excitable U87 cells mainly by eliciting influx of extracellular Ca2+ and partly by mobilizing intracellular Ca2+ stores by PLC activation. The EGCG-induced [Ca2+]i influx is mediated mainly through channels sensitive to diphenylamine-2-carboxylate derivatives.

  9. MicroRNA-223 Enhances Radiation Sensitivity of U87MG Cells In Vitro and In Vivo by Targeting Ataxia Telangiectasia Mutated

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Liping; Zhu, Ji [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Zaorsky, Nicholas G. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Deng, Yun [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Wu, Xingzhong [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Liu, Yong [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Liu, Fangqi; Cai, Guoxiang; Gu, Weilie [Department of Colorectal Cancer, Fudan University, Shanghai Cancer Center, Shanghai (China); Shen, Lijun [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Zhang, Zhen, E-mail: zhenzhang6@hotmail.com [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China)

    2014-03-15

    Purpose: Ataxia telangiectasia mutated (ATM) protein is important in the DNA damage response because it repairs radiation-induced damage in cancers. We examined the effect of microRNA-223 (miR-223), a regulator of ATM expression, on radiation sensitivity of cancer cells. Methods and Materials: Human embryonic kidney 293 T (293T) cells were infected with pLL3.7-miR-223 plasmid to generate the pLL3.7-miR-223 and -empty virus (EV) lentivirus (miR-223 and EV). A dual luciferase assay in which the reporter contained wild-type 3′ untranslated region (UTR) of ATM was performed. U87MG cells were infected with miR-223 or EV to establish the overexpressed stable cell lines (U87-223 or U87-EV, respectively). Cells were irradiated in vitro, and dose enhancement ratios at 2 Gy (DER{sub 2}) were calculated. Hind legs of BALB/c athymic mice were injected with U87-223 or U87-EV cells; after 2 weeks, half of the tumors were irradiated. Tumor volumes were tracked for a total of 5 weeks. Results: The dual luciferase reporter assay showed a significant reduction in luciferase activity of 293T cells cotransfected with miR-223 and the ATM 3′UTR compared to that in EV control. Overexpression of miR-223 in U87MG cells showed that ATM expression was significantly downregulated in the U87-223 cells compared to that in U87-EV (ATM/β-actin mRNA 1.0 vs 1.5, P<.05). U87-223 cells were hypersensitive to radiation compared to U87-EV cells in vitro (DER{sub 2} = 1.32, P<.01). Mice injected with miR-223-expressing tumors had almost the same tumors after 3 weeks (1.5 cm{sup 3} vs 1.7 cm{sup 3}). However, irradiation significantly decreased tumor size in miR-223-expressing tumors compared to those in controls (0.033 cm{sup 3} vs 0.829 cm{sup 3}). Conclusions: miR-223 overexpression downregulates ATM expression and sensitizes U87 cells to radiation in vitro and in vivo. MicroRNA-223 may be a novel cancer-targeting therapy, although its cancer- and patient-specific roles are

  10. Pilocytic astrocytoma

    Directory of Open Access Journals (Sweden)

    Yu-wei CONG

    2015-03-01

    Full Text Available Background Pilocytic astrocytoma (PA is a low-grade glioma that occurs mainly in children and young adults. The histomorphology of PA located in the cerebellum (WHOⅠ is very typical. This article is to report one case of PA in the cerebellum of an 8-year-old child, and to discuss the clinical, imaging and pathological features of PA and clinicopathological differentiations from relevant tumors.  Methods and Results An 8-year-old girl presented intermittent headache for one month and the headache was aggravated for 7 d. MRI showed circular space-occupying lesion in the left cerebellar hemisphere and cerebellar vermis, and the lesion revealed uneven signals. During the surgery, the tumor was soft and jellylike, with poor blood supply. Histologically, tumor cell nuclei were round or oval; cytoplasmic projections on both ends were slender hair-like, and were arranged around the blood vessels. Part of tumor cells had spindle nuclei, and showed fascicular compact arrangement or loose reticular arrangement. The pathomorphism of this tumro was slightly different from that of typical PA. It had unusually rich blood vessels, and Rosenthal fibers and eosinophilic granules were not obvious. Tumor cells were diffusely positive for glial fibrillary acidic protein (GFAP, synaptophysin (Syn, vimentin (Vim and P53, but negative for cytokeratin (CK, neuronal nuclei (NeuN and neurofilament protein (NF. Ki-67 index was 2%-5%. Vascular endothelial cells were positive for CD34, and scatteredly expressed CD68. Pathological diagosis was pilocytic astrocytoma (WHOⅠ.  Conclusions Pilocytic astrocytoma usually happens in children and adolescents and often occurs in the cerebellum. Rosenthal fibers and eosinophilic granules are helpful to make a clear diagnosis, but they are not necessary conditions of diagnosis. Differential diagnoses should be paid attention, such as pilomyxoid astrocytoma, angiocentric glioma and dysembryoplastic neuroepithelial tumor (DNT

  11. Proliferative and Invasive Effects of Progesterone-Induced Blocking Factor in Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Araceli Gutiérrez-Rodríguez

    2017-01-01

    Full Text Available Progesterone-induced blocking factor (PIBF is a progesterone (P4 regulated protein expressed in different types of high proliferative cells including astrocytomas, the most frequent and aggressive brain tumors. It has been shown that PIBF increases the number of human astrocytoma cells. In this work, we evaluated PIBF regulation by P4 and the effects of PIBF on proliferation, migration, and invasion of U87 and U251 cells, both derived from human glioblastomas. PIBF mRNA expression was upregulated by P4 (10 nM from 12 to 24 h. Glioblastoma cells expressed two PIBF isoforms, 90 and 57 kDa. The content of the shorter isoform was increased by P4 at 24 h, while progesterone receptor antagonist RU486 (10 μM blocked this effect. PIBF (100 ng/mL increased the number of U87 cells on days 4 and 5 of treatment and induced cell proliferation on day 4. Wound-healing assays showed that PIBF increased the migration of U87 (12–48 h and U251 (24 and 48 h cells. Transwell invasion assays showed that PIBF augmented the number of invasive cells in both cell lines at 24 h. These data suggest that PIBF promotes proliferation, migration, and invasion of human glioblastoma cells.

  12. Rab23 is overexpressed in human astrocytoma and promotes cell migration and invasion through regulation of Rac1.

    Science.gov (United States)

    Wang, Minghao; Dong, Qianze; Wang, Yunjie

    2016-08-01

    Rab23 overexpression has been implicated in several human cancers. However, its biological roles and molecular mechanism in astrocytoma have not been elucidated. The aim of this study is to explore clinical significance and biological roles of Rab23 in astrocytoma. We observed negative Rab23 staining in normal astrocytes and positive staining in 39 out of 86 (45 %) astrocytoma specimens using immunohistochemistry. The positive rate of Rab23 was higher in grades III and IV (56.5 %, 26/46) than grades I + II astrocytomas (32.5 %, 13/40, p Rac1 activity. Treatment of transfected cells with a Rac1 inhibitor decreased Rac1 activity and invasion. In conclusion, Rab23 serves as an important oncoprotein in human astrocytoma by regulating cell invasion and migration through Rac1 activity.

  13. Protective Effects of Mouse Bone Marrow Mesenchymal Stem Cell Soup on Staurosporine Induced Cell Death in PC12 and U87 Cell Lines

    Directory of Open Access Journals (Sweden)

    Hossein Zhaleh

    2016-11-01

    Full Text Available Mouse bone marrow mesenchymal stem cells (mBMSCs soup is promising tool for the treatment of neurodegenerative diseases. mBMSCs soup is easily obtained and is capable of transplantation without rejection. We investigated the effects of mBMSC soup on staurosporine-induced cell death in PC12 and U87 cells lines. The percentage of cell viability, cell death, NO concentration, total neurite length (TNL and fraction of cell differentiation (f% were assessed. Viability assay showed that mBM soup (24 and 48h in time dependent were increased cell viability (p<0.05 and also cell death assay showed that cell death in time dependent were decreased, respectively (p<0.05. TNL and fraction of cell differentiation significantly were increased compared with treatment1 (p<0.05. Our data showed that mBM Soup protects cells, increases cell viability, suppresses cell death and improvement the neurite elongation. We concluded that Mouse bone marrow mesenchymal stem cell soup plays an important protective role in staurosporine-induced cell death in PC12 and U87 cell lines.

  14. [Overexpressed miRNA-134b inhibits proliferation and invasion of CD133+ U87 glioma stem cells].

    Science.gov (United States)

    Liu, Yifeng; Zhang, Baochao; Wen, Changming; Wen, Gongling; Zhou, Guoping; Zhang, Jingwei; He, Haifa; Wang, Ning; Li, Wei

    2017-05-01

    Objective To investigate the role of microRNA-134b (miR-134b) in the tumorigenesis of glioma stem cells (GSCs) and the possible molecular mechanism. Methods Real-time quantitative PCR (qRT-PCR) was used to evalate the expression of miR-134b in CD133 + and CD133 - U87 GSCs. A lentiviral vector overexpressing miR-134b in U87 GSCs was constructed, and the effect of miR-134b overexpression on matrix metalloproteinase-2 (MMP-2), MMP-9 and MMP-12 expressions at both mRNA and protein levels were detected by qRT-PCR and Western blotting, respectively. Transwell TM assay was performed to determine the effect of miR-134b overexpression on GSCs invasion ability. Tumor xenograft models in nude mice were established to evaluate the effect of miR-134b overexpression on tumorgenesis in vivo. Results The qRT-PCR showed that, compared with CD133 - cells, miR-134b was significantly down-regulated in CD133 + cells. Cell line over-expressing miR-134b was successfully established, and miR-134b was up-regulated significantly compared with empty vector control. Overexpression of miR-134b remarkably inhibited the invasion of U87 GSCs and the expression of MMP-12. However, overexpression of miR-134b did not affect MMP-2 and MMP-9 expressions. miR-134b also suppressed U87 GSCs xenograft growth in vivo. Tumor volume in tumor xenograft model group was significantly lower than that in control group, and tumor weight decreased by 42% in the former group. Conclusion Overexpression of miR-134b inhibits the growth and invasion of CD133 + GSCs.

  15. RhoE interferes with Rb inactivation and regulates the proliferation and survival of the U87 human glioblastoma cell line

    International Nuclear Information System (INIS)

    Poch, Enric; Minambres, Rebeca; Mocholi, Enric; Ivorra, Carmen; Perez-Arago, Amparo; Guerri, Consuelo; Perez-Roger, Ignacio; Guasch, Rosa M.

    2007-01-01

    Rho GTPases are important regulators of actin cytoskeleton, but they are also involved in cell proliferation, transformation and oncogenesis. One of this proteins, RhoE, inhibits cell proliferation, however the mechanism that regulates this effect remains poorly understood. Therefore, we undertook the present study to determine the role of RhoE in the regulation of cell proliferation. For this purpose we generated an adenovirus system to overexpress RhoE in U87 glioblastoma cells. Our results show that RhoE disrupts actin cytoskeleton organization and inhibits U87 glioblastoma cell proliferation. Importantly, RhoE expressing cells show a reduction in Rb phosphorylation and in cyclin D1 expression. Furthermore, RhoE inhibits ERK activation following serum stimulation of quiescent cells. Based in these findings, we propose that RhoE inhibits ERK activation, thereby decreasing cyclin D1 expression and leading to a reduction in Rb inactivation, and that this mechanism is involved in the RhoE-induced cell growth inhibition. Moreover, we also demonstrate that RhoE induces apoptosis in U87 cells and also in colon carcinoma and melanoma cells. These results indicate that RhoE plays an important role in the regulation of cell proliferation and survival, and suggest that this protein may be considered as an oncosupressor since it is capable to induce apoptosis in several tumor cell lines

  16. Exposure to 60-Hz magnetic fields and proliferation of human astrocytoma cells in vitro.

    Science.gov (United States)

    Wei, M; Guizzetti, M; Yost, M; Costa, L G

    2000-02-01

    Epidemiological studies have suggested that exposure to electric and magnetic fields (EMF) may be associated with an increased incidence of brain tumors, most notably astrocytomas. However, potential cellular or molecular mechanisms involved in these effects of EMF are not known. In this study we investigated whether exposure to 60-Hz sinusoidal magnetic fields (0.3-1.2 G for 3-72 h) would cause proliferation of human astrocytoma cells. Sixty-Hertz magnetic fields (MF) caused a time- and dose-dependent increase in proliferation of astrocytoma cells, measured by (3)H-thymidine incorporation and by flow cytometry, and strongly potentiated the effect of two agonists (the muscarinic agonist carbachol and the phorbol ester PMA). However, MF had no effect on DNA synthesis of rat cortical astrocytes, i.e., of similar, nontransformed cells. To determine the amount of heating induced by MF, temperatures were also recorded in the medium. Both 1.2 G MF and a sham exposure caused a 0.7 degrees C temperature increase in the medium; however, (3)H-thymidine incorporation induced by sham exposure was significantly less than that caused by MF. GF 109203X, a rather specific protein kinase C (PKC) inhibitor, and down-regulation of PKC inhibited the effect of MF on basal and on agonist-stimulated (3)H-thymidine incorporation. These data indicate that MF can increase the proliferation of human astrocytoma cells and strongly potentiate the effects of two agonists. These findings may provide a biological basis for the observed epidemiological associations between MF exposure and brain tumors. Copyright 2000 Academic Press.

  17. DNA methylation analysis of paediatric low-grade astrocytomas identifies a tumour-specific hypomethylation signature in pilocytic astrocytomas.

    Science.gov (United States)

    Jeyapalan, Jennie N; Doctor, Gabriel T; Jones, Tania A; Alberman, Samuel N; Tep, Alexander; Haria, Chirag M; Schwalbe, Edward C; Morley, Isabel C F; Hill, Alfred A; LeCain, Magdalena; Ottaviani, Diego; Clifford, Steven C; Qaddoumi, Ibrahim; Tatevossian, Ruth G; Ellison, David W; Sheer, Denise

    2016-05-27

    Low-grade gliomas (LGGs) account for about a third of all brain tumours in children. We conducted a detailed study of DNA methylation and gene expression to improve our understanding of the biology of pilocytic and diffuse astrocytomas. Pilocytic astrocytomas were found to have a distinctive signature at 315 CpG sites, of which 312 were hypomethylated and 3 were hypermethylated. Genomic analysis revealed that 182 of these sites are within annotated enhancers. The signature was not present in diffuse astrocytomas, or in published profiles of other brain tumours and normal brain tissue. The AP-1 transcription factor was predicted to bind within 200 bp of a subset of the 315 differentially methylated CpG sites; the AP-1 factors, FOS and FOSL1 were found to be up-regulated in pilocytic astrocytomas. We also analysed splice variants of the AP-1 target gene, CCND1, which encodes cell cycle regulator cyclin D1. CCND1a was found to be highly expressed in both pilocytic and diffuse astrocytomas, but diffuse astrocytomas have far higher expression of the oncogenic variant, CCND1b. These findings highlight novel genetic and epigenetic differences between pilocytic and diffuse astrocytoma, in addition to well-described alterations involving BRAF, MYB and FGFR1.

  18. Spontaneous anaplasia in pilocytic astrocytoma of cerebellum.

    Science.gov (United States)

    Lach, B; Al Shail, E; Patay, Z

    2003-06-01

    We report a cystic cerebellar astrocytoma with a mural nodule that contained an additional focus of astrocytoma with the histological features of anaplasia, and showed up to 48% of aneuploid and 3% S-phase cells on flow cytometry. This focus was detectable on the enhanced, as well as non-enhanced T1 and T2 images. This appears to be the first case of pilocytic astrocytoma of cerebellum with focal anaplasia detected on histological and radiological studies.

  19. Saponin 6 derived from Anemone taipaiensis induces U87 human malignant glioblastoma cell apoptosis via regulation of Fas and Bcl‑2 family proteins.

    Science.gov (United States)

    Ji, Chen-Chen; Tang, Hai-Feng; Hu, Yi-Yang; Zhang, Yun; Zheng, Min-Hua; Qin, Hong-Yan; Li, San-Zhong; Wang, Xiao-Yang; Fei, Zhou; Cheng, Guang

    2016-07-01

    Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor, and is associated with a poor prognosis. Saponin 6, derived from Anemone taipaiensis, exerts potent cytotoxic effects against the human hepatocellular carcinoma HepG2 cell line and the human promyelocytic leukemia HL‑60 cell line; however, the effects of saponin 6 on glioblastoma remain unknown. The present study aimed to evaluate the effects of saponin 6 on human U87 malignant glioblastoma (U87 MG) cells. The current study revealed that saponin 6 induced U87 MG cell death in a dose‑ and time‑dependent manner, with a half maximal inhibitory concentration (IC50) value of 2.83 µM after treatment for 48 h. However, saponin 6 was needed to be used at a lesser potency in HT‑22 cells, with an IC50 value of 6.24 µM. Cell apoptosis was assessed by flow cytometry using Annexin V‑fluorescein isothiocyanate/propidium iodide double staining. DNA fragmentation and alterations in nuclear morphology were examined by terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling and transmission electron microscopy, respectively. The present study demonstrated that treatment with saponin 6 induced cell apoptosis in U87 MG cells, and resulted in DNA fragmentation and nuclear morphological alterations typical of apoptosis. In addition, flow cytometric analysis revealed that saponin 6 was able to induce cell cycle arrest. The present study also demonstrated that saponin 6‑induced apoptosis of U87 MG cells was attributed to increases in the protein expression levels of Fas, Fas ligand, and cleaved caspase‑3, ‑8 and ‑9, and decreases in the levels of B‑cell lymphoma 2. The current study indicated that saponin 6 may exhibit selective cytotoxicity toward U87 MG cells by activating apoptosis via the extrinsic and intrinsic pathways. Therefore, saponin 6 derived from A. taipaiensis may possess therapeutic potential for the treatment of GBM.

  20. Anti-Cancer Effect of Metabotropic Glutamate Receptor 1 Inhibition in Human Glioma U87 Cells: Involvement of PI3K/Akt/mTOR Pathway

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2015-01-01

    Full Text Available Background: Metabotropic glutamate receptors (mGluRs are G-protein-coupled receptors that mediate neuronal excitability and synaptic plasticity in the central nervous system, and emerging evidence suggests a role of mGluRs in the biology of cancer. Previous studies showed that mGluR1 was a potential therapeutic target for the treatment of breast cancer and melanoma, but its role in human glioma has not been determined. Methods: In the present study, we investigated the effects of mGluR1 inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA or selective antagonists Riluzole and BAY36-7620. The anti-cancer effects of mGluR1 inhibition were measured by cell viability, lactate dehydrogenase (LDH release, TUNEL staining, cell cycle assay, cell invasion and migration assays in vitro, and also examined in a U87 xenograft model in vivo. Results: Inhibition of mGluR1 significantly decreased the cell viability but increased the LDH release in a dose-dependent fashion in U87 cells. These effects were accompanied with the induction of caspase-dependent apoptosis and G0/G1 cell cycle arrest. In addition, the results of Matrigel invasion and cell tracking assays showed that inhibition of mGluR1 apparently attenuated cell invasion and migration in U87 cells. All these anti-cancer effects were ablated by the mGluR1 agonist L-quisqualic acid. The results of western blot analysis showed that mGluR1 inhibition overtly decreased the phosphorylation of PI3K, Akt, mTOR and P70S6K, indicating the mitigated activation of PI3K/Akt/mTOR pathway. Moreover, the anti-tumor activity of mGluR1 inhibition in vivo was also demonstrated in a U87 xenograft glioma model in athymic nude mice. Conclusion: The remarkable efficiency of mGluR1 inhibition to induce cell death in U87 cells may find therapeutic application for the treatment of glioma patients.

  1. Expression of aquaporin8 in human astrocytomas: Correlation with pathologic grade

    International Nuclear Information System (INIS)

    Zhu, Shu-juan; Wang, Ke-jian; Gan, Sheng-wei; Xu, Jin; Xu, Shi-ye; Sun, Shan-quan

    2013-01-01

    Highlights: •AQP8 is mainly distributed in the cytoplasm of human astrocytoma cells. •AQP8 over-expressed in human astrocytomas, especially glioblastoma. •The up-regulation of AQP8 is related to the pathological grade of human astrocytomas. •AQP8 may contribute to the growth and proliferation of astrocytomas. -- Abstract: Aquaporin8 (AQP8), a member of the aquaporin (AQP) protein family, is weakly distributed in mammalian brains. Previous studies on AQP8 have focused mainly on the digestive and the reproductive systems. AQP8 has a pivotal role in keeping the fluid and electrolyte balance. In this study, we investigated the expression changes of AQP8 in 75 cases of human brain astrocytic tumors using immunohistochemistry, Western blotting, and reverse transcription polymerase chain reaction. The results demonstrated that AQP8 was mainly distributed in the cytoplasm of astrocytoma cells. The expression levels and immunoreactive score of AQP8 protein and mRNA increased in low-grade astrocytomas, and further increased in high-grade astrocytomas, especially in glioblastoma. Therefore, AQP8 may contribute to the proliferation of astrocytomas, and may be a biomarker and candidate therapy target for patients with astrocytomas

  2. Expression of aquaporin8 in human astrocytomas: Correlation with pathologic grade

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Shu-juan; Wang, Ke-jian; Gan, Sheng-wei; Xu, Jin; Xu, Shi-ye; Sun, Shan-quan, E-mail: sunsq2151@cqmu.edu.cn

    2013-10-11

    Highlights: •AQP8 is mainly distributed in the cytoplasm of human astrocytoma cells. •AQP8 over-expressed in human astrocytomas, especially glioblastoma. •The up-regulation of AQP8 is related to the pathological grade of human astrocytomas. •AQP8 may contribute to the growth and proliferation of astrocytomas. -- Abstract: Aquaporin8 (AQP8), a member of the aquaporin (AQP) protein family, is weakly distributed in mammalian brains. Previous studies on AQP8 have focused mainly on the digestive and the reproductive systems. AQP8 has a pivotal role in keeping the fluid and electrolyte balance. In this study, we investigated the expression changes of AQP8 in 75 cases of human brain astrocytic tumors using immunohistochemistry, Western blotting, and reverse transcription polymerase chain reaction. The results demonstrated that AQP8 was mainly distributed in the cytoplasm of astrocytoma cells. The expression levels and immunoreactive score of AQP8 protein and mRNA increased in low-grade astrocytomas, and further increased in high-grade astrocytomas, especially in glioblastoma. Therefore, AQP8 may contribute to the proliferation of astrocytomas, and may be a biomarker and candidate therapy target for patients with astrocytomas.

  3. Sublethal dose of irradiation enhances invasion of malignant glioma cells through p53-MMP 2 pathway in U87MG mouse brain tumor model

    International Nuclear Information System (INIS)

    Pei, Jian; Park, In-Ho; Ryu, Hyang-Hwa; Li, Song-Yuan; Li, Chun-Hao; Lim, Sa-Hoe; Wen, Min; Jang, Woo-Youl; Jung, Shin

    2015-01-01

    Glioblastoma is a highly lethal neoplasm that frequently recurs locally after radiotherapy, and most of these recurrences originate from near the irradiated target field. In the present study, we identified the effects of radiation on glioma invasion and p53, TIMP-2, and MMP-2 expression through in vitro and in vivo experiments. The U87MG (wt p53) and U251 (mt p53) human malignant glioma cell lines were prepared, and the U2OS (wt 53) and Saos2 (del p53) osteosarcoma cell lines were used as p53 positive and negative controls. The four cell lines and p53 knock-downed U87MG cells received radiation (2–6 Gy) and were analyzed for expression of p53 and TIMP-2 by Western blot, and MMP-2 activity was detected by zymography. In addition, the effects of irradiation on directional invasion of malignant glioma were evaluated by implanting nude mice with bioluminescent u87-Fluc in vivo followed by MMP-2, p53, and TIMP-2 immunohisto-chemistry and in situ zymography. MMP-2 activity and p53 expression increased in proportional to the radiation dose in cell lines with wt p53, but not in the cell lines with del or mt p53. TIMP-2 expression did not increase in U87MG cells. MMP-2 activity decreased in p53 knock-downed U87MG cells but increased in the control group. Furthermore, radiation enhanced MMP-2 activity and increased tumor margin invasiveness in vivo. Tumor cells invaded by radiation overexpressed MMP-2 and p53 and revealed high gelatinolytic activity compared with those of non-radiated tumor cells. Radiation-induced upregulation of p53 modulated MMP-2 activity, and the imbalance between MMP-2 and TIMP-2 may have an important role in glioblastoma invasion by degrading the extracellular matrix. Bioluminescent “U87-Fluc”was useful for observing tumor formation without sacrifice after implanting tumor cells in the mouse brain. These findings suggest that the radiotherapy involved field for malignant glioma needs to be reconsidered, and that future trials should investigate

  4. Kaurene diterpene induces apoptosis in U87 human malignant glioblastoma cells by suppression of anti-apoptotic signals and activation of cysteine proteases

    Energy Technology Data Exchange (ETDEWEB)

    Lizarte, F.S. Neto; Tirapelli, D.P.C. [Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Ambrosio, S.R. [Universidade de Franca, Núcleo de Pesquisa em Ciências e Tecnologia, Franca, SP (Brazil); Tirapelli, C.R. [Universidade de São Paulo, Laboratório de Farmacologia, Departamento de Enfermagem Psiquiátrica e Ciências Humanas, Escola de Enfermagem de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Oliveira, F.M. [Universidade de São Paulo, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Novais, P.C. [Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Peria, F.M.; Oliveira, H.F. [Universidade de São Paulo, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Carlotti, C.G. Junior; Tirapelli, L.F. [Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil)

    2013-01-11

    Gliomas are the most common and malignant primary brain tumors in humans. Studies have shown that classes of kaurene diterpene have anti-tumor activity related to their ability to induce apoptosis. We investigated the response of the human glioblastoma cell line U87 to treatment with ent-kaur-16-en-19-oic acid (kaurenoic acid, KA). We analyzed cell survival and the induction of apoptosis using flow cytometry and annexin V staining. Additionally, the expression of anti-apoptotic (c-FLIP and miR-21) and apoptotic (Fas, caspase-3 and caspase-8) genes was analyzed by relative quantification (real-time PCR) of mRNA levels in U87 cells that were either untreated or treated with KA (30, 50, or 70 µM) for 24, 48, and 72 h. U87 cells treated with KA demonstrated reduced viability, and an increase in annexin V- and annexin V/PI-positive cells was observed. The percentage of apoptotic cells was 9% for control cells, 26% for cells submitted to 48 h of treatment with 50 µM KA, and 31% for cells submitted to 48 h of treatment with 70 µM KA. Similarly, in U87 cells treated with KA for 48 h, we observed an increase in the expression of apoptotic genes (caspase-8, -3) and a decrease in the expression of anti-apoptotic genes (miR-21 and c-FLIP). KA possesses several interesting properties and induces apoptosis through a unique mechanism. Further experiments will be necessary to determine if KA may be used as a lead compound for the development of new chemotherapeutic drugs for the treatment of primary brain tumors.

  5. Kaurene diterpene induces apoptosis in U87 human malignant glioblastoma cells by suppression of anti-apoptotic signals and activation of cysteine proteases

    International Nuclear Information System (INIS)

    Lizarte, F.S. Neto; Tirapelli, D.P.C.; Ambrosio, S.R.; Tirapelli, C.R.; Oliveira, F.M.; Novais, P.C.; Peria, F.M.; Oliveira, H.F.; Carlotti, C.G. Junior; Tirapelli, L.F.

    2013-01-01

    Gliomas are the most common and malignant primary brain tumors in humans. Studies have shown that classes of kaurene diterpene have anti-tumor activity related to their ability to induce apoptosis. We investigated the response of the human glioblastoma cell line U87 to treatment with ent-kaur-16-en-19-oic acid (kaurenoic acid, KA). We analyzed cell survival and the induction of apoptosis using flow cytometry and annexin V staining. Additionally, the expression of anti-apoptotic (c-FLIP and miR-21) and apoptotic (Fas, caspase-3 and caspase-8) genes was analyzed by relative quantification (real-time PCR) of mRNA levels in U87 cells that were either untreated or treated with KA (30, 50, or 70 µM) for 24, 48, and 72 h. U87 cells treated with KA demonstrated reduced viability, and an increase in annexin V- and annexin V/PI-positive cells was observed. The percentage of apoptotic cells was 9% for control cells, 26% for cells submitted to 48 h of treatment with 50 µM KA, and 31% for cells submitted to 48 h of treatment with 70 µM KA. Similarly, in U87 cells treated with KA for 48 h, we observed an increase in the expression of apoptotic genes (caspase-8, -3) and a decrease in the expression of anti-apoptotic genes (miR-21 and c-FLIP). KA possesses several interesting properties and induces apoptosis through a unique mechanism. Further experiments will be necessary to determine if KA may be used as a lead compound for the development of new chemotherapeutic drugs for the treatment of primary brain tumors

  6. Effects of diphenylhydantoin on murine astrocytoma radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Lordo, C.D.; Stroude, E.C.; Del Maestro, R.F.

    1987-01-01

    Diphenylhydantoin is a well known anticonvulsant used primarily in the treatment of epilepsy. The prophylactic use of diphenylhydantoin has been suggested for certain cerebral metastases, and it is routinely administered to prevent seizures induced by intracranial neoplasms and/or surgery. Patients with malignant gliomas treated with diphenylhydantoin frequently receive radiation therapy. The effects of a clinical concentration of diphenylhydantoin in combination with gamma radiation was investigated using the C6 astrocytoma cell line in both monolayer and three dimensional multicellular spheroid cultures. Diphenylhydantoin at 7.2 X 10(-5) M (20 micrograms/ml) significantly increased the doubling time (23%) of the C6 astrocytoma cells in monolayer, but did not affect their survival as measured by plating efficiency. No changes were seen in spheroid growth or plating efficiency of the cells dissociated from spheroids at this concentration. Diphenylhydantoin at the clinical concentration tested was not associated with an alteration in radiation sensitivity of C6 astrocytoma cells in monolayer or three dimensional multicellular spheroid cultures.

  7. Nitroproteins in Human Astrocytomas Discovered by Gel Electrophoresis and Tandem Mass Spectrometry

    Science.gov (United States)

    Peng, Fang; Li, Jianglin; Guo, Tianyao; Yang, Haiyan; Li, Maoyu; Sang, Shushan; Li, Xuejun; Desiderio, Dominic M.; Zhan, Xianquan

    2015-12-01

    Protein tyrosine nitration is involved in the pathogenesis of highly fatal astrocytomas, a type of brain cancer. To understand the molecular mechanisms of astrocytomas and to discover new biomarkers/therapeutic targets, we sought to identify nitroproteins in human astrocytoma tissue. Anti-nitrotyrosine immunoreaction-positive proteins from a high-grade astrocytoma tissue were detected with two-dimensional gel electrophoresis (2DGE)-based nitrotyrosine immunoblots, and identified with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fifty-seven nitrotyrosine immunopositive protein spots were detected. A total of 870 proteins (nitrated and non-nitrated) in nitrotyrosine-immunopositive 2D gel spots were identified, and 18 nitroproteins and their 20 nitrotyrosine sites were identified with MS/MS analysis. These nitroproteins participate in multiple processes, including drug-resistance, signal transduction, cytoskeleton, transcription and translation, cell proliferation and apoptosis, immune response, phenotypic dedifferentiation, cell migration, and metastasis. Among those nitroproteins that might play a role in astrocytomas was nitro-sorcin, which is involved in drug resistance and metastasis and might play a role in the spread and treatment of an astrocytoma. Semiquantitative immune-based measurements of different sorcin expressions were found among different grades of astrocytomas relative to controls, and a semiquantitative increased nitration level in high-grade astrocytoma relative to control. Nitro-β-tubulin functions in cytoskeleton and cell migration. Semiquantitative immunoreactivity of β-tubulin showed increased expression among different grades of astrocytomas relative to controls and semiquantitatively increased nitration level in high-grade astrocytoma relative to control. Each nitroprotein was rationalized and related to the corresponding functional system to provide new insights into tyrosine nitration and its potential role in the

  8. Polish natural bee honeys are anti-proliferative and anti-metastatic agents in human glioblastoma multiforme U87MG cell line.

    Directory of Open Access Journals (Sweden)

    Justyna Moskwa

    Full Text Available Honey has been used as food and a traditional medicament since ancient times. However, recently many scientists have been concentrating on the anti-oxidant, anti-proliferative, anti-inflammatory and other properties of honey. In this study, we investigated for the first time an anticancer effect of different honeys from Poland on tumor cell line - glioblastoma multiforme U87MG. Anti-proliferative activity of honeys and its interferences with temozolomide were determined by a cytotoxicity test and DNA binding by [H3]-thymidine incorporation. A gelatin zymography was used to conduct an evaluation of metalloproteinases (MMP-2 and MMP-9 expression in U87MG treatment with honey samples. The honeys were previously tested qualitatively (diastase activity, total phenolic content, lead and cadmium content. The data demonstrated that the examined honeys have a potent anti-proliferative effect on U87MG cell line in a time- and dose-dependent manner, being effective at concentrations as low as 0.5% (multifloral light honey - viability 53% after 72 h of incubation. We observed that after 48 h, combining honey with temozolomide showed a significantly higher inhibitory effect than the samples of honey alone. We observed a strong inhibition of MMP-2 and MMP-9 for the tested honeys (from 20 to 56% and from 5 to 58% compared to control, respectively. Our results suggest that Polish honeys have an anti-proliferative and anti-metastatic effect on U87MG cell line. Therefore, natural bee honey can be considered as a promising adjuvant treatment for brain tumors.

  9. Dipeptidyl peptidase IV in two human glioma cell lines

    Directory of Open Access Journals (Sweden)

    A Sedo

    2009-12-01

    Full Text Available There is growing evidence that dipeptidyl peptidase IV [DPP-IV, EC 3.4.14.5] takes part in the metabolism of biologically active peptides participating in the regulation of growth and transformation of glial cells. However, the knowledge on the DPP-IV expression in human glial and glioma cells is still very limited. In this study, using histochemical and biochemical techniques, the DPP-IV activity was demonstrated in two commercially available human glioma cell lines of different transformation degree, as represented by U373 astrocytoma (Grade III and U87 glioblastoma multiforme (Grade IV lines. Higher total activity of the enzyme, as well as its preferential localisation in the plasma membrane, was observed in U87 cells. Compared to U373 population, U87 cells were morphologically more pleiomorphic, they were cycling at lower rate and expressing less Glial Fibrillary Acidic Protein. The data revealed positive correlation between the degree of transformation of cells and activity of DPP-IV. Great difference in expression of this enzyme, together with the phenotypic differences of cells, makes these lines a suitable standard model for further 57 studies of function of this enzyme in human glioma cells.

  10. Silibinin induces apoptosis via calpain-dependent AIF nuclear translocation in U87MG human glioma cell death

    Directory of Open Access Journals (Sweden)

    Kim Yong K

    2011-04-01

    Full Text Available Abstract Background Silibinin, a natural polyphenolic flavonoid, has been reported to induce cell death in various cancer cell types. However, the molecular mechanism is not clearly defined. Our previous study showed that silibinin induces glioma cell death and its effect was effectively prevented by calpain inhibitor. The present study was therefore undertaken to examine the role of calpain in the silibinin-induced glioma cell death. Methods U87MG cells were grown on well tissue culture plates and cell viability was measured by MTT assay. ROS generation and △ψm were estimated using the fluorescence dyes. PKC activation and Bax expression were measured by Western blot analysis. AIF nuclear translocation was determined by Western blot and immunocytochemistry. Results Silibinin induced activation of calpain, which was blocked by EGTA and the calpain inhibitor Z-Leu-Leu-CHO. Silibinin caused ROS generation and its effect was inhibited by calpain inhibitor, the general PKC inhibitor GF 109203X, the specific PKCδ inhibitor rottlerin, and catalase. Silibinin-induce cell death was blocked by calpain inhibitor and PKC inhibitors. Silibinin-induced PKCδ activation and disruption of △ψm were prevented by the calpain inhibitor. Silibinin induced AIF nuclear translocation and its effect was prevented by calpain inhibitor. Transfection of vector expressing microRNA of AIF prevented the silibinin-induced cell death. Conclusions Silibinin induces apoptotic cell death through a calpain-dependent mechanism involving PKC, ROS, and AIF nuclear translocation in U87MG human glioma cells.

  11. Hypoxic regulation of the expression of genes encoded estrogen related proteins in U87 glioma cells: eff ect of IRE1 inhibition.

    Science.gov (United States)

    Minchenko, D O; Riabovol, O O; Ratushna, O O; Minchenko, O H

    2017-01-01

    The aim of the present study was to examine the effect of inhibition of endoplasmic reticulum stress signaling, mediated by IRE1 (inositol requiring enzyme 1), which is a central mediator of the unfolded protein response on the expression of genes encoded estrogen related proteins (NRIP1/RIP140, TRIM16/EBBP, ESRRA/NR3B1, FAM162A/E2IG5, PGRMC2/PMBP, and SLC39A6/LIV-1) and their hypoxic regulation in U87 glioma cells for evaluation of their possible significance in the control of glioma cells proliferation. The expression of NRIP1, EBBP, ESRRA, E2IG5, PGRMC2, and SLC39A6 genes in U87 glioma cells, transfected by empty vector pcDNA3.1 (control) and cells without IRE1 signaling enzyme function (transfected by dnIRE1) upon hypoxia, was studied by a quantitative polymerase chain reaction. Inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 signaling enzyme function up-regulates the expression of EBBP, E2IG5, PGRMC2, and SLC39A6 genes is in U87 glioma cells in comparison with the control glioma cells, with more significant changes for E2IG5 and PGRMC2 genes. At the same time, the expression of NRIP1 and ESRRA genes is strongly down-regulated in glioma cells upon inhibition of IRE1. We also showed that hypoxia increases the expression of E2IG5, PGRMC2, and EBBP genes and decreases NRIP1 and ESRRA genes expression in control glioma cells. Furthermore, the inhibition of IRE1 in U87 glioma cells decreases the eff ect of hypoxia on the expression of E2IG5 and PGRMC2 genes, eliminates hypoxic regulation of NRIP1 gene, and enhances the sensitivity of ESRRA gene to hypoxic condition. Furthermore, the expression of SLC39A6 gene is resistant to hypoxia in both the glioma cells with and without IRE1 signaling enzyme function. Results of this investigation demonstrate that inhibition of IRE1 signaling enzyme function affects the expression of NRIP1, EBBP, ESRRA, E2IG5, PGRMC2, and SLC39A6 genes in U87 glioma cells in gene specific manner and these changes

  12. Generation of HIV-1 primary isolates representative of plasma variants using the U87.CD4 cell line

    NARCIS (Netherlands)

    Heeregrave, Edwin J.; Ampofo, William K.; Tetteh, John K. A.; Ofori, Michael; Ofori, Sampson B.; Shah, Akram S.; Pollakis, Georgios; Paxton, William A.

    2010-01-01

    In order to obtain HIV-1 primary isolates in settings with limited access to donor PBMCs, a culture method was developed where patient PBMCs infected with HIV-1 were cultured together with U87.CD4 cells. Using this non-laborious method, it is possible to harvest virus solely on the basis of syncytia

  13. The molecular biology of WHO grade I astrocytomas.

    Science.gov (United States)

    Marko, Nicholas F; Weil, Robert J

    2012-12-01

    World Health Organization (WHO) grade I astrocytomas include pilocytic astrocytoma (PA) and subependymal giant cell astrocytoma (SEGA). As technologies in pharmacologic neo-adjuvant therapy continue to progress and as molecular characteristics are progressively recognized as potential markers of both clinically significant tumor subtypes and response to therapy, interest in the biology of these tumors has surged. An updated review of the current knowledge of the molecular biology of these tumors is needed. We conducted a Medline search to identify published literature discussing the molecular biology of grade I astrocytomas. We then summarized this literature and discuss it in a logical framework through which the complex biology of these tumors can be clearly understood. A comprehensive review of the molecular biology of WHO grade I astrocytomas is presented. The past several years have seen rapid progress in the level of understanding of PA in particular, but the molecular literature regarding both PA and SEGA remains nebulous, ambiguous, and occasionally contradictory. In this review we provide a comprehensive discussion of the current understanding of the chromosomal, genomic, and epigenomic features of both PA and SEGA and provide a logical framework in which these data can be more readily understood.

  14. G Protein-Coupled Receptor 87 (GPR87 Promotes Cell Proliferation in Human Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xia Zhang

    2015-10-01

    Full Text Available G protein-coupled receptor 87 (GPR87 is a newly deorphanized member of the cell surface molecule G protein-coupled receptor family. GPR signaling was shown to play a role in promotion of cell growth and survival, metastasis, and drug resistance. The overexpression of GPR87 has also been reported in many malignant tumors including bladder cancer. The aim of the present study is to examine the effect of silencing GPR87 expression with a replication-deficient recombinant adenoviral vector expressing short hairpin RNA targeting GPR87 (Ad-shGPR87 and to explore the underlying molecular mechanisms in bladder cancer cells. Six GPR87-expressing human bladder cancer cells, HT1197, HT1376, J82, RT112, TCCSUP and UMUC3, were used. Infection with Ad-shGPR87 effectively downregulated the GPR87 expression, and significantly reduced the percentage of viable cells in 4 of 6 cell lines as detected by an MTT assay. Significant inhibition on cell proliferation with Ad-shGPR87 was observed in the wild-type p53 bladder cancer cell lines (HT1197, RT112, TCCSUP and UMUC3, but not in the mutant p53 cells (HT1376 and J82. As represented by a wild-type p53 RT112 cell, Ad-shGPR87 infection significantly enhanced p53 and p21 expression and caused caspase-dependent apoptosis. Furthermore, the treatment with Ad-shGPR87 exerted a significant antitumor effect against the GPR87-expressing RT112 xenografts. GPR87 appeared to be a promising target for gene therapy, and Ad-shGPR87 had strong antitumor effects, specifically anti-proliferative and pro-apoptotic effects, against GPR87-expressing human bladder cancer cells.

  15. Prognostic parameters in benign astrocytomas

    DEFF Research Database (Denmark)

    Westergaard, L; Gjerris, F; Klinken, L

    1993-01-01

    astrocytomas treated in the period 1956 to 1991. The pilocytic type of astrocytoma was found to have an outstandingly good prognosis and should be regarded as a distinct nosological entity. For the non-pilocytic supratentorial astrocytomas, a multivariate regression analysis showed that age, tumour site...

  16. miR-106a-5p inhibits the proliferation and migration of astrocytoma cells and promotes apoptosis by targeting FASTK.

    Directory of Open Access Journals (Sweden)

    Feng Zhi

    Full Text Available Astrocytomas are common malignant intracranial tumors that comprise the majority of adult primary central nervous system tumors. MicroRNAs (miRNAs are small, non-coding RNAs (20-24 nucleotides that post-transcriptionally modulate gene expression by negatively regulating the stability or translational efficiency of their target mRNAs. In our previous studies, we found that the downregulation of miR-106a-5p in astrocytomas is associated with poor prognosis. However, its specific gene target(s and underlying functional mechanism(s in astrocytomas remain unclear. In this study, we used mRNA microarray experiments to measure global mRNA expression in the presence of increased or decreased miR-106a-5p levels. We then performed bioinformatics analysis based on multiple target prediction algorithms to obtain candidate target genes that were further validated by computational predictions, western blot analysis, quantitative real-time PCR, and the luciferase reporter assay. Fas-activated serine/threonine kinase (FASTK was identified as a direct target of miR-106a-5p. In human astrocytomas, miR-106a-5p is downregulated and negatively associated with clinical staging, whereas FASTK is upregulated and positively associated with advanced clinical stages, at both the protein and mRNA levels. Furthermore, Kaplan-Meier analysis revealed that the reduced expression of miR-106a-5p or the increased expression of FASTK is significantly associated with poor survival outcome. These results further supported the finding that FASTK is a direct target gene of miR-106a-5p. Next, we explored the function of miR-106a-5p and FASTK during astrocytoma progression. Through gain-of-function and loss-of-function studies, we demonstrated that miR-106a-5p can significantly inhibit cell proliferation and migration and can promote cell apoptosis in vitro. The knockdown of FASTK induced similar effects on astrocytoma cells as those induced by the overexpression of miR-106a-5p. These

  17. Integrated analysis of mismatch repair system in malignant astrocytomas.

    Directory of Open Access Journals (Sweden)

    Irene Rodríguez-Hernández

    Full Text Available Malignant astrocytomas are the most aggressive primary brain tumors with a poor prognosis despite optimal treatment. Dysfunction of mismatch repair (MMR system accelerates the accumulation of mutations throughout the genome causing uncontrolled cell growth. The aim of this study was to characterize the MMR system defects that could be involved in malignant astrocytoma pathogenesis. We analyzed protein expression and promoter methylation of MLH1, MSH2 and MSH6 as well as microsatellite instability (MSI and MMR gene mutations in a set of 96 low- and high-grade astrocytomas. Forty-one astrocytomas failed to express at least one MMR protein. Loss of MSH2 expression was more frequent in low-grade astrocytomas. Loss of MLH1 expression was associated with MLH1 promoter hypermethylation and MLH1-93G>A promoter polymorphism. However, MSI was not related with MMR protein expression and only 5% of tumors were MSI-High. Furthermore, the incidence of tumors carrying germline mutations in MMR genes was low and only one glioblastoma was associated with Lynch syndrome. Interestingly, survival analysis identified that tumors lacking MSH6 expression presented longer overall survival in high-grade astrocytoma patients treated only with radiotherapy while MSH6 expression did not modify the prognosis of those patients treated with both radiotherapy and chemotherapy. Our findings suggest that MMR system alterations are a frequent event in malignant astrocytomas and might help to define a subgroup of patients with different outcome.

  18. CD133 positive U87 glioma stem cell radiosensitivity and DNA double-strand break repair

    International Nuclear Information System (INIS)

    Li Ping; Zong Tianzhou; Ji Xiaoqin; Lu Xueguan

    2013-01-01

    Objective: To explore the radiosensitivity and DNA double-strand break repair of CD133 + U87 glioma stem cell. Methods: CD133 + and CD133 - cells were isolated from glioma U87 cell lines by flow cytometry sorter system. After irradiated vertically by 4 Gy X-rays, the radiosensitivity of cells was determined by clonogenic assay. The radiation-induced DNA double-strand break repair of CD133 + and CD133 - cells was determined by the neutral comet assay,and the expression of phosphorylated histone H2AX (γ-H2AX) and Rad51 foci were measured by immunofluorescence. Results: The clone forming rate of CD133 + cells was higher than CD133 - cells (t=3.66, P<0.01) with no radiation. The clone forming rate of CD133 + cells irradiated by 4 Gy X-rays has no significant changes compared to that of the non-irradiation cells (t=0.71, P>0.05), but for CD133 - cells, it decreased compared to non-irradiation cells (t=2.91, P<0.05). The tailmoment between CD133 + cells and CD133 - cells had no difference at 0.5 h after irradiation (t=1.44, P>0.05); the tailmoment of CD133 + cells was lower than CD133 - cells at 6 and 24 h after irradiation,respectively (t=5.31 and 8.09, P<0.01). There was no significant difference in the expression of γ-H2AX foci between CD133 + and CD133 - cells at 0.5 and 6 h after irradiation (t=0.12 and 0.99, P>0.05), γ-H2AX foci of CD133 + cells was significantly decreased compared to CD133 - cells at 24 h after irradiation (t=4.99, P<0.01). For Rad 51 foci, there was no difference between CD133 + and CD133 - cells at 0.5 h after irradiation (t=1.12, P>0.05). The expression of Rad 51 foci of CD133 - cells was decreased compared to that of CD133 + cells at 6 and 24 h after irradiation,respectively (t=22.88 and 12.43, P<0.01). And the expression of Rad51 foci of CD133 + cells had no significant changes at 6-24 h after irradiation. Conclusions: Glioma stem cells is more radioresistive than glioma non-stem cells. The probable mechanism is that the DNA double

  19. Prevention against diffuse spinal cord astrocytoma: can the Notch pathway be a novel treatment target?

    Directory of Open Access Journals (Sweden)

    Jian-jun Sun

    2015-01-01

    Full Text Available This study was designed to investigate whether the Notch pathway is involved in the development of diffuse spinal cord astrocytomas. BALB/c nude mice received injections of CD133 + and CD133− cell suspensions prepared using human recurrent diffuse spinal cord astrocytoma tissue through administration into the right parietal lobe. After 7-11 weeks, magnetic resonance imaging was performed weekly. Xenografts were observed on the surfaces of the brains of mice receiving the CD133 + cell suspension, and Notch-immunopositive expression was observed in the xenografts. By contrast, no xenografts appeared in the identical position on the surfaces of the brains of mice receiving the CD133− cell suspension, and Notch-immunopositive expression was hardly detected either. Hematoxylin-eosin staining and immunohistochemical staining revealed xenografts on the convex surfaces of the brains of mice that underwent CD133 + astrocytoma transplantation. Some sporadic astroglioma cells showed pseudopodium-like structures, which extended into the cerebral white matter. However, it should be emphasized that the subcortex xenograft with Notch-immunopositive expression was found in the fourth mouse received injection of CD133− astrocytoma cells. However, these findings suggest that the Notch pathway plays an important role in the formation of astrocytomas, and can be considered a novel treatment target for diffuse spinal cord astrocytoma.

  20. High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor

    International Nuclear Information System (INIS)

    Auf, Gregor; Vajkoczy, Peter; Seno, Masaharu; Bikfalvi, Andreas; Minchenko, Dmitri; Minchenko, Oleksandr; Moenner, Michel; Jabouille, Arnaud; Delugin, Maylis; Guérit, Sylvaine; Pineau, Raphael; North, Sophie; Platonova, Natalia; Maitre, Marlène; Favereaux, Alexandre

    2013-01-01

    Epidermal growth factor (EGF) receptors contribute to the development of malignant glioma. Here we considered the possible implication of the EGFR ligand epiregulin (EREG) in glioma development in relation to the activity of the unfolded protein response (UPR) sensor IRE1α. We also examined EREG status in several glioblastoma cell lines and in malignant glioma. Expression and biological properties of EREG were analyzed in human glioma cells in vitro and in human tumor xenografts with regard to the presence of ErbB proteins and to the blockade of IRE1α. Inactivation of IRE1α was achieved by using either the dominant-negative strategy or siRNA-mediated knockdown. EREG was secreted in high amounts by U87 cells, which also expressed its cognate EGF receptor (ErbB1). A stimulatory autocrine loop mediated by EREG was evidenced by the decrease in cell proliferation using specific blocking antibodies directed against either ErbB1 (cetuximab) or EREG itself. In comparison, anti-ErbB2 antibodies (trastuzumab) had no significant effect. Inhibition of IRE1α dramatically reduced EREG expression both in cell culture and in human xenograft tumor models. The high-expression rate of EREG in U87 cells was therefore linked to IRE1α, although being modestly affected by chemical inducers of the endoplasmic reticulum stress. In addition, IRE1-mediated production of EREG did not depend on IRE1 RNase domain, as neither the selective dominant-negative invalidation of the RNase activity (IRE1 kinase active) nor the siRNA-mediated knockdown of XBP1 had significant effect on EREG expression. Finally, chemical inhibition of c-Jun N-terminal kinases (JNK) using the SP600125 compound reduced the ability of cells to express EREG, demonstrating a link between the growth factor production and JNK activation under the dependence of IRE1α. EREG may contribute to glioma progression under the control of IRE1α, as exemplified here by the autocrine proliferation loop mediated in U87 cells by the

  1. Retinal astrocytoma in a dog.

    Science.gov (United States)

    Kuroki, Keiichi; Kice, Nathan; Ota-Kuroki, Juri

    2017-09-01

    A miniature schnauzer dog presenting with hyphema and glaucoma of the right eye had a retinal neoplasm. Neoplastic cells stained positively for glial fibrillary acidic protein, vimentin, and S-100 and largely negatively for oligodendrocyte transcription factor 2 by immunohistochemistry. The clinical and histopathological features of canine retinal astrocytomas are discussed.

  2. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea [Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz (Austria); DeVaney, Trevor [Institute of Biophysics, Medical University of Graz (Austria); Zimmer, Andreas [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens University, Graz (Austria); Raynham, Tony; Ireson, Christopher [Cancer Research Technology Ltd, London (United Kingdom); Sattler, Wolfgang, E-mail: wolfgang.sattler@medunigraz.at [Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz (Austria)

    2013-08-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun{sup S73} phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK

  3. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro

    International Nuclear Information System (INIS)

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea; DeVaney, Trevor; Zimmer, Andreas; Raynham, Tony; Ireson, Christopher; Sattler, Wolfgang

    2013-01-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun S73 phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK

  4. Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation.

    Science.gov (United States)

    Bailon-Moscoso, Natalia; González-Arévalo, Gabriela; Velásquez-Rojas, Gabriela; Malagon, Omar; Vidari, Giovanni; Zentella-Dehesa, Alejandro; Ratovitski, Edward A; Ostrosky-Wegman, Patricia

    2015-01-01

    Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites) may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL), a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment.

  5. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    Directory of Open Access Journals (Sweden)

    Maraziotis Theodore

    2007-10-01

    Full Text Available Abstract Background Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC and p75NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75NTR, and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Methods Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75NTR and phosphorylated forms of JNK (pJNK and c-Jun (pc-Jun were used. The labeling index (LI, defined as the percentage of positive (labeled cells out of the total number of tumor cells counted, was determined. Results Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75NTR receptor expression was found in a small percentage of tumor cells (~1% in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK and c-Jun (pc-Jun were

  6. Apoptosis and telomeres shortening related to HIV-1 induced oxidative stress in an astrocytoma cell line

    Directory of Open Access Journals (Sweden)

    Mollace Vincenzo

    2009-05-01

    Full Text Available Abstract Background Oxidative stress plays a key role in the neuropathogenesis of Human Immunodeficiency Virus-1 (HIV-1 infection causing apoptosis of astroglia cells and neurons. Recent data have shown that oxidative stress is also responsible for the acceleration of human fibroblast telomere shortening in vitro. In the present study we analyzed the potential relations occurring between free radicals formation and telomere length during HIV-1 mediated astroglial death. Results To this end, U373 human astrocytoma cells have been directly exposed to X4-using HIV-1IIIB strain, for 1, 3 or 5 days and treated (where requested with N-acetylcysteine (NAC, a cysteine donor involved in the synthesis of glutathione (GSH, a cellular antioxidant and apoptosis has been evaluated by FACS analysis. Quantitative-FISH (Q-FISH has been employed for studying the telomere length while intracellular reduced/oxidized glutathione (GSH/GSSG ratio has been determined by High-Performance Liquid Chromatography (HPLC. Incubation of U373 with HIV-1IIIB led to significant induction of cellular apoptosis that was reduced in the presence of 1 mM NAC. Moreover, NAC improved the GSH/GSSG, a sensitive indicator of oxidative stress, that significantly decreased after HIV-1IIIB exposure in U373. Analysis of telomere length in HIV-1 exposed U373 showed a statistically significant telomere shortening, that was completely reverted in NAC-treated U373. Conclusion Our results support the role of HIV-1-mediated oxidative stress in astrocytic death and the importance of antioxidant compounds in preventing these cellular damages. Moreover, these data indicate that the telomere structure, target for oxidative damage, could be the key sensor of cell apoptosis induced by oxidative stress after HIV infection.

  7. Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation.

    Directory of Open Access Journals (Sweden)

    Natalia Bailon-Moscoso

    Full Text Available Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL, a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment.

  8. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    International Nuclear Information System (INIS)

    Assimakopoulou, Martha; Kondyli, Maria; Gatzounis, George; Maraziotis, Theodore; Varakis, John

    2007-01-01

    Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC) and p75 NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75 NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75 NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75 NTR , and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV) were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75 NTR and phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were used. The labeling index (LI), defined as the percentage of positive (labeled) cells out of the total number of tumor cells counted, was determined. Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75 NTR receptor expression was found in a small percentage of tumor cells (~1%) in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were significantly co-expressed in a tumor

  9. Childhood Astrocytoma Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Childhood astrocytomas can be benign (not cancer) or malignant (cancer). Learn more about the types of astrocytoma, signs and symptoms, diagnosis, prognosis, and treatment of astrocytomas that are newly diagnosed or have come back after treatment in this expert-reviewed summary.

  10. Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Tahmasebi Mirgani M

    2014-01-01

    Full Text Available Maryam Tahmasebi Mirgani,1 Benedetta Isacchi,2 Majid Sadeghizadeh,1,* Fabio Marra,3 Anna Rita Bilia,2,* Seyed Javad Mowla,1 Farhood Najafi,4 Esmael Babaei51Department of Genetics, Tarbiat Modares University, Tehran, Iran; 2Department of Chemistry, University of Florence, Sesto Fiorentino, Italy; 3Department of Experimental and Clinical Medicine, University of Florence, Italy; 4Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran; 5Department of Biology, University of Tabriz, Tabriz, Iran*These authors contributed equally to this workAbstract: Glioblastoma is an invasive tumor of the central nervous system. Tumor recurrence resulting from ineffective current treatments, mainly due to the blood–brain barrier, highlights the need for innovative therapeutic alternatives. The recent availability of nanotechnology represents a novel targeted strategy in cancer therapy. Natural products have received considerable attention for cancer therapy because of general lower side effects. Curcumin is a new candidate for anticancer treatment, but its low bioavailability and water solubility represent the main disadvantages of its use. Here, curcumin was efficiently encapsulated in a nontoxic nanocarrier, termed dendrosome, to overcome these problems. Dendrosomal curcumin was prepared as 142 nm spherical structures with constant physical and chemical stability. The inhibitory role of dendrosomal curcumin on the proliferation of U87MG cells, a cellular model of glioblastoma, was evaluated by considering master genes of pluripotency and regulatory miRNA (microribonucleic acid. Methylthiazol tetrazolium assay and flow cytometry were used to detect the antiproliferative effects of dendrosomal curcumin. Annexin-V-FLUOS and caspase assay were used to quantify apoptosis. Real-time polymerase chain reaction was used to analyze the expression of OCT4 (octamer binding protein 4 gene variants (OCT4A, OCT4B, and OCT4B1, SOX-2 (SRY

  11. A dangerous liaison: Leptin and sPLA2-IIA join forces to induce proliferation and migration of astrocytoma cells.

    Directory of Open Access Journals (Sweden)

    Rubén Martín

    Full Text Available Glioblastoma, the most aggressive type of primary brain tumour, shows worse prognosis linked to diabetes or obesity persistence. These pathologies are chronic inflammatory conditions characterized by altered profiles of inflammatory mediators, including leptin and secreted phospholipase A2-IIA (sPLA2-IIA. Both proteins, in turn, display diverse pro-cancer properties in different cell types, including astrocytes. Herein, to understand the underlying relationship between obesity and brain tumors, we investigated the effect of leptin, alone or in combination with sPLA2-IIA on astrocytoma cell functions. sPLA2-IIA induced up-regulation of leptin receptors in 1321N1 human astrocytoma cells. Leptin, as well as sPLA2-IIA, increased growth and migration in these cells, through activation/phosphorylation of key proteins of survival cascades. Leptin, at concentrations with minimal or no activating effects on astrocytoma cells, enhanced growth and migration promoted by low doses of sPLA2-IIA. sPLA2-IIA alone induced a transient phosphorylation pattern in the Src/ERK/Akt/mTOR/p70S6K/rS6 pathway through EGFR transactivation, and co-addition of leptin resulted in a sustained phosphorylation of these signaling regulators. Mechanistically, EGFR transactivation and tyrosine- and serine/threonine-protein phosphatases revealed a key role in this leptin-sPLA2-IIA cross-talk. This cooperative partnership between both proteins was also found in primary astrocytes. These findings thus indicate that the adipokine leptin, by increasing the susceptibility of cells to inflammatory mediators, could contribute to worsen the prognosis of tumoral and neurodegenerative processes, being a potential mediator of some obesity-related medical complications.

  12. MR imaging characteristics of protoplasmic astrocytomas

    Energy Technology Data Exchange (ETDEWEB)

    Tay, Kevin L. [Royal Melbourne Hospital, Department of Radiology, Parkville, Victoria (Australia); Royal North Shore Hospital, Department of Radiology, St Leonards, New South Wales (Australia); Tsui, Alpha [Royal Melbourne Hospital, Department of Pathology, Parkville, Victoria (Australia); Phal, Pramit M.; Tress, Brian M. [Royal Melbourne Hospital, Department of Radiology, Parkville, Victoria (Australia); Drummond, Katharine J. [Royal Melbourne Hospital, Department of Neurosurgery, Parkville, Victoria (Australia)

    2011-06-15

    Protoplasmic astrocytomas are a poorly recognized and uncommon subtype of astrocytoma. While usually categorized with other low-grade gliomas, there is literature to suggest that protoplasmic astrocytomas have differences in biology compared to other gliomas in this group. This paper presents the MR imaging characteristics of a series of eight protoplasmic astrocytomas. We retrospectively reviewed MR images and histopathology of eight consecutive cases of histologically proven protoplasmic astrocytomas. Patients ranged from 17 to 51 years of age with a 5:3 male to female ratio. The tumors were located in the frontal or temporal lobes and tended to be large, well defined, and had a very high signal on T2 (close to cerebrospinal fluid). Generally, a large proportion of the tumor showed substantial signal suppression on T2 fluid-attenuated inversion recovery (FLAIR). Six of the eight lesions also demonstrated a partial or complete rim of reduced apparent diffusion coefficient (ADC) around the T2 FLAIR suppressing portion. The possibility that a primary cerebral neoplasm represents a protoplasmic astrocytoma should be considered in a patient with a large frontal or temporal tumor that has a very high signal on T2 with a large proportion of the tumor showing substantial T2 FLAIR suppression. A further clue is a partial or complete rim of reduced ADC. (orig.)

  13. Sulforaphane inhibits invasion via activating ERK1/2 signaling in human glioblastoma U87MG and U373MG cells.

    Directory of Open Access Journals (Sweden)

    Chunliu Li

    Full Text Available Glioblastoma has highly invasive potential, which might result in poor prognosis and therapeutic failure. Hence, the key we study is to find effective therapies to repress migration and invasion. Sulforaphane (SFN was demonstrated to inhibit cell growth in a variety of tumors. Here, we will further investigate whether SFN inhibits migration and invasion and find the possible mechanisms in human glioblastoma U87MG and U373MG cells.First, the optimal time and dose of SFN for migration and invasion study were determined via cell viability and cell morphological assay. Further, scratch assay and transwell invasion assay were employed to investigate the effect of SFN on migration and invasion. Meanwhile, Western blots were used to detect the molecular linkage among invasion related proteins phosphorylated ERK1/2, matrix metalloproteinase-2 (MMP-2 and CD44v6. Furthermore, Gelatin zymography was performed to detect the inhibition of MMP-2 activation. In addition, ERK1/2 blocker PD98059 (25 µM was integrated to find the link between activated ERK1/2 and invasion, MMP-2 and CD44v6.The results showed that SFN (20 µM remarkably reduced the formation of cell pseudopodia, indicating that SFN might inhibit cell motility. As expected, scratch assay and transwell invasion assay showed that SFN inhibited glioblastoma cell migration and invasion. Western blot and Gelatin zymography showed that SFN phosphorylated ERK1/2 in a sustained way, which contributed to the downregulated MMP-2 expression and activity, and the upregulated CD44v6 expression. These molecular interactions resulted in the inhibition of cell invasion.SFN inhibited migration and invasion processes. Furthermore, SFN inhibited invasion via activating ERK1/2 in a sustained way. The accumulated ERK1/2 activation downregulated MMP-2 expression and decreased its activity and upregulated CD44v6. SFN might be a potential therapeutic agent by activating ERK1/2 signaling against human glioblastoma.

  14. Conformal proton radiation therapy for pediatric low-grade astrocytomas

    International Nuclear Information System (INIS)

    Hug, E.B.; Loma Linda Univ. Medical Center, Loma Linda, CA; Darthmouth-Hitchcock Medical Center, Lebanon, New Hampshire; Muenter, M.W.; Archambeau, J.O.; DeVries, A.; Loredo, L.N.; Grove, R.I.; Slater, J.D.; Liwnicz, B.

    2002-01-01

    Background: To evaluate the safety and efficacy of proton radiation therapy (PRT) for intracranial low-grade astrocytomas, the authors analyzed the first 27 pediatric patients treated at Loma Linda University Medical Center (LLUMC). Patients and Method: Between September 1991 and August 1997, 27 patients (13 female, 14 male) underwent fractionated proton radiation therapy for progressive or recurrent low-grade astrocytoma. Age at time of treatment ranged from 2 to 18 years (mean: 8.7 years). Tumors were located centrally (diencephatic) in 15 patients, in the cerebral and cerebellar hemispheres in seven patients, and in the brainstem in five patients. 25/27 patients (92%) were treated for progressive, unresectable, or residual disease following subtotal resection. Tissue diagnosis was available in 23/27 patients (85%). Four patients with optic pathway tumors were treated without histologic confirmation. Target doses between 50.4 and 63.0 CGE (cobalt gray equivalent, mean: 55.2 CGE) were prescribed at 1.8 CGE per fraction, five treatments per week. Results: At a mean follow-up period of 3.3 years (0.6-6.8 years), 6/27 patients experienced local failure (all located within the irradiated field), and 4/27 patients had died. By anatomic site these data translated into rates of local control and survival of 87% (13/15 patients) and 93% (14/15 patients) for central tumors, 71% (5/7 patients) and 86% (6/7 patients) for hemispheric tumors, and 60% (3/5 patients) and 60% (3/5 patients) for tumors located in the brainstem. Proton radiation therapy was generally well tolerated. All children with local control maintained their performance status. One child with associated neurofibromatosis, Type 1, developed Moyamoya disease. All six patients with optic pathway tumors and useful vision maintained or improved their visual status. Conclusions: This report on pediatric low-grade astrocytomas confirms proton radiation therapy as a safe and efficacious 3-D conformal treatment

  15. 201Thallium SPECT, accuracy in astrocytoma diagnosis and treatment evaluation

    International Nuclear Information System (INIS)

    Kaellen, K.

    1999-10-01

    The aims of the studies included in this thesis were: - to investigate the reliability of 201 Thallium single photon emission computed tomography. Tl SPECT for preoperative diagnosis and histological staging of malignant astrocytomas in comparison with CT; - to develop a method for quantification of cerebral thallium uptake, and to evaluate the quantitative measurement in comparison with CT, for astrocytoma treatment follow-up purposes; - to compare quantitative Tl SPECT and proton magnetic resonance spectroscopy (H-MRS) with conventional MR imaging for astrocytoma monitoring, and to evaluate associations between change of morphological tumour characteristics during treatment and changes of cerebral thallium uptake and metabolic ratios. Results and conclusions: - High TI-index, calculated as a ratio comparing tumour uptake to uptake in the contralateral hemisphere, is an indicator of highly malignant astrocytoma. Differentiation between the high-grade astrocytomas, the low-grade astrocytomas, and infectious lesions is only partial, with an overlap of Tl-indexes between these groups. High-grade astrocytomas that do not show contrast enhancement on CT, and astrocytomas with central necrosis and moderate ring-enhancement, tend to be underestimated when evaluated by Tl-index calculation. Tl SPECT is not a reliable method for non-invasive tumour staging among the group of highly malignant astrocytomas. - Quantification of cerebral TI-uptake, defining the volume of viable tumour tissue, is a new method for astrocytoma chemotherapy monitoring. Results suggest that the method provides prognostic information, and information of treatment efficacy, at an earlier stage than CT. - We did not find a higher accuracy of quantitative Tl SPECT than of MR for monitoring purposes and our results indicated that treatment induced MR changes were interrelated with TI-uptake variations. - Multi-voxel H-MRS was difficult to apply for astrocytoma treatment monitoring, due to the anatomical

  16. Complement activation in astrocytomas: deposition of C4d and patient outcome

    International Nuclear Information System (INIS)

    Mäkelä, Katri; Helén, Pauli; Haapasalo, Hannu; Paavonen, Timo

    2012-01-01

    C4d is a cleavage product of complement component C4 and is considered to serve as a marker for the site of complement activation. In this study C4d staining of grade I-IV astrocytic tumors was studied to explore if there is an association between complement activation and the grade of tumor, or patient survival. Tissue micro-array samples of 102 astrocytomas were stained immunohistochemically. The material consisted of 9 pilocytic astrocytomas and 93 grade II-IV astrocytomas, of which 67 were primary resections and 26 recurrent tumors. The intensity of C4d staining as well as extent of C4d and CD34 staining were evaluated. The intensity of C4d staining was scored semiquantitatively. The extent of the staining was counted morphometrically with a point counting grid yielding a percent of C4d and CD34 positive area of the sample. The intensity and extent of C4d staining increased in grade II-IV diffusely infiltrating astrocytoma tumors in line with the malignancy grade (p = 0.034 and p = 0.016, respectively, Kruskal-Wallis test). However, C4d positive tumor area percentages were higher in grade I pilocytic astrocytomas than in grade II-IV diffusely infiltrating astrocytomas (p = 0.041, Mann–Whitney test). There was a significant correlation between CD34 positive and C4d positive endothelial area fraction in diffusely infiltrating astrocytomas (p < 0.001, Pearson correlation). In these tumors, the increasing intensity of C4d staining was also associated with worsened patient outcome (p = 0.014, log-rank test). The worsening of patient outcome and malignant progression of tumor cells seem to be connected to microenvironmental changes evoked by chronically activated complement

  17. The emerging role of m-TOR up-regulation in brain Astrocytoma.

    Science.gov (United States)

    Ryskalin, Larisa; Limanaqi, Fiona; Biagioni, Francesca; Frati, Alessandro; Esposito, Vincenzo; Calierno, Maria Teresa; Lenzi, Paola; Fornai, Francesco

    2017-05-01

    The present manuscript is an overview of various effects of mTOR up-regulation in astrocytoma with an emphasis on its deleterious effects on the proliferation of Glioblastoma Multiforme. The manuscript reports consistent evidence indicating the occurrence of mTOR up-regulation both in experimental and human astrocytoma. The grading of human astrocytoma is discussed in relationship with mTOR up-regulation. In the second part of the manuscript, the biochemical pathways under the influence of mTOR are translated to cell phenotypes which are generated by mTOR up-regulation and reverted by its inhibition. A special section is dedicated to the prominent role of autophagy in mediating the effects of mTOR in glioblastoma. In detail, autophagy inhibition produced by mTOR up-regulation determines the fate of cancer stem cells. On the other hand, biochemical findings disclose the remarkable effects of autophagy activators as powerful inducers of cell differentiation with a strong prevalence towards neuronal phenotypes. Thus, mTOR modulation acts on the neurobiology of glioblastoma just like it operates in vivo at the level of brain stem cell niches by altering autophagy-dependent cell differentiation. In the light of such a critical role of autophagy we analyzed the ubiquitin proteasome system. The merging between autophagy and proteasome generates a novel organelle, named autophagoproteasome which is strongly induced by mTOR inhibitors in glioblastoma cells. Remarkably, when mTOR is maximally inhibited the proteasome component selectively moves within autophagy vacuoles, thus making the proteasome activity dependent on the entry within autophagy compartment.

  18. Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi Hee [Department of Molecular Biology, College of Natural Science, Pusan National University, 30 Jangjeon dong, Geumjeong gu, Busan 609-735 (Korea, Republic of); Min, Do Sik, E-mail: minds@pusan.ac.kr [Department of Molecular Biology, College of Natural Science, Pusan National University, 30 Jangjeon dong, Geumjeong gu, Busan 609-735 (Korea, Republic of)

    2011-09-09

    Highlights: {yields} Quercetin, a bioactive flavonoid, suppresses expression and enzymatic activity of phospholipase D1. {yields} Quercetin abolishes NFkB-induced phospholipase D1 expression via inhibition of NFkB transactivation. {yields} Quercetin-induced suppression of phospholipase D1 inhibits invasion and proliferation of human glioma cells. -- Abstract: Phospholipase D (PLD) has been recognized as a regulator of cell proliferation and tumorigenesis, but little is known about the molecules regulating PLD expression. Thus, the identification of small molecules inhibiting PLD expression would be an important advance in PLD-mediated physiology. Quercetin, a ubiquitous bioactive flavonoid, is known to inhibit proliferation and induce apoptosis in a variety of cancer cells. In the present study, we examined the effect of quercetin on the expression of PLD in U87 glioma cells. Quercetin significantly suppressed the expression of PLD1 at the transcriptional level. Moreover, quercetin abolished the protein expression of PLD1 in a time and dose-dependent manner, as well as inhibited PLD activity. Quercetin suppressed NF{kappa}B-induced PLD1 expression via inhibition of NFkB transactivation. Furthermore, quercetin inhibited activation and invasion of metalloproteinase-2 (MMP-2), a key modulator of glioma cell invasion, induced by phosphatidic acid (PA), a product of PLD activity. Taken together these data demonstrate that quercetin abolishes PLD1 expression and subsequently inhibits invasion and proliferation of glioma cells.

  19. Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma

    Directory of Open Access Journals (Sweden)

    Wang Yifei

    2004-09-01

    Full Text Available Abstract Background Astrocytoma is a common aggressive intracranial tumor and presents a formidable challenge in the clinic. Association of altered DNA methylation patterns of the promoter CpG islands with the expression profile of cancer-related genes, has been found in many human tumors. Therefore, DNA methylation status as such may serve as an epigenetic biomarker for both diagnosis and prognosis of human tumors, including astrocytoma. Methods We used the methylation specific PCR in conjunction with sequencing verification to establish the methylation profile of the promoter CpG island of thirty four genes in astrocytoma tissues from fifty three patients (The WHO grading:. I: 14, II: 15, III: 12 and IV: 12 cases, respectively. In addition, compatible tissues (normal tissues distant from lesion from three non-astrocytoma patients were included as the control. Results Seventeen genes (ABL, APC, APAF1, BRCA1, CSPG2, DAPK1, hMLH1, LKB1, PTEN, p14ARF, p15INK4b, p27KIP1, p57KIP2, RASSF1C, RB1, SURVIVIN, and VHL displayed a uniformly unmethylated pattern in all the astrocytoma and non-astrocytoma tissues examined. However, the MAGEA1 gene that was inactivated and hypermethylated in non-astrocytoma tissues, was partially demethylated in 24.5% of the astrocytoma tissues (co-existence of the hypermethylated and demethylated alleles. Of the astrocytoma associated hypermethylated genes, the methylation pattern of the CDH13, cyclin a1, DBCCR1, EPO, MYOD1, and p16INK4a genes changed in no more than 5.66% (3/53 of astrocytoma tissues compared to non-astrocytoma controls, while the RASSF1A, p73, AR, MGMT, CDH1, OCT6,, MT1A, WT1, and IRF7 genes were more frequently hypermethylated in 69.8%, 47.2%, 41.5%, 35.8%, 32%, 30.2%, 30.2%, 30.2% and 26.4% of astrocytoma tissues, respectively. Demethylation mediated inducible expression of the CDH13, MAGEA1, MGMT, p73 and RASSF1A genes was established in an astrocytoma cell line (U251, demonstrating that expression of

  20. 13N-NH3 PET in the diagnosis of astrocytomas: preliminary result

    International Nuclear Information System (INIS)

    Zhang Xiangsong; He Zuoxiang; Tang Anwu

    2004-01-01

    Objective: To evaluate the feasibility of diagnosing the astrocytoma with 13N-NH3 PET imaging. Methods 13N-NH3 and 18F-fluorodeoxyglucose (FDG) PET imaging were performed in seven cases of astrocytomas including 3 anteoperative astrocytomas, 2 recurrent astrocytomas, 2 brain injury or necrosis after the operation and radiotherapy. The radioactivity ratios of the tumor and normal white matter (T/WM) were calculated. Results: The tumor lesions in 3 anteoperative astrocytomas and 2 recurrent astrocytomas all uptake 13N-NH3. The average T/WM on 13N-NH3 images was 1.82±0.21, and T/WM on 13N-NH3 and 18F-FDG images were 1.98 and 0.97 for one case with grade 1 astrocytoma. 13N-NH3 and 18F-FDG PET imaging both showed decreased uptake in 2 brain injury or necrosis after the operation and radiotherapy of astrocytomas. Conclusions: 13N-NH3 was uptaken in astrocytomas. 13N-NH3 can be useful in the diagnosis of astrocytoma, and potentially improve diagnostic accuracy of astrocytoma, especially in low-grade astrocytoma. (authors)

  1. 13N-NH3 PET in the diagnosis of astrocytomas: preliminary result

    International Nuclear Information System (INIS)

    Zhang Xiangsong; He Zuoxiang; Tang Anwu

    2004-01-01

    Objective: To evaluate the feasibility of diagnosing the astrocytoma with 13N-NH3 PET imaging. Methods: 13N-NH3 and 18F-fluorodeoxyglucose (FDG) PET imaging were performed in seven cases of astrocytomas including 3 anteoperative astrocytomas, 2 recurrent astrocytomas, 2 brain injury or necrosis after the operation and radiotherapy. The radioactivity ratios of the tumor and normal white matter (T/WM) were calculated. Results: The tumor lesions in 3 anteoperative astrocytomas and 2 recurrent astrocytomas all uptake 13N-NH3 .The average T/WM on 13N-NH3 images was 1.82±0.21, and T/WM on 13N-NH3 and 18F-FDG images were 1.98 and 0.97 for one case with grade 1 astrocytoma. 13N-NH3 and 18F-FDG PET imaging both showed decreased uptake in 2 brain injury or necrosis after the operation and radiotherapy of astrocytomas. Conclusions: 13N-NH3 was uptaken in astrocytomas. 13N-NH3 can be useful in the diagnosis of astrocytoma, and potentially improve diagnostic accuracy of astrocytoma, especially in low-grade astrocytoma. (authors)

  2. Prognosis and Treatment of Spinal Cord Astrocytoma

    International Nuclear Information System (INIS)

    Minehan, Kiernan J.; Brown, Paul D.; Scheithauer, Bernd W.; Krauss, William E.; Wright, Michael P.

