WorldWideScience

Sample records for u-19bf drill site

  1. Ocean Drilling Program: Web Site Access Statistics

    Science.gov (United States)

    web site ODP/TAMU Science Operator Home Ocean Drilling Program Web Site Access Statistics* Overview See statistics for JOIDES members. See statistics for Janus database. 1997 October November December

  2. Effects of a Short Drilling Implant Protocol on Osteotomy Site Temperature and Drill Torque.

    Science.gov (United States)

    Mihali, Sorin G; Canjau, Silvana; Cernescu, Anghel; Bortun, Cristina M; Wang, Hom-Lay; Bratu, Emanuel

    2018-02-01

    To establish a protocol for reducing the drilling sequence during implant site preparation based on temperature and insertion torque. The traditional conventional drilling sequence (used several drills with 0.6-mm increment each time) was compared with the proposed short drilling protocol (only used 2 drills: initial and final drill). One hundred drilling osteotomies were performed in bovine and porcine bones. Sets of 2 osteotomy sites were created in 5 bone densities using 2 types of drilling protocols. Thermographic pictures were captured throughout all drilling procedures and analyzed using ThermaCAM Researcher Professional 2.10. Torque values were determined during drilling by measuring electrical input and drill speed. There were statistically significant differences in bone temperature between the conventional and short drilling protocols during implant site preparation (analysis of variance P = 0.0008). However, there were no significant differences between the 2 types of drilling protocols for both implant diameters. Implant site preparation time was significantly reduced when using the short drilling protocol compared with the conventional drilling protocol (P drilling protocol proposed herein may represent a safe approach for implant site preparation.

  3. Drilling Automation Tests At A Lunar/Mars Analog Site

    Science.gov (United States)

    Glass, B.; Cannon, H.; Hanagud, S.; Lee, P.; Paulsen, G.

    2006-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. The limited mass, energy and manpower in planetary drilling situations