    2009-01-01

    Purpose: To identify the prognostic factors for spinal cord astrocytoma and determine the effects of surgery and radiotherapy on outcome. Methods and Materials: This retrospective study reviewed the cases of consecutive patients with spinal cord astrocytoma treated at Mayo Clinic Rochester between 1962 and 2005. Results: A total of 136 consecutive patients were identified. Of these 136 patients, 69 had pilocytic and 67 had infiltrative astrocytoma. The median follow-up for living patients was 8.2 years (range, 0.08-37.6), and the median survival for deceased patients was 1.15 years (range, 0.01-39.9). The extent of surgery included incisional biopsy only (59%), subtotal resection (25%), and gross total resection (16%). Patients with pilocytic tumors survived significantly longer than those with infiltrative astrocytomas (median overall survival, 39.9 vs. 1.85 years; p < 0.001). Patients who underwent resection had a worse, although nonsignificant, median survival than those who underwent biopsy only (pilocytic, 18.1 vs. 39.9 years, p = 0.07; infiltrative, 19 vs. 30 months, p = 0.14). Postoperative radiotherapy, delivered in 75% of cases, gave no significant survival benefit for those with pilocytic tumors (39.9 vs. 18.1 years, p = 0.33) but did for those with infiltrative astrocytomas (24 vs. 3 months; Wilcoxon p = 0.006). On multivariate analysis, pilocytic histologic type, diagnosis after 1984, longer symptom duration, younger age, minimal surgical extent, and postoperative radiotherapy predicted better outcome. Conclusion: The results of our study have shown that histologic type is the most important prognostic variable affecting the outcome of spinal cord astrocytomas. Surgical resection was associated with shorter survival and thus remains an unproven treatment. Postoperative radiotherapy significantly improved survival for patients with infiltrative astrocytomas but not for those with pilocytic tumors

  3. Cystic astrocytomas in children. The contribution of MRI

    International Nuclear Information System (INIS)

    Vilgrain, V.; Sellier, N.; Lalande, G.; Demange, P.; Kalifa, G.

    1988-01-01

    Three cases of cystic astrocytomas are reported in children. Two are supratentorial and one is a cerebellar tumor. The authors insist on the difficulties of the diagnosis. They emphasize the role of NMR which enables distinction between cystic astrocytomas and other cysts. In agreement with Kjos, the 3 cystic astrocytomas demonstrate an increased T1 and T2 and belong to the group of cystic tumors (type II) [fr

  4. Postradiation astrocytoma. Report of two cases

    International Nuclear Information System (INIS)

    Kitanaka, C.; Shitara, N.; Nakagomi, T.; Nakamura, H.; Genka, S.; Nakagawa, K.; Akanuma, A.; Aoyama, H.; Takakura, K.

    1989-01-01

    The authors describe two cases of malignant astrocytomas associated with previous radiation therapy in childhood for intracranial germinoma and craniopharyngioma. In both patients, there was no recurrence at the primary tumor site. Because of a geometric coincidence between the tumor location and the radiation field, radiotherapy was strongly implicated as a cause of these two astrocytomas.33 references

  5. Effects of the nitric oxide donor JS-K on the blood-tumor barrier and on orthotopic U87 rat gliomas assessed by MRI.

    Science.gov (United States)

    Weidensteiner, Claudia; Reichardt, Wilfried; Shami, Paul J; Saavedra, Joseph E; Keefer, Larry K; Baumer, Brunhilde; Werres, Anna; Jasinski, Robert; Osterberg, Nadja; Weyerbrock, Astrid

    2013-04-01

    Nitric oxide (NO) released from NO donors can be cytotoxic in tumor cells and can enhance the transport of drugs into brain tumors by altering blood-tumor barrier permeability. The NO donor JS-K [O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] releases NO upon enzymatic activation selectively in cells overexpressing glutathione-S-transferases (GSTs) such as gliomas. Thus, JS-K-dependent NO effects - especially on cell viability and vascular permeability - were investigated in U87 glioma cells in vitro and in an orthotopic U87 xenograft model in vivo by magnetic resonance imaging (MRI). In vitro experiments showed dose-dependent antiproliferative and cytotoxic effects in U87 cells. In addition, treatment of U87 cells with JS-K resulted in a dose-dependent activation of soluble guanylate cyclase and intracellular accumulation of cyclic guanosine monophosphate (cGMP) which was irreversibly inhibited by the selective inhibitor of soluble guanylate cyclase ODQ (1H-[1,2,4]oxadiazolo(4,3a)quinoxaline-1-one). Using dynamic contrast enhanced MRI (DCE-MRI) as a minimally invasive technique, we demonstrated for the first time a significant increase in the DCE-MRI read-out initial area under the concentration curve (iAUC60) indicating an acute increase in blood-tumor barrier permeability after i.v. treatment with JS-K. Repeated MR imaging of animals with intracranial U87 gliomas under treatment with JS-K (3.5 μmol/kg JS-K 3×/week) and of untreated controls on day 12 and 19 after tumor inoculation revealed no significant changes in tumor growth, edema formation or tumor perfusion. Immunohistochemical workup of the brains showed a significant antiproliferative effect of JS-K in the gliomas. Taken together, in vitro and in vivo data suggest that JS-K has antiproliferative effects in U87 gliomas and opens the blood-tumor barrier by activation of the NO/cGMP signaling pathway. This might be a novel approach to facilitate entry of therapeutic

  6. {sup 201}Thallium SPECT, accuracy in astrocytoma diagnosis and treatment evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kaellen, K

    1999-10-01

    The aims of the studies included in this thesis were: - to investigate the reliability of {sup 201}Thallium single photon emission computed tomography. Tl SPECT for preoperative diagnosis and histological staging of malignant astrocytomas in comparison with CT; - to develop a method for quantification of cerebral thallium uptake, and to evaluate the quantitative measurement in comparison with CT, for astrocytoma treatment follow-up purposes; - to compare quantitative Tl SPECT and proton magnetic resonance spectroscopy (H-MRS) with conventional MR imagingfor astrocytoma monitoring, and to evaluate associations between change of morphological tumour characteristics during treatment and changes of cerebral thallium uptake and metabolic ratios. Results and conclusions: - High TI-index, calculated as a ratio comparing tumour uptake to uptake in the contralateral hemisphere, is an indicator of highly malignant astrocytoma. Differentiation between the high-grade astrocytomas, the low-grade astrocytomas, and infectious lesions is only partial, with an overlap of Tl-indexes between these groups. High-grade astrocytomas that do not show contrast enhancement on CT, and astrocytomas with central necrosis and moderate ring-enhancement, tend to be underestimated when evaluated by Tl-index calculation. Tl SPECT is not a reliable method for non-invasive tumour staging among the group of highly malignant astrocytomas. - Quantification of cerebral TI-uptake, defining the volume of viable tumour tissue, is a new method for astrocytoma chemotherapy monitoring. Results suggest that the method provides prognostic information, and information of treatment efficacy, at an earlier stage than CT. - We did not find a higher accuracy of quantitative Tl SPECT than of MR for monitoring purposes and our results indicated that treatment induced MR changes were interrelated with TI-uptake variations. - Multi-voxel H-MRS was difficult to apply for astrocytoma treatment monitoring, due to the

  7. Autophagy protein p62/SQSTM1 is involved in HAMLET-induced cell death by modulating apotosis in U87MG cells.

    Science.gov (United States)

    Zhang, Y-B; Gong, J-L; Xing, T-Y; Zheng, S-P; Ding, W

    2013-03-21

    HAMLET is a complex of oleic acids and decalcified α-lactalbumin that was discovered to selectively kill tumor cells both in vitro and in vivo. Autophagy is an important cellular process involved in drug-induced cell death of glioma cells. We treated U87MG human glioma cells with HAMLET and found that the cell viability was significantly decreased and accompanied with the activation of autophagy. Interestingly, we observed an increase in p62/SQSTM1, an important substrate of autophagosome enzymes, at the protein level upon HAMLET treatment for short periods. To better understand the functionality of autophagy and p62/SQSTM1 in HAMLET-induced cell death, we modulated the level of autophagy or p62/SQSTM1 with biochemical or genetic methods. The results showed that inhibition of autophagy aggravated HAMLET-induced cell death, whereas activation of authophagy attenuated this process. Meanwhile, we found that overexpression of wild-type p62/SQSTM1 was able to activate caspase-8, and then promote HAMLET-induced apoptosis, whereas knockdown of p62/SQSTM1 manifested the opposite effect. We further demonstrated that the function of p62/SQSTM1 following HAMLET treatment required its C-terminus UBA domain. Our results indicated that in addition to being a marker of autophagy activation in HAMLET-treated glioma cells, p62/SQSTM1 could also function as an important mediator for the activation of caspase-8-dependent cell death.

  8. AUTOCOUNTER, an ImageJ JavaScript to analyze LC3B-GFP expression dynamics in autophagy-induced astrocytoma cells.

    Science.gov (United States)

    Fassina, L; Magenes, G; Inzaghi, A; Palumbo, S; Allavena, G; Miracco, C; Pirtoli, L; Biggiogera, M; Comincini, S

    2012-10-11

    An ImageJ JavaScript, AUTOCOUNTER, was specifically developed to monitor and measure LC3B-GFP expression in living human astrocytoma cells, namely T98G and U373-MG. Discrete intracellular GFP fluorescent spots derived from transduction of a Baculovirus replication-defective vector (BacMam LC3B-GFP), followed by microscope examinations at different times. After viral transgene expression, autophagy was induced by Rapamycin administration and assayed in ph-p70S6K/p70S6K and LC3B immunoblotting expression as well as by electron microscopy examinations. A mutated transgene, defective in LC3B lipidation, was employed as a negative control to further exclude fluorescent dots derived from protein intracellular aggregation. The ImageJ JavaScript was then employed to evaluate and score the dynamics changes of the number and area of LC3B-GFP puncta per cell in time course assays and in complex microscope examinations. In conclusion, AUTOCOUNTER enabled to quantify LC3B-GFP expression and to monitor dynamics changes in number and shapes of autophagosomal-like vesicles: it might therefore represent a suitable algorithmic tool for in vitro autophagy modulation studies.

  9. Radiotherapy Results of Brain Astrocytoma and Glioblastoma Multiforme

    International Nuclear Information System (INIS)

    Choi, Doo Ho; Kim, Il Han; Ha, Sung Whan; Chi, Je Geun

    1988-01-01

    A retrospective analysis was performed on 49 patients with astrocytoma of glioblastoma multiforme of brain who received postoperative radiotherapy in the period between February 1979 and December 1985. Fourteen patients had grade I astrocytoma, 11 patients grade II, 14 patients grade III, and 10 patients glioblastoma multiforme. Three year actuarial survival rates were 85.7%, 44.6% and 23.1% for grade I, II, and III astrocytomas, respectively. One and 2 year actuarial survival rates for patients with glioblastoma multiforme were 54.5% and 27.3%, respectively. Histologic grade, age, extent of operation and tumor location were revealed to be prognosticators

  10. Gemistocytic astrocytoma in the spinal cord in a dog: a case report

    Directory of Open Access Journals (Sweden)

    R.O. Chaves

    2016-08-01

    Full Text Available ABSTRACT This paper reports a case of a rare variant of the cervical spinal cord astrocytoma diagnosed in a dog with progressive neurological signs, initially asymmetrical, not ambulatory tetraparesis, segmental reflexes and normal muscle tone in all four limbs and absence of pain upon palpation of the cervical spine. Myelography revealed attenuation of the ventral and dorsal contrast line in the third region of the fifth cervical vertebra. At necropsy intramedullary cylindrical mass that stretched from the third to the sixth cervical vertebra, which replaced all the gray matter of the spinal cord was observed. In the histological study, there was the replacement of the substance by neoplastic cells mantle arranged loosely. The cells were large and slightly rounded. The eosinophilic cytoplasm was well defined, sometimes forming processes interconnecting cells. The nucleus was eccentric, round, oval or kidney-shaped, and the nucleolus was evident. Thus, the microscopic changes observed in the cervical spinal cord were consistent with gemistocytic astrocytoma.

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Compounds 3 and 4 were screened for selective antiproliferative activity in three cancer cell lines of different tissue types (COLO 205 (human colorectal adenocarcinoma),U87 MG (glioblastoma astrocytoma) and MIAPaCa-2 (human pancreatic carcinoma). Geometry-optimized structures for tautomers 3 and 4 (3′ and 4′ ...

  12. Multiple solid pilocytic astrocytomas in cerebleiium with neurofibromatosis type: A case report

    International Nuclear Information System (INIS)

    Choi, Seo Young; Kim, Myung Soon; Kim, Young Ju

    2014-01-01

    Pilocytic astrocytoma usually has a classic imaging manifestation of a solitary, cyst-like mass with a strong contrast-enhancing mural nodule. There is only one published report so far of multiple solid and cyst type pilocytic astrocytomas in the cerebellum in neurofibromatosis type 1 (NF1) patient from the United States in 2007. We report a case of pilocytic astrocytoma presenting with only solid, multiple pilocytic astrocytomas in the cerebellum in NF1 patient.

  13. Putative Structural and Functional Coupling of the Mitochondrial BKCa Channel to the Respiratory Chain.

    Directory of Open Access Journals (Sweden)

    Piotr Bednarczyk

    Full Text Available Potassium channels have been found in the inner mitochondrial membranes of various cells. These channels regulate the mitochondrial membrane potential, the matrix volume and respiration. The activation of these channels is cytoprotective. In our study, the single-channel activity of a large-conductance Ca(2+-regulated potassium channel (mitoBKCa channel was measured by patch-clamping mitoplasts isolated from the human astrocytoma (glioblastoma U-87 MG cell line. A potassium-selective current was recorded with a mean conductance of 290 pS in symmetrical 150 mM KCl solution. The channel was activated by Ca(2+ at micromolar concentrations and by the potassium channel opener NS1619. The channel was inhibited by paxilline and iberiotoxin, known inhibitors of BKCa channels. Western blot analysis, immuno-gold electron microscopy, high-resolution immunofluorescence assays and polymerase chain reaction demonstrated the presence of the BKCa channel β4 subunit in the inner mitochondrial membrane of the human astrocytoma cells. We showed that substrates of the respiratory chain, such as NADH, succinate, and glutamate/malate, decrease the activity of the channel at positive voltages. This effect was abolished by rotenone, antimycin and cyanide, inhibitors of the respiratory chain. The putative interaction of the β4 subunit of mitoBKCa with cytochrome c oxidase was demonstrated using blue native electrophoresis. Our findings indicate possible structural and functional coupling of the mitoBKCa channel with the mitochondrial respiratory chain in human astrocytoma U-87 MG cells.

  14. Everolimus Alleviates Obstructive Hydrocephalus due to Subependymal Giant Cell Astrocytomas.

    Science.gov (United States)

    Moavero, Romina; Carai, Andrea; Mastronuzzi, Angela; Marciano, Sara; Graziola, Federica; Vigevano, Federico; Curatolo, Paolo

    2017-03-01

    Subependymal giant cell astrocytomas (SEGAs) are low-grade tumors affecting up to 20% of patients with tuberous sclerosis complex (TSC). Early neurosurgical resection has been the only standard treatment until few years ago when a better understanding of the molecular pathogenesis of TSC led to the use of mammalian target of rapamycin (mTOR) inhibitors. Surgical resection of SEGAs is still considered as the first line treatment in individuals with symptomatic hydrocephalus and intratumoral hemorrhage. We describe four patients with symptomatic or asymptomatic hydrocephalus who were successfully treated with the mTOR inhibitor everolimus. We collected the clinical data of four consecutive patients presenting with symptomatic or asymptomatic hydrocephalus due to a growth of subependymal giant cell atrocytomas and who could not undergo surgery for different reasons. All patients experienced a clinically significant response to everolimus and an early shrinkage of the SEGA with improvement in ventricular dilatation. Everolimus was well tolerated by all individuals. Our clinical series demonstrate a possible expanding indication for mTOR inhibition in TSC, which can be considered in patients with asymptomatic hydrocephalus or even when the symptoms already appeared. It offers a significant therapeutic alternative to individuals that once would have undergone immediate surgery. Everolimus might also allow postponement of a neurosurgical resection, making it elective with an overall lower risk. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Anaplasia in pilocytic astrocytoma predicts aggressive behavior.

    Science.gov (United States)

    Rodriguez, Fausto J; Scheithauer, Bernd W; Burger, Peter C; Jenkins, Sarah; Giannini, Caterina

    2010-02-01

    The clinical significance of anaplastic features, a rare event in pilocytic astrocytoma (PA), is not fully established. We reviewed 34 PA with anaplastic features (Male = 21, Female = 13; median age 35 y, 5 to 75) among approximately 2200 PA cases (1.7%). Tumors were included which demonstrated brisk mitotic activity [at least 4 mitoses/10 high power fields (400 x )], in addition to hypercellularity and moderate-to-severe cytologic atypia, with or without necrosis. The tumors either had a PA precursor, coexistent (n = 14) (41%) or documented by previous biopsy (n = 10) (29%), or exhibited typical pilocytic features in an otherwise anaplastic astrocytoma (n = 10) (29%). Clinical features of neurofibromatosis type-1 were present in 24% and a history of radiation for PA precursor in 12%. Histologically, the anaplastic component was classified as pilocytic like (41%), small cell (32%), epithelioid (15%), or fibrillary (12%). Median MIB1 labeling index was 24.7% in the anaplastic component and 2.6% in the precursor, although overlapping values were present. Strong p53 staining (3+) was limited to areas with anaplasia (19%), with overlapping values for 1 and 2+ in areas without anaplasia. Median overall and progression-free survivals after diagnosis for the entire study group were 24 and 14 months, respectively. Overall and progression-free survivals were shorter in the setting of prior radiation for a PA precursor (P = 0.007, 0.028), increasing mitotic activity (P = 0.03, 0.02), and presence of necrosis (P = 0.02, 0.02), after adjusting for age and site. The biologic behavior of PAs with high-mitotic rates and those with necrosis paralleled that of St Anne-Mayo grades 2 and 3 diffuse astrocytomas, respectively. In summary, PA with anaplastic features exhibits a spectrum of morphologies and is associated with decreased survival when compared with typical PA.

  16. Pilocytic Astrocytoma Presenting as an Orbital Encephalocele: A Case Report

    Directory of Open Access Journals (Sweden)

    Amy Bruzek

    2015-04-01

    Full Text Available We describe the case of a 29-year-old male who presented with new-onset seizures. He was subsequently found to have an orbital encephalocele containing a focus of pilocytic astrocytoma. We believe that this is the first report of a pilocytic astrocytoma located within the orbit that did not originate from the optic pathway. It is also the first case of a pilocytic astrocytoma completely contained within an encephalocele. This case suggests a close pathological examination of encephaloceles for underlying diseases.

  17. Computed tomography of benign supratentorial astrocytomas of infancy and childhood

    International Nuclear Information System (INIS)

    Pedersen, H.; Gjerris, F.; Klinken, L.

    1981-01-01

    The CT findings of 15 benign supratentorial astrocytomas in children less than 15 years of age are compared with the CT findings of 19 supratentorial tumors of other histological types in the same age group. Astrocytomas were more often hypodense, lacked calcification and showed greater contrast enhancement than other tumors. Seven of the 15 astrocytomas were hypodense, without calcification and showed contrast enhancement of more than 10 Hounsfield units, whereas this coexistence was not present in any of the 19 tumors of the other histological types. (orig.)

  18. Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells

    Science.gov (United States)

    Dong, Lifeng; Witkowski, Colette M.; Craig, Michael M.; Greenwade, Molly M.; Joseph, Katherine L.

    2009-12-01

    Phase contrast and epifluorescence microscopy were utilized to monitor morphological changes in human astrocytoma cells during a time-course exposure to single-walled carbon nanotube (SWCNT) conjugates with different surfactants and to investigate sub-cellular distribution of the nanotube conjugates, respectively. Experimental results demonstrate that cytotoxicity of the nanotube/surfactant conjugates is related to the toxicity of surfactant molecules attached on the nanotube surfaces. Both sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) are toxic to cells. Exposure to CNT/SDS conjugates (0.5 mg/mL) for less than 5 min caused changes in cell morphology resulting in a distinctly spherical shape compared to untreated cells. In contrast, sodium cholate (SC) and CNT/SC did not affect cell morphology, proliferation, or growth. These data indicate that SC is an environmentally friendly surfactant for the purification and dispersion of SWCNTs. Epifluorescence microscopy analysis of CNT/DNA conjugates revealed distribution in the cytoplasm of cells and did not show adverse effects on cell morphology, proliferation, or viability during a 72-h incubation. These observations suggest that the SWCNTs could be used as non-viral vectors for diagnostic and therapeutic molecules across the blood-brain barrier to the brain and the central nervous system.

  19. Evaluation of amentoflavone isolated from Cnestis ferruginea Vahl ex DC (Connaraceae) on production of inflammatory mediators in LPS stimulated rat astrocytoma cell line (C6) and THP-1 cells.

    Science.gov (United States)

    Ishola, I O; Chaturvedi, J P; Rai, S; Rajasekar, N; Adeyemi, O O; Shukla, R; Narender, T

    2013-03-27

    Cnestisferruginea (CF) Vahl ex DC (Connaraceae) is a shrub widely used in traditional African medicine for the treatment of various psychiatric illness and inflammatory conditions. This study was carried out to investigate the effect of amentoflavone isolated from methanolic root extract of CF on lipopolysaccharide (LPS)-induced neuroinflammatory cascade of events associated to the oxidative and nitrative stress, and TNF-α production in rat astrocytoma cell line (C6) and human monocytic leukemia cell line (THP-1), respectively. Rat astrocytoma cells (C6) were stimulated with LPS (10μg/ml) alone and in the presence of different concentrations of amentoflavone (0.1-3μg/ml) for 24h incubation period. Nitrite release, reactive oxygen species (ROS), malondialdehyde (MDA) and reduced-glutathione (GSH) in C6 cells were estimated; while the TNF-α level was estimated in THP-1 cell lysate. In vivo analgesic activity was evaluated using mouse writhing and hot plate tests while the anti-inflammatory effect was investigated using carrageenan-induced oedema test. LPS (10μg/ml) significantly (PTHP-1 cells. Amentoflavone (6.25-50mg/kg) significantly (Ptest. It produced time course significant (P<0.05) decrease in oedema formation in rodents. Findings in this study demonstrate the anti-neuroinflammatory and antinoceptive effects of amentoflavone which may suggest its beneficial roles in neuroinflammation associated disorders. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Visualisation of an nsPEF induced calcium wave using the genetically encoded calcium indicator GCaMP in U87 human glioblastoma cells.

    Science.gov (United States)

    Carr, Lynn; Bardet, Sylvia M; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2018-02-01

    Cytosolic, synthetic chemical calcium indicators are typically used to visualise the rapid increase in intracellular calcium ion concentration that follows nanosecond pulsed electric field (nsPEF) application. This study looks at the application of genetically encoded calcium indicators (GECIs) to investigate the spatiotemporal nature of nsPEF-induced calcium signals using fluorescent live cell imaging. Calcium responses to 44kV/cm, 10ns pulses were observed in U87-MG cells expressing either a plasma membrane targeted GECI (GCaMP5-G), or one cytosolically expressed (GCaMP6-S), and compared to the response of cells loaded with cytosolic or plasma membrane targeted chemical calcium indicators. Application of 100 pulses, to cells containing plasma membrane targeted indicators, revealed a wave of calcium across the cell initiating at the cathode side. A similar spatial wave was not observed with cytosolic indicators with mobile calcium buffering properties. The speed of the wave was related to pulse application frequency and it was not propagated by calcium induced calcium release. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Imaging characteristics of pilomyxoid astrocytomas in comparison with pilocytic astrocytomas

    International Nuclear Information System (INIS)

    Lee, In Ho; Kim, Ji Hye; Suh, Yeon-Lim; Eo, Hong; Shin, Hyung Jin; Yoo, So-Young; Lee, Kyung Soo

    2011-01-01

    Purpose: Pilomyxoid astrocytoma (PMA) is a recently described astrocytic tumor that has been previously diagnosed as pilocytic astrocytoma (PA). The purpose of this study was to describe the imaging features of PMAs in comparison with PAs. Materials and methods: We retrospectively reviewed CT/MR images and medical records of 10 patients with PMA and 38 patients with PA. The mean ages of patients with PMA and PA were 10 and 15 years, respectively. Imaging features including location, composition, enhancement pattern, presence of calcification, hemorrhage, and leptomeningeal dissemination were compared in patients with two tumor types. Results: Six PMAs (60%) occurred at the suprasellar area and the cerebellum was the most common (45%) site of PA. Solid component was dominant in eight PMAs (80%) and in 19 PAs (50%). All of the PMAs containing solid mass (n = 8) included non-enhancing portion while 12/37 (32%) PAs included non-enhancing solid portion (p < 0.05). Leptomeningeal dissemination was noted in five PMAs (50%) and one PA (3%) (p < 0.05). Other imaging findings were not significantly different. Conclusion: A younger age, more frequent occurrence at the suprasellar area, mainly solid mass containing non-enhancing portion, and more frequent leptomeningeal dissemination are helpful differential features of PMAs as compared to PAs.

  2. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts

    Directory of Open Access Journals (Sweden)

    James C K Lai

    2008-12-01

    Full Text Available James C K Lai1, Maria B Lai1, Sirisha Jandhyam1, Vikas V Dukhande1, Alok Bhushan1, Christopher K Daniels1, Solomon W Leung21Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, and Biomedical Research Institute; 2Department of Civil and Environmental Engineering, College of Engineering and Biomedical Research Institute, Idaho State University, Pocatello, ID, USAAbstract: The use of titanium dioxide (TiO2 in various industrial applications (eg, production of paper, plastics, cosmetics, and paints has been expanding thereby increasing the occupational and other environmental exposure of these nanoparticles to humans and other species. However, the health effects of exposure to TiO2 nanoparticles have not been systematically assessed even though recent studies suggest that such exposure induces inflammatory responses in lung tissue and cells. Because the effects of such nanoparticles on human neural cells are unknown, we have determined the putative cytotoxic effects of these nanoparticles on human astrocytes-like astrocytoma U87 cells and compared their effects on normal human fibroblasts. We found that TiO2 micro- and nanoparticles induced cell death on both human cell types in a concentration-related manner. We further noted that zinc oxide (ZnO nanoparticles were the most effective, TiO2 nanoparticles the second most effective, and magnesium oxide (MgO nanoparticles the least effective in inducing cell death in U87 cells. The cell death mechanisms underlying the effects of TiO2 micro- and nanoparticles on U87 cells include apoptosis, necrosis, and possibly apoptosis-like and necrosis-like cell death types. Thus, our findings may have toxicological and other pathophysiological implications on exposure of humans and other mammalian species to metallic oxide nanoparticles.Keywords: cytotoxicity of titanium dioxide micro- and nanoparticles, cytotoxicity of zinc oxide and magnesium oxide nanoparticles, human neural cells

  3. Evaluation of miR-362 Expression in Astrocytoma of Human Brain Tumors

    Directory of Open Access Journals (Sweden)

    Majid Kheirollahi

    2017-01-01

    Full Text Available Background: Patients affected by gliomas have a poor prognosis. Astrocytoma is a subtype of glioma. Identification of biomarkers could be an effective way to an early diagnosis of tumor or to distinguish more aggressive tumors that need more intensive therapy. In this study, we investigated whether the expression of miR-362 was increased or decreased in patients with different grades of astrocytoma. Materials and Methods: miR-362 expression was compared in 25 patients with astrocytoma with that of 4 normal nonneoplastic brain tissues. Results: In all tumor tissues, the expression of miR-362 was significantly decreased relative to its expression in normal brain tissues. However, there was no significant difference between miR-362 expressions in high and low grades of astrocytoma. Conclusions: In conclusion, miR-362 showed a down-regulation pattern in astrocytoma tissues that was different from the pattern obtained from previously published microarray studies.

  4. An infant with hyperalertness, hyperkinesis, and failure to thrive: a rare diencephalic syndrome due to hypothalamic anaplastic astrocytoma.

    Science.gov (United States)

    Stival, Alessia; Lucchesi, Maurizio; Farina, Silvia; Buccoliero, Anna Maria; Castiglione, Francesca; Genitori, Lorenzo; de Martino, Maurizio; Sardi, Iacopo

    2015-09-04

    Diencephalic Syndrome is a rare clinical condition of failure to thrive despite a normal caloric intake, hyperalertness, hyperkinesis, and euphoria usually associated with low-grade hypothalamic astrocytomas. We reported an unusual case of diencephalic cachexia due to hypothalamic anaplastic astrocytoma (WHO-grade III). Baseline endocrine function evaluation was performed in this patient before surgery. After histological diagnosis, he enrolled to a chemotherapy program with sequential high-dose chemotherapy followed by hematopoietic stem cell rescue. The last MRI evaluation showed a good response. The patient is still alive with good visual function 21 months after starting chemotherapy. Diencephalic cachexia can rarely be due to high-grade hypothalamic astrocytoma. We suggest that a nutritional support with chemotherapy given to high doses without radiotherapy could be an effective strategy for treatment of a poor-prognosis disease.

  5. Arginylglycylaspartic Acid-Surface-Functionalized Doxorubicin-Loaded Lipid-Core Nanocapsules as a Strategy to Target Alpha(V) Beta(3) Integrin Expressed on Tumor Cells

    Science.gov (United States)

    Antonow, Michelli B.; Franco, Camila; Prado, Willian; Beckenkamp, Aline; Silveira, Gustavo P.; Buffon, Andréia; Guterres, Sílvia S.

    2017-01-01

    Doxorubicin (Dox) clinical use is limited by dose-related cardiomyopathy, becoming more prevalent with increasing cumulative doses. Previously, we developed Dox-loaded lipid-core nanocapsules (Dox-LNC) and, in this study, we hypothesized that self-assembling and interfacial reactions could be used to obtain arginylglycylaspartic acid (RGD)-surface-functionalized-Dox-LNC, which could target tumoral cells overexpressing αvβ3 integrin. Human breast adenocarcinoma cell line (MCF-7) and human glioblastoma astrocytoma (U87MG) expressing different levels of αvβ3 integrin were studied. RGD-functionalized Dox-LNC were prepared with Dox at 100 and 500 mg·mL−1 (RGD-MCMN (Dox100) and RGD-MCMN (Dox500)). Blank formulation (RGD-MCMN) had z-average diameter of 162 ± 6 nm, polydispersity index of 0.11 ± 0.04, zeta potential of +13.2 ± 1.9 mV and (6.2 ± 1.1) × 1011 particles mL−1, while RGD-MCMN (Dox100) and RGD-MCMN (Dox500) showed respectively 146 ± 20 and 215 ± 25 nm, 0.10 ± 0.01 and 0.09 ± 0.03, +13.8 ± 2.3 and +16.4 ± 1.5 mV and (6.9 ± 0.6) × 1011 and (6.1 ± 1.0) × 1011 particles mL−1. RGD complexation was 7.73 × 104 molecules per nanocapsule and Dox loading were 1.51 × 104 and 7.64 × 104 molecules per nanocapsule, respectively. RGD-functionalized nanocapsules had an improved uptake capacity by U87MG cells. Pareto chart showed that the cell viability was mainly affected by the Dox concentration and the period of treatment in both MCF-7 and U87MG. The influence of RGD-functionalization on cell viability was a determinant factor exclusively to U87MG. PMID:29271920

  6. Postoperative irradiation of incompletely excised gemistocytic astrocytomas. Clinical outcome and prognostic factors

    International Nuclear Information System (INIS)

    Nowak-Sadzikowska, J.; Glinski, B.; Szpytma, T.; Pluta, E.

    2005-01-01

    Background and purpose: although gemistocytic astrocytomas are considered slow-growing tumors, they often behave aggressively and carry the least favorable prognosis among low-grade astrocytomas. The aim of this study is to evaluate the outcomes and prognostic factors of patients with incompletely excised gemistocytic astrocytomas irradiated postoperatively. Patients and methods: records of 48 patients with incompletely excised gemistocytic astrocytoma, irradiated between 1976 and 1998 at the department of radiation oncology, Maria Sklodowska-curie Memorial Cancer Center, Cracow, Poland, were reviewed. The total dose ranged from 50 to 60 Gy (mean: 59.35, median: 60 Gy) delivered in daily fractions of 2 Gy, 5 days a week. The treatment volume covered the residual tumor with a margin of 1-2 cm. Results: toxicity was acceptable. The overall actuarial survival rates at 5 and 10 years were 30% and 17%, respectively. Age and gender had an influence on overall survival by univariate and multivariate analysis (p < 0.05). Patients ≤ 35 years of age and female patients carried the best prognosis. Conclusion: in most patients with gemistocytic astrocytoma, combined surgery and postoperative radiotherapy result in only short-term survival. Older age is the most important unfavorable prognostic factor in patients with gemistocytic astrocytoma. (orig.)

  7. The Effect of Sodium Valproate on the Glioblastoma U87 Cell Line Tumor Development on the Chicken Embryo Chorioallantoic Membrane and on EZH2 and p53 Expression

    Directory of Open Access Journals (Sweden)

    Dovilė Kavaliauskaitė

    2017-01-01

    Full Text Available Literature data support evidences that glioblastoma (GBM patients experience prolonged survival due to sodium valproate (NaVP treatment. The study assessed the human GBM cell U87 xenograft studied in the chicken embryo chorioallantoic membrane (CAM model evaluating NaVP effect on tumor. Three groups of tumors (each n = 10 were studied: nontreated, treated with 4 mM, and treated with 8 mM of NaVP. The majority of tumors without NaVP treatment during tumor growth destroyed the chorionic epithelium, invaded the mesenchyme, and induced angiogenesis. Incidence of tumor formation on CAM without invasion into the mesenchyme was higher when U87 cells were treated with NaVP; the effect significantly increased with NaVP concentration. Treatment with 8 mM of NaVP did not show clear dynamics of tumor growth during 5 days; at the same time, the angiogenesis failed. With a strong staining of EZH2, p53 in tumors without NaVP treatment was found, and NaVP significantly decreased the expression of EZH2- and p53-positive cells; the effect was significantly higher at its 8 mM concentration. NaVP has a function in blocking the growth, invasion, and angiogenesis of tumor in the CAM model; tumor growth interferes with EZH2 and p53 molecular pathways, supporting the NaVP potential in GBM therapy.

  8. Malignant transformation of a chiasmatic pilocytic astrocytoma in a patient with diencephalic syndrome

    International Nuclear Information System (INIS)

    Wal, Ester P.J. van der; Edwards-Brown, Mary; Azzarelli, Biagio

    2003-01-01

    Chiasmatic gliomas with metastatic spread are rare in children and are usually associated with diencephalic syndrome. They are mostly pilocytic astrocytomas and their transformation to high-grade astrocytomas has never previously been reported in the pediatric population. We report leptomeningeal spread of a chiasmatic pilocytic astrocytoma in a child presenting with diencephalic syndrome. He was treated with chemotherapy and radiation. The tumor recurred with transformation into a high-grade astrocytoma. Radiation therapy may have played a role in transformation of the tumor, but more research is needed to further clarify the biological behavior of this tumor. (orig.)

  9. Molecular analysis of pediatric brain tumors identifies microRNAs in pilocytic astrocytomas that target the MAPK and NF-κB pathways.

    Science.gov (United States)

    Jones, Tania A; Jeyapalan, Jennie N; Forshew, Tim; Tatevossian, Ruth G; Lawson, Andrew R J; Patel, Sheena N; Doctor, Gabriel T; Mumin, Muhammad A; Picker, Simon R; Phipps, Kim P; Michalski, Antony; Jacques, Thomas S; Sheer, Denise

    2015-12-18

    Pilocytic astrocytomas are slow-growing tumors that usually occur in the cerebellum or in the midline along the hypothalamic/optic pathways. The most common genetic alterations in pilocytic astrocytomas activate the ERK/MAPK signal transduction pathway, which is a major driver of proliferation but is also believed to induce senescence in these tumors. Here, we have conducted a detailed investigation of microRNA and gene expression, together with pathway analysis, to improve our understanding of the regulatory mechanisms in pilocytic astrocytomas. Pilocytic astrocytomas were found to have distinctive microRNA and gene expression profiles compared to normal brain tissue and a selection of other pediatric brain tumors. Several microRNAs found to be up-regulated in pilocytic astrocytomas are predicted to target the ERK/MAPK and NF-κB signaling pathways as well as genes involved in senescence-associated inflammation and cell cycle control. Furthermore, IGFBP7 and CEBPB, which are transcriptional inducers of the senescence-associated secretory phenotype (SASP), were also up-regulated together with the markers of senescence and inflammation, CDKN1A (p21), CDKN2A (p16) and IL1B. These findings provide further evidence of a senescent phenotype in pilocytic astrocytomas. In addition, they suggest that the ERK/MAPK pathway, which is considered the major driver of these tumors, is regulated not only by genetic aberrations but also by microRNAs.

  10. RTEL1 and TERT polymorphisms are associated with astrocytoma risk in the Chinese Han population.

    Science.gov (United States)

    Jin, Tian-Bo; Zhang, Jia-Yi; Li, Gang; Du, Shu-Li; Geng, Ting-Ting; Gao, Jing; Liu, Qian-Ping; Gao, Guo-Dong; Kang, Long-Li; Chen, Chao; Li, Shan-Qu

    2013-12-01

    Common variants of multiple genes play a role in glioma onset. However, research related to astrocytoma, the most common primary brain neoplasm, is rare. In this study, we chose 21 tagging SNPs (tSNPs), previously reported to be associated with glioma risk in a Chinese case-control study from Xi'an, China, and identified their contributions to astrocytoma susceptibility. We found an association with astrocytoma susceptibility for two tSNPs (rs6010620 and rs2853676) in two different genes: regulator of telomere elongation helicase 1 (RTEL1) and telomerase reverse transcriptase (TERT), respectively. We confirmed our results using recessive, dominant, and additive models. In the recessive model, we found two tSNPs (rs2297440 and rs6010620) associated with increased astrocytoma risk. In the dominant model, we found that rs2853676 was associated with increased astrocytoma risk. In the additive model, all three tSNPs (rs2297440, rs2853676, and rs6010620) were associated with increased astrocytoma risk. Our results demonstrate, for the first time, the potential roles of RTEL1 and TERT in astrocytoma development.

  11. Guanine nucleotide-dependent, pertussis toxin-insensitive, stimulation of inositol phosphate formation by carbachol in a membrane preparation from astrocytoma cells

    International Nuclear Information System (INIS)

    Hepler, J.R.; Harden, T.K.

    1986-01-01

    Formation of the inositol phosphates (InsP), InsP 3 , InsP 2 , and InsP 1 was increased in a concentration dependent manner (K/sub 0.5/ ∼ 5 μM) by GTPΣS in washed membranes prepared from 3 H-inositol-prelabelled 1321N1 human astrocytoma cells. Both GTPγS and GppNHp stimulated InsP formation by 2-3 fold over control; GTP and GDP were much less efficacious and GMP had no effect. Although the muscarinic cholinergic receptor agonist carbachol had no effect in the absence of guanine nucleotide, in the presence of 10 μM GTPγS, carbachol stimulated (K/sub 0.5/ ∼ 10 μ M) the formation of InsP above the level achieved with GTPγS alone. The effect of carbachol was completely blocked by atropine. The order of potency for a series of nucleotides for stimulation of InsP formation in the presence of 500 μM carbachol was GTPγS > GppNHp > GTP = GDP. Pertussis toxin, at concentrations that fully ADP-ribosylate and functionally inactivate G/sub i/, had no effect on InsP formation in the presence of GTPγS or GTPγS plus carbachol. Histamine and bradykinin also stimulated InsP formation in the presence of GTPγS in washed membranes from 1321N1 cells. These data are consistent with the idea that a guanine nucleotide regulatory protein that is not G/sub i/ is involved in receptor-mediated stimulation of InsP formation in 1321N1 human astrocytoma cells

  12. A case of astrocytoma, 19 year history after BNCT

    International Nuclear Information System (INIS)

    Kamano, Shuji

    2006-01-01

    A 39-year-old man had received Boron Neutron Capture Therapy (BNCT) in 1987 for a Grade II Astrocytoma. He gradually exacerbated and received a second operation in 1994. The mass taken in the second operation is almost competent with radiation necrosis. Following that, he shows no signs of recurrence. Currently, he has returned to full time employment in physical labor. This case suggests effectiveness of BNCT for rather low-grade astrocytomas. (author)

  13. Evaluation of invasiveness of astrocytoma using 1H-magnetic resonance spectroscopy: correlation with expression of matrix metalloproteinase-2

    International Nuclear Information System (INIS)

    Zhang, Kai; Li, Chuanfu; Ma, Xiangxing; Meng, Xiangshui; Feng, Dechao; Liu, Ying; Li, Li

    2007-01-01

    Even low-grade astrocytomas infiltrate the entire brain, a feature that precludes their successful therapy. So to assess the invasive potential of astrocytoma is very important. The aim of this study was determine whether there is a significant correlation between the results of 1 H-magnetic resonance spectroscopy ( 1 H-MRS) and tumor invasive potential of astrocytoma, which is reflected by expression of matrix metalloproteinase-2 (MMP-2). The 1 H-MRS spectra of 41 histologically verified astrocytomas were obtained on a 3-T MR scanner. According to the World Health Organization classification criteria for central nervous system tumors, there were 16 low-grade astrocytomas (2 pilocytic astrocytomas, 14 grade II astrocytomas) and 25 high-grade astrocytomas (5 anaplastic astrocytomas, 20 glioblastomas).The choline/N-acetylaspartate (Cho/NAA) and choline/creatine (Cho/Cr) ratios were calculated. Of the 41 astrocytomas, 19 (8 low-grade and 11 high-grade) were analyzed immunohistochemically. Expression of MMP-2 was determined using streptavidin-peroxidase complex (SP) staining which was quantified by calculating its calibrated opacity density (COD) using an image analysis system. The correlations between metabolite ratios and the quantitative data from the immunohistochemical tests in the 19 astrocytomas were determined. The Cho/NAA and Cho/Cr ratios of high-grade astrocytoma were both significantly greater than those of low-grade astrocytoma (t = -6.222, P = 0.000; t = -6.533, P = 0.000, respectively). MMP-2 COD values of high-grade astrocytomas were also significantly greater than those of low-grade astrocytomas (t = -5.892, P 0.000). There were strong positive correlations between Cho/NAA ratio and MMP-2 COD (r = 0.669, P = 0.002), and between Cho/Cr ratio and MMP-2 COD (r = 0.689, P = 0.001). 1 H-MRS is helpful in evaluating the invasiveness of astrocytomas and predicting prognosis preoperatively by determining the Cho/NAA and Cho/Cr ratios. (orig.)

  14. ADAR2 editing activity in newly diagnosed versus relapsed pediatric high-grade astrocytomas

    International Nuclear Information System (INIS)

    Tomaselli, Sara; Galeano, Federica; Massimi, Luca; Di Rocco, Concezio; Lauriola, Libero; Mastronuzzi, Angela; Locatelli, Franco; Gallo, Angela

    2013-01-01

    High-grade (WHO grade III and IV) astrocytomas are aggressive malignant brain tumors affecting humans with a high risk of recurrence in both children and adults. To date, limited information is available on the genetic and molecular alterations important in the onset and progression of pediatric high-grade astrocytomas and, even less, on the prognostic factors that influence long-term outcome in children with recurrence. A-to-I RNA editing is an essential post-transcriptional mechanism that can alter the nucleotide sequence of several RNAs and is mediated by the ADAR enzymes. ADAR2 editing activity is particularly important in mammalian brain and is impaired in both adult and pediatric high-grade astrocytomas. Moreover, we have recently shown that the recovered ADAR2 activity in high-grade astrocytomas inhibits in vivo tumor growth. The aim of the present study is to investigate whether changes may occur in ADAR2-mediated RNA editing profiles of relapsed high-grade astrocytomas compared to their respective specimens collected at diagnosis, in four pediatric patients. Total RNAs extracted from all tumor samples and controls were tested for RNA editing levels (by direct sequencing on cDNA pools) and for ADAR2 mRNA expression (by qRT-PCR). A significant loss of ADAR2-editing activity was observed in the newly diagnosed and recurrent astrocytomas in comparison to normal brain. Surprisingly, we found a substantial rescue of ADAR2 editing activity in the relapsed tumor of the only patient showing prolonged survival. High-grade astrocytomas display a generalized loss of ADAR2-mediated RNA editing at both diagnosis and relapse. However, a peculiar Case, in complete remission of disease, displayed a total rescue of RNA editing at relapse, intriguingly suggesting ADAR2 activity/expression as a possible marker for long-term survival of patients with high-grade astrocytomas

  15. Nanosecond pulsed electric fields depolarize transmembrane potential via voltage-gated K+, Ca2+ and TRPM8 channels in U87 glioblastoma cells.

    Science.gov (United States)

    Burke, Ryan C; Bardet, Sylvia M; Carr, Lynn; Romanenko, Sergii; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2017-10-01

    Nanosecond pulsed electric fields (nsPEFs) have a variety of applications in the biomedical and biotechnology industries. Cancer treatment has been at the forefront of investigations thus far as nsPEFs permeabilize cellular and intracellular membranes leading to apoptosis and necrosis. nsPEFs may also influence ion channel gating and have the potential to modulate cell physiology without poration of the membrane. This phenomenon was explored using live cell imaging and a sensitive fluorescent probe of transmembrane voltage in the human glioblastoma cell line, U87 MG, known to express a number of voltage-gated ion channels. The specific ion channels involved in the nsPEF response were screened using a membrane potential imaging approach and a combination of pharmacological antagonists and ion substitutions. It was found that a single 10ns pulsed electric field of 34kV/cm depolarizes the transmembrane potential of cells by acting on specific voltage-sensitive ion channels; namely the voltage and Ca2 + gated BK potassium channel, L- and T-type calcium channels, and the TRPM8 transient receptor potential channel. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Expression and prognostic impact of matrix metalloproteinase-2 (MMP-2) in astrocytomas

    DEFF Research Database (Denmark)

    Ramachandran, Rahimsan K.; Sørensen, Mia D.; Aaberg-Jessen, Charlotte

    2017-01-01

    with diffuse astrocytoma, anaplastic astrocytoma and glioblastoma were stained immunohistochemically using a monoclonal MMP-2 antibody. The MMP-2 intensity in cytoplasm/membrane was quantified by a trained software-based classifier using systematic random sampling in 10% of the tumor area. We found MMP-2...... of this tumor. Matrix metalloproteinase-2 (MMP-2) is an extracellular matrix degrading enzyme which has been shown to play important roles in different cancers. The aim of this study was to investigate the expression and prognostic potential of MMP-2 in astrocytomas. Tissue samples from 89 patients diagnosed...

  17. Anorexia: an early sign of fourth ventricle astrocytoma in children.

    Science.gov (United States)

    Leroy, Henri-Arthur; Baroncini, Marc; Delestret, Isabelle; Florent, Vincent; Vinchon, Matthieu

    2014-12-01

    Paediatric low-grade astrocytomas of the fourth ventricle are rare tumours, generally revealed by hydrocephalus. However, some patients present with a history of severe anorexia. It might be a harbinger, which if recognized, could lead to earlier diagnosis. We decided to examine our database in order to evaluate the incidence and signification of anorexia in this context. Retrospective monocentric study of cases of low-grade astrocytomas of the fourth ventricle operated between 1991 and 2012 in our paediatric neurosurgery department. We particularly observed the clinical presentation and long-term clinical, oncological and radiological evolution. Non-parametrical tests were used (Mann-Whitney, Fisher). We reviewed 34 cases, 31 pilocytic astrocytomas and 3 diffuse astrocytomas, 16 boys and 18 girls, (M/F ratio 0.89). Mean age at diagnosis was 8 years old. Seven presented with notable anorexia, the average BMI in this group was ≤2 standard deviation (SD); with clinical signs evolving for 11.5 months. Twenty-seven children had no anorexia; average BMI in this group was +1 SD, with clinical evolution for 6 months on an average of p anorexia, body mass index improved markedly in the postoperative follow-up, which lasted, on average, for 6 years. Anorexia with stunted body weight curve is a non-exceptional presentation in children with low-grade astrocytomas of the fourth ventricle. Unexplained or atypical anorexia with negative etiologic assessment should prompt cerebral imaging. Clinical improvement after surgical resection, could suggest a possible interaction between tumour tissue and appetite-suppressing peptide secretion.

  18. Holocord low grade astrocytoma - Role of radical irradiation and chemotherapy

    International Nuclear Information System (INIS)

    Goyal, S.; Puri, T.; Julka, R.K.

    2015-01-01

    Spinal intradural tumors, especially those extending along the entire length of the spinal cord, termed as ‘holocord’ tumors are uncommon. Most of these are gliomas, with astrocytomas (low grade) predominating in children and ependymomas in adults. Other histologies, though reported, are even rarer. Management is debatable, with both surgery and radiotherapy of such extensive tumors posing challenges. We describe a case of a 14-year-old girl with holocord astrocytoma extending from cervicomedullary junction till lumbar spine, who recovered full neurological function following radical irradiation of entire spine followed by temozolomide-based chemotherapy. No grade 3/4 bone marrow morbidity was seen. Five years following treatment, she maintained normal neurological function and apparently normal pubertal and skeletal growth despite residual disease visible on imaging. Literature review of existing reports of holocord astrocytomas highlighting management and outcome is presented.

  19. Radical proposal for the treatment of malignant astrocytoma

    International Nuclear Information System (INIS)

    Karlsson, U.; Black, P.; Nair, S.; Yablon, J.S.; Brady, L.W.

    1991-01-01

    The traditional treatment for anaplastic astrocytoma (AAF) and glioblastoma multiforme (GBM) leads to local relapse. The recurring element is assumed to be previously radioresistant, reorganizing hypoxic cells that require up to three times the traditional photon irradiation dose for inactivation. We are proposing to coagulate the original lesion with high-dose precision brachytherapy, immediately followed by resection to save the patient from secondary effects of the necrotic region. The treatment then continues with adjuvant external beam radiation therapy to the local surrounding brain and concomitant chemotherapy. The approach inverts the traditional regimen. It has the virtue of being precise, avoiding secondary effects of the necrotic tumor, and satisfying accepted radiobiological principles

  20. Expression of estrogen and progesterone receptors in astrocytomas: a literature review

    Directory of Open Access Journals (Sweden)

    Cléciton Braga Tavares

    Full Text Available Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: “estrogen receptor beta” OR “estrogen receptor alpha” OR “estrogen receptor antagonists” OR “progesterone receptors” OR “astrocytoma” OR “glioma” OR “glioblastoma”. Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression.

  1. Expression of estrogen and progesterone receptors in astrocytomas: a literature review

    Science.gov (United States)

    Tavares, Cléciton Braga; Gomes-Braga, Francisca das Chagas Sheyla Almeida; Costa-Silva, Danylo Rafhael; Escórcio-Dourado, Carla Solange; Borges, Umbelina Soares; Conde, Airton Mendes; da Conceição Barros-Oliveira, Maria; Sousa, Emerson Brandão; da Rocha Barros, Lorena; Martins, Luana Mota; Facina, Gil; da-Silva, Benedito Borges

    2016-01-01

    Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: “estrogen receptor beta” OR “estrogen receptor alpha” OR “estrogen receptor antagonists” OR “progesterone receptors” OR “astrocytoma” OR “glioma” OR “glioblastoma”. Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression. PMID:27626480

  2. Intercellular transfer of P-glycoprotein from the drug resistant human bladder cancer cell line BIU-87 does not require cell-to-cell contact.

    Science.gov (United States)

    Zhou, Hui-liang; Zheng, Yong-jun; Cheng, Xiao-zhi; Lv, Yi-song; Gao, Rui; Mao, Hou-ping; Chen, Qin

    2013-09-01

    The efflux activity of transmembrane P-glycoprotein prevents various therapeutic drugs from reaching lethal concentrations in cancer cells, resulting in multidrug resistance. We investigated whether drug resistant bladder cancer cells could transfer functional P-glycoprotein to sensitive parental cells. Drug sensitive BIU-87 bladder cancer cells were co-cultured for 48 hours with BIU-87/ADM, a doxorubicin resistant derivative of the same cell line, in a Transwell® system that prevented cell-to-cell contact. The presence of P-glycoprotein in recipient cell membranes was established using fluorescein isothiocyanate, laser scanning confocal microscopy and Western blot. P-glycoprotein mRNA levels were compared between cell types. Rhodamine 123 efflux assay was done to confirm that P-glycoprotein was biologically active. The amount of P-glycoprotein protein in BIU-87 cells co-cultured with BIU-87/ADM was significantly higher than in BIU-87 cells (0.44 vs 0.25) and BIU-87/H33342 cells (0.44 vs 0.26, each p transfer. P-glycoprotein mRNA expression was significantly higher in BIU-87/ADM cells than in co-cultured BIU-87 cells (1.28 vs 0.30), BIU-87/H33342 (0.28) and BIU-87 cells (0.25, each p <0.001), ruling out a genetic mechanism. After 30 minutes of efflux, rhodamine 123 fluorescence intensity was significantly lower in BIU-87/ADM cells (5.55 vs 51.45, p = 0.004) and co-cultured BIU-87 cells than in BIU-87 cells (14.22 vs 51.45, p <0.001), indicating that P-glycoprotein was functional. Bladder cancer cells can acquire functional P-glycoprotein through a nongenetic mechanism that does not require direct cell contact. This mechanism is consistent with a microparticle mediated process. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Current treatment of low grade astrocytoma

    DEFF Research Database (Denmark)

    Pedersen, Christina Louise; Romner, Bertil

    2013-01-01

    Through a comprehensive review of the current literature, the present article investigates several aspects of low grade astrocytomas (LGA), including prognostic factors, treatment strategies and follow-up regimes. LGA are in general relatively slow-growing primary brain tumours, but they have a v...... effective in discriminating between tumour progression and radiation necrosis. The research into biomarkers is currently limited with regards to their applications in LGA diagnostics, and therefore further studies including larger patient populations are needed.......Through a comprehensive review of the current literature, the present article investigates several aspects of low grade astrocytomas (LGA), including prognostic factors, treatment strategies and follow-up regimes. LGA are in general relatively slow-growing primary brain tumours, but they have...... as the course of disease. The current literature seems to support the idea that treatment with radical tumour resection, where possible, yields better long term outcome for patients with LGA. However, adjuvant therapy is often necessary. Administering early postoperative radiotherapy to patients with partially...

  4. Regulation of sonic hedgehog-GLI1 downstream target genes PTCH1, Cyclin D2, Plakoglobin, PAX6 and NKX2.2 and their epigenetic status in medulloblastoma and astrocytoma

    International Nuclear Information System (INIS)

    Shahi, Mehdi H; Afzal, Mohammad; Sinha, Subrata; Eberhart, Charles G; Rey, Juan A; Fan, Xing; Castresana, Javier S

    2010-01-01

    The Sonic hedgehog (Shh) signaling pathway is critical for cell growth and differentiation. Impairment of this pathway can result in both birth defects and cancer. Despite its importance in cancer development, the Shh pathway has not been thoroughly investigated in tumorigenesis of brain tumors. In this study, we sought to understand the regulatory roles of GLI1, the immediate downstream activator of the Shh signaling pathway on its downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6 in medulloblastoma and astrocytic tumors. We silenced GLI1 expression in medulloblastoma and astrocytic cell lines by transfection of siRNA against GLI1. Subsequently, we performed RT-PCR and quantitative real time RT-PCR (qRT-PCR) to assay the expression of downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6. We also attempted to correlate the pattern of expression of GLI1 and its regulated genes in 14 cell lines and 41 primary medulloblastoma and astrocytoma tumor samples. We also assessed the methylation status of the Cyclin D2 and PTCH1 promoters in these 14 cell lines and 58 primary tumor samples. Silencing expression of GLI1 resulted up-regulation of all target genes in the medulloblastoma cell line, while only PTCH1 was up-regulated in astrocytoma. We also observed methylation of the cyclin D2 promoter in a significant number of astrocytoma cell lines (63%) and primary astrocytoma tumor samples (32%), but not at all in any medulloblastoma samples. PTCH1 promoter methylation was less frequently observed than Cyclin D2 promoter methylation in astrocytomas, and not at all in medulloblastomas. Our results demonstrate different regulatory mechanisms of Shh-GLI1 signaling. These differences vary according to the downstream target gene affected, the origin of the tissue, as well as epigenetic regulation of some of these genes

  5. Rapid emergence and mechanisms of resistance by U87 glioblastoma cells to doxorubicin in an in vitro tumor microfluidic ecology

    Science.gov (United States)

    Austin, Robert; Lee, Sanghyuk; Park, Sungsu

    We have developed a microfluidic device consisting of approximately 500 hexagonal micro-compartments which provides a complex ecology with wide ranges of drug and nutrient gradients and local populations. This ecology of a fragmented metapopulation induced the drug resistance in stage IV U87 glioblastoma cells to doxorubicin in seven days. Exome and transcriptome sequencing of the resistant cells identified mutations and differentially expressed genes. Gene ontology and pathway analyses of the genes identified showed that they were functionally relevant with the established mechanisms of doxorubicin action. Functional experiments support the in silico analyses and together demonstrate the effects of these genetic changes. Our findings suggest that given the rapid evolution of resistance and the focused response, this technology could act as a rapid screening modality for genetic aberrations leading to resistance to chemotherapy as well as counter-selection of drugs unlikely to be successful ultimately. Technology Innovation Program of the Ministry of Trade, Industry and Energy, Republic of Korea (10050154 to S.L. and S.P.), the National Research Foundation of Korea (NRF-2014M3C9A3065221 to S.L., NRF-2015K1A4A3047851 to J.K. and S.L.) funded by the Minis.

  6. Substance P induces rapid and transient membrane blebbing in U373MG cells in a p21-activated kinase-dependent manner.

    Directory of Open Access Journals (Sweden)

    John Meshki

    Full Text Available U373MG astrocytoma cells endogenously express the full-length neurokinin 1 receptor (NK1R. Substance P (SP, the natural ligand for NK1R, triggers rapid and transient membrane blebbing and we report that these morphological changes have different dynamics and intracellular signaling as compared to the changes that we have previously described in HEK293-NK1R cells. In both cell lines, the SP-induced morphological changes are Gq-independent, and they require the Rho, Rho-associated coiled-coil kinase (ROCK signaling pathway. Using confocal microscopy we have demonstrated that tubulin is phosphorylated subsequent to cell stimulation with SP and that tubulin accumulates inside the blebs. Colchicine, a tubulin polymerization inhibitor, blocked SP-induced blebbing in U373MG but not in HEK293-NK1R cells. Although p21-activated kinase (PAK is expressed in both cell lines, SP induced rapid phosphorylation of PAK in U373MG, but failed to phosphorylate PAK in HEK293-NK1R cells. The cell-permeable Rho inhibitor C3 transferase inhibited SP-induced PAK phosphorylation, but the ROCK inhibitor Y27632 had no effect on PAK phosphorylation, suggesting that Rho activates PAK in a ROCK-independent manner. Our study demonstrates that SP triggers rapid changes in cell morphology mediated by distinct intracellular signaling mechanisms in U373MG versus HEK293-NK1R cells.

  7. Comparative non-cholinergic neurotoxic effects of paraoxon and diisopropyl fluorophosphate (DFP) on human neuroblastoma and astrocytoma cell lines

    International Nuclear Information System (INIS)

    Qian Yongchang; Venkatraj, Jijayanagaram; Barhoumi, Rola; Pal, Ranadip; Datta, Aniruddha; Wild, James R.; Tiffany-Castiglioni, Evelyn

    2007-01-01

    The objective of this study was to evaluate the comparative non-cholinergic neurotoxic effects of paraoxon, which is acutely neurotoxic, and diisopropyl fluorophosphate (DFP), which induces OPIDN, in the human neuroblastoma SY5Y and the human astrocytoma cell line CCF-STTG1. SY5Y cells have been studied extensively as a model for OP-induced neurotoxicity, but CCF cells have not previously been studied. We conducted a preliminary human gene array assay of OP-treated SY5Y cells in order to assess at the gene level whether these cells can distinguish between OP compounds that do and do not cause OPIDN. Paraoxon and DFP induced dramatically different profiles of gene expression. Two genes were upregulated and 13 downregulated by at least 2-fold in paraoxon-treated cells. In contrast, one gene was upregulated by DFP and none was downregulated at the 2-fold threshold. This finding is consistent with current and previous observations that SY5Y cells can distinguish between OPs that do or do not induce OPIDN. We also examined gene array results for possible novel target proteins or metabolic pathways for OP neurotoxicity. Protein levels of glucose regulated protein 78 (GRP78) revealed that paraoxon exposure at 3 μM for 24 h significantly reduced GRP78 levels by 30% in neuroblastoma cells, whereas DFP treatment had no effect. In comparison with SY5Y neuroblastoma cells, paraoxon and DFP (3 μM for 24 h) each significantly increased GRP78 levels by 23-24% in CCF astrocytoma cells. As we have previously evaluated intracellular changes in Ca 2+ levels in SY5Y cells, we investigated the effects of paraoxon and DFP on cellular Ca 2+ homeostasis in CCF by studying cytosolic and mitochondrial basal calcium levels. A significant decrease in the ratio of mitochondrial to cytosolic Ca 2+ fluorescence was detected in CCF cultures treated for either 1 or 3 days with 1, 3, 10, or 30 μM paraoxon. In contrast, treatment with DFP for 1 day had no significant effect on the ratio of

  8. Prognostic relevance of gemistocytic grade II astrocytoma: gemistocytic component and MR imaging features compared to non-gemistocytic grade II astrocytoma

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Young Jin [Inje University, Busan Paik Hospital, Department of Radiology, Busan (Korea, Republic of); Park, Ji Eun; Kim, Ho Sung; Lee, Ji Ye; Jung, Seung Chai; Choi, Choong Gon; Kim, Sang Joon [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Nam, Soo Jeong [University of Ulsan College of Medicine, Asan Medical Center, Department of Pathology, Seoul (Korea, Republic of)

    2017-07-15

    To determine if gemistocytic grade II astrocytoma (GemA) and its MR imaging characteristics are associated with a shorter time-to-progression (TTP) compared with non-gemistocytic grade II astrocytoma (non-GemA). We enrolled 78 patients who were followed up more than 5 years (29 pathologically proven GemA and 49 non-GemA) during a 10-year period. Contrast-enhanced T1-weighted, diffusion-weighted imaging (DWI), dynamic susceptibility contrast (DSC), and MR spectroscopy (MRS) and clinical data were retrospectively reviewed. Clinical and MR imaging features were analyzed as possible prognostic factors of high-grade transformation, and multivariate analysis of TTP was performed using Cox proportional modeling. GemA showed more frequent high-grade features than non-GemA, including diffusion restriction (P <.001), increased choline/creatine (P =.02), and increased choline/NAA ratio (P =.015). Patients with GemA had a significantly shorter median TTP (53.1 vs 68 months; P <.001). A gemistocytic histopathology (hazard ratio = 3.42; P =.015) and low ADC (hazard ratio = 3.61; P =.001) were independently associated with a shorter TTP. GemA can present with MR imaging findings mimicking high-grade glioma at initial diagnosis and transforms to high-grade disease earlier than non-GemA. Low ADC on DWI might be useful in stratifying the risk of progression in patients with grade II astrocytoma. (orig.)

  9. Impaired RNA splicing of 5'-regulatory sequences of the astroglial glutamate transporter EAAT2 in human astrocytoma

    NARCIS (Netherlands)

    Münch, C.; Penndorf, A.; Schwalenstöcker, B.; Troost, D.; Ludolph, A. C.; Ince, P.; Meyer, T.

    2001-01-01

    A loss of the glutamate transporter EAAT2 has been reported in the neoplastic transformation of astrocytic cells and astrocytoma. The RNA expression of EAAT2 and five 5'-regulatory splice variants was investigated to identify alterations of the post-transcriptional EAAT2 gene regulation in human

  10. Effects of γ-radiation on cell growth, cell cycle and promoter methylation of 22 cell cycle genes in the 1321NI astrocytoma cell line.

    Science.gov (United States)

    Alghamian, Yaman; Abou Alchamat, Ghalia; Murad, Hossam; Madania, Ammar

    2017-09-01

    DNA damage caused by radiation initiates biological responses affecting cell fate. DNA methylation regulates gene expression and modulates DNA damage pathways. Alterations in the methylation profiles of cell cycle regulating genes may control cell response to radiation. In this study we investigated the effect of ionizing radiation on the methylation levels of 22 cell cycle regulating genes in correlation with gene expression in 1321NI astrocytoma cell line. 1321NI cells were irradiated with 2, 5 or 10Gy doses then analyzed after 24, 48 and 72h for cell viability using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliu bromide) assay. Flow cytometry were used to study the effect of 10Gy irradiation on cell cycle. EpiTect Methyl II PCR Array was used to identify differentially methylated genes in irradiated cells. Changes in gene expression was determined by qPCR. Azacytidine treatment was used to determine whether DNA methylation affectes gene expression. Our results showed that irradiation decreased cell viability and caused cell cycle arrest at G2/M. Out of 22 genes tested, only CCNF and RAD9A showed some increase in DNA methylation (3.59% and 3.62%, respectively) after 10Gy irradiation, and this increase coincided with downregulation of both genes (by 4 and 2 fold, respectively). with azacytidine confirmed that expression of CCNF and RAD9A genes was regulated by methylation. 1321NI cell line is highly radioresistant and that irradiation of these cells with a 10Gy dose increases DNA methylation of CCNF and RAD9A genes. This dose down-regulates these genes, favoring G2/M arrest. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  11. Adult Pilomyxoid Astrocytoma Mimicking a Cortical Brain Tumor: MR Imaging Findings

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jong Chang; Weon, Young Cheol; Suh, Jae Hee; Kim, Young; Hwang, Jae Cheol [Ulsan University Hospital, Ulsan (Korea, Republic of)

    2010-08-15

    A pilomyxoid astrocytoma (PMA) is a recently identified low-grade neoplasm that was previously classified as a pilocytic astrocytoma (PA), yet demonstrates unique histological features and more aggressive behavior. Although a PMA is generally a tumor of early childhood and typically occurs in the hypothalamic/chiasmatic region, it can mimic cortical tumors, especially in adults. We report the MR findings of a PMA presenting as a cortical brain tumor in an adult with neurofibromatosis 1 (NF1)

  12. Regulation of sonic hedgehog-GLI1 downstream target genes PTCH1, Cyclin D2, Plakoglobin, PAX6 and NKX2.2 and their epigenetic status in medulloblastoma and astrocytoma

    Directory of Open Access Journals (Sweden)

    Eberhart Charles G

    2010-11-01

    Full Text Available Abstract Background The Sonic hedgehog (Shh signaling pathway is critical for cell growth and differentiation. Impairment of this pathway can result in both birth defects and cancer. Despite its importance in cancer development, the Shh pathway has not been thoroughly investigated in tumorigenesis of brain tumors. In this study, we sought to understand the regulatory roles of GLI1, the immediate downstream activator of the Shh signaling pathway on its downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6 in medulloblastoma and astrocytic tumors. Methods We silenced GLI1 expression in medulloblastoma and astrocytic cell lines by transfection of siRNA against GLI1. Subsequently, we performed RT-PCR and quantitative real time RT-PCR (qRT-PCR to assay the expression of downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6. We also attempted to correlate the pattern of expression of GLI1 and its regulated genes in 14 cell lines and 41 primary medulloblastoma and astrocytoma tumor samples. We also assessed the methylation status of the Cyclin D2 and PTCH1 promoters in these 14 cell lines and 58 primary tumor samples. Results Silencing expression of GLI1 resulted up-regulation of all target genes in the medulloblastoma cell line, while only PTCH1 was up-regulated in astrocytoma. We also observed methylation of the cyclin D2 promoter in a significant number of astrocytoma cell lines (63% and primary astrocytoma tumor samples (32%, but not at all in any medulloblastoma samples. PTCH1 promoter methylation was less frequently observed than Cyclin D2 promoter methylation in astrocytomas, and not at all in medulloblastomas. Conclusions Our results demonstrate different regulatory mechanisms of Shh-GLI1 signaling. These differences vary according to the downstream target gene affected, the origin of the tissue, as well as epigenetic regulation of some of these genes.

  13. Clinical Implications of the Epidermal Growth Factor Receptor overexpression in the High-grade Astrocytomas

    International Nuclear Information System (INIS)

    Hong, Seong Eon; Kang, Jin Oh; Lee, Hye Kyoung; Yang, Moon Ho; Leem, Won; Cho, Kyung Sam

    1996-01-01

    To determine the incidence and prognostic effects of EGFR overexpression in the high-grade astrocytomas. With 23 paraffin blocks of the high-garde astrocytomas, expression of EGFR were evaluated by immunohistochemical staining employing polyclonal antibody raised to short cytoplasmic domain of the molecule. Two out of 7 anaplastic astrocytomas and 9 out of 16 glioblastoma multiform patients showed overexpression of EGFR(p=0.44). Three out of 11 patients of age below 55 and 8 out of 12 patients of age over 54 showed EGFR overexpression(p=0.141). Median survival of the EGFR negative anaplastic astrocytoma patient was 37 months. Median survival of the glioblastoma multiform patients were 11 months in EGFR negative group and 7 months in EGFR positive group. But survival difference was not significant(p=0.17). There was a marked trend of increasing overexpression of EGFR in older patients. But survival of the glioblastoma multiform decreased by the overexpression of the EGFR without significant

  14. Clinical significance of changes of serum expression of IGF-I in patients with astrocytoma

    International Nuclear Information System (INIS)

    Liu Jianbo; Ding Dongmei; Yang Fubing

    2005-01-01

    Objective: To investigate the serum expression of IGF-I in patients with astrocytoma of different degrees of malignancy as well as the changes of levels after operative removal of the tumor. Methods: Serum IGF-I contents were measured with IRMA in 16 patients with Grade I-II astrocytoma and 14 patients with Grade III-IV astrocytoma both before and after operation as well as in 30 controls. Results: The serum contents of IGF-I in both groups of patients were significantly higher than those in controls (P<0.05). The levels in Grade III-IV patients were significantly higher than those in Grade I-II patients (P < 0.05 ). After operation, the levels dropped significantly (vs before operation, P<0.05). Conclusion: The serum contents of IGF - I in patients with astrocytoma were positively correlated with the degree of malignancy. Post-operative decrease of IGF-I contents was related to the decrease of tumor burden. (authors)

  15. [Diagnostic imaging of high-grade astrocytoma: heterogeneity of clinical manifestation, image characteristics, and histopathological findings].

    Science.gov (United States)

    Okajima, Kaoru; Ohta, Yoshio

    2012-10-01

    Recent developments in diagnostic radiology, which have enabled accurate differential diagnoses of brain tumors, have been well described in the last three decades. MR and PET imaging can also provide information to predict histological grades and prognoses that might influence treatment strategies. However, high-grade astrocytomas consist of many different subtypes that are associated with different imaging and histological characteristics. Hemorrhage and necrosis results in a variety of imaging features, and infiltrative tumor growth entrapping normal neurons may cause different clinical manifestations. We reviewed patients with high-grade astrocytomas that showed various imaging characteristics, with special emphasis on initial symptoms and histological features. Clinicopathological characteristics of astrocytomas were also compared with other malignant tumors. Neurological deficits were not notable in patients with grade 3-4 astrocytomas when they showed infiltrative tumor growth, while brain metastases with compact cellular proliferation caused more neurological symptoms. Infiltrative tumors did not show any enhancing masses on MR imaging, but these tumors may show intratumor heterogeneity. Seizures were reported to be more frequent in low-grade glioma and in secondary glioblastoma. Tumor heterogeneity was also reported in molecular genetic profile, and investigators identified some subsets of astrocytomas. They investigated IHD1/2 mutation, EGFR amplification, TP53 mutation, Ki-67 index, etc. In summary, high-grade astrocytomas are not homogenous groups of tumors, and this is associated with the heterogeneity of clinical manifestation, image characteristics, and histopathological findings. Molecular studies may explain the tumor heterogeneity in the near future.

  16. Treatment results of non-pilocytic cerebral astrocytomas in adults treated by surgery, radiation therapy and chemotherapy

    International Nuclear Information System (INIS)

    Matsutani, Masao; Nishikawa, Ryo; Sugiyama, Satoshi; Fujimaki, Takamitsu; Nakamura, Osamu

    1999-01-01

    Non-pilocytic cerebral astrocytomas in adults are oncopathologically defined as well-differentiated carcinoma of the brain. They grow invasively and can not be cured by extensive surgery followed by radiation therapy. We performed multidisciplinary treatments consisting of surgery, radiation therapy and chemotherapy in 26 adult patients with non-pilocytic cerebral astrocytomas. The 5- and 10-year survival rates of the patients were 90.9% and 75.6%, respectively; these were better than reported survival rates of patients treated by postoperative radiation therapy alone. Precise analysis of clinical findings of astrocytic tumors suggested that glioblastomas growing superficially might be derived from preexisting astrocytomas. This hypothesis proposes that multidisciplinary treatments for astrocytomas in early stages could cure the disease and could ultimately decrease a number of glioblastomas. (author)

  17. Conformal proton radiation therapy for pediatric low-grade astrocytomas

    Energy Technology Data Exchange (ETDEWEB)

    Hug, E.B. [Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Radiation Medicine; Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Pediatrics and Dept. of Pathology; Darthmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States). Section of Radiation Oncology; Muenter, M.W.; Archambeau, J.O.; DeVries, A.; Loredo, L.N.; Grove, R.I.; Slater, J.D. [Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Radiation Medicine; Liwnicz, B. [Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Pathology

    2002-01-01

    Background: To evaluate the safety and efficacy of proton radiation therapy (PRT) for intracranial low-grade astrocytomas, the authors analyzed the first 27 pediatric patients treated at Loma Linda University Medical Center (LLUMC). Patients and Method: Between September 1991 and August 1997, 27 patients (13 female, 14 male) underwent fractionated proton radiation therapy for progressive or recurrent low-grade astrocytoma. Age at time of treatment ranged from 2 to 18 years (mean: 8.7 years). Tumors were located centrally (diencephatic) in 15 patients, in the cerebral and cerebellar hemispheres in seven patients, and in the brainstem in five patients. 25/27 patients (92%) were treated for progressive, unresectable, or residual disease following subtotal resection. Tissue diagnosis was available in 23/27 patients (85%). Four patients with optic pathway tumors were treated without histologic confirmation. Target doses between 50.4 and 63.0 CGE (cobalt gray equivalent, mean: 55.2 CGE) were prescribed at 1.8 CGE per fraction, five treatments per week. Results: At a mean follow-up period of 3.3 years (0.6-6.8 years), 6/27 patients experienced local failure (all located within the irradiated field), and 4/27 patients had died. By anatomic site these data translated into rates of local control and survival of 87% (13/15 patients) and 93% (14/15 patients) for central tumors, 71% (5/7 patients) and 86% (6/7 patients) for hemispheric tumors, and 60% (3/5 patients) and 60% (3/5 patients) for tumors located in the brainstem. Proton radiation therapy was generally well tolerated. All children with local control maintained their performance status. One child with associated neurofibromatosis, Type 1, developed Moyamoya disease. All six patients with optic pathway tumors and useful vision maintained or improved their visual status. Conclusions: This report on pediatric low-grade astrocytomas confirms proton radiation therapy as a safe and efficacious 3-D conformal treatment

  18. Malignant astrocytoma following radiotherapy for craniopharyngioma

    Energy Technology Data Exchange (ETDEWEB)

    Maat-Schieman, M.L.C.; Bots, G.T.A.M.; Thomeer, T.W.M.; Vielvoye, G.J. (Rijksuniversiteit Leiden (Netherlands). Hospital)

    1985-05-01

    The case report describes a boy with a malignant astrocytoma in the mid-line of the cerebellum 14 years after X-ray therapy for craniopharyngioma. In Leiden University Hospital this is the first case of a suspected radiation-induced brain tumour in 66 patients treated for cranial lesions by radiotherapy between 1969 and 1979 who have survived more than 5 years.

  19. Malignant astrocytoma following radiotherapy for craniopharyngioma

    International Nuclear Information System (INIS)

    Maat-Schieman, M.L.C.; Bots, G.T.A.M.; Thomeer, T.W.M.; Vielvoye, G.J.

    1985-01-01

    The case report describes a boy with a malignant astrocytoma in the mid-line of the cerebellum 14 years after X-ray therapy for craniopharyngioma. In Leiden University Hospital this is the first case of a suspected radiation-induced brain tumour in 66 patients treated for cranial lesions by radiotherapy between 1969 and 1979 who have survived more than 5 years. (author)

  20. Malignant Trigeminal Nerve Sheath Tumor and Anaplastic Astrocytoma Collision Tumor with High Proliferative Activity and Tumor Suppressor P53 Expression

    Directory of Open Access Journals (Sweden)

    Maher Kurdi

    2014-01-01

    Full Text Available Background. The synchronous development of two primary brain tumors of distinct cell of origin in close proximity or in contact with each other is extremely rare. We present the first case of collision tumor with two histological distinct tumors. Case Presentation. A 54-year-old woman presented with progressive atypical left facial pain and numbness for 8 months. MRI of the brain showed left middle cranial fossa heterogeneous mass extending into the infratemporal fossa. At surgery, a distinct but intermingled intra- and extradural tumor was demonstrated which was completely removed through left orbitozygomatic-temporal craniotomy. Histopathological examination showed that the tumor had two distinct components: malignant nerve sheath tumor of the trigeminal nerve and temporal lobe anaplastic astrocytoma. Proliferative activity and expressed tumor protein 53 (TP53 gene mutations were demonstrated in both tumors. Conclusions. We describe the first case of malignant trigeminal nerve sheath tumor (MTNST and anaplastic astrocytoma in collision and discuss the possible hypothesis of this rare occurrence. We propose that MTNST, with TP53 mutation, have participated in the formation of anaplastic astrocytoma, or vice versa.

  1. Study on the correlation between VEGF and peritumoral edema and tumor border in astrocytoma by CT

    International Nuclear Information System (INIS)

    Ye Yuxiang; Tan Siping; Liu Bo; Liu Guorui; Zhen Zhichao; Fan Miao

    2004-01-01

    Objective: To study the correlation between VEGF and peritumoral edema and tumor border in human astrocytoma, investigate the significance of its CT features in molecular-biology. Methods: The VEGF was examined by means of SP immunohistochemical technique in 52 cases of astrocytoma proved by pathology. The correlation of tumor VEGF with peritumoral edema, and tumor border was analyzed. Results: The peritumoral edema, tumor border and mass effect of astrocytoma was positively correlated with its VEGF. The VEGF increased with peritumoral edema and mass effect (P<0.01). VEGF were significantly higher in uncertain border group than those the clear border group (P<0.05), which VEGF were 69.2 ± 19.0. Conclusion: The over expression of VEGF obviously effect CT features in astrocytoma, such as peritumoral edema and tumor border

  2. astrocytoma – diagnostic pitfalls. A review

    Directory of Open Access Journals (Sweden)

    Ewa Matyja

    2016-10-01

    Full Text Available Pilocytic astrocytomas (PAs are the most frequent primary astroglial tumours affecting children and adolescents. They occur sporadically or in association with a genetically determined syndrome – neurofibromatosis type 1. Classic PA usually manifests as a well-circumscribed, often cystic, slowly growing tumour, which corresponds to WHO grade I. The majority of pilocytic tumours arise along the neuraxis, predominantly in the cerebellum. They are associated with favourable long-term outcome or spontaneous regression, even after incomplete resection. However, the behaviour and prognosis might also be related to tumour histology and location. Pilomyxoid astrocytoma (PMA represents a variant of classical PA with more invasive growth and increased risk of recurrences and dissemination. Typically, PAs exhibit distinct histology with biphasic architecture of loose, microcystic and compact, fibrillary areas. However, some tumours arise in an uncommon location and display heterogeneous histopathological appearance. The morphological pattern of PA can mimic some other glial neoplasms, including oligodendroglioma, pleomorphic xanthoastrocytoma, ependymoma or diffuse astrocytoma. Not infrequently, the advanced degenerative changes, including vascular fibrosis, and recent and old haemorrhages, may mimic vascular pathology. Sometimes, the neoplastic piloid tissue can resemble reactive gliosis, related to long-standing non neoplastic lesions. Not infrequently, PA exhibits histological features typical for anaplasia, including necrosis, mitoses and glomeruloid vascular proliferation that can suggest a diffuse high-grade glioma. However, even those PAs that lack distinct histological features of anaplasia can behave unpredictably, in a more aggressive manner, with leptomeningeal spreading. Genetic alterations resulting in aberrant signalling of the mitogen-activated protein kinase (MAPK pathway have been considered to underlie the development of PAs. The most

  3. Childhood Astrocytomas Treatment (PDQ®)—Health Professional Version

    Science.gov (United States)

    Astrocytoma is the most common type of glioma in children. Get detailed information about the clinical features, molecular and diagnostic evaluation, classification, prognosis, and treatment of newly diagnosed and recurrent disease low-grade and high-grade gliomas in this comprehensive summary for clinicians.

  4. Glioblastomas, astrocytomas and oligodendrogliomas linked to Lynch syndrome

    DEFF Research Database (Denmark)

    Therkildsen, C; Ladelund, S; Rambech, E

    2015-01-01

    .5%) in MSH2 gene mutation carriers compared to patients with mutations in MLH1 or MSH6. Glioblastomas predominated (56%), followed by astrocytomas (22%) and oligodendrogliomas (9%). MMR status was assessed in 10 tumors, eight of which showed MMR defects. None of these tumors showed immunohistochemical...

  5. Combined value of susceptibility weighted imaging and dynamic susceptibility-weighted contrast-enhanced MR perfusion-weighted imaging in brain astrocytoma grading

    International Nuclear Information System (INIS)

    Wang Xiaochun; Zhang Hui; Qin Jiangbo; Wang Le; Wu Xiaofeng

    2012-01-01

    Objective: To assess the value of combination of susceptibility weighted imaging (SWI) and dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion-weighted magnetic resonance imaging in astrocytoma grading. Methods: SWI and DSC scans were performed in 82 patients with pathologically confirmed astrocytoma. The patient group consisted of grade Ⅱ (15), grade Ⅲ (10), and grade Ⅳ (57). The intratumoral susceptibility signal intensity (ITSS) and relative cerebral blood volume (rCBV) max were used to determine the grade of astrocytomas by Kruskal Wallis test, Welch test, Spearman correlation coefficients, Pearson correlation coefficients, and receiver operating characteristic curve (ROC)statistic methods. Results: There were no ITSS in 14 cases of low-grade astrocytomas, the degree of ITSS were grade 1 to 3 in anaplastic astrocytomas, the degree of ITSS were grade 3 in all of the glioblastomas, the degree of ITSS were significant difference in all grades (H=71.96, P<0.01). rCBV max in grade Ⅱ, grade Ⅲ and grade Ⅳ astrocytomas were 1.26 ± 0.42, 3.59 ± 2.09 and 8.34 ± 1.16 respectively, rCBV max were significant difference in all grades (F'=681.72, P<0.01). ITSS showed significant correlation with rCBV max (r=0.72, P<0.01) and tumor grades (r=0.89, P<0.01), and rCBV and tumor grades showed significant correlation (r=0.78, P<0.01). Area under the ROC curve application SWI, DSC, SWI and DSC in differentiation of the grade Ⅱ and grade Ⅲ astrocytomas were 0.99, 0.93, 1.00, differentiate grade Ⅲ from grade Ⅳ were 0.70, 0.94, 0.94, and differentiate high-grade from low-grade astrocytomas were 1.00, 0.99, 1.00. Conclusions: ITSS is helpful to determine the grade of astrocytomas. The use of SWI in combination with DSC may improve the diagnostic accuracy of astrocytoma grading. (authors)

  6. Induction of cell death by graphene in Arabidopsis thaliana (Columbia ecotype) T87 cell suspensions

    International Nuclear Information System (INIS)

    Begum, Parvin; Fugetsu, Bunshi

    2013-01-01

    Highlights: • This study was set up to explore potential influence of graphene on T87 cells. • Fragmented nuclei, membrane damage, mitochondrial dysfunction were observed. • ROS increased, ROS are key mediators in the cell death signaling pathway. • Translocation of graphene into cells and an endocytosis-like structure was observed. • Graphene entering into the cells by endocytosis. -- Abstract: The toxicity of graphene on suspensions of Arabidopsis thaliana (Columbia ecotype) T87 cells was investigated by examining the morphology, mitochondrial dysfunction, reactive oxygen species generation (ROS), and translocation of graphene as the toxicological endpoints. The cells were grown in Jouanneau and Péaud-Lenoel (JPL) media and exposed to graphene at concentrations 0–80 mg/L. Morphological changes were observed by scanning electron microscope and the adverse effects such as fragmented nuclei, membrane damage, mitochondrial dysfunction was observed with fluorescence microscopy by staining with Hoechst 33342/propidium iodide and succinate dehydrogenase (mitochondrial bioenergetic enzyme). Analysis of intracellular ROS by 2′,7′-dichlorofluorescein diacetate demonstrated that graphene induced a 3.3-fold increase in ROS, suggesting that ROS are key mediators in the cell death signaling pathway. Transmission electron microscopy verified the translocation of graphene into cells and an endocytosis-like structure was observed which suggested graphene entering into the cells by endocytosis. In conclusion, our results show that graphene induced cell death in T87 cells through mitochondrial damage mediated by ROS

  7. Perfluorocarbon-Loaded Lipid Nanocapsules to Assess the Dependence of U87-Human Glioblastoma Tumor pO2 on In Vitro Expansion Conditions.

    Science.gov (United States)

    Lemaire, Laurent; Nel, Janske; Franconi, Florence; Bastiat, Guillaume; Saulnier, Patrick

    2016-01-01

    Growing tumor cell lines, such as U87-MG glioma cells, under mild hypoxia (3% O2) leads to a ca. 40% reduction in growth rate once implanted in the brain of nude mice, as compared to normoxia (21% O2) grown cells, wherein the former over-express HIF-1 and VEGF-A. Despite developing differently, the tumors have similar: blood perfusion, oxygen consumption, and vascular surface area parameters, whereas the number of blood vessels is nearly doubled in the tumor arising from normoxia cultured cells. Interestingly, tumor oxygen tension, measured using 19F-oximetry, showed that the normoxia grown cells led to tumors characterized by mild hypoxic environment (approximately 4%) conditions, whilst the hypoxia grown cells led to tumors characterized by physioxic environment (approximately 6%) conditions. This reversal in oxygen concentration may be responsible for the apparent paradoxical growth profiles.

  8. Adenosine Receptors Differentially Regulate the Expression of Regulators of G-Protein Signalling (RGS 2, 3 and 4 in Astrocyte-Like Cells.

    Directory of Open Access Journals (Sweden)

    Till Nicolas Eusemann

    Full Text Available The "regulators of g-protein signalling" (RGS comprise a large family of proteins that limit by virtue of their GTPase accelerating protein domain the signal transduction of G-protein coupled receptors. RGS proteins have been implicated in various neuropsychiatric diseases such as schizophrenia, drug abuse, depression and anxiety and aggressive behaviour. Since conditions associated with a large increase of adenosine in the brain such as seizures or ischemia were reported to modify the expression of some RGS proteins we hypothesized that adenosine might regulate RGS expression in neural cells. We measured the expression of RGS-2,-3, and -4 in both transformed glia cells (human U373 MG astrocytoma cells and in primary rat astrocyte cultures stimulated with adenosine agonists. Expression of RGS-2 mRNA as well as RGS2 protein was increased up to 30-fold by adenosine agonists in astrocytes. The order of potency of agonists and the blockade by the adenosine A2B-antagonist MRS1706 indicated that this effect was largely mediated by adenosine A2B receptors. However, a smaller effect was observed due to activation of adenosine A2A receptors. In astrocytoma cells adenosine agonists elicited an increase in RGS-2 expression solely mediated by A2B receptors. Expression of RGS-3 was inhibited by adenosine agonists in both astrocytoma cells and astrocytes. However while this effect was mediated by A2B receptors in astrocytoma cells it was mediated by A2A receptors in astrocytes as assessed by the order of potency of agonists and selective blockade by the specific antagonists MRS1706 and ZM241385 respectively. RGS-4 expression was inhibited in astrocytoma cells but enhanced in astrocytes by adenosine agonists.

  9. Management of Pediatric Spinal Cord Astrocytomas: Outcomes With Adjuvant Radiation

    International Nuclear Information System (INIS)

    Guss, Zachary D.; Moningi, Shalini; Jallo, George I.; Cohen, Kenneth J.; Wharam, Moody D.; Terezakis, Stephanie A.

    2013-01-01

    Purpose: Pediatric intramedullary spinal cord tumors are exceedingly rare; in the United States, 100 to 200 cases are recognized annually, of these, most are astrocytomas. The purpose of this study is to report the outcomes in pediatric patients with spinal cord astrocytomas treated at a tertiary care center. Methods and Materials: An institutional review board-approved retrospective single-institution study was performed for pediatric patients with spinal cord astrocytomas treated at our hospital from 1990 to 2010. The patients were evaluated on the extent of resection, progression-free survival (PFS), and development of radiation-related toxicities. Kaplan-Meier curves and multivariate regression model methods were used for analysis. Results: Twenty-nine patients were included in the study, 24 with grade 1 or 2 (low-grade) tumors and 5 with grade 3 or 4 (high-grade) tumors. The median follow-up time was 55 months (range, 1-215 months) for patients with low-grade tumors and 17 months (range, 10-52 months) for those with high-grade tumors. Thirteen patients in the cohort received chemotherapy. All patients underwent at least 1 surgical resection. Twelve patients received radiation therapy to a median radiation dose of 47.5 Gy (range, 28.6-54.0 Gy). Fifteen patients with low-grade tumors and 1 patient with a high-grade tumor exhibited stable disease at the last follow-up visit. Acute toxicities of radiation therapy were low grade, whereas long-term sequelae were infrequent and manageable when they arose. All patients with low-grade tumors were alive at the last follow-up visit, compared with 1 patient with a high-grade tumor. Conclusion: Primary pediatric spinal cord astrocytomas vary widely in presentation and clinical course. Histopathologic grade remains a major prognostic factor. Patients with low-grade tumors tend to have excellent disease control and long-term survival compared to those with high-grade tumors. This experience suggests that radiation therapy

  10. Management of Pediatric Spinal Cord Astrocytomas: Outcomes With Adjuvant Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Guss, Zachary D.; Moningi, Shalini [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, Maryland (United States); Jallo, George I. [Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland (United States); Cohen, Kenneth J. [Division of Pediatric Oncology, Johns Hopkins Hospital, Baltimore, Maryland (United States); Wharam, Moody D. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, Maryland (United States); Terezakis, Stephanie A., E-mail: stereza1@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, Maryland (United States)

    2013-04-01

    Purpose: Pediatric intramedullary spinal cord tumors are exceedingly rare; in the United States, 100 to 200 cases are recognized annually, of these, most are astrocytomas. The purpose of this study is to report the outcomes in pediatric patients with spinal cord astrocytomas treated at a tertiary care center. Methods and Materials: An institutional review board-approved retrospective single-institution study was performed for pediatric patients with spinal cord astrocytomas treated at our hospital from 1990 to 2010. The patients were evaluated on the extent of resection, progression-free survival (PFS), and development of radiation-related toxicities. Kaplan-Meier curves and multivariate regression model methods were used for analysis. Results: Twenty-nine patients were included in the study, 24 with grade 1 or 2 (low-grade) tumors and 5 with grade 3 or 4 (high-grade) tumors. The median follow-up time was 55 months (range, 1-215 months) for patients with low-grade tumors and 17 months (range, 10-52 months) for those with high-grade tumors. Thirteen patients in the cohort received chemotherapy. All patients underwent at least 1 surgical resection. Twelve patients received radiation therapy to a median radiation dose of 47.5 Gy (range, 28.6-54.0 Gy). Fifteen patients with low-grade tumors and 1 patient with a high-grade tumor exhibited stable disease at the last follow-up visit. Acute toxicities of radiation therapy were low grade, whereas long-term sequelae were infrequent and manageable when they arose. All patients with low-grade tumors were alive at the last follow-up visit, compared with 1 patient with a high-grade tumor. Conclusion: Primary pediatric spinal cord astrocytomas vary widely in presentation and clinical course. Histopathologic grade remains a major prognostic factor. Patients with low-grade tumors tend to have excellent disease control and long-term survival compared to those with high-grade tumors. This experience suggests that radiation therapy

  11. Cloning and characterization of human RTVP-1b, a novel splice variant of RTVP-1 in glioma cells

    International Nuclear Information System (INIS)

    Xiang Cunli; Sarid, Ronit; Cazacu, Simona; Finniss, Susan; Lee, Hae-Kyung; Ziv-Av, Amotz; Mikkelsen, Tom; Brodie, Chaya

    2007-01-01

    Here, we report the cloning and characterization of RTVP-1b, a novel splice variant of human RTVP-1, which was isolated from the U87 glioma cell line. Sequence analysis revealed that RTVP-1b contains an additional 71 base exon between exons 2 and 3 that is missing in RTVP-1, leading to a frame-shift and a different putative protein. The deduced protein was 237 amino acids in length, sharing the N-terminal 141 amino acids with RTVP-1. RT-PCR analysis demonstrated that RTVP-1b was expressed in a wide range of tissues and that its expression was different from that of RTVP-1. In contrast, RTVP-1 and RTVP-1b showed similar patterns of expression in astrocytic tumors; highly expressed in glioblastomas as compared to normal brains, low-grade astrocytomas and anaplastic oligodendrogliomas. Overexpression of RTVP-1b increased glioma cell proliferation but did not affect cell migration. Our results suggest that RTVP-1b represents a potential prognostic marker and therapeutic target in gliomas

  12. Outcome of Patients With Pilocytic Astrocytoma and Leptomeningeal Dissemination

    Energy Technology Data Exchange (ETDEWEB)

    Mazloom, Ali; Hodges, Joseph C.; Teh, Bin S. [Department of Radiation Oncology, Methodist Hospital, Houston, TX (United States); Chintagumpala, Murali [Department of Pediatrics, Baylor College of Medicine, Houston, TX (United States); Paulino, Arnold C., E-mail: apaulino@tmhs.org [Department of Radiation Oncology, Methodist Hospital, Houston, TX (United States); Department of Pediatrics, Baylor College of Medicine, Houston, TX (United States)

    2012-10-01

    Purpose: To determine the patient, tumor, and treatment characteristics of patients with pilocytic astrocytoma (PA) and leptomeningeal dissemination (LMD). Methods and Materials: A PubMed search of English-language studies pertaining to PA with LMD was performed using a combination of keywords that included juvenile pilocytic astrocytoma, low-grade astrocytoma, low-grade glioma, leptomeningeal dissemination, neuraxis spread, and radiotherapy. We found 26 studies with 58 patients between 1976 and 2005 that met these criteria. Results: The median survival for PA patients with LMD was 65 months. The 1-, 2-, and 5-year overall survival (OS) rate after the diagnosis of LMD was 81.1%, 75.7%, and 55.5%. The 1-, 2-, and 5-year progression-free survival (PFS) rate after the diagnosis of LMD was 69.3%, 66.5%, and 34.6%, respectively. Age, gender, primary site location, timing of LMD presentation (synchronous vs. metachronous), and LMD location did not significantly influence OS or PFS. No statistically significant difference was found in OS or PFS between the chemotherapy and radiotherapy groups. Likewise, no difference was found in OS or PFS according to the use of craniospinal irradiation vs. less extensive RT fields. Conclusions: Approximately one-half of PA patients were alive 5 years after the diagnosis of LMD. Both chemotherapy and radiotherapy have efficacy against LMD. Although the use of craniospinal irradiation did not have an effect on PFS, the patient numbers were small and a larger number treated with craniospinal irradiation is needed to determine its efficacy.

  13. Leptomeningeal dissemination of an astrocytoma causing hypophyseal insufficiency

    International Nuclear Information System (INIS)

    Suzan, S.; Cigdem, O.; Furkan, U.; Baki, A.

    2012-01-01

    Full text: Introduction: Hypophyseal insufficiency is an unusual clinical presentation of metastatic disease. Objectives: In this report, a case of leptomeningeal metastasis of an astrocytoma to the infundibular recess, causing hypophyseal insufficiency is presented with its magnetic resonance imaging (MRI) findings. Materials and methods: A 27-year-old woman presented with nausea, vomiting and generalized weakness. Her laboratory results were consistent with hypopituitarism. She had an operation history for astrocytoma. She was referred to radiology department for brain MRI study. Contrast-enhanced MRI scan showed extensive wall enhancement of ventricles consistent with leptomeningeal metastases. A nodular mass with pronounced contrast enhancement was also detected at the infundibular stalk. Results: Because suprasellar cistern was normal and extensive leptomeningeal metastases was detected, the nodular mass at the infundibular stalk thought to be secondary to leptomeningeal involvement of the infundibular recess. Conclusion: When a patient with a known malignancy presented with hypophyseal insufficiency, it should be thought that leptomeningeal metastases to the infundibular recess may also be a cause. The neuroimaging, especially contrast-enhanced studies, is necessary for the confirmation

  14. The extrinsic and intrinsic apoptotic pathways are involved in manganese toxicity in rat astrocytoma C6 cells.

    Science.gov (United States)

    Alaimo, Agustina; Gorojod, Roxana M; Kotler, Mónica L

    2011-08-01

    Manganese (Mn) is a trace element known to be essential for maintaining the proper function and regulation of many biochemical and cellular reactions. However, chronic exposure to high levels of Mn in occupational or environmental settings can lead to its accumulation in the brain resulting in a degenerative brain disorder referred to as Manganism. Astrocytes are the main Mn store in the central nervous system and several lines of evidence implicate these cells as major players in the role of Manganism development. In the present study, we employed rat astrocytoma C6 cells as a sensitive experimental model for investigating molecular mechanisms involved in Mn neurotoxicity. Our results show that C6 cells undergo reactive oxygen species-mediated apoptotic cell death involving caspase-8 and mitochondrial-mediated pathways in response to Mn. Exposed cells exhibit typical apoptotic features, such as chromatin condensation, cell shrinkage, membrane blebbing, caspase-3 activation and caspase-specific cleavage of the endogenous substrate poly (ADP-ribose) polymerase. Participation of the caspase-8 dependent pathway was assessed by increased levels of FasL, caspase-8 activation and Bid cleavage. The involvement of the mitochondrial pathway was demonstrated by the disruption of the mitochondrial membrane potential, the opening of the mitochondrial permeability transition pore, cytochrome c release, caspase-9 activation and the increased mitochondrial levels of the pro-apoptotic Bcl-2 family proteins. In addition, our data also shows for the first time that mitochondrial fragmentation plays a relevant role in Mn-induced apoptosis. Taking together, these findings contribute to a deeper elucidation of the molecular signaling mechanisms underlying Mn-induced apoptosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. 24 CFR 87.105 - Definitions.

    Science.gov (United States)

    2010-04-01

    ... services in the private sector. (o) Recipient includes all contractors, subcontractors at any tier, and... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Definitions. 87.105 Section 87.105... RESTRICTIONS ON LOBBYING General § 87.105 Definitions. For purposes of this part: (a) Agency, as defined in 5 U...

  16. Association of invasive breast carcinoma and multicentric high grade astrocytoma: a case report with a review.

    Science.gov (United States)

    Pour, P Hossein; Forouzandeh, M; Beni, A Naderi; Beni, Z Naderi; Hoseinpour, P

    2011-03-01

    Breast cancer is the most common cancer in women. Multicentric gliomas are uncommon lesions of the central nervous system (CNS) with an unprecise rate of occurrence that diffusely infiltrate large portions of the brain. High grade astrocytoma is the most agressive form of gliomas and often has a distinct neuroimaging pattern with a poor prognosis. We report a case of a 29-year-old woman patient with primary breast carcinoma and high grade astrocytoma subsequently developed. The woman was treated by mastectomy and 20 months post-diagnosis of the cancer she exhibited a transient facial paralysis. Magnetic resonance imaging (MRI) revealed two cranial masses suspicious of metastasis. A complete tumor removal from the brain was performed. On histological examination, this tumor was a high grade astrocytoma.

  17. [Familial astrocytoma associated with von Recklinghausen's disease: report of two cases].

    Science.gov (United States)

    Ito, Y; Oki, S; Mikami, T; Ogasawara, H; Kawamoto, Y; Sato, H; Yamaguchi, S; Hayashi, Y; Shindo, H

    1997-03-01

    Two cases of astrocytoma associated with von Recklinghausen's disease (neurofibromatosis type; NF-1) were reported. The first case wes a 60-year-old man who had been diagnosed as von Recklinghausen's disease on the basis of skin findings. Magnetic resonance imaging (MRI) showed a tumor in the left temporal lobe. Partial removal was performed with neuronavigator, and because of the existence of Rosenthal fiber the histological diagnosis was pilocytic astrocytoma. Radiation therapy was performed. The second case was a 6-year-old boy suffering from headache and left hemiparesis including his face. MRI showed a tumor with a cyst in the right thalamus and obstructive hydrocephalus. Initially CT-guided stereotactic biopsy was performed, and the histological diagnosis, on the basis of increased cellularity, pleomorphism and nuclear atypia without necrosis or vascular proliferation, was anaplastic astrocytoma. Radiation and chemo-immuno therapy were carried out after V-P shunt. It is well known that von Recklinghausen's disease (NF-1) is often associated with optic glioma (5-36%). In the literature, the glioma seldom occurs in other parts of the brain, supratentorial glioma especially is rare. Only two familial cases of supratentorial glioma associated with von Recklinghausen's disease have been reported. The prognosis of supratentorial glioma associated with NF-1 was poor in these reports. In this paper, the diagnostic and therapeutic problems are discussed.

  18. Vascular endothelial growth factor and basic fibroblast growth factor expression positively correlates with angiogenesis and peritumoural brain oedema in astrocytoma

    International Nuclear Information System (INIS)

    Jang, F.F.; Wei, W.

    2008-01-01

    Astrocytoma is the most malignant intracranial neoplasm and is characterized by high neovascularization and peritumoural brain oedema. Angiogenesis is a complicated process in oncogenesis regulated by the balance between angiogenic and antiangiogenic factors. The expression of two angiogenic growth factors, vascular endothelial growth factor and basic fibroblast growth factor were investigated using immunohistochemistry for astrocytoma from 82 patients and 11 normal human tissues. The expression of vascular endothelial growth factor and basic fibroblast growth factor positively correlate with the pathological grade of astrocytoma, microvessel density numbers and brain oedema, which may be responsible for the increased tumour neovascularization and peritumoural brain oedema. The results support the idea that inhibiting vascular endothelial growth factor and basic fibroblast growth factor are useful for the treatment of human astrocytoma and to improve patient's clinical outcomes and prognosis. (author)

  19. Poly (ɛ-caprolactone) nanoparticles of carboplatin: Preparation, characterization and in vitro cytotoxicity evaluation in U-87 MG cell lines.

    Science.gov (United States)

    Karanam, Vamshikrishna; Marslin, Gregory; Krishnamoorthy, Balakumar; Chellan, Vijayaraghavan; Siram, Karthik; Natarajan, Tamilselvan; Bhaskar, Balaji; Franklin, Gregory

    2015-06-01

    Carboplatin is a platinum based drug used in the treatment of several malignancies. Due to poor cellular uptake, generally, a larger dose of drug is administered to achieve therapeutic levels, causing harmful side-effects such as hematologic toxicity. In order to enhance the cellular uptake of carboplatin, we have developed carboplatin loaded nanoparticles using the biodegradable polymer poly (ɛ-caprolactone) (PCL). Nanoparticles ranging from the size of 23.77±1.37 to 96.73±2.79 nm with positive zeta potential and moderate entrapment efficiency (54.21±0.98%) were obtained. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) confirmed the spherical morphology and smooth surface of all nanoformulations. The concentrations of PCL and the stabilizer (DMAB) are found to play a role in determining the size and the entrapment efficiency of the nanoparticles. Drug release from nanoparticles followed a biphasic pattern with an initial burst release followed by a sustained release for 10h. Results of in vitro cellular uptake and cytotoxicity studies revealed that carboplatin in the form of PCL-nanoparticles were efficiently up taken and displayed profound cytotoxicity to U-87 MG (human glioma) cells than the free drug. Importantly, unlike the free carboplatin, carboplatin in the form of PCL nanoparticles did not present any haemolytic activity in rat erythrocytes, a major side effect of this chemotherapeutic drug. This suggests that poly (ɛ-caprolactone) nanoencapsulation of carboplatin might be an efficient approach to treat cancer, while reducing carboplatin induced haemolysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Lack of prognostic significance of C-erbB-2 expression in low- and high- grade astrocytomas.

    Science.gov (United States)

    Muallaoglu, Saik; Besen, Ali Ayberk; Ata, Alper; Mertsoylu, Huseyin; Arican, Ali; Kayaselcuk, Fazilet; Ozyilkan, Ozgur

    2014-01-01

    Astrocytic tumors, the most common primary glial tumors of the central nervous system, are classified from low to high grade according to the degree of anaplasia and presence of necrosis. Despite advances in therapeutic management of high grade astrocytic tumors, prognosis remains poor. In the present study, the frequency and prognostic significance of c-erb-B2 in astrocytic tumors was investigated. Records of 72 patients with low- and high-grade astrocytic tumors were evaluated. The expression of C-erbB-2 was determined immunohistochemically and intensity was recorded as 0 to 3+. Tumors with weak staining (1+) or no staining (0) were considered Her-2 negative, while tumors with moderate (2+) and strong (3+) staining were considered Her-2 positive. Of the 72 patients, 41 (56.9%) had glioblastoma (GBM), 10 (13.9%) had diffuse astrocytoma, 15 (20.8%) had anaplastic astrocytoma, 6 (8.3%) had pilocytic astrocytoma. C-erbB-2 overexpression was detected in the tumor specimens of 17 patients (23.6%). Six (8.3%) tumors, all GBMs, exhibited strong staining, 2 (2.7%) specimens, both GBMs, exhibited moderate staining, and 9 specimens, 5 of them GBMs (12.5%), exhibited weak staining. No staining was observed in diffuse astrocytoma and pilocytic astrocytoma specimens. Median overall survival of patients with C-erbB-2 negative and C-erbB-2 positive tumors were 30 months (95%CI: 22.5-37.4 months) and 16.9 months (95%CI: 4.3-29.5 months), respectively (p=0.244). Although there was no difference in survival, C-erbB-2 overexpression was observed only in the GBM subtype.

  1. MRS of pilocytic astrocytoma: The peak at 2 ppm may not be NAA.

    Science.gov (United States)

    Tamrazi, Benita; Nelson, Marvin D; Blüml, Stefan

    2017-08-01

    To determine whether the chemical shift of residual N-acetylaspartate (NAA) signal in pilocytic astrocytomas (PA) is consistent with the position of the NAA peak in controls. MR spectra from 27 pediatric World Health Organization (WHO) grade I pilocytic astrocytoma patients, fifteen patients with WHO grade II and high-grade (III-IV) astrocytomas, and 36 controls were analyzed. All spectra were acquired with a short echo time (35 ms), single voxel point-resolved spectroscopy sequence on clinical 3 tesla scanners. Fully automated LCModel software was used for processing, which included the fitting of peak positions for NAA and creatine (Cr). The chemical shift difference between the NAA and Cr peaks was significantly smaller (by 0.016 ± 0.005 parts per million, P NAA peak in PAs is not consistent with NAA. The signal likely originates from an N-acetyl group of one or more other chemicals such as N-acetylated sugars. Magn Reson Med 78:452-456, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Multifaceted role of galectin-3 on human glioblastoma cell motility

    International Nuclear Information System (INIS)

    Debray, Charles; Vereecken, Pierre; Belot, Nathalie; Teillard, Peggy; Brion, Jean-Pierre; Pandolfo, Massimo; Pochet, Roland

    2004-01-01

    Astrocytic tumors' aggressiveness results from an imbalance between cell proliferation and cell death favoring growth, but also from the propensity of tumor cells to detach from the primary tumor site, migrate, and invade the surrounding parenchyma. Astrocytic tumor progression is known to be associated with an increased expression of galectin-3. We investigated in cell culture how galectin-3 expression affects astrocytoma cell motility. Galectin-3 deficient cells were obtained by stable transfection of the U373 glioblastoma cell line with a specific expression antisense plasmid. Cultured galectin-3 deficient glioblastoma cells showed increased motility potential on laminin and modifications in the cytoskeleton reorganization. In addition, c-DNA microarrays and quantitative immunofluorescence analysis showed that galectin-3 deficient U373 cells have an increased expression of integrins-α6 and -β1, proteins known to be implicated in the regulation of cell adhesion

  3. Astrocytoma of the pituitary gland (pituicytoma): case report

    International Nuclear Information System (INIS)

    Uesaka, T.; Miyazono, M.; Nishio, S.; Iwaki, T.

    2002-01-01

    A 34-year-old man presented with a 4-month history of visual obscuration. Magnetic resonance imaging showed a solid, discrete, contrast-enhancing pituitary mass with suprasellar extension. Surgery, which was performed via a transsphenoidal approach, disclosed the pituitary tumor to be a fibrillary astrocytoma (pituicytoma). This case report contains the clinical and neuroimaging features of this rare tumor of the neurohypophysis, which masqueraded as a pituitary adenoma. (orig.)

  4. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-06-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is an invariably fatal central nervous system tumor despite treatment with surgery, radiation, and chemotherapy. Further insights into the molecular and cellular mechanisms that drive GBM formation are required to improve patient outcome. MicroRNAs are emerging as important regulators of cellular differentiation and proliferation, and have been implicated in the etiology of a variety of cancers, yet the role of microRNAs in GBM remains poorly understood. In this study, we investigated the role of microRNAs in regulating the differentiation and proliferation of neural stem cells and glioblastoma-multiforme tumor cells. Methods We used quantitative RT-PCR to assess microRNA expression in high-grade astrocytomas and adult mouse neural stem cells. To assess the function of candidate microRNAs in high-grade astrocytomas, we transfected miR mimics to cultured-mouse neural stem cells, -mouse oligodendroglioma-derived stem cells, -human glioblastoma multiforme-derived stem cells and -glioblastoma multiforme cell lines. Cellular differentiation was assessed by immunostaining, and cellular proliferation was determined using fluorescence-activated cell sorting. Results Our studies revealed that expression levels of microRNA-124 and microRNA-137 were significantly decreased in anaplastic astrocytomas (World Health Organization grade III and glioblastoma multiforme (World Health Organization grade IV relative to non-neoplastic brain tissue (P erbB tumors and cluster of differentiation 133+ human glioblastoma multiforme-derived stem cells (SF6969. Transfection of microRNA-124 or microRNA-137 also induced G1 cell cycle arrest in U251 and SF6969 glioblastoma multiforme cells, which was associated with decreased expression of cyclin-dependent kinase 6 and phosphorylated retinoblastoma (pSer 807/811 proteins. Conclusion microRNA-124 and microRNA-137 induce differentiation of adult mouse neural stem cells, mouse

  5. FLAIR MR sequence in the diagnosis and follow-up of low-grade astrocytomas

    Directory of Open Access Journals (Sweden)

    Stošić-Opinćal Tatjana

    2005-01-01

    Full Text Available Aim. To evaluate the sensitivity of fluid-attenuated inversion recovery (FLAIR sequence in the diagnosis and follow-up of the patients with low-grade astrocytomas compared with T2-weighted (T2W sequence. Methods. Twenty-four patients with biopsy- confirmed low-grade astrocytoma (age range, 15-66 years underwent T1- weighted (T1W, T2W and FLAIR imaging with a superconducting unit 1.0 T. FLAIR images were qualitatively evaluated by comparison with T2W images by the three experienced neuroradiologists. To evaluate the diagnostic value of FLAIR, the neuroradiologists individually assessed the possibilities of the detection of lesions, as well as the possibilities of the differentiation of tumor from the surrounding edema on FLAIR vs. T2W images. Every examiner ranked FLAIR sequence vs. T2W in three degrees: worse, equal and better. Results. The comparison of FLAIR with T2W spin-echo (SE images with regard to the detection of the lesions showed that 82.8% of FLAIR studies were superior, 17.2% were of similar diagnostic value, and none was inferior to the T2W images. The comparison of images with regard to the differentiation of tumor boundaries vs. surrounding edema showed that 92.5% of FLAIR studies were superior, 7.5% were of similar diagnostic value, and none was inferior to the T2W images. Conclusion. Our results were similar to the previous studies' results concerning the advantages of FLAIR sequence in the diagnosis of low grade astrocytomas over T2W sequence. FLAIR was better at showing different tumor components, and at distinguishing CSF from the cystic component, and the postoperative cavity, compared with T2W images. Our conclusion was that FLAIR could be routinely used in the evaluation and follow-up of low-grade astrocytomas.

  6. Phase II trial of carmustine, cisplatin, and oral etoposide chemotherapy before radiotherapy for grade 3 astrocytoma (anaplastic astrocytoma): Results of North Central Cancer Treatment Group trial 98-72-51

    International Nuclear Information System (INIS)

    Rao, Ravi D.; Krishnan, Sunil; Fitch, Tom R.; Schomberg, Paula J.; Dinapoli, Robert P.; Nordstrom, Kathleen; Scheithauer, Bernd; O'Fallon, Judith R.; Maurer, Matthew J. M.S.; Buckner, Jan C.

    2005-01-01

    Purpose: To evaluate the efficacy of preradiotherapy (RT) chemotherapy with carmustine, cisplatin, and oral etoposide combined with RT in the treatment of newly diagnosed anaplastic astrocytoma. Methods and materials: Therapy consisted of carmustine (40 mg/m 2 /d) on Days 1-3, oral etoposide (50 mg/d) on Days 1-21 and 29-49, and cisplatin (20 mg/m 2 /d i.v.) on Days 1-3 and 29-31. The regimen was repeated every 8 weeks for three cycles, with conventionally fractionated RT (5000 cGy with a 1000-cGy boost) delivered concurrently with the third cycle. Results: A total of 29 patients were enrolled between December 1999 and March 2001. For varying reasons (e.g., progression, refusal, death, or toxicity), only 48% completed the chemotherapy regimen and 76% completed RT. Grade 3-4 toxicities were observed in 14 patients (48%). The primary study endpoint was the 23-month (700-day) survival, the median survival of patients with anaplastic astrocytoma in a previous North Central Cancer Treatment Group trial. To be considered an active treatment, a maximum of 9 patient deaths (of the first 25) were allowed before 700 days. However, 14 patients had died by 700 days after therapy. Conclusion: Our results have demonstrated that pre-RT chemotherapy with this regimen is insufficiently active in patients with anaplastic astrocytoma

  7. Transcriptional profiles of pilocytic astrocytoma are related to their three different locations, but not to radiological tumor features

    International Nuclear Information System (INIS)

    Zakrzewski, Krzysztof; Jarząb, Michał; Pfeifer, Aleksandra; Oczko-Wojciechowska, Małgorzata; Jarząb, Barbara; Liberski, Paweł P.; Zakrzewska, Magdalena

    2015-01-01

    Pilocytic astrocytoma is the most common type of brain tumor in the pediatric population, with a generally favorable prognosis, although recurrences or leptomeningeal dissemination are sometimes also observed. For tumors originating in the supra-or infratentorial location, a different molecular background was suggested, but plausible correlations between the transcriptional profile and radiological features and/or clinical course are still undefined. The purpose of this study was to identify gene expression profiles related to the most frequent locations of this tumor, subtypes based on various radiological features, and the clinical pattern of the disease. Eighty six children (55 males and 31 females) with histologically verified pilocytic astrocytoma were included in this study. Their age at the time of diagnosis ranged from fourteen months to seventeen years, with a mean age of seven years. There were 40 cerebellar, 23 optic tract/hypothalamic, 21 cerebral hemispheric, and two brainstem tumors. According to the radiological features presented on MRI, all cases were divided into four subtypes: cystic tumor with a non-enhancing cyst wall; cystic tumor with an enhancing cyst wall; solid tumor with central necrosis; and solid or mainly solid tumor. In 81 cases primary surgical resection was the only and curative treatment, and in five cases progression of the disease was observed. In 47 cases the analysis was done by using high density oligonucleotide microarrays (Affymetrix HG-U133 Plus 2.0) with subsequent bioinformatic analyses and confirmation of the results by independent RT-qPCR (on 39 samples). Bioinformatic analyses showed that the gene expression profile of pilocytic astrocytoma is highly dependent on the tumor location. The most prominent differences were noted for IRX2, PAX3, CXCL14, LHX2, SIX6, CNTN1 and SIX1 genes expression even within different compartments of the supratentorial region. Analysis of the genes potentially associated with radiological

  8. Use of EF5 to Measure the Oxygen Level in Tumor Cells of Patients Undergoing Surgery or Biopsy for Newly Diagnosed Supratentorial Malignant Glioma

    Science.gov (United States)

    2013-01-15

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Diffuse Astrocytoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Subependymoma

  9. Low-Grade Astrocytoma Associated with Abscess Formation: Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Tai-Hsin Tsai

    2008-05-01

    Full Text Available A rare case of low-grade astrocytoma associated with abscess formation occurred in a 52-year-old man presenting with Broca's aphasia. He underwent craniotomy and tumor removal under the impression of brain tumor with necrotic cystic change. Abscess accumulation within the intra-axial tumor was found intraoperatively. Literature related to brain abscess with brain tumor is reviewed, with an emphasis on abscesses with astrocytoma. We discuss the common brain tumors that are associated with abscess, pathogens that coexist with brain tumor, and the pathogeneses of coexisting brain abscess and tumor. It is very important to know how to differentiate between and diagnose a brain abscess and tumor, or brain abscess with tumor, preoperatively from clinical presentation and through the use of computed tomography, conventional magnetic resonance imaging, diffusion-weighted imaging or magnetic resonance spectroscopy.

  10. The value of diffusion weighted imaging in differentiating intracranial tuberculomas from high-grade astrocytomas and metastases

    International Nuclear Information System (INIS)

    Peng Juan; Luo Tianyou; Lv Fajin; Fang Weidong; Wu Jingquan; Ouyang Yu; Li Yongmei

    2007-01-01

    Objective: To explore the value of diffusion weighted imaging (DWI) in differentiating intracranial tuberculomas from high-grade astrocytomas and metastases. Methods: The conventional MR imaging and DWI were performed in 50 eases (14 cases with intracranial tuberculomas, 15 cases with high- grade astrocytomas, and 21 cases with metastases) before treatment or operation. The mean apparent diffusion coefficient (ADC) values and relative apparent diffusion coefficient (rADC) values were calculated from the mass as well as from the peripheral edema regions of intracranial lesions. Results: The mean ADC values and rADC values were (1.2±0.2) x 10 -3 mm 2 ·s -1 and 1.6±0.3 in the mass of intracranial tuberculomas respectively; (0.8±0.1) x 10 -3 mm 2 ·s -1 and 1.1±0.1 in the parenehyma of high-grade astrocytomas; (0.8±0.1) x 10 -3 mm 2 ·s -1 and 1.0±0.2 in the parenchyma of metastases. There was significant difference of the mean ADC values (F=33.57, P -3 mm 2 ·s -1 and 2.5±0.2 in the peripheral edema regions of intracranial tuberculomas respectively; (1.4±0.2) x 10 -3 mm 2 ·s -1 and 1.8±0.3 in the peripheral edema regions of high-grade astrocytomas; and (1.9±0.2) x 10 -3 mm 2 ·s -1 and 2.3±0.5 in the peripheral edema regions of metastases. There was also significant difference in the mean ADC values (F23.17, P<0.01) or rADC values (F=5.94, P<0.01) among the peripheral edema regions of the three groups. Conclusion: The ADC values and rADC values are quite effective in differentiating intracranial tuberculoma from high-grade astrocytoma and metastasis. (authors)

  11. MR signal of the solid portion of pilocytic astrocytoma on T2-weighted images: is it useful for differentiation from medulloblastoma?

    International Nuclear Information System (INIS)

    Arai, Kiyokazu; Yagi, Akiko; Taketomi-Takahashi, Ayako; Morita, Hideo; Koyama, Yoshinori; Endo, Keigo; Sato, Noriko; Aoki, Jun; Oba, Hiroshi; Ishiuchi, Shogo; Saito, Nobuhito

    2006-01-01

    Background and purpose: Although imaging features of cerebellar pilocytic astrocytoma and medulloblastoma have been described in many texts, original comparisons of magnetic resonance intensity between these two tumours are limited. In the present study the results of magnetic resonance imaging (MRI) were reviewed, focusing especially on the signal intensity of the solid portion of these neoplasms. Methods: MR images of ten cerebellar pilocytic astrocytomas and ten medulloblastomas were reviewed. The signal intensities of the solid components were graded on a scale of 1 to 5, with higher scores indicating a signal intensity closer to that of water. The degree of enhancement, tumour cysts and peripheral oedema were evaluated on MR images. When the solid portion was heterogeneous (i.e. mixed signal intensity or degree of enhancement), the dominant area was selected for evaluation. On T2-weighted images, the signal intensity of the solid portion was equal to that of cerebrospinal fluid (CSF) in 50% of pilocytic astrocytomas. No medulloblastomas showed such hyperintensity. Most medulloblastomas (80%) were isointense to grey matter. On T1-weighted images, the signal intensity varied widely in pilocytic astrocytomas; however, all medulloblastomas were iso- or hypointense to grey matter. The MR enhancement pattern, cystic component and peripheral oedema all varied in both tumour types and no specific features were identified. A signal intensity of the solid portion isointense to CSF on T2-weighted images was characteristic of cerebellar pilocytic astrocytomas; this was not observed in medulloblastomas. Attention to T2-weighted imaging of the solid portions of a tumour is easy and helpful in differentiating between cerebellar pilocytic astrocytoma and medulloblastoma. (orig.)

  12. First-line nitrosourea-based chemotherapy in symptomatic non-resectable supratentorial pure low-grade astrocytomas.

    Science.gov (United States)

    Frenay, M P; Fontaine, D; Vandenbos, F; Lebrun, C

    2005-09-01

    At the present time, there are no proven beneficial effects of chemotherapy (CT) for the treatment of pure low-grade astrocytomas. Brain radiotherapy (RT) still remains the standard treatment in order to reduce or delay tumor progression or symptoms, despite possible long-term neurologic complications. We report 10 patients, with histologically proven pure low-grade fibrillary astrocytomas, to which we administered a first-line nitrosourea-based CT. All patients were symptomatic with pharmaco-resistant epilepsy or neurologic symptoms, and had been rejected for neurosurgical resection. All patients with epilepsy had a clinical improvement with reduction in seizure frequency and 60% became seizure-free. CT was well tolerated; all patients developed myelosuppression with 40% of grade III/IV hematotoxicity. Seven were alive at the time of writing with a mean follow-up of 6.5 years (3.5-12) from first recorded symptoms. The three deceased patients died 7.5, 7.5, and 8.5 years from first symptoms. These results demonstrate that some patients with symptomatic non-resectable fibrillary low-grade astrocytomas can be treated with up-front CT to improve their neurologic status. This report suggests that benefits of CT on symptoms, survival, and quality of life should be prospectively compared with RT.

  13. Differential prefrontal-like deficit in children after cerebellar astrocytoma and medulloblastoma tumor

    Directory of Open Access Journals (Sweden)

    Quintero Eliana A

    2008-04-01

    Full Text Available Abstract Background This study was realized thanks to the collaboration of children and adolescents who had been resected from cerebellar tumors. The medulloblastoma group (CE+, n = 7 in addition to surgery received radiation and chemotherapy. The astrocytoma group (CE, n = 13 did not receive additional treatments. Each clinical group was compared in their executive functioning with a paired control group (n = 12. The performances of the clinical groups with respect to controls were compared considering the tumor's localization (vermis or hemisphere and the affectation (or not of the dentate nucleus. Executive variables were correlated with the age at surgery, the time between surgery-evaluation and the resected volume. Methods The executive functioning was assessed by means of WCST, Complex Rey Figure, Controlled Oral Word Association Test (letter and animal categories, Digits span (WISC-R verbal scale and Stroop test. These tests are very sensitive to dorsolateral PFC and/or to medial frontal cortex functions. The scores for the non-verbal Raven IQ were also obtained. Direct scores were corrected by age and transformed in standard scores using normative data. The neuropsychological evaluation was made at 3.25 (SD = 2.74 years from surgery in CE group and at 6.47 (SD = 2.77 in CE+ group. Results The Medulloblastoma group showed severe executive deficit (≤ 1.5 SD below normal mean in all assessed tests, the most severe occurring in vermal patients. The Astrocytoma group also showed executive deficits in digits span, semantic fluency (animal category and moderate to slight deficit in Stroop (word and colour tests. In the astrocytoma group, the tumor's localization and dentate affectation showed different profile and level of impairment: moderate to slight for vermal and hemispheric patients respectively. The resected volume, age at surgery and the time between surgery-evaluation correlated with some neuropsychological executive variables

  14. Geometrical study of astrocytomas through fractals and scaling analysis

    International Nuclear Information System (INIS)

    Torres H, F.; Baena N, R.; Vergara V, J.; Guerrero M, M.

    2017-10-01

    The tumor growth is a complex process characterized by the proliferation of uncontrollable cells which invade neighbor tissues. The understanding process of this type of phenomena is very relevant in order to establish diagnosis and proper therapy strategies and to start the valorization of its complexity with proper descriptors produced by the scaling analysis, which define the tumor growth geometry. In this work, obtained results through the scaling analysis for pilocytic astrocytomas, anaplastic and diffuse, are shown, which tumors of primary origin are. On them, it is calculated the fractal dimension and critic exponents of local roughness to characterize in vivo three-dimensional tumor growth. The acquisition of the images for this type of injuries was carried out according to the standard protocol used for brain radiotherapy and radiosurgery, i.e., axial, coronal and sagittal magnetic resonance T1 weighted images and comprising the brain volume for image registration. Image segmentation was performed by the application the K-means procedure upon contrasted images. The results show significant variations of the parameters depending on the tumor stage and its histological origin. (Author)

  15. The value of multi ultra high-b-value DWI in grading cerebral astrocytomas and its association with aquaporin-4.

    Science.gov (United States)

    Tan, Yan; Zhang, Hui; Wang, Xiao-Chun; Qin, Jiang-Bo; Wang, Le

    2018-06-01

    To investigate the value of multi-ultrahigh-b-value diffusion-weighted imaging (UHBV-DWI) in differentiating high-grade astrocytomas (HGAs) from low-grade astrocytomas (LGAs), analyze its association with aquaporin (AQP) expression. 40 astrocytomas divided into LGAs (N = 15) and HGAs (N = 25) were studied. Apparent diffusion coefficient (ADC) and UHBV-ADC values in solid parts and peritumoral edema were compared between LGAs and HGAs groups by the t-test. Using receiver operating characteristic curves to identify the better parameter. Using real time polymerase chain reaction to assess AQP messenger ribonucleic acid (mRNA). Using spearman correlation analysis to assess the correlation of AQP mRNA with each parameter. ADC values in solid parts of HGAs were significantly lower than LGAs (p = 0.02), while UHBV-ADC values of HGAs were significantly higher than LGAs (p  0.05); ADC value showed a negative correlation with AQP4 mRNA (r = -0.357; p = 0.024). UHBV-ADC value positively correlated with the AQP4 mRNA (r = 0.646; p value may be related with the AQP4 mRNA levels. UHBV-DWI could be of value in the assessment of astrocytoma. Advances in knowledge: UHBV-DWI generated by multi UHBV could have particular value for astrocytoma grading, and the level of AQP4 mRNA might be potentially linked to the change of UHBV-DWI parameter, and we might find the exact reason for the difference of UHBV-ADC between the LGAs and HGAs.

  16. 234U/238U and δ87Sr in peat as tracers of paleosalinity in the Sacramento-San Joaquin Delta of California, USA

    International Nuclear Information System (INIS)

    Drexler, J.Z.; Paces, J.B.; Alpers, C.N.; Windham-Myers, L.; Neymark, L.A.; Bullen, T.D.; Taylor, H.E.

    2014-01-01

    Highlights: • Concentrations and isotopic values of Sr and U in peat were used to trace paleosalinity. • A three-end-member mixing model was constructed using values from water sources. • Paleosalinity of peat samples was determined relative to that of end members. • δ 87 Sr values were altered during and after the California Gold Rush period. • Oligohaline and freshwater marshes have long existed in the Sacramento-San Joaquin Delta. - Abstract: The purpose of this study was to determine the history of paleosalinity over the past 6000+ years in the Sacramento-San Joaquin Delta (the Delta), which is the innermost part of the San Francisco Estuary. We used a combination of Sr and U concentrations, δ 87 Sr values, and 234 U/ 238 U activity ratios (AR) in peat as proxies for tracking paleosalinity. Peat cores were collected in marshes on Browns Island, Franks Wetland, and Bacon Channel Island in the Delta. Cores were dated using 137 Cs, the onset of Pb and Hg contamination from hydraulic gold mining, and 14 C. A proof of concept study showed that the dominant emergent macrophyte and major component of peat in the Delta, Schoenoplectus spp., incorporates Sr and U and that the isotopic composition of these elements tracks the ambient water salinity across the Estuary. Concentrations and isotopic compositions of Sr and U in the three main water sources contributing to the Delta (seawater, Sacramento River water, and San Joaquin River water) were used to construct a three-end-member mixing model. Delta paleosalinity was determined by examining variations in the distribution of peat samples through time within the area delineated by the mixing model. The Delta has long been considered a tidal freshwater marsh region, but only peat samples from Franks Wetland and Bacon Channel Island have shown a consistently fresh signal (<0.5 ppt) through time. Therefore, the eastern Delta, which occurs upstream from Bacon Channel Island along the San Joaquin River and its

  17. 25 CFR 87.11 - Investment of judgment funds.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Investment of judgment funds. 87.11 Section 87.11 Indians... JUDGMENT FUNDS § 87.11 Investment of judgment funds. As soon as possible after the appropriation of... distribution of the funds, the Commissioner shall invest such funds pursuant to 25 U.S.C. 162a. Investments of...

  18. Quantitative proteomic analysis of the inhibitory effects of CIL-102 on viability and invasiveness in human glioma cells

    International Nuclear Information System (INIS)

    Teng, Chih-Chuan; Kuo, Hsing-Chun; Sze, Chun-I

    2013-01-01

    CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone), the major active agent of the alkaloid derivative, has been demonstrated to exert anticancer effects. Herein, we present an investigation focused on the identification of the target(s) of CIL-102's action and the mechanism of its action in apoptotic and anti-invasive pathways. Proteomic approaches were used to purify and identify the protein substrates using 2D difference gel electrophoresis (2D SDS-PAGE) to assess changes in the expression of relevant protein treatment with CIL-102 that resulted in the inhibition of viability and invasion. Our results demonstrate that CIL-102 treatment of U87 cells decreased cell proliferation and invasiveness. CIL-102 dose-dependent induction of apoptosis and inhibitory invasiveness were accompanied by sustained phosphorylation of JNK1/2 and p70S6K as well as generation of the reactive oxygen species. In addition, differential proteins displayed between CIL-102-treated and untreated U87 were determined and validated. There were 11 differentially expressed proteins between the CIL-102-treated and untreated groups. Furthermore, we demonstrated that CIL-102 inhibited cancer cell proliferation and reduced anti-invasion properties by up-regulating the levels of FUMH (Fumarate hydratase). The investigation demonstrated that there was an increase in the cellular levels of FUMH in the CIL-102 reduction in viability and invasion via the activation of JNK1/2 and mTOR signaling modules. NAC administration and shRNA FUMH conferred resistance to CIL-102-inhibited HIF1α and MMP-2 levels via inhibition of JNK1/2 and mTOR activation. We concluded that CIL-102-induced an apoptosis cascade and decreased aggressiveness in astrocytoma cells by modulation of mitochondria function, providing a new mechanism for CIL-102 treatment. - Highlights: • We found the effect of CIL-102 on neuroblastoma cells. • Fumarate hydratase as a CIL-102's target by proteomic differential displays. • CIL

  19. Quantitative proteomic analysis of the inhibitory effects of CIL-102 on viability and invasiveness in human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Chih-Chuan [Institute of Nursing and Department of Nursing, Chang Gung University of Science and Technology, Taiwan (China); Chronic Diseases and Health Promotion Research Center, CGUST, Taiwan (China); Institute of Basic Medicine Science, National Cheng Kung University, Tainan, Taiwan (China); Kuo, Hsing-Chun [Institute of Nursing and Department of Nursing, Chang Gung University of Science and Technology, Taiwan (China); Chronic Diseases and Health Promotion Research Center, CGUST, Taiwan (China); Department of Medical Research China Medical University Hospital, Taichung, Taiwan (China); Sze, Chun-I, E-mail: szec@mail.ncku.edu.tw [Institute of Basic Medicine Science, Department of Cell Biology and Anatomy and Pathology, National Cheng Kung University, Tainan, Taiwan (China)

    2013-11-01

    CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone), the major active agent of the alkaloid derivative, has been demonstrated to exert anticancer effects. Herein, we present an investigation focused on the identification of the target(s) of CIL-102's action and the mechanism of its action in apoptotic and anti-invasive pathways. Proteomic approaches were used to purify and identify the protein substrates using 2D difference gel electrophoresis (2D SDS-PAGE) to assess changes in the expression of relevant protein treatment with CIL-102 that resulted in the inhibition of viability and invasion. Our results demonstrate that CIL-102 treatment of U87 cells decreased cell proliferation and invasiveness. CIL-102 dose-dependent induction of apoptosis and inhibitory invasiveness were accompanied by sustained phosphorylation of JNK1/2 and p70S6K as well as generation of the reactive oxygen species. In addition, differential proteins displayed between CIL-102-treated and untreated U87 were determined and validated. There were 11 differentially expressed proteins between the CIL-102-treated and untreated groups. Furthermore, we demonstrated that CIL-102 inhibited cancer cell proliferation and reduced anti-invasion properties by up-regulating the levels of FUMH (Fumarate hydratase). The investigation demonstrated that there was an increase in the cellular levels of FUMH in the CIL-102 reduction in viability and invasion via the activation of JNK1/2 and mTOR signaling modules. NAC administration and shRNA FUMH conferred resistance to CIL-102-inhibited HIF1α and MMP-2 levels via inhibition of JNK1/2 and mTOR activation. We concluded that CIL-102-induced an apoptosis cascade and decreased aggressiveness in astrocytoma cells by modulation of mitochondria function, providing a new mechanism for CIL-102 treatment. - Highlights: • We found the effect of CIL-102 on neuroblastoma cells. • Fumarate hydratase as a CIL-102's target by proteomic differential

  20. Tuberous schlerosis complex and astrocytoma: a case report, Hiroshima

    Energy Technology Data Exchange (ETDEWEB)

    Rudnick, P A; Hoshino, N; Kitaoka, T; Miura, M

    1961-02-10

    This case report concerned a young woman with cutaneous, osseous, and retinal changes of tuberous sclerosis, referred to ABCC for evaluation of blindness and increased intracranial pressure. A right lateral ventricle astrocytoma was successfully removed, but the patient's sight was not restored. The development of cerebral neoplasms in these patients is discussed. A careful search for resectable brain lesions should be made in all patients with tuberous sclerosis who have signs and symptoms of increased intracranial pressure. 14 references, 6 figures.

  1. Tuberous schlerosis complex and astrocytoma: a case report, Hiroshima

    Energy Technology Data Exchange (ETDEWEB)

    Rudnick, P.A.; Hoshino, N.; Kitaoka, T.; Miura, M.

    1961-02-10

    This case report concerned a young woman with cutaneous, osseous, and retinal changes of tuberous sclerosis, referred to ABCC for evaluation of blindness and increased intracranial pressure. A right lateral ventricle astrocytoma was successfully removed, but the patient's sight was not restored. The development of cerebral neoplasms in these patients is discussed. A careful search for resectable brain lesions should be made in all patients with tuberous sclerosis who have signs and symptoms of increased intracranial pressure. 14 references, 6 figures.

  2. Optimal gadolinium dose level for magnetic resonance imaging (MRI) contrast enhancement of U87-derived tumors in athymic nude rats for the assessment of photodynamic therapy

    Science.gov (United States)

    Cross, Nathan; Varghai, Davood; Flask, Chris A.; Feyes, Denise K.; Oleinick, Nancy L.; Dean, David

    2009-02-01

    This study aims to determine the effect of varying gadopentetate dimeglumine (Gd-DTPA) dose on Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) tracking of brain tumor photodynamic therapy (PDT) outcome. Methods: We injected 2.5 x 105 U87 cells (derived from human malignant glioma) into the brains of six athymic nude rats. After 9, 12, and 13 days DCE-MRI images were acquired on a 9.4 T micro-MRI scanner before and after administration of 100, 150, or 200 μL of Gd-DTPA. Results: Tumor region normalized DCE-MRI scan enhancement at peak was: 1.217 over baseline (0.018 Standard Error [SE]) at the 100 μL dose, 1.339 (0.013 SE) at the 150 μL dose, and 1.287 (0.014 SE) at the 200 μL dose. DCE-MRI peak tumor enhancement at the 150 μL dose was significantly greater than both the 100 μL dose (p DTPA dose provided the greatest T1 weighted contrast enhancement, while minimizing negative T2* effects, in DCE-MRI scans of U87-derived tumors. Maximizing Gd-DTPA enhancement in DCE-MRI scans may assist development of a clinically robust (i.e., unambiguous) technique for PDT outcome assessment.

  3. (-)[125I]-iodopindolol, a new highly selective radioiodinated beta-adrenergic receptor antagonist: measurement of beta-receptors on intact rat astrocytoma cells

    International Nuclear Information System (INIS)

    Barovsky, K.; Brooker, G.

    1980-01-01

    (-)-Pindolol, one of the most potent beta-adrenergic receptor antagonists, was radioiodinated using chloramine-T oxidation of carrier-free Na 125I and separated from unreacted pindolol to yield 2200 Ci/mmole (-)-[125I]-iodopindolol ((-)-[125I]-IPin). Mass and ultraviolet spectra confirmed that the iodination occurred on the indole ring, presumably at the 3 position. The binding of radiolabeled (-)-[125I]-IPin to beta-adrenergic receptors has been studied using intact C6 rat astrocytoma cells (2B subclone) grown in monolayer cultures. Binding of (-)[125IPin was saturable with time and concentration. Using 13 pM (-)-[125I]IPin, binding equilibrium was reached in 90 min at 21-22 degrees C. The reverse rate constant was 0.026 min-1 at 21 0 C. Specific binding (expressed as 1 microM(-)-propranolol displaceable counts) of (-)-[125I]-IPin was 95% of total binding. Scatchard analysis of (-)-[125I]-I]Pin binding revealed approximately 4300 receptors/cell and a dissociation constant of 30 pM. This was in excellent agreement with the kinetically determined dissociation constant of 35 pM. Displacement by propranolol and isoproterenol showed that (-)-[125I]-IPin binding sites were pharmacologically and stereospecifically selective. These results indicate that (-)-[125I]-IPin, a pure (-)-stereoisomer, high specific activity radioligand, selectively binds to beta-adrenergic receptors in whole cells with a high percentage of specific binding and should therefore be useful in the study and measurement of cellular beta-adrenergic receptors

  4. Cerebral hemisphere astrocytoma: Treatment results

    International Nuclear Information System (INIS)

    Boyages, J.; Tiver, K.W.

    1987-01-01

    Eighty two adult patients with histologically proven cerebral astrocytomas of grades I to IV received post-operative radiotherapy at Westmead Hospital between January 1980 and February 1985. Seventy one patients completed a course of megavoltage irradiation, the majority having received a tumour dose of at least 60 Gy. Patients who underwent surgical resection had a greater median survival than those undergoing biopsy, but the difference was not statistically significant. By grade, the difference reached statistical significance only for grade III tumours. Patients with high grade tumours had a significantly lower survival than those patients with tumours of low grade. After adjustment for grade, various dosage levels did not significantly affect survival, although there was a trend towards improved median survival with higher doses in grade III tumours. When included in a multivariate analysis, the extent of surgery did not significantly influence survival, but increasing tumour grade and increasing age were significant adverse prognostic factors. (Auth.)

  5. Outcome and patterns of failure following limited-volume irradiation for malignant astrocytomas

    Energy Technology Data Exchange (ETDEWEB)

    Garden, A.S.; Maor, M.H.; Yung, W.K.A.; Bruner, J.M.; Woo, Shiao Y.; Moser, R.P.; Lee, Ya-Yen (Anderson (M.D.) Hospital and Tumor Inst., Houston, TX (USA))

    1991-02-01

    Between January 1982 and June 1986, 60 consecutive patients with high-grade astrocytomas (39 glioblastoma multiforme (GBM), 21 anaplastic astrocytoma (AA)) were treated with radiation therapy after biopsy (13 patients) or resection (47 patients). 53 patients were treated with limited-volume irradiation, 7 received whole-brain irradiation. The mean tumor dose was 65.4 Gy. In 35 patients, chemotherapy was given as part of their initial treatment. The 1- and 2-year survivals for GBM patients were 40 and 14 percent, respectively. Survival figures for AA patients were 76 and 52 percent at 1 and 2 years, respectively. The progression-free rate at 1 year was 13 percent in GBM and 29 percent in AA patients. 34 of 48 patients who received limited-volume irradiation had evidence of progression on postirradiation CT scans. 6 patients (3 GBM, 3 AA) had evidence of a new intracranial metastatic site on CT scan. In 3 patients the metastasis was within the previously irradiated volume, and in 3 other patients, it was outside this volume. All 6 had evidence of progression of their primary tumor at the original location on CT scan prior to the discovery of the metastatic site. 21 patients (15 GBM, 6 AA) had at least 1 postirradiation reoperation for a recurrent mass. 19 patients had recurrent tumors in the primary site, and 2 patients had necrosis but no tumor. Patients who received limited-volume irradiation for high-grade astrocytomas achieved the same survival results as patients treated previously with whole brain irradiation. New intra-cranial metastases did not influence the outcome, since these were always antedated by tumor progression at the primary site. (author). 16 refs.; 8 figs.; 2 tabs.

  6. Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity

    International Nuclear Information System (INIS)

    Roy, Kanaklata; Wang, Lilin; Makrigiorgos, G. Mike; Price, Brendan D.

    2006-01-01

    Glioblastomas are among the malignancies most resistant to radiation therapy. In contrast, cells lacking the ATM protein are highly sensitive to ionizing radiation. The relationship between ATM protein expression and radiosensitivity in 3 glioma cell lines was examined. T98G cells exhibited normal levels of ATM protein, whereas U118 and U87 cells had significantly lower levels of ATM and increased (>2-fold) sensitivity to ionizing radiation compared to T98G cells. The ATM promoter was methylated in U87 cells. Demethylation by azacytidine treatment increased ATM protein levels in the U87 cells and decreased their radiosensitivity. In contrast, the ATM promoter in U118 cells was not methylated. Further, expression of exogenous ATM did not significantly alter the radiosensitivity of U118 cells. ATM expression is therefore heterogeneous in the glioma cells examined. In conclusion, methylation of the ATM promoter may account for the variable radiosensitivity and heterogeneous ATM expression in a fraction of glioma cells

  7. Promoter hypermethylation of mismatch repair gene hMLH1 predicts the clinical response of malignant astrocytomas to nitrosourea.

    Science.gov (United States)

    Fukushima, Takao; Katayama, Yoichi; Watanabe, Takao; Yoshino, Atsuo; Ogino, Akiyoshi; Ohta, Takashi; Komine, Chiaki

    2005-02-15

    In certain types of human cancers, transcriptional inactivation of hMLH1 by promoter hypermethylation plays a causal role in the loss of mismatch repair functions that modulate cytotoxic pathways in response to DNA-damaging agents. The aim of the present study was to investigate the role of promoter methylation of the hMLH1 gene in malignant astrocytomas. We examined the hMLH1 promoter methylation in a homogeneous cohort of patients with 41 malignant astrocytomas treated by 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-2(2-chloroethyl)-3-nitrosourea chemotherapy in combination with radiation and interferon therapy, and assessed the correlation of such methylation with clinical outcome. hMLH1 promoter methylation was found in 6 (15%) of the 41 newly diagnosed malignant astrocytomas. Hypermethylation of the hMLH1 promoter corresponded closely with a loss of immunohistochemical staining for hMLH1 protein (P = 0.0013). Patients with hMLH1-methylated tumors displayed a greater chance of responding to adjuvant therapy as compared with those with hMLH1-unmethylated tumors (P = 0.0150). The presence of hMLH1 hypermethylation was significantly associated with a longer progression-free survival on both univariate analysis (P = 0.0340) and multivariate analysis (P = 0.0161). The present study identified hMLH1 methylation status as a predictor of the clinical response of malignant astrocytomas to chloroethylnitrosourea-based adjuvant therapy. The findings obtained suggest that determination of the methylation status of hMLH1 could provide a potential basis for designing rational chemotherapeutic strategies, as well as for predicting prognosis.

  8. STAT6 expression in glioblastoma promotes invasive growth

    International Nuclear Information System (INIS)

    Merk, Barbara C; Owens, Jennifer L; Lopes, Maria-Beatriz S; Silva, Corinne M; Hussaini, Isa M

    2011-01-01

    Glioblastoma (GBM) is a highly aggressive malignant primary brain tumor, characterized by rapid growth, diffuse infiltration of cells into both adjacent and remote brain regions, and a generalized resistance to currently available treatment modalities. Recent reports in the literature suggest that Signal Transducers and Activators of Transcription (STATs) play important roles in the regulation of GBM pathophysiology. STAT6 protein expression was analyzed by Western blotting in GBM cell lines and by immunohistochemistry in a tissue microarray (TMA) of glioma patient tissues. We utilized shRNA against STAT6 to investigate the effects of prolonged STAT6 depletion on the growth and invasion of two STAT6-positive GBM cell lines. Cell proliferation was assessed by measuring 3 H-Thymidine uptake over time. Invasion was measured using an in vitro transwell assay in which cells invade through a type IV collagen matrix toward a chemoattractant (Fetal Bovine Serum). Cells were then stained and counted. Kaplan-Meyer survival curves were generated to show the correlation between STAT6 gene expression and patient survival in 343 glioma patients and in a subset of patients with only GBM. Gene expression microarray and clinical data were acquired from the Rembrandt [1] public data depository (https://caintegrator.nci.nih.gov/rembrandt/). Lastly, a genome-wide expression microarray analysis was performed to compare gene expression in wild-type GBM cells to expression in stable STAT6 knockdown clones. STAT6 was expressed in 2 GBM cell lines, U-1242MG and U-87MG, and in normal astrocytes (NHA) but not in the U-251MG GBM cell line. In our TMA study, STAT6 immunostaining was visible in the majority of astrocytomas of all grades (I-IV) but not in normal brain tissue. In positive cells, STAT6 was localized exclusively in the nuclei over 95% of the time. STAT6-deficient GBM cells showed a reduction in 3 H-Thymidine uptake compared to the wild-type. There was some variation among the

  9. Double-strand break induction and DNA damage response after {sup 12}C ion and photon radiation in U87 glioblastoma cells; Doppelstrangbruch-Induktion und DNA-Schadensantwort nach {sup 12}C-Ionen- und Photonenstrahlung in U87 Glioblastomzellen

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Perez, Ramon

    2015-04-22

    Heavy ion radiation has greater biological effectiveness than the same physical dose of photon radiation. In this work the underlying reasons in the DNA damage response were analyzed in U87 glioblastoma cells. DNA double-strand breaks (DSBs) are the decicive lesions for the effectiveness of ionizing radiation. Their induction and repair was measured in the context of the cell cycle based on the DSB marker γH2AX (the phosphorylated form of the histone variant H2AX). Further, radiation-specific differences in choice of the DSB repair pathway was analyzed, as well as the consequences of repair failure. The results showed that in contrast to photons, {sup 12}C ion radiation produces more severe DSBs that are repaired delayed and with slower kinetics. Accordingly, stronger and longer lasting cell cycle delays, predominantly at the G2/M border, and a higher rate of apoptosis was detected for {sup 12}C ion radiation. Autophagy, an alternative mechanism of programmed cell death, was not relevant for neither of the two types of radiation. The effect of {sup 12}C ion radiation was less dependent on the cell cycle stage than for photon radiation. This became particularly evident in the DSB repair velocities during S- and G2-phase. After {sup 12}C ion radiation, cells were more dependent on homologous recombination repair (HRR) compared to photon radiation. The reason therefore that in contrast to photons, {sup 12}C ion radiation induced graver DSBs that were repaired slower and more dependent on HRR, was most probably enhanced clustering of DSBs due to the higher ionization density of {sup 12}C ion radiation. Microscopic inspection of immunofluorently stained γH2AX revealed that {sup 12}C ion radiation induced bigger DSB repair foci containing more γH2AX molecules (higher fluorescence intensity), although their initial number was smaller. Besides the foci, a weaker pan-nuclear γH2AX staining was observed that increased in a dose-dependent manner and was more pronounced

  10. Characterization of TEM1/endosialin in human and murine brain tumors

    International Nuclear Information System (INIS)

    Carson-Walter, Eleanor B; Walter, Kevin A; Winans, Bethany N; Whiteman, Melissa C; Liu, Yang; Jarvela, Sally; Haapasalo, Hannu; Tyler, Betty M; Huso, David L; Johnson, Mahlon D

    2009-01-01

    TEM1/endosialin is an emerging microvascular marker of tumor angiogenesis. We characterized the expression pattern of TEM1/endosialin in astrocytic and metastatic brain tumors and investigated its role as a therapeutic target in human endothelial cells and mouse xenograft models. In situ hybridization (ISH), immunohistochemistry (IH) and immunofluorescence (IF) were used to localize TEM1/endosialin expression in grade II-IV astrocytomas and metastatic brain tumors on tissue microarrays. Changes in TEM1/endosialin expression in response to pro-angiogenic conditions were assessed in human endothelial cells grown in vitro. Intracranial U87MG glioblastoma (GBM) xenografts were analyzed in nude TEM1/endosialin knockout (KO) and wildtype (WT) mice. TEM1/endosialin was upregulated in primary and metastatic human brain tumors, where it localized primarily to the tumor vasculature and a subset of tumor stromal cells. Analysis of 275 arrayed grade II-IV astrocytomas demonstrated TEM1/endosialin expression in 79% of tumors. Robust TEM1/endosialin expression occurred in 31% of glioblastomas (grade IV astroctyomas). TEM1/endosialin expression was inversely correlated with patient age. TEM1/endosialin showed limited co-localization with CD31, αSMA and fibronectin in clinical specimens. In vitro, TEM1/endosialin was upregulated in human endothelial cells cultured in matrigel. Vascular Tem1/endosialin was induced in intracranial U87MG GBM xenografts grown in mice. Tem1/endosialin KO vs WT mice demonstrated equivalent survival and tumor growth when implanted with intracranial GBM xenografts, although Tem1/endosialin KO tumors were significantly more vascular than the WT counterparts. TEM1/endosialin was induced in the vasculature of high-grade brain tumors where its expression was inversely correlated with patient age. Although lack of TEM1/endosialin did not suppress growth of intracranial GBM xenografts, it did increase tumor vascularity. The cellular localization of TEM1

  11. Optic nerve pilomyxoid astrocytoma in a patient with Noonan syndrome.

    Science.gov (United States)

    Nair, Sushmita; Fort, John A; Yachnis, Anthony T; Williams, Charles A

    2015-06-01

    Noonan syndrome (NS; MIM 163950) is an autosomal dominant syndrome which is clinically diagnosed by the distinct facial features, short stature, cardiac anomalies and developmental delay. About 50% of cases are associated with gain of function mutations in PTPN11 gene which leads to activation of the RAS/mitogen-activated protein kinase signaling pathway. This is known to have a role in tumorigenesis. Despite this, only limited reports of solid tumors (Fryssira H, Leventopoulos G, Psoni S, et al. Tumor development in three patients with Noonan syndrome. Eur J Pediatr 2008;167:1025-1031; Schuettpelz LG, McDonald S, Whitesell K et al. Pilocytic astrocytoma in a child with Noonan syndrome. Pediatr Blood Cancer 2009;53:1147-1149; Sherman CB, Ali-Nazir A, Gonzales-Gomez I, et al. Primary mixed glioneuronal tumor of the central nervous system in a patient with Noonan syndrome. J Pediatr Hematol Oncol 2009;31:61-64; Sanford RA, Bowman R, Tomita T, et al. A 16 year old male with Noonan's syndrome develops progressive scoliosis and deteriorating gait. Pediatr Neurosurg 1999;30:47-52) and no prior reports of optic gliomas have been described in patients with NS. We present here a patient with NS with a PTPN11 mutation and an optic pathway pilomyxoid astrocytoma. © 2015 Wiley Periodicals, Inc.

  12. High dose rate brachytherapy in treatment of high grade astrocytomas

    International Nuclear Information System (INIS)

    Garcia-Alejo, R.; Delgado, J.M.; Cerro, E. del; Torres, J.J.; Martinez, R.

    1996-01-01

    From May 1994 to June 1995, 18 patients with high grade astrocytomas were entered prospectively on a selective protocol combining surgery, external beam radiotherapy, stereotactic interstitial implantation with HDR Iridium 192 and chemotherapy. Only those patients with tumor size 100cc or less average dimension, high grade astrocytoma, Karnofsky 70 or greater, unilateral, circumscribed, unifocal, tumor stable or responding to external radiation and supratentorial were included in the study. Ages ranged from 16 to 69 years. There were 13 males and 5 females. Surgery consisted of biopsy only in 3 patients, subtotal resection in 11, and gross total resection in 4 patients. Focal external beam radiation portals included the contrast enhancing mass on CT scan plus a 3 cm margin. The protocol called for minimum tumor dose of 60 Gy to be given in 2 Gy daily fractions. An interstitial brachytherapy boost was to be performed two weeks after the conclusion of external beam radiation. The dose was 30 Gy in 4 fractions. The authors analyze on basis on their personal experience, the possibilities and the limits offered by this therapeutic procedure in neuro-oncology. Using stereotactic techniques, interstitial brachytherapy of brain tumors was technically possible with negligible acute morbidity and mortality, and appeared to be effective and may provide for an increase in tumor control in selected cases

  13. MR Findings of Desmoplastic Cerebral Astrocytoma of Infancy. A case report

    International Nuclear Information System (INIS)

    Kim, J.H.; Kim, I.O.; Kim, W.S.; Kim, K.H.; Park, C. M.; Yeon, K.M.

    2003-01-01

    Desmoplastic cerebral astrocytoma of infancy (DCAI) presents as a large supratentorial mass consisting of a central cystic component and an enhancing solid component associated with peripheral dural attachment. We report the unusual MR findings of a DCAI that differed from previously reported cases in terms of the presence of calcification, which is not considered a feature of this tumor, and the absence of an enhancing peripheral dural component

  14. Melatonin inhibits proliferation and invasion via repression of miRNA-155 in glioma cells.

    Science.gov (United States)

    Gu, Junyi; Lu, Zhongsheng; Ji, Chenghong; Chen, Yuchao; Liu, Yuzhao; Lei, Zhe; Wang, Longqiang; Zhang, Hong-Tao; Li, Xiangdong

    2017-09-01

    Melatonin, an indolamine mostly synthesized in the pineal gland, exerts the anti-cancer effect by various mechanisms in glioma cells. Our previous study showed that miR-155 promoted glioma cell proliferation and invasion. However, the question of whether melatonin may inhibit glioma by regulating miRNAs has not yet been addressed. In this study, we found that melatonin (100μM, 1μM and 1nM) significantly inhibited the expression of miR-155 in human glioma cell lines U87, U373 and U251. Especially, the lowest expression of miR-155 was detected in 1μM melatonin-treated glioma cells. Melatonin (1μM) inhibits cell proliferation of U87 by promoting cell apoptosis. Nevertheless, melatonin had no effect on cell cycle distribution of U87 cells. Moreover, U87 cells treated with 1μM melatonin presented significantly lower migration and invasion ability when compared with control cells. Importantly, melatonin inhibited c-MYB expression, and c-MYB knockdown reduced miR-155 expression and migration and invasion in U87 cells. Taken together, for the first time, our findings show that melatonin inhibits miR-155 expression and thereby represses glioma cell proliferation, migration and invasion, and suggest that melatonin may downregulate the expression of miR-155 via repression of c-MYB. This will provide a theoretical basis for revealing the anti-glioma mechanisms of melatonin. Copyright © 2017. Published by Elsevier Masson SAS.

  15. Dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) for the assessment of Pc 4-sensitized photodynamic therapy of a U87-derived glioma model in the athymic nude rat

    Science.gov (United States)

    Anka, Ali; Thompson, Paul; Mott, Eric; Sharma, Rahul; Zhang, Ruozhen; Cross, Nathan; Sun, Jiayang; Flask, Chris A.; Oleinick, Nancy L.; Dean, David

    2010-02-01

    Introduction: Dynamic Contrast-Enhanced-Magnetic Resonance Imaging (DCE-MRI) may provide a means of tracking the outcome of Pc 4-sensitized photodynamic therapy (PDT) in deeply placed lesions (e.g., brain tumors). We previously determined that 150 μL of gadolinium (Gd-DTPA) produces optimal enhancement of U87-derived intracerebral tumors in an athymic nude rat glioma model. We wish to determine how consistently DCE-MRI enhancement will detect an increase in Gd-enhancement of these tumors following Pc 4-PDT. Methods: We injected 2.5 x 105 U87 cells into the brains of 6 athymic nude rats. After 7-8 days pre-Pc 4 PDT peri-tumor DCE-MRI images were acquired on a 7.0T microMRI scanner before and after administration of 150 μL Gd. DCE-MRI scans were repeated on Days 11, 12, and 13 following Pc 4-PDT (Day 8 or 9). Results: Useful DCE-MRI data were obtained for these animals before and after Pc 4- PDT. In the pre-Pc 4-PDT DCE-MRI scans an average normalized peak Gd enhancement was observed in tumor tissue that was 1.297 times greater than baseline (0.035 Standard Error [SE]). The average normalized peak Gd enhancement in the tumor tissue in the scan following PDT (Day 11) was 1.537 times greater than baseline (0.036 SE), a statistically significant increase in enhancement (p = 0.00584) over the pre-PDT level. Discussion: A 150 μL Gd dose appears to provide an unambiguous increase in signal indicating Pc 4-PDT-induced necrosis of the U87-derived tumor. Our DCEMRI protocol may allow the development of a clinically robust, unambiguous, non-invasive technique for the assessment of PDT outcome.

  16. Preliminary individualized chemotherapy for malignant astrocytomas based on O6-methylguanine-deoxyribonucleic acid methyltransferase methylation analysis.

    Science.gov (United States)

    Watanabe, Takao; Katayama, Yoichi; Ogino, Akiyoshi; Ohta, Takashi; Yoshino, Atsuo; Fukushima, Takao

    2006-08-01

    O(6)-methylguanine-deoxyribonucleic acid methyltransferase gene (MGMT) methylation is apparently correlated with responsiveness to nitrosourea chemotherapy, suggesting this alkylating agent should be effective against MGMT-methylated tumors. MGMT appears not to be linked to platinum resistance, so platinum chemotherapy should be used for MGMT-unmethylated tumors. This study was a preliminary trial of individualized chemotherapy based on MGMT methylation status in a total of 20 patients with newly diagnosed malignant astrocytomas (9 anaplastic astrocytomas and 11 glioblastomas multiforme). The procarbazine, 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-2(2-chloroethyl)-3-nitrosourea, and vincristine (PAV) regimen was administered to seven patients with MGMT-methylated tumors, and the carboplatin and etoposide (CE) regimen was administered to 13 patients with MGMT-unmethylated tumors. Objective response to the PAV therapy was noted in all three patients with measurable residual tumor (2 complete responses and 1 partial response). Five of the seven patients continued to be disease-free after initiation of the PAV therapy. Objective response to the CE therapy was seen in only one of seven patients with measurable residual tumor (1 partial response). Three of the 13 patients were free from progression, whereas the remaining 10 patients showed early progression. The PAV regimen is effective against MGMT-methylated malignant astrocytomas, but the CE regimen is not useful at the given dose and schedule in MGMT-unmethylated tumors.

  17. From the Cover: Vulnerability of C6 Astrocytoma Cells After Single-Compound and Joint Exposure to Type I and Type II Pyrethroid Insecticides.

    Science.gov (United States)

    Romero, Delfina M; Berardino, Bruno G; Wolansky, Marcelo J; Kotler, Mónica L

    2017-01-01

    A primary mode-of-action of all pyrethroid insecticides (PYRs) is the disruption of the voltage-gated sodium channel electrophysiology in neurons of target pests and nontarget species. The neurological actions of PYRs on non-neuronal cells of the nervous system remain poorly investigated. In the present work, we used C6 astrocytoma cells to study PYR actions (0.1-50 μM) under the hypothesis that glial cells may be targeted by and vulnerable to PYRs. To this end, we characterized the effects of bifenthrin (BF), tefluthrin (TF), α-cypermethrin (α-CYP), and deltamethrin (DM) on the integrity of nuclear, mitochondrial, and lysosomal compartments. In general, 24- to 48-h exposures produced concentration-related impairment of cell viability. In single-compound, 24-h exposure experiments, effective concentration (EC) 15 s 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT assay) were computed as follows (in μM): BF, 16.1; TF, 37.3; α-CYP, 7.8; DM, 5.0. We found concentration-related damage in several C6-cell subcellular compartments (mitochondria, nuclei, and lysosomes) at ≥ 10 -1 μM levels. Last, we examined a mixture of all PYRs (ie, Σ individual EC 15 ) using MTT assays and subcellular analyses. Our findings indicate that C6 cells are responsive to nM levels of PYRs, suggesting that astroglial susceptibility may contribute to the low-dose neurological effects caused by these insecticides. This research further suggests that C6 cells may provide relevant information as a screening platform for pesticide mixtures targeting nervous system cells by expected and unexpected toxicogenic pathways potentially contributing to clinical neurotoxicity. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Surgical Management of Pilocytic Astrocytoma of the Optic Nerve: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Ifeoluwa Apanisile

    2017-01-01

    Full Text Available Optic nerve astrocytomas (ONAs are frequent types of optic nerve gliomas (ONGs, which can affect the visual pathway. An 18-year-old male patient was admitted to our department with right-sided intraorbital/retrobulbar swelling, which progressively grew over several months. Clinical examination showed right-sided diplopia, mydriasis, low visual acuity (0.4, exophthalmus (3 cm, epiphora, and severe retrobulbar pain. There was a family history of high-grade (IV astrocytomas in which two of the family members died due to the disease. Preoperative MRI scan revealed a soft tissue mass around the retrobulbar area of the right eye with intact orbital bony walls. Surgery was performed whereby it was dissected freely from the muscles and was separated from the optic nerve and the globe. Histopathologic analysis confirmed a benign astrocytoma. The follow-up examination revealed no recurrent or residual tumor. A systemic review of the literature indicates that early diagnosis and experienced multidisciplinary management are required in case of unilateral, resectable forms of ONAs with no distant metastasis, in order to provide a long-time survival of patients. Surgical intervention of unilateral ONAs is a relatively safe procedure, allowing complete or partial tumor removal with minimal morbidity and low recurrence rate.

  19. Assessment of the proliferation status of glioblastoma cell and tumour tissue after nanoplatinum treatment

    DEFF Research Database (Denmark)

    Kutwin, Marta; Sawosz, Ewa; Jaworski, Slawomir

    2017-01-01

    nanoparticles (NP-Pt). The aim of the study was to evaluate and compare the antiproliferative properties of NP-Pt and cisplatin against U87 and U118 glioma cell lines and U87 tumour tissue. NP-Pt and cisplatin were incubated with U87 and U118 glioma cells or administered directly into glioma tumour tissue. Cell...... and the migration of cancer cells but also downregulated the level of PCNA protein expression in tumour tissue. Furthermore, NP-Pt caused oxidative DNA damage in tumour tissue to a higher degree than cisplatin. Consequently, NP-Pt can be considered as an effective inhibitor of glioblastoma tumour cell proliferation....... However, the mechanism of action and potential side effects need to be elucidated further...

  20. Supratentorial juvenile pilocytic astrocytoma in a young adult with Silver-Russell syndrome.

    LENUS (Irish Health Repository)

    Fenton, E

    2008-12-01

    Silver-Russell syndrome is a rare genetically heterogeneous disorder in which patients demonstrate intrauterine and postnatal growth retardation, triangular facies, excessive sweating during early childhood, late closure of the anterior fontanelle and skeletal asymmetry. An association with malignancy exists and only one previous intracranial tumour has been reported, a craniopharyngioma. We report the first case of Silver-Russell syndrome associated with a supratentorial juvenile pilocytic astrocytoma.

  1. Tumour vasculature and angiogenic profile of paediatric pilocytic astrocytoma; is it much different from glioblastoma?

    NARCIS (Netherlands)

    Sie, M.; de Bont, E. S. J. M.; Scherpen, F. J. G.; Hoving, E. W.; den Dunnen, W. F. A.

    2010-01-01

    Aims: Pilocytic astrocytomas are the most frequent brain tumours in children. Because of their high vascularity, this study aimed to obtain insights into potential angiogenic related therapeutic targets in these tumours by characterization of the vasculature and the angiogenic profile. In this study

  2. Pilocytic astrocytoma: a retrospective review

    International Nuclear Information System (INIS)

    Wen, B.-C.; Mayr, Nina A.; Hitchon, Patrick W.; Kao, S.; Hussey, David H.

    1996-01-01

    Purpose: The principle objective of this study is to determine the role of radiation therapy in the management of pilocytic astrocytoma. The specific aims are to assess the results of surgical resection +/- radiation therapy, the dose-response relationships for local tumor control, and the prognostic indicators. Materials and methods: Between Jan. 1970 and Dec. 1995, 60 patients with pilocytic astrocytomas (27 cerebellum, 23 hypothalmus/brain stem, 4 temporal, 3 frontal, and 3 occipital) were seen. All pathologic slides were reviewed and confirmed. Of these, 30 patients had surgery only (8 subtotal resections and 22 total resections), 8 had biopsy followed by radiotherapy (6) or chemotherapy (2), 21 had surgery and postoperative radiotherapy (20 subtotal resections and 1 total resection) and 1 was observed only. The radiation dose was 40.6 Gy/31fr/44ds to 60.2 Gy/35fr/49ds (mean = 52.1 Gy). Results: The overall 5- and 10-year actuarial survival rate was 93% and 93%, and the relapse-free survival rate was 86% and 80%, respectively. Eight patients developed local recurrence and one had leptomeningeal spread. Two patients receiving chemotherapy (vincristine + carboplatin) had persistent but stable disease. The one patient who was observed eventually required surgical resection 25 months later. Subtotal resection without RT: The local recurrence rate was 38% ((3(8))) if no RT was given after subtotal resection. Only 2 of the 3 recurrences were salvaged. All 22 patients who had tumor totally resected had local tumor control. Subtotal resection/biopsy only plus RT: Radiation therapy was effective in controlling the gross disease in 75% ((15(20))) of patients with subtotal resection, and 100% ((6(6))) of patients with biopsy only. In 14 patients receiving a tumor dose ≥ 51 Gy, 13 (93%) had local control, in comparison, to (11(15)) (73%) receiving a tumor dose <51 Gy had tumor control. Location of tumor: Sixty-three percent ((17(27))) of patients with tumor in cerebellum

  3. High concentration of Daunorubicin and Daunorubicinol in human malignant astrocytomas after systemic administration of liposomal Daunorubicin

    NARCIS (Netherlands)

    Albrecht, K. W.; de Witt Hamer, P. C.; Leenstra, S.; Bakker, P. J.; Beijnen, J. H.; Troost, D.; Kaaijk, P.; Bosch, A. D.

    2001-01-01

    The value of chemotherapy in patients with malignant astrocytoma remains controversial. In our laboratories in vitro experiments with organotypic spheroid cultures showed superior effectiveness of anthracyclines. Systemic administration did not provide in therapeutic concentrations so far. Because

  4. Prognostic significance of multiple kallikreins in high-grade astrocytoma

    International Nuclear Information System (INIS)

    Drucker, Kristen L.; Gianinni, Caterina; Decker, Paul A.; Diamandis, Eleftherios P.; Scarisbrick, Isobel A.

    2015-01-01

    Kallikreins have clinical value as prognostic markers in a subset of malignancies examined to date, including kallikrein 3 (prostate specific antigen) in prostate cancer. We previously demonstrated that kallikrein 6 is expressed at higher levels in grade IV compared to grade III astrocytoma and is associated with reduced survival of GBM patients. In this study we determined KLK1, KLK6, KLK7, KLK8, KLK9 and KLK10 protein expression in two independent tissue microarrays containing 60 grade IV and 8 grade III astrocytoma samples. Scores for staining intensity, percent of tumor stained and immunoreactivity scores (IR, product of intensity and percent) were determined and analyzed for correlation with patient survival. Grade IV glioma was associated with higher levels of kallikrein-immunostaining compared to grade III specimens. Univariable Cox proportional hazards regression analysis demonstrated that elevated KLK6- or KLK7-IR was associated with poor patient prognosis. In addition, an increased percent of tumor immunoreactive for KLK6 or KLK9 was associated with decreased survival in grade IV patients. Kaplan-Meier survival analysis indicated that patients with KLK6-IR < 10, KLK6 percent tumor core stained < 3, or KLK7-IR < 9 had a significantly improved survival. Multivariable analysis indicated that the significance of these parameters was maintained even after adjusting for gender and performance score. These data suggest that elevations in glioblastoma KLK6, KLK7 and KLK9 protein have utility as prognostic markers of patient survival. The online version of this article (doi:10.1186/s12885-015-1566-5) contains supplementary material, which is available to authorized users

  5. National Radiological Protection Board accounts 1986-87

    International Nuclear Information System (INIS)

    1987-05-01

    The 1986-87 accounts of the Radiological Protection Board are presented in accordance with the Radiological Protection Act 1970. The report of the Comptroller and Auditor General is also given. (U.K.)

  6. National Radiological Protection Board accounts 1986-87

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The 1986-87 accounts of the Radiological Protection Board are presented in accordance with the Radiological Protection Act 1970. The report of the Comptroller and Auditor General is also given. (U.K.).

  7. The Characteristics of Astrocytomas and Oligodendrogliomas Are Caused by Two Distinct and Interchangeable Signaling Formats

    Directory of Open Access Journals (Sweden)

    Chengkai Dai

    2005-04-01

    Full Text Available Chronic platelet-derived growth factor (PDGF signaling in glial progenitors leads to the formation of oligodendrogliomas in mice, whereas chronic combined Ras and Akt signaling leads to astrocytomas. Different histologies of these tumors imply that the pathways activated by these two oncogenic stimulations are different, and that the apparent lineage of the tumor cells may result from specific signaling activity. Therefore, we have investigated the signaling effects of PDGF in culture and in gliomas in vivo. In culture, PDGF transiently activates ERK1/2 and Akt, and subsequently elevates p21 and PCNA expression similar to chronic PDGF autocrine signaling in cultured astrocytes and PDGF-induced oligodendrogliomas in vivo. Culture experiments show that autocrine PDGF stimulation, and combined active Ras and Akt generate signaling patterns that are in some ways mutually exclusive. Furthermore, forced Akt activity in the context of chronic PDGF stimulation results in cells with an astrocytic differentiation pattern both in culture and in vivo. These data imply that these two interconvertible signaling motifs are distinct in mice and lead to gliomas resembling the two major glioma histologies found in humans. The ability of signaling activity to convert tumor cells from one lineage to another presents a mechanism for the development of tumors apparently comprised of cells from multiple lineages.

  8. Overexpression of c-erbB2 is a negative prognostic factor in anaplastic astrocytomas

    Directory of Open Access Journals (Sweden)

    Gulati Michel

    2010-03-01

    Full Text Available Abstract The epidermal growth factor receptor (EGFR family, consisting of four tyrosine kinase receptors, c-erbB1-4, seems to be influential in gliomagenesis. The aim of this study was to investigate EGFR gene amplification and expression of c-erbB1-4 receptor proteins in human anaplastic astrocytomas. Formalin-fixed and paraffin-embedded sections from 31 cases were investigated by standard immunohistochemical procedures for expression of c-erbB1-4 receptor proteins using commercial antibodies. EGFR gene amplification was studied by fluorescence in situ hybridization using paraffin-embedded tissues. Two monoclonal antibodies, NCL-EGFR-384 and NCL-EGFR, were used for EGFR detection and they displayed positive immunoreactivity in 97% and 71%, respectively. For c-erbB2 detection three monoclonal antibodies, CB11, 3B5, and 5A2, were applied and they displayed positive immunoreactivity in 45%, 100%, and 52%, respectively. Positive immunostaining for c-erbB3 and c-erbB4 was encountered in 97% and 74%, respectively. The EGFR gene was amplified in 9 out of 31 tumors (29%. After adjusting for age, Karnofsky performance status, and extent of surgical resection, Cox multiple regression analysis with overall survival as the dependent variable revealed that c-erbB2 overexpression detected by the monoclonal antibody clone CB11 was a statistically significant poor prognostic factor (P = 0.004. This study shows the convenience and feasibility of immunohistochemistry when determining the expression of receptor proteins in tissue sections of human astrocytomas. The synchronous overexpression of c-erbB1-4 proteins in anaplastic astrocytomas supports their role in the pathogenesis of these tumors. Further, c-erbB2 overexpression seems to predict aggressive behaviour.

  9. Annual report 1986-87

    International Nuclear Information System (INIS)

    1988-01-01

    The paper presents the annual report 1986-87 of the Universities Research Reactor, United Kingdom. The reactor and associated laboratories were well utilised during the year. The demand for radioactive isotopes has increased over previous years, with 5592 samples irradiated in the 12 month period. The contents of the report contains a description of: the research programme, activation analysis service, teaching programme, and reactor operation and safety arrangements. (U.K.)

  10. circ-SHKBP1 Regulates the Angiogenesis of U87 Glioma-Exposed Endothelial Cells through miR-544a/FOXP1 and miR-379/FOXP2 Pathways

    Directory of Open Access Journals (Sweden)

    Qianru He

    2018-03-01

    Full Text Available Circular RNAs (circRNAs are a type of endogenous non-coding RNAs, which have been considered to mediate diverse tumorigenesis including angiogenesis. The present study aims to elucidate the potential role and molecular mechanism of circ-SHKBP1 in regulating the angiogenesis of U87 glioma-exposed endothelial cells (GECs. The expression of circ-SHKBP1, but not linear SHKBP1, was significantly upregulated in GECs compared with astrocyte-exposed endothelial cells (AECs. circ-SHKBP1 knockdown inhibited the viability, migration, and tube formation of GECs dramatically. The expressions of miR-379/miR-544a were downregulated in GECs, and circ-SHKBP1 functionally targeted miR-544a/miR-379 in an RNA-induced silencing complex (RISC manner. Dual-luciferase reporter assay demonstrated that forkhead box P1/P2 (FOXP1/FOXP2 were targets of miR-544a/miR-379. The expressions of FOXP1/FOXP2 were upregulated in GECs, and silencing of FOXP1/FOXP2 inhibited the viability, migration, and tube formation of GECs. Meanwhile, FOXP1/FOXP2 promoted angiogenic factor with G patch and FHA domains 1 (AGGF1 expression at the transcriptional level. Furthermore, knockdown of AGGF1 suppressed the viability, migration, and tube formation of GECs via phosphatidylinositol 3-kinase (PI3K/AKT and extracellular signal-regulated kinase (ERK1/2 pathways. Taken together, the present study demonstrated that circ-SHKBP1 regulated the angiogenesis of GECs through miR-544a/FOXP1 and miR-379/FOXP2 pathways, and these findings might provide a potential target and effective strategy for combined therapy of gliomas.

  11. [The heterogeneity of blood flow on magnetic resonance imaging: a biomarker for grading cerebral astrocytomas].

    Science.gov (United States)

    Revert Ventura, A J; Sanz Requena, R; Martí-Bonmatí, L; Pallardó, Y; Jornet, J; Gaspar, C

    2014-01-01

    To study whether the histograms of quantitative parameters of perfusion in MRI obtained from tumor volume and peritumor volume make it possible to grade astrocytomas in vivo. We included 61 patients with histological diagnoses of grade II, III, or IV astrocytomas who underwent T2*-weighted perfusion MRI after intravenous contrast agent injection. We manually selected the tumor volume and peritumor volume and quantified the following perfusion parameters on a voxel-by-voxel basis: blood volume (BV), blood flow (BF), mean transit time (TTM), transfer constant (K(trans)), washout coefficient, interstitial volume, and vascular volume. For each volume, we obtained the corresponding histogram with its mean, standard deviation, and kurtosis (using the standard deviation and kurtosis as measures of heterogeneity) and we compared the differences in each parameter between different grades of tumor. We also calculated the mean and standard deviation of the highest 10% of values. Finally, we performed a multiparametric discriminant analysis to improve the classification. For tumor volume, we found statistically significant differences among the three grades of tumor for the means and standard deviations of BV, BF, and K(trans), both for the entire distribution and for the highest 10% of values. For the peritumor volume, we found no significant differences for any parameters. The discriminant analysis improved the classification slightly. The quantification of the volume parameters of the entire region of the tumor with BV, BF, and K(trans) is useful for grading astrocytomas. The heterogeneity represented by the standard deviation of BF is the most reliable diagnostic parameter for distinguishing between low grade and high grade lesions. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  12. A Sensitive and Specific Diagnostic Panel to Distinguish Diffuse Astrocytoma from Astrocytosis: Chromosome 7 Gain with Mutant Isocitrate Dehydrogenase 1 and p53

    Science.gov (United States)

    Camelo-Piragua, Sandra; Jansen, Michael; Ganguly, Aniruddha; Kim, J. ChulMin; Cosper, Arjola K.; Dias-Santagata, Dora; Nutt, Catherine L.; Iafrate, A. John; Louis, David N.

    2011-01-01

    One of the major challenges of surgical neuropathology is the distinction of diffuse astrocytoma (World Health Organization [WHO] grade II) from astrocytosis. The most commonly used ancillary tool to solve this problem is p53 immunohistochemistry (IHC), but this is neither sensitive nor specific. Isocitrate dehydrogenase 1 (IDH1) mutations are common in lower grade gliomas, with most causing a specific amino acid change (R132H) that can be detected with a monoclonal antibody. IDH2 mutations are rare, but also occur in gliomas. In addition, gains of chromosome 7 are common in gliomas. In this study we assessed the status of p53, IDH1/2 and chromosome 7 to determine the most useful panel to distinguish astrocytoma from astrocytosis. We studied biopsy specimens from 21 WHO grade II diffuse astrocytomas and 20 reactive conditions. The single most sensitive test to identify astrocytoma is fluorescence in situ hybridization (FISH) for chromosome 7 gain (76.2%). The combination of p53 and mutant IDH1 IHC provides a higher sensitivity (71.4%) than either test alone (47.8%); this combination offers a practical initial approach for the surgical pathologist. The best overall sensitivity (95%) is achieved when FISH for chromosome 7 gain is added to the p53-mutant IDH1 IHC panel. PMID:21343879

  13. Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells

    OpenAIRE

    Lu, Yong; Jiang, Feng; Jiang, Hao; Wu, Kalina; Zheng, Xuguang; Cai, Yizhong; Katakowski, Mark; Chopp, Michael; To, Shing-Shun Tony

    2010-01-01

    Gallic acid, an organic acid, also known as 3,4,5-trihydroxybenzoic acid, is cytotoxic against certain cancer cells, without harming normal cells. The objective of this study is to evaluate whether gallic acid can inhibit glioma cell viability, proliferation, invasion and reduce glioma cell mediated angiogenesis. Treatment of U87 and U251n glioma cells with gallic acid inhibited cell viability in a dose- and time-dependent manner. BrdU and tube formation assays indicated that gallic acid sign...

  14. Pre-surgical integration of FMRI and DTI of the sensorimotor system in transcortical resection of a high-grade insular astrocytoma

    Directory of Open Access Journals (Sweden)

    Chelsea eEkstrand

    2016-03-01

    Full Text Available Herein we report on a patient with a WHO Grade III astrocytoma in the right insular region in close proximity to the internal capsule who underwent a right frontotemporal craniotomy. Total gross resection of insular gliomas remains surgically challenging based on the possibility of damage to the corticospinal tracts. However, maximizing the extent of resection has been shown to decrease future adverse outcomes. Thus, the goal of such surgeries should focus on maximizing extent of resection while minimizing possible adverse outcomes. In this case, pre-surgical planning included integration of functional magnetic resonance imaging (fMRI and diffusion tensor imaging (DTI, to localize motor and sensory pathways. Novel fMRI tasks were individually developed for the patient to maximize both somatosensory and motor activation simultaneously in areas in close proximity to the tumor. Information obtained was used to optimize resection trajectory and extent, facilitating gross total resection of the astrocytoma. Across all three motor-sensory tasks administered, fMRI revealed an area of interest just superior and lateral to the astrocytoma. Further, DTI analyses showed displacement of the corona radiata around the superior dorsal surface of the astrocytoma, extending in the direction of the activation found using fMRI. Taking into account these results, a transcortical superior temporal gyrus surgical approach was chosen in order to avoid the area of interest identified by fMRI and DTI. Total gross resection was achieved and minor post-surgical motor and sensory deficits were temporary. This case highlights the utility of comprehensive pre-surgical planning, including fMRI and DTI, to maximize surgical outcomes on a case-by-case basis.

  15. The effect of everolimus on renal angiomyolipoma in pediatric patients with tuberous sclerosis being treated for subependymal giant cell astrocytoma.

    Science.gov (United States)

    Bissler, John J; Franz, David N; Frost, Michael D; Belousova, Elena; Bebin, E Martina; Sparagana, Steven; Berkowitz, Noah; Ridolfi, Antonia; Kingswood, J Christopher

    2018-01-01

    Patients with tuberous sclerosis complex (TSC) often have multiple TSC-associated hamartomas, particularly in the brain and kidney. This was a post hoc analysis of pediatric patients being treated for subependymal giant cell astrocytomas (SEGAs) during the phase 3, randomized, double-blind, placebo-controlled EXIST-1 trial. Patients were initially randomly assigned to receive everolimus 4.5 mg/m 2 /day (target blood trough 5-15 mg/dl) or placebo and could continue in an open-label extension phase. Angiomyolipoma response rates were analyzed in patients aged 20% increase in kidney volume from nadir, and angiomyolipoma-related bleeding ≥ grade 2. Tolerability was also assessed. Overall, this analysis included 33 patients. Renal angiomyolipoma response was achieved by 75.8% of patients (95% confidence interval, 57.7-88.9%), with sustained mean reductions in renal angiomyolipoma volume over nearly 4 years of treatment. In addition, most (≥80%) achieved clinically relevant reductions in angiomyolipoma volume (≥50%), beginning at week 24 and continuing for the remainder of the study. Everolimus was generally well tolerated in this subgroup, with most adverse events being grade 1 or 2 in severity. Although everolimus is currently not indicated for this use, this analysis from EXIST-1 demonstrates its long-term efficacy and safety for the treatment of renal angiomyolipoma in pediatric patients undergoing treatment for TSC-associated SEGA.

  16. FGFR1 tyrosine kinase domain duplication in pilocytic astrocytoma with anaplasia.

    Science.gov (United States)

    Ballester, Leomar Y; Penas-Prado, Marta; Leeds, Norman E; Huse, Jason T; Fuller, Gregory N

    2018-04-01

    We report the case of a 27-yr-old male with visual field loss who had a 4.9-cm complex cystic mass in the right occipital lobe. Histologic examination showed pilocytic astrocytoma (PA) with anaplasia, and molecular characterization revealed FGFR1 duplication with additional variants of unknown significance in several genes ( ARID1A, ARID1B, CHEK2, EPHA5, and MLL2 ). This is one of only a very few reported cases of anaplastic PA with characterization of molecular alterations. © 2018 Ballester et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Expression and Role of GPR87 in Urothelial Carcinoma of the Bladder

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Kakehi

    2013-06-01

    Full Text Available The orphan GPR87 has recently been matched with its ligand LPA, which is a lipid mediator with multiple physiological functions, including cancer cell proliferation. This study aimed to clarify the role of GPR87 in urothelial carcinoma of the bladder. GPR87 expression was assessed in seven human bladder cancer cell lines. A replication-deficient recombinant adenoviral vector expressing shRNA targeting GPR87 (Ad-shGPR87, was constructed. Gene silencing was carried out using Ad-shGPR87. Immunohistochemical analysis was performed for transurethral resection of bladder tumor samples from 71 patients with non-muscle-invasive bladder cancer. We observed GPR87 expression in five of the seven cell lines, and silencing GPR87 gene expression significantly reduced cell viability. GPR87 expression was positive in 38 (54% of 71 tumors. Ki-67 index was associated with positive GPR87 staining status (p < 0.0001. Patients with GPR87-positive tumors had shorter intravesical recurrence-free survival than those with GPR87-negative tumors (p = 0.010. Multivariate analysis revealed that GPR87 staining status was an independent prognostic parameter for intravesical recurrence (p = 0.041. Progression from non-muscle-invasive to muscle-invasive tumor was more frequently observed in patients with GPR87-positive tumors, although this trend did not reach statistical significance (p = 0.056. These results warrant further prospective studies to clarify the role of GPR87 expression in intravesical recurrence and progression in bladder cancer.

  18. Less initial rejoining of X-ray-induced DNA double-strand breaks in cells of a small cell (U-1285) compared to a large cell (U-1810) lung carcinoma cell line

    International Nuclear Information System (INIS)

    Cedervall, B.; Sirzea, F.; Brodin, O.; Lewensohn, R.

    1994-01-01

    Cells of a small cell lung carcinoma cell line, U-1285, and an undifferentiated large cell lung carcinoma cell line, U-1810, differ in radiosensitivity in parallel to the clinical radiosensitivity of the kind of tumors from which they are derived. The surviving fraction at 2 Gy (SF2) was 0.25 that of U-1285 cells and 0.88 that of U-1810 cells. We investigated the induction of DNA double-strand breaks (DSBs) by X rays and DSB rejoining in these cell lines. To estimate the number of DSBs we used a model adapted for pulsed-field gel electrophoresis (PFGE). The induction levels were of the same magnitude. These levels of induction do not correlate with radiosensitivity as measured by cell survival assays. Rejoining of DSBs after doses in the range of 0.50 Gy was followed for 0,15,30,60 and 120 min. We found a difference in the velocity of repair during the first hour after irradiation which is parallel to the differences in radiosensitivity. Thus U-1810 cells exhibit a fast component of repair, with about half of the DSBs being rejoined during the first 15 min, whereas U-1285 cells lack such a fast component, with only about 5% of the DSBs being rejoined after the same time. In addition there was a numerical albeit not statistical difference at 120 min, with more residual DSBs in the U-1285 cells compared to the U-1810 cells. 36 refs., 5 figs

  19. Efficacy of 68Ga-DOTATOC Positron Emission Tomography (PET) CT in Children and Young Adults With Brain Tumors

    Science.gov (United States)

    2017-04-27

    Acoustic Schwannoma; Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Craniopharyngioma; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade I Meningioma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Subependymal Giant Cell Astrocytoma; Adult Subependymoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Supratentorial Ependymoma; Meningeal Melanocytoma; Newly Diagnosed Childhood Ependymoma; Recurrent Adult Brain Tumor; Recurrent Childhood Anaplastic Astrocytoma; Recurrent Childhood Anaplastic Oligoastrocytoma; Recurrent Childhood Anaplastic Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Diffuse Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Fibrillary Astrocytoma; Recurrent Childhood Gemistocytic Astrocytoma; Recurrent Childhood Giant Cell Glioblastoma; Recurrent Childhood Glioblastoma; Recurrent Childhood Gliomatosis Cerebri; Recurrent Childhood Gliosarcoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood

  20. Effect of saw palmetto extract on PI3K cell signaling transduction in human glioma.

    Science.gov (United States)

    Yang, Yang; Hui, Lv; Yuqin, Che; Jie, Li; Shuai, Hou; Tiezhu, Zhou; Wei, Wang

    2014-08-01

    Saw palmetto extract can induce the apoptosis of prostate cancer cells. The aim of the present study was to investigate the effect of saw palmetto extract on the phosphatidylinositol 3-kinase (PI3K)/Akt signaling transduction pathway in human glioma U87 and U251 cell lines. Suspensions of U87 and U251 cells in a logarithmic growth phase were seeded into six-well plates at a density of 10 4 cells/well. In the experimental group, 1 μl/ml saw palmetto extract was added, while the control group was cultured without a drug for 24 h. The expression levels of PI3K, B-cell lymphoma-extra large (Bcl-xL) and p53 were evaluated through western blot analysis. In the experimental group, the U87 and U251 cells exhibited a lower expression level of PI3K protein as compared with the control group (t=6.849; Psaw palmetto extract induces glioma cell growth arrest and apoptosis via decreasing PI3K/Akt signal transduction.

  1. OASIS/CREB3L1 is induced by endoplasmic reticulum stress in human glioma cell lines and contributes to the unfolded protein response, extracellular matrix production and cell migration.

    Directory of Open Access Journals (Sweden)

    Ravi N Vellanki

    Full Text Available OASIS is a transcription factor similar to ATF6 that is activated by endoplasmic reticulum stress. In this study we investigated the expression of OASIS in human glioma cell lines and the effect of OASIS knock-down on the ER stress response and cell migration. OASIS mRNA was detected in three distinct glioma cell lines (U373, A172 and U87 and expression levels were increased upon treatment with ER stress-inducing compounds in the U373 and U87 lines. OASIS protein, which is glycosylated on Asn-513, was detected in the U373 and U87 glioma lines at low levels in control cells and protein expression was induced by ER stress. Knock-down of OASIS in human glioma cell lines resulted in an attenuated unfolded protein response to ER stress (reduced GRP78/BiP and GRP94 induction and decreased expression of chondroitin sulfate proteoglycan extracellular matrix proteins, but induction of the collagen gene Col1a1 was unaffected. Cells in which OASIS was knocked-down exhibited altered cell morphology and reduced cell migration. These results suggest that OASIS is important for the ER stress response and maintenance of some extracellular matrix proteins in human glioma cells.

  2. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells

    OpenAIRE

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2016-01-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphen...

  3. Sustained response to weekly vinblastine in 2 children with pilomyxoid astrocytoma associated with diencephalic syndrome.

    Science.gov (United States)

    Singh, Gurpreet; Wei, Xing Chang; Hader, Walter; Chan, Jennifer A; Bouffet, Eric; Lafay-Cousin, Lucie

    2013-03-01

    Diencephalic syndrome (DS) related to hypothalamic/chiasmatic region tumor has mainly been reported with low-grade glioma. We described 2 young children with DS related to pilomyxoid astrocytoma. Despite the recognized more agressive clinical behavior of this histologic subtype, we report successful resolution of DS and sustained tumor response with prolonged use of single-agent vinblastine.

  4. Cloning of a novel transcription factor-like gene amplified in human glioma including astrocytoma grade I

    NARCIS (Netherlands)

    Fischer, U.; Heckel, D.; Michel, A.; Janka, M.; Hulsebos, T.; Meese, E.

    1997-01-01

    Gene amplification, which is generally considered to occur late in tumor development, is a common feature of high grade glioma. Up until now, there have been no reports on amplification in astrocytoma grade I. In this study, we report cloning and sequencing of a cDNA termed glioma-amplified sequence

  5. Pediatric spinal cord astrocytomas: a retrospective study of 348 patients from the SEER database.

    Science.gov (United States)

    Luksik, Andrew S; Garzon-Muvdi, Tomas; Yang, Wuyang; Huang, Judy; Jallo, George I

    2017-06-01

    OBJECTIVE Intramedullary spinal cord tumors comprise 1%-10% of all childhood central nervous system neoplasms, with astrocytomas representing the most common subtype. Due to their rarity and poor prognosis, large population-based studies are needed to assess the epidemiology and survival risk factors associated with these tumors in the hope of improving outcome. The authors undertook this retrospective study to explore factors that may influence survival in pediatric patients with spinal cord astrocytomas. METHODS Utilizing the Surveillance, Epidemiology, and End Results (SEER) database, a prospective cancer registry, the authors retrospectively assessed survival in histologically confirmed, primary spinal cord astrocytomas in patients 21 years of age and younger. Survival was described with Kaplan-Meyer curves, and a multivariate regression analysis was used to assess the association of several variables with survival while controlling for confounding variables. RESULTS This analysis of 348 cases showed that age (hazard ratio [HR] 1.05, 95% CI 1.01-1.09, p = 0.017), nonwhite race (HR 1.74, 95% CI 1.11-2.74, p = 0.014), high-grade tumor status (HR 14.67, 95% CI 6.69-32.14, p < 0.001), distant or invasive extension of the tumor (HR 2.37, 95% CI 1.02-5.49, p = 0.046), and radiation therapy (HR 3.74, 95% CI 2.18-6.41, p < 0.001) were associated with decreased survival. Partial resection (HR 0.37, 95% CI 0.16-0.83, p = 0.017) and gross-total resection (HR 0.39, 95% CI 0.16-0.95, p = 0.039) were associated with improved survival. CONCLUSIONS Younger age appears to be protective, while high-grade tumors have a much worse prognosis. Early diagnosis and access to surgery appears necessary for improving outcomes, while radiation therapy has an unclear role. There is still much to learn about this disease in the hope of curing children with the misfortune of having one of these rare tumors.

  6. Characterization of cells recovered from the xenotransplanted NG97 human-derived glioma cell line subcultured in a long-term in vitro

    Directory of Open Access Journals (Sweden)

    Heinrich Juliana K

    2008-10-01

    Full Text Available Abstract Background In order to elucidate tumoral progression and drug resistance, cultured cell lines are valuable tools applied on tumor related assays provided they are well established and characterized. Our laboratory settled the NG97 cell line derived from a human astrocytoma grade III, which started to develop and express important phenotypical characteristics of an astrocytoma grade IV after injection in the flank of nude mice. Astrocytomas are extremely aggressive malignancies of the Central Nervous System (CNS and account for 46% of all primary malignant brain tumors. Progression to worse prognosis occurs in 85% of the cases possibly due to changes in cell tumor microenvironment and through biological pathways that are still unclear. Methods This work focused on characterizing the NG97 cell line specifically after being recovered from the xenotransplant, who maintained their undifferentiated characteristics along the following 60th passages in vitro. These cells were subcultivated to evaluate the possible contribution of these undifferentiated characteristics to the malignant progression phenotype. These characteristics were the expression of molecules involved in the processes of migration, dedifferentiation and chromosomal instability. Results Results showed that NG97(ht had an decrease in doubling time through sub cultivation, which was characterized by a converse modulation between the expression of glial fibrillary acidic protein (GFAP and vimentin. In addition, β1 integrins were present in intermediate levels while α5 integrins had a high expression profile as well as fibronectin and laminin. Cytogenetic analysis of NG97(ht revealed several chromosomal abnormalities, 89% of the cells showed to be hyperdiploid and the modal number was assigned to be 63. Several acrocentric chromosomes were visualized and at least 30 figures were attributed to be murine. These findings suggest a possible fusion between the original NG97 cells

  7. Characterization of cells recovered from the xenotransplanted NG97 human-derived glioma cell line subcultured in a long-term in vitro

    International Nuclear Information System (INIS)

    Machado, Camila ML; Boetcher-Luiz, Fátima; Verinaud, Liana; Ikemori, Rafael Y; Zorzeto, Tatiana Q; Nogueira, Ana CMA; Barbosa, Suse DS; Savino, Wilson; Schenka, André A; Vassallo, José; Heinrich, Juliana K

    2008-01-01

    In order to elucidate tumoral progression and drug resistance, cultured cell lines are valuable tools applied on tumor related assays provided they are well established and characterized. Our laboratory settled the NG97 cell line derived from a human astrocytoma grade III, which started to develop and express important phenotypical characteristics of an astrocytoma grade IV after injection in the flank of nude mice. Astrocytomas are extremely aggressive malignancies of the Central Nervous System (CNS) and account for 46% of all primary malignant brain tumors. Progression to worse prognosis occurs in 85% of the cases possibly due to changes in cell tumor microenvironment and through biological pathways that are still unclear. This work focused on characterizing the NG97 cell line specifically after being recovered from the xenotransplant, who maintained their undifferentiated characteristics along the following 60 th passages in vitro. These cells were subcultivated to evaluate the possible contribution of these undifferentiated characteristics to the malignant progression phenotype. These characteristics were the expression of molecules involved in the processes of migration, dedifferentiation and chromosomal instability. Results showed that NG97(ht) had an decrease in doubling time through sub cultivation, which was characterized by a converse modulation between the expression of glial fibrillary acidic protein (GFAP) and vimentin. In addition, β1 integrins were present in intermediate levels while α5 integrins had a high expression profile as well as fibronectin and laminin. Cytogenetic analysis of NG97(ht) revealed several chromosomal abnormalities, 89% of the cells showed to be hyperdiploid and the modal number was assigned to be 63. Several acrocentric chromosomes were visualized and at least 30 figures were attributed to be murine. These findings suggest a possible fusion between the original NG97 cells with stromal murine cells in the xenotransplant. In

  8. uPA/uPAR system activation drives a glycolytic phenotype in melanoma cells.

    Science.gov (United States)

    Laurenzana, Anna; Chillà, Anastasia; Luciani, Cristina; Peppicelli, Silvia; Biagioni, Alessio; Bianchini, Francesca; Tenedini, Elena; Torre, Eugenio; Mocali, Alessandra; Calorini, Lido; Margheri, Francesca; Fibbi, Gabriella; Del Rosso, Mario

    2017-09-15

    In this manuscript, we show the involvement of the uPA/uPAR system in the regulation of aerobic glycolysis of melanoma cells. uPAR over-expression in human melanoma cells controls an invasive and glycolytic phenotype in normoxic conditions. uPAR down-regulation by siRNA or its uncoupling from integrins, and hence from integrin-linked tyrosine kinase receptors (IL-TKRs), by an antagonist peptide induced a striking inhibition of the PI3K/AKT/mTOR/HIF1α pathway, resulting into impairment of glucose uptake, decrease of several glycolytic enzymes and of PKM2, a checkpoint that controls metabolism of cancer cells. Further, binding of uPA to uPAR regulates expression of molecules that govern cell invasion, including extracellular matrix metallo-proteinases inducer (EMPPRIN) and enolase, a glycolytyc enzyme that also serves as a plasminogen receptor, thus providing a common denominator between tumor metabolism and phenotypic invasive features. Such effects depend on the α5β1-integrin-mediated uPAR connection with EGFR in melanoma cells with engagement of the PI3K-mTOR-HIFα pathway. HIF-1α trans-activates genes whose products mediate tumor invasion and glycolysis, thus providing the common denominator between melanoma metabolism and its invasive features. These findings unveil a unrecognized interaction between the invasion-related uPAR and IL-TKRs in the control of glycolysis and disclose a new pharmacological target (i.e., uPAR/IL-TKRs axis) for the therapy of melanoma. © 2017 UICC.

  9. Analysis of difference of association between polymorphisms in the XRCC5, RPA3 and RTEL1 genes and glioma, astrocytoma and glioblastoma.

    Science.gov (United States)

    Jin, Tianbo; Wang, Yuan; Li, Gang; Du, Shuli; Yang, Hua; Geng, Tingting; Hou, Peng; Gong, Yongkuan

    2015-01-01

    Gliomas are the most common aggressive brain tumors and have many complex pathological types. Previous reports have discovered that genetic mutations are associated with the risk of glioma. However, it is unclear whether uniform genetic mutations exist difference between glioma and its two pathological types in the Han Chinese population. We evaluated 20 SNPs of 703 glioma cases (338 astrocytoma cases, 122 glioblastoma cases) and 635 controls in a Han Chinese population using χ(2) test and genetic model analysis. In three case-control studies, we found rs9288516 in XRCC5 gene showed a decreased risk of glioma (OR, 0.85; 95% CI, 0.73-0.99; P = 0.042) and glioblastoma (OR, 0.70; 95% CI, 0.52-0.92; P = 0.001) in the allele model. We identified rs414805 in RPA3 gene showed an increased risk of glioblastoma in allele model (OR, 1.38; 95% CI, 1.00-1.89; P = 0.047) and dominant model (OR, 1.57; 95% CI, 1.05-2.35; P = 0.027), analysis respectively. Meanwhile, rs2297440 in RTEL1 gene showed an increased risk of glioma (OR, 1.30; 95% CI, 1.10-1.54; P = 0.002) and astrocytoma (OR, 1.26; 95% CI, 1.02-1.54; P = 0.029) in the allele model. In addition, we also observed a haplotype of "GCT" in the RTEL1 gene with an increased risk of astrocytoma (P = 0.005). Polymorphisms in the XRCC5, RPA3 and RTEL1 genes, combinating with previous reaserches, are associated with glioma developing. However, those genes mutations may play different roles in the glioma, astrocytoma and glioblastoma, respectively.

  10. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    International Nuclear Information System (INIS)

    Song, Yichen; Wang, Ping; Zhao, Wei; Yao, Yilong; Liu, Xiaobai; Ma, Jun; Xue, Yixue; Liu, Yunhui

    2014-01-01

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin

  11. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yichen, E-mail: jeff200064017@163.com [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China); Wang, Ping, E-mail: pingwang8000@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Zhao, Wei, E-mail: 15669746@qq.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Yao, Yilong, E-mail: yaoyilong_322@163.com [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China); Liu, Xiaobai, E-mail: paganizonda1991@qq.com [The 96th Class, 7-year Program, China Medical University, Shenyang, Liaoning Province 110001 (China); Ma, Jun, E-mail: majun_724@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Xue, Yixue, E-mail: xueyixue888@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Liu, Yunhui, E-mail: liuyh@sj-hospital.org [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China)

    2014-05-15

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin.

  12. Mitochondrial BK Channel Openers CGS7181 and CGS7184 Exhibit Cytotoxic Properties

    Directory of Open Access Journals (Sweden)

    Bartłomiej Augustynek

    2018-01-01

    Full Text Available Potassium channel openers (KCOs have been shown to play a role in cytoprotection through the activation of mitochondrial potassium channels. Recently, in several reports, a number of data has been described as off-target actions for KCOs. In the present study, we investigated the effects of BKCa channel openers CGS7181, CGS7184, NS1619, and NS004 in neuronal cells. For the purpose of this research, we used a rat brain, the mouse hippocampal HT22 cells, and the human astrocytoma U-87 MG cell line. We showed that CGS7184 activated the mitochondrial BKCa (mitoBKCa channel in single-channel recordings performed on astrocytoma mitoplasts. Moreover, when applied to the rat brain homogenate or isolated rat brain mitochondria, CGS7184 increased the oxygen consumption rate, and can thus be considered a potentially cytoprotective agent. However, experiments on intact neuronal HT22 cells revealed that both CGS7181 and CGS7184 induced HT22 cell death in a concentration- and time-dependent manner. By contrast, we did not observe cell death when NS1619 or NS004 was applied. CGS7184 toxicity was not abolished by BKCa channel inhibitors, suggesting that the observed effects were independent of a BKCa-type channel activity. CGS7184 treatment resulted in an increase of cytoplasmic Ca2+ concentration that likely involved efflux from internal calcium stores and the activation of calpains (calcium-dependent proteases. The cytotoxic effect of the channel opener was partially reversed by a calpain inhibitor. Our data show that KCOs under study not only activate mitoBKCa channels from brain tissue, but also induce cell death when used in cellular models.

  13. Killing of Brain Tumor Cells by Hypoxia-Responsive Element Mediated Expression of BAX

    Directory of Open Access Journals (Sweden)

    Hangjun Ruan

    1999-11-01

    Full Text Available The presence of radioresistant hypoxic cells in human brain tumors limits the overall effectiveness of conventional fractionated radiation therapy. Tumor-specific therapies that target hypoxic cells are clearly needed. We have investigated the expression of suicide genes under hypoxia by a hypoxia-responsive element (HRE, which can be activated through hypoxia-inducible factor-1 (HIF-1. We transfected plasmids containing multiple copies of HIRE into U-87 MG and U-251 MG-NCI human brain tumor cells and tested their ability to induce LacZ gene expression under anoxia. Gene expression under anoxia versus oxia was increased about 12-fold for U-87 MG cells and about fourfold for U-251 MG-NCI cells. At intermediate hypoxic conditions, increased LacZ gene expression in U-87 MG cells was induced by the plasmid that contained three HREs, but not by the plasmid with two HREs. Lastly, when we placed a suicide gene BAX under the control of HREs, cells transfected with the BAX plasmids were preferentially killed through apoptosis under anoxia. Our studies demonstrate that HRE-regulated gene expression is active in brain tumor cells, and that the amount of increased gene expression obtained is dependent on the cell line, the HIRE copy number, and the degree of hypoxia.

  14. Quality of life and neuropsychological evaluation for patients with malignant astrocytomas: RTOG 91-14

    International Nuclear Information System (INIS)

    Choucair, Ali K.; Scott, Charles; Urtasun, Raul; Nelson, Diana; Mousas, Benjamin; Curran, Walter

    1997-01-01

    Abstract: With increasingly aggressive neurosurgical and radiation therapy modalities (gamma knife, external beam stereotactic radiation and interstitial brachytherapy with or without hyperthermia) offered to patients with malignant astrocytomas (MA), increasing national demand for medical outcome studies and rising health care costs amidst public, business, and governmental debate to cut spending, we as physicians are obligated to continue our research to find effective treatments for malignant astrocytoma (MA) and a cost-effective means to study their impact upon the patient's quality of life (QOL). Purpose: We report data that was collected within the Radiation Therapy Oncology Group (RTOG) on 126 patients with MA who were enrolled in RTOG 91-14. This study was undertaken to prospectively test the feasibility of performing quality of life (QOL) and neuropsychological evaluation (NPE) and collecting this data within the RTOG. Results: The NPE and QOL parameters that were used in this study are cost effective. They are not only much cheaper than formal cognitive and memory testing, but also provide additional information regarding the patients' day to day functional abilities that are not provided by the current routinely used means, such as KPS. The Mini-Mental Status Exam (MMSE) provides greater sensitivity to patients' differences in neurological status and may be preferable to NFS as an eligibility criteria

  15. Pion radiation for high grade astrocytoma: results of a randomized study

    International Nuclear Information System (INIS)

    Pickles, Tom; Goodman, George B.; Rheaume, Dorianne E.; Duncan, Graeme G.; Fryer, Chris J.; Bhimji, Shamim; Ludgate, Charles; Syndikus, Isabel; Graham, Peter; Dimitrov, Mario; Bowen, Julie

    1997-01-01

    Purpose: This study attempted to compare within a randomized study the outcome of pion radiation therapy vs. conventional photon irradiation for the treatment of high-grade astrocytomas. Methods and Materials: Eighty-four patients were randomized to pion therapy (33-34.5 Gyπ), or conventional photon irradiation (60 Gy). Entry criteria included astrocytoma (modified Kernohan high Grade 3 or Grade 4), age 18-70, Karnofsky performance status (KPS) ≥50, ability to start irradiation within 30 days of surgery, unifocal tumor, and treatment volume < 850 cc. The high-dose volume in both arms was computed tomography enhancement plus a 2-cm margin. The study was designed with the power to detect a twofold difference between arms. Results: Eighty-one eligible patients were equally balanced for all known prognostic variables. Pion patients started radiation 7 days earlier on average than photon patients, but other treatment-related variables did not differ. There were no significant differences for either early or late radiation toxicity between treatment arms. Actuarial survival analysis shows no differences in terms of time to local recurrence or overall survival where median survival was 10 months in both arms (p = 0.22). The physician-assessed KPS and patient-assessed quality of life (QOL) measurements were generally maintained within 10 percentage points until shortly before tumor recurrence. There was no apparent difference in the serial KPS or QOL scores between treatment arms. Conclusion: In contrast to high linear energy transfer (LET) therapy for central nervous system tumors, such as neutron or neon therapy, the safety of pion therapy, which is of intermediate LET, has been reaffirmed. However, this study has demonstrated no therapeutic gain for pion therapy of glioblastoma

  16. Anaplastic astrocytoma 14 years after radiotherapy for pituitary adenoma

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Masaru; Misumi, Syuuzou; Kurosaki, Syuuhei; Shibasaki, Takashi; Ohye, Chihiro (Gunma Univ., Maebashi (Japan). School of Medicine)

    1992-04-01

    A case of anaplastic astrocytoma following radiotherapy for growth hormone secreting pituitary adenoma is presented with a review of the literature. A 43 year old female was admitted with signs of acromegaly and hypertension. An eosinophilic pituitary adenoma was subtotally removed by transsphenoidal approach, followed by 60 Gy irradiation using a 2x2 cm lateral field. Fourteen years later at the age of 57, she suffered from headache, recent-memory disturbance and uncinate fits. CT scan and MRI disclosed ring-like enhanced mass lesion in the left temporal lobe, corresponding to the previous irradiated field. {sup 18}F-FDG PET showed hypermetabolism at the lesion. Left frontotemporal craniotomy was performed, and a reddish gray gelatinous tumor containing necrotic center and cyst was partially removed. Histologically, the tumor consisted of hypercellular astrocytic cells with perivascular pseudorosette. Coagulation necrosis at the center of the tumor, and hyalinosis and fibrosis of the blood vessels in and around the tumor, which might have been caused by the antecedent radiotherapy, were recognized. Postoperative radiotherapy and chemotherapy, were given, however, she expired 13 months after the operation. Seven cases, including ours, of malignant glioma following radiotherapy for pituitary adenoma were reported in the literature. A total dose of irradiation varies from 45 to 95 Gy with a mean of 50 Gy. The period of latency before tumor occurrence ranges from 5 to 22 years with a mean of 10 years. The differentiation of radiation-induced gliomas from radionecrosis of the brain is also discussed. (author).

  17. Anaplastic astrocytoma 14 years after radiotherapy for pituitary adenoma

    International Nuclear Information System (INIS)

    Tamura, Masaru; Misumi, Syuuzou; Kurosaki, Syuuhei; Shibasaki, Takashi; Ohye, Chihiro

    1992-01-01

    A case of anaplastic astrocytoma following radiotherapy for growth hormone secreting pituitary adenoma is presented with a review of the literature. A 43 year old female was admitted with signs of acromegaly and hypertension. An eosinophilic pituitary adenoma was subtotally removed by transsphenoidal approach, followed by 60 Gy irradiation using a 2x2 cm lateral field. Fourteen years later at the age of 57, she suffered from headache, recent-memory disturbance and uncinate fits. CT scan and MRI disclosed ring-like enhanced mass lesion in the left temporal lobe, corresponding to the previous irradiated field. 18 F-FDG PET showed hypermetabolism at the lesion. Left frontotemporal craniotomy was performed, and a reddish gray gelatinous tumor containing necrotic center and cyst was partially removed. Histologically, the tumor consisted of hypercellular astrocytic cells with perivascular pseudorosette. Coagulation necrosis at the center of the tumor, and hyalinosis and fibrosis of the blood vessels in and around the tumor, which might have been caused by the antecedent radiotherapy, were recognized. Postoperative radiotherapy and chemotherapy, were given, however, she expired 13 months after the operation. Seven cases, including ours, of malignant glioma following radiotherapy for pituitary adenoma were reported in the literature. A total dose of irradiation varies from 45 to 95 Gy with a mean of 50 Gy. The period of latency before tumor occurrence ranges from 5 to 22 years with a mean of 10 years. The differentiation of radiation-induced gliomas from radionecrosis of the brain is also discussed. (author)

  18. The role of radiotherapy in the management of supratentorial low grade astrocytoma

    International Nuclear Information System (INIS)

    Song, M. H.; Chang, H. S.; Lee, K. J.

    1997-01-01

    To evaluate the role of radiotherapy in the management of incompletely resected supratentorial low grade astrocytoma with the analysis of the survival, the pattern of failure, and the prognostic variables affecting survival. Between January 1990 and December 1995, fifty-one patients with supratentorial low grade astrocytoma received radiotherapy after subtotal resection (16 patients) or stereotactic biopsy(35 patients)at Asan Medical Center. External radiotherapy was done by conventional fractionation with the total dose of 4820cGy to 6000cGy(median 5580cGy) and partial brain volume. The follow-up was done from 6 to 79 months(median 48 months). Overall actuarial survival rate at 2 and 5 years were 83.4% and 54.8T, respectively. Progression free survival at 2 and 5 years were 67.4% and 48.7%, respectively. The significant prognostic factors affecting overall survival rate were the performance status, T stage, histologic subtype, radiation field and radiation response. The major pattern of failure was local failure, such as progressive disease and primary site recurrence in 23 patients (45.1%). Progression free survivors excluding 2 patients were physically and intellectually intact without major neurologic deficit. Although the follow-up period of this study was relatively short, overall actuarial and progression free survival rate were encouraging. Patients with good performance status, lower T stage, pilocytic subtype, patients treated with small radiation field and radiation responder showed better survival. As the local failure was the major pattern of failure, the various efforts to decrease the local failure is necessary. (author)

  19. Proposed tandem mirror research program for FY87 presented to the MFAC subcommittee on mirror research, July 8-9, 1986

    International Nuclear Information System (INIS)

    Baldwin, D.E.; Correll, D.L.; Fowler, T.K.; Grubb, D.P.; Hershkowitz, N.; Porter, G.D.; Post, R.S.; Simonen, T.C.

    1986-01-01

    We have reexamined the goal of approx.10 13 cm -3 central-cell density with end-plugging and reconfirmed its importance as a test of thermal barrier end-plugging performance in either Tara or TMX-U. We conclude that, when all factors are considered including the impact on other programs interlinked with LLNL in the present OFE budget, the lowest cost approach to have a fair chance to meet this goal is to extend Tara operation for the full FY87. Continuation of TMX-U operation in FY87, in addition to the full year of Tara operation, would greatly improve the chance of success. Continuation of the mirror program into FY88 and beyond would be based on an experimental program in TMX-U and Tara at a minimum budget level of $25M/y, with restart of MFTF-B requiring an increase in the national fusion budget. The experimental program to be investigated by TMX-U and Tara would include improvement in the mgnetic geometry (stability, beta limits, and transport), continued plug studies (longer pulse length, impurities, drift pumping, and ECH efficiency), and transport studies (chi/sub e/, fueling, and halo formation)

  20. Characterization of Cancer Stem Cells in Patients with Brain ...

    African Journals Online (AJOL)

    Background: Gliomas, in general, and astrocytomas, in particular, represent the most frequent primary brain tumors. Nowadays, it is increasingly believed that gliomas may arise from cancer stem cells, which share several characteristics with normal neural stem cells. Brain tumor stem cells have been found to express a ...

  1. Physiological oxygen concentration alters glioma cell malignancy and responsiveness to photodynamic therapy in vitro.

    Science.gov (United States)

    Albert, Ina; Hefti, Martin; Luginbuehl, Vera

    2014-11-01

    The partial pressure of oxygen (pO2) in brain tumors ranges from 5 to 15%. Nevertheless, the majority of in vitro experiments with glioblastoma multiforme (GBM) cell lines are carried out under an atmospheric pO2 of 19 to 21%. Recently, 5-aminolevulinic acid (5-ALA), a precursor of protoporphyrin IX (PpIX), has been introduced to neurosurgery to allow for photodynamic diagnosis and photodynamic therapy (PDT) in high-grade gliomas. Here, we investigate whether low pO2 affects GBM cell physiology, PpIX accumulation, or PDT efficacy. GBM cell lines (U-87 MG and U-251 MG) were cultured under atmospheric (pO2  =  19%) and physiological (pO2  =  9%) oxygen concentrations. PpIX accumulation and localization were investigated, and cell survival and cell death were observed following in vitro PDT. A physiological pO2 of 9% stimulated GBM cell migration, increased hypoxia-inducible factor (HIF)-1 alpha levels, and elevated resistance to camptothecin in U-87 MG cells compared to cultivation at a pO2 of 19%. This oxygen reduction did not alter 5-ALA-induced intracellular PpIX accumulation. However, physiological pO2 changed the responsiveness of U-87 MG but not of U-251 MG cells to in vitro PDT. Around 20% more irradiation light was required to kill U-87 MG cells at physiological pO2, resulting in reduced lactate dehydrogenase (LDH) release (one- to two-fold) and inhibition of caspase 3 activation. Reduction of oxygen concentration from atmospheric to a more physiological level can influence the malignant behavior and survival of GBM cell lines after in vitro PDT. Therefore, precise oxygen concentration control should be considered when designing and performing experiments with GBM cells.

  2. External Beam Radiotherapy in the Management of Low Grade Astrocytoma of the Brain

    International Nuclear Information System (INIS)

    Jeon, Ha Jung

    2009-01-01

    This study was designed to evaluate the effectiveness of postoperative radiotherapy for patients with low-grade astrocytomas and to define an optimal radiotherapeutic regimen and prognostic factors. A total of 69 patients with low-grade astrocytomas underwent surgery and postoperative radiotherapy immediately following surgery at our institution between October 1989 and September 2006. The median patient age was 36 years. Forty-one patients were 40 years or younger and 28 patients were 41 years or older. Fourteen patients underwent a biopsy alone and the remaining 55 patients underwent a subtotal resection. Thirty-nine patients had a Karnofsky performance status of less than 80% and 30 patients had a Karnofsky performance status greater than 80%. Two patients were treated with whole brain irradiation followed by a coned down boost field to the localized area. The remaining 67 patients were treated with a localized field with an appropriate margin. Most of the patients received a dose of 50∼55 Gy and majority of the patients were treated with a dose of 54 Gy. The overall 5-year and 7-year survival rates for all of the 69 patients were 49% and 44%, respectively. Corresponding disease free survival rates were 45% and 40%, respectively. Patients who underwent a subtotal resection showed better survival than patients who underwent a biopsy alone. The overall 5-year survival rates for patients who underwent a subtotal resection and patients who underwent a biopsy alone were 57% and 38%, respectively (p<0.05). Forty-one patients who were 40 years or younger showed a better overall 5-year survival rate as compared with 28 patients who were 41 years or older (56% versus 40%, p<0.05). The overall 5-year survival rates for 30 patients with a Karnofsky performance status greater than 80% and 39 patients with a Karnofsky performance status less than 80% were 51% and 47%, respectively. This finding was not statistically significant. Although one patient was not able to

  3. Nanoparticles containing allotropes of carbon have genotoxic effects on glioblastoma multiforme cells

    DEFF Research Database (Denmark)

    Hinzmann, Mateusz; Jaworski, Sławomir; Kutwin, Marta

    2014-01-01

    of the U87 cancer cells. However, incubation with pristine graphene and reduced graphene oxide led to a significant decrease in cell viability, whereas incubation with graphene oxide, graphite, and ultradispersed detonation diamond led to a smaller decrease in cell viability. The results of a comet assay...... viability by Trypan blue assay and level of DNA fragmentation of U87 cells after 24 hours of incubation with 50 μg/mL carbon nanoparticles. DNA fragmentation was studied using single-cell gel electrophoresis. Incubation with nanoparticles containing the allotropes of carbon did not alter the morphology...

  4. Transfection of wild type ADVP53 gene into human brain tumor cell lines has a radiosensitizing effect independent of apoptosis

    International Nuclear Information System (INIS)

    Geng, L.; Walter, S; Vaughan, A.T.M.

    1997-01-01

    Purpose: Despite attempts with a variety of therapeutic approaches there has been little impact on the survival of patients with Glioblastoma multiforme, with median survivals reported of approximately 12 months. In this study a replication restricted adenovirus vector is used to transfer the wild type p53 gene into two cell lines derived from a human astrocytoma U87MG or glioblastoma T98G, to determine its ability to act as a radiosensitizer in conjunction with conventional radiotherapy. Methods: An adenovirus vector containing the human wild type p53 (Advp53) gene was used in addition to a control vector containing the β-galactosidase (Advγgal) reporter gene. To achieve cellular incorporation both vectors were incubated with cells for 30 minutes - washed and returned to culture. The successful incorporation of each vector was determined by either a p53 assay using either a western blotting or flow cytometry techniques, or specific staining for β-galactosidase activity. The presence of each vector was assayed until the constructs were eliminated from the cell. To determine the effects of these vectors on cell survival sufficient vector was added to produce a measurable reduction in clonogenic survival and this value was used in subsequent irradiation experiments. To determine the ability of wild type p53 to induce apoptosis the cells were examined from 1 to 5 days after irradiation by H and E staining for the characteristic morphology indicating an apoptotic process. Results: Both the Advp53 and Advβgal vectors were successfully incorporated into each cell line. Expression of each gene was reduced to approximately half by 5 days and virtually eliminated by 15 days after transfection in both lines. At the doses used the wild type Advp53 adenovirus was toxic to both cell lines giving surviving fractions between 39-74%. When this toxicity was taken into account the presence of the Advp53 gene had a radiosensitizing effect in each cell line. To determine the

  5. Classification of astrocyto-mas and meningiomas using statistical discriminant analysis on MRI data

    International Nuclear Information System (INIS)

    Siromoney, Anna; Prasad, G.N.S.; Raghuram, Lakshminarayan; Korah, Ipeson; Siromoney, Arul; Chandrasekaran, R.

    2001-01-01

    The objective of this study was to investigate the usefulness of Multivariate Discriminant Analysis for classifying two groups of primary brain tumours, astrocytomas and meningiomas, from Magnetic Resonance Images. Discriminant analysis is a multivariate technique concerned with separating distinct sets of objects and with allocating new objects to previously defined groups. Allocation or classification rules are usually developed from learning examples in a supervised learning environment. Data from signal intensity measurements in the multiple scan performed on each patient in routine clinical scanning was analysed using Fisher's Classification, which is one method of discriminant analysis

  6. PKC 412 sensitizes U1810 non-small cell lung cancer cells to DNA damage

    International Nuclear Information System (INIS)

    Hemstroem, Therese H.; Joseph, Bertrand; Schulte, Gunnar; Lewensohn, Rolf; Zhivotovsky, Boris

    2005-01-01

    Non-small cell lung carcinoma (NSCLC) is characterized by resistance to drug-induced apoptosis, which might explain the survival of lung cancer cells following treatment. Recently we have shown that the broad-range kinase inhibitor staurosporine (STS) reactivates the apoptotic machinery in U1810 NSCLC cells [Joseph et al., Oncogene 21 (2002) 65]. Lately, several STS analogs that are more specific in kinase inhibition have been suggested for tumor treatment. In this study the apoptosis-inducing ability of the STS analogs PKC 412 and Ro 31-8220 used alone or in combination with DNA-damaging agents in U1810 cells was investigated. In these cells Ro 31-8220 neither induced apoptosis when used alone, nor sensitized cells to etoposide treatment. PKC 412 as a single agent induced death of a small number of U1810 cells, whereas it efficiently triggered a dose- and time-dependent apoptosis in U1285 small cell lung carcinoma cells. In both cell types PKC 412 triggered release of mitochondrial proteins followed by caspase activation. However, concomitant activation of a caspase-independent pathway was essential to kill NSCLC cells. Importantly, PKC 412 was able to sensitize etoposide- and radiation-induced death of U1810 cells. The best sensitization was achieved when PKC 412 was administered 24 h after treatments. In U1810 cells, Ro 31-8220 decreased PMA-induced ERK phosphorylation as efficiently as PKC 412, indicating that the failure of Ro 31-8220 to induce apoptosis was not due to weaker inhibition of conventional and novel PKC isoforms. However, Ro 31-8220 increased the basal level of ERK and Akt phosphorylation in both cell lines, whereas Akt phosphorylation was suppressed in the U1810 cells, which might influence apoptosis. These results suggest that PKC 412 could be a useful tool in increasing the efficiency of therapy of NSCLC

  7. Value of 18F-3,4-dihydroxyphenylalanine PET/MR image fusion in pediatric supratentorial infiltrative astrocytomas: a prospective pilot study.

    Science.gov (United States)

    Morana, Giovanni; Piccardo, Arnoldo; Milanaccio, Claudia; Puntoni, Matteo; Nozza, Paolo; Cama, Armando; Zefiro, Daniele; Cabria, Massimo; Rossi, Andrea; Garrè, Maria Luisa

    2014-05-01

    Infiltrative astrocytomas (IAs) represent a group of astrocytic gliomas ranging from low-grade to highly malignant, characterized by diffuse invasion of the brain parenchyma. When compared with their adult counterpart, pediatric IAs may be considered biologically distinct entities; nevertheless, similarly to those in adults they represent a complex oncologic challenge. The aim of this study was to investigate the diagnostic role, clinical contribution, and prognostic value of fused (18)F-3,4-dihydroxyphenylalanine ((18)F-DOPA) PET/MR images in pediatric supratentorial IAs. Pediatric patients with supratentorial IAs involving at least 2 cerebral lobes, either newly diagnosed or with suspected disease progression, prospectively underwent (18)F-DOPA PET and conventional MR imaging, performed within 10 d of each other. (18)F-DOPA PET data were interpreted qualitatively and semiquantitatively, fusing images with MR images. PET scans were classified as positive if tumors identified on MR imaging exhibited tracer uptake above the level of the corresponding contralateral normal brain. Maximum standardized uptake values, tumor-to-normal contralateral tissue ratios, and tumor-to-normal striatum ratios were calculated for all tumors. Correlations between the degree and extent of (18)F-DOPA uptake, MR imaging tumor characteristics, and histologic results were investigated. The contribution of (18)F-DOPA PET/MR image fusion was considered relevant if it enabled one to select the most appropriate biopsy site, discriminate between disease progression and treatment-related changes, or influence treatment strategy. The patient's outcome was finally correlated with (18)F-DOPA uptake. Thirteen patients (8 boys and 5 girls) were included (5 diffuse astrocytomas, 2 anaplastic astrocytomas, 5 gliomatosis cerebri, and 1 glioblastoma multiforme). The (18)F-DOPA uptake pattern was heterogeneous in all positive scans (9/13), revealing metabolic heterogeneities within each tumor. Significant

  8. Time, Concentration, and pH-Dependent Transport and Uptake of Anthocyanins in a Human Gastric Epithelial (NCI-N87 Cell Line

    Directory of Open Access Journals (Sweden)

    Allison A. Atnip

    2017-02-01

    Full Text Available Anthocyanins are the largest class of water soluble plant pigments and a common part of the human diet. They may have many potential health benefits, including antioxidant, anti-inflammatory, anti-cancer, and cardioprotective activities. However, anthocyanin metabolism is not well understood. Studies suggest that anthocyanins absorption may occur in the stomach, in which the acidic pH favors anthocyanin stability. A gastric epithelial cell line (NCI-N87 has been used to study the behavior of anthocyanins at a pH range of 3.0–7.4. This work examines the effects of time (0–3 h, concentration (50–1500 µM, and pH (3.0, 5.0, 7.4 on the transport and uptake of anthocyanins using NCI-N87 cells. Anthocyanins were transported from the apical to basolateral side of NCI-N87 cells in time and dose dependent manners. Over the treatment time of 3 h the rate of transport increased, especially with higher anthocyanin concentrations. The non-linear rate of transport may suggest an active mechanism for the transport of anthocyanins across the NCI-N87 monolayer. At apical pH 3.0, higher anthocyanin transport was observed compared to pH 5.0 and 7.4. Reduced transport of anthocyanins was found to occur at apical pH 5.0.

  9. Genome-wide transcriptional profiling of human glioblastoma cells in response to ITE treatment.

    Science.gov (United States)

    Kang, Bo; Zhou, Yanwen; Zheng, Min; Wang, Ying-Jie

    2015-09-01

    A ligand-activated transcription factor aryl hydrocarbon receptor (AhR) is recently revealed to play a key role in embryogenesis and tumorigenesis (Feng et al. [1], Safe et al. [2]) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) (Song et al. [3]) is an endogenous AhR ligand that possesses anti-tumor activity. In order to gain insights into how ITE acts via the AhR in embryogenesis and tumorigenesis, we analyzed the genome-wide transcriptional profiles of the following three groups of cells: the human glioblastoma U87 parental cells, U87 tumor sphere cells treated with vehicle (DMSO) and U87 tumor sphere cells treated with ITE. Here, we provide the details of the sample gathering strategy and show the quality controls and the analyses associated with our gene array data deposited into the Gene Expression Omnibus (GEO) under the accession code of GSE67986.

  10. Estimation of radiotherapy and MCNU versus radiotherapy and MCNU plus interferon-[beta] for the treatment of anaplastic astrocytoma

    Energy Technology Data Exchange (ETDEWEB)

    Kiya, Katsuzo; Uozumi, Tohru; Kurisu, Kaoru; Ogasawara, Hidenori; Sugiyama, Kazuhiko; Maeda, Hitoshi; Harada, Kunyu (Hiroshima Univ. (Japan). School of Medicine)

    1993-02-01

    The efficacy of radiotherapy and MCNU (MR) was estimated in comparison with radiotherapy and MCNU plus interferon-[beta] (IMR) in 25 patients with anaplastic astrocytoma. The MR group received irradiation with 50[approx]60 Gy and intravenous administration of 2 mg/kg of MCNU on the initial day of irradiation and following every 6[approx]8 weeks interval. The IMR group also received the same regimen in addition to intravenous infusion of 2 x 10[sup 6] IU/m[sup 2] of interferon-[beta] for 5 serial days every eight weeks and following once every two weeks. There were no significant differences between the two groups in terms of background. The response rates of MR and IMR group were 38.5% and 66.7%, respectively. The times to tumor progression (TTP) in the two groups were 11.9[+-]5.8 months and 13.6[+-]7.7 months, respectively. Thus, IMR therapy seems to be more efficacious for patients with anaplastic astrocytoma than MR therapy, but further trials are necessary. (author).

  11. An acid phosphatase in the plasma membranes of human astrocytoma showing marked specificity toward phosphotyrosine protein.

    OpenAIRE

    Leis, J F; Kaplan, N O

    1982-01-01

    The plasma membrane from the human tumor astrocytoma contains an active acid phosphatase activity based on hydrolysis of p-nitrophenyl phosphate. Other acid phosphatase substrates--beta-glycerophosphate, O-phosphorylcholine, and 5'-AMP--are not hydrolyzed significantly. The phosphatase activity is tartrate insensitive and is stimulated by Triton X-100 and EDTA. Of the three known phosphoamino acids, only free O-phosphotyrosine is hydrolyzed by the membrane phosphatase activity. Other acid pho...

  12. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources

    Directory of Open Access Journals (Sweden)

    Reka A. Haraszti

    2016-11-01

    Full Text Available Extracellular vesicles (EVs, including exosomes and microvesicles (MVs, are explored for use in diagnostics, therapeutics and drug delivery. However, little is known about the relationship of protein and lipid composition of EVs and their source cells. Here, we report high-resolution lipidomic and proteomic analyses of exosomes and MVs derived by differential ultracentrifugation from 3 different cell types: U87 glioblastoma cells, Huh7 hepatocellular carcinoma cells and human bone marrow-derived mesenchymal stem cells (MSCs. We identified 3,532 proteins and 1,961 lipid species in the screen. Exosomes differed from MVs in several different areas: (a The protein patterns of exosomes were more likely different from their cells of origin than were the protein patterns of MVs; (b The proteomes of U87 and Huh7 exosomes were similar to each other but different from the proteomes of MSC exosomes, whereas the lipidomes of Huh7 and MSC exosomes were similar to each other but different from the lipidomes of U87 exosomes; (c exosomes exhibited proteins of extracellular matrix, heparin-binding, receptors, immune response and cell adhesion functions, whereas MVs were enriched in endoplasmic reticulum, proteasome and mitochondrial proteins. Exosomes and MVs also differed in their types of lipid contents. Enrichment in glycolipids and free fatty acids characterized exosomes, whereas enrichment in ceramides and sphingomyelins characterized MVs. Furthermore, Huh7 and MSC exosomes were specifically enriched in cardiolipins; U87 exosomes were enriched in sphingomyelins. This study comprehensively analyses the protein and lipid composition of exosomes, MVs and source cells in 3 different cell types.

  13. Nanoparticles containing allotropes of carbon have genotoxic effects on glioblastomamultiforme cells

    Directory of Open Access Journals (Sweden)

    Hinzmann M

    2014-05-01

    Full Text Available Mateusz Hinzmann,1 Slawomir Jaworski,1 Marta Kutwin,1 Joanna Jagiello,2 Rafal Kozinski,2 Mateusz Wierzbicki,1 Marta Grodzik,1 Ludwika Lipinska,2 Ewa Sawosz,1 Andrè Chwalibog31Division of Nanobiotechnology, Warsaw University of Life Sciences, 2Institute of Electronic Materials Technology, Warsaw, Poland; 3Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Copenhagen, DenmarkAbstract: The carbon-based nanomaterial family consists of nanoparticles containing allotropes of carbon, which may have a number of interactions with biological systems. The objective of this study was to evaluate the toxicity of nanoparticles comprised of pristine graphene, reduced graphene oxide, graphene oxide, graphite, and ultradispersed detonation diamond in a U87 cell line. The scope of the work consisted of structural analysis of the nanoparticles using transmission electron microscopy, evaluation of cell morphology, and assessment of cell viability by Trypan blue assay and level of DNA fragmentation of U87 cells after 24 hours of incubation with 50 µg/mL carbon nanoparticles. DNA fragmentation was studied using single-cell gel electrophoresis. Incubation with nanoparticles containing the allotropes of carbon did not alter the morphology of the U87 cancer cells. However, incubation with pristine graphene and reduced graphene oxide led to a significant decrease in cell viability, whereas incubation with graphene oxide, graphite, and ultradispersed detonation diamond led to a smaller decrease in cell viability. The results of a comet assay demonstrated that pristine graphene, reduced graphene oxide, graphite, and ultradispersed detonation diamond caused DNA damage and were therefore genotoxic in U87 cells, whereas graphene oxide was not.Keywords: nanostructures, graphene, graphite, diamond, glioblastoma multiforme, geno toxicity

  14. Cytotoxic and Apoptogenic Effects of Cyanidin-3-Glucoside on the Glioblastoma Cell Line.

    Science.gov (United States)

    Hosseini, Masoumeh Mansoubi; Karimi, Aliasghar; Behroozaghdam, Mitra; Javidi, Mohammad Amin; Ghiasvand, Saeedeh; Bereimipour, Ahmad; Aryan, Hoda; Nassiri, Farbod; Jangholi, Ehsan

    2017-12-01

    Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary cerebral tumor. The median survival time is 15 months despite maximum treatment because the tumor is resistant to most therapeutic modalities. Several studies have indicated chemopreventive and chemotherapeutic activity of cyanidin-3-glucoside (C3G) as an anthocyanin component. We aimed to illustrate the cytotoxic and apoptogenic effects of C3G in the U87 cell line (human GBM cell line). Cytotoxic activity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium assay after treatment with C3G at different concentrations in the U87 cell line. Cisplatin was used as a positive control for 24 and 48 hours. The percentage of apoptotic cells was determined using an Annexin V/propidium iodide assay, and the expression of bax, bcl2, and p53 genes was assessed using real-time polymerase chain reaction. Treatment of U87 cells with 40 μg/mL of C3G resulted in 32% apoptotic cells after 24 hours. To further confirm that C3G treatment induced apoptosis in U87 cells, RNA expression of bax, bcl2, and p53 genes was investigated after treatment. Real-time polymerase chain reaction indicated that the expression of bax and p53 increased, whereas the expression of bcl2 decreased. C3G had an apoptogenic effect in the GBM cell line. New information regarding the therapeutic effects of C3G in GBM could ultimately lead to the production of new drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Signaling via G proteins mediates tumorigenic effects of GPR87

    DEFF Research Database (Denmark)

    Arfelt, Kristine Niss; Fares, Suzan; Sparre-Ulrich, Alexander H.

    2017-01-01

    G protein-coupled receptors (GPCRs) constitute a large protein family of seven transmembrane (7TM) spanning proteins that regulate multiple physiological functions. GPR87 is overexpressed in several cancers and plays a role in tumor cell survival. Here, the basal activity of GPR87 was investigated...

  16. Targeting and Therapy of Glioblastoma in a Mouse Model Using Exosomes Derived From Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Liya Zhu

    2018-04-01

    Full Text Available ObjectiveGlioblastoma is a highly aggressive primary brain tumor that is resistant to radiotherapy and chemotherapy. Natural killer (NK cells have been used to treat incurable cancers. Recent studies have investigated the effectiveness of NK-cell-derived exosomes (NK-Exo for treating incurable cancers such as melanoma, leukemia, and neuroblastoma; however, NK-Exo have not been used to treat glioblastoma. In the present study, we investigated the antitumor effects of NK-Exo against aggressive glioblastoma both in vitro and in vivo and determined the tumor-targeting ability of NK-Exo by performing fluorescence imaging.MethodsU87/MG cells were transfected with the enhanced firefly luciferase (effluc and thy1.1 genes; thy1.1-positive cells were selected using microbeads. U87/MG/F cells were assessed by reverse transcription polymerase chain reaction (RT-PCR, western blotting, and luciferase-activity assays. NK-Exo were isolated by ultracentrifugation, purified by density gradient centrifugation, and characterized by transmission electron microscopy, dynamic light scattering (DLS, nanoparticle-tracking analysis (NTA, and western blotting. Cytokine levels in NK-Exo were compared to those in NK cells and NK-cell medium by performing an enzyme-linked immunosorbent assay (ELISA. NK-Exo-induced apoptosis of cancer cells was confirmed by flow cytometry and western blotting. In vivo therapeutic effects and specificity of NK-Exo against glioblastoma were assessed in a xenograft mouse model by fluorescence imaging. Xenograft mice were treated with NK-Exo, which was administered seven times through the tail vein. Tumor growth was monitored by bioluminescence imaging (BLI, and tumor volume was measured by ultrasound imaging. The mice were intraperitoneally injected with dextran sulfate 2 h before NK-Exo injection to decrease the liver uptake and increase the tumor specificity of NK-Exo.ResultsRT-PCR and western blotting confirmed the gene and protein

  17. The radiosensitivity of glioblastoma cell lines after hypoxia-induced Bax expression

    International Nuclear Information System (INIS)

    Chen, J.K.; Hu, L.J.; Kong, E.L.; Lamborn, K.R.; Deen, D.F.

    2003-01-01

    Full text: Radiation therapy is the most effective treatment after surgery for patients with malignant gliomas. However, the hypoxic cells exclusive to tumor tissue have proven resistant to both radiotherapy and many forms of chemotherapy. In order to specifically target these hypoxic cells, U-251 MG and U-87 MG human glioblastoma cells were stably transfected with constructs containing the suicide gene Bax under the regulation of nine copies of hypoxia-responsive elements (HREs). During hypoxia, the transcriptional complex hypoxia-inducible-factor 1 (HIF-1) binds to HRE and facilitates the transcription of downstream genes. Previously, hypoxia-induced Bax expression in transfected U-251 and U-87 clone cells has been shown to increase cell killing. The benefits of the gene therapy could be further expanded if Bax also acted to increase the sensitivity of these clone cells to radiation. To determine whether this was the case, parent and clone cells were irradiated with graded doses of X-rays under hypoxic conditions. These cells were then left hypoxic for varying durations of time, after which they were incubated for two weeks under aerated conditions to assay for clonogenic cell survival. After less than an hour under hypoxia, both U-251 and U-87 clone cells appeared significantly more sensitive to radiation than their respective parent cells. However, after longer amounts of time under anoxia, higher surviving fractions were found in each clone that were consistent with those of their respective parent cell line, showing that potentially lethal damage repair (PLDR) had occurred in the clone cells. Parent cells did not exhibit PLDR. Results are inconclusive at this point in time. Western blot analyses detailing the amount of Bax expression at each time point as well as further research exploring different durations of hypoxia will be necessary to reveal the nature of the correlation between Bax expression and radiosensitivity. Supported by NS-42927 and CA-85356

  18. Saponin B, a novel cytostatic compound purified from Anemone taipaiensis, induces apoptosis in a human glioblastoma cell line.

    Science.gov (United States)

    Wang, Yuangang; Tang, Haifeng; Zhang, Yun; Li, Juan; Li, Bo; Gao, Zhenhui; Wang, Xiaoyang; Cheng, Guang; Fei, Zhou

    2013-11-01

    Glioblastoma multiforme (GBM) is one of the most common malignant brain tumors. Saponin B, a novel compound isolated from the medicinal plant, Anemone taipaiensis, has been found to have a strong time- and dose-dependent cytostatic effect on human glioma cells and to suppress the growth of U87MG GBM cells. In this study, we investigated whether saponin B induces the apoptosis of glioblastoma cells and examined the underlying mechanism(s) of action of saponin B. Saponin B significantly suppressed U87MG cell proliferation. Flow cytometric analysis of DNA in the U87MG cells confirmed that saponin B blocked the cell cycle at the S phase. Furthermore, treatment of the U87MG cells with saponin B induced chromatin condensation and led to the formation of apoptotic bodies, as observed under a fluorescence microscope, and Annexin V/PI assay further suggested that phosphatidylserine (PS) externalization was apparent at higher drug concentrations. Treatment with saponin B activated the receptor-mediated pathway of apoptosis, as western blot analysis revealed the activation of Fas-l. Saponin B increased the Bax and caspase-3 ratio and decreased the protein expression of Bcl-2. The results from the present study demonstrate that the novel compound, saponin B, effectively induces the apoptosis of GBM cells and inhibits glioma cell growth and survival. Therefore, saponin B may be a potential candidate for the development of novel cancer therapeutics with antitumor activity against gliomas.

  19. Apoptotic Effect of Nigella sativa on Human Lymphoma U937 Cells.

    Science.gov (United States)

    Arslan, Belkis Atasever; Isik, Fatma Busra; Gur, Hazal; Ozen, Fatih; Catal, Tunc

    2017-10-01

    Nigella sativa is from botanical Ranunculaceae family and commonly known as black seed. Apoptotic effect of N. sativa and its apoptotic signaling pathways on U937 lymphoma cells are unknown. In this study, we investigated selective cytotoxic and apoptotic effects of N. sativa extract and its apoptotic mechanisms on U937 cells. In addition, we also studied selective cytotoxic activity of thymoquinone that is the most active essential oil of N. sativa . Our results showed that N. sativa extract has selective cytotoxicity and apoptotic effects on U937 cells but not ECV304 control cells. However, thymoquinone had no significant cytotoxicity against on both cells. N. sativa extract increased significantly caspase-3, BAD, and p53 gene expressions in U937 cells. N. sativa may have anticancer drug potential and trigger p53-induced apoptosis in U937 lymphoma cells. This is the first study showing the apoptotic effect of Nigella sativa extract on U937 cells. Abbreviations used: CI: Cytotoxicity index, DMEM: Dulbecco's Modified Eagle Medium, HL: Hodgkin's lymphoma, MTT: 3-(4,5-dimethy lthiazol-2yl)-2,5-diphenyl tetrazolium bromide, RPMI: Roswell Park Memorial Institute medium.

  20. An acid phosphatase in the plasma membranes of human astrocytoma showing marked specificity toward phosphotyrosine protein.

    Science.gov (United States)

    Leis, J F; Kaplan, N O

    1982-11-01

    The plasma membrane from the human tumor astrocytoma contains an active acid phosphatase activity based on hydrolysis of p-nitrophenyl phosphate. Other acid phosphatase substrates--beta-glycerophosphate, O-phosphorylcholine, and 5'-AMP--are not hydrolyzed significantly. The phosphatase activity is tartrate insensitive and is stimulated by Triton X-100 and EDTA. Of the three known phosphoamino acids, only free O-phosphotyrosine is hydrolyzed by the membrane phosphatase activity. Other acid phosphatases tested from potato, wheat germ, milk, and bovine prostate did not show this degree of specificity. The plasma membrane activity also dephosphorylated phosphotyrosine histone at a much greater rate than did the other acid phosphatases. pH profiles for free O-phosphotyrosine and phosphotyrosine histone showed a shift toward physiological pH, indicating possible physiological significance. Phosphotyrosine histone dephosphorylation activity was nearly 10 times greater than that seen for phosphoserine histone dephosphorylation, and Km values were much lower for phosphotyrosine histone dephosphorylation (0.5 microM vs. 10 microM). Fluoride and zinc significantly inhibited phosphoserine histone dephosphorylation. Vanadate, on the other hand, was a potent inhibitor of phosphotyrosine histone dephosphorylation (50% inhibition at 0.5 microM) but not of phosphoserine histone. ATP stimulated phosphotyrosine histone dephosphorylation (160-250%) but inhibited phosphoserine histone dephosphorylation (95%). These results suggest the existence of a highly specific phosphotyrosine protein phosphatase activity associated with the plasma membrane of human astrocytoma.

  1. Subventricular zone predicts high velocity of tumor expansion and poor clinical outcome in patients with low grade astrocytoma.

    Science.gov (United States)

    Wen, Bing; Fu, Feixian; Hu, Liangbo; Cai, Qiuyi; Xie, Junshi

    2018-05-01

    The aim of this study is to clarify the association between subventricular zone (SVZ) involvement and velocity of diametric expansion(VDE) in patients with low-grade astrocytoma and also assessed the clinical outcome of those patients. A total of 168 adult patients with newly diagnosed supratentorial low-grade astrocytoma were studied retrospectively. There were 73 patients had SVZ involvement. Patients with SVZ involvement(7.16 ± 6.53 mm/y) had a higher VDE than patients without SVZ involvement(4.38 ± 5.35 mm/y). VDE was modeled as a categorical variable(<4, ≥4 and, <8, ≥8 and, <12, ≥12 mm/y). Logistic regression showed that SVZ involvement was associated with high VDE after adjusting by confounding variables. On the univariate analysis, the results showed that tumor involved with SVZ, VDE ≥ 4 mm/y, VDE ≥ 8 mm/y, and VDE ≥ 8 mm/y were significant predictors of a shorter OS, progression-free survival (PFS) and malignant progression-free survival (MFS)(all p <0.05). The categorical variables of VDE (<4 mm/y, ≥4 mm/y and, <8 mm/y, ≥8 mm/y and, <12 mm/y, ≥12 mm/y) were adjusted by confounding variables in multivariate analysis, respectively. The results indicated that VDE ≥ 8 mm/y, VDE ≥ 12 mm/y were worse prognostic factors for OS, while VDE ≥ 4 mm/y, VDE ≥ 8 mm/y and VDE ≥ 12 mm/y were related to shorter PFS and MFS. In addition, SVZ involvement was prognostic factors in predicting OS and PFS except MFS. Our results demonstrated that SVZ involvement predicted high VDE and worse clinical outcome, and high VDE was associated with poor prognosis in patients with low-grade astrocytoma. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. 68Ga-labeling and in vivo evaluation of a uPAR binding DOTA- and NODAGA-conjugated peptide for PET imaging of invasive cancers

    DEFF Research Database (Denmark)

    Persson, Morten; Madsen, Jacob; Østergaard, Søren

    2012-01-01

    , uPAR binding affinity and cell uptake were determined. To characterize the in vivo properties, dynamic microPET imaging was carried out in nude mice bearing human glioma U87MG tumor xenograft. RESULTS: In vitro experiments revealed uPAR binding affinities in the lower nM range for both conjugated......-AE105-NH(2) was observed. Good stability in phosphate-buffered saline and mouse plasma was observed. High cell uptake was found for both tracers in U87MG tumor cells. Dynamic microPET imaging demonstrated good tumor-to-background ratio for both tracers. Tumor uptake was 2.1% ID/g and 1.3% ID/g 30 min...... positron emission tomography (PET) in human cancer xenograft mice models. Here we introduce (68)Ga-DOTA-AE105-NH(2) and (68)Ga-NODAGA-AE105-NH(2) and evaluate their imaging properties using small-animal PET. METHODS: Synthesis of DOTA-AE105-NH(2) and NODAGA-AE105-NH(2) was based on solid-phase peptide...

  3. Cell shape and organelle modification in apoptotic U937 cells

    Directory of Open Access Journals (Sweden)

    MR Montinari

    2009-12-01

    Full Text Available U937 cells induced to apoptosis, progressively and dramatically modified their cell shape by intense blebbing formation, leading to the production of apoptotic bodies. The blebs evolved with time; milder forms of blebbing involving only a region or just the cortical part of the cytoplasm were observed within the first hour of incubation with puromycin; blebbing involving the whole cell body with very deep constrictions is the most frequent event observed during late times of incubation. The ultrastructural analysis of apoptotic cells revealed characteristic features of nuclear fragmentation (budding and cleavage mode and cytoplasmatic modifications. The cytoplasm of blebs does not contain organelles, such as ribosomes or mitochondria. Scarce presence of endoplasmic reticulum can be observed at the site of bleb detachment. However, blebbing is a dispensable event as evaluated by using inhibitor of actin polymerization. In the present study, the progressive modifications of the nucleus, mitochondria, nuclear fragmentation, cytoplasmic blebs formation and production of apoptotic bodies in U937 monocytic cells induced to apoptosis by puromycin (an inhibitor of protein synthesis were simultaneously analyzed.

  4. P53-dependent antiproliferative and pro-apoptotic effects of trichostatin A (TSA) in glioblastoma cells.

    Science.gov (United States)

    Bajbouj, K; Mawrin, C; Hartig, R; Schulze-Luehrmann, J; Wilisch-Neumann, A; Roessner, A; Schneider-Stock, R

    2012-05-01

    Glioblastomas are known to be highly chemoresistant, but HDAC inhibitors (HDACi) have been shown to be of therapeutic relevance for this aggressive tumor type. We treated U87 glioblastoma cells with trichostatin A (TSA) to define potential epigenetic targets for HDACi-mediated antitumor effects. Using a cDNA array analysis covering 96 cell cycle genes, cyclin-dependent kinase inhibitor p21(WAF1) was identified as the major player in TSA-induced cell cycle arrest. TSA slightly inhibited proliferation and viability of U87 cells, cumulating in a G1/S cell cycle arrest. This effect was accompanied by a significant up-regulation of p53 and its transcriptional target p21(WAF1) and by down-regulation of key G1/S regulators, such as cdk4, cdk6, and cyclin D1. Nevertheless, TSA did not induce apoptosis in U87 cells. As expected, TSA promoted the accumulation of total acetylated histones H3 and H4 and a decrease in endogenous HDAC activity. Characterizing the chromatin modulation around the p21(WAF1) promoter after TSA treatment using chromatin immunoprecipitation, we found (1) a release of HDAC1, (2) an increase of acetylated H4 binding, and (3) enhanced recruitment of p53. p53-depleted U87 cells showed an abrogation of the G1/S arrest and re-entered the cell cycle. Immunofluorescence staining revealed that TSA induced the nuclear translocation of p21(WAF1) verifying a cell cycle arrest. On the other hand, a significant portion of p21(WAF1) was present in the cytoplasmic compartment causing apoptosis resistance. Furthermore, TSA-treated p53-mutant cell line U138 failed to show an induction in p21(WAF1), showed a deficient G2/M checkpoint, and underwent mitotic catastrophe. We suggest that HDAC inhibition in combination with other clinically used drugs may be considered an effective strategy to overcome chemoresistance in glioblastoma cells.

  5. A case of paraventricular anaplastic astrocytoma following radiation therapy for craniopharyngioma

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Hiroaki; Fujiwara, Kazunori; Kobayashi, Shin-ichi; Kitahara, Masakazu (Ishinomaki Red Cross Hospital, Miyagi (Japan))

    1994-04-01

    A 20-year-old man received 60 Gy of radiation therapy after partial removal of craniopharyngioma. The patient had been well and follow-up CT scans did not show any aggravation for 16 years. Since his activity gradually diminished, he underwent an MRI at the age of 36 which revealed and abnormal mass on the corpus callosum. The mass lesion progressively enlarged thereafter, and was diagnosed as anaplastic astrocytoma by a stereotactic biopsy. He was treated with interferon, however, died at the age of 37. Review of the literature disclosed 19 other cases of glioma following radiation therapy for sellar/parasellar tumors. Characteristic features of these cases included (1) lowness of age compared to common glioma cases, (2) tendency to be malignant, (3) tendency to occur in areas where significant doses of radiation had been received previously. (author).

  6. Astrocytoma in the medulla oblongata diagnosed by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Suga, Toshihiro; Takahashi, Shin-ichiro; Sonobe, Makoto; Koshu, Keiji; Hirota, Shigeru; Kawakami, Hiroshi; Fujii, Kyoichi; Namiki, Tsuneo.

    1987-01-01

    A 22-year-old male was admitted to Mito National Hospital with complaints of persistent, progressive dysphagia, hoarseness, and numbness over his entire body. Neurological examination showed bilateral 7th, 9th, and 10th nerve paralysis, tetraparesis, sensory disturbance of the whole body, and hyper-reflexia of all extremities. Pale, low-density areas in the medulla oblongata and upper cervical spinal cord were detected by conventional computed tomography. Magnetic resonance imaging (MRI) disclosed low-signal masses involving those areas and in the lower cervical cord. Suboccipital craniotomy exposed a solid, firm, well demarcated intramedullary tumor in the medulla oblongata. The tumor was removed en bloc and was histologically diagnosed as a pilocytic astrocytoma. The postoperative course was uneventful and the patient's symptoms improved dramatically. Postoperative MRI revealed no residual tumor in the medulla oblongata or upper cervical cord. This case illustrates the value of preoperative MRI, which precisely delineates the location and extent of the tumor and greatly facilitates direct surgery of the medulla oblongata. (author)

  7. Fast neutron boost for the treatment of grade IV astrocytomas

    International Nuclear Information System (INIS)

    Breteau, N.; Destembert, B.; Favre, A.; Pheline, C.; Schlienger, M.

    1989-01-01

    A previous study, on grade IV astrocytomas, compared a combination of photons and fast neutron boost to photons only, both treatments being delivered following a concentrated irradiation schedule. A slight improvement in survival was observed after neutron boost for non operated patients, but not for operated patients. Since death was always related to local recurrence and since no complication occurred after neutron boost, the neutron dose was increased from 6 to 7 Gy in January 1985. No improvement in survival was observed for patients treated with neutron boost after complete resection. After subtotal resection, the group that was treated with the higher neutron boost (7 Gy) showed a significant benefit in survival at twelve months. When patients had only a biopsy before irradiation, there was a benefit in survival after neutron boost, but no additional benefit was gained when the size of the neutron boost was increased from 6 to 7 Gy. (orig.) [de

  8. A case of radiation-induced squamous cell carcinoma of an 87-year-old physician

    International Nuclear Information System (INIS)

    Tanaka, Eiichiro; Takatsuka, Sumiko; Takenouchi, Tatsuya

    2005-01-01

    We reported a case of radiation-induced squamous cell carcinoma on the bilateral middle finger of an 87-year-old physician. He had exposed his hands to radiation without defense when he took an X-ray photograph. Squamous papules and ulcers occurred on both of his hands 10-years ago. The ulcer on the right middle finger enlarged rapidly after a one-month duration. A biopsy specimen showing squamous cell carcinoma derived from chronic radiation dermatitis, and disarticulation at the proximal interpharyngeal joint (PIP) joint of the right middle finger was performed. Six month later, hyperkeratotic tumor newly occurred on the opposite middle finger, and were operated on in the same way. The remaining lesions of chronic radiation dermatitis were treated by topical bleomycin hydrochloride. Since medical workers carelessly exposed their skin to radiation several decades ago, attention to late occurrence of radiation-induced skin cancer is needed. (author)

  9. Dipeptidyl peptidase-IV inhibits glioma cell growth independent of its enzymatic activity

    Czech Academy of Sciences Publication Activity Database

    Busek, P.; Stremeňová, J.; Sromová, L.; Hilser, M.; Balaziová, E.; Kosek, D.; Trylcová, J.; Strnad, Hynek; Křepela, E.; Šedo, A.

    2012-01-01

    Roč. 44, č. 5 (2012), s. 738-747 ISSN 1357-2725 Institutional support: RVO:68378050 Keywords : protease * tumour suppression * primary cell cultures * astrocytoma Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.152, year: 2012

  10. Cytotoxic effects of chemotherapeutic drugs and heterocyclic compounds at application on the cells of primary culture of neuroepithelium tumors.

    Science.gov (United States)

    Kulchitsky, Vladimir A; Potkin, Vladimir I; Zubenko, Yuri S; Chernov, Alexander N; Talabaev, Michael V; Demidchik, Yuri E; Petkevich, Sergei K; Kazbanov, Vladimir V; Gurinovich, Tatiana A; Roeva, Margarita O; Grigoriev, Dmitry G; Kletskov, Alexei V; Kalunov, Vladimir N

    2012-01-01

    Neuroepithelial tumor cells were cultured in vitro. The biopsy material was taken from 93 children at removal of the brain tumors during neurosurgical operations. The individual features of the cells sensitivity of primary cultures in respect to protocol-approved chemotherapy drugs and changes in the Interleukin-6 (Il-6) level in the culture medium after the application of chemotherapy were established. The initial level of Il-6 exceeded 600.0 pg/ml in the cultural medium with histologically verified pilomyxoid astrocytoma cells, and ranged from 100.0 to 200.0 pg/ml in the medium at cultivation of ganglioneuroblastoma and pilocytic astrocytoma. A decrease in the Il-6 level in the medium culture of primary tumors cells was observed after the application of chemotherapeutic agents on the cells of pilomyxoid astrocytoma, astrocytomas, and pilocytic desmoplastic/nodular medulloblastoma. The production of Il-6 increased after application of cytostatic drugs on the cells of oligoastrocytomas. A decrease in Il-6 level after application of Cisplatin and Methotrexate and a 5-10 fold increase in the level of Il-6 after application of Etoposide, Carboplatin, Cytarabine, and Gemcitabine were registered in the medium with ganglioneuroblastoma. To improve the cytotoxic action of chemotherapeutic agents, the combined application of cytostatics with heterocyclic compounds was carried out. A computer modeling of ligand-protein complexes of carbamide using the Dock 6.4 and USF Chimera program packages was performed with molecular mechanics method. Special attention was drawn to the ability of several isoxazole heterocycles and isothiazolyl to inhibit the tyrosine kinase. It was proved in vitro that the joint application of chemotherapeutic agents and heterocyclic compounds could reduce the concentration of the cytostatic factor by 10 or more times, having maintained the maximum cytotoxic effect. It was assumed that the target amplification of cytotoxic action of chemotherapeutic

  11. High resolution 2-D imaging polarimetry of the jet of M87, in the light of U, B and V

    Energy Technology Data Exchange (ETDEWEB)

    Visvanathan, N; Pickles, A J [Australian National Univ., Canberra. Mount Stromlo and Siding Spring Observatories

    1981-01-01

    Polarisation maps to a resolution of 1 arcsec in the jet of M87 are presented. The results show that small-scale structure exists in the magnetic field down to at least this resolution, as evidenced by the fact that the 1 arcsec resolution percentage polarisations are approximately 80% higher than those obtained at a lower resolution, 2 arcsec. The sudden change of position angles of the electric vector near knot B supports shock models of the jet. The jet is significantly broader in the light of U than in B or V. The continuous energy distribution in UBV can be described as a power law spectrum, with a slope of -1.7 +- 0.3 which indicates a turnover in the synchrotron spectrum in the vicinity of V.

  12. Antiproliferative activity of Eremanthus crotonoides extracts and centratherin demonstrated in brain tumor cell lines

    Directory of Open Access Journals (Sweden)

    Jonathas F. R. Lobo

    2012-12-01

    Full Text Available The genus Eremanthus is recognized by the predominance of sesquiterpene lactones from the furanoheliangolide type, a class of substances extensively tested against cancer cell lines. Thus, the species E. crotonoides (DC. Sch. Bip., Asteraceae, obtained on "restinga" vegetation was evaluated against U251 and U87-MG glioma cell lines using the MTT colorimetric assay. Dichloromethane fraction was cytotoxic to both glioblastoma multiforme cell lines. We then conducted UPLC-PDA-ESI-MS/MS analysis of the dichloromethane fraction, which allowed the identification of the sesquiterpene lactones centratherin and goyazensolide. The isolation of centratherin was performed using chromatographic techniques and the identification of this substance was confirmed according to NMR data. Cytotoxic activity of centratherin alone was also evaluated against both U251 and U87-MG cells, which showed IC50 values comparable with those obtained for the commercial anticancer drug doxorubicin. All the tested samples showed cytotoxic activity against glioblastoma multiforme cells which suggests that E. crotonoides extracts may be important sources of antiproliferative substances and that the centratherin may serve as prototype for developing new antiglioblastoma drugs.

  13. U6 snRNA expression prevents toxicity in TDP-43-knockdown cells.

    Directory of Open Access Journals (Sweden)

    Masao Yahara

    Full Text Available Depletion of amyotrophic lateral sclerosis (ALS-associated transactivation response (TAR RNA/DNA-binding protein 43 kDa (TDP-43 alters splicing efficiency of multiple transcripts and results in neuronal cell death. TDP-43 depletion can also disturb expression levels of small nuclear RNAs (snRNAs as spliceosomal components. Despite this knowledge, the relationship between cell death and alteration of snRNA expression during TDP-43 depletion remains unclear. Here, we knocked down TDP-43 in murine neuroblastoma Neuro2A cells and found a time lag between efficient TDP-43 depletion and appearance of cell death, suggesting that several mechanisms mediate between these two events. The amount of U6 snRNA was significantly decreased during TDP-43 depletion prior to increase of cell death, whereas that of U1, U2, and U4 snRNAs was not. Downregulation of U6 snRNA led to cell death, whereas transient exogenous expression of U6 snRNA counteracted the effect of TDP-43 knockdown on cell death, and slightly decreased the mis-splicing rate of Dnajc5 and Sortilin 1 transcripts, which are assisted by TDP-43. These results suggest that regulation of the U6 snRNA expression level by TDP-43 is a key factor in the increase in cell death upon TDP-43 loss-of-function.

  14. Properties of myelin altered peptide ligand cyclo(87-99)(Ala91,Ala96)MBP87-99 render it a promising drug lead for immunotherapy of multiple sclerosis.

    Science.gov (United States)

    Deraos, George; Rodi, Maria; Kalbacher, Hubert; Chatzantoni, Kokona; Karagiannis, Fotios; Synodinos, Loukas; Plotas, Panayiotis; Papalois, Apostolos; Dimisianos, Nikolaos; Papathanasopoulos, Panagiotis; Gatos, Dimitrios; Tselios, Theodore; Apostolopoulos, Vasso; Mouzaki, Athanasia; Matsoukas, John

    2015-08-28

    Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system, and it has been established that autoreactive T helper (Th) cells play a crucial role in its pathogenesis. Myelin basic protein (MBP) epitopes are major autoantigens in MS, and the sequence MBP87-99 is an immunodominant epitope. We have previously reported that MBP87-99 peptides with modifications at principal T-cell receptor (TCR) contact sites suppressed the induction of EAE symptoms in rats and SJL/J mice, diverted the immune response from Th1 to Th2 and generated antibodies that did not cross react with the native MBP protein. In this study, the linear and cyclic analogs of the MBP87-99 epitope, namely linear (Ala91,Ala96)MBP87-99 (P2) and cyclo(87-99)(Ala91,Ala96)MBP87-99 (P3), were evaluated for their binding to HLA-DR4, stability to lysosomal enzymes, their effect on cytokine secretion by peripheral blood mononuclear cells (PBMC) derived from MS patients or healthy subjects (controls), and their effect in rat EAE. P1 peptide (wild-type, MBP87-99) was used as control. P2 and P3 did not alter significantly the cytokine secretion by control PBMC, in contrast to P1 that induced moderate IL-10 production. In MS PBMC, P2 and P3 induced the production of IL-2 and IFN-γ, with a simultaneous decrease of IL-10, whereas P1 caused a reduction of IL-10 secretion only. The cellular response to P3 indicated that cyclization did not affect the critical TCR contact sites in MS PBMC. Interestingly, the cyclic P3 analog was found to be a stronger binder to HLA-DR4 compared to linear P2. Moreover, cyclic P3 was more stable to proteolysis compared to linear P2. Finally, both P2 and P3 suppressed EAE induced by an encephalitogenic guinea pig MBP74-85 epitope in Lewis rats whereas P1 failed to do so. In conclusion, cyclization of myelin altered peptide ligand (Ala91,Ala96)MBP87-99 improved binding affinity to HLA-DR4, resistance to proteolysis and antigen-specific immunomodulation

  15. Investigation of therapeutic efficiency of phenytoin (PHT) labeled with radioactive 131I in the cancer cell lines

    International Nuclear Information System (INIS)

    Cansu Uzaras; Ugur Avcibasi; Hasan Demiroglu; Emin Ilker Medine; Ayfer Yurt KiIcar; Fazilet Zuemruet Biber Mueftueler; Perihan Uenak

    2016-01-01

    The aim of this study is to determine the incorporations of PHT radiolabeled with 131 I ( 131 I-PHT) on U-87 MG, Daoy and A549 cancerous cell lines. For this, cold and radio-labeling studies were carried out. The radiolabeling yield of 131 I-PHT was obtained about 95 %. Subsequently, cell culture studies were carried out and radio-labeling yields of 131 I, 131 I-PHT on U-87 MG, Daoy and A549 cancerous cells were investigated. Cell culture studies demonstrated that the incorporation values of 131 IPHT on the three cell lines decreased with increasing radioactivity. Consequently, 131 I-PHT may be a good radiopharmaceutical for targeting radionuclide therapy of Central Nervous System Tumors. (author)

  16. Taurine Biosynthesis by Neurons and Astrocytes*

    Science.gov (United States)

    Vitvitsky, Victor; Garg, Sanjay K.; Banerjee, Ruma

    2011-01-01

    The physiological roles of taurine, a product of cysteine degradation and one of the most abundant amino acids in the body, remain elusive. Taurine deficiency leads to heart dysfunction, brain development abnormalities, retinal degradation, and other pathologies. The taurine synthetic pathway is proposed to be incomplete in astrocytes and neurons, and metabolic cooperation between these cell types is reportedly needed to complete the pathway. In this study, we analyzed taurine synthesis capability as reported by incorporation of radioactivity from [35S]cysteine into taurine, in primary murine astrocytes and neurons, and in several transformed cell lines (human (SH-SY5Y) and murine (N1E-115) neuroblastoma, human astrocytoma (U-87MG and 1321 N1), and rat glioma (C6)). Extensive incorporation of radioactivity from [35S]cysteine into taurine was observed in rat glioma cells as well as in primary mouse astrocytes and neurons, establishing the presence of an intact taurine synthesis pathway in these cells. Interestingly, exposure of cells to cysteine or cysteamine resulted in elevated intracellular hypotaurine without a corresponding increase in taurine levels, suggesting that oxidation of hypotaurine limits taurine synthesis in cells. Consistent with its role as an organic osmolyte, taurine synthesis was stimulated under hypertonic conditions in neurons. PMID:21778230

  17. The activation of autophagy protects neurons and astrocytes against bilirubin-induced cytotoxicity.

    Science.gov (United States)

    Qaisiya, Mohammed; Mardešić, Paula; Pastore, Beatrice; Tiribelli, Claudio; Bellarosa, Cristina

    2017-11-20

    Unconjugated bilirubin (UCB) neurotoxicity involves oxidative stress, calcium signaling and ER-stress. The same insults can also induce autophagy, a process of "self-eating", with both a pro-survival or a pro-apoptotic role. Our aim was to study the outcome of autophagy activation by UCB in the highly sensitive neuronal SH-SY5Y cells and in the resistant astrocytoma U87 cells. Upon treatment with a toxic dose of UCB, the conversion of LC3-I to LC3-II was detected in both cell lines. Inhibition of autophagy by E64d before UCB treatment increased SH-SY5Y cell mortality and made U87 cells sensitive to UCB. In SH-SY5Y autophagy related genes ATG8 (5 folds), ATG18 (5 folds), p62 (3 folds) and FAM 129A (4.5 folds) were induced 8h after UCB treatment while DDIT4 upregulation (13 folds) started at 4h. mTORC1 inactivation by UCB was confirmed by phosphorylation of 4EBP1. UCB induced LC3-II conversion was completely prevented by pretreating cells with the calcium chelator BAPTA and reduced by 65% using the ER-stress inhibitor 4-PBA. Pretreatment with the PKC inhibitor reduced LC3 mRNA by 70% as compared to cells exposed to UCB alone. Finally, autophagy induction by Trifluoroperazine (TFP) increased the cell viability of rat hippocampal primary neurons upon UCB treatment from 60% to 80%. In SH-SY5Y cells, TFP pretreatment blocked the UCB-induced cleaved caspase-3 protein expression, decreased LDH release from 50% to 23%, reduced the UCB-induction of HO1, CHOP and IL-8 mRNAs by 85%, 70% and 97%. Collectively these data indicate that the activation of autophagy protects neuronal cells from UCB cytotoxicity. The mechanisms of autophagy activation by UCB involves mTOR/ER-stress/PKC/calcium signaling. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Middle Temporal Gyrus Versus Inferior Temporal Gyrus Transcortical Approaches to High-Grade Astrocytomas in the Mediobasal Temporal Lobe: A Comparison of Outcomes, Functional Restoration, and Surgical Considerations.

    Science.gov (United States)

    Quinones-Hinojosa, Alfredo; Raza, Shaan M; Ahmed, Ishrat; Rincon-Torroella, Jordina; Chaichana, Kaisorn; Olivi, Alessandro

    2017-01-01

    High-grade astrocytomas of the mesial temporal lobe may pose surgical challenges. Several approaches (trans-sylvian, subtemporal, and transcortical) have been designed to circumnavigate the critical neurovascular structures and white fiber tracts that surround this area. Considering the paucity of literature on the transcortical approach for these lesions, we describe our institutional experience with transcortical approaches to Grade III/IV astrocytomas in the mesial temporal lobe. Between 1999 and 2009, 23 patients underwent surgery at the Johns Hopkins Medical Institutions for Grade III/IV astrocytomas involving the mesial temporal lobe (without involvement of the temporal neocortex). Clinical notes, operative records, and imaging were reviewed. Thirteen patients had tumors in the dominant hemisphere. All patients underwent surgery via a transcortical approach (14 via the inferior temporal gyrus and 9 via the middle temporal gyrus). Gross total resection was obtained in 92 % of the cohort. Neurological outcomes were: clinically significant stroke (2 patients), new visual deficits (2 patients), new speech deficit (1 patient); seizure control (53 %). In comparison to reported results in the literature for the transylvian and subtemporal approaches, the transcortical approach may provide the access necessary for a gross total resection with minimal neurological consequences. In our series of patients, there was no statistically significant difference in outcomes between the middle temporal gyrus versus the inferior temporal gyrus trajectories.

  19. STAT6 expression in glioblastoma promotes invasive growth

    Directory of Open Access Journals (Sweden)

    Silva Corinne M

    2011-05-01

    Full Text Available Abstract Background Glioblastoma (GBM is a highly aggressive malignant primary brain tumor, characterized by rapid growth, diffuse infiltration of cells into both adjacent and remote brain regions, and a generalized resistance to currently available treatment modalities. Recent reports in the literature suggest that Signal Transducers and Activators of Transcription (STATs play important roles in the regulation of GBM pathophysiology. Methods STAT6 protein expression was analyzed by Western blotting in GBM cell lines and by immunohistochemistry in a tissue microarray (TMA of glioma patient tissues. We utilized shRNA against STAT6 to investigate the effects of prolonged STAT6 depletion on the growth and invasion of two STAT6-positive GBM cell lines. Cell proliferation was assessed by measuring 3H-Thymidine uptake over time. Invasion was measured using an in vitro transwell assay in which cells invade through a type IV collagen matrix toward a chemoattractant (Fetal Bovine Serum. Cells were then stained and counted. Kaplan-Meyer survival curves were generated to show the correlation between STAT6 gene expression and patient survival in 343 glioma patients and in a subset of patients with only GBM. Gene expression microarray and clinical data were acquired from the Rembrandt 1 public data depository (https://caintegrator.nci.nih.gov/rembrandt/. Lastly, a genome-wide expression microarray analysis was performed to compare gene expression in wild-type GBM cells to expression in stable STAT6 knockdown clones. Results STAT6 was expressed in 2 GBM cell lines, U-1242MG and U-87MG, and in normal astrocytes (NHA but not in the U-251MG GBM cell line. In our TMA study, STAT6 immunostaining was visible in the majority of astrocytomas of all grades (I-IV but not in normal brain tissue. In positive cells, STAT6 was localized exclusively in the nuclei over 95% of the time. STAT6-deficient GBM cells showed a reduction in 3H-Thymidine uptake compared to the wild

  20. Neuronavigation-guided intubated wake-up craniotomy for a patient with a brain astrocytoma

    Directory of Open Access Journals (Sweden)

    Wen-Kuei Fang

    2013-08-01

    Full Text Available Computer-assisted neuronavigation (an image-guided technique that facilitates brain tumor surgery reduces the risk of neurological morbidity. Postoperative neurological dysfunction is also minimized by performing intraoperative neurological testing during awake craniotomy with proper surgical resection of a brain tumor. However, when the patient's airway is not secured, an awake craniotomy can be hazardous if emergent intubation is necessary. The present report describes a young man with a brain tumor who underwent neuronavigation-guided wake-up craniotomy and surgical resection of an astrocytoma. The patient was intubated throughout the course of the procedure, during which modified intraoperative neurological tests were performed for cortical mapping. The patient recovered well after the operation and without any neurological deficits.

  1. High accuracy of arterial spin labeling perfusion imaging in differentiation of pilomyxoid from pilocytic astrocytoma

    Energy Technology Data Exchange (ETDEWEB)

    Nabavizadeh, S.A.; Assadsangabi, R.; Hajmomenian, M.; Vossough, A. [Perelman School of Medicine of the University of Pennsylvania, Department of Radiology, Children' s Hospital of Philadelphia, Philadelphia, PA (United States); Santi, M. [Perelman School of Medicine of the University of Pennsylvania, Department of Pathology, Children' s Hospital of Philadelphia, Philadelphia, PA (United States)

    2015-05-01

    Pilomyxoid astrocytoma (PMA) is a relatively new tumor entity which has been added to the 2007 WHO Classification of tumors of the central nervous system. The goal of this study is to utilize arterial spin labeling (ASL) perfusion imaging to differentiate PMA from pilocytic astrocytoma (PA). Pulsed ASL and conventional MRI sequences of patients with PMA and PA in the past 5 years were retrospectively evaluated. Patients with history of radiation or treatment with anti-angiogenic drugs were excluded. A total of 24 patients (9 PMA, 15 PA) were included. There were statistically significant differences between PMA and PA in mean tumor/gray matter (GM) cerebral blood flow (CBF) ratios (1.3 vs 0.4, p < 0.001) and maximum tumor/GM CBF ratio (2.3 vs 1, p < 0.001). Area under the receiver operating characteristic (ROC) curves for differentiation of PMA from PA was 0.91 using mean tumor CBF, 0.95 using mean tumor/GM CBF ratios, and 0.89 using maximum tumor/GM CBF. Using a threshold value of 0.91, the mean tumor/GM CBF ratio was able to diagnose PMA with 77 % sensitivity, 100 % specificity, and a threshold value of 0.7, provided 88 % sensitivity and 86 % specificity. There was no statistically significant difference between the two tumors in enhancement pattern (p = 0.33), internal architecture (p = 0.15), or apparent diffusion coefficient (ADC) values (p = 0.07). ASL imaging has high accuracy in differentiating PMA from PA. The result of this study may have important applications in prognostication and treatment planning especially in patients with less accessible tumors such as hypothalamic-chiasmatic gliomas. (orig.)

  2. Optimization of high grade glioma cell culture from surgical specimens for use in clinically relevant animal models and 3D immunochemistry.

    Science.gov (United States)

    Hasselbach, Laura A; Irtenkauf, Susan M; Lemke, Nancy W; Nelson, Kevin K; Berezovsky, Artem D; Carlton, Enoch T; Transou, Andrea D; Mikkelsen, Tom; deCarvalho, Ana C

    2014-01-07

    Glioblastomas, the most common and aggressive form of astrocytoma, are refractory to therapy, and molecularly heterogeneous. The ability to establish cell cultures that preserve the genomic profile of the parental tumors, for use in patient specific in vitro and in vivo models, has the potential to revolutionize the preclinical development of new treatments for glioblastoma tailored to the molecular characteristics of each tumor. Starting with fresh high grade astrocytoma tumors dissociated into single cells, we use the neurosphere assay as an enrichment method for cells presenting cancer stem cell phenotype, including expression of neural stem cell markers, long term self-renewal in vitro, and the ability to form orthotopic xenograft tumors. This method has been previously proposed, and is now in use by several investigators. Based on our experience of dissociating and culturing 125 glioblastoma specimens, we arrived at the detailed protocol we present here, suitable for routine neurosphere culturing of high grade astrocytomas and large scale expansion of tumorigenic cells for preclinical studies. We report on the efficiency of successful long term cultures using this protocol and suggest affordable alternatives for culturing dissociated glioblastoma cells that fail to grow as neurospheres. We also describe in detail a protocol for preserving the neurospheres 3D architecture for immunohistochemistry. Cell cultures enriched in CSCs, capable of generating orthotopic xenograft models that preserve the molecular signatures and heterogeneity of GBMs, are becoming increasingly popular for the study of the biology of GBMs and for the improved design of preclinical testing of potential therapies.

  3. Changes in nuclear protein acetylation in u. v. -damaged human cells

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, B.; Smerdon, M.J.

    1986-07-01

    We have investigated the levels of nuclear protein acetylation in u.v.-irradiated human fibroblasts. We measured the levels of acetylation in total acid-soluble nuclear proteins and observed two distinct differences between the irradiated and unirradiated (control) cells. Immediately after irradiation, there is a wave of protein hyperacetylation (i.e. a total acetylation level greater than that of unirradiated cells) that lasts for 2-6 h depending on the experimental conditions. This hyperacetylation phase is then followed by a hypoacetylation phase, lasting for many hours, and the total level of acetylation does not return to that of control cells until 24-72 h after u.v. damage. Both the magnitude and duration of each phase is dependent on the dose of u.v. light used. The wave of hyperacetylation is more pronounced at low u.v. doses (i.e. less than 5 J/m2), while the wave of hypoacetylation is more pronounced at higher u.v. doses (greater than or equal to 8 J/m2). Furthermore, the duration of each phase is prolonged when cells are exposed to 2 mM hydroxyurea. Examination of the acetylation levels of the individual nuclear proteins indicated that acetylation of the core histones follows the same pattern observed for the total acid-soluble protein fractions. Furthermore, these were the only major proteins in the total acid-soluble fraction observed to undergo the early, rapid hyperacetylation immediately following u.v. damage. Acetylation of histone H1 was negligible in both damaged and control cells, while three prominent non-histone proteins were acetylated only after long labeling times (greater than 4 h) in each case, gradually becoming hyperacetylated in the u.v.-damaged cells. These results raise the possibility that a causal relationship exists between nuclear protein acetylation and nucleotide excision repair of DNA in human cells.

  4. Palbociclib Isethionate in Treating Younger Patients With Recurrent, Progressive, or Refractory Central Nervous System Tumors

    Science.gov (United States)

    2017-09-27

    Childhood Choroid Plexus Tumor; Childhood Ependymoblastoma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Recurrent Childhood Anaplastic Astrocytoma; Recurrent Childhood Anaplastic Oligoastrocytoma; Recurrent Childhood Anaplastic Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Giant Cell Glioblastoma; Recurrent Childhood Glioblastoma; Recurrent Childhood Gliomatosis Cerebri; Recurrent Childhood Gliosarcoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor

  5. Photoassociation spectroscopy of 87Rb2 (5s1/2+5p1/2)0u+ long-range molecular states: Coupling with the (5s1/2+5p3/2)0u+ series analyzed using the Lu-Fano approach

    International Nuclear Information System (INIS)

    Jelassi, H.; Viaris de Lesegno, B.; Pruvost, L.

    2006-01-01

    We report on photoassociation of cold 87 Rb atoms providing the spectroscopy of (5s 1/2 +5p 1/2 )0 u + long-range molecular states, in the energy range of [-12.5, -0.7 cm -1 ] below the dissociation limit. A Lu-Fano approach coupled to the LeRoy-Bernstein formula is used to analyze the data. The Lu-Fano graph exhibits the coupling of the molecular series with the (5s 1/2 +5p 3/2 )0 u + one, which is due to spin effects in the molecule. A two-channel model involving an improved LeRoy-Bernstein formula allows us to characterize the molecular series, to localize (5s 1/2 +5p 3/2 )0 u + levels, to evaluate the coupling, and to predict the energy and width of the first predissociated level of (5s 1/2 +5p 3/2 )0 u + series. An experimental spectrum confirms the prediction

  6. Stem cell survival is severely compromised by the thymidineanalog EdU (5-ethynyl-2'-deoxyuridine), an alternative to BrdU for proliferation assays and stem cell tracing

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Skovrind, Ida; Christensen, Marlene Louise

    2013-01-01

    Stem cell therapy has opened up the possibility of treating numerous degenerating diseases. However, we are still merely at the stage of identifying appropriate sources of stem cells and exploring their full differentiation potential. Thus, tracking the stem cells upon in vivo engraftment...... and during in vitro co-culture is very important and is an area of research embracing many pitfalls. 5-Ethynyl-2'-deoxyuridine (EdU), a rather new thymidine analog incorporated into DNA, has recently been suggested to be a novel highly valid alternative to other dyes for labeling of stem cells and subsequent...... tracing of their proliferation and differentiation ability. However, our results herein do not at any stage support this recommendation, since EdU severely reduces the viability of stem cells. Accordingly, we found that transplanted EdU-labeled stem cells hardly survive upon in vivo transplantation...

  7. CREATING THE KULTUK POLYGON FOR EARTHQUAKE PREDICTION: VARIATIONS OF (234U/238U AND 87SR/86SR IN GROUNDWATER FROM ACTIVE FAULTS AT THE WESTERN SHORE OF LAKE BAIKAL

    Directory of Open Access Journals (Sweden)

    S. V. Rasskazov

    2015-01-01

    .5 mkg/l concentrations of uranium (components from the Medlyanka river and Kultuchnaya river, respectively. The U abundances reflect relatively reduced conditions in group 1 and more oxidized in group 2. The higher (234U/238U in the surface water with intermediate concentrations of uranium (0.009–0.500 mkg/l may indicate the admixture of a groundwater component (Fig. 3. Figure 4 shows relations between surface water and groundwater components in the Kultuk polygon in terms of U content. In Figure 5, the field of data points of U and Sr isotope ratios in groundwater from the Kultuk polygon is contoured by curved lines that meet with each other at compositions corresponding to the end members E (87Sr/86Sr=0.7205, 234U/238U=1.0 and NE (87Sr/86Sr=0.70534, 234U/238U=3.3. Uranium ratios of the former and the latter components show equilibrium and the most nonequilibrium compositions, respectively. The field is characteristic of water samples from the rocks of the southern suture zone of the Siberian craton. Shift of the data points of water from stations 26 and 1310 to the right of this data field (i.e. with relative increasing 87Sr/86Sr is due to lateral transition from the rocks of the suture zone to the Archean rocks of the Sharyzhalgai block (Fig. 6. The isotope systematics of uranium and strontium in the strongly nonequilibrium uranium segment is supplemented by the systematics of uranium in (234U/238U vs. 1/U diagram (Fig. 7. The U composition in water from station 40 reflects a combination of processes that take place at station 27 (i.e. in the central part of the deformation system and at station 38 (i.e. at its periphery. Approximately equal contents of uranium at the three above‐mentioned stations may reflect similar oxidization levels of the medium. In the Southern Baikal basin, the Irkutsk Seismic Station recorded an earthquake of class 11.2 on 08 January 2013 [Map…, 2013]. The earthquake epicentre was located near Listvyanka settlement (51.85° N, 105°16

  8. Globular clusters as a source of X-ray emission from the neighbourhood of M87

    International Nuclear Information System (INIS)

    Fabian, A.C.; Pringle, J.E.; Rees, M.J.

    1976-01-01

    It is stated that the X-ray emission from globular clusters may be attributable to accretion on to compact objects, the accreting material being supplied from binary companions, or gas trapped in the potential well of the cluster. Counts of objects in the vicinity of the M87 have revealed that it has an extensive halo of globular clusters, the number of which may exceed 10,000 within a radius of 23 arc min. Most of these clusters may be explicable as a population effect, and the similarity of their optical properties to those of cluster in our own Galaxy suggests that they may also contain X-ray sources. The brighter globular clusters in M87 may, however, be substantially more X-ray luminous, and there may be proportionally more gas available in globular clusters in M87 compared with our Galaxy. The average X-ray luminosity of individual globular clusters may be of the order of 10 38 erg/sec., which raises the possibility that the integrated globular cluster emission may account for a substantial fraction of the X-ray emission observed from the region of M87. In support of this it is noted that the extended X-ray emission from the Virgo cluster is centered on M87, which lies approximately 45 arc min from the cluster centroid, and it is expected that the general X-ray emission from the globular cluster will appear to be smoothly and symmetrically distributed about M87 at moderate spatial resolution. A similar situation may apply to the elliptical galaxy NGC 3311 in Abell 1060 which, as a cluster, has been suggested as the identification for the X-ray source 3 U 1044-40, and it seems possible that that galaxy is surrounded by a similar globular cluster population to that of M87. (U.K.)

  9. Vitamin K3-2,3-epoxide induction of apoptosis with activation of ROS-dependent ERK and JNK protein phosphorylation in human glioma cells.

    Science.gov (United States)

    Wu, Jender; Chien, Chih-Chiang; Yang, Liang-Yo; Huang, Guan-Cheng; Cheng, Min-Chi; Lin, Che-Tong; Shen, Shing-Chuan; Chen, Yen-Chou

    2011-08-15

    2-Methyl-1,4-naphthoquinone (menadione or vitamin K3; EPO) and K3-2,3-epoxide (EPO1), but not vitamin K3-3-OH (EPO2), exhibited cytotoxicity that caused DNA fragmentation and chromatin condensation in U87 and C6 cells. EPO1 showed more-potent cytotoxicity than EPO, and the IC(50) values of EPO and EPO1 in U87 cells were 37.5 and 15.7μM, respectively. Activation of caspase 3 enzyme activity with cleavage of caspase 3 protein was detected in EPO1-treated U87 and C6 cells, and the addition of the caspase 3 peptidyl inhibitor, DEVD-FMK, reduced the cytotoxic effect of EPO1. An increase in the intracellular ROS level by EPO1 was observed in the DCHF-DA analysis, and EPO1-induced apoptosis and caspase 3 protein cleavage were prevented by adding the antioxidant, N-acetyl-cysteine (NAC), with decreased ROS production elicited by EPO1. Activation of ERK and JNK, but not p38, via phosphorylation induction was identified in EPO1- but not EPO- or EPO2-treated U87 and C6 cells, and this was blocked by adding NAC. However, the ERK inhibitor, PD98059, and the JNK inhibitor, SP600125, showed no effect on EPO1-induced cytotoxicity in either cell type. Our findings demonstrate that 2,3-epoxide substitution significantly potentiates the apoptotic effect of vitamin K3 via stimulating ROS production, which may be useful in the chemotherapy of glioblastoma cells. Copyright © 2011. Published by Elsevier Ireland Ltd.

  10. Changes in nuclear protein acetylation in u.v.-damaged human cells

    International Nuclear Information System (INIS)

    Ramanathan, B.; Smerdon, M.J.

    1986-01-01

    The levels of nuclear protein acetylation in u.v.-irradiated human fibroblasts have been investigated. Initially, we measured the levels of acetylation in total acid-soluble nuclear proteins and observed two distinct differences between the irradiated and unirradiated (control) cells. Immediately after irradiation, there is a 'wave' of protein hyperacetylation that lasts for 2-6 h, followed by a hypoacetylation phase, lasting for many hours, and the total level of acetylation does not return to that of control cells until 24-72 h after u.v. damage. Both the magnitude and duration of each phase is dependent on the dose of u.v. light used. The wave of hyperacetylation is more pronounced at low u.v. doses, while the wave of hypoacetylation is more pronounced at higher u.v. doses. Furthermore, the duration of each phase is prolonged when cells are exposed to 2 mM hydroxyurea, an agent which retards the rate of excision repair at u.v.-damaged sites. Examinations of the acetylation levels of the individual nuclear proteins indicated that acetylation of the core histones follows the same pattern observed for the total acid-soluble protein fractions. Furthermore, these were the only major proteins in the total acid-soluble fraction observed to undergo the early, rapid hyperacetylation immediately following u.v. damage. These results raise the possibility that a causal relationship exists between nuclear protein acetylation and nucleotide excision repair of DNA in human cells. (author)

  11. Localization of urokinase-type plasminogen activator receptor on U937 cells

    DEFF Research Database (Denmark)

    Hansen, S H; Behrendt, N; Danø, K

    1990-01-01

    The binding of human urokinase-type plasminogen activator (u-PA) to the surface of the human monocytic cell line U937 was studied by immunological detection of bound u-PA or binding of biotinylated diisopropyl fluorophosphate-inactivated human u-PA visualized by light or electron microscopy...

  12. Analysis of cell kinetics after gamma ray irradiation using anti-BrdU monoclonal antibody

    International Nuclear Information System (INIS)

    Akagi, Kiyoshi; Tanaka, Yoshimasa

    1989-01-01

    The cell cycle was analyzed using anti-BrdU monoclonal antibody, and changes in cell kinetics after gamma ray irradiation as evaluated by this BrdU-PI double staining were compared with those evaluated by the DNA histogram method based on PI staining. The effect of irradiation on the cell kinetics has been studied according primarily to the number of G2 blocked cells. By the present BrdU method, rapid transition of the G1-S phase was observed within 2 hours of irradiation, and then G1 block was observed. Cells in the S phase progressed to the G2 + M cells returned to the G1 phase after 18 or more hours. These initial G1 blocked cells induced by irradiation were confirmed for the fist time by the present BrdU-PI double staining. By the conventional method based on the DNA histogram, accurate determination of S cell fraction was difficult due to overlapping of the DNA contents of G1 cells and early S cells and those of late S cells and G2 cells. On the other hand, BrdU-PI double staining allowed direct differentiation of G1, S, and G2 + M cells, especially between G1-S and S-G2 + M cells. The analysis of cell kinetics using BrdU is advantageous over the conventional autoradiographic methods in that it allowed more rapid assay with very high sensitivity. In addition, BrdU is alrady used clinically as an enhancement agent in radiation therapy for cancer. The present method is considered to be indispensable for evaluation of the percentage of S cells in the tumor tissue and analysis of cell kinetics after irradiation and chemotherapy against cancer. (author)

  13. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells

    Science.gov (United States)

    Göbel, Kerstin; Pankratz, Susann; Asaridou, Chloi-Magdalini; Herrmann, Alexander M.; Bittner, Stefan; Merker, Monika; Ruck, Tobias; Glumm, Sarah; Langhauser, Friederike; Kraft, Peter; Krug, Thorsten F.; Breuer, Johanna; Herold, Martin; Gross, Catharina C.; Beckmann, Denise; Korb-Pap, Adelheid; Schuhmann, Michael K.; Kuerten, Stefanie; Mitroulis, Ioannis; Ruppert, Clemens; Nolte, Marc W.; Panousis, Con; Klotz, Luisa; Kehrel, Beate; Korn, Thomas; Langer, Harald F.; Pap, Thomas; Nieswandt, Bernhard; Wiendl, Heinz; Chavakis, Triantafyllos; Kleinschnitz, Christoph; Meuth, Sven G.

    2016-01-01

    Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. PMID:27188843

  14. Approach to the irradiation of extensive cervical and upper thoracic spinal astrocytoma

    International Nuclear Information System (INIS)

    Dvorak, E.

    1981-01-01

    Intramedullary spinal cord tumors are relatively rare, especially to the extent presented in this report. A 31-year-old woman had been diagnosed as having an inoperable astrocytoma, grade I-II, involving the entire cervical spinal cord and two upper thoracic segments. After decompressive laminectomy, she was referred for a radical course of radiation therapy. An irradiation technique was devised which allowed treatment of a single cylindrical volume of tissue encompassing the known tumor. Field fractionation with undesirable gaps and/or excessive dose to overlying normal structures was avoided. To the cervical spinal cord she received 5590 cGy in 29 fractions over 42 days. By this schedule she received at the same time 4820 cGy to the medulla oblongata and 4880 cGy to the upper thoracic cord. Partial neurological improvement occurred at the end of the treatment. The treatment approach is discussed in the background of the literature data. (orig.) [de

  15. Genomic Deletions Correlate with Underexpression of Novel Candidate Genes at Six Loci in Pediatric Pilocytic Astrocytoma

    Directory of Open Access Journals (Sweden)

    Nicola Potter

    2008-08-01

    Full Text Available The molecular pathogenesis of pediatric pilocytic astrocytoma (PA is not well defined. Previous cytogenetic and molecular studies have not identified nonrandom genetic aberrations. To correlate differential gene expression and genomic copy number aberrations (CNAs in PA, we have used Affymetrix GeneChip HG_U133A to generate gene expression profiles of 19 pediatric patients and the SpectralChip 2600 to investigate CNAs in 11 of these tumors. Hierarchical clustering according to expression profile similarity grouped tumors and controls separately. We identified 1844 genes that showed significant differential expression between tumor and normal controls, with a large number clearly influencing phosphatidylinositol and mitogen-activated protein kinase signaling in PA. Most CNAs identified in this study were single-clone alterations. However, a small region of loss involving up to seven adjacent clones at 7q11.23 was observed in seven tumors and correlated with the underexpression of BCL7B. Loss of four individual clones was also associated with reduced gene expression including SH3GL2 at 9p21.2-p23, BCL7A (which shares 90% sequence homology with BCL7B at 12q24.33, DRD1IP at 10q26.3, and TUBG2 and CNTNAP1 at 17q21.31. Moreover, the down-regulation of FOXG1B at 14q12 correlated with loss within the gene promoter region in most tumors. This is the first study to correlate differential gene expression with CNAs in PA.

  16. Spatial Substructure in the M87 Globular Cluster System

    Science.gov (United States)

    Feng, Yuting; Zhang, Yunhao; Guhathakurta, Puragra; Peng, Eric; Lim, Sungsoon

    2018-01-01

    Based on the observation of Next Generation Virgo Cluster Survey (NGVS) project, we obtained the u,g,r,i,z and Ks band photometric information of all the objects in the 2 degree × 2 degree area (Pilot Region) around M87, the major subcluster of Virgo. By adapting an Extreme Deconvolution method, which classifies objects into Globular Clusters (GCs), galaxies and foreground stars with their color and morphology data, we got a purer-than-ever GC distribution map with a depth to gmag=25 in Pilot Region. After masking galaxy GCs, smoothing with a 10arcmin Gaussian kernel and performing a flat field correction, we show the GC density map of M87, and got a good sersic fitting of GC radial distribution with a sersic index~2.2 in the central ellipse part (45arcmin semi major axis area of M87). We quantitatively compared our GC sample with a substructure-free mock data set, which was generated from the smoothed density map as well as the sersic fitting, by calculating the 2 point correlation function (TPCF) value in different parts of the map. After separately performing such comparison with mocks based on different galaxy masking radii which vary from 4 times g band effective radius to 10, we found signals of remarkable spatial enhancement in certain directions in the central ellipse of M87, as well as halo substructures shown as lumpiness and holes in the outer region. We present the estimated scales of these substructures from the TPCF results, and, managed to locate them with a statistical analysis of the pixelized GC map. Apart from all results listed above, we discuss the constant, extra-galactic substructure signal at a scale of ~3kpc, which does not diminish with masking sizes, as the evidence of merging and accretion history of M87.

  17. Effect of chemoradiotherapy using ACNU, vincristine, and nicardipine with high-dose irradiation on malignant astrocytomas

    Energy Technology Data Exchange (ETDEWEB)

    Genka, Shigeru; Shitara, Nobuyuki; Nakamura, Hirohiko; Takakura, Kintomo [Tokyo Univ. (Japan). Hospital

    1993-05-01

    Fifty-two patients with malignant astrocytoma were treated with cellular synchronization radiation therapy at the University of Tokyo Hospital between 1977 and 1989. Twenty-five patients (Group 1) received 1 - (4-amino-2-methyl-5-pyrimidinyl)methyl - 3 - (2-chloroethyl) - 3 - nitrosourea hydrochloride (ACNU), vincristine, and 60 Gy of irradiation, and 27 patients (Group 2) ACNU, vincristine, the Ca-channel blocker nicardipine, and 72 Gy of irradiation. Median survival times for Groups 1 and 2 were 15 and 30 months, respectively. Although there was no significant difference, Group 2 achieved longer survival with 1-, 2-, and 3-year survival rates of 85.2, 65.8, and 46.9% compared to rates of 66.7, 40.0, and 26.7%, respectively, for Group 1. (author).

  18. Effect of chemoradiotherapy using ACNU, vincristine, and nicardipine with high-dose irradiation on malignant astrocytomas

    International Nuclear Information System (INIS)

    Genka, Shigeru; Shitara, Nobuyuki; Nakamura, Hirohiko; Takakura, Kintomo

    1993-01-01

    Fifty-two patients with malignant astrocytoma were treated with cellular synchronization radiation therapy at the University of Tokyo Hospital between 1977 and 1989. Twenty-five patients (Group 1) received 1 - (4-amino-2-methyl-5-pyrimidinyl)methyl - 3 - (2-chloroethyl) - 3 - nitrosourea hydrochloride (ACNU), vincristine, and 60 Gy of irradiation, and 27 patients (Group 2) ACNU, vincristine, the Ca-channel blocker nicardipine, and 72 Gy of irradiation. Median survival times for Groups 1 and 2 were 15 and 30 months, respectively. Although there was no significant difference, Group 2 achieved longer survival with 1-, 2-, and 3-year survival rates of 85.2, 65.8, and 46.9% compared to rates of 66.7, 40.0, and 26.7%, respectively, for Group 1. (author)

  19. RLIM interacts with Smurf2 and promotes TGF-β induced U2OS cell migration

    International Nuclear Information System (INIS)

    Huang, Yongsheng; Yang, Yang; Gao, Rui; Yang, Xianmei; Yan, Xiaohua; Wang, Chenji; Jiang, Sirui; Yu, Long

    2011-01-01

    Highlights: → RLIM directly binds to Smurf2. → RLIM enhances TGF-β responsiveness in U2OS cells. → RLIM promotes TGF-β driven migration of osteosarcoma U2OS cells. -- Abstract: TGF-β (transforming growth factor-β), a pleiotropic cytokine that regulates diverse cellular processes, has been suggested to play critical roles in cell proliferation, migration, and carcinogenesis. Here we found a novel E3 ubiquitin ligase RLIM which can directly bind to Smurf2, enhancing TGF-β responsiveness in osteosarcoma U2OS cells. We constructed a U2OS cell line stably over-expressing RLIM and demonstrated that RLIM promoted TGF-β-driven migration of U2OS cells as tested by wound healing assay. Our results indicated that RLIM is an important positive regulator in TGF-β signaling pathway and cell migration.

  20. PHAKOMATOSIS : INTRESTING CASES OF TUBEROUS SCLEROSIS WITH RETINAL ASTROCYTOMA

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao

    2015-05-01

    Full Text Available NTRODUCTION: Tuberous sclerosis complex (TSC or Morbus Bourneville - Pringle disease is an autosomal dominant phakomatosis, first described by Desiree - Magloire Bourneville in 1880. Tuberous sclerosis is a genetic disorder characterized by the growth of numerous benign tumours in many parts of the body caused by mutations on either of two genes, TSC1 and TSC2. This rare genetic disorder is usually associated with a triad of seizures, mental retardation and cutaneous lesions. Approximately one half of all patients affected by TS develop at least one retinal astrocytoma in one eye. PRESENTATION OF CASES: In the department of ophthalmology, G.S.L M edical C ollege, Rajahmundry, we came across 3 cases of tuberous sclerosis involving multi organ systems. Out of 3 cases, 2 cases were reported to be familial and 1case is sporadic, with a history of epilepsy with angiofibromatosis lesions over the face, multiple ash - leaf lesions over the abdomen, renal angiomyolipomas, multiple subependymal nodules in brain and retinal astrocytic hamartomas in the retina. CONCLUSION: It is important to be cognizant of the likely presence of systemic and ocular pathology in a child with mental retardation and skin lesions. Identification of retinal phakomatosis during ocular evaluation in any suspected case of Tuberous sclerosis can aid in the establishment of the diagnosis of the disease

  1. Recent TMX-U central cell heating and fueling experiments

    International Nuclear Information System (INIS)

    Hooper, E.B. Jr.; Barter, J.; Dimonte, G.; Falabella, S.; Molvik, A.W.; Pincosy, P.; Turner, W.C.

    1986-01-01

    Recent experiments have begun to test new methods of heating and fueling of the TMX-U central cell plasma. Heating is with ICRH and 2kV neutral beams. Fueling is by the 2kV beams and by gas puffing. The ICRH system used for fundamental-frequency slow-wave heating consists of two double half-turn antennas, with one on each side of the central cell midplane at mirror ratios of 1:3 and 1:5. Gas fueling is between these two antennas to ensure that recently ionized particles pass through an ICRH resonance before entering the thermal barrier and cells. In recent gas-fed experiments with 100 to 200kW power on each antenna, the end loss temperature was measured to increase from 30eV to above 150eV with perpendicular (cc) temperatures of >500eV. The TMX-U central cell has been equipped with 10 low energy neutral-beam injectors (LENI). These beams are designed to operate at 2kV (net) accel-voltage and deliver 17 atom amperes each to the TMX-U plasma. This low energy was selected to improve trapping (relative to higher energy) on the initial ICRH heated plasma (2X10/sup 12/ cm/sup -3/). At 2keV the beams are predicted to be capable of building up and fueling to 10/sup 13/ cm/sup -3/ density, with ion-ion scattering providing a warm, isotropic ion component in the central cell

  2. Multi-tasking Sulf1/Sulf2 enzymes do not only facilitate extracellular cell signalling but also participate in cell cycle related nuclear events.

    Science.gov (United States)

    Krishnakumar, Kavithanjali; Chakravorty, Ishani; Foy, Wendy; Allen, Steve; Justo, Tiago; Mukherjee, Abir; Dhoot, Gurtej K

    2018-03-01

    This study demonstrates highly dynamic spatial and temporal pattern of SULF1/SULF2 expression in a number of neuronal cell types growing in normal culture medium that included their transient nuclear mobilisation. Their nuclear translocation became particularly apparent during cell proliferation as both SULF1/SULF2 demonstrated not only cell membrane associated expression, their known site of function but also transient nuclear mobilisation during nuclear cell division. Nuclear localisation was apparent not only by immunocytochemical staining but also confirmed by immunoblotting staining of isolated nuclear fractions of C6, U87 and N2A cells. Immunocytochemical analysis demonstrated rapid nuclear exit of both SULF1/SULF2 following cell division that was slightly delayed but not blocked in a fraction of the polyploid cells observed in C6 cells. The overexpression of both Sulf1 and Sulf2 genes in C6 and U87 cells markedly promoted in vitro growth of these cells accompanied by nuclear mobilisation while inhibition of both these genes inhibited cell proliferation with little or no nuclear SULF1/SULF2 mobilisation. SULF1/SULF2 activity in these cells thus demonstrated a clear co-ordination of extracellular cell signalling with nuclear events related to cell proliferation. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  3. Shifting Patterns of BMI and Skinfold Fatness among US Children: 1985/87 vs. 2012

    Directory of Open Access Journals (Sweden)

    Yan Yang

    2016-12-01

    Full Text Available Background: Childhood obesity has been recognized as a major public health concern. The purpose of this study was to determine specific shifting patterns of BMI and skinfold fatness across different age and sex groups between 1985/87 and 2012. Methods: The data of 9,366 children aged 8-15 years from two nationally representative surveys, i.e., 1985/87 National Children and Youth Fitness Study I & II and 2012 National Health and Nutrition Examination Survey National Youth Fitness Survey, were analyzed. Specifically, changes of BMI-based obesity prevalence and shifting patterns of BMI, height, weight, skinfold body fat percentage (skinfold-fat%, subscapular skinfold, and triceps skinfold from 1985/87 to 2012 were estimated by age and sex using the 1985/87 quartiles as the baseline. Results: Significantly increased obesity prevalence were reconfirmed for both boys (12.12%, P <.001 and girls (3.53%, P <.001 from 1985/87 to 2012. Except for height, all other measures in 2012 experienced an unbalanced shifting pattern, mainly from other quartiles into the 4th quartile of 1985/87. Conclusion: The shifting of both boys’ and girls’ BMI and skinfold-fat% were all concentrated in the 4th quartile of 1985/87, indicating not only that there was a significant increase in BMI and skinfold-fat% in the U.S. children from 1985/87 to 2012, but also into the overweight and obese subgroups, which serves as a serious warning for childhood obesity epidemic and public health.

  4. Radiosensitivity of Patient-Derived Glioma Stem Cell 3-Dimensional Cultures to Photon, Proton, and Carbon Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chiblak, Sara; Tang, Zili [German Cancer Consortium, Heidelberg (Germany); Molecular and Translational Radiation Oncology, Heidelberg Ion Therapy Center, Heidelberg Institute of Radiation Oncology, University of Heidelberg Medical School and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg (Germany); Campos, Benito; Gal, Zoltan; Unterberg, Andreas [Division of Neurological Research, Department of Neurosurgery, University of Heidelberg Medical School, Heidelberg (Germany); Debus, Jürgen [German Cancer Consortium, Heidelberg (Germany); Molecular and Translational Radiation Oncology, Heidelberg Ion Therapy Center, Heidelberg Institute of Radiation Oncology, University of Heidelberg Medical School and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg (Germany); Herold-Mende, Christel [Division of Neurological Research, Department of Neurosurgery, University of Heidelberg Medical School, Heidelberg (Germany); Abdollahi, Amir, E-mail: a.amir@dkfz.de [German Cancer Consortium, Heidelberg (Germany); Molecular and Translational Radiation Oncology, Heidelberg Ion Therapy Center, Heidelberg Institute of Radiation Oncology, University of Heidelberg Medical School and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg (Germany)

    2016-05-01

    Purpose: To investigate the radiosensitivity of primary glioma stem cell (GSC) cultures with different CD133 status in a 3-dimensional (3D) model after photon versus proton versus carbon irradiation. Methods and Materials: Human primary GSC spheroid cultures were established from tumor specimens of six consented glioblastoma patients. Human U87MG was used as a classical glioblastoma radioresistant cell line. Cell suspensions were generated by mechanical dissociation of GSC spheroids and embedded in a semi-solid 3D matrix before irradiation. Spheroid-like colonies were manually counted by microscopy. Cells were also recovered and quantified by fluorescence. CD133 expression and DNA damage were evaluated by flow cytometry. Results: The fraction of CD133{sup +} cells varied between 0.014% and 96% in the six GSC cultures and showed a nonsignificant correlation with plating efficiency and survival fractions. The 4 most photon-radioresistant GSC cultures were NCH644, NCH421k, NCH441, and NCH636. Clonogenic survival for proton irradiation revealed relative biologic effectiveness (RBE) in the range of 0.7-1.20. However, carbon irradiation rendered the photon-resistant GSC cultures sensitive, with average RBE of 1.87-3.44. This effect was partly attributed to impaired capability of GSC to repair carbon ion–induced DNA double-strand breaks as determined by residual DNA repair foci. Interestingly, radiosensitivity of U87 cells was comparable to GSC cultures using clonogenic survival as the standard readout. Conclusions: Carbon irradiation is effective in GSC eradication with similar RBE ranges approximately 2-3 as compared with non-stem GSC cultures (U87). Our data strongly suggest further exploration of GSC using classic radiobiology endpoints such as the here-used 3D clonogenic survival assay and integration of additional GSC-specific markers.

  5. Radiosensitivity of Patient-Derived Glioma Stem Cell 3-Dimensional Cultures to Photon, Proton, and Carbon Irradiation

    International Nuclear Information System (INIS)

    Chiblak, Sara; Tang, Zili; Campos, Benito; Gal, Zoltan; Unterberg, Andreas; Debus, Jürgen; Herold-Mende, Christel; Abdollahi, Amir

    2016-01-01

    Purpose: To investigate the radiosensitivity of primary glioma stem cell (GSC) cultures with different CD133 status in a 3-dimensional (3D) model after photon versus proton versus carbon irradiation. Methods and Materials: Human primary GSC spheroid cultures were established from tumor specimens of six consented glioblastoma patients. Human U87MG was used as a classical glioblastoma radioresistant cell line. Cell suspensions were generated by mechanical dissociation of GSC spheroids and embedded in a semi-solid 3D matrix before irradiation. Spheroid-like colonies were manually counted by microscopy. Cells were also recovered and quantified by fluorescence. CD133 expression and DNA damage were evaluated by flow cytometry. Results: The fraction of CD133"+ cells varied between 0.014% and 96% in the six GSC cultures and showed a nonsignificant correlation with plating efficiency and survival fractions. The 4 most photon-radioresistant GSC cultures were NCH644, NCH421k, NCH441, and NCH636. Clonogenic survival for proton irradiation revealed relative biologic effectiveness (RBE) in the range of 0.7-1.20. However, carbon irradiation rendered the photon-resistant GSC cultures sensitive, with average RBE of 1.87-3.44. This effect was partly attributed to impaired capability of GSC to repair carbon ion–induced DNA double-strand breaks as determined by residual DNA repair foci. Interestingly, radiosensitivity of U87 cells was comparable to GSC cultures using clonogenic survival as the standard readout. Conclusions: Carbon irradiation is effective in GSC eradication with similar RBE ranges approximately 2-3 as compared with non-stem GSC cultures (U87). Our data strongly suggest further exploration of GSC using classic radiobiology endpoints such as the here-used 3D clonogenic survival assay and integration of additional GSC-specific markers.

  6. The crosstalk between α-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-κB signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiamei; Yuan, Dexiao; Xiao, Linlin; Tu, Wenzhi; Dong, Chen; Liu, Weili; Shao, Chunlin, E-mail: clshao@shmu.edu.cn

    2016-01-15

    Highlights: • α-irradiated Beas-2B cells induced bystander effects in macrophage U937 cells. • The neighboring macrophages enhanced the damage of α-irradiated Beas-2B cells. • MAPK and NF-κB pathways were activated in U937 cells after cell co-culture. • NF-κB and MAPK pathways participated in the bilateral bystander responses. - Abstract: Although accumulated evidence suggests that α-particle irradiation induced bystander effect may relevant to lung injury and cancer risk assessment, the exact mechanisms are not yet elucidated. In the present study, a cell co-culture system was used to investigate the interaction between α-particle irradiated human bronchial epithelial cells (Beas-2B) and its bystander macrophage U937 cells. It was found that the cell co-culture amplified the detrimental effects of α-irradiation including cell viability decrease and apoptosis promotion on both irradiated cells and bystander cells in a feedback loop which was closely relevant to the activation of MAPK and NF-κB pathways in the bystander U937 cells. When these two pathways in U937 cells were disturbed by special pharmacological inhibitors before cell co-culture, it was found that a NF-κB inhibitor of BAY 11-7082 further enhanced the proliferation inhibition and apoptosis induction in bystander U937 cells, but MAPK inhibitors of SP600125 and SB203580 protected cells from viability loss and apoptosis and U0126 presented more beneficial effect on cell protection. For α-irradiated epithelial cells, the activation of NF-κB and MAPK pathways in U937 cells participated in detrimental cellular responses since the above inhibitors could largely attenuate cell viability loss and apoptosis of irradiated cells. Our results demonstrated that there are bilateral bystander responses between irradiated lung epithelial cells and macrophages through MAPK and NF-κB signaling pathways, which accounts for the enhancement of α-irradiation induced damage.

  7. The crosstalk between α-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-κB signaling pathways

    International Nuclear Information System (INIS)

    Fu, Jiamei; Yuan, Dexiao; Xiao, Linlin; Tu, Wenzhi; Dong, Chen; Liu, Weili; Shao, Chunlin

    2016-01-01

    Highlights: • α-irradiated Beas-2B cells induced bystander effects in macrophage U937 cells. • The neighboring macrophages enhanced the damage of α-irradiated Beas-2B cells. • MAPK and NF-κB pathways were activated in U937 cells after cell co-culture. • NF-κB and MAPK pathways participated in the bilateral bystander responses. - Abstract: Although accumulated evidence suggests that α-particle irradiation induced bystander effect may relevant to lung injury and cancer risk assessment, the exact mechanisms are not yet elucidated. In the present study, a cell co-culture system was used to investigate the interaction between α-particle irradiated human bronchial epithelial cells (Beas-2B) and its bystander macrophage U937 cells. It was found that the cell co-culture amplified the detrimental effects of α-irradiation including cell viability decrease and apoptosis promotion on both irradiated cells and bystander cells in a feedback loop which was closely relevant to the activation of MAPK and NF-κB pathways in the bystander U937 cells. When these two pathways in U937 cells were disturbed by special pharmacological inhibitors before cell co-culture, it was found that a NF-κB inhibitor of BAY 11-7082 further enhanced the proliferation inhibition and apoptosis induction in bystander U937 cells, but MAPK inhibitors of SP600125 and SB203580 protected cells from viability loss and apoptosis and U0126 presented more beneficial effect on cell protection. For α-irradiated epithelial cells, the activation of NF-κB and MAPK pathways in U937 cells participated in detrimental cellular responses since the above inhibitors could largely attenuate cell viability loss and apoptosis of irradiated cells. Our results demonstrated that there are bilateral bystander responses between irradiated lung epithelial cells and macrophages through MAPK and NF-κB signaling pathways, which accounts for the enhancement of α-irradiation induced damage.

  8. 40 CFR 763.87 - Analysis.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Analysis. 763.87 Section 763.87... Asbestos-Containing Materials in Schools § 763.87 Analysis. (a) Local education agencies shall have bulk samples, collected under § 763.86 and submitted for analysis, analyzed for asbestos using laboratories...

  9. Hepatitis B Virus Infection In Patients With Homozygous Sickle Cell ...

    African Journals Online (AJOL)

    Nnebe-Agumadu U H, and Abiodun P O. Hepatitis B Virus Infection in Patients with Homozygous Sickle Cell Disease (HbSS): Need for Intervention. Annals Biomedical Sciences 2002; 1:79-87. This is a prospective study of 213 patients with sickle cell anaemia (SCA) (112 males and 101 females) aged 6 months to 18 years ...

  10. Low-grade astrocytoma: surgical outcomes in eloquent versus non-eloquent brain areas

    Directory of Open Access Journals (Sweden)

    André de Macedo Bianco

    2013-01-01

    Full Text Available A retrospective study of 81 patients with low-grade astrocytoma (LGA comparing the efficacy of aggressive versus less aggressive surgery in eloquent and non-eloquent brain areas was conducted. Extent of surgical resection was analyzed to assess overall survival (OS and progression- free survival (PFS. Degree of tumor resection was classified as gross total resection (GTR, subtotal resection (STR or biopsy. GTR, STR and biopsy in patients with tumors in non-eloquent areas were performed in 31, 48 and 21% subjects, whereas in patients with tumors in eloquent areas resections were 22.5, 35 and 42.5%. Overall survival was 4.7 and 1.9 years in patients with tumors in non-eloquent brain areas submitted to GTR/STR and biopsy (p=0.013, whereas overall survival among patients with tumors in eloquent area was 4.5 and 2.1 years (p=0.33. Improved outcome for adult patients with LGA is predicted by more aggressive surgery in both eloquent and non-eloquent brain areas.

  11. 22 CFR 8.7 - Security.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Security. 8.7 Section 8.7 Foreign Relations DEPARTMENT OF STATE GENERAL ADVISORY COMMITTEE MANAGEMENT § 8.7 Security. (a) All officers and members of a committee must have a security clearance for the subject matter level of security at which the committee...

  12. 33 CFR 8.7 - Information.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Information. 8.7 Section 8.7... GUARD RESERVE § 8.7 Information. (a) Information concerning the Coast Guard Reserve may be obtained from Commandant (CG-13), 2100 2nd St. SW., Stop 7801, Washington, DC 20593-7801. (b) Information and requirements...

  13. Imaging findings of anaplastic astrocytoma in a child with maple syrup urine disease: a case report.

    Science.gov (United States)

    Aw-Zoretic, Jessie; Wadhwani, Nitin R; Lulla, Rishi R; Rishi, Lulla R; Ryan, Maura E

    2015-09-01

    Maple syrup urine disease (MSUD) is an inborn error of branched-chain amino acid metabolism, which usually presents in childhood with encephalopathy due to cerebral edema and dysmyelination. Even with treatment, metabolic stressors may precipitate later episodes of acute decompensation. Changes related to cerebral and white matter edema have been described by magnetic resonance imaging (MRI), and imaging can aid in both initial diagnosis and evaluation of decompensation. To date, there are no published known reports of cancer in patients with MSUD. Here, we present the first case report of an anaplastic astrocytoma in a teenager with MSUD, with a discussion of imaging findings and the use of magnetic resonance spectroscopy (MRS) to help distinguish between tumor and metabolic changes.

  14. In Vitro Responsiveness of Glioma Cell Lines to Multimodality Treatment With Radiotherapy, Temozolomide, and Epidermal Growth Factor Receptor Inhibition With Cetuximab

    International Nuclear Information System (INIS)

    Combs, Stephanie E.; Schulz-Ertner, Daniela; Roth, Wilfried; Herold-Mende, Christel; Debus, Juergen; Weber, Klaus-Josef

    2007-01-01

    Background: The majority of glioblastoma multiforme (GBM) cells express the epidermal growth factor receptor (EGFR). The present study evaluates the combination of temozolomide (TMZ), EGFR inhibition, and radiotherapy (RT) in GBM cell lines. Methods and Materials: Human GBM cell lines U87, LN229, LN18, NCH 82, and NCH 89 were treated with various combinations of TMZ, RT, and the monoclonal EGFR antibody cetuximab. Responsiveness of glioma cells to the combination treatment was measured by clonogenic survival. Results: Overall, double and triple combinations of RT, TMZ, and cetuximab lead to additive cytotoxic effects (independent toxicity). A notable exception was observed for U87 and LN 18 cell lines, where the combination of TMZ and cetuximab showed substantial antagonism. Interestingly, in these two cell lines, the combination of RT with cetuximab resulted in a substantial increase in cell killing over that expected for independent toxicity. The triple combination with RT, cetuximab, and TMZ was nearly able to overcome the antagonism for the TMZ/cetuximab combination in U87, however only marginally in LN18, GBM cell lines. Conclusion: It appears that EGFR expression is not correlated with cytotoxic effects exerted by cetuximab. Combination treatment with TMZ, cetuximab and radiation resulted in independent toxicity in three out of five cell lines evaluated, the antagonistic effect of the TMZ/cetuximab combination in two cell lines could indicate that TMZ preferentially kills cetuximab-resistant cells, suggesting for some cross-talk between toxicity mechanisms. Expression of EGFR was no surrogate marker for responsiveness to cetuximab, alone or in combination with RT and TMZ

  15. Involvement of the Soluble Urokinase Receptor in Chondrosarcoma Cell Mobilization

    Directory of Open Access Journals (Sweden)

    Katia Bifulco

    2011-01-01

    Full Text Available High levels of urokinase receptor (uPAR in tissue and serum of patients with chondrosarcoma correlate with poor prognosis. First, we analyzed the uPAR levels in tissues and plasma of five patients affected by chondrosarcoma. Interestingly, very high levels of uPAR and its soluble forms (SuPAR were found on tumor cell surfaces and plasma, respectively, of two patients with lung metastases. Therefore, to investigate the role of SuPAR in chondrosaromas, we generated a primary cell culture from a chondrosarcoma tissue overexpressing uPAR on cell surfaces. We found that chondrosarcoma-like primary culture cells release a large amount of SuPAR in the medium. In vitro, SuPAR elicits chondrosarcoma cell migration likely through its uPAR88-92 sequence, since the DII88-183 or DIIDIIR88-284 uPAR domains retain motogen effect whereas DI1-87 or DIII184-284 domains, both lacking the uPAR88-92 sequence, are ineffective. Chondrosarcoma cells cross matrigel in response to SuPAR, and their invasion capability is abrogated by RERF peptide which inhibits uPAR88-92 signalling. These findings assign a role to uPAR in mobilizing chondrosarcoma cells and suggest that RERF peptide may be regarded as a prototype to generate new therapeutics for the chondrosarcoma treatment.

  16. Downregulation of mitochondrial UQCRB inhibits cancer stem cell-like properties in glioblastoma.

    Science.gov (United States)

    Jung, Narae; Kwon, Ho Jeong; Jung, Hye Jin

    2018-01-01

    Glioblastoma stem cell targeted therapies have become a powerful strategy for the treatment of this deadliest brain tumor. We demonstrate for the first time that downregulation of mitochondrial ubiquinol-cytochrome c reductase binding protein (UQCRB) inhibits the cancer stem cell-like properties in human glioblastoma cells. The synthetic small molecules targeting UQCRB significantly suppressed not only the self-renewal capacity such as growth and neurosphere formation, but also the metastatic potential such as migration and invasion of glioblastoma stem‑like cells (GSCs) derived from U87MG and U373MG at subtoxic concentrations. Notably, the UQCRB inhibitors repressed c‑Met-mediated downstream signal transduction and hypoxia‑inducible factor‑1α (HIF‑1α) activation, thereby reducing the expression levels of GSC markers including CD133, Nanog, Oct4 and Sox2 in the GSCs. Furthermore, the UQCRB inhibitors decreased mitochondrial ROS generation and mitochondrial membrane potential in the GSCs, indicating that they regulate the mitochondrial function in GSCs. Indeed, the knockdown of UQCRB gene by UQCRB siRNA significantly inhibited the cancer stem cell-like phenotypes as well as the expression of stemness markers by blocking mitochondrial ROS/HIF‑1α/c‑Met pathway in U87MG GSCs. These findings suggest that UQCRB and its inhibitors could be a new therapeutic target and lead compounds for eliminating cancer stem cells in glioblastoma.

  17. Direct measurement of the half-life of Rb{sup 87}; Mesure directe de la periode du rubidium-87; Pryamoe izmerenie poluraspada rubidiya-87; Medicion directa del periodo del {sup 87}Rb

    Energy Technology Data Exchange (ETDEWEB)

    McNair, A; Wilson, H W [United Kingdom Atomic Energy Authority, Aldermaston, Berks. (United Kingdom)

    1962-01-15

    d'obtenir une valeur precise par comptage direct, et c'est ce que les auteurs se sont efforces de faire. En procedant a ces mesures, il faut veiller particulierement a reduire l'epaisseur de la source et celle du support de la source. Les auteurs ont procede comme suit pour augmenter l'exactitude des mesures. Us ont reduit l'epaisseur de la source : a) en utilisant un compteur proportionnel 4 {pi} a grande surface utile (jusqu'a 100 cm{sup 2}); b) en effectuant un montage en anticoincidence pour reduire le bruit de fond; c) en employant du rubidium-87 enrichi, qui permet de ramener au quart l'epaisseur de la source pour line radioactivite donnee. Ils ont ainsi pu mesurer des sources ramenees a 5 {mu}g/cm. Ils ont en. outre etudie le rapport entre la periode et l'epaisseur de la source, afin de pouvoir effectuer les ajustements necessaires pour' tenir compte de la tres faible absorption restante. L'epaisseur du support de la source n'a pas d'effet aussi notable; celui-ci peut etre calcule d'apres : a) la difference entre les taux de comptage obtenus de part et d'autre des minces supports utilises; b) les resultats d4me etude sur les liens entre la periode et l'epaisseur du support de la source. Ces experiences donnent une valeur de 5,25 {center_dot} 10{sup 10} ans environ comme periode du rubidium-87. (author) [Spanish] El periodo de semidesintegracion del {sup 87}Rb se ha medido directamente determinando la actividad especifica del nuclido con ayuda de un metodo de recuento. Los periodos de semidesintegracion obtenidos previamente oscilaban entre 4 x 10{sup 10} y 6 x 10{sup 10} anos, adoptandose por regla general 5 x 10{sup 10} anos como valor medio. El recuento directo ofrece dificultades debidas a la presencia de un gran numero de electrones de muy baja energia en el espectro del {sup 87}Rb. No obstante, los autores han procurado obtener un valor preciso siguiendo dicho metodo, por la gran utilidad que ello representa. Al efectuar estas mediciones, debe prestarse

  18. Mutant p53 transfection of astrocytic cells results in altered cell cycle control, radiation sensitivity, and tumorigenicity

    International Nuclear Information System (INIS)

    Kanady, Kirk E.; Mei Su; Proulx, Gary; Malkin, David M.; Pardo, Francisco S.

    1995-01-01

    Introduction: Alterations in the p53 tumor suppressor gene are one of the most frequent genetic alterations in malignant gliomas. An understanding of the molecular genetic events leading to glial tumor progression would aid in designing therapeutic vectors for controlling these challenging tumor types. We investigated whether mutations in coding exons of the p53 gene result in functional changes altering cell cycle 'checkpoint' control and the intrinsic radiation sensitivity of glial cells. Methods: An astrocytic cell line was derived from a low grade astrocytoma and characterized to be of human karyotype and GFAP positivity. Additionally, the cellular population has never formed tumors in immune-deficient mice. At early passage ( 2 as parameters. Cell kinetic analyses after 2, 5, and 10 Gy of ionizing radiation were conducted using propidium iodide FACS analyses. Results: Overall levels of p53 expression were increased 5-10 fold in the transfected cellular populations. Astrocytic cellular populations transfected with mutant p53 revealed a statistically significant increase in levels of resistance to ionizing radiation in vitro (2-tailed test, SF2, MID). Astrocytic cellular populations transfected with mutant p53, unlike the parental cells, were tumorigenic in SCID mice. Cell kinetic analyses indicated that the untransfected cell line demonstrated dose dependent G1 and G2 arrests. Following transfection, however, the resultant cellular population demonstrated a predominant G2 arrest. Conclusions: Astrocytic cellular populations derived from low grade astrocytomas, are relatively radiation sensitive, non-tumorigenic, and have intact cell cycle ''checkpoints.'' Cellular populations resulting upon transfection of parental cells with a dominant negative p53 mutation, are relatively radiation resistant, when compared to both parental and mock-transfected cells. Transfected cells demonstrate abnormalities of cell cycle control at the G1/S checkpoint, increases in levels

  19. U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells

    International Nuclear Information System (INIS)

    Torsvik, Anja; Stieber, Daniel; Enger, Per Øyvind; Golebiewska, Anna; Molven, Anders; Svendsen, Agnete; Westermark, Bengt; Niclou, Simone P; Olsen, Thale Kristin; Chekenya Enger, Martha; Bjerkvig, Rolf

    2014-01-01

    It is well known that in vitro subculture represents a selection pressure on cell lines, and over time this may result in a genetic drift in the cancer cells. In addition, long-term cultures harbor the risk of cross-contamination with other cell lines. The consequences may have major impact on experimental results obtained in various laboratories, where the cell lines no longer reflect the original tumors that they are supposed to represent. Much neglected in the scientific community is a close monitoring of cell cultures by regular phenotypic and genetic characterization. In this report, we present a thorough characterization of the commonly used glioblastoma (GBM) model U-251, which in numerous publications has been wrongly identified as U-373, due to an earlier cross-contamination. In this work, the original U-251 and three subclones of U-251, commonly referred to as U-251 or U-373, were analyzed with regard to their DNA profile, morphology, phenotypic expression, and growth pattern. By array comparative genomic hybridization (aCGH), we show that only the original low-passaged U-251 cells, established in the 1960s, maintain a DNA copy number resembling a typical GBM profile, whereas all long-term subclones lost the typical GBM profile. Also the long-term passaged subclones displayed variations in phenotypic marker expression and showed an increased growth rate in vitro and a more aggressive growth in vivo. Taken together, the variations in genotype and phenotype as well as differences in growth characteristics may explain different results reported in various laboratories related to the U-251 cell line

  20. Extracts of Artocarpus communis Induce Mitochondria-Associated Apoptosis via Pro-oxidative Activity in Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Chiang-Wen Lee

    2018-05-01

    Full Text Available Glioblastoma multiforme (GBM is an extremely aggressive and devastating malignant tumor in the central nervous system. Its incidence is increasing and the prognosis is poor. Artocarpin is a natural prenylated flavonoid with various anti-inflammatory and anti-tumor properties. Studies have shown that artocarpin is associated with cell death of primary glioblastoma cells. However, the in vivo effects and the cellular and molecular mechanisms modulating the anticancer activities of artocarpin remain unknown. In this study, we demonstrated that treating the glioblastoma cell lines U87 and U118 cells with artocarpin induced apoptosis. Artocarpin-induced apoptosis is associated with caspase activation and poly (ADP-ribose polymerase (PARP cleavage and is mediated by the mitochondrial pathway. This is associated with mitochondrial depolarization, mitochondrial-derived reactive oxidative species (ROS production, cytochrome c release, Bad and Bax upregulations, and Bcl-2 downregulation. Artocarpin induced NADPH oxidase/ROS generation plays an important role in the mitochondrial pathway activation. Furthermore, we found artocarpin-induced ROS production in mitochondria is associated with Akt- and ERK1/2 activation. After treatment with artocarpin, ROS causes PI3K/Akt/ERK1/2-induced cell death of these tumor cells. These observations were further verified by the results from the implantation of both U87 and U118 cells into in vivo mouse. In conclusion, our findings suggest that artocarpin induces mitochondria-associated apoptosis of glioma cells, suggesting that artocarpine can be a potential chemotherapeutic agent for future GBM treatment.

  1. Imaging of 99Tcm-labeled new cyclic RGDfK Dimer in nude mice bearing U87MG human glioma xenografts

    International Nuclear Information System (INIS)

    Jin Xiao'an; Shi Jiyun; Liu Yan; Zhu Zhaohui; Jia Bing; Liu Zhaofei; Shi Ximin; Wang Fan; Li Fang

    2010-01-01

    Objective: (1) To evaluate the effect of insertion of two 15-amino-4, 7, 10, 13-tetraoxapentadecanoic (2 PEG 4 ) linkers into cyclic Arg-Gly-Asp (RGD) Dimer E [c(RGDfK)] 2 on receptor binding in vitro, (2) to assess its biodistribution in vivo and (3) to investigate the value of 99 Tc m labeled 2PEG 4 -Dimer for integrin α v β 3 -positive tumors imaging. Methods: The expression of U87 human glioma cells and integrin α v β 3 was determined by immunofluorescence staining. The half-inhibition concentrations (IC 50 ) for 125 I-cyclo (Arg-Gly-Asp-D-Tyr-Lys) (c(RGDyK)) of c (RGDyK), hydrazinonictinamide (HYNIC)-Dimer and HYNIC-2PEG 4 -Dimer binding to integrin α v β 3 were measured. 99 Tc m -HYNIC-Dimer and 99 Tc m -HYNIC-2PEG 4 -Dimer were synthesized using non-SnCl 2 formulation. Biodistribution and imaging studies were performed in nude mice bearing human glioma xenografts. The unpaired t test was used for statistical analysis. Results: The labeling yield of the two radiotracers was more than 95%, and the radiochemical purity was more than 99% through Sep-Pek C18 cartridge. HYNIC-2PEG 4 -Dimer had significantly higher binding affinity of integrin α v β 3 than c(RGDyK) and HYNIC-Dimer (IC 50 =0.8 nmol/L, 27 nmol/L and 2.4 nmol/L, respectively). Biodistribution study showed that 99 Tc m -HYNIC-2PEG 4 -Dimer was mainly excreted via the kidney. The tumor uptake of 99 Tc m -HYNIC-2PEG 4 -Dimer was higher than that of 99 Tc m -HYNIC-Dimer at 2 h post injection ((5.71±0.96) and (2.10±0.50) % ID/g, t =4.80, P 99 Tc m -HYNIC-2PEG 4 -Dimer is a promising radiotracer for integrin α v β 3 -positive tumor imaging. (authors)

  2. Stereotactic Radiosurgery for Recurrent or Unresectable Pilocytic Astrocytoma

    Energy Technology Data Exchange (ETDEWEB)

    Hallemeier, Christopher L. [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States); Pollock, Bruce E. [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States); Department of Neurological Surgery, Mayo Clinic, Rochester, MN (United States); Schomberg, Paula J. [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States); Link, Michael J. [Department of Neurological Surgery, Mayo Clinic, Rochester, MN (United States); Brown, Paul D. [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Stafford, Scott L., E-mail: Stafford.scott@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States)

    2012-05-01

    Purpose: To report the outcomes in patients with recurrent or unresectable pilocytic astrocytoma (PA) treated with Gamma Knife stereotactic radiosurgery (SRS). Methods and Materials: Retrospective review of 18 patients (20 lesions) with biopsy-confirmed PA having SRS at our institution from 1992 through 2005. Results: The median patient age at SRS was 23 years (range, 4-56). Thirteen patients (72%) had undergone one or more previous surgical resections, and 10 (56%) had previously received external-beam radiation therapy (EBRT). The median SRS treatment volume was 9.1 cm{sup 3} (range, 0.7-26.7). The median tumor margin dose was 15 Gy (range, 12-20). The median follow-up was 8.0 years (range, 0.5-15). Overall survival at 1, 5, and 10 years after SRS was 94%, 71%, and 71%, respectively. Tumor progression (local solid progression, n = 4; local solid progression + distant, n = 1; distant, n = 2; cyst development/progression, n = 4) was noted in 11 patients (61%). Progression-free survival at 1, 5, and 10 years was 65%, 41%, and 17%, respectively. Prior EBRT was associated with inferior overall survival (5-year risk, 100% vs. 50%, p = 0.03) and progression-free survival (5-year risk, 71% vs. 20%, p = 0.008). Nine of 11 patients with tumor-related symptoms improved after SRS. Symptomatic edema after SRS occurred in 8 patients (44%), which resolved with short-term corticosteroid therapy in the majority of those without early disease progression. Conclusions: SRS has low permanent radiation-related morbidity and durable local tumor control, making it a meaningful treatment option for patients with recurrent or unresectable PA in whom surgery and/or EBRT has failed.

  3. Stereotactic Radiosurgery for Recurrent or Unresectable Pilocytic Astrocytoma

    International Nuclear Information System (INIS)

    Hallemeier, Christopher L.; Pollock, Bruce E.; Schomberg, Paula J.; Link, Michael J.; Brown, Paul D.; Stafford, Scott L.

    2012-01-01

    Purpose: To report the outcomes in patients with recurrent or unresectable pilocytic astrocytoma (PA) treated with Gamma Knife stereotactic radiosurgery (SRS). Methods and Materials: Retrospective review of 18 patients (20 lesions) with biopsy-confirmed PA having SRS at our institution from 1992 through 2005. Results: The median patient age at SRS was 23 years (range, 4–56). Thirteen patients (72%) had undergone one or more previous surgical resections, and 10 (56%) had previously received external-beam radiation therapy (EBRT). The median SRS treatment volume was 9.1 cm 3 (range, 0.7–26.7). The median tumor margin dose was 15 Gy (range, 12–20). The median follow-up was 8.0 years (range, 0.5–15). Overall survival at 1, 5, and 10 years after SRS was 94%, 71%, and 71%, respectively. Tumor progression (local solid progression, n = 4; local solid progression + distant, n = 1; distant, n = 2; cyst development/progression, n = 4) was noted in 11 patients (61%). Progression-free survival at 1, 5, and 10 years was 65%, 41%, and 17%, respectively. Prior EBRT was associated with inferior overall survival (5-year risk, 100% vs. 50%, p = 0.03) and progression-free survival (5-year risk, 71% vs. 20%, p = 0.008). Nine of 11 patients with tumor-related symptoms improved after SRS. Symptomatic edema after SRS occurred in 8 patients (44%), which resolved with short-term corticosteroid therapy in the majority of those without early disease progression. Conclusions: SRS has low permanent radiation-related morbidity and durable local tumor control, making it a meaningful treatment option for patients with recurrent or unresectable PA in whom surgery and/or EBRT has failed.

  4. Hyperthermia radiosensitization in human glioma cells comparison of recovery of polymerase activity, survival, and potentially lethal damage repair

    International Nuclear Information System (INIS)

    Raaphorst, G.P.; Feeley, M.M.

    1994-01-01

    DNA polymerase inactivation is compared to thermal radiosensitization and inhibition of damage recovery in human glioma cells. Two human glioma cell lines (U87MG and U373MG) were exposed to hyperthermia and irradiation. Hyperthermia was given at 43 degrees C and 45 degrees C and DNA polymerase α + δ + ε and β activities were measured. Hyperthermia was given at various times before irradiation and the degree of radiosensitization and polymerase activity was assessed at various times after heating. In addition the ability of cells to undergo repair of potentially lethal radiation damage was assessed for cells irradiated at various times after heating. Polymerase α + δ + ε and polymerase β both recovered after heating but polymerase β was faster and was complete in U373MG but not in the U87MG cell lines after 48 h incubation after heating (45 degrees C, 60 min). Incubation, between hyperthermia and irradiation resulted in a loss of radiosensitization and a loss of inhibition of repair of potentially lethal damage. These changes correlated well with recovery of polymerase β but not with polymerase α + δ + ε. The correlation of polymerase β activity and thermoradiosensitization and its recovery indicate that polymerase β may be one of the mechanisms involved in thermoradiosensitization. 35 refs., 7 figs

  5. The crosstalk between α-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-κB signaling pathways.

    Science.gov (United States)

    Fu, Jiamei; Yuan, Dexiao; Xiao, Linlin; Tu, Wenzhi; Dong, Chen; Liu, Weili; Shao, Chunlin

    2016-01-01

    Although accumulated evidence suggests that α-particle irradiation induced bystander effect may relevant to lung injury and cancer risk assessment, the exact mechanisms are not yet elucidated. In the present study, a cell co-culture system was used to investigate the interaction between α-particle irradiated human bronchial epithelial cells (Beas-2B) and its bystander macrophage U937 cells. It was found that the cell co-culture amplified the detrimental effects of α-irradiation including cell viability decrease and apoptosis promotion on both irradiated cells and bystander cells in a feedback loop which was closely relevant to the activation of MAPK and NF-κB pathways in the bystander U937 cells. When these two pathways in U937 cells were disturbed by special pharmacological inhibitors before cell co-culture, it was found that a NF-κB inhibitor of BAY 11-7082 further enhanced the proliferation inhibition and apoptosis induction in bystander U937 cells, but MAPK inhibitors of SP600125 and SB203580 protected cells from viability loss and apoptosis and U0126 presented more beneficial effect on cell protection. For α-irradiated epithelial cells, the activation of NF-κB and MAPK pathways in U937 cells participated in detrimental cellular responses since the above inhibitors could largely attenuate cell viability loss and apoptosis of irradiated cells. Our results demonstrated that there are bilateral bystander responses between irradiated lung epithelial cells and macrophages through MAPK and NF-κB signaling pathways, which accounts for the enhancement of α-irradiation induced damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Estradiol attenuates EGF-induced rapid uPAR mobilization and cell migration via the G-protein-coupled receptor 30 in ovarian cancer cells

    DEFF Research Database (Denmark)

    Henic, Emir; Noskova, Vera; Høyer-Hansen, Gunilla

    2009-01-01

    : rapid mobilization of uPAR from detergent-resistant domains, increased mRNA, and decreased degradation. G-protein-coupled receptor 30 (GPR30) is a newly identified membrane estrogen receptor (ER).The objective of this study was to explore the effects of 17beta-estradiol (E(2)) on uPAR expression...... for ERalpha, and quantitative polymerase chain reaction. Estradiol attenuates the stimulatory effect of EGF on cell migration and uPAR expression. Specifically, E(2) reduces the very rapid increase of detergent extractable uPAR, which occurs within minutes of EGF stimulation and probably represents...... agonist G1, mimicked the effect of E(2) on uPAR expression and cell migration. OVCAR-3 cells express mRNA for GPR30.Estradiol attenuates EGF-induced mobilization of ligated uPAR from detergent-resistant domains and subsequent migration in ovarian cancer cells. The response to various ER ligands indicates...

  7. Damage of Neuroblastoma Cell SH-SY5Y Mediated by MPP+ Inhibits Proliferation of T-Cell Leukemia Jurkat by Co-Culture System

    Directory of Open Access Journals (Sweden)

    Fuli Wang

    2014-06-01

    Full Text Available The adaptive immune system has implications in pathology of Parkinson’s disease (PD. Research data demonstrated that the peripheral CD4+ T-cell population decreased in pathogenesis of PD. The effect of damaged dopaminergic neurons on peripheral T cells of PD is still unknown. In this study, we constructed a neuronal and glial cells co-culture model by using human neuroblastoma cells SH-SY5Y and gliomas cells U87. After the co-culture cells were treated with neurotoxin 1-methyl-4-phenylpyridinium (MPP+ for 24 h, the conditioned media was harvested and used to cultivate T-cell leukemia Jurkat cells for another 24 h. We then analyzed the cell proliferation, cell cycle and necrosis effect of Jurkat cells. The results showed that co-culture medium of SH-SY5Y and U87 cells with MPP+ treatment inhibited the proliferation of Jurkat cells compared to control medium without MPP+, even though the same concentration of MPP+ had very little toxicity to the Jurkat cell. Furthermore, co-culture medium with low concentration of MPP+ (100 µM arrested Jurkat cells cycle in G2/M phase through increasing cell cycle division 2 (CDC2 and CyclinB1 expression level, whereas co-culture medium with high concentration of MPP+ (500 µM induced Jurkat cell necrosis through cellular swelling and membrane breakage. Our data implies that damaged dopamine neurons with glial cells can lead to the reduced number or inhibited proliferation activity of peripheral T cells.

  8. Downregulation of HIF-1a sensitizes U251 glioma cells to the temozolomide (TMZ) treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jun-Hai [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Ma, Zhi-Xiong [National Institute of Biological Sciences, Beijing 102206 (China); Huang, Guo-Hao; Xu, Qing-Fu; Xiang, Yan [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Li, Ningning; Sidlauskas, Kastytis [Division of Neuropathology and Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG (United Kingdom); Zhang, Eric Erquan [National Institute of Biological Sciences, Beijing 102206 (China); Lv, Sheng-Qing, E-mail: lvsq0518@hotmail.com [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China)

    2016-05-01

    Purpose: The aim of this study was to investigate the effect of downregulation of HIF-1α gene on human U251 glioma cells and examine the consequent changes of TMZ induced effects and explore the molecular mechanisms. Methods: U251 cell line stably expressing HIF-1α shRNA was acquired via lentiviral vector transfection. The mRNA and protein expression alterations of genes involved in our study were determined respectively by qRT-PCR and Western blot. Cell proliferation was measured by MTT assay and colony formation assay, cell invasion/migration capacity was determined by transwell invasion assay/wound healing assay, and cell apoptosis was detected by flow cytometry. Results: We successfully established a U251 cell line with highly efficient HIF-1α knockdown. HIF-1a downregulation sensitized U251 cells to TMZ treatment and enhanced the proliferation-inhibiting, invasion/migration-suppressing, apoptosis-inducing and differentiation-promoting effects exerted by TMZ. The related molecular mechanisms demonstrated that expression of O{sup 6}-methylguanine DNA methyltransferase gene (MGMT) and genes of Notch1 pathway were significantly upregulated by TMZ treatment. However, this upregulation was abrogated by HIF-1α knockdown. We further confirmed important regulatory roles of HIF-1α in the expression of MGMT and activation of Notch1 pathways. Conclusion: HIF-1α downregulation sensitizes U251 glioma cells to the temozolomide treatment via inhibiting MGMT expression and Notch1 pathway activation. - Highlights: • TMZ caused more significant proliferation inhibition and apoptosis in U251 cells after downregulating HIF-1α. • Under TMZ treatment, HIF-1 downregulated U251 cells exhibited weaker mobility and more differentiated state. • TMZ caused MGMT over-expression and Notch1 pathway activation, which could be abrogated by HIF-1α downregulation.

  9. Effective internalization of U251-MG-secreted exosomes into cancer cells and characterization of their lipid components.

    Science.gov (United States)

    Toda, Yuki; Takata, Kazuyuki; Nakagawa, Yuko; Kawakami, Hikaru; Fujioka, Shusuke; Kobayashi, Kazuya; Hattori, Yasunao; Kitamura, Yoshihisa; Akaji, Kenichi; Ashihara, Eishi

    2015-01-16

    Exosomes, the natural vehicles of various biological molecules, have been examined in several research fields including drug delivery. Although understanding of the biological functions of exosomes has increased, how exosomes are transported between cells remains unclear. We hypothesized that cell tropism is important for effective exosomal intercellular communication and that parental cells regulate exosome movement by modulating constituent exosomal molecules. Herein, we demonstrated the strong translocation of glioblastoma-derived exosomes (U251exo) into their parental (U251) cells, breast cancer (MDA-MB-231) cells, and fibrosarcoma (HT-1080). Furthermore, disruption of proteins of U251exo by enzymatic treatment did not affect their uptake. Therefore, we focused on lipid molecules of U251exo with the expectation that they are crucial for effective incorporation of U251exo by cancer cells. Phosphatidylethanolamine was identified as a unique lipid component of U251-MG cell-derived extracellular vesicles. From these results, valuable insight is provided into the targeting of U251exo to cancer cells, which will help to develop a cancer-targeted drug delivery system. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Collecting and Storing Blood and Brain Tumor Tissue Samples From Children With Brain Tumors

    Science.gov (United States)

    2017-12-11

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Newly Diagnosed Childhood Ependymoma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma

  11. Equilibrium electrode U(4)-U and redox U(4)-U(3) potentials in molten alkali metal chlorides medium

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, M V; Kudyakov, V Ya; Komarov, V E; Salyulev, A B [AN SSSR, Sverdlovsk. Inst. Ehlektrokhimii

    1979-02-01

    Conditional standard electrode potentials of uranium are determined for diluted solutions of its tetrachloride in alkali metal chloride melts (LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl) when using U(4) ion activity coefficient values experimentally found by the tensimetric method. These potentials shift to the electronegative side at the temperature decrease and alkali cation radius increase rsub(Msup(+)) according to the empiric ratio E*U(4)-U= -3.06+6.87x10/sup -4/ T-(1.67-10/sup -4/T-0.44) 1/rsub(Msup(+)) +-0.01. The temperature dependences of formal conditional redox potentials of the U(4)-U(3) system for above melted chlorides are estimated. The E*U(4)-U(3) value also becomes more electronegative in the series LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl. This alternation is satisfactorily described by the empiric expression E*U(4)-U(3)= -1.74+1.74x10/sup -4/T-(0.71x10/sup -4/T-0.20) 1rsub(Msup(+)) +-0.05. The calculated values Eu*(4)-U(3) are compared with those directly measured for the NaCl-KCl equimolar mixture and 3LiCl-2KCl eutectic mixture. A satisfactory confirmity has been observed.

  12. Equilibrium electrode U(4)-U and redox U(4)-U(3) potentials in molten alkali metal chlorides medium

    International Nuclear Information System (INIS)

    Smirnov, M.V.; Kudyakov, V.Ya.; Komarov, V.E.; Salyulev, A.B.

    1979-01-01

    Conditional standard electrode potentials of uranium are determined for diluted solutions of its tetrachloride in alkali metal chloride melts (LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl) when using U(4) ion activity coefficient values experimentally found by the tensimetric method. These potentials shift to the electronegative side at the temperature decrease and alkali cation radius increase rsub(Msup(+)) according to the empiric ratio E*U(4)-U= -3.06+6.87x10 -4 T-(1.67-10 -4 T-0.44) 1/rsub(Msup(+)) +-0.01. The temperature dependences of formal conditional redox potentials of the U(4)-U(3) system for above melted chlorides are estimated. The E*U(4)-U(3) value also becomes more electronegative in the series LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl. This alternation is satisfactorily described by the empiric expression E*U(4)-U(3)= -1.74+1.74x10 -4 T-(0.71x10 -4 T-0.20) 1rsub(Msup(+)) +-0.05. The calculated values Eu*(4)-U(3) are compared with those directly measured for the NaCl-KCl equimolar mixture and 3LiCl-2KCl eutectic mixture. A satisfactory confirmity has been observed

  13. 3-Bromopyruvate inhibits cell proliferation and induces apoptosis in CD133+ population in human glioma.

    Science.gov (United States)

    Xu, Dong-Qiang; Tan, Xiao-Yu; Zhang, Bao-Wei; Wu, Tao; Liu, Ping; Sun, Shao-Jun; Cao, Yin-Guang

    2016-03-01

    The study was aimed to investigate the role of 3-bromopyruvate in inhibition of CD133+ U87 human glioma cell population growth. The results demonstrated that 3-bromopyruvate inhibited the viability of both CD133+ and parental cells derived from U87 human glioma cell line. However, the 3-bromopyruvate-induced inhibition in viability was more prominent in CD133+ cells at 10 μM concentration after 48 h. Treatment of CD133+ cells with 3-bromopyruvate caused reduction in cell population and cell size, membrane bubbling, and degradation of cell membranes. Hoechst 33258 staining showed condensation of chromatin material and fragmentation of DNA in treated CD133+ cells after 48 h. 3-Bromopyruvate inhibited the migration rate of CD133+ cells significantly compared to the parental cells. Flow cytometry revealed that exposure of CD133+ cells to 3-bromopyruvate increased the cell population in S phase from 24.5 to 37.9 % with increase in time from 12 to 48 h. In addition, 3-bromopyruvate significantly enhanced the expression of Bax and cleaved caspase 3 in CD133+ cells compared to the parental cells. Therefore, 3-bromopyruvate is a potent chemotherapeutic agent for the treatment of glioma by targeting stem cells selectively.

  14. Autotaxin inhibition with PF8380 enhances the radiosensitivity of human and murine glioblastoma cell lines

    Directory of Open Access Journals (Sweden)

    Sandeep R Bhave

    2013-09-01

    Full Text Available Purpose: Glioblastoma multiforme (GBM is an aggressive primary brain tumor that is radio-resistant and recurs despite aggressive surgery, chemo and radiotherapy. Autotaxin (ATX is over expressed in various cancers including GBM and is implicated in tumor progression, invasion, and angiogenesis. Using the ATX specific inhibitor, PF-8380, we studied ATX as a potential target to enhance radiosensitivity in GBM.Methods and Materials: Mouse GL-261 and Human U87MG cells were used as GBM cell models. Clonogenic survival assays and tumor transwell invasion assays were performed using PF-8380 to evaluate role of ATX in survival and invasion. Radiation dependent activation of Akt was analyzed by immunoblotting. Tumor induced angiogenesis was studied using the dorsal skin-fold model in Gl-261. Heterotopic mouse GL-261 tumors were used to evaluate the efficacy of PF-8380 as a radiosensitizer.Results: Pretreatment of GL-261 and U87-MG cells with 1µM PF-8380 followed by 4Gy irradiation resulted in decreased clonogenic survival, decreased migration (33% in GL-261;P = 0.002 and 17.9% in U87; P = 0.012 decreased invasion (35.6% in GL-261; P = 0.0037 and 31.8% in U87; P = 0.002, and attenuated radiation induced Akt phosphorylation. In the tumor window model inhibition of ATX abrogated radiation-induced tumor neovascularization (65%; P=0.011. In a heterotopic mouse GL-261 tumors untreated mice took 11.2 days to reach a tumor volume of 7000 mm3 , however combination of PF-8380 (10mg/kg with irradiation (5 fractions of 2Gy took more than 32 days to reach a tumor volume of 7000 mm3 .Conclusion: Inhibition of ATX by PF8380 led to decreased invasion and enhanced radiosensitization of glioma cells. Radiation induced activation of Akt was abrogated by inhibition of ATX. Furthermore, inhibition of ATX led to diminished tumor vascularity and delayed tumor growth. These results suggest that inhibition of ATX may ameliorate glioblastoma response to radiotherapy.

  15. Impact of flattening-filter-free radiation on the clonogenic survival of astrocytic cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Steenken, Caroline; Fleckenstein, Jens; Kegel, Stefan; Jahnke, Lennart; Simeonova, Anna; Hartmann, Linda; Kuebler, Jens; Veldwijk, Marlon R.; Wenz, Frederik; Herskind, Carsten; Giordano, Frank Anton [Universitaetsmedizin Mannheim (UMM), Medical Faculty Mannheim, Heidelberg University, Department of Radiation Oncology, Mannheim (Germany)

    2015-07-15

    Flattening-filter-free (FFF) beams are increasingly used in radiotherapy as delivery times can be substantially reduced. However, the relative biologic effectiveness (RBE) of FFF may be increased relative to conventional flattened (FLAT) beams due to differences in energy spectra. Therefore, we investigated the effects of FFF and FLAT beams on the clonogenic survival of astrocytoma cells. Three cell lines (U251, U251-MGMT, and U87) were irradiated with 6-MV and 10-MV X-rays from a linear accelerator in FFF- or FLAT-beam modes at dose rates in the range of 0.5-24 Gy/min. The surviving fraction (SF) as function of dose (2-12 Gy) was determined by the colony formation assay and fitted by the linear-quadratic model. For both beams (FFF or FLAT), the cells were pelleted in conical 15-ml centrifuge tubes and irradiated at 2-cm depth in a 1 x 1-cm{sup 2} area on the central axis of a 30 x 30-cm{sup 2} field. Dosimetry was performed with a 0.3-cm{sup 3} rigid ionization chamber. RBE was determined for FFF versus FLAT irradiation. The RBE of FFF at 7.3-11.3 Gy was 1.027 ± 0.013 and 1.063 ± 0.018 relative to FLAT beams for 6- and 10-MV beams, respectively, and was only significantly higher than 1 for 10 MV. Significantly increased survival rates were seen for lower dose rates (0.5 Gy/min FLAT vs. 5 Gy/min FLAT) at higher doses (11.9 Gy), while no differences were seen at dose rates ≥ 1.4 Gy/min (1.4 Gy/min FFF vs. 14 Gy/min FFF and 2.4 Gy/min FFF vs. 24 Gy/min FFF). FFF beams showed only a slightly increased RBE relative to FLAT beams in this experimental set-up, which is unlikely to result in clinically relevant differences in outcome. (orig.) [German] Die Flattening-Filter-freie (FFF) Bestrahlungstechnik findet zunehmend Verwendung, da sich die Applikationsdauer der einzelnen Fraktionen deutlich verkuerzen laesst. Aufgrund der Unterschiede im Spektrum koennte die relative biologische Wirksamkeit (RBW) von FFF jedoch hoeher sein als bei konventioneller Technik (d.h. bei

  16. Lipoprotein internalisation induced by oncogenic AMPK activation is essential to maintain glioblastoma cell growth.

    Science.gov (United States)

    Ríos, M; Foretz, M; Viollet, B; Prieto, A; Fraga, M; García-Caballero, T; Costoya, J A; Señarís, R

    2014-12-01

    Metabolic adaptations are essential during tumour growth to maintain the high proliferation levels exhibited by cancer cells. In this study, we examined the transformations that occurred in the lipid metabolism in astrocytic tumours, and the possible role of the fuel-sensing enzyme AMPK. Metabolic targets might help design new and effective drugs for cancer. To accomplish this objective, we studied both mice and human astrocytic tumours. We first used a mouse model of astrocytoma driven by oncogenic H-RasV12 and/or with PTEN deletion based on the common constitutive activation of the Raf/MEK/ERK and PI3K/AKT cascades in human astrocytomas. We then confirmed the results in human glioblastoma cell lines and in glioblastoma tissue samples from patients. We show that the high levels of activated AMPK, observed in astrocytic tumours, increase extracellular lipid internalisation and reduce energy expenditure by inhibiting 'de novo' fatty acid (FA) synthesis, which allows tumour cells to obtain building blocks and energy to be able to create new organelles and new cells. Our findings demonstrate that AMPK plays a crucial role in glioblastoma cell growth and suggest that blocking lipoprotein receptors could potentially be used as a plausible therapeutic approach for these and other type of tumours with high levels of AMPK. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. 40 CFR 87.6 - Aircraft safety.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Aircraft safety. 87.6 Section 87.6... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions of... met within the specified time without creating a safety hazard. ...

  18. A case of late presentation of precocious puberty due to pituitary astrocytoma

    Directory of Open Access Journals (Sweden)

    Fahimeh Soheilipour

    2015-08-01

    Full Text Available The importance of assessing precocious puberty, especially in boys, is not only due to the great complications it has for the affected patients, but also to the fatal underlying diseases. Therefore, children with central precocious puberty should first undergo neuroimaging. In this case study, we present a 9.5-year-old boy who was referred to Rasoul-e-Akram Medical Center with increased intracranial pressure, nausea/vomiting, and severe headache having begun three months earlier. The development of secondary sexual changes had started two years earlier, and had been neglected. His testes, penis, and pubic hair were at the fourth Tanner stage. He had elevated luteinizing and follicle stimulating hormones. Microscopic evaluation confirmed low-grade pilocytic astrocytoma WHO grade 1. Emergency brain surgery was conducted in which the brain was decompressed, and chemotherapy was started postoperatively. Two years after the surgery, he remains under chemotherapy, with obvious sexual maturation and a height of 154 cm. Training families and medical staff efficiently can help prevent the late diagnosis and treatment of precocious puberty and, as a result, help patients in their social life.

  19. 50 CFR 216.87 - Wildlife research.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Wildlife research. 216.87 Section 216.87 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION... Pribilof Islands Administration § 216.87 Wildlife research. (a) Wildlife research, other than research on...

  20. MMP-9, uPA and uPAR proteins expression and its prognostic significance in esophageal squamous cell carcinoma treated by radiotherapy

    International Nuclear Information System (INIS)

    Zhu Shuchai; Wang Yafei; Su Jingwei; Wang Yuxiang; Shen Wenbin; Li Juan

    2008-01-01

    Objective: To explore the the prognostic significance of MMP-9, uPA and uPAR protein expression and its relationship with clinical-pathologic factors in esophageal squamous cell carcinoma treated by radiotherapy. Methods: MMP-9, uPA and uPAR protein expression was measured in 59 esophageal carcinomas and 41 peri-carcinoma tissues with immunohistochemistry. The relationship between the protein expression and the clinical-pathological parameters was analyzed, and the prognostic factors in esophageal squamous cell carcinoma treated by radiotherapy alone was evaluated. Results: The rates of positive expression of MMP-9, uPA and uPAR were 85%, 76% and 78% in esophageal carcinoma and 39%, 49% and 44% in peri-carcinoma tissues (χ 2 =22.54, 8.04 and 12.18; P=0.000,0.005 and 0.000). The rates of positive expression of MMP-9 was 79% and 100% when the depth of tumor invasion was ≤2 cm and >2 cm(P= 0.048), respectively. The expression of uPA was significantly correlated with the status of fat interspace between the esophageal lesion and the vertebra in CT scanning image. When the fat interspace existed and disappeared, the rates of strong positive expression was 44% and 70%, respectively (χ 2 =4.21, P=0.040). The positive expression rate of uPA was significantly correlated with distant metastasis, which was 100% in patients with distant metastasis and 68.89% in those without distant metastasis(χ 2 =4.12, P=0.042). The positive expression rate of MMP-9, uPA and uPAR did not affect the prognosis and the short-term result of esophageal carcinoma treated by radiotherapy alone. Conclusions: The protein expression of MMP-9, uPA and uPAR may correlate with local infiltration and distant metastasis in esophageal squamous cell carcinoma. Protein expression may not influence the prognosis of esophageal carcinoma treated by radio therapy, though long time followed-up is still needed. (authors)

  1. Depression of pyrimidine dimer excision from the aspects of U.V. reversibility of irradiated cells

    International Nuclear Information System (INIS)

    Slamenova, D.; Slezarikova, V.; Masek, F.

    1977-01-01

    Depression of pyrimidine dimer excision induced in U.V. irradiated E.coli B/r T - trp - Hcr + cells by preirradiation cultivation in conditions of starving for the essential amino acid and thymine does not increase U.V.-reversibility of irradiated cells and does not influence the time of expression of trp + reversions. The expression of mutations becomes completed in control and prestarved cells prior to restoration of postradiation division. Genetic deficiency leads up to their high sensitivity to the mutagenic activity of U.V. irradiation. Expression of trp + revertants in Hcr - type cells does not become completed until after commencement of the postradiation division of irradiated cells. Prestarved E.coli B/r T - trp - Hcr + cells exhibited depression of excision even with postradiation cultivation in the absence of an essential amino acid, which is associated with greater stability of newly synthesized DNA and overall decrease of the death rate of cells. In postradiation starvation for the essential amino acid E.coli B/r T - trp - Hcr - cells irradiated with low U.V. light doses behaved similarly. Control E.coli B/r T - trp - Hcr + cells, cultivated after irradiation without amino acid, excised pyrimidine dimers; they are characterised by high degradation of newly synthesized DNA and increased death rate of cells. (author)

  2. A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically-Modified Neural Stem Cells Expressing E.Coli Cytosine Deaminase for Treatment of Recurrent High Grade Gliomas

    Science.gov (United States)

    2017-11-07

    Adult Anaplastic Astrocytoma; Recurrent Grade III Glioma; Recurrent Grade IV Glioma; Adult Anaplastic Oligodendroglioma; Adult Brain Tumor; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Recurrent Adult Brain Tumor; Adult Anaplastic Oligoastrocytoma; Recurrent High Grade Glioma

  3. 7 CFR 3.87 - Agency regulations.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Agency regulations. 3.87 Section 3.87 Agriculture Office of the Secretary of Agriculture DEBT MANAGEMENT Federal Salary Offset § 3.87 Agency regulations. USDA agencies may issue regulations or policies not inconsistent with OPM regulations (5 CFR part 550...

  4. Longevity of U cells of differentiated yeast colonies grown on respiratory medium depends on active glycolysis.

    Science.gov (United States)

    Čáp, Michal; Váchová, Libuše; Palková, Zdena

    2015-01-01

    Colonies of Saccharomyces cerevisiae laboratory strains pass through specific developmental phases when growing on solid respiratory medium. During entry into the so-called alkali phase, in which ammonia signaling is initiated, 2 prominent cell types are formed within the colonies: U cells in upper colony regions, which have a longevity phenotype and activate the expression of a large number of metabolic genes, and L cells in lower regions, which die more quickly and exhibit a starvation phenotype. Here, we performed a detailed analysis of the activities of enzymes of central carbon metabolism in lysates of both cell types and determined several fermentation end products, showing that previously reported expression differences are reflected in the different enzymatic capabilities of each cell type. Hence, U cells, despite being grown on respiratory medium, behave as fermenting cells, whereas L cells rely on respiratory metabolism and possess active gluconeogenesis. Using a spectrum of different inhibitors, we showed that glycolysis is essential for the formation, and particularly, the survival of U cells. We also showed that β-1,3-glucans that are released from the cell walls of L cells are the most likely source of carbohydrates for U cells.

  5. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells.

    Science.gov (United States)

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2017-02-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine incorporation assays. Arctigenin exposure also induced a 60-75% reduction in colony formation compared with vehicle-treated control cells. However, arctigenin was not observed to affect the invasiveness of glioma cells. Arctigenin significantly increased the proportion of cells in the G 0 /G 1 phase and reduced the number of cells in the S phase, as compared with the control group (Parctigenin increased the expression levels of p21, retinoblastoma and p53 proteins, and significantly decreased the expression levels of cyclin D1 and cyclin-dependent kinase 4 proteins. Additionally, arctigenin was able to induce apoptosis in glioma cells, coupled with increased expression levels of cleaved caspase-3 and the pro-apoptotic BCL2-associated X protein. Furthermore, arctigenin-induced apoptosis was significantly suppressed by the pretreatment of cells with Z-DEVD-FMK, a caspase-3 inhibitor. In conclusion, the results suggest that arctigenin is able to inhibit cell proliferation and may induce apoptosis and cell cycle arrest at the G 0 /G 1 phase in glioma cells. These results warrant further investigation of the anticancer effects of arctigenin in animal models of gliomas.

  6. 12 CFR 34.87 - Accounting treatment.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Accounting treatment. 34.87 Section 34.87 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY REAL ESTATE LENDING AND APPRAISALS Other Real Estate Owned § 34.87 Accounting treatment. A national bank shall account for OREO, and sales...

  7. 7 CFR 983.87 - Effective time.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Effective time. 983.87 Section 983.87 Agriculture..., ARIZONA, AND NEW MEXICO Miscellaneous Provisions § 983.87 Effective time. The provisions of this part, as well as any amendments, shall become effective at such time as the Secretary may declare, and shall...

  8. Targeting and killing of glioblastoma with activated T cells armed with bispecific antibodies

    International Nuclear Information System (INIS)

    Zitron, Ian M; Thakur, Archana; Norkina, Oxana; Barger, Geoffrey R; Lum, Lawrence G; Mittal, Sandeep

    2013-01-01

    Since most glioblastomas express both wild-type EGFR and EGFRvIII as well as HER2/neu, they are excellent targets for activated T cells (ATC) armed with bispecific antibodies (BiAbs) that target EGFR and HER2. ATC were generated from PBMC activated for 14 days with anti-CD3 monoclonal antibody in the presence of interleukin-2 and armed with chemically heteroconjugated anti-CD3×anti-HER2/neu (HER2Bi) and/or anti-CD3×anti-EGFR (EGFRBi). HER2Bi- and/or EGFRBi-armed ATC were examined for in vitro cytotoxicity using MTT and 51 Cr-release assays against malignant glioma lines (U87MG, U118MG, and U251MG) and primary glioblastoma lines. EGFRBi-armed ATC killed up to 85% of U87, U118, and U251 targets at effector:target ratios (E:T) ranging from 1:1 to 25:1. Engagement of tumor by EGFRBi-armed ATC induced Th1 and Th2 cytokine secretion by armed ATC. HER2Bi-armed ATC exhibited comparable cytotoxicity against U118 and U251, but did not kill HER2-negative U87 cells. HER2Bi- or EGFRBi-armed ATC exhibited 50—80% cytotoxicity against four primary glioblastoma lines as well as a temozolomide (TMZ)-resistant variant of U251. Both CD133– and CD133+ subpopulations were killed by armed ATC. Targeting both HER2Bi and EGFRBi simultaneously showed enhanced efficacy than arming with a single BiAb. Armed ATC maintained effectiveness after irradiation and in the presence of TMZ at a therapeutic concentration and were capable of killing multiple targets. High-grade gliomas are suitable for specific targeting by armed ATC. These data, together with additional animal studies, may provide the preclinical support for the use of armed ATC as a valuable addition to current treatment regimens

  9. CXCR7 is induced by hypoxia and mediates glioma cell migration towards SDF-1α

    International Nuclear Information System (INIS)

    Esencay, Mine; Sarfraz, Yasmeen; Zagzag, David

    2013-01-01

    Glioblastomas, the most common and malignant brain tumors of the central nervous system, exhibit high invasive capacity, which hinders effective therapy. Therefore, intense efforts aimed at improved therapeutics are ongoing to delineate the molecular mechanisms governing glioma cell migration and invasion. In order to perform the studies, we employed optimal cell culture methods and hypoxic conditions, lentivirus-mediated knockdown of protein expression, Western Blot analysis, migration assays and immunoprecipitation. We determined statistical significance by unpaired t-test. In this report, we show that U87MG, LN229 and LN308 glioma cells express CXCR7 and that exposure to hypoxia upregulates CXCR7 protein expression in these cell lines. CXCR7-expressing U87MG, LN229 and LN308 glioma cells migrated towards stromal-derived factor (SDF)-1α/CXCL12 in hypoxic conditions in the Boyden chamber assays. While shRNA-mediated knockdown of CXCR7 expression did not affect the migration of any of the three cell lines in normoxic conditions, we observed a reduction in the migration of LN229 and LN308, but not U87MG, glioma cells towards SDF-1α in hypoxic conditions. In addition, knockdown of CXCR7 expression in LN229 and LN308 glioma cells decreased levels of SDF-1α-induced phosphorylation of ERK1/2 and Akt. Inhibiting CXCR4 in LN229 and LN308 glioma cells that were knocked down for CXCR7 did not further reduce migration towards SDF-1α in hypoxic conditions and did not affect the levels of phosphorylated ERK1/2 and Akt. Analysis of immunoprecipitated CXCR4 from LN229 and LN308 glioma cells revealed co-precipitated CXCR7. Taken together, our findings indicate that both CXCR4 and CXCR7 mediate glioma cell migration towards SDF-1α in hypoxic conditions and support the development of therapeutic agents targeting these receptors

  10. The prosurvival role of autophagy in Resveratrol-induced cytotoxicity in human U251 glioma cells

    International Nuclear Information System (INIS)

    Li, Jun; Qin, Zhenghong; Liang, Zhongqin

    2009-01-01

    Previous study reported that resveratrol has anti-tumor activity. In this study, we investigated the involvement of autophagy in the resveratrol-induced apoptotic death of human U251 glioma cells. The growth inhibition of U251 cells induced by resveratrol was assessed with methyl thiazolyl tetrazolium (MTT). The activation of autophagy and proapoptotic effect were characterized by monodansylcadaverine labeling and Hoechst stain, respectively. Mitochondrialtransmembrane potential (ΔΨm) was measured as a function of drug treatment using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1). The role of autophagy and apoptosis in the resveratrol-induced death of U251 cells was assessed using autophagic and caspase inhibitors. Immunofluorescence, flow cytometry, and Western blot analysis were used to study the apoptotic and autophagic mechanisms. Methyl thiazolyl tetrazolium (MTT) assays indicated that resveratrol decreased the viability of U251 cells in a dose- and time-dependent manner. Flow cytometry analysis indicated that resveratrol increased cell population at sub-G1 phase, an index of apoptosis. Furthermore, resveratrol-induced cell death was associated with a collapse of the mitochondrial membrane potential. The pan-caspase inhibitor Z-VAD-fmk suppressed resveratrol-induced U251 cell death. Resveratrol stimulated autophagy was evidenced by punctuate monodansylcadaverine(MDC) staining and microtubule-associated protein light chain 3 (LC3) immunoreactivty. Resveratrol also increased protein levels of beclin 1 and membrane form LC3 (LC3-II). Autophagy inhibitors 3-methylademine (3-MA) and bafilomycin A1 sensitized the cytotoxicity of resveratrol. Together, these findings indicate that resveratrol induces autophagy in human U251 glioma cells and autophagy suppressed resveratrol-induced apoptosis. This study thus suggests that autophagy inhibitors can increase the cytotoxicity of resveratrol to glioma cells

  11. 14 CFR 33.87 - Endurance test.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Endurance test. 33.87 Section 33.87... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.87 Endurance test. (a) General. Each engine must be subjected to an endurance test that includes a total of at least 150 hours of operation...

  12. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2016

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, Leslie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Post, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jeffers, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-11-01

    This report, published annually, summarizes the progress of fuel cell electric bus development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. Funding for this effort is provided by the U.S. Department of Energy's Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy and by the U.S. Department of Transportation's Federal Transit Administration. The 2016 summary results primarily focus on the most recent year for each demonstration, from August 2015 through July 2016. The results for these buses account for more than 550,000 miles traveled and 59,500 hours of fuel cell power system operation. The primary results presented in the report are from three demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus Project at SunLine Transit Agency in California; and American Fuel Cell Bus Project at the University of California at Irvine.

  13. 21 CFR 1250.87 - Wash water.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water system...

  14. A novel uPAg-KPI fusion protein inhibits the growth and invasion of human ovarian cancer cells in vitro.

    Science.gov (United States)

    Zhao, Li-Ping; Xu, Tian-Min; Kan, Mu-Jie; Xiao, Ye-Chen; Cui, Man-Hua

    2016-05-01

    Urokinase-type plasminogen activator (uPA) acts by breaking down the basement membrane and is involved in cell proliferation, migration and invasion. These actions are mediated by binding to the uPA receptor (uPAR) via its growth factor domain (GFD). The present study evaluated the effects of uPAg-KPI, a fusion protein of uPA-GFD and a kunitz protease inhibitor (KPI) domain that is present in the amyloid β-protein precursor. Using SKOV-3 cells, an ovarian cancer cell line, we examined cell viability, migration, invasion and also protein expression. Furthermore, we examined wound healing, and migration and invasion using a Transwell assay. Our data showed that uPAg-KPI treatment reduced the viability of ovarian cancer SKOV-3 cells in both a concentration and time-dependent manner by arresting tumor cells at G1/G0 phase of the cell cycle. The IC50 of uPAg-KPI was 0.5 µg/µl after 48 h treatment. At this concentration, uPAg-KPI also inhibited tumor cell colony formation, wound closure, as well as cell migration and invasion capacity. At the protein level, western blot analysis demonstrated that uPAg-KPI exerted no significant effect on the expression of total extracellular signal-regulated kinase (ERK)1/ERK2 and AKT, whereas it suppressed levels of phosphorylated ERK1/ERK2 and AKT. Thus, we suggest that this novel uPAg-KPI fusion protein reduced cell viability, colony formation, wound healing and the invasive ability of human ovarian cancer SKOV-3 cells in vitro by regulating ERK and AKT signaling. Further studies using other cell lines will confirm these findings.

  15. The age-dependent epigenetic and physiological changes in an Arabidopsis T87 cell suspension culture during long-term cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowska, Aleksandra, E-mail: A.Kwiatkows@gmail.com [Department of Botany, University of Rzeszow, Kolbuszowa (Poland); Zebrowski, Jacek [Department of Plant Physiology, University of Rzeszow, Kolbuszowa (Poland); Oklejewicz, Bernadetta [Department of Genetics, University of Rzeszow, Kolbuszowa (Poland); Czarnik, Justyna [Department of Botany, University of Rzeszow, Kolbuszowa (Poland); Halibart-Puzio, Joanna [Department of Plant Physiology, University of Rzeszow, Kolbuszowa (Poland); Wnuk, Maciej [Department of Genetics, University of Rzeszow, Kolbuszowa (Poland)

    2014-05-02

    Highlights: • A decrease in proliferation rate during long-term cultivation of Arabidopsis cells. • Age-dependent increase in senescence-associated gene expression in Arabidopsis cells. • Age-related increase in DNA methylation, H3K9me2, and H3K27me3 in Arabidopsis cells. • High potential of photosynthetic efficiency of long-term cultured Arabidopsis cells. - Abstract: Plant cell suspension cultures represent good model systems applicable for both basic research and biotechnological purposes. Nevertheless, it is widely known that a prolonged in vitro cultivation of plant cells is associated with genetic and epigenetic instabilities, which may limit the usefulness of plant lines. In this study, the age-dependent epigenetic and physiological changes in an asynchronous Arabidopsis T87 cell culture were examined. A prolonged cultivation period was found to be correlated with a decrease in the proliferation rate and a simultaneous increase in the expression of senescence-associated genes, indicating that the aging process started at the late growth phase of the culture. In addition, increases in the heterochromatin-specific epigenetic markers, i.e., global DNA methylation, H3K9 dimethylation, and H3K27 trimethylation, were observed, suggesting the onset of chromatin condensation, a hallmark of the early stages of plant senescence. Although the number of live cells decreased with an increase in the age of the culture, the remaining viable cells retained a high potential to efficiently perform photosynthesis and did not exhibit any symptoms of photosystem II damage.

  16. The age-dependent epigenetic and physiological changes in an Arabidopsis T87 cell suspension culture during long-term cultivation

    International Nuclear Information System (INIS)

    Kwiatkowska, Aleksandra; Zebrowski, Jacek; Oklejewicz, Bernadetta; Czarnik, Justyna; Halibart-Puzio, Joanna; Wnuk, Maciej

    2014-01-01

    Highlights: • A decrease in proliferation rate during long-term cultivation of Arabidopsis cells. • Age-dependent increase in senescence-associated gene expression in Arabidopsis cells. • Age-related increase in DNA methylation, H3K9me2, and H3K27me3 in Arabidopsis cells. • High potential of photosynthetic efficiency of long-term cultured Arabidopsis cells. - Abstract: Plant cell suspension cultures represent good model systems applicable for both basic research and biotechnological purposes. Nevertheless, it is widely known that a prolonged in vitro cultivation of plant cells is associated with genetic and epigenetic instabilities, which may limit the usefulness of plant lines. In this study, the age-dependent epigenetic and physiological changes in an asynchronous Arabidopsis T87 cell culture were examined. A prolonged cultivation period was found to be correlated with a decrease in the proliferation rate and a simultaneous increase in the expression of senescence-associated genes, indicating that the aging process started at the late growth phase of the culture. In addition, increases in the heterochromatin-specific epigenetic markers, i.e., global DNA methylation, H3K9 dimethylation, and H3K27 trimethylation, were observed, suggesting the onset of chromatin condensation, a hallmark of the early stages of plant senescence. Although the number of live cells decreased with an increase in the age of the culture, the remaining viable cells retained a high potential to efficiently perform photosynthesis and did not exhibit any symptoms of photosystem II damage

  17. 40 CFR 87.60 - Introduction.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Introduction. 87.60 Section 87.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR... power auxiliary gearbox-mounted components required to drive aircraft systems is not permitted. (e...

  18. 40 CFR 87.80 - Introduction.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Introduction. 87.80 Section 87.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR... various operating points representative of engine usage in aircraft. Other smoke measurement systems may...

  19. hCLP46 regulates U937 cell proliferation via Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wenzhan; Du, Jie; Chu, Qiaoyun [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Youxin [School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China); Liu, Lixin [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Song, Manshu [School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China); Wang, Wei, E-mail: wei6014@yahoo.com [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China)

    2011-04-29

    Highlights: {yields} Knock down of hCLP46 by RNAi impairs mammalian Notch signaling. {yields} hCLP46 affects neither cell surface Notch1 expression nor ligand-receptor binding. {yields} Knock down of hCLP46 inhibits U937 cell-growth by up-regulation of CDKN1B. -- Abstract: Human CAP10-like protein 46 kDa (hCLP46) is the homolog of Rumi, which is the first identified protein O-glucosyltransferase that modifies Notch receptor in Drosophila. Dysregulation of hCLP46 occurs in many hematologic diseases, but the role of hCLP46 remains unclear. Knockdown of hCLP46 by RNA interference resulted in decreased protein levels of endogenous Notch1, Notch intracellular domain (NICD) and Notch target gene Hes-1, suggesting the impairment of the Notch signaling. However, neither cell surface Notch expression nor ligand binding activities were affected. In addition, down-regulated expression of hCLP46 inhibited the proliferation of U937 cells, which was correlated with increased cyclin-dependent kinase inhibitor (CDKI) CDKN1B (p27) and decreased phosphorylation of retinoblastoma (RB) protein. We showed that lack of hCLP46 results in impaired ligand induced Notch activation in mammalian cell, and hCLP46 regulates the proliferation of U937 cell through CDKI-RB signaling pathway, which may be important for the pathogenesis of leukemia.

  20. Yoga Therapy in Treating Patients With Malignant Brain Tumors

    Science.gov (United States)

    2017-07-27

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Recurrent Adult Brain Tumor

  1. Nanomelatonin triggers superior anticancer functionality in a human malignant glioblastoma cell line

    Science.gov (United States)

    Yadav, Sanjeev Kumar; Srivastava, Anup Kumar; Dev, Atul; Kaundal, Babita; Choudhury, Subhasree Roy; Karmakar, Surajit

    2017-09-01

    Melatonin (MEL) has promising medicinal value as an anticancer agent in a variety of malignancies, but there are difficulties in achieving a therapeutic dose due to its short half-life, low bioavailability, poor solubility and extensive first-pass metabolism. In this study chitosan/tripolyphosphate (TPP) nanoparticles were prepared by an ionic gelation method to overcome the therapeutic challenges of melatonin and to improve its anticancer efficacy. Characterization of the melatonin-loaded chitosan (MEL-CS) nanoformulation was performed using transmission and scanning electron microscopies, dynamic light scattering, Fourier transform infrared spectroscopy, Raman spectroscopy and x-ray diffraction. In vitro release, cellular uptake and efficacy studies were tested for their enhanced anticancer potential in human U87MG glioblastoma cells. Confocal studies revealed higher cellular uptake of MEL-CS nanoparticles and enhanced anticancer efficacy in human malignant glioblastoma cancer cells than in healthy non-malignant human HEK293T cells in mono- and co-culture models. Our study has shown for the first time that MEL-CS nanocomposites are therapeutically more effective as compared to free MEL at inducing functional anticancer efficacy in the human brain tumour U87MG cell line.

  2. 40 CFR 87.1 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Definitions. 87.1 Section 87.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR... commercial aircraft engine. Emission measurement system means all of the equipment necessary to transport and...

  3. 29 CFR 1960.87 - Objectives.

    Science.gov (United States)

    2010-07-01

    ... relationship with local community leaders by informing them of the existing functions and objectives of the... 29 Labor 9 2010-07-01 2010-07-01 false Objectives. 1960.87 Section 1960.87 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED...

  4. Effect of flupirtine on the growth and viability of U373 malignant glioma cells

    International Nuclear Information System (INIS)

    Panchanathan, Elango; Ramanathan, Gnanasambandan; Lakkakula, Bhaskar Venkata Kameswara Subrahmanya

    2013-01-01

    Flupirtine is a non-opioid analgesic without antipyretic or antiphlogistic properties but with favorable tolerability in humans. This analgesic also exhibits neuroprotective activities. Furthermore, flupirtine antagonizes glutamate- and NMDA-induced intracellular levels of Ca 2+ and counteracts the effects of focal cerebral ischemia. Although flupirtine has been used to relieve pain caused by different diseases and clinical procedures, information on the safety and efficacy of flupirtine is limited. The present study was conducted to investigate the neuroprotective effects of flupirtine on U373 malignant glioma (MG) cell lines. Cell viability and cell cycle analysis was performed by MTT assay and flow cytometry, respectively. Variations in the growth of U373 MG cells in 5 mM N-methyl-D-aspartate (NMDA), 1 mM flupirtine, and combined treatment indicated the antagonistic effects of NMDA and flupirtine on MG cell lines. The variation in the percentage of gated cell population in different cell cycle phases showed significant variations after 48 h of treatment. Flupirtine has neuroprotective effect of on U373 MG cells, which limits its use in the pain management of brain tumors. This property warrants further studies using animal models and large-scale clinical trials

  5. Susceptibilities of enterovirus D68, enterovirus 71, and rhinovirus 87 strains to various antiviral compounds.

    Science.gov (United States)

    Smee, Donald F; Evans, W Joseph; Nicolaou, K C; Tarbet, E Bart; Day, Craig W

    2016-07-01

    Compounds were evaluated for antiviral activity in rhabdomyosarcoma (RD) cells against a recent 2014 clinical isolate of enterovirus D68 (EV-D68), a 1962 strain of EV-68D, rhinovirus 87 (RV-87, serologically the same as EV-D68), and enterovirus 71 (EV-71). Test substances included known-active antipicornavirus agents (enviroxime, guanidine HCl, pirodavir, pleconaril, and rupintrivir), nucleobase/nucleoside analogs (3-deazaguanine and ribavirin), and three novel epidithiodiketopiperazines (KCN-2,2'-epi-19, KCN-19, and KCN-21). Of these, rupintrivir was the most potent, with 50% inhibition of viral cytopathic effect (EC50) and 90% inhibition (EC90) of virus yield at 0.0022-0.0053 μM against EV-D68. Enviroxime, pleconaril and the KCN compounds showed efficacy at 0.01-0.3 μM; 3-deazaguanine and pirodavir inhibited EV-D68 at 7-13 μM, and guanidine HCl and ribavirin were inhibitory at 80-135 μM. Pirodavir was active against EV-71 (EC50 of 0.78 μM) but not against RV-87 or EV-D68, and all other compounds were less effective against EV-71 than against RV-87 and EV-D68. The most promising compound inhibiting both virus infections at low concentrations was rupintrivir. Antiviral activity was confirmed for the ten compounds in virus yield reduction (VYR) assays in RD cells, and for enviroxime, guanidine HCl, and pirodavir by cytopathic effect (CPE) assays in A549, HeLa-Ohio-1, and RD cells. These studies may serve as a basis for further pre-clinical discovery of anti-enterovirus inhibitors. Furthermore, the antiviral profiles and growth characteristics observed herein support the assertion that EV-D68 should be classified together with RV-87. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Mobile phone specific electromagnetic fields induce transient DNA damage and nucleotide excision repair in serum-deprived human glioblastoma cells.

    Science.gov (United States)

    Al-Serori, Halh; Ferk, Franziska; Kundi, Michael; Bileck, Andrea; Gerner, Christopher; Mišík, Miroslav; Nersesyan, Armen; Waldherr, Monika; Murbach, Manuel; Lah, Tamara T; Herold-Mende, Christel; Collins, Andrew R; Knasmüller, Siegfried

    2018-01-01

    Some epidemiological studies indicate that the use of mobile phones causes cancer in humans (in particular glioblastomas). It is known that DNA damage plays a key role in malignant transformation; therefore, we investigated the impact of the UMTS signal which is widely used in mobile telecommunications, on DNA stability in ten different human cell lines (six brain derived cell lines, lymphocytes, fibroblasts, liver and buccal tissue derived cells) under conditions relevant for users (SAR 0.25 to 1.00 W/kg). We found no evidence for induction of damage in single cell gel electrophoresis assays when the cells were cultivated with serum. However, clear positive effects were seen in a p53 proficient glioblastoma line (U87) when the cells were grown under serum free conditions, while no effects were found in p53 deficient glioblastoma cells (U251). Further experiments showed that the damage disappears rapidly in U87 and that exposure induced nucleotide excision repair (NER) and does not cause double strand breaks (DSBs). The observation of NER induction is supported by results of a proteome analysis indicating that several proteins involved in NER are up-regulated after exposure to UMTS; additionally, we found limited evidence for the activation of the γ-interferon pathway. The present findings show that the signal causes transient genetic instability in glioma derived cells and activates cellular defense systems.

  7. Effect of organophosphorus insecticides and their metabolites on astroglial cell proliferation

    International Nuclear Information System (INIS)

    Guizzetti, Marina; Pathak, Shantha; Giordano, Gennaro; Costa, Lucio G.

    2005-01-01

    Though little attention has been given to the possibility that glial cells may represent a target for the developmental neurotoxicity of organophosphorus (OP) insecticides, recent evidence, obtained in particular with chlorpyrifos (CP), suggests that developmental exposure to this compound may indeed target astrocytes. To substantiate and expand these observations, we carried out a series of in vitro studies utilizing fetal rat astrocytes and a human astrocytoma cell line, 1321N1 cells, to investigate the effect of the OPs CP, diazinon (DZ) and parathion (P), their oxygen analogs chlorpyrifos oxon (CPO), diazoxon (DZO) and paraoxon (PO), and their metabolites 3,5,6-trichloro-2-pyridinol (TCP), 2-isopropyl-6-methyl-4-pyrimidol (IMP) and para-nitrophenol (PNP), on cell proliferation. In fetal rat astrocytes and astrocytoma cells maintained in serum, CP, DZ, P, CPO, DZO, and PO induced a concentration-dependent inhibition in [ 3 H]thymidine incorporation with a very similar potency (IC 50 between 45 and 57 μM). Among the other metabolites, PNP was the most potent (IC 50 = 70-80 μM), while TCP and IMP were much less effective (IC 50 > 100 μM). Cytotoxicity appears to account only for a small part of the effect on DNA synthesis. OP insecticides and their oxons were three- to six-fold more potent in inhibiting [ 3 H]thymidine incorporation when cells were synchronized in the G 0 /G 1 phase of the cell cycle and re-stimulated by carbachol or epidermal growth factor. These results suggest that OP insecticides and their oxons affect astroglial cell proliferation and that the transition from the G 0 /G 1 to the S/G 2 phase of the cell cycle may be particularly sensitive to the action of these compounds

  8. U1 snRNP Alteration and Neuronal Cell Cycle Reentry in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Bing Bai

    2018-03-01

    Full Text Available The aberrancy of U1 small nuclear ribonucleoprotein (snRNP complex and RNA splicing has been demonstrated in Alzheimer’s disease (AD. Importantly, the U1 proteopathy is AD-specific, widespread and early-occurring, thus providing a very unique clue to the AD pathogenesis. The prominent feature of U1 histopathology is its nuclear depletion and redistribution in the neuronal cytoplasm. According to the preliminary data, the initial U1 cytoplasmic distribution pattern is similar to the subcellular translocation of the spliceosome in cells undergoing mitosis. This implies that the U1 mislocalization might reflect the neuronal cell cycle-reentry (CCR which has been extensively evidenced in AD brains. The CCR phenomenon explains the major molecular and cellular events in AD brains, such as Tau and amyloid precursor protein (APP phosphorylation, and the possible neuronal death through mitotic catastrophe (MC. Furthermore, the CCR might be mechanistically linked to inflammation, a critical factor in the AD etiology according to the genetic evidence. Therefore, the discovery of U1 aberrancy might strengthen the involvement of CCR in the AD neuronal degeneration.

  9. A micro-Raman spectroscopic investigation of leukemic U-937 cells in aged cultures

    Science.gov (United States)

    Fazio, Enza; Trusso, Sebastiano; Franco, Domenico; Nicolò, Marco Sebastiano; Allegra, Alessandro; Neri, Fortunato; Musolino, Caterina; Guglielmino, Salvatore P. P.

    2016-04-01

    Recently it has been shown that micro-Raman spectroscopy combined with multivariate analysis is able to discriminate among different types of tissues and tumoral cells by the detection of significant alterations and/or reorganizations of complex biological molecules, such as nucleic acids, lipids and proteins. Moreover, its use, being in principle a non-invasive technique, appears an interesting clinical tool for the evaluation of the therapeutical effects and of the disease progression. In this work we analyzed molecular changes in aged cultures of leukemia model U937 cells with respect to fresh cultures of the same cell line. In fact, structural variations of individual neoplastic cells on aging may lead to a heterogeneous data set, therefore falsifying confidence intervals, increasing error levels of analysis and consequently limiting the use of Raman spectroscopy analysis. We found that the observed morphological changes of U937 cells corresponded to well defined modifications of the Raman contributions in selected spectral regions, where markers of specific functional groups, useful to characterize the cell state, are present. A detailed subcellular analysis showed a change in cellular organization as a function of time, and correlated to a significant increase of apoptosis levels. Besides the aforementioned study, Raman spectra were used as input for principal component analysis (PCA) in order to detect and classify spectral changes among U937 cells.

  10. Intracellular fate of recombinant human interferon-gamma (rIFN) in U937 cells

    International Nuclear Information System (INIS)

    Finbloom, D.S.

    1986-01-01

    After IFN binds to specific receptors on macrophages, both modulation of surface molecules and induction of microbicidal and tumoricidal activity occurs 24-48 hr later. Since the intracellular events required to insure these responses are poorly defined, the fate of radiolabeled rIFN in U937 cells was examined. Endocytosis was determined by exposing cells to pH 2.5 to allow rIFN to dissociate leaving only intracellular ligand. Degradation was measured as trichloroacetic acid soluble radioactivity in the media. Of the 4-5000 molecules of rIFN that specifically and saturably (at 300 U/ml) bound at 4 0 C, 40% dissociated during 15-30 min after cells were warmed to 37 0 C. However, if cells were continuously exposed at 37 0 C to lower levels of rIFN (60-100 U/ml), 30-40% of those molecules capable of binding to the cell at that concentration were internalized. Furthermore, 60% of the molecules were degraded during 3-4 hr of additional culture. Since exposure of cells to chloroquine and monensin resulted in only partial inhibition of degradation (75% and 43%, respectively), there may also be degradation within endosomes or on the cell following binding to its receptor. Soon thereafter, degradation products are measurable. Since many biological responses require prolonged incubation with the molecule, intracellular processing of IFN may be important for expression of these effects

  11. U.S. Army War College Library Communicative Skills: A Selected Bibliography.

    Science.gov (United States)

    1987-10-01

    D-Ai87 489 US ARMY MAR COLLEGE LIBRARY COMMUNICATIVE SKILLS: A i/l SELECTED BIBLIOGRAPHY(U) ARMY WAR COIL CARLISLE BARRACKS PA OCT 87 UNCLASSIFIED F...PERIOD COVERED U.S. Army War College Library Bibliography Communicative Skills A Seecte Bibiogrphy6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(&) S...BIBLIOGRAPHY as an invitation for you to enjoy the wealth of materials readily available in our library that will help you improve your communicative skills. It

  12. Effects of vinegar–egg on growth inhibition, differentiation human leukemic U937 cells and its immunomodulatory activity

    Directory of Open Access Journals (Sweden)

    Shiu-Yu Wang

    2018-04-01

    Full Text Available Vinegar and eggs have rich nutrients. In this study, the mixed form of both derived products, vinegar–egg solution and its products (vinegar–egg concentrate and vinegar–egg condensate were chosen for an assessment of their biological activity. To further our understanding regarding the anticancer and immunomodulatory effects of vinegar–egg, we investigated its effects on the proliferation and differentiation of U937 cells. Vinegar–egg was treated using spray drying, freeze drying and vacuum concentration and used to stimulate human mononuclear cells. The conditioned media obtained from these cultures by filtration were used to treat U937 cells. Three conditioned media inhibited U937 cell growth by 22.1–67.25% more effectively than PHA-treated control (22.53%. CD11b and CD14 expression on the treated U937 cells were 29.1–45.4% and 31.6–47.2%, respectively. High levels of cytokines IL-1β, IFN-γ and TNF-α were detected in the three conditioned media. Vinegar–egg stimulates human mononuclear cells to secrete cytokines, which inhibit the growth of U937 cells and induce their differentiation. Keywords: Cytokines, Differentiation, Immunomodulatory activity, Leukemic U937 cells, Vinegar–egg

  13. Primary Sjogren%u2019s Syndrome Associated with Basal Cell Carcinoma: Case Report

    Directory of Open Access Journals (Sweden)

    Tugba Kosker

    2013-04-01

    Full Text Available Sjogren%u2019s syndrome is a chronic autoimmune disease characterized by xerostomia and xerophthalmia, known as the %u2018sicca symptoms%u2019. Patients with Sjogren%u2019s syndrome, characteristically have positive nuclear and cytoplasmic antigens, typically Anti-Ro/SSA and Anti-La/SSB because of lymphocytic infiltration of the exocrine glands. Patients with primary Sjogren%u2019s syndrome, develop systemic complications, non-Hodgkin lymphoma being the most feared of these. We describe here a case of Sjogren%u2019s syndrome with basal cell carcinoma, which presented with an ulcerated lesion on nasal dorsum.

  14. Facile solvothermal synthesis of highly active and robust Pd1.87Cu0.11Sn electrocatalyst towards direct ethanol fuel cell applications

    Science.gov (United States)

    Jana, Rajkumar; Dhiman, Shikha; Peter, Sebastian C.

    2016-08-01

    Ordered intermetallic Pd1.87Cu0.11Sn ternary electrocatalyst has been synthesized by sodium borohydride reduction of precursor salts Pd(acac)2, CuCl2.2H2O and SnCl2 using one-pot solvothermal synthesis method at 220 °C with a reaction time of 24 h. To the best of our knowledge, here for the first time we report surfactant free synthesis of a novel ordered intermetallic ternary Pd1.87Cu0.11Sn nanoparticles. The ordered structure of the catalyst has been confirmed by powder x-ray diffraction, transmission electron microscopy (TEM). Composition and morphology of the nanoparticles have been confirmed through field emission scanning electron microscopy, energy-dispersive spectrometry and TEM. The electrocatalytic activity and stability of the ternary electrocatalyst towards ethanol oxidation in alkaline medium was investigated by cyclic voltammetry and chronoamperometry techniques. The catalyst is proved to be highly efficient and stable upto 500th cycle and even better than commercially available Pd/C (20 wt%) electrocatalysts. The specific and mass activity of the as synthesized ternary catalyst are found to be ∼4.76 and ∼2.9 times better than that of commercial Pd/C. The enhanced activity and stability of the ordered ternary Pd1.87Cu0.11Sn catalyst can make it as a promising candidate for the alkaline direct ethanol fuel cell application.

  15. DNA replication and post-replication repair in U.V.-sensitive mouse neuroblastoma cells

    International Nuclear Information System (INIS)

    Lavin, M.F.; McCombe, P.; Kidson, C.

    1976-01-01

    Mouse neuroblastoma cells differentiated when grown in the absence of serum; differentiation was reversed on the addition of serum. Differentiated cells were more sensitive to U.V.-radiation than proliferating cells. Whereas addition of serum to differentiated neuroblastoma cells normally resulted in immediate, synchronous entry into S phase, irradiation just before the addition of serum resulted in a long delay in the onset of DNA replication. During this lag period, incorporated 3 H-thymidine appeared in the light density region of CsCl gradients, reflecting either repair synthesis or abortive replication. Post-replication repair (gap-filling) was found to be present in proliferating cells and at certain times in differentiated cells. It is suggested that the sensitivity of differentiated neuroblastoma cells to U.V.-radiation may have been due to ineffective post-replication repair or to deficiencies in more than one repair mechanism, with reduction in repair capacity beyond a critical threshold. (author)

  16. Prognostic factors and survival in primary malignant astrocytomas of the spinal cord: a population-based analysis from 1973 to 2007.

    Science.gov (United States)

    Adams, Hadie; Avendaño, Javier; Raza, Shaan M; Gokaslan, Ziya L; Jallo, George I; Quiñones-Hinojosa, Alfredo

    2012-05-20

    Observational cross-sectional study. Using data from the population-based cancer registries of the Surveillance, Epidemiology and End Results (SEER) program, we analyzed demographic features, tumor and treatment characteristics, as well as survival rates in patients with primary malignant astrocytomas of the spinal cord (PMASC). PMASC is a rare neoplasm and is considered to carry the same dismal outcome as their cerebral counterparts. Our current knowledge is incomplete, and understanding the epidemiology, diagnosis, and optimal treatment still poses challenges. The SEER data from 1973 to 2007 were reviewed for pathologically confirmed primary anaplastic astrocytomas (AA) and glioblastomas of the spinal cord (C72.0). We compared the clinical features and outcomes of the cohort in uni- and multivariate fashion. Survival was calculated and compared using Kaplan-Meier curves and log-rank analysis. Our search criteria retrieved 135 patients diagnosed with PMASC. The median survival for PMASC was 13 months with 1-, 2-, and 5-year survival rates of 51.8%, 32.2%, and 18.7%. Patient diagnosed with AA had a median survival time of 17 months versus 10 months in patients diagnosed with glioblastomas. Adult patients observed markedly prolonged survival compared with the pediatric group, with a 16-month versus 9-month median survival, respectively. Multivariate analysis revealed age at diagnosis, pediatric and adult age groups, sex, tumor histology, and extent of resection as significant predictors of survival. Interestingly, outcomes did not significantly change throughout the last decades or by receiving radiotherapy. Outcome for patients diagnosed with PMASC remains poor and presents an ongoing challenge for professionals in the field of neurospinal medicine and surgery. In our analyses of AA, adult patients, males, and patients undergoing radical resections were associated with increased survival. However, incidence of these lesions is low; hence, building strong

  17. BAY 87-2243, a highly potent and selective inhibitor of hypoxia-induced gene activation has antitumor activities by inhibition of mitochondrial complex I

    International Nuclear Information System (INIS)

    Ellinghaus, Peter; Heisler, Iring; Unterschemmann, Kerstin; Haerter, Michael; Beck, Hartmut; Greschat, Susanne; Ehrmann, Alexander; Summer, Holger; Flamme, Ingo; Oehme, Felix; Thierauch, Karlheinz; Michels, Martin; Hess-Stumpp, Holger; Ziegelbauer, Karl

    2013-01-01

    The activation of the transcription factor hypoxia-inducible factor-1 (HIF-1) plays an essential role in tumor development, tumor progression, and resistance to chemo- and radiotherapy. In order to identify compounds targeting the HIF pathway, a small molecule library was screened using a luciferase-driven HIF-1 reporter cell line under hypoxia. The high-throughput screening led to the identification of a class of aminoalkyl-substituted compounds that inhibited hypoxia-induced HIF-1 target gene expression in human lung cancer cell lines at low nanomolar concentrations. Lead structure BAY 87-2243 was found to inhibit HIF-1α and HIF-2α protein accumulation under hypoxic conditions in non-small cell lung cancer (NSCLC) cell line H460 but had no effect on HIF-1α protein levels induced by the hypoxia mimetics desferrioxamine or cobalt chloride. BAY 87-2243 had no effect on HIF target gene expression levels in RCC4 cells lacking Von Hippel–Lindau (VHL) activity nor did the compound affect the activity of HIF prolyl hydroxylase-2. Antitumor activity of BAY 87-2243, suppression of HIF-1α protein levels, and reduction of HIF-1 target gene expression in vivo were demonstrated in a H460 xenograft model. BAY 87-2243 did not inhibit cell proliferation under standard conditions. However under glucose depletion, a condition favoring mitochondrial ATP generation as energy source, BAY 87-2243 inhibited cell proliferation in the nanomolar range. Further experiments revealed that BAY 87-2243 inhibits mitochondrial complex I activity but has no effect on complex III activity. Interference with mitochondrial function to reduce hypoxia-induced HIF-1 activity in tumors might be an interesting therapeutic approach to overcome chemo- and radiotherapy-resistance of hypoxic tumors

  18. 49 CFR 38.87 - Public information system.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Public information system. 38.87 Section 38.87... SPECIFICATIONS FOR TRANSPORTATION VEHICLES Light Rail Vehicles and Systems § 38.87 Public information system. (a... information. Alternative systems or devices which provide equivalent access are also permitted. (b) [Reserved] ...

  19. Precision spectroscopy with ultracold 87Rb2 triplet molecules

    International Nuclear Information System (INIS)

    Strauss, Christoph

    2011-01-01

    In this thesis I report precision spectroscopy with ultracold 87 Rb 2 triplet molecules where we use lasers to couple the states in different molecular potentials. We study in detail states of the a 3 sum + u and (1) 3 sum + g potentials. These states are of great importance for transferring weakly bound molecules to the ro-vibrational triplet ground state via states of the excited potential. As most experiments start from molecules in their X 1 sum + g ground state, the triplet states were hard to access via dipole transitions and remained largely unexplored. The measurements presented in this thesis are the first detailed study of diatomic 87 Rb 2 molecules in these states. Our experiments start with an ultracold cloud of 87 Rb atoms. We then load this cloud into an optical lattice where we use a magnetic Feshbach resonance at 1007.4 G to perform a Feshbach association. After we have removed all unbound atoms, we end up with a pure sample of weakly bound Feshbach molecules inside the optical lattice. The optical lattice prevents these molecules from colliding with each other which results in molecular lifetimes on the order of a few hundred milliseconds. In the first set of experiments, we use a laser coupling the Feshbach state to the excited (1) 3 sum + g triplet state to map out its low-lying vibrational (v = 0.. 15), rotational, hyperfine, and Zeeman structure. The experimental results are in good agreement with calculations done by Marius Lysebo and Prof. Leif Veseth. We then map out in detail the vibrational, rotational, hyperfine, and Zeeman structure of the a 3 sum + u triplet ground state using dark state spectroscopy with levels in the (1) 3 sum + g potential as an intermediate state. In this scheme we are able to access molecules in triplet states because our Feshbach state has strong triplet character. Interestingly, it happens that some deeply bound states which belong to the X 1 sum + g potential are close to levels in the a 3 sum + u potential. In

  20. Hyperpolarized [U-(2) H, U-(13) C]Glucose reports on glycolytic and pentose phosphate pathway activity in EL4 tumors and glycolytic activity in yeast cells.

    Science.gov (United States)

    Timm, Kerstin N; Hartl, Johannes; Keller, Markus A; Hu, De-En; Kettunen, Mikko I; Rodrigues, Tiago B; Ralser, Markus; Brindle, Kevin M

    2015-12-01

    A resonance at ∼181 ppm in the (13) C spectra of tumors injected with hyperpolarized [U-(2) H, U-(13) C]glucose was assigned to 6-phosphogluconate (6PG), as in previous studies in yeast, whereas in breast cancer cells in vitro this resonance was assigned to 3-phosphoglycerate (3PG). These peak assignments were investigated here using measurements of 6PG and 3PG (13) C-labeling using liquid chromatography tandem mass spectrometry (LC-MS/MS) METHODS: Tumor-bearing mice were injected with (13) C6 glucose and the (13) C-labeled and total 6PG and 3PG concentrations measured. (13) C MR spectra of glucose-6-phosphate dehydrogenase deficient (zwf1Δ) and wild-type yeast were acquired following addition of hyperpolarized [U-(2) H, U-(13) C]glucose and again (13) C-labeled and total 6PG and 3PG were measured by LC-MS/MS RESULTS: Tumor (13) C-6PG was more abundant than (13) C-2PG/3PG and the resonance at ∼181 ppm matched more closely that of 6PG. (13) C MR spectra of wild-type and zwf1Δ yeast cells showed a resonance at ∼181 ppm after labeling with hyperpolarized [U-(2) H, U-(13) C]glucose, however, there was no 6PG in zwf1Δ cells. In the wild-type cells 3PG was approximately four-fold more abundant than 6PG CONCLUSION: The resonance at ∼181 ppm in (13) C MR spectra following injection of hyperpolarized [U-(2) H, U-(13) C]glucose originates predominantly from 6PG in EL4 tumors and 3PG in yeast cells. © 2014 Wiley Periodicals, Inc.

  1. The superoxide scavenger TEMPOL induces urokinase receptor (uPAR expression in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Francis Joseph

    2006-06-01

    Full Text Available Abstract There is little understanding of the effect that reactive oxygen metabolites have on cellular behavior during the processes of invasion and metastasis. These oxygen metabolites could interact with a number of targets modulating their function such as enzymes involved in basement membrane dissolution, adhesion molecules involved in motility or receptors involved in proliferation. We investigated the effect of increased scavenging of superoxide anions on the expression of the urokinase receptor (uPAR in PC-3M human prostate cancer cells. Urokinase receptor is a GPI-linked cell surface molecule which mediates multiple functions including adhesion, proliferation and pericellular proteolysis. Addition of the superoxide scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (TEMPOL to PC-3M cultures stimulated expression of uPAR protein peaking between 48 and 72 hours. Cell surface expression of the uPAR was also increased. Surprisingly, uPAR transcript levels increased only slightly and this mild increase did not coincide with the striking degree of protein increase. This disparity indicates that the TEMPOL effect on uPAR occurs through a post-transcriptional mechanism. TEMPOL presence in PC-3M cultures reduced intracellular superoxide-type species by 75% as assayed by NBT dye conversion; however this reduction significantly diminished within hours following TEMPOL removal. The time gap between TEMPOL treatment and peak uPAR protein expression suggests that reduction of reactive oxygen metabolites in prostate cancer cells initiates a multistep pathway which requires several hours to culminate in uPAR induction. These findings reveal a novel pathway for uPAR regulation involving reactive oxygens such as superoxide anion.

  2. A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging

    International Nuclear Information System (INIS)

    Ponomarev, Vladimir; Vider, Jelena; Shavrin, Aleksander; Ageyeva, Ludmila; Tourkova, Vilia; Doubrovin, Michael; Serganova, Inna; Beresten, Tatiana; Ivanova, Anna; Blasberg, Ronald; Balatoni, Julius; Bornmann, William; Gelovani Tjuvajev, Juri

    2004-01-01

    Two genetic reporter systems were developed for multimodality reporter gene imaging of different molecular-genetic processes using fluorescence, bioluminescence (BLI), and nuclear imaging techniques. The eGFP cDNA was fused at the N-terminus with HSV1-tk cDNA bearing a nuclear export signal from MAPKK (NES-HSV1-tk) or with truncation at the N-terminus of the first 45 amino acids (Δ45HSV1-tk) and with firefly luciferase at the C-terminus. A single fusion protein with three functional subunits is formed following transcription and translation from a single open reading frame. The NES-TGL (NES-TGL) or Δ45HSV1-tk/GFP/luciferase (Δ45-TGL) triple-fusion gene cDNAs were cloned into a MoMLV-based retrovirus, which was used for transduction of U87 human glioma cells. The integrity, fluorescence, bioluminescence, and enzymatic activity of the TGL reporter proteins were assessed in vitro. The predicted molecular weight of the fusion proteins (130 kDa) was confirmed by western blot. The U87-NES-TGL and U87-Δ45-TGL cells had cytoplasmic green fluorescence. The in vitro BLI was 7- and 13-fold higher in U87-NES-TGL and U87-Δ45-TGL cells compared to nontransduced control cells. The Ki of 14 C-FIAU was 0.49±0.02, 0.51±0.03, and 0.003±0.001 ml/min/g in U87-NES-TGL, U87-Δ45-TGL, and wild-type U87 cells, respectively. Multimodality in vivo imaging studies were performed in nu/nu mice bearing multiple s.c. xenografts established from U87-NES-TGL, U87-Δ45-TGL, and wild-type U87 cells. BLI was performed after administration of d-luciferin (150 mg/kg i.v.). Gamma camera or PET imaging was conducted at 2 h after i.v. administration of [ 131 I]FIAU (7.4 MBq/animal) or [ 124 I]FIAU (7.4 MBq/animal), respectively. Whole-body fluorescence imaging was performed in parallel with the BLI and radiotracer imaging studies. In vivo BLI and gamma camera imaging showed specific localization of luminescence and radioactivity to the TGL transduced xenografts with background levels of activity

  3. Basic study on apoptosis induction into cancer cells U-937 and EL-4 by ultrasound exposure.

    Science.gov (United States)

    Takeuchi, Shinichi; Udagawa, Yoshiko; Oku, Yumiko; Fujii, Takuma; Nishimura, Hiroyuki; Kawashima, Norimichi

    2006-12-22

    Recently, the low invasive cancer treatments with small aftereffects have been considered. We are studying on the suppression methods of cancer cell proliferation with ultrasound. Cancer cells of mouse T lymphoma (EL-4) have been used in our study. The human histitocytic lymphoma cells (U-937) was used in this time. The cancer cells were cultured in a culture medium of RPMI1640. The standing wave acoustic field was formed in a water tank of our ultrasound exposure system by a vibrating plate driven with a Langevine type transducer. The U-937 and EL-4 were exposed to ultrasound in the acoustic field with spatial average acoustic intensity of 350 mW/cm(2) at 150 kHz. The viable rate of EL-4 decreased with the lapse of culture time after ultrasound exposure. U-937 did not show the remarkable decrease tendency. The proliferation of U-937 which exposed to ultrasound with 700 mW/cm(2) was suppressed. It can be thought that apoptosis was induced in the cancer cells in this condition. We observed the morphological change on the U-937 exposed to ultrasound with this condition. The morphological changes by apoptosis like the shrink of cells, formation of apoptotic bodies etc. can be observed with an optical microscope and a phase contrast microscope.

  4. 7 CFR 301.87-2 - Regulated articles.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Regulated articles. 301.87-2 Section 301.87-2... Regulations § 301.87-2 Regulated articles. (a) Sugarcane plants, whole or in part, including true seed and...) Any other product, article, or means of conveyance, of any character whatsoever, not covered by...

  5. 47 CFR 87.131 - Power and emissions.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Power and emissions. 87.131 Section 87.131... Technical Requirements § 87.131 Power and emissions. The following table lists authorized emissions and... Authorized emission(s) 9 Maximum power 1 Aeronautical advisory VHF A3E 10 watts. 10 Aeronautical multicom VHF...

  6. 47 CFR 87.137 - Types of emission.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Types of emission. 87.137 Section 87.137... Technical Requirements § 87.137 Types of emission. (a) The assignable emissions, corresponding emission..., and X” may also be used in place of the letter “P” for pulsed radars. 14 Authorized for use at...

  7. Influence of multidrug resistance on 18F-FCH cellular uptake in a glioblastoma model

    International Nuclear Information System (INIS)

    Vanpouille, Claire; Jeune, Nathalie le; Clotagatide, Anthony; Dubois, Francis; Kryza, David; Janier, Marc; Perek, Nathalie

    2009-01-01

    Multidrug resistance, aggressiveness and accelerated choline metabolism are hallmarks of malignancy and have motivated the development of new PET tracers like 18 F-FCH, an analogue of choline. Our aim was to study the relationship of multidrug resistance of cultured glioma cell lines and 18 F-FCH tracer uptake. We used an in vitro multidrug-resistant (MDR) glioma model composed of sensitive parental U87MG and derived resistant cells U87MG-CIS and U87MG-DOX. Aggressiveness, choline metabolism and transport were studied, particularly the expression of choline kinase (CK) and high-affinity choline transporter (CHT1). FCH transport studies were assessed in our glioblastoma model. As expected, the resistant cell lines express P-glycoprotein (Pgp), multidrug resistance-associated protein isoform 1 (MRP1) and elevated glutathione (GSH) content and are also more mobile and more invasive than the sensitive U87MG cells. Our results show an overexpression of CK and CHT1 in the resistant cell lines compared to the sensitive cell lines. We found an increased uptake of FCH (in % of uptake per 200,000 cells) in the resistant cells compared to the sensitive ones (U87MG: 0.89±0.14; U87MG-CIS: 1.27±0.18; U87MG-DOX: 1.33±0.13) in line with accelerated choline metabolism and aggressive phenotype. FCH uptake is not influenced by the two ATP-dependant efflux pumps: Pgp and MRP1. FCH would be an interesting probe for glioma imaging which would not be effluxed from the resistant cells by the classic MDR ABC transporters. Our results clearly show that FCH uptake reflects accelerated choline metabolism and is related to tumour aggressiveness and drug resistance. (orig.)

  8. 29 CFR 1918.87 - Ship's cargo elevators.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Ship's cargo elevators. 1918.87 Section 1918.87 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Handling Cargo § 1918.87 Ship's cargo elevators. (a) Safe working load. The safe workin...

  9. 14 CFR 27.87 - Height-speed envelope.

    Science.gov (United States)

    2010-01-01

    ... applicable power failure condition in paragraph (b) of this section, a limiting height-speed envelope must be... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Height-speed envelope. 27.87 Section 27.87... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Performance § 27.87 Height-speed envelope. (a) If there is any...

  10. Effects of Asn318 and Asp87Asn318 mutations on signal transduction by the gonadotropin-releasing hormone receptor and receptor regulation.

    Science.gov (United States)

    Awara, W M; Guo, C H; Conn, P M

    1996-02-01

    GnRH receptor (GnRH-R) contains Asn87 and Asp318 instead of the more frequently observed Asp87 and Asn318 found in other G protein-coupled receptors. In the present study, site-directed mutagenesis was used to introduce Asn318 and Asp87Asn318 into GnRH-R. The effect on coupling and regulation of GnRH-R was studied by stable expression of wild and mutant mouse GnRH-R in the lactotropic GH3 cells; these normally release PRL in response to TRH stimulation. The responses to Buserelin (a metabolically stable GnRH analog) in three different cell lines, M1, N8, and ND1 (expressing wild-type, Asn318 mutant, and Asp87Asn318 mutant mouse GnRH-R, respectively) were compared with that observed in the previously characterized GGH3-1' cells, which stably express rat GnRH-R. The Asn318 and Asp87Asn318 mutations had no measurable effect on ligand binding, but abolished the initial down-regulation of receptor that was observed in M1 and GGH3-1' cells, suggesting that the normal location of Asn87 and Asp318 in GnRH-R is involved in the regulation of GnRH-R. In N8 and ND1 cells, Buserelin-stimulated inositol phosphate (IP) production was attenuated, but the release of both cAMP and PRL was stimulated in a dose- and time-dependent manner. These mutations apparently impaired the coupling between GnRH-R and G proteins involved in IP production, but not those involved in cAMP release. In M1 cells, Buserelin stimulation produced a significant increase in IP production, but neither cAMP nor PRL release was significantly stimulated. These findings are consistent with the previous suggestion that GnRH-stimulated PRL release is mediated by a cAMP second messenger system in transfected GGH3 cells.

  11. ABCG2-mediated suppression of chlorin e6 accumulation and photodynamic therapy efficiency in glioblastoma cell lines can be reversed by KO143.

    Science.gov (United States)

    Abdel Gaber, Sara A; Müller, Patricia; Zimmermann, Wolfgang; Hüttenberger, Dirk; Wittig, Rainer; Abdel Kader, Mahmoud H; Stepp, Herbert

    2018-01-01

    Photodynamic therapy (PDT) of malignant brain tumors is a promising adjunct to standard treatment, especially if tumor stem cells thought to be responsible for tumor progression and therapy resistance were also susceptible to this kind of treatment. However, some photosensitizers have been reported to be substrates of ABCG2, one of the membrane transporters mediating resistance to chemotherapy. Here we investigate, whether inhibition of ABCG2 can restore sensitivity to photosensitizer chlorin e6-mediated PDT. Accumulation of chlorin e6 in wild type U87 and doxycycline-inducible U251 glioblastoma cells with or without induction of ABCG2 expression or ABCG2 inhibition by KO143 was analyzed using flow cytometry. In U251 cells, ABCG2 was inducible by doxycycline after stable transfection with a tet-on expression plasmid. Tumor sphere cultivation under low attachment conditions was used to enrich for cells with stem cell-like properties. PDT was done on monolayer cell cultures by irradiation with laser light at 665nm. Elevated levels of ABCG2 in U87 cells grown as tumor spheres or in U251 cells after ABCG2 induction led to a 6-fold lower accumulation of chlorin e6 and the light dose needed to reduce cell viability by 50% (LD50) was 2.5 to 4-fold higher. Both accumulation and PDT response can be restored by KO143, an efficient non-toxic inhibitor of ABCG2. Glioblastoma stem cells might escape phototoxic destruction by ABCG2-mediated reduction of photosensitizer accumulation. Inhibition of ABCG2 during photosensitizer accumulation and irradiation promises to restore full susceptibility of this crucial tumor cell population to photodynamic treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. 21 CFR 20.87 - Disclosure to Congress.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Disclosure to Congress. 20.87 Section 20.87 Food... INFORMATION Limitations on Exemptions § 20.87 Disclosure to Congress. (a) All records of the Food and Drug Administration shall be disclosed to Congress upon an authorized request. (b) An authorized request for Food and...

  13. Different mechanisms between premitotic apoptosis and postmitotic apoptosis in X-irradiated U937 cells

    International Nuclear Information System (INIS)

    Shinomiya, Nariyoshi; Kuno, Yukie; Yamamoto, Fuyumi; Fukasawa, Masashi; Okumura, Atsushi; Uefuji, Megumi; Rokutanda, Makoto

    2000-01-01

    Purpose: Apoptosis is currently being evaluated for its importance as a pathway of radiation-induced cell death. However, the difference in the mechanisms between premitotic and postmitotic apoptosis following X-irradiation remains not well understood. We show here that the human monoblastoid cell line U937 can be induced to undergo these two different types of apoptosis. Methods and Materials: U937 cells were irradiated at a dose of 5 or 20 Gy, and the DNA fragmentation rate was measured by both flow cytometric analysis and gel electrophoresis. Activation of caspase-3 was detected by Western blot analysis and fluorogenic assay using acetyl-Asp-Glu-Val-Asp-7-amino-4-methyl-coumarin (Ac-DEVD-AMC). Detection of mitochondrial transmembrane potential (no. DELTAno. no. PSIno. ) was performed by using Rho123. Chasing of S-phase fraction following X-irradiation was performed after labeling with 5-bromo-2'-deoxyuridine (BrdU). Thymidine was used for synchronization of the cells. Inhibition of caspase-3 activity was achieved by Acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO). Results: Time courses of the apoptotic rates, caspase activation, and no. DELTAno. no. PSIno. indicated that two different types of cell death were induced by the different X-ray doses. High-dose X-ray (20 Gy) induced a rapid and strong apoptosis, whereas low-dose X-ray (5 Gy) induced a slow and mild apoptosis. Cell-cycle analyses revealed that there was cell death before cell division in the former apoptosis but the cells must be dying after cell division in the latter apoptosis. By means of cell-cycle synchronization, the S-phase cells proved to be the most sensitive fraction to premitotic apoptosis, but an obvious difference in the susceptibility to cell death among the cell-cycle phases was not observed in postmitotic apoptosis. Ac-DEVD-CHO treatment effectively blocked caspase activity and premitotic apoptosis, but it failed to block postmitotic apoptosis. Conclusions: Irradiation of U937 cells at

  14. Ascorbate enhances u.v.-mutagenesis in E. coli but inhibits it in Chinese hamster cells

    International Nuclear Information System (INIS)

    Rossman, T.G.; Klein, C.B.; Naslund, M.

    1986-01-01

    Ascorbic acid (vitamin C) causes an increase in the mutation frequency of u.v.-irradiated Escherichia coli WP2. The enhancement occurs at all u.v. fluences, and is dependent upon the ascorbate concentration in the medium. A maximum effect (approx. 8- to 13-fold) is seen at 100-150 μg/ml, although some enhancement can be seen even at 10 μg/ml. The comutagenic effect of ascorbate with u.v. in E. coli is dependent upon peptone, a constituent of nutrient broth. The enhancement of u.v.-mutagenesis by ascorbate is absent in strains WP2sub(s) (uvrA) amd WP6 (polA), suggesting that ascorbate affects the repair of pyrimidine dimers. The opposite results are observed for u.v.-mutagenesis in Chinese hamster V79 cells. The presence of ascorbate (50 μg/ml) during u.v. irradiation does not enhance the u.v. effect, but rather decreases it approx. 30%. These results are discussed with regard to differences in the mechanism of u.v.-mutagenesis and DNA repair in bacterial and mammalian cells. (author)

  15. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro.

    Directory of Open Access Journals (Sweden)

    Fuqiang Xing

    Full Text Available Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant. Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis.

  16. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    International Nuclear Information System (INIS)

    Djuzenova, Cholpon S.; Fiedler, Vanessa; Memmel, Simon; Katzer, Astrid; Hartmann, Susanne; Krohne, Georg; Zimmermann, Heiko; Scholz, Claus-Jürgen; Polat, Bülent; Flentje, Michael

    2015-01-01

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed

  17. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    Energy Technology Data Exchange (ETDEWEB)

    Djuzenova, Cholpon S., E-mail: djuzenova_t@ukw.de [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Fiedler, Vanessa [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Memmel, Simon [Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Biozentrum Am Hubland, 97070 Würzburg (Germany); Katzer, Astrid; Hartmann, Susanne [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Krohne, Georg [Elektronenmikroskopie, Biozentrum, Universität Würzburg, Am Hubland, 97070 Würzburg (Germany); Zimmermann, Heiko [Hauptabteilung Biophysik and Kryotechnologie, Fraunhofer-Institut für Biomedizinische Technik, Lehrstuhl für Molekulare und Zelluläre Biotechnologie/Nanotechnologie, Universität des Saarlandes, Ensheimer Strasse 48, 66386 St. Ingbert (Germany); Scholz, Claus-Jürgen [Interdisciplinary Center for Clinical Research, University Hospital, Versbacher Strasse 7, 97078 Würzburg (Germany); Polat, Bülent; Flentje, Michael [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); and others

    2015-01-15

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed.

  18. 87Rb-87Sr chronology of H chondrites: constraint and speculations on the early evolution of their parent body

    International Nuclear Information System (INIS)

    Minster, J.-F.; Allegre, C.J.

    1979-01-01

    A precise 87 Rb- 87 Sr whole-rock isochron for H chrondrites and an internal isochron for Tieschitz (H3) have been determined. The age and 87 Sr/ 86 Sr initial ratio of the whole rocks are 4.25 +- 0.05 b.y. and 0.69876 +- 0.00040 (lambda( 87 Rb) = 1.42 X 10 -11 yr -1 ). For Tieschitz, whereas handipicked separates plot on a well-defined line, heavy liquid separates scatter in the 87 Rb/ 86 Sr vs. 87 Sr/ 86 Sr diagram. Leaching experiments by heavy liquids indicate that they might have a sizeable effect on Tieschitz minerals. The age and 87 Sr/ 86 Sr initial ratio as determined by handpicked separates are 4.53 +- 0.06 b.y. and 0.69880 +- 0.00020, indistinguishable from the whole-rock isochron. These results are interpreted as 'primitive isochrons' dating the condensation of chondrites from the solar nebula. The best value of this event is given by joining both isochrons together at 4.518 +- 0.026 b.y. and 87 Sr/ 86 Sr = 0.69881 +- 0.00016. The near identity of this initial ratio with the one of Allende white inclusions argues in favor of a sharp isochronism of condensation from a 87 Sr/ 86 Sr homogeneous nebula. Data from Guarena and Richardton are interpreted as secondary internal isochrons, 100 m.y. after the condensation of the whole rocks. The data are then used to constrain a thermal evolution model of the H chondrite parent body. This body might have a 150-175 km radius, and might have been heated by 26 Al. An 26 Al/ 27 Al ratio of 4-6 X 10 -6 is enough for heating such a body. Further tests for this model are proposed. (Auth.)

  19. Co-expression of TIMP-1 and its cell surface binding partner CD63 in glioblastomas

    DEFF Research Database (Denmark)

    Aaberg-Jessen, Charlotte; Sørensen, Mia D.; Matos, Ana L.S.A.

    2018-01-01

    scoring. CD63 expression in tumor-associated microglia/macrophages was examined by double-immunofluorescence with ionized calcium-binding adapter molecule 1 (Iba1). The association between CD63 and TIMP-1 was investigated using previously obtained TIMP-1 data from our astrocytoma cohort. Cellular co-expression...... of CD63 was widely distributed in astrocytomas with a significantly increased level in glioblastomas. CD63 levels did not significantly correlate with patient survival at a protein level, and CD63 did not augment the prognostic significance of TIMP-1. Up to 38% of the CD63+ cells expressed Iba1; however......, Iba1 did not appear to impact the prognostic value of CD63. A significant correlation was found between TIMP-1 and CD63, and the TIMP-1 and CD63 proteins were co-expressed at the cellular level and located in close molecular proximity, suggesting that TIMP-1 and CD63 could be co...

  20. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    Directory of Open Access Journals (Sweden)

    Mao Xinggang

    2010-12-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU in China. Human glioma cells (the U87, U251, and SHG44 cell lines were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM. The apoptosis rate was detected by flow cytometer (FCM. The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P 60Co] γ-rays (P P Conclusions Compared with ��-ray and reactor neutron irradiation, a higher RBE can be achieved upon treatment of glioma cells with BNCT. Glioma cell apoptosis induced by

  1. Cytotoxicity and cell-cycle effects of paclitaxel when used as a single agent and in combination with ionizing radiation

    International Nuclear Information System (INIS)

    Gupta, Nalin; Hu, Lily J.; Deen, Dennis F.

    1997-01-01

    Purpose: This study aimed to determine the extent of paclitaxel-induced cytotoxicity and cell-cycle perturbations when used alone and in combination with radiation in human glioma cells. Methods and Materials: The effect of paclitaxel alone on three human glioma cells lines--SF-126, U-87 MG, and U-251 MG--was assessed after 24, 48, 72, or 96 h treatment. For experiments in combination with radiation, cells were exposed to either a long (48-h) or short (8-h) duration of paclitaxel treatment prior to irradiation. Cell survival was determined by clonogenic assay. Cell cycle perturbations were assessed by using flow cytometry to measure the proportion of cells in G 1 , S, and G 2 /M phases. Results: When cells were treated with paclitaxel alone for ≥24 h, cytotoxicity increased up to a threshold dose, after which it plateaued. When treatment duration was ≤24 h, cytotoxicity was appreciably greater in U-251 MG cells than in SF-126 and U-87 MG cells. After 24 h of paclitaxel treatment, cells in plateau phase growth had increased survival compared to cells in log phase growth. In contrast, after 8 h paclitaxel treatment, mitotic cells had reduced survival compared to cells from an asynchronous population. Cell-cycle perturbations were consistent with the presence of a mitotic block after paclitaxel treatment, although changes in other cell-cycle phase fractions varied among cell lines. For experiments in combination with radiation, cytotoxicity was increased when cells were irradiated after 48 h of paclitaxel treatment but not after 8 h of treatment. Conclusion: The duration of paclitaxel treatment and the location of cells in the cell cycle modify the degree of radiation cytotoxicity. The mechanisms of paclitaxel cytotoxicity are likely to be multifactorial because varying effects are seen in different cell lines. Furthermore, it is clear that simply increasing the number of cells in G 2 /M is insufficient in itself to increase the response of cells to radiation

  2. Induction of Programmed Cell Death by Parvovirus H-1 in U937 Cells: Connection with the Tumor Necrosis Factor Alpha Signalling Pathway

    Science.gov (United States)

    Rayet, Béatrice; Lopez-Guerrero, José-Antonio; Rommelaere, Jean; Dinsart, Christiane

    1998-01-01

    The human promonocytic cell line U937 undergoes apoptosis upon treatment with tumor necrosis factor alpha (TNF-α). This cell line has previously been shown to be very sensitive to the lytic effect of the autonomous parvovirus H-1. Parvovirus infection leads to the activation of the CPP32 ICE-like cysteine protease which cleaves the enzyme poly(ADP-ribose)polymerase and induces morphologic changes that are characteristic of apoptosis in a way that is similar to TNF-α treatment. This effect is also observed when the U937 cells are infected with a recombinant H-1 virus which expresses the nonstructural (NS) proteins but in which the capsid genes are replaced by a reporter gene, indicating that the induction of apoptosis can be assigned to the cytotoxic nonstructural proteins in this cell system. The c-Myc protein, which is overexpressed in U937 cells, is rapidly downregulated during infection, in keeping with a possible role of this product in mediating the apoptotic cell death induced by H-1 virus infection. Interestingly, four clones (designated RU) derived from the U937 cell line and selected for their resistance to H-1 virus (J. A. Lopez-Guerrero et al., Blood 89:1642–1653, 1997) failed to decrease c-Myc expression upon treatment with differentiation agents and also resisted the induction of cell death after TNF-α treatment. Our data suggest that the RU clones have developed defense strategies against apoptosis, either by their failure to downregulate c-Myc and/or by activating antiapoptotic factors. PMID:9765434

  3. Over-expression of CHAF1A promotes cell proliferation and apoptosis resistance in glioblastoma cells via AKT/FOXO3a/Bim pathway

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Honghai; Du, Bin [Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 (China); Jiang, Huili [Friendship Nephrology and Blood Purification Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 (China); Gao, Jun, E-mail: gaoj1666@126.com [Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 (China)

    2016-01-22

    Chromatinassembly factor 1 subunit A (CHAF1A) has been reported to be involved in several human diseases including cancer. However, the biological and clinical significance of CHAF1A in glioblastoma progression remains largely unknown. In this study, we found that up-regulation of CHAF1A happens frequently in glioblastoma tissues and is associated with glioblastoma prognosis. Knockout of CHAF1A by CRISPR/CAS9 technology induce G1 phase arrest and apoptosis in glioblastoma cell U251 and U87. In addition, inhibition of CHAF1A influenced the signal transduction of the AKT/FOXO3a/Bim axis, which is required for glioblastoma cell proliferation. Taken together, these results show that CHAF1A contributes to the proliferation of glioblastoma cells and may be developed as a de novo drug target and prognosis biomarker of glioblastoma.

  4. Over-expression of CHAF1A promotes cell proliferation and apoptosis resistance in glioblastoma cells via AKT/FOXO3a/Bim pathway

    International Nuclear Information System (INIS)

    Peng, Honghai; Du, Bin; Jiang, Huili; Gao, Jun

    2016-01-01

    Chromatinassembly factor 1 subunit A (CHAF1A) has been reported to be involved in several human diseases including cancer. However, the biological and clinical significance of CHAF1A in glioblastoma progression remains largely unknown. In this study, we found that up-regulation of CHAF1A happens frequently in glioblastoma tissues and is associated with glioblastoma prognosis. Knockout of CHAF1A by CRISPR/CAS9 technology induce G1 phase arrest and apoptosis in glioblastoma cell U251 and U87. In addition, inhibition of CHAF1A influenced the signal transduction of the AKT/FOXO3a/Bim axis, which is required for glioblastoma cell proliferation. Taken together, these results show that CHAF1A contributes to the proliferation of glioblastoma cells and may be developed as a de novo drug target and prognosis biomarker of glioblastoma.

  5. VPA and MEL induce apoptosis by inhibiting the Nrf2-ARE signaling pathway in TMZ-resistant U251 cells.

    Science.gov (United States)

    Pan, Hao; Wang, Handong; Jia, Yue; Wang, Qiang; Li, Liwen; Wu, Qi; Chen, Longbang

    2017-07-01

    Chemoresistance is the primary obstacle to effective treatment of glioblastoma, the most lethal brain tumor. Our previous study demonstrated that Nf-E2 related factor 2 (Nrf2), a traditional cytoprotective transcription factor, was overexpressed in gliomas and promoted malignancy. The present study aimed to investigate the expression levels of Nrf2‑antioxidant response element (ARE) signaling pathway genes in temozolomide (TMZ)‑resistant U251 human glioblastoma cells (U251‑TMZ). Additionally, the effect of valproic acid (VPA) and melatonin (MEL) on Nrf2 expression in U251‑TMZ cells and their association with chemoresistance was investigated. The results of the present study indicated that the expression levels of components of the Nrf2‑ARE signaling pathway were increased in U251‑TMZ cells compared with U251 parent cells. Silencing of Nrf2 by transfection with small interfering RNA restored the chemosensitivity of U251‑TMZ cells. The Nrf2 inhibitors VPA and MEL successfully reduced Nrf2 expression and survival in U251‑TMZ cells treated with TMZ, accompanied by increased reactive oxygen species levels and apoptosis. Therefore, VPA and MEL may be potential chemotherapeutic sensitizers for the treatment of chemoresistant glioblastoma.

  6. EG-03EXPRESSION OF PRMT5 CORRELATES WITH MALIGNANT GRADE IN GLIOMAS AND PLAYS A PIVOTAL ROLE IN TUMOR GROWTH

    Science.gov (United States)

    Han, Xiaosi; Li, Rong; Zhang, Wenbin; Yang, Xiuhua; Fathallah-Shaykh, Hassan; Gillespie, Yancey; Nabors, Burt

    2014-01-01

    Protein arginine methyltransferase 5 (PRMT5) catalyzes the formation of ω-NG,N′G-symmetric dimethylarginine residues on histones as well as other proteins. The modification play an important role in cell differentiation and tumor cell growth. However, the role of PRMT5 in human glioma cells has not been characterized. In this study, we assessed protein expression profiles of PRMT5 in control brain, WHO grade II astrocytomas, anaplastic astrocytomas, and glioblastoma multiforme (GBM) by immunohistochemistry. PRMT5 was low in glial cells in control brain tissues and low grade astrocytomas. Its expression increased in parallel with malignant progression, and was highly expressed in GBM. Knockdown of PRMT5 by small hairpin RNA caused alterations of p-ERK1/2 and significantly repressed the clonogenic potential and viability of glioma cells. These findings indicate that PRMT5 is a marker of malignant progression in glioma tumors and plays a pivotal role in tumor growth.

  7. A Cyclic Altered Peptide Analogue Based on Myelin Basic Protein 87-99 Provides Lasting Prophylactic and Therapeutic Protection Against Acute Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Emmanouil, Mary; Tseveleki, Vivian; Triantafyllakou, Iro; Nteli, Agathi; Tselios, Theodore; Probert, Lesley

    2018-01-31

    In this report, amide-linked cyclic peptide analogues of the 87-99 myelin basic protein (MBP) epitope, a candidate autoantigen in multiple sclerosis (MS), are tested for therapeutic efficacy in experimental autoimmune encephalomyelitis (EAE). Cyclic altered peptide analogues of MBP 87-99 with substitutions at positions 91 and/or 96 were tested for protective effects when administered using prophylactic or early therapeutic protocols in MBP 72-85 -induced EAE in Lewis rats. The Lys 91 and Pro 96 of MBP 87-99 are crucial T-cell receptor (TCR) anchors and participate in the formation of trimolecular complex between the TCR-antigen (peptide)-MHC (major histocompability complex) for the stimulation of encephalitogenic T cells that are necessary for EAE induction and are implicated in MS. The cyclic peptides were synthesized using Solid Phase Peptide Synthesis (SPPS) applied on the 9-fluorenylmethyloxycarboxyl/tert-butyl Fmoc/tBu methodology and combined with the 2-chlorotrityl chloride resin (CLTR-Cl). Cyclo(91-99)[Ala 96 ]MBP 87-99 , cyclo(87-99)[Ala 91,96 ]MBP 87-99 and cyclo(87-99)[Arg 91 , Ala 96 ]MBP 87-99 , but not wild-type linear MBP 87-99 , strongly inhibited MBP 72-85 -induced EAE in Lewis rats when administered using prophylactic and early therapeutic vaccination protocols. In particular, cyclo(87-99)[Arg 91 , Ala 96 ]MBP 87-99 was highly effective in preventing the onset and development of clinical symptoms and spinal cord pathology and providing lasting protection against EAE induction.

  8. KDM2B overexpression correlates with poor prognosis and regulates glioma cell growth

    Directory of Open Access Journals (Sweden)

    Wang Y

    2018-01-01

    Full Text Available Yiwei Wang,1 Jin Zang,1 Dongyong Zhang,2 Zhenxiang Sun,1 Bo Qiu,2 Xiaojie Wang1 1Department of Human Anatomy, Shenyang Medical College, Huanggu District, Shenyang City, 2Department of Neurosurgery, First Affiliated Hospital of China Medical University, Heping District, Shenyang City, Liaoning Province, ChinaBackground: Gliomas are one of the most lethal cancers in the human central nervous system. Despite clinical treatment advancements, the prognosis of patients with glioma remains poor. KDM2B is a histone lysine demethylase, which has been observed in multiple tumors. But the concrete role of KDM2B in gliomas remains to be further illustrated.Methods: The KDM2B expression in gliomas was detected with immunohistochemistry and Western blot assay. Furthermore, knockdown of KDM2B in U87 and U251 glioma cell lines, the proliferation capacity was evaluated by cell viability assay, colon formation assay and flow cytometry in vitro. Western blot assay was used to analyze the p21, EZH2 and cyclinD1 changes followed by knockdown of KDM2B.Results: KDM2B was upregulated in tissues of glioma patients, and the expression was correlated to cancer progression. Downregulation of KDM2B in U87 and U251 glioma cell lines inhibited cell proliferation and arrested cell cycle in G0/G1 phase. In addition, silencing KDM2B promoted the upregulation of p21 while reduced the expression of EZH2 and cyclinD1.Conclusion: Taken together, our results revealed that KDM2B might influence gliomas growth and act as a novel therapeutic target for glioma patients.Keywords: EZH2, glioma, KDM2B, P21

  9. In vitro study of cytotoxicity by U.V. radiation and differential sensitivity in combination with alkylating agents on established cell systems

    International Nuclear Information System (INIS)

    Ramudu, K.

    1991-01-01

    The effect of U.V. radiation or alkylating agents, such as actinomycin-D, cycloheximide and mitomycin-C (MMC), was studied on CHO, BHK and HeLa cells. U.V. radiation caused DNA ssb and dsb and were prevented by cycloheximide and actinomycin-D. MMC is known to be cytotoxic in CHO/BHK cells by forming free radical generation. MMC in combination with U.V. radiation enhanced DNA ssb ampersand dsb in these cell types. However, HeLa cells were insensitive to U.V. radiation. This insensitivity to U.V. radiation could be ascribed to the presence of glutathione transferase which is absent in CHO/BHK cell line

  10. An in vivo-like tumor stem cell-related glioblastoma in vitro model for drug discovery

    DEFF Research Database (Denmark)

    Jensen, Stine Skov; Aaberg-Jessen, Charlotte; Nørregaard, Annette

    confirming the results obtained with hemotoxylin-eosin staining and confocal microscopy. Both in vitro and in vivo, U87 implants had a very high proliferation index, whereas the invasive phenotype of SJ-1 only had a low index as shown by Ki-67 immunohistochemistry. Immunohistochemistry for the stem cell...

  11. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell

    International Nuclear Information System (INIS)

    Wang, Yi; Wang, Xiang; Sun, Minghui; Zhang, Zhenyu; Cao, Heng; Chen, Xiaoqing

    2011-01-01

    Highlights: → Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. → Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. → P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. → Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kB (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the regulation of foam

  12. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi, E-mail: wangyi2004a@126.com [Department of Cardiology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080 (China); Wang, Xiang; Sun, Minghui; Zhang, Zhenyu; Cao, Heng; Chen, Xiaoqing [Department of Cardiology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080 (China)

    2011-08-05

    Highlights: {yields} Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. {yields} Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. {yields} P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. {yields} Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kB (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the

  13. Triterpenoid saponins from Albizia lebbeck (L.) Benth and their inhibitory effect on the survival of high grade human brain tumor cells.

    Science.gov (United States)

    Noté, Olivier Placide; Jihu, Dong; Antheaume, Cyril; Zeniou, Maria; Pegnyemb, Dieudonné Emmanuel; Guillaume, Dominique; Chneiwess, Hervé; Kilhoffer, Marie Claude; Lobstein, Annelise

    2015-03-02

    As part of our search of new bioactive triterpenoid saponins from Cameroonian Mimosaceae plants, phytochemical investigation of the roots of Albizia lebbeck led to the isolation of two new oleanane-type saponins, named lebbeckosides A-B (1-2). Their structures were established on the basis of extensive 1D and 2D NMR ((1)H, (13)C NMR, DEPT, COSY, TOCSY, ROESY, HSQC, and HMBC) and HRESIMS studies, and by chemical evidence. Compounds 1-2 were evaluated for their inhibitory effect on the metabolism of high grade human brain tumor cells, the human glioblastoma U-87 MG cell lines and the glioblastoma stem-like TG1 cells isolated from a patient tumor, and known to be particularly resistant to standard therapies. The isolated saponins showed significant cytotoxic activity against U-87 MG and TG1 cancer cells with IC50 values of 3.46 μM and 1.36 μM for 1, and 2.10 μM and 2.24 μM for 2, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2008

    Science.gov (United States)

    2008-12-01

    In September 2007, the U.S. Department of Energys (DOE) National Renewable Energy Laboratory (NREL) published a report that reviewed past and present fuel cell bus technology development and implementation in the United States. That report reviewe...

  15. 17-AAG sensitized malignant glioma cells to death-receptor mediated apoptosis.

    Science.gov (United States)

    Siegelin, Markus David; Habel, Antje; Gaiser, Timo

    2009-02-01

    17-AAG is a selective HSP90-inhibitor that exhibited therapeutic activity in cancer. In this study three glioblastoma cell lines (U87, LN229 and U251) were treated with 17-AAG, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or the combination of both. Treatment with subtoxic doses of 17-AAG in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces rapid apoptosis in TRAIL-resistant glioma cells, suggesting that this combined treatment may offer an attractive strategy for treating gliomas. 17-AAG treatment down-regulated survivin through proteasomal degradation. In addition, over-expression of survivin attenuated cytotoxicity induced by the combination of 17-AAG and TRAIL. In summary, survivin is a key regulator of TRAIL-17-AAG mediated cell death in malignant glioma.

  16. Non-circadian expression masking clock-driven weak transcription rhythms in U2OS cells.

    Directory of Open Access Journals (Sweden)

    Julia Hoffmann

    Full Text Available U2OS cells harbor a circadian clock but express only a few rhythmic genes in constant conditions. We identified 3040 binding sites of the circadian regulators BMAL1, CLOCK and CRY1 in the U2OS genome. Most binding sites even in promoters do not correlate with detectable rhythmic transcript levels. Luciferase fusions reveal that the circadian clock supports robust but low amplitude transcription rhythms of representative promoters. However, rhythmic transcription of these potentially clock-controlled genes is masked by non-circadian transcription that overwrites the weaker contribution of the clock in constant conditions. Our data suggest that U2OS cells harbor an intrinsically rather weak circadian oscillator. The oscillator has the potential to regulate a large number of genes. The contribution of circadian versus non-circadian transcription is dependent on the metabolic state of the cell and may determine the apparent complexity of the circadian transcriptome.

  17. NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. II. A TEST ON THE NONLINEARITY SCENARIO FOR COLOR BIMODALITY USING THE u-BAND COLORS: THE CASE OF M87 (NGC 4486)

    International Nuclear Information System (INIS)

    Yoon, Suk-Jin; Lee, Sang-Yoon; Kim, Hak-Sub; Cho, Jaeil; Chung, Chul; Sohn, Sangmo T.; Blakeslee, John P.

    2011-01-01

    The optical color distributions of globular clusters (GCs) in most large elliptical galaxies are bimodal. Based on the assumed linear relationship between GC colors and their metallicities, the bimodality has been taken as evidence of two GC subsystems with different metallicities in each galaxy and has led to a number of theories in the context of galaxy formation. More recent observations and modeling of GCs, however, suggests that the color-metallicity relations (CMRs) are inflected, and thus colors likely trace metallicities in a nonlinear manner. The nonlinearity could produce bimodal color distributions from a broad underlying metallicity spread, even if it is unimodal. Despite the far-reaching implications, whether CMRs are nonlinear and whether the nonlinearity indeed causes the color bimodality are still open questions. Given that the spectroscopic refinement of CMRs is still very challenging, we here propose a new photometric technique to probe the possible nonlinear nature of CMRs. In essence, a color distribution of GCs is a 'projected' distribution of their metallicities. Since the form of CMRs hinges on which color is used, the shape of color distributions varies depending significantly on the colors. Among other optical colors, the u-band related colors (e.g., u – g and u – z) are theoretically predicted to exhibit significantly less inflected CMRs than other preferred CMRs (e.g., for g – z). As a case study, we performed the Hubble Space Telescope (HST)/WFPC2 archival u-band photometry for the M87 (NGC 4486) GC system with confirmed color bimodality. We show that the u-band color distributions are significantly different from that of g – z and consistent with our model predictions. With more u-band measurements, this method will support or rule out the nonlinear CMR scenario for the origin of GC color bimodality with high confidence. The HST/WFC3 observations in F336W for nearby large elliptical galaxies are highly anticipated in this regard.

  18. Spontaneous regression of residual low-grade cerebellar pilocytic astrocytomas in children

    International Nuclear Information System (INIS)

    Gunny, Roxana S.; Saunders, Dawn E.; Hayward, Richard D.; Phipps, Kim P.; Harding, Brian N.

    2005-01-01

    Cerebellar low-grade astrocytomas (CLGAs) of childhood are benign tumours and are usually curable by surgical resection alone or combined with adjuvant radiotherapy. To undertake a retrospective study of our children with CLGA to determine the optimum schedule for surveillance imaging following initial surgery. In this report we describe the phenomenon of spontaneous regression of residual tumour and discuss its prognostic significance regarding future imaging. A retrospective review was conducted of children treated for histologically proven CLGA at Great Ormond Street Hospital from 1988 to 1998. Of 83 children with CLGA identified, 13 (15.7%) had incomplete resections. Two children with large residual tumours associated with persistent symptoms underwent additional treatment. Eleven children were followed by surveillance imaging alone for a mean of 6.83 years (range 2-13.25 years). Spontaneous tumour regression was seen in 5 (45.5%) of the 11 children. There were no differences in age, gender, symptomatology, histological grade or Ki-67 fractions between those with spontaneous tumour regression and those with progression. There was a non-significant trend that larger volume residual tumours progressed. Residual tumour followed by surveillance imaging may either regress or progress. For children with residual disease we recommend surveillance imaging every 6 months for the first 2 years, every year for years 3, 4 and 5, then every second year if residual tumour is still present 5 years after initial surgery. This would detect not only progressive or recurrent disease, but also spontaneous regression which can occur later than disease progression. (orig.)

  19. Reimiep 87. An interlaboratory U-235 enrichment determination by gamma measurement on solid UF6 sample

    International Nuclear Information System (INIS)

    Aparo, M.; Cresti, P.

    1988-01-01

    Gamma spectroscopy technique, based on the measurement of U 235 186 KeV flux, is now currently used for the determination of Uranium enrichment in different material of nuclear fuel cycle, namely: Uranium metallic, UO 2 pellets, UF 6 liquid or solid. The present paper describes the use of such a technique and the obtained results in determining the U 235 /U atomic isotopic abundance on a certified UF 6 solid sample. The measurements have been carried out in the frame work of the partecipation to the ''UF 6 Interlaboratory Measurements Evaluation Programme'' organized by CBNM/Geel with the support of the ESARDA (European Safeguards Research and Development Association)

  20. Adult, embryonic and fetal hemoglobin are expressed in human glioblastoma cells.

    Science.gov (United States)

    Emara, Marwan; Turner, A Robert; Allalunis-Turner, Joan

    2014-02-01

    Hemoglobin is a hemoprotein, produced mainly in erythrocytes circulating in the blood. However, non-erythroid hemoglobins have been previously reported in other cell types including human and rodent neurons of embryonic and adult brain, but not astrocytes and oligodendrocytes. Human glioblastoma multiforme (GBM) is the most aggressive tumor among gliomas. However, despite extensive basic and clinical research studies on GBM cells, little is known about glial defence mechanisms that allow these cells to survive and resist various types of treatment. We have shown previously that the newest members of vertebrate globin family, neuroglobin (Ngb) and cytoglobin (Cygb), are expressed in human GBM cells. In this study, we sought to determine whether hemoglobin is also expressed in GBM cells. Conventional RT-PCR, DNA sequencing, western blot analysis, mass spectrometry and fluorescence microscopy were used to investigate globin expression in GBM cell lines (M006x, M059J, M059K, M010b, U87R and U87T) that have unique characteristics in terms of tumor invasion and response to radiotherapy and hypoxia. The data showed that α, β, γ, δ, ζ and ε globins are expressed in all tested GBM cell lines. To our knowledge, we are the first to report expression of fetal, embryonic and adult hemoglobin in GBM cells under normal physiological conditions that may suggest an undefined function of those expressed hemoglobins. Together with our previous reports on globins (Ngb and Cygb) expression in GBM cells, the expression of different hemoglobins may constitute a part of series of active defence mechanisms supporting these cells to resist various types of treatments including chemotherapy and radiotherapy.

  1. Promoter Methylation of RASSF1A Associates to Adult Secondary Glioblastomas and Pediatric Glioblastomas.

    Science.gov (United States)

    Muñoz, Jorge; Inda, María Del Mar; Lázcoz, Paula; Zazpe, Idoya; Fan, Xing; Alfaro, Jorge; Tuñón, Teresa; Rey, Juan A; Castresana, Javier S

    2012-01-01

    While allelic losses and mutations of tumor suppressor genes implicated in the etiology of astrocytoma have been widely assessed, the role of epigenetics is still a matter of study. We analyzed the frequency of promoter hypermethylation by methylation-specific PCR (MSP) in five tumor suppressor genes (PTEN, MGMT, RASSF1A, p14(ARF), and p16(INK4A)), in astrocytoma samples and cell lines. RASSF1A was the most frequently hypermethylated gene in all grades of astrocytoma samples, in cell lines, and in adult secondary GBM. It was followed by MGMT. PTEN showed a slight methylation signal in only one GBM and one pilocytic astrocytoma, and in two cell lines; while p14(ARF) and p16(INK4A) did not show any evidence of methylation in primary tumors or cell lines. In pediatric GBM, RASSF1A was again the most frequently altered gene, followed by MGMT; PTEN, p14 and p16 showed no alterations. Lack or reduced expression of RASSF1A in cell lines was correlated with the presence of methylation. RASSF1A promoter hypermethylation might be used as a diagnostic marker for secondary GBM and pediatric GBM. Promoter hypermethylation might not be an important inactivation mechanism in other genes like PTEN, p14(ARF) and p16(INK4A), in which other alterations (mutations, homozygous deletions) are prevalent.

  2. Radiosensitization and relative mechanisms of vanillin derivative BVAN08 on human glioma U-251 cells

    International Nuclear Information System (INIS)

    Wang Shubin; Zhang Bo; Sun Weijian; Wang Yu; Liu Xiaodan; Xu Qinzhi; Zhou Pingkun

    2010-01-01

    Objective: To provide more convincing evidences and experimental data for exploring vanillin derivative BVAN08, 6-bromine-5-hydroxy-4-methoxy-benzaldehyde, as a new anticancer drug, and to investigate the effect on the growth, radiosensitization of human glioma cell line U-251 and the relative mechanism. Methods: The effect of BVAN08 on cell proliferation of U-251 and radiosensitivity to 60 Co γ-rays (irradiation dose rate 2.3 Gy/min) were analyzed with MTT and colony-forming ability assay. Change in cellular morphology was observed by using light microscope. Change in cell cycle and apoptosis was detected with flow cytometry. The autophagy was observed by using TEM (irradiation dose rate is transmission electron microscope). DNA-PKcs protein level was detected through Western blot analysis. Results: BVAN08 exhibited a dose- and time-dependent inhibition on the proliferation of U-251 cells during the concentration range of 10-100 mol/L (t=1.83-3.07, P 50 at 48 h and 72 h after administration with BVAN08 were 55.3 and 52.7 mol/L, respectively. Obvious G 2 /M arrest was induced in U-251 cells after 4 h administration with BVAN08, and reached peck at 12 h. The G 2 /M population reached 63.3% in U-251 cells after 12 h administration of 60 μmol/L BVAN08 and kept increasing with the time, while both apoptosis and autophagic cell death were induced. The most effective radiosensitization time for BVAN08 treatment was 12 h before irradiation. The enhancement ratio of radiosensitivity was 3.14 for 20 μmol/L of BVAN08 12 h before 2 Gy irradiation. Conclusions: BVAN08 can induce apoptosis as radiosensitizing effect might be associated with the induction of G 2 /M arrest and inhibition of DNA-PKcs expression. BVAN08 seemed to be a promising radiosensitizing anticancer drug. (authors)

  3. Suppression of survivin expression in glioblastoma cells by the Ras inhibitor farnesylthiosalicylic acid promotes caspase-dependent apoptosis.

    Science.gov (United States)

    Blum, Roy; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Kloog, Yoel

    2006-09-01

    The Ras inhibitor farnesylthiosalicylic acid (FTS) has been shown to induce apoptosis in glioblastoma multiforme, but its mechanism of action was unknown. We show that FTS or dominant-negative Ras, by deregulating extracellular signal-regulated kinase and Akt signaling, decreases survivin gene transcripts in U87 glioblastoma multiforme, leading to disappearance of survivin protein and cell death. FTS affected both Ras-controlled regulators of survivin transcription and Ras-regulated survival signals. Thus, Ras inhibition by FTS resulted in release of the survivin "brake" on apoptosis and in activation of the mitochondrial apoptotic pathway: dephosphorylation of Bad, activation of Bax, release of cytochrome c, and caspase activation. FTS-induced apoptosis of U87 cells was strongly attenuated by forced expression of survivin or by caspase inhibitors. These results show that resistance to apoptosis in glioblastoma multiforme can be abolished by a single Ras inhibitor, which targets both survivin, a critical inhibitor of apoptosis, and the intrinsic mitochondrial apoptotic machinery.

  4. 40 CFR 86.1106-87 - Production compliance auditing.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Production compliance auditing. 86.1106-87 Section 86.1106-87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Light-Duty Trucks § 86.1106-87 Production compliance auditing. For a model year in which upper limits...

  5. 25 CFR 87.9 - Programming aspects of plans.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Programming aspects of plans. 87.9 Section 87.9 Indians... JUDGMENT FUNDS § 87.9 Programming aspects of plans. In assessing any tribal programming proposal the... such reservation residents; the nature of recent programming affecting the subject tribe or group and...

  6. Empirical model of the M 87 jet

    International Nuclear Information System (INIS)

    Shklovskij, I.S.

    1984-01-01

    The nature of the M87 jet is discussed. Recent observations of the M87 jet in radio, optical and X-ray regions, carried out with a sufficiently high resolving power, have revealed an identity of the brightness distribution at all frequencies. This points to a decisive role of the regular magnetic field variations along the jet for its overall structure. The bright knots of the jet are in the places where the field is enhanced. In the same places, a small fraction of relativistic electrons acquires large pitch-angles due to the interaction with plasma waves, leading to the synchrotron emission of the knots. The velocity of the plasma ejected from the nucleus of M87 should be 0.1 c. Thus, the M87 jet is one-sided

  7. Nestin expression in neuroepithelial tumors.

    Science.gov (United States)

    Schiffer, Davide; Manazza, Andrea; Tamagno, Ilaria

    2006-05-29

    Nestin is a marker of early stages of neurocytogenesis. It has been studied in 50 neuroepithelial tumors, mostly gliomas of different malignancy grades, by immunohistochemistry, immunofluorescence, immunoblotting, and confocal microscopy and compared with GFAP and Vimentin. As an early marker of differentiation, Nestin is almost not expressed in diffuse astrocytomas, variably expressed in anaplastic astrocytomas and strongly and irregularly expressed in glioblastomas. Negative in oligodendrogliomas, it stains ependymomas and shows a gradient of expression in pilocytic astrocytomas. In glioblastomas, Nestin distribution does not completely correspond to that of GFAP and Vimentin with which its expression varies in tumor cells in a complementary way, as confirmed by confocal microscopy. Tumor cells can thus either derive from or differentiate toward the neurocytogenetic stages. Hypothetically, they could be put in relation with radial glia where during embriogenesis the three antigens are successively expressed. Completely negative cells of invasive or recurrent glioblastomas may represent malignant selected clones after accumulation of mutations or early stem cells not expressing antigens.

  8. The neural stem cell fate determinant TLX promotes tumorigenesis and genesis of cells resembling glioma stem cells.

    Science.gov (United States)

    Park, Hyo-Jung; Kim, Jun-Kyum; Jeon, Hye-Min; Oh, Se-Yeong; Kim, Sung-Hak; Nam, Do-Hyun; Kim, Hyunggee

    2010-11-01

    A growing body of evidence indicates that deregulation of stem cell fate determinants is a hallmark of many types of malignancies. The neural stem cell fate determinant TLX plays a pivotal role in neurogenesis in the adult brain by maintaining neural stem cells. Here, we report a tumorigenic role of TLX in brain tumor initiation and progression. Increased TLX expression was observed in a number of glioma cells and glioma stem cells, and correlated with poor survival of patients with gliomas. Ectopic expression of TLX in the U87MG glioma cell line and Ink4a/Arf-deficient mouse astrocytes (Ink4a/Arf(-/-) astrocytes) induced cell proliferation with a concomitant increase in cyclin D expression, and accelerated foci formation in soft agar and tumor formation in in vivo transplantation assays. Furthermore, overexpression of TLX in Ink4a/Arf(-/-) astrocytes inhibited cell migration and invasion and promoted neurosphere formation and Nestin expression, which are hallmark characteristics of glioma stem cells, under stem cell culture conditions. Our results indicate that TLX is involved in glioma stem cell genesis and represents a potential therapeutic target for this type of malignancy.

  9. Influence of U(VI) on the metabolism of plant cells studied by microcalorimetry and TRLFS

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, Susanne; Geipel, Gerhard [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry; Fahmy, Karim; Oertel, Jana [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Bok, Frank [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes

    2017-06-01

    Uranium(VI) shows a concentration-dependent influence on the metabolic activity of plant cells. With increasing U(VI) concentration, the predominant U(VI) species in medium R{sub red} changes from UO{sub 2}HPO{sub 4}(s) to (UO{sub 2}){sub 3}(OH){sub 5}{sup +}, which may affect the bioavailability of U(VI).

  10. 3D nuclear organization of telomeres in the Hodgkin cell lines U-HO1 and U-HO1-PTPN1: PTPN1 expression prevents the formation of very short telomeres including "t-stumps"

    Directory of Open Access Journals (Sweden)

    Lemieux Bruno

    2010-12-01

    Full Text Available Abstract Background In cancer cells the three-dimensional (3D telomere organization of interphase nuclei into a telomeric disk is heavily distorted and aggregates are found. In Hodgkin's lymphoma quantitative FISH (3D Q-FISH reveals a major impact of nuclear telomere dynamics during the transition form mononuclear Hodgkin (H to diagnostic multinuclear Reed-Sternberg (RS cells. In vitro and in vivo formation of RS-cells is associated with the increase of very short telomeres including "t-stumps", telomere loss, telomeric aggregate formation and the generation of "ghost nuclei". Results Here we analyze the 3D telomere dynamics by Q-FISH in the novel Hodgkin cell line U-HO1 and its non-receptor protein-tyrosine phosphatase N1 (PTPN1 stable transfectant U-HO1-PTPN1, derived from a primary refractory Hodgkin's lymphoma. Both cell lines show equally high telomerase activity but U-HO1-PTPN differs from U-HO1 by a three times longer doubling time, low STAT5A expression, accumulation of RS-cells (p As expected, multinuclear U-HO1-RS-cells and multinuclear U-HO1-PTPN1-RS-cells differ from their mononuclear H-precursors by their nuclear volume (p Conclusion Abundant RS-cells without additional very short telomeres including "t-stumps", high rate of apoptosis, but low STAT5A expression, are hallmarks of the U-HO1-PTPN1 cell line. These characteristics are independent of telomerase activity. Thus, PTPN1 induced dephosphorylation of STAT5 with consecutive lack of Akt/PKB activation and cellular arrest in G2, promoting induction of apoptosis, appears as a possible pathogenetic mechanism deserving further experimental investigation.

  11. Assessment of the U937 cell line for the detection of contact allergens

    International Nuclear Information System (INIS)

    Python, Francois; Goebel, Carsten; Aeby, Pierre

    2007-01-01

    The human myeloid cell line U937 was evaluated as an in vitro test system to identify contact sensitizers in order to develop alternatives to animal tests for the cosmetic industry. Specific culture conditions (i.e., presence of interleukin-4, IL-4) were applied to obtain a dendritic cell-like phenotype. In the described test protocol, these cells were exposed to test chemicals and then analyzed by flow cytometry for CD86 expression and by quantitative real-time reverse transcriptase-polymerase chain reaction for IL-1β and IL-8 gene expressions. Eight sensitizers, three non-sensitizers and five oxidative hair dye precursors were examined after 24-, 48- and 72-h exposure times. Test item-specific modulations of the chosen activation markers (CD86, IL-1β and IL-8) suggest that this U937 activation test could discriminate test items classified as contact sensitizers or non-sensitizers in the local lymph node assay in mice (LLNA). More specifically, a test item can be considered as a potential sensitizer when it significantly induced the upregulation of the expression of at least two markers. Using this approach, we could correctly evaluate the dendritic cell (DC) activation potential for 15 out of 16 tested chemicals. We conclude that the U937 activation test may represent an useful tool in a future in vitro test battery for predicting sensitizing properties of chemicals

  12. Activation of Pro-uPA is Critical for Initial Escape from the Primary Tumor and Hematogenous Dissemination of Human Carcinoma Cells

    DEFF Research Database (Denmark)

    Bekes, Erin; Deryugina, Elena; Kuprianova, Tatyana

    2011-01-01

    disseminating variant of the human PC-3 prostate carcinoma cell line, PC-hi/diss, as a prototype of aggressive carcinomas to investigate the mechanisms whereby pro-uPA activation and uPA-generated plasmin functionally contribute to specific stages of metastasis. The PC-hi/diss cells secrete and activate...... significant amounts of pro-uPA, leading to efficient generation of plasmin in solution and at the cell surface. In a mouse orthotopic xenograft model, treatment with the specific pro-uPA activation-blocking antibody mAb-112 significantly inhibited local invasion and distant metastasis of the PC-hi/diss cells....... To mechanistically examine the uPA/plasmin-mediated aspects of tumor cell dissemination, the anti pro-uPA mAb-112 and the potent serine protease inhibitor, aprotinin, were utilized in parallel in a number of in vivo assays modeling various rate-limiting steps in early metastatic spread. Our findings demonstrate...

  13. Pitavastatin attenuates the PDGF-induced LR11/uPA receptor-mediated migration of smooth muscle cells

    International Nuclear Information System (INIS)

    Jiang, Meizi; Bujo, Hideaki; Zhu, Yanjuan; Yamazaki, Hiroyuki; Hirayama, Satoshi; Kanaki, Tatsuro; Shibasaki, Manabu; Takahashi, Kazuo; Schneider, Wolfgang J.; Saito, Yasushi

    2006-01-01

    Statins, inhibitors of HMG-CoA reductase, elicit various actions on vascular cells including the modulation of proliferation and migration of smooth muscle cells (SMCs). Here, we have elucidated the mechanism by which statins, in particular pitavastatin, attenuate the migration activity of SMCs. The expression of LR11, a member of the LDL receptor family and an enhancer of cell surface localization of urokinase-type plasminogen activator receptor (uPAR), is increased in cultured SMCs by treatment with PDGF-BB. Pitavastatin attenuates the PDGF-BB -induced surface expression of LR11 and uPAR. The increased migration of SMCs observed both upon overexpression of LR11 and via stimulation of secretion of soluble LR11 is not reversed by pitavastatin. In vivo studies showed that the SMCs expressing LR11 in plaques are almost congruent with intimal cells expressing nonmuscle myosin heavy chain (SMemb). Pitavastatin reduced the expression of LR11 and SMemb, and the levels of LR11, uPAR, and SMemb in cultured intimal SMCs were reduced to those seen in medial SMCs. We propose that this statin reduces PDGF-induced migration through the attenuation of the LR11/uPAR system in SMCs. Modulation of the LR11/uPAR system with statins suggests a novel treatment strategy for atherogenesis based on suppression of intimal SMC migration

  14. Oxalomalate, a competitive inhibitor of NADP+ -dependent isocitrate dehydrogenase, regulates lipid peroxidation-mediated apoptosis in U937 cells.

    Science.gov (United States)

    Yang, Eun Sun; Yang, Joon-Hyuck; Park, Ji Eun; Park, Jeen-Woo

    2005-01-01

    Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Recently, we demonstrated that the control of cytosolic redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic NADP+ -dependent isocitrate dehydrogenase (IDPc) through to supply NADPH for antioxidant systems. The protective role of IDPc against lipid peroxidation-mediated apoptosis in U937 cells was investigated in control and cells pre-treated with oxlalomalate, a competitive inhibitor of IDPc. Upon exposure to 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the susceptibility to apoptosis was higher in oxalomalate-treated cells as compared to control cells. The results suggest that IDPc plays an important protective role in apoptosis of U937 cells induced by lipid peroxidation-mediated oxidative stress.

  15. 48 CFR 1352.271-87 - Changes-ship repair.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Changes-ship repair. 1352.271-87 Section 1352.271-87 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 1352.271-87 Changes—ship repair. As prescribed in 48 CFR 1371.118,...

  16. Icariside II induces apoptosis in U937 acute myeloid leukemia cells: role of inactivation of STAT3-related signaling.

    Directory of Open Access Journals (Sweden)

    Sang-Hun Kang

    Full Text Available BACKGROUND: The aim of this study is to determine anti-cancer effect of Icariside II purified from the root of Epimedium koreanum Nakai on human acute myeloid leukemia (AML cell line U937. METHODOLOGY/PRINCIPAL FINDINGS: Icariside II blocked the growth U937 cells in a dose- and time-dependent manner. In this anti-proliferation process, this herb compound rendered the cells susceptible to apoptosis, manifested by enhanced accumulation of sub-G1 cell population and increased the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL-positive cells. Icariside II was able to activate caspase-3 and cleaved poly (ADP-ribose polymerase (PARP in a time-dependent manner. Concurrently, the anti-apoptotic proteins, such as bcl-x(L and survivin in U937 cells, were downregulated by Icariside II. In addition, Icariside II could inhibit STAT3 phosphorylation and function and subsequently suppress the activation of Janus activated kinase 2 (JAK2, the upstream activators of STAT3, in a dose- and time-dependent manner. Icariside II also enhanced the expression of protein tyrosine phosphatase (PTP SH2 domain-containing phosphatase (SHP-1, and the addition of sodium pervanadate (a PTP inhibitor prevented Icariside II-induced apoptosis as well as STAT3 inactivation in STAT3 positive U937 cells. Furthermore, silencing SHP-1 using its specific siRNA significantly blocked STAT3 inactivation and apoptosis induced by Icariside II in U937 cells. CONCLUSIONS/SIGNIFICANCE: Our results demonstrated that via targeting STAT3-related signaling, Icariside II sensitizes U937 cells to apoptosis and perhaps serves as a potent chemotherapeutic agent for AML.

  17. In vivo quantification of magnetically labelled cells by MRI relaxometry.

    Science.gov (United States)

    Gimenez, Ulysse; Lajous, Hélène; El Atifi, Michèle; Bidart, Marie; Auboiroux, Vincent; Fries, Pascal Henry; Berger, François; Lahrech, Hana

    2016-11-01

    Cellular MRI, which visualizes magnetically labelled cells (cells*), is an active research field for in vivo cell therapy and tracking. The simultaneous relaxation rate measurements (R 2 *, R 2 , R 1 ) are the basis of a quantitative cellular MRI method proposed here. U937 cells were labelled with Molday ION Rhodamine B, a bi-functional superparamagnetic and fluorescent nanoparticle (U937*). U937* viability and proliferation were not affected in vitro. In vitro relaxometry was performed in a cell concentration range of [2.5 × 10 4 -10 8 ] cells/mL. These measurements show the existence of complementary cell concentration intervals where these rates vary linearly. The juxtaposition of these intervals delineates a wide cell concentration range over which one of the relaxation rates in a voxel of an in vivo image can be converted into an absolute cell concentration. The linear regime was found at high concentrations for R 1 in the range of [10 6 - 2 × 10 8 ] cells/mL, at intermediate concentrations for R 2 in [2.5 × 10 5 - 5 × 10 7 ] cells/mL and at low concentrations for R 2 * in [8 × 10 4 - 5 × 10 6 ] cells/mL. In vivo relaxometry was performed in a longitudinal study, with labelled U937 cells injected into a U87 glioma mouse model. Using in vitro data, maps of in vivo U937* concentrations were obtained by converting one of the in vivo relaxation rates to cell concentration maps. MRI results were compared with the corresponding optical images of the same brains, showing the usefulness of our method to accurately follow therapeutic cell biodistribution in a longitudinal study. Results also demonstrate that the method quantifies a large range of magnetically labelled cells*. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Proliferation-dependent changes in amino acid transport and glucose metabolism in glioma cell lines

    International Nuclear Information System (INIS)

    Sasajima, Toshio; Miyagawa, Tadashi; Oku, Takamitsu; Gelovani, Juri G.; Finn, Ronald; Blasberg, Ronald

    2004-01-01

    Amino acid imaging is increasingly being used for assessment of brain tumor malignancy, extent of disease, and prognosis. This study explores the relationship between proliferative activity, amino acid transport, and glucose metabolism in three glioma cell lines (U87, Hs683, C6) at different phases of growth in culture. Growth phase was characterized by direct cell counting, proliferation index determined by flow cytometry, and [ 3 H]thymidine (TdR) accumulation, and was compared with the uptake of two non-metabolized amino acids ([ 14 C]aminocyclopentane carboxylic acid (ACPC) and [ 14 C]aminoisobutyric acid (AIB)), and [ 18 F]fluorodeoxyglucose (FDG). Highly significant relationships between cell number (density), proliferation index, and TdR accumulation rate were observed in all cell lines (r>0.99). Influx (K 1 ) of both ACPC and AIB was directly related to cell density, and inversely related to the proliferation index and TdR accumulation in all cell lines. The volume of distribution (V d ) for ACPC and AIB was lowest during rapid growth and highest during the near-plateau growth phase in all cell lines. FDG accumulation in Hs683 and C6 cells was unaffected by proliferation rate, growth phase, and cell density, whereas FDG accumulation was correlated with TdR accumulation, growth phase, and cell density in U87 cells. This study demonstrates that proliferation rate and glucose metabolism are not necessarily co-related in all glioma cell lines. The values of K 1 and V d for ACPC and AIB under different growth conditions suggest that these tumor cell lines can up-regulate amino acid transporters in their cell membranes when their growth conditions become adverse and less than optimal. (orig.)

  19. [Linezolid-induced Apoptosis through Mitochondrial Damage and Role of Superoxide Dismutase-1 in Human Monocytic Cell Line U937].

    Science.gov (United States)

    Fujii, Satoshi; Muraoka, Sanae; Miyamoto, Atsushi; Sakurai, Koichi

    2018-01-01

     Cytopenia is a major adverse event associated with linezolid therapy. The objective of this study was to examine whether the cytotoxicity of linezolid to eukaryotic cells was associated with mitochondrial dysfunction and apoptosis-like cell death in human leukemic monocyte lymphoma cell line U937. Apoptosis-like cell death was clearly observed when cells were incubated with linezolid, depending on the duration and linezolid concentration. Mitochondrial membrane potential of cells treated with linezolid collapsed in a short period of time, but the number of mitochondria did not decrease. Cytotoxicity of linezolid was relieved by the knockdown of superoxide dismutase-1 in U937 cells. On the other hand, no autophagy was observed in cells treated with linezolid. These results suggest that mitochondrial damages would be linked to the induction of apoptosis in U937 cells treated with linezolid and that its mechanism does not involve autophagy.

  20. Imaging of human glioblastoma cells and their interactions with mesenchymal stem cells in the zebrafish (Danio rerio) embryonic brain

    International Nuclear Information System (INIS)

    Vittori, Milos; Breznik, Barbara; Gredar, Tajda; Hrovat, Katja; Bizjak Mali, Lilijana; Lah, Tamara T

    2016-01-01

    An attractive approach in the study of human cancers is the use of transparent zebrafish (Danio rerio) embryos, which enable the visualization of cancer progression in a living animal. We implanted mixtures of fluorescently labeled glioblastoma (GBM) cells and bonemarrow-derived mesenchymal stem cells (MSCs) into zebrafish embryos to study the cellular pathways of their invasion and the interactions between these cells in vivo. By developing and applying a carbocyanine-dye-compatible clearing protocol for observation of cells in deep tissues, we showed that U87 and U373 GBM cells rapidly aggregated into tumor masses in the ventricles and midbrain hemispheres of the zebrafish embryo brain, and invaded the central nervous system, often using the ventricular system and the central canal of the spinal cord. However, the GBM cells did not leave the central nervous system. With co-injection of differentially labeled cultured GBM cells and MSCs, the implanted cells formed mixed tumor masses in the brain. We observed tight associations between GBM cells and MSCs, and possible cell-fusion events. GBM cells and MSCs used similar invasion routes in the central nervous system. This simple model can be used to study the molecular pathways of cellular processes in GBM cell invasion, and their interactions with various types of stromal cells in double or triple cell co-cultures, to design anti-GBM cell therapies that use MSCs as vectors

  1. ExoU contributes to late killing of Pseudomonas aeruginosa - infected endothelial cells ExoU contribui para a morte tardia de células endoteliais infectadas por Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Alessandra Mattos Saliba

    2003-11-01

    Full Text Available To ascertain the role of ExoU in late P. aeruginosa cytotoxicity, endothelial cells (EC were exposed to wild type PA103, PA103deltaexoU and PA103::exsA for 1h and to gentamicin in culture medium. After 24h, the viability of PA103-infected cells (33.7 ± 14.3% was significantly lower than the viability of PA103deltaexoU- (77.7 ± 6.3% or PA103::exsA- (79.5 ± 23.3% infected EC. P. aeruginosa cytotoxicity did not depend on the bacterial ability to interact with EC because the percentage of cells with associated PA103 (35.9 ± 15.8% was similar to the percentage in PA103deltaexoU- (34.2 ± 16.0% and lower than the percentage in PA103::exsA-infected cultures (82.9 ± 18.9%. Cell treatment with cytochalasin D reduced the PA103 internalization by EC but did not interfere with its ability to kill host cells.Para determinar o papel de ExoU na citotoxicidade tardia de P. aeruginosa, células endoteliais (CE foram expostas às cepas PA103, PA103deltaxoU e PA103::exsA por 1h e à gentamicina em meio de cultura. Após 24h, a viabilidade das CE infectadas com PA103 (33.7 ± 14.3% foi inferior à de CE infectadas com PA103deltaexoU (77.7 ± 6.3% e PA103::exsA (79.5 ± 23.3%. A citotoxicidade não dependeu da capacidade de interagir com as CE porque o percentual de células com bactérias associadas em culturas expostas a PA103 foi semelhante ao percentual em culturas expostas a PA103deltaexoU e inferior em culturas expostas a PA103::exsA. O tratamento das CE com citocalasina D reduziu a internalização de PA103, mas não interferiu em sua citotoxicidade.

  2. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2011

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Chandler, K.; Gikakis, C.

    2011-11-01

    This status report, fifth in a series of annual status reports from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), discusses the achievements and challenges of fuel cell propulsion for transit and summarizes the introduction of fuel cell transit buses in the United States. Progress this year includes an increase in the number of fuel cell electric buses (FCEBs), from 15 to 25, operating at eight transit agencies, as well as increased diversity of the fuel cell design options for transit buses. The report also provides an analysis of the combined results from fuel cell transit bus demonstrations evaluated by NREL with a focus on the most recent data through July 2011 including fuel cell power system reliability and durability; fuel economy; roadcall; and hydrogen fueling results. These evaluations cover 22 of the 25 FCEBs currently operating.

  3. Cerebellar giant cell glioblastoma multiforme in an adult

    Directory of Open Access Journals (Sweden)

    Sudhansu Sekhar Mishra

    2014-01-01

    Full Text Available Cerebellar glioblastoma multiforme (GBM is a rare tumor that accounts for only 1% of all cases of GBM and its giant cell variant is even much rarely encountered in adults. A case of cerebellar giant cell GBM managed at our institution reporting its clinical presentation, radiological and histological findings, and treatment instituted is described. In conjunction, a literature review, including particular issues, clinical data, advances in imaging studies, pathological characteristics, treatment options, and the behavior of such malignant tumor is presented. It is very important for the neurosurgeon to make the differential diagnosis between the cerebellar GBM, and other diseases such as metastasis, anaplastic astrocytomas, and cerebellar infarct because their treatment modalities, prognosis, and outcome are different.

  4. The influence of bromodeoxyuridine on the induction and repair of DNA double-strand breaks in glioblastoma cells

    International Nuclear Information System (INIS)

    Nusser, N.N.; Bartkowiak, D.; Roettinger, E.M.

    2002-01-01

    Aims: To examine the dose response of DNA damage and its modification by the radiosensitizer, 5-bromo-2'-deoxyuridine (BrdU). The sensitizing mechanism is analyzed with regard to its influence on the induction and repair of DNA double-strand breaks (DSBs). Material and Methods: Cells from three different human glioblastoma lines, A7, LH and U87MG, were X-irradiated with and without exposure to BrdU. DNA fragments were separated by field-inversion gel electrophoresis (FIGE) and quantified by fluorometry immediately and 24 h after irradiation. Results: In all cell lines, the dose response followed a linear-quadratic rather than a purely linear function. BrdU-treated cells exhibited a significantly higher amount of mobile DNA. In repair experiments with and without BrdU, the amount of mobile DNA fell close to control values within 24 h. Conclusions: The linear-quadratic model appropriately describes the X-ray induced fragmentation of DNA. BrdU sensitizing acts predominantly by increasing DNA fragility, and not by impairing damage repair. The amount of DSBs persistent after 24 h of repair is minimal, even after highly cytotoxic doses. However, it appears to depend on the extent of initial damage, causing sensitized cells to retain more DSBs than unsensitized cells. (orig.)

  5. Deficient expression of enhanced reactivation of parvovirus H-1 in ataxia telangiectasia cells irradiated with X-rays or u.v. light

    International Nuclear Information System (INIS)

    Gilgers, Genevieve; Chen, Y.Q.; Cornelis, J.J.; Rommelaere, Jean

    1987-01-01

    Cells of patients with ataxia telangiectasia (AT), an inherited disease characterized by a high propensity to cancer, are hypersensitive to ionizing radiation. We investigated whether the hyper-radiosensitivity of AT cells correlated with a defect in their constitutive and/or conditional ability to rescue a damaged exogenous virus. For that purpose, parvovirus H-1, a single-stranded DNA virus whose intranuclear replication mostly relies on host cell functions, was used as a probe. The survival of u.v.-or γ-irradiated H-1 was measured in X-, u.v.-or mock-irradiated human cells of normal (NB-E) or AT (AT5BIVA) origin. γ-Irradiated H-1 survived to similar extents in untreated normal and AT cell lines. Both X- and u.v.-irradiation induced normal cells to achieve an enhanced reactivation (ER) of γ- or u.v.-damaged H-1. In contrast, neither dose-effect curves nor time course revealed significant levels of ER expression after X- or u.v.-irradiation in AT5BIVA cells. Our results suggest that the impairment of ER of damaged parvoviruses may constitute a marker of the AT cell phenotype and be related to the radiosensitivity of AT cells. (author)

  6. Deficient expression of enhanced reactivation of parvovirus H-1 in ataxia telangiectasia cells irradiated with X-rays or u. v. light

    Energy Technology Data Exchange (ETDEWEB)

    Hilgers, G.; Chen, Y.Q.; Cornelis, J.J.; Rommelaere, J.

    1987-02-01

    Cells of patients with ataxia telangiectasia (AT), an inherited disease characterized by a high propensity to cancer, are hypersensitive to ionizing radiation. We investigated whether the hyper-radiosensitivity of AT cells correlated with a defect in their constitutive and/or conditional ability to rescue a damaged exogenous virus. For that purpose, parvovirus H-1, a single-stranded DNA virus whose intranuclear replication mostly relies on host cell functions, was used as a probe. The survival of u.v.- or gamma-irradiated H-1 was measured in X-, u.v.- or mock-irradiated human cells of normal (NB-E) or AT (AT5BIVA) origin. gamma-Irradiated H-1 survived to similar extents in untreated normal and AT cell lines. Both X- and u.v.-irradiation induced normal cells to achieve an enhanced reactivation (ER) of gamma- or u.v.-damaged H-1. In contrast, neither dose-effect curves nor time course revealed significant levels of ER expression after X- or u.v.-irradiation in AT5BIVA cells. Our results suggest that the impairment of ER of damaged parvoviruses may constitute a marker of the AT cell phenotype and be related to the radiosensitivity of AT cells.

  7. TREATMENT OF PROGRESSION OF DIFFUSE ASTROCYTOMA BY HERBAL MEDICINE: CASE REPORT.

    Science.gov (United States)

    Trogrlić, Ivo; Trogrlić, Dragan; Trogrlić, Zoran

    2016-01-01

    The paper presents the results of the use of phytotherapy in a 33-year-old woman who, after finishing the oncological treatment of diffuse astrocytoma, had tumour progression. Phytotherapy was introduced after the tumour had progressed. It consisted of 4 types of herbal medicine which the subject was taking in form of tea once a day at regular intervals. The patient started phytotherapy along with temozolomide, which was the only oncological treatment she was under after the tumour had progressed. Following the finished chemotherapy, the patient continued the treatment with herbal medicine only. She regularly took phytotherapy without interruption and to the fullest extent for 30 months, and the results of treatment were monitored by periodic scanning using nuclear magnetic resonance technique. The control scanning that was conducted after the end of combined treatment with temozolomide and phytotherapy showed tumour regression. The patient continued with phytotherapy after finishing chemotherapy and, during the following 24 months, it was the sole treatment option. In that period, the regression of the tumour continued, until a control examination 30 months after the introduction of phytotherapy showed no clinical and radiological signs of tumour. The results presented in this research paper clearly indicate the potential of phytotherapy in the treatment of some types of brain tumours. A complete regression of tumour following the treatment with nothing but herbal medicine offers support for such claim. Future research should demonstrate the effectiveness of phytotherapy, as a supplementary form of brain tumour treatment, and the results of this research should be compared with the existing information on the effectiveness of the protocols currently used in the treatment of these types of tumour.

  8. Molten salt e.m.f. cell measurements on U-Ga alloys

    International Nuclear Information System (INIS)

    Prabhakara Reddy, B.; Kandan, R.; Nagarajan, K.; Vasudeva Rao, P.R.

    2000-01-01

    The Gibbs free energy of formation of intermetallic compounds, UGa 3 , UGa 2 and U 2 Ga 3 were determined by using high temperature molten salt galvanic cell measurements in the temperature range of 644-988 K, 751-947 K and 800-950 K, respectively. (author)

  9. Generation of representative primary virus isolates from blood plasma after isolation of HIV-1 with CD44 MicroBeads

    NARCIS (Netherlands)

    Cornelissen, M; Heeregrave, E.J.; Zorgdrager, F.; Pollakis, G.; Paxton, W.A.; van der Kuyl, A.C.

    2010-01-01

    Infection of cell cultures with cell-free virus isolated from HIV-infected patients is notoriously difficult and results in a loss of viral variation. Here, we describe viral sequences from PBMC, U87.CD4.CCR5 and U87.CD4.CXCR4 cell cultures and compare them to those from blood plasma from 12

  10. Synergism between arsenite and proteasome inhibitor MG132 over cell death in myeloid leukaemic cells U937 and the induction of low levels of intracellular superoxide anion

    International Nuclear Information System (INIS)

    Lombardo, Tomás; Cavaliere, Victoria; Costantino, Susana N.; Kornblihtt, Laura; Alvarez, Elida M.; Blanco, Guillermo A.

    2012-01-01

    Increased oxygen species production has often been cited as a mechanism determining synergism on cell death and growth inhibition effects of arsenic-combined drugs. However the net effect of drug combination may not be easily anticipated solely from available knowledge of drug-induced death mechanisms. We evaluated the combined effect of sodium arsenite with the proteasome inhibitor MG132, and the anti-leukaemic agent CAPE, on growth-inhibition and cell death effect in acute myeloid leukaemic cells U937 and Burkitt's lymphoma-derived Raji cells, by the Chou–Talalay method. In addition we explored the association of cytotoxic effect of drugs with changes in intracellular superoxide anion (O 2 − ) levels. Our results showed that combined arsenite + MG132 produced low levels of O 2 − at 6 h and 24 h after exposure and were synergic on cell death induction in U937 cells over the whole dose range, although the combination was antagonistic on growth inhibition effect. Exposure to a constant non-cytotoxic dose of 80 μM hydrogen peroxide together with arsenite + MG132 changed synergism on cell death to antagonism at all effect levels while increasing O 2 − levels. Arsenite + hydrogen peroxide also resulted in antagonism with increased O 2 − levels in U937 cells. In Raji cells, arsenite + MG132 also produced low levels of O 2 − at 6 h and 24 h but resulted in antagonism on cell death and growth inhibition. By contrast, the combination arsenite + CAPE showed high levels of O 2 − production at 6 h and 24 h post exposure but resulted in antagonism over cell death and growth inhibition effects in U937 and Raji cells. We conclude that synergism between arsenite and MG132 in U937 cells is negatively associated to O 2 − levels at early time points after exposure. -- Highlights: ► Arsenic combined cytotoxic and anti-proliferative effects by Chou–Talalay method. ► Cytotoxic effect associated with superoxide levels as assessed by flow cytometry. ► Synergism

  11. Heterogeneity in 2-deoxy-D-glucose-induced modifications in energetics and radiation responses of human tumor cell lines

    International Nuclear Information System (INIS)

    Dwarkanath, Bilikere S.; Zolzer, Frido; Chandana, Sudhir; Bauch, Thomas; Adhikari, Jawahar S.; Muller, Wolfgang U.; Streffer, Christian; Jain, Viney

    2001-01-01

    Purpose: The glucose analog and glycolytic inhibitor, 2-deoxy-D-glucose (2-DG), has been shown to differentially enhance the radiation damage in tumor cells by inhibiting the postirradiation repair processes. The present study was undertaken to examine the relationship between 2-DG-induced modification of energy metabolism and cellular radioresponses and to identify the most relevant parameter(s) for predicting the tumor response to the combined treatment of radiation + 2-DG. Methods and Materials: Six human tumor cell lines (glioma: BMG-1 and U-87, squamous cell carcinoma: 4451 and 4197, and melanoma: MeWo and Be-11) were investigated. Cells were exposed to 2 Gy of Co-60 γ-rays or 250 kVP X-rays and maintained under liquid-holding conditions 2-4 h to facilitate repair. 2-DG (5 mM, equimolar with glucose) that was added at the time of irradiation was present during the liquid holding. Glucose utilization, lactate production (enzymatic assays), and adenine nucleotides (high performance liquid chromatography and capillary isotachophoresis) were investigated as parameters of energy metabolism. Induction and repair of DNA damage (comet assay), cytogenetic damage (micronuclei formation), and cell death (macrocolony assay) were analyzed as parameters of radiation response. Results: The glucose consumption and lactate production of glioma cell lines (BMG-1 and U-87) were nearly 2-fold higher than the squamous carcinoma cell lines (4197 and 4451). The ATP content varied from 3.0 to 6.5 femto moles/cell among these lines, whereas the energy charge (0.86-0.90) did not show much variation. Presence of 2-DG inhibited the rate of glucose usage and glycolysis by 30-40% in glioma cell lines and by 15-20% in squamous carcinoma lines, while ATP levels reduced by nearly 40% in all the four cell lines. ATP:ADP ratios decreased to a greater extent (∼40%) in glioma cells than in squamous carcinoma 4451 and MeWo cells; in contrast, presence of 2-DG reduced ADP:AMP ratios by 3-fold in

  12. Phosphorylated DegU Manipulates Cell Fate Differentiation in the Bacillus subtilis Biofilm

    Science.gov (United States)

    Marlow, Victoria L.; Porter, Michael; Hobley, Laura; Kiley, Taryn B.; Swedlow, Jason R.; Davidson, Fordyce A.

    2014-01-01

    Cell differentiation is ubiquitous and facilitates division of labor and development. Bacteria are capable of multicellular behaviors that benefit the bacterial community as a whole. A striking example of bacterial differentiation occurs throughout the formation of a biofilm. During Bacillus subtilis biofilm formation, a subpopulation of cells differentiates into a specialized population that synthesizes the exopolysaccharide and the TasA amyloid components of the extracellular matrix. The differentiation process is indirectly controlled by the transcription factor Spo0A that facilitates transcription of the eps and tapA (tasA) operons. DegU is a transcription factor involved in regulating biofilm formation. Here, using a combination of genetics and live single-cell cytological techniques, we define the mechanism of biofilm inhibition at high levels of phosphorylated DegU (DegU∼P) by showing that transcription from the eps and tapA promoter regions is inhibited. Data demonstrating that this is not a direct regulatory event are presented. We demonstrate that DegU∼P controls the frequency with which cells activate transcription from the operons needed for matrix biosynthesis in favor of an off state. Subsequent experimental analysis led us to conclude that DegU∼P functions to increase the level of Spo0A∼P, driving cell fate differentiation toward the terminal developmental process of sporulation. PMID:24123822

  13. 14 CFR 29.87 - Height-velocity envelope.

    Science.gov (United States)

    2010-01-01

    ... Category A engine isolation requirements, the height-velocity envelope for complete power failure must be... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Height-velocity envelope. 29.87 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.87 Height-velocity envelope. (a...

  14. Targeting ανβ3 and ανβ5 inhibits photon-induced hypermigration of malignant glioma cells

    International Nuclear Information System (INIS)

    Rieken, Stefan; Habermehl, Daniel; Mohr, Angela; Wuerth, Lena; Lindel, Katja; Weber, Klaus; Debus, Jürgen; Combs, Stephanie E

    2011-01-01

    Sublethal photon irradiation was recently suspected to increase tumor cell motility and promote locoregional recurrence of disease. This study was set up to describe mechanisms underlying increased glioma cell migration through photon irradiation and to analyse the modifiability of photon-altered glioma cell motility by integrin inhibition. Eight μm pore size membranes were coated with vitronectin (VN), collagen I and collagen IV. U87 and Ln229 glioma cells were analysed in migration experiments with and without radiotherapy (RT), serum stimulation and addition of monoclonal antibodies directed to human integrins α ν β 3 and α ν β 5 . Quantitative FACS analysis of integrins was performed in U87 and Ln229 glioma cells following RT. Statistical analysis was performed using Student's t-test. Glioma cell migration is serum-dependent and can be increased by photon RT which leads to enhanced expression of Vn receptor integrins. Blocking of either α ν β 3 or α ν β 5 integrins by antibodies inhibits Vn-based migration of both untreated and photon-irradiated glioma cells. Peripheral glioma cells are at risk of attraction into the adjacent healthy brain by serum components leaking through the blood brain barrier (BBB). Radiation therapy is associated with upregulation of Vn receptor integrins and enhanced glioma cell migration at sublethal doses. This effect can be inhibited by specific integrin blockade. Future therapeutical benefit may be derived from pharmacological integrin inhibition in combination with photon irradiation

  15. Functional single-walled carbon nanotubes based on an integrin αvβ3 monoclonal antibody for highly efficient cancer cell targeting

    International Nuclear Information System (INIS)

    Ou Zhongmin; Wu Baoyan; Xing Da; Zhou Feifan; Wang Huiying; Tang Yonghong

    2009-01-01

    The application of single-walled carbon nanotubes (SWNTs) in the field of biomedicine is becoming an entirely new and exciting topic. In this study, a novel functional SWNT based on an integrin α v β 3 monoclonal antibody was developed and was used for cancer cell targeting in vitro. SWNTs were first modified by phospholipid-bearing polyethylene glycol (PL-PEG). The PL-PEG functionalized SWNTs were then conjugated with protein A. A SWNT-integrin α v β 3 monoclonal antibody system (SWNT-PEG-mAb) was thus constructed by conjugating protein A with the fluorescein labeled integrin α v β 3 monoclonal antibody. In vitro study revealed that SWNT-PEG-mAb presented a high targeting efficiency on integrin α v β 3 -positive U87MG cells with low cellular toxicity, while for integrin α v β 3 -negative MCF-7 cells, the system had a low targeting efficiency, indicating that the high targeting to U87MG cells was due to the specific integrin targeting of the monoclonal antibody. In conclusion, SWNT-PEG-mAb developed in this research is a potential candidate for cancer imaging and drug delivery in cancer targeting therapy.

  16. Signaling factors and pathways of α-particle irradiation induced bilateral bystander responses between Beas-2B and U937 cells

    International Nuclear Information System (INIS)

    Fu, Jiamei; Wang, Juan; Wang, Xiangdong; Wang, Ping; Xu, Jinping; Zhou, Cuiping; Bai, Yang; Shao, Chunlin

    2016-01-01

    Highlights: • Radiation damage of Beas-2B cells was enhanced by macrophage-mediated bilateral bystander responses. • Expressions of TNF-α and IL-8 in the α-irradiated Beas-2B cells were dependent on ERK and p38 pathways. • The neighboring U937 cells further increased the generation of TNF-α and IL-8 in the α-irradiated Beas-2B cells. • NF-κB dependent upregulation of TNF-α and IL-8 was induced in the bystander U937 cells. - Abstract: Although radiation induced bystander effects (RIBE) have been investigated for decades for their potential health risk, the underlying gene regulation is still largely unclear, especially the roles of immune system and inflammatory response in RIBE. In the present study, macrophage U937 cells and epithelial Beas-2B cells were co-cultured to disclose the cascades of bystander signaling factors and intercellular communications. After α-particle irradiation, both ERK and p38 pathways were activated in Beas-2B cells and were associated with the autocrine and paracrine signaling of TNF-α and IL-8, resulting in direct damage to the irradiated cells. Similar upregulation of TNF-α and IL-8 was induced in the bystander U937 cells after co-culture with α-irradiated Beas-2B cells. This upregulation was dependent on the activation of NF-κB pathway and was responsible for the enhanced damage of α-irradiated Beas-2B cells. Interestingly, the increased expressions of TNF-α and IL-8 mRNAs in the bystander U937 cells were clearly relayed on the activated ERK and p38 pathways in the irradiated Beas-2B cells, and the upregulation of TNF-α and IL-8 mRNAs in co-cultured Beas-2B cells was also partly due to the activated NF-κB pathway in the bystander U937 cells. With the pretreatment of U0126 (MEK1/2 inhibitor), SB203580 (p38 inhibitor) or BAY 11-7082 (NF-κB inhibitor), the aggravated damage in the α-irradiated Beas-2B cells could be largely alleviated. Our results disclosed novel signaling cascades of macrophage-mediated bilateral

  17. Signaling factors and pathways of α-particle irradiation induced bilateral bystander responses between Beas-2B and U937 cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiamei; Wang, Juan; Wang, Xiangdong; Wang, Ping; Xu, Jinping; Zhou, Cuiping; Bai, Yang; Shao, Chunlin, E-mail: clshao@shmu.edu.cn

    2016-07-15

    Highlights: • Radiation damage of Beas-2B cells was enhanced by macrophage-mediated bilateral bystander responses. • Expressions of TNF-α and IL-8 in the α-irradiated Beas-2B cells were dependent on ERK and p38 pathways. • The neighboring U937 cells further increased the generation of TNF-α and IL-8 in the α-irradiated Beas-2B cells. • NF-κB dependent upregulation of TNF-α and IL-8 was induced in the bystander U937 cells. - Abstract: Although radiation induced bystander effects (RIBE) have been investigated for decades for their potential health risk, the underlying gene regulation is still largely unclear, especially the roles of immune system and inflammatory response in RIBE. In the present study, macrophage U937 cells and epithelial Beas-2B cells were co-cultured to disclose the cascades of bystander signaling factors and intercellular communications. After α-particle irradiation, both ERK and p38 pathways were activated in Beas-2B cells and were associated with the autocrine and paracrine signaling of TNF-α and IL-8, resulting in direct damage to the irradiated cells. Similar upregulation of TNF-α and IL-8 was induced in the bystander U937 cells after co-culture with α-irradiated Beas-2B cells. This upregulation was dependent on the activation of NF-κB pathway and was responsible for the enhanced damage of α-irradiated Beas-2B cells. Interestingly, the increased expressions of TNF-α and IL-8 mRNAs in the bystander U937 cells were clearly relayed on the activated ERK and p38 pathways in the irradiated Beas-2B cells, and the upregulation of TNF-α and IL-8 mRNAs in co-cultured Beas-2B cells was also partly due to the activated NF-κB pathway in the bystander U937 cells. With the pretreatment of U0126 (MEK1/2 inhibitor), SB203580 (p38 inhibitor) or BAY 11-7082 (NF-κB inhibitor), the aggravated damage in the α-irradiated Beas-2B cells could be largely alleviated. Our results disclosed novel signaling cascades of macrophage-mediated bilateral

  18. 48 CFR 552.211-87 - Export packing.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Export packing. 552.211-87... FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 552.211-87 Export packing. As prescribed in 511.204(b)(7), insert the following clause: Export Packing (JAN 2010) (a...

  19. Studies of the antitumor mechanism of action of dermaseptin B2, a multifunctional cationic antimicrobial peptide, reveal a partial implication of cell surface glycosaminoglycans.

    Directory of Open Access Journals (Sweden)

    Célia Dos Santos

    Full Text Available Dermaseptin-B2 (DRS-B2 is a multifunctional cationic antimicrobial peptide (CAP isolated from frog skin secretion. We previously reported that DRS-B2 possesses anticancer and antiangiogenic activities in vitro and in vivo. In the present study, we evaluated the antiproliferative activity of DRS-B2 on numerous tumor cell lines, its cell internalization and studies of its molecular partners as well as their influences on its structure. Confocal microscopy using ([Alexa594]-(Cys0-DRS-B2 shows that in sensitive human tumor cells (PC3, DRS-B2 seems to accumulate rapidly at the cytoplasmic membranes and enters the cytoplasm and the nucleus, while in less sensitive tumor cells (U87MG, DRS-B2 is found packed in vesicles at the cell membrane. Furthermore FACS analysis shows that PC3 cells viability decreases after DRS-B2 treatment while U87 MG seems to be unaffected. However, "pull down" experiments performed with total protein pools from PC3 or U87MG cells and the comparison between the antiproliferative effect of DRS-B2 and its synthetic analog containing all D-amino acids suggest the absence of a stereo-selective protein receptor. Pretreatment of PC3 cells with sodium chlorate, decreases the antiproliferative activity of DRS-B2. This activity is partially restored after addition of exogenous chondroitin sulfate C (CS-C. Moreover, we demonstrate that at nanomolar concentrations CS-C potentiates the antiproliferative effect of DRS-B2. These results highlight the partial implication of glycosaminoglycans in the mechanism of antiproliferative action of DRS-B2. Structural analysis of DRS-B2 by circular dichroism in the presence of increasing concentration of CS-C shows that DRS-B2 adopts an α-helical structure. Finally, structure-activity-relationship studies suggest a key role of the W residue in position 3 of the DRS-B2 sequence for its antiproliferative activity.

  20. Inhibition of histone deacetylases sensitizes glioblastoma cells to lomustine

    DEFF Research Database (Denmark)

    Staberg, Mikkel; Michaelsen, Signe Regner; Rasmussen, Rikke Darling

    2017-01-01

    the sensitizing effect of the HDACi trichostatin A (TSA) to the alkylating agent lomustine (CCNU), which is used in the clinic for the treatment of GBM. METHODS: Twelve primary GBM cell cultures grown as neurospheres were used in this study, as well as one established GBM-derived cell line (U87 MG). Histone...... are problems that call for a prompt development of novel therapeutic strategies. While only displaying modest efficacies as mono-therapy in pre-clinical settings, histone deacetylase inhibitors (HDACi) have shown promising sensitizing effects to a number of cytotoxic agents. Here, we sought to investigate...

  1. Dicty_cDB: Contig-U12802-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available cobacter cetorum strain MIT-0... 38 0.23 AF237484_1( AF237484 |pid:none) Dirofilaria immitis intermed...87 ( O97594 ) RecName: Full=Structural maintenance of chromosomes pro... 36 0.87 U00680_1( U00680 |pid:none) Brugia malayi intermed...1305( CP000879 |pid:none) Petrotoga mobilis SJ95, complet... 38 0.30 (Q9BZF9) RecName: Full=Uveal autoantigen with coiled...ns BAC clone RP11-764E7 from 2, complet... 34 0.79 6 ( FK620261 ) 454GmaGlobSeed354893 Soybean Seed...ditis elegans clone Y71H2X, *** SEQUENCI... 38 4.5 7 ( AC146972 ) Medicago truncatula clone mth2-128d9, compl

  2. shRNA-mediated EMMPRIN silencing inhibits human leukemic monocyte lymphoma U937 cell proliferation and increases chemosensitivity to adriamycin.

    Science.gov (United States)

    Gao, Hui; Jiang, Qixiao; Han, Yantao; Peng, Jianjun; Wang, Chunbo

    2015-03-01

    EMMPRIN is a widely distributed cell surface glycoprotein, which plays an important role in tumor progression and confers resistance to some chemotherapeutic drugs. Recent studies have shown that EMMPRIN overexpression indicates poor prognosis in acute myeloid leukemia (AML). However, little was known on the role of EMMPRIN in leukemia. Human leukemia cell line U937 was stably transfected with a EMMPRIN-targeted shRNA-containing vector to investigate the effect of EMMPRIN on cellular functions. EMMPRIN expression was monitored by qRT-PCR and Western blotting. Cell viability and proliferation were determined by trypan blue exclusion and BrdU labeling, respectively. Cell cycle and apoptosis were analyzed by flow cytometry. Cytotoxicity of chemotherapeutic agent adriamycin on cells was assessed by MTT assay. Knockdown of EMMPRIN gene significantly inhibited cell viability and decreased cell proliferation. Fluorescence-activated cell-sorting analysis revealed that the reduced EMMPRIN expression resulted in cell cycle arrest at G1 phase and induced apoptosis. Meanwhile, western blotting analysis showed that EMMPRIN knockdown was associated with downregulation of cell cycle- and apoptosis-related molecules including cyclin D1, cyclin E, as well as increase in cleavage of caspase-3 and PARP. This study also showed that silencing of EMMPRIN sensitized U937 cells to Adriamycin. EMMPRIN is involved in proliferation, growth, and chemosensitivity of human AML line U937, indicating that EMMPRIN may be a promising therapeutic target for AML.

  3. Observation of prolonged coherence time of the collective spin wave of an atomic ensemble in a paraffin-coated 87Rb vapor cell

    International Nuclear Information System (INIS)

    Jiang Shuo; Luo Xiaoming; Chen Liqing; Ning Bo; Chen Shuai; Wang Jingyang; Zhong Zhiping; Pan Jianwei

    2009-01-01

    We report a prolonged coherence time of the collective spin wave of a thermal 87 Rb atomic ensemble in a paraffin-coated cell. The spin wave is prepared through a stimulated Raman process. The long coherence time is achieved by prolonging the lifetime of the spins with paraffin coating and minimize dephasing with optimal experimental configuration. The observation of the long-time-delayed-stimulated Stokes signal in the writing process suggests the prolonged lifetime of the prepared spins; a direct measurement of the decay of anti-Stokes signal in the reading process shows the coherence time is up to 300 μs after minimizing dephasing. This is 100 times longer than the reported coherence time in the similar experiments in thermal atomic ensembles based on the Duan-Lukin-Cirac-Zoller and its improved protocols. This prolonged coherence time sets the upper limit of the memory time in quantum repeaters based on such protocols, which is crucial for the realization of long-distance quantum communication. The previous reported fluorescence background in the writing process due to collision in a sample cell with buffer gas is also reduced in a cell without buffer gas.

  4. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Hee, E-mail: leedneo@gmail.com [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Kim, Dong-Wook [Department of Microbiology, Immunology, and Cancer Biology, University of VA (United States); Jung, Chang-Hwa [Division of Metabolism and Functionality Research, Korea Food Research Institute (Korea, Republic of); Lee, Yong J. [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Park, Daeho, E-mail: daehopark@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  5. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    International Nuclear Information System (INIS)

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-01-01

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway

  6. The fuel cell boosts the U-Boot; La pile a combustible booste l'U-Boot

    Energy Technology Data Exchange (ETDEWEB)

    Gout, D.

    2006-02-15

    The new U-31 submarine put into service in the German navy is fitted with proton exchange membrane fuel cells (PEMFC) for the power supply of its electric engines. With an autonomy of about 5500 km (only limited by the inboard stored quantity of hydrogen and oxygen) the submarine becomes practically undetectable. Hydrogen is stored at low pressure in the form of lanthanum and nickel hydrides while oxygen is stored in the liquid form. (J.S.)

  7. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Rebecca; Zeino, Maen [Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany); Frewert, Simon [Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken (Germany); Efferth, Thomas, E-mail: efferth@uni-mainz.de [Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany)

    2014-11-15

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H{sup +}-ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes, is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation.

  8. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    International Nuclear Information System (INIS)

    Hamm, Rebecca; Zeino, Maen; Frewert, Simon; Efferth, Thomas

    2014-01-01

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H + -ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes, is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation

  9. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2010

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Chandler, K.; Gigakis, C.

    2010-11-01

    This status report, fourth in a series of annual status reports from the U.S. Department of Energy's National Renewable Energy Laboratory, summarizes progress and accomplishments from demonstrations of fuel cell transit buses in the United States. This year's assessment report provides the results from the fifth year of operation of five Van Hool, ISE, and UTC Power fuel cell buses operating at AC Transit, SunLine, and CTTRANSIT. The achievements and challenges of this bus design, implementation, and operating are presented, with a focus on the next steps for implementing larger numbers and new and different designs of fuel cell buses. The major positive result from nearly five years of operation is the dramatic increase in reliability experienced for the fuel cell power system.

  10. Restoration of u.v.-induced excision repair in Xeroderma D cells transfected with the denV gene of bacteriophage T4

    International Nuclear Information System (INIS)

    Arrand, J.E.; Squires, S.; Bone, N.M.; Johnson, R.T.

    1987-01-01

    The heritable DNA repair defect in human Xeroderma D cells, resulting in failure to incise at u.v. light-induced pyrimidine dimers, has been partially but stably corrected by transfection of immortalised cells with the denV pyrimidine dimer glycosylase gene of bacteriophage T4. Transfectants selected either for a dominant marker on the mammalian vector carrying the prokaryotic gene or for dominant marker plus resistance to killing by u.v. light, were shown to express the denV gene to varying degrees. denV expression results in significant phenotypic change in the initially repair-deficient, u.v.-hypersensitive cells. Increased resistance to u.v. light and more rapid recovery of replicative DNA synthesis following u.v. irradiation were correlated with improved repair DNA synthesis and with a novel dimer incision capability present in denV transfected Xeroderma cells but not as evident in transfected normal cells. Most transfectants contain a single integrated copy of the denV gene; increase in denV copy number does not result in either increased gene expression or enhanced survival to u.v. light. Results show that expression of a heterologous prokaryotic repair gene can partially compensate for the genetic defect in a human Xeroderma D cell. (author)

  11. Synergism between arsenite and proteasome inhibitor MG132 over cell death in myeloid leukaemic cells U937 and the induction of low levels of intracellular superoxide anion

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, Tomás [Laboratorio de Immunotoxicologia (LaITO), IDEHU-CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires (UBA), Buenos Aires (Argentina); Cavaliere, Victoria; Costantino, Susana N. [Laboratorio de Inmunología Tumoral (LIT), IDEHU-CONICET, Facultad de Farmacia y Bioquímica, UBA, Buenos Aires (Argentina); Kornblihtt, Laura [Servicio de Hematología, Hospital de Clínicas, José de San Martín (UBA), Buenos Aires (Argentina); Alvarez, Elida M. [Laboratorio de Inmunología Tumoral (LIT), IDEHU-CONICET, Facultad de Farmacia y Bioquímica, UBA, Buenos Aires (Argentina); Blanco, Guillermo A., E-mail: gblanco@ffyb.uba.ar [Laboratorio de Immunotoxicologia (LaITO), IDEHU-CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires (UBA), Buenos Aires (Argentina)

    2012-02-01

    Increased oxygen species production has often been cited as a mechanism determining synergism on cell death and growth inhibition effects of arsenic-combined drugs. However the net effect of drug combination may not be easily anticipated solely from available knowledge of drug-induced death mechanisms. We evaluated the combined effect of sodium arsenite with the proteasome inhibitor MG132, and the anti-leukaemic agent CAPE, on growth-inhibition and cell death effect in acute myeloid leukaemic cells U937 and Burkitt's lymphoma-derived Raji cells, by the Chou–Talalay method. In addition we explored the association of cytotoxic effect of drugs with changes in intracellular superoxide anion (O{sub 2}{sup −}) levels. Our results showed that combined arsenite + MG132 produced low levels of O{sub 2}{sup −} at 6 h and 24 h after exposure and were synergic on cell death induction in U937 cells over the whole dose range, although the combination was antagonistic on growth inhibition effect. Exposure to a constant non-cytotoxic dose of 80 μM hydrogen peroxide together with arsenite + MG132 changed synergism on cell death to antagonism at all effect levels while increasing O{sub 2}{sup −} levels. Arsenite + hydrogen peroxide also resulted in antagonism with increased O{sub 2}{sup −} levels in U937 cells. In Raji cells, arsenite + MG132 also produced low levels of O{sub 2}{sup −} at 6 h and 24 h but resulted in antagonism on cell death and growth inhibition. By contrast, the combination arsenite + CAPE showed high levels of O{sub 2}{sup −} production at 6 h and 24 h post exposure but resulted in antagonism over cell death and growth inhibition effects in U937 and Raji cells. We conclude that synergism between arsenite and MG132 in U937 cells is negatively associated to O{sub 2}{sup −} levels at early time points after exposure. -- Highlights: ► Arsenic combined cytotoxic and anti-proliferative effects by Chou–Talalay method. ► Cytotoxic effect

  12. A poly (U) polymerase in ribosome preparations from Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Guimaraes, R.C.; Bloch, D.P.

    1981-01-01

    A ribosome-bound poly (U) polymerase from Ehrlich ascites tumor cells is partially characterized. It adds UMPs to RNAs terminating in U-(3')-OH. The UMP-rich segments added reach average sizes of up to 18 nucleotides. CTP is strongly inhibitory to the enzyme. The main endogenous primers are low molecular weight RNAs which are found, after the addition of UMPs, mostly in the 6-8 S range. Some evidence suggests that a 5 S rRNA or polysome-associated 7 S RNA could be the main endogenous primers. (Author) [pt

  13. Swelling-induced chloride current in glioblastoma proliferation, migration, and invasion.

    Science.gov (United States)

    Wong, Raymond; Chen, Wenliang; Zhong, Xiao; Rutka, James T; Feng, Zhong-Ping; Sun, Hong-Shuo

    2018-01-01

    Glioblastoma (GBM) remains as the most common and aggressive brain tumor. The survival of GBM has been linked to the aberrant activation of swelling-induced chloride current I Cl,swell . In this study, we investigated the effects of I Cl,swell on cell viability, proliferation, and migration in the human GBM cell lines, U251 and U87, using a combination of patch clamp electrophysiology, MTT, colony formation, wound healing assays and Western immunoblotting. First, we showed that the specific inhibitor of I Cl,swell , DCPIB, potently reduced the I Cl,swell in U87 cells. Next, in both U87 and U251 cells, we found that DCPIB reduced GBM viability, proliferation, colony formation, migration, and invasion. In addition, our Western immunoblot assay showed that DCPIB-treated U251 cells had a reduction in JAK2, STAT3, and Akt phosphorylation, thus, suggesting that DCPIB potentially suppresses GBM functions through inhibition of the JAK2/STAT3 and PI3K/Akt signaling pathways. Therefore, the I Cl,swell may be a potential drug target for GBM. © 2017 Wiley Periodicals, Inc.

  14. Effects of combined radiofrequency radiation exposure on levels of reactive oxygen species in neuronal cells

    International Nuclear Information System (INIS)

    Kang, Kyoung Ah; Lee, Hyung Chul; Lee, Je-Jung

    2014-01-01

    The objective of this study was to investigate the effects of the combined RF radiation (837 MHz CDMA plus 1950 MHz WCDMA) signal on levels of intracellular reactive oxygen species (ROS) in neuronal cells. Exposure of the combined RF signal was conducted at specific absorption rate values of 2 W/kg of CDMA plus 2 W/kg of WCDMA for 2 h. Co-exposure to combined RF radiation with either H 2 O 2 or menadione was also performed. The experimental exposure groups were incubator control, sham-exposed, combined RF radiation-exposed with or without either H 2 O 2 or menadione groups. The intracellular ROS level was measured by flow cytometry using the fluorescent probe dichlorofluorescein diacetate. Intracellular ROS levels were not consistently affected by combined RF radiation exposure alone in a time-dependent manner in U87, PC12 or SH-SY5Y cells. In neuronal cells exposed to combined RF radiation with either H 2 O 2 or menadione, intracellular ROS levels showed no statically significant alteration compared with exposure to menadione or H 2 O 2 alone. These findings indicate that neither combined RF radiation alone nor combined RF radiation with menadione or H 2 O 2 influences the intracellular ROS level in neuronal cells such as U87, PC12 or SH-SY5Y. (author)

  15. Autophagy suppression potentiates the anti-glioblastoma effect of asparaginase in vitro and in vivo

    Science.gov (United States)

    Chen, Qicheng; Ye, Li; Fan, Jiajun; Zhang, Xuyao; Wang, Huan; Liao, Siyang; Song, Ping; Wang, Ziyu; Wang, Shaofei; Li, Yubin; Luan, Jingyun; Wang, Yichen; Chen, Wei; Zai, Wenjing; Yang, Ping; Cao, Zhonglian; Ju, Dianwen

    2017-01-01

    Asparaginase has been reported to be effective in the treatment of various leukemia and several malignant solid cancers. However, the anti-tumor effect of asparaginase is always restricted due to complicated mechanisms. Herein, we investigated the mechanisms of how glioblastoma resisted asparaginase treatment and reported a novel approach to enhance the anti-glioblastoma effect of asparaginase. We found that asparaginase could induce growth inhibition and caspase-dependent apoptosis in U87MG/U251MG glioblastoma cells. Meanwhile, autophagy was activated as indicated by autophagosomes formation and upregulated expression of LC3-II. Importantly, abolishing autophagy using chloroquine (CQ) and LY294002 enhanced the cytotoxicity and apoptosis induced by asparaginase in U87MG/U251MG cells. Further study proved that Akt/mTOR and Erk signaling pathways participated in autophagy induction, while reactive oxygen species (ROS) served as an intracellular regulator for both cytotoxicity and autophagy in asparaginase-treated U87MG/U251MG cells. Moreover, combination treatment with autophagy inhibitor CQ significantly enhanced anti-glioblastoma efficacy of asparaginase in U87MG cell xenograft model. Taken together, our results demonstrated that inhibition of autophagy potentiated the anti-tumor effect of asparagine depletion on glioblastoma, indicating that targeting autophagy and asparagine could be a potential approach for glioblastoma treatment. PMID:29207624

  16. Surgical resection of grade II astrocytomas in the superior frontal gyrus.

    Science.gov (United States)

    Peraud, Aurelia; Meschede, Magnus; Eisner, Wilhelm; Ilmberger, Josef; Reulen, Hans-Jürgen

    2002-05-01

    Surgery in the superior frontal gyrus partially involving the supplementary motor area (SMA) may be followed by contralateral transient weakness and aphasia initially indistinguishable from damage to the primary motor cortex. However, recovery is different, and SMA deficits may resolve completely within days to weeks. No study has assessed the distinct postoperative deficits after tumor resection in the SMA on a homogeneous patient group. Twenty-four patients with World Health Organization Grade II astrocytomas in the superior frontal gyrus consecutively treated by surgery were studied. Degree and duration of postoperative deficits were evaluated according to tumor location and boundaries via magnetic resonance imaging scans, intraoperative neuromonitoring results, and extent of tumor resection. Postoperatively, motor deficits were evident in 21 of 24 and speech deficits in 9 of 12 patients. Motor function quickly recovered in 11 and speech function in 3 patients. None of the 12 patients in whom the posterior tumor resection line was at a distance of more than 0.5 cm from the precentral sulcus experienced persistent motor deficits. Eight of these patients developed typical SMA syndrome with transient initiation difficulties. Seven of 12 patients in whom the tumor extended to the precentral sulcus still had motor deficits at the 12-month follow-up assessment. Surgery for Grade II gliomas in the superior frontal gyrus is more likely to result in permanent morbidity when the resection is performed at a distance of less than 0.5 cm from the precentral gyrus or positive stimulation points. Therefore, cortical mapping of motor and speech function, in critical cases under local anesthesia with the patient as his or her own monitor, is recommended; resection should be tailored to obtain good functional outcome and maintain quality of life.

  17. Aflac ST0901 CHOANOME - Sirolimus in Solid Tumors

    Science.gov (United States)

    2018-05-15

    Ewing's Sarcoma; Osteosarcoma; Astrocytoma; Atypical Teratoid/Rhabdoid Tumor; Ependymoma; Germ Cell Tumor; Glioma; Medulloblastoma; Rhabdoid Tumor; Retinoblastoma; Clear Cell Sarcoma; Renal Cell Carcinoma; Wilms Tumor; Hepatoblastoma; Neuroblastoma; Rhabdomyosarcoma

  18. A Unique Model System for Tumor Progression in GBM Comprising Two Developed Human Neuro-Epithelial Cell Lines with Differential Transforming Potential and Coexpressing Neuronal and Glial Markers

    Directory of Open Access Journals (Sweden)

    Anjali Shiras

    2003-11-01

    Full Text Available The molecular mechanisms involved in tumor progression from a low-grade astrocytoma to the most malignant glioblastoma multiforme (GBM have been hampered due to lack of suitable experimental models. We have established a model of tumor progression comprising of two cell lines derived from the same astrocytoma tumor with a set of features corresponding to low-grade glioma (as in HNGC-1 and high-grade GBM (as in HNGC-2. The HNGC-1 cell line is slowgrowing, contact-inhibited, nontumorigenic, and noninvasive, whereas HNGC-2 is a rapidly proliferating, anchorage-independent, highly tumorigenic, and invasive cell line. The proliferation of cell lines is independent of the addition of exogenous growth factors. Interestingly, the HNGC-2 cell line displays a near-haploid karyotype except for a disomy of chromosome 2. The two cell lines express the neuronal precursor and progenitor markers vimentin, nestin, MAP-2, and NFP160, as well as glial differentiation protein S100μ. The HNGC-1 cell line also expresses markers of mature neurons like Tuj1 and GFAP, an astrocytic differentiation marker, hence contributing toward a more morphologically differentiated phenotype with a propensity for neural differentiation in vitro. Additionally, overexpression of epidermal growth factor receptor and c-erbB2, and loss of fibronectin were observed only in the HNGC-2 cell line, implicating the significance of these pathways in tumor progression. This in vitro model system assumes importance in unraveling the cellular and molecular mechanisms in differentiation, transformation, and gliomagenesis.

  19. U.S. Clean Energy Hydrogen and Fuel Cell Technologies: A Competitiveness Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fullenkamp, Patrick [Westside Industrial Retention & Expansion Network, Cleveland, OH (United States); Holody, Diane [Westside Industrial Retention & Expansion Network, Cleveland, OH (United States); James, Brian [Strategic Analysis, Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis, Inc., Arlington, VA (United States); Wheeler, Douglas [DJW Technology, Dublin, OH (United States); Hart, David [E4tech, London (United Kingdom); Lehner, Franz [E4tech, London (United Kingdom)

    2017-10-10

    The objectives of this project are a 1) Global Competitiveness Analysis of hydrogen and fuel cell systems and components manufactured including 700 bar compressed hydrogen storage system in the U.S., Europe, Asia, and other key areas to be identified to determine the global cost leaders, the best current manufacturing processes, the key factors determining competitiveness, and the potential means of cost reductions; and an 2) Analysis to assess the status of global hydrogen and fuel cell markets. The analysis of units, megawatts by country and by application will focus on polymer electrolyte membrane (PEM) fuel cell systems (automotive and stationary).

  20. Malignant astrocytoma: hyperfractionated and standard radiotherapy with chemotherapy in a randomized prospective clinical trial

    International Nuclear Information System (INIS)

    Payne, D.G.; Simpson, W.J.; Keen, C.; Platts, M.E.

    1982-01-01

    A prospective randomized trial of 157 patients with malignant astrocytomas (Grade III or IV) was carried out at a single institution. The minimization technique ensured balanced distribution of prognostic factors between the treatment groups. All received oral lomustine (CCNU, 80 mg/m 2 ) six weekly and hydroxyurea (HU, 3.5 gm/m 2 over 5 days) three weekly, for one year or until recurrence, with doses adjusted for myelosuppression. Patients were randomized to daily (5000 rad in 25 fractions (fr) in 5 weeks) or Q3h (every 3 hours) Cobalt 60 irradiation (3600-4000 rad in 36-40 fr of 100 rad each, given 4 fr per day at 3-hour intervals over two weeks). Steroid therapy (up to 16 mg day dexamethasone) was permitted. Complications were moderate and equivalent in the two groups. No significant survival or toxicity differences were seen between the two groups. Age, initial performance status, and extent of surgical resection were found to be significant (P<0.01) prognostic factors for survival. Median survival of the whole group was 48 weeks with a minimum follow-up of one year. There was no advantage to large radiation fields. The hyperfractionation and daily regimes had similar efficacy and toxicity. Hyperfractionation with chemotherapy offers a useful alternative approach in the management of this disease

  1. Effectiveness of interferon-beta and temozolomide combination therapy against temozolomide-refractory recurrent anaplastic astrocytoma

    Directory of Open Access Journals (Sweden)

    Arai Hajime

    2007-08-01

    Full Text Available Abstract Background Malignant gliomas recur even after extensive surgery and chemo-radiotherapy. Although a relatively novel chemotherapeutic agent, temozolomide (TMZ, has demonstrated promising activity against recurrent glioma, the effects last only a few months and drug resistance develops thereafter in most cases. Induction of O6-methylguanine-DNA methyltransferase (MGMT in tumors is considered to be responsible for resistance to TMZ. Interferon-beta has been reported to suppress MGMT in an experimental glioma model. Here we report a patient with TMZ-refractory anaplastic astrocytoma (AA who was treated successfully with a combination of interferon-beta and TMZ. Case presentation A patient with recurrent AA after radiation-chemotherapy and stereotactic radiotherapy was treated with TMZ. After 6 cycles, the tumor became refractory to TMZ, and the patient was treated with interferon-beta at 3 × 106 international units/body, followed by 5 consecutive days of 200 mg/m2 TMZ in cycles of 28 days. After the second cycle the tumor decreased in size by 50% (PR. The tumor showed further shrinkage after 8 months and the patient's KPS improved from 70% to 100%. The immunohistochemical study of the initial tumor specimen confirmed positive MGMT protein expression. Conclusion It is considered that interferon-beta pre-administration increased the TMZ sensitivity of the glioma, which had been refractory to TMZ monotherapy.

  2. Regulation of YKL-40 expression during genotoxic or microenvironmental stress in human glioblastoma cells

    DEFF Research Database (Denmark)

    Junker, Nanna; Johansen, Julia S; Hansen, Lasse T

    2005-01-01

    YKL-40 is a 40 kDa secreted glycoprotein belonging to the family of 'mammalian chitinase-like proteins', but without chitinase activity. YKL-40 has a proliferative effect on fibroblasts, chondrocytes and synoviocytes, and chemotactic effect on endothelium and vascular smooth muscle cells. Elevated...... material from glioblastomas patients. We investigated the expression of YKL-40 in three human malignant glioma cell lines exposed to different types of stress. Whereas a polymerase chain reaction transcript was detectable in all three cell lines, only U87 produced measurable amounts of YKL-40 protein. In U...... is attenuated by p53. In contrast, both basic fibroblast growth factor and tumor necrosing factor-alpha repressed YKL-40. These are the first data on regulation of YKL-40 in cancer cells. Diverse types of stress resulted in YKL-40 elevation, which strongly supports an involvement of YKL-40 in the malignant...

  3. Increased Inhibitor of Differentiation 4 (Id4 Expression in Glioblastoma: A Tissue Microarray Study

    Directory of Open Access Journals (Sweden)

    Weifin Zeng, Elisabeth J. Rushing, Daniel P. Hartmann, Norio Azumi

    2010-01-01

    Full Text Available Background: The inhibitor of differentiation/DNA binding protein family (Id1-4 is involved in cell cycle control, tumorigenesis and angiogenesis through the negative regulation of helix-loop-helix transcription factors. Of these proteins, Id4 is known to play an important role in neural stem cell differentiation, and deregulation has been implicated in glial neoplasia. However, the expression and significance of Id4 in astrocytomas has not been fully addressed. Herein we report the differential expression of Id4 in astrocytomas of various grades using tissue microarrays (TMA and immunohistochemistry (IHC. Design: The GBM TMA was constructed from 53 archival cases at Georgetown University Hospital and a TMA with normal brain controls and grades II-III astrocytoma was obtained from Cybrdi (Rockville, MD. TMA sections were stained with Id4 antibody and the slides were scored according to the percentage of staining astrocytic nuclei (<9% -, 10-50% +, >51% ++. The Fisher Exact test was used to test for statistical significance. Results: Nuclear staining for Id4 was seen in 73.58% GBMs, 25% grade III, and 12.5% grade II astrocytomas; staining was absent in normal brain tissue. There was a statistically significant difference between GBM and grades II, III astrocytoma (p <0.01. Significant Id4 expression was not detected in normal brain. Conclusions: Our study confirms the frequent upregulation of Id4 expression in GBM, which lends support to its role in tumorigenesis, possibly in the transformation of low to high-grade astrocytoma (i.e. GBM. Further studies are warranted to determine the precise role of Id4 in glial neoplasia and its potential use in targeted therapy for GBM.

  4. In vivo imaging of tumor vascular endothelial cells

    Science.gov (United States)

    Zhao, Dawen; Stafford, Jason H.; Zhou, Heling; Thorpe, Philip E.

    2013-02-01

    Phosphatidylserine (PS), normally restricted to the inner leaflet of the plasma membrane, becomes exposed on the outer surface of viable (non-apoptotic) endothelial cells in tumor blood vessels, probably in response to oxidative stresses present in the tumor microenvironment. In the present study, we optically imaged exposed PS on tumor vasculature in vivo using PGN635, a novel human monoclonal antibody that targets PS. PGN635 F(ab')2 was labeled with the near infrared (NIR) dye, IRDye 800CW. Human glioma U87 cells or breast cancer MDA-MB-231 cells were implanted subcutaneously or orthotopically into nude mice. When the tumors reached ~5 mm in diameter, 800CW- PGN635 was injected via a tail vein and in vivo dynamic NIR imaging was performed. For U87 gliomas, NIR imaging allowed clear detection of tumors as early as 4 h later, which improved over time to give a maximal tumor/normal ratio (TNR = 2.9 +/- 0.5) 24 h later. Similar results were observed for orthotopic MDA-MB-231 breast tumors. Localization of 800CW-PGN635 to tumors was antigen specific since 800CW-Aurexis, a control probe of irrelevant specificity, did not localize to the tumors, and pre-administration of unlabeled PGN635 blocked the uptake of 800CW-PGN635. Fluorescence microscopy confirmed that 800CW-PGN635 was binding to PS-positive tumor vascular endothelium. Our studies suggest that tumor vasculature can be successfully imaged in vivo to provide sensitive tumor detection.

  5. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunjun [The Military General Hospital of Beijing PLA, Affiliated Bayi Brain Hospital (China); Zhang, Jinqian, E-mail: jingwanghou@yahoo.com.cn [Capital Medical University, Institute of Infectious Diseases, Beijing Ditan Hospital (China); Zhao, Ming [Peking University, Department of Chemical Biology, School of Pharmaceutical Sciences (China); Shi, Zujin [Peking University, Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering (China); Chen, Xin; He, Xihui; Han, Nanyin, E-mail: jingwanghou@sina.com [Peking University, Department of Chemical Biology, School of Pharmaceutical Sciences (China); Xu, Ruxiang, E-mail: everbright999@163.com [The Military General Hospital of Beijing PLA, Affiliated Bayi Brain Hospital (China)

    2013-08-15

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma.

  6. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    Science.gov (United States)

    Li, Yunjun; Zhang, Jinqian; Zhao, Ming; Shi, Zujin; Chen, Xin; He, Xihui; Han, Nanyin; Xu, Ruxiang

    2013-08-01

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma.

  7. Biosorption of U(VI) by the green algae Chlorella vulgaris in dependence of pH value and cell activity

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, M., E-mail: M.Vogel@fzd.de; Guenther, A.; Rossberg, A.; Li, B.; Bernhard, G.; Raff, J.

    2010-12-15

    Biosorption of uranium(VI) by the green alga Chlorella vulgaris was studied at varying uranium concentrations from 5 {mu}M to 1 mM, and in the environmentally relevant pH range of 4.4 to 7.0. Living cells bind in a 0.1 mM uranium solution at pH 4.4 within 5 min 14.3 {+-} 5.5 mg U/g dry biomass and dead cells 28.3 {+-} 0.6 mg U/g dry biomass which corresponds to 45% and 90% of total uranium in solution, respectively. During 96 h of incubation with uranium initially living cells died off and with 26.6 {+-} 2.1 mg U/g dry biomass bound similar amounts of uranium compared to dead cells, binding 27.0 {+-} 0.7 mg U/g dry biomass. In both cases, these amounts correspond to around 85% of the initially applied uranium. Interestingly, at a lower and more environmentally relevant uranium concentration of 5 {mu}M, living cells firstly bind with 1.3 {+-} 0.2 mg U/g dry biomass to 1.4 {+-} 0.1 mg U/g dry biomass almost all uranium within the first 5 min of incubation. But then algal cells again mobilize up to 80% of the bound uranium during ongoing incubation in the time from 48 h to 96 h. The release of metabolism related substances is suggested to cause this mobilization of uranium. As potential leachates for algal-bound uranium oxalate, citrate and ATP were tested and found to be able to mobilize more than 50% of the algal-bound uranium within 24 h. Differences in complexation of uranium by active and inactive algae cells were investigated with a combination of time-resolved laser-induced fluorescence spectroscopy (TRLFS), extended X-ray absorption fine structure (EXAFS) spectroscopy and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Obtained results demonstrated an involvement of carboxylic and organic/inorganic phosphate groups in the uranium complexation with varying contributions dependent on cell status, uranium concentration and pH.

  8. Biosorption of U(VI) by the green algae Chlorella vulgaris in dependence of pH value and cell activity

    International Nuclear Information System (INIS)

    Vogel, M.; Guenther, A.; Rossberg, A.; Li, B.; Bernhard, G.; Raff, J.

    2010-01-01

    Biosorption of uranium(VI) by the green alga Chlorella vulgaris was studied at varying uranium concentrations from 5 μM to 1 mM, and in the environmentally relevant pH range of 4.4 to 7.0. Living cells bind in a 0.1 mM uranium solution at pH 4.4 within 5 min 14.3 ± 5.5 mg U/g dry biomass and dead cells 28.3 ± 0.6 mg U/g dry biomass which corresponds to 45% and 90% of total uranium in solution, respectively. During 96 h of incubation with uranium initially living cells died off and with 26.6 ± 2.1 mg U/g dry biomass bound similar amounts of uranium compared to dead cells, binding 27.0 ± 0.7 mg U/g dry biomass. In both cases, these amounts correspond to around 85% of the initially applied uranium. Interestingly, at a lower and more environmentally relevant uranium concentration of 5 μM, living cells firstly bind with 1.3 ± 0.2 mg U/g dry biomass to 1.4 ± 0.1 mg U/g dry biomass almost all uranium within the first 5 min of incubation. But then algal cells again mobilize up to 80% of the bound uranium during ongoing incubation in the time from 48 h to 96 h. The release of metabolism related substances is suggested to cause this mobilization of uranium. As potential leachates for algal-bound uranium oxalate, citrate and ATP were tested and found to be able to mobilize more than 50% of the algal-bound uranium within 24 h. Differences in complexation of uranium by active and inactive algae cells were investigated with a combination of time-resolved laser-induced fluorescence spectroscopy (TRLFS), extended X-ray absorption fine structure (EXAFS) spectroscopy and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Obtained results demonstrated an involvement of carboxylic and organic/inorganic phosphate groups in the uranium complexation with varying contributions dependent on cell status, uranium concentration and pH.

  9. Development of a new LDL-based transport system for hydrophobic/amphiphilic drug delivery to cancer cells.

    Science.gov (United States)

    Huntosova, Veronika; Buzova, Diana; Petrovajova, Dana; Kasak, Peter; Nadova, Zuzana; Jancura, Daniel; Sureau, Franck; Miskovsky, Pavol

    2012-10-15

    Low-density lipoproteins (LDL), a natural in vivo carrier of cholesterol in the vascular system, play a key role in the delivery of hydrophobic/amphiphilic photosensitizers to tumor cells in photodynamic therapy of cancer. To make this delivery system even more efficient, we have constructed a nano-delivery system by coating of LDL surface by dextran. Fluorescence spectroscopy, confocal fluorescence imaging, stopped-flow experiments and flow-cytometry were used to characterize redistribution of hypericin (Hyp), a natural occurring potent photosensitizer, loaded in LDL/dextran complex to free LDL molecules as well as to monitor cellular uptake of Hyp by U87-MG cells. It is shown that the redistribution process of Hyp between LDL molecules is significantly suppressed by dextran coating of LDL surface. The modification of LDL molecules by dextran does not inhibit their recognition by cellular LDL receptors and U-87 MG cellular uptake of Hyp loaded in LDL/dextran complex appears to be similar to that one observed for Hyp transported by unmodified LDL particles. Thus, it is proposed that dextran modified LDL molecules could be used as a basis for construction of a drug transport system for targeted delivery of hydrophobic/amphiphilic drugs to cancer cells expressing high level of LDL receptors. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Red Blood Cell Transfusions in Greece: Results of a Survey of Red Blood Cell Use in 2013

    Directory of Open Access Journals (Sweden)

    Serena Valsami

    2017-03-01

    Full Text Available Objective: Greece is ranked as the second highest consumer of blood components in Europe. For an effective transfusion system and in order to reduce variability of transfusion practice by implementing evidence-based transfusion guidelines it is necessary to study and monitor blood management strategies. Our study was conducted in order to evaluate the use of red blood cell units (RBC-U in nationwide scale mapping parameters that contribute to their proper management in Greece. Materials and Methods: The survey was conducted by the Working Committee of Transfusion Medicine&Apheresis of the Hellenic Society of Hematology from January to December 2013. The collected data included the number, ABO/D blood group, patients’ department, and storage age of RBC-U transfused. Results: The number of RBC-U evaluated was 103,702 (17.77% out of 583,457 RBC-U transfused in Greece in 2013. RBC-U transfused by hospital department (mean percentage was as follows: Surgery 29.34%, Internal Medicine 29.48%, Oncology/Hematology 14.65%, Thalassemia 8.87%, Intensive Care Unit 6.55%, Nephrology 1.78%, Obstetrics/Gynecology 1.46%, Neonatal&Pediatric 0.31%, Private Hospitals 8.57%. RBC-U distribution according to ABO/D blood group was: A: 39.02%, B: 12.41%, AB: 5.16%, O: 43.41%, D+: 87.99%, D-: 12.01%. The majority of RBC-U (62.46% was transfused in the first 15 days of storage, 25.24% at 16 to 28 days, and 12.28% at 29-42 days. Conclusion: Despite a high intercenter variability in RBC transfusions, surgical and internal medicine patients were the most common groups of patients transfused with an increasing rate for internal medicine patients. The majority of RBC-U were transfused within the first 15 days of storage, which is possibly the consequence of blood supply insufficiency leading to the direct use of fresh blood. Benchmarking transfusion activity may help to decrease the inappropriate use of blood products, reduce the cost of care, and optimize the use of the

  11. NRF2 Signaling Negatively Regulates Phorbol-12-Myristate-13-Acetate (PMA-Induced Differentiation of Human Monocytic U937 Cells into Pro-Inflammatory Macrophages.

    Directory of Open Access Journals (Sweden)

    Min-Gu Song

    Full Text Available Blood monocytes are recruited to injured tissue sites and differentiate into macrophages, which protect against pathogens and repair damaged tissues. Reactive oxygen species (ROS are known to be an important contributor to monocytes' differentiation and macrophages' function. NF-E2-related factor 2 (NRF2, a transcription factor regulating cellular redox homeostasis, is known to be a critical modulator of inflammatory responses. We herein investigated the role of NRF2 in macrophage differentiation using the human monocytic U937 cell line and phorbol-12-myristate-13-acetate (PMA. In U937 cells with NRF2 silencing, PMA-stimulated cell adherence was significantly facilitated when compared to control U937 cells. Both transcript and protein levels for pro-inflammatory cytokines, including interleukine-1β (IL-1β, IL-6, and tumor necrosis factor-α (TNFα were highly elevated in PMA-stimulated NRF2-silenced U937 compared to the control. In addition, PMA-inducible secretion of monocyte chemotactic protein 1 (MCP-1 was significantly high in NRF2-silenced U937. As an underlying mechanism, we showed that NRF2-knockdown U937 retained high levels of cellular ROS and endoplasmic reticulum (ER stress markers expression; and subsequently, PMA-stimulated levels of Ca2+ and PKCα were greater in NRF2-knockdown U937 cells, which caused enhanced nuclear accumulation of nuclear factor-ҡB (NFҡB p50 and extracellular signal-regulated kinase (ERK-1/2 phosphorylation. Whereas the treatment of NRF2-silenced U937 cells with pharmacological inhibitors of NFҡB or ERK1/2 largely blocked PMA-induced IL-1β and IL-6 expression, indicating that these pathways are associated with cell differentiation. Taken together, our results suggest that the NRF2 system functions to suppress PMA-stimulated U937 cell differentiation into pro-inflammatory macrophages and provide evidence that the ROS-PKCα-ERK-NFҡB axis is involved in PMA-facilitated differentiation of NRF2-silenced U937

  12. Precision spectroscopy with ultracold {sup 87}Rb{sub 2} triplet molecules

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Christoph

    2011-10-19

    In this thesis I report precision spectroscopy with ultracold {sup 87}Rb{sub 2} triplet molecules where we use lasers to couple the states in different molecular potentials. We study in detail states of the a {sup 3} sum {sup +}{sub u} and (1) {sup 3} sum {sup +}{sub g} potentials. These states are of great importance for transferring weakly bound molecules to the ro-vibrational triplet ground state via states of the excited potential. As most experiments start from molecules in their X {sup 1} sum {sup +}{sub g} ground state, the triplet states were hard to access via dipole transitions and remained largely unexplored. The measurements presented in this thesis are the first detailed study of diatomic {sup 87}Rb{sub 2} molecules in these states. Our experiments start with an ultracold cloud of {sup 87}Rb atoms. We then load this cloud into an optical lattice where we use a magnetic Feshbach resonance at 1007.4 G to perform a Feshbach association. After we have removed all unbound atoms, we end up with a pure sample of weakly bound Feshbach molecules inside the optical lattice. The optical lattice prevents these molecules from colliding with each other which results in molecular lifetimes on the order of a few hundred milliseconds. In the first set of experiments, we use a laser coupling the Feshbach state to the excited (1) {sup 3} sum {sup +}{sub g} triplet state to map out its low-lying vibrational (v = 0.. 15), rotational, hyperfine, and Zeeman structure. The experimental results are in good agreement with calculations done by Marius Lysebo and Prof. Leif Veseth. We then map out in detail the vibrational, rotational, hyperfine, and Zeeman structure of the a {sup 3} sum {sup +}{sub u} triplet ground state using dark state spectroscopy with levels in the (1) {sup 3} sum {sup +}{sub g} potential as an intermediate state. In this scheme we are able to access molecules in triplet states because our Feshbach state has strong triplet character. Interestingly, it

  13. Precision spectroscopy with ultracold {sup 87}Rb{sub 2} triplet molecules

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Christoph

    2011-10-19

    In this thesis I report precision spectroscopy with ultracold {sup 87}Rb{sub 2} triplet molecules where we use lasers to couple the states in different molecular potentials. We study in detail states of the a {sup 3} sum {sup +}{sub u} and (1) {sup 3} sum {sup +}{sub g} potentials. These states are of great importance for transferring weakly bound molecules to the ro-vibrational triplet ground state via states of the excited potential. As most experiments start from molecules in their X {sup 1} sum {sup +}{sub g} ground state, the triplet states were hard to access via dipole transitions and remained largely unexplored. The measurements presented in this thesis are the first detailed study of diatomic {sup 87}Rb{sub 2} molecules in these states. Our experiments start with an ultracold cloud of {sup 87}Rb atoms. We then load this cloud into an optical lattice where we use a magnetic Feshbach resonance at 1007.4 G to perform a Feshbach association. After we have removed all unbound atoms, we end up with a pure sample of weakly bound Feshbach molecules inside the optical lattice. The optical lattice prevents these molecules from colliding with each other which results in molecular lifetimes on the order of a few hundred milliseconds. In the first set of experiments, we use a laser coupling the Feshbach state to the excited (1) {sup 3} sum {sup +}{sub g} triplet state to map out its low-lying vibrational (v = 0.. 15), rotational, hyperfine, and Zeeman structure. The experimental results are in good agreement with calculations done by Marius Lysebo and Prof. Leif Veseth. We then map out in detail the vibrational, rotational, hyperfine, and Zeeman structure of the a {sup 3} sum {sup +}{sub u} triplet ground state using dark state spectroscopy with levels in the (1) {sup 3} sum {sup +}{sub g} potential as an intermediate state. In this scheme we are able to access molecules in triplet states because our Feshbach state has strong triplet character. Interestingly, it

  14. Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells

    Science.gov (United States)

    Hatton, Jason P.; Gaubert, Francois; Cazenave, Jean-Pierre; Schmitt, Didier; Hashemi, B. B. (Principal Investigator); Hughes-Fulford, M. (Principal Investigator)

    2002-01-01

    Individual protein kinase C (PKC) isoforms fulfill distinct roles in the regulation of the commitment to differentiation, cell cycle arrest, and apoptosis in both monocytes and T-cells. The human monocyte like cell line U937 and T-cells were exposed to microgravity, during spaceflight and the translocation (a critical step in PKC signaling) of individual isoforms to cell particulate fraction examined. PKC activating phorbol esters induced a rapid translocation of several PKC isoforms to the particulate fraction of U937 monocytes under terrestrial gravity (1 g) conditions in the laboratory. In microgravity, the translocation of PKC beta II, delta, and epsilon in response to phorbol esters was reduced in microgravity compared to 1 g, but was enhanced in weak hypergravity (1.4 g). All isoforms showed a net increase in particulate PKC following phorbol ester stimulation, except PKC delta which showed a net decrease in microgravity. In T-cells, phorbol ester induced translocation of PKC delta was reduced in microgravity, compared to 1 g, while PKC beta II translocation was not significantly different at the two g-levels. These data show that microgravity differentially alters the translocation of individual PKC isoforms in monocytes and T-cells, thus providing a partial explanation for the modifications previously observed in the activation of these cell types under microgravity.

  15. Restricted growth of U-type infectious haematopoietic necrosis virus (IHNV) in rainbow trout cells may be linked to casein kinase II activity

    Science.gov (United States)

    Park, J.-W.; Moon, C.H.; Harmache, A.; Wargo, A.R.; Purcell, M.K.; Bremont, M.; Kurath, G.

    2011-01-01

    Previously, we demonstrated that a representative M genogroup type strain of infectious haematopoietic necrosis virus (IHNV) from rainbow trout grows well in rainbow trout-derived RTG-2 cells, but a U genogroup type strain from sockeye salmon has restricted growth, associated with reduced genome replication and mRNA transcription. Here, we analysed further the mechanisms for this growth restriction of U-type IHNV in RTG-2 cells, using strategies that assessed differences in viral genes, host immune regulation and phosphorylation. To determine whether the viral glycoprotein (G) or non-virion (NV) protein was responsible for the growth restriction, four recombinant IHNV viruses were generated in which the G gene of an infectious IHNV clone was replaced by the G gene of U- or M-type IHNV and the NV gene was replaced by NV of U- or M-type IHNV. There was no significant difference in the growth of these recombinants in RTG-2 cells, indicating that G and NV proteins are not major factors responsible for the differential growth of the U- and M-type strains. Poly I:C pretreatment of RTG-2 cells suppressed the growth of both U- and M-type IHNV, although the M virus continued to replicate at a reduced level. Both viruses induced type 1 interferon (IFN1) and the IFN1 stimulated gene Mx1, but the expression levels in M-infected cells were significantly higher than in U-infected cells and an inhibitor of the IFN1-inducible protein kinase PKR, 2-aminopurine (2-AP), did not affect the growth of U- or M-type IHNV in RTG-2 cells. These data did not indicate a role for the IFN1 system in the restricted growth of U-type IHNV in RTG-2 cells. Prediction of kinase-specific phosphorylation sites in the viral phosphoprotein (P) using the NetPhosK program revealed differences between U- and M-type P genes at five phosphorylation sites. Pretreatment of RTG-2 cells with a PKC inhibitor or a p38MAPK inhibitor did not affect the growth of the U- and M-type viruses. However, 100 μm of the

  16. Cucurbitacin E as a new inhibitor of cofilin phosphorylation in human leukemia U937 cells.

    Science.gov (United States)

    Nakashima, Souichi; Matsuda, Hisashi; Kurume, Ai; Oda, Yoshimi; Nakamura, Seikou; Yamashita, Masayuki; Yoshikawa, Masayuki

    2010-05-01

    Cucurbitane-type triterpenes, cucurbitacins B and E, were reported to exhibit cytotoxic effects in several cell lines mediated by JAK/STAT3 signaling. However, neither compound inhibited phosphorylation of STAT3 in human leukemia (U937) cells at low concentrations. We therefore synthesized a biotin-linked cucurbitacin E to isolate target proteins based on affinity for the molecule. As a result, cofilin, which regulates the depolymerization of actin, was isolated and suggested to be a target. Cucurbitacins E and I inhibited the phosphorylation of cofilin in a concentration-dependent manner, and their effective concentrations having the same range as the concentrations at which they had cytotoxic effects in U937 cells. In addition, the fibrous-/globular-actin ratio was decreased after treatment with cucurbitacin E in HT1080 cells. These findings suggested that the inhibition of cofilin's phosphorylation increased the severing activity of cofilin, and then the depolymerization of actin was enhanced after treatment with cucurbitacin E at lower concentrations. 2010 Elsevier Ltd. All rights reserved.

  17. Anticancer potential and mechanism of action of mango ginger (Curcuma amada Roxb.) supercritical CO₂ extract in human glioblastoma cells.

    Science.gov (United States)

    Ramachandran, Cheppail; Lollett, Ivonne V; Escalon, Enrique; Quirin, Karl-Werner; Melnick, Steven J

    2015-04-01

    Mango ginger (Curcuma amada Roxb.) is among the less-investigated species of Curcuma for anticancer properties. We have investigated the anticancer potential and the mechanism of action of a supercritical CO2 extract of mango ginger (CA) in the U-87MG human glioblastoma cell line. CA demonstrated higher cytotoxicity than temozolomide, etoposide, curcumin, and turmeric force with IC50, IC75, and IC90 values of 4.92 μg/mL, 12.87 μg/mL, and 21.30 μg/mL, respectively. Inhibitory concentration values of CA for normal embryonic mouse hypothalamus cell line (mHypoE-N1) is significantly higher than glioblastoma cell line, indicating the specificity of CA against brain tumor cells. CompuSyn analysis indicates that CA acts synergistically with temozolomide and etoposide for the cytotoxicity with combination index values of <1. CA treatment also induces apoptosis in glioblastoma cells in a dose-dependent manner and downregulates genes associated with apoptosis, cell proliferation, telomerase activity, oncogenesis, and drug resistance in glioblastoma cells. © The Author(s) 2014.

  18. Tapetal-Delayed Programmed Cell Death (PCD and Oxidative Stress-Induced Male Sterility of Aegilops uniaristata Cytoplasm in Wheat

    Directory of Open Access Journals (Sweden)

    Zihan Liu

    2018-06-01

    Full Text Available Cytoplasmic male sterility (CMS plays a crucial role in the utilization of hybrid vigor. Pollen development is often accompanied by oxidative metabolism responses and tapetal programmed cell death (PCD, and deficiency in these processes could lead to male sterility. Aegilops uniaristata cytoplasmic male sterility (Mu-CMS wheat is a novel male-sterile line in wheat, which possess important potential in hybrid wheat breeding. However, its CMS mechanisms remain poorly understood. In our study, U87B1-706A, with the Aegilops uniaristata cytoplasm, and the maintainer line 706B were used to explore the abortive reason. Compared with 706B, histological analysis and PCD detection of the anther demonstrated that U87B1-706A appeared as delayed tapetal PCD as well as a disorganized organelle phenotype in the early uninucleate stage. Subsequently, a shrunken microspore and disordered exine structure were exhibited in the late uninucleate stage. While the activities of antioxidase increased markedly, the nonenzymatic antioxidant contents declined obviously following overacummulation of reactive oxygen species (ROS during pollen development in U87B1-706A. Real-time quantitative PCR testified that the transcript levels of the superoxide dismutase (SOD, catalase (CAT, and ascorbate peroxidase (APX genes, encoding pivotal antioxidant enzymes, were up-regulated in early pollen development. Therefore, we deduce excess ROS as a signal may be related to the increased expression levels of enzyme genes, thereby breaking the antioxidative system balance, resulting in delayed tapetal PCD initiation, which finally led to pollen abortion and male sterility in U87B1-706A. These results provide evidence to further explore the mechanisms of abortive pollen in CMS wheat.

  19. Production of factor VIII by human liver sinusoidal endothelial cells transplanted in immunodeficient uPA mice.

    Directory of Open Access Journals (Sweden)

    Marina E Fomin

    Full Text Available Liver sinusoidal endothelial cells (LSECs form a semi-permeable barrier between parenchymal hepatocytes and the blood. LSECs participate in liver metabolism, clearance of pathological agents, immunological responses, architectural maintenance of the liver and synthesis of growth factors and cytokines. LSECs also play an important role in coagulation through the synthesis of Factor VIII (FVIII. Herein, we phenotypically define human LSECs isolated from fetal liver using flow cytometry and immunofluorescence microscopy. Isolated LSECs were cultured and shown to express endothelial markers and markers specific for the LSEC lineage. LSECs were also shown to engraft the liver when human fetal liver cells were transplanted into immunodeficient mice with liver specific expression of the urokinase-type plasminogen activator (uPA transgene (uPA-NOG mice. Engrafted cells expressed human Factor VIII at levels approaching those found in human plasma. We also demonstrate engraftment of adult LSECs, as well as hepatocytes, transplanted into uPA-NOG mice. We propose that overexpression of uPA provides beneficial conditions for LSEC engraftment due to elevated expression of the angiogenic cytokine, vascular endothelial growth factor. This work provides a detailed characterization of human midgestation LSECs, thereby providing the means for their purification and culture based on their expression of CD14 and CD32 as well as a lack of CD45 expression. The uPA-NOG mouse is shown to be a permissive host for human LSECs and adult hepatocytes, but not fetal hepatoblasts. Thus, these mice provide a useful model system to study these cell types in vivo. Demonstration of human FVIII production by transplanted LSECs encourages further pursuit of LSEC transplantation as a cellular therapy for the treatment of hemophilia A.

  20. Growing Stem Cells: The Impact of Federal Funding Policy on the U.S. Scientific Frontier

    Science.gov (United States)

    Furman, Jeffrey L.; Murray, Fiona; Stern, Scott

    2012-01-01

    This paper articulates a citation-based approach to science policy evaluation and employs that approach to investigate the impact of the United States' 2001 policy regarding the federal funding of human embryonic stem cell (hESC) research. We evaluate the impact of the policy on the level of U.S. hESC research, the U.S. position at the knowledge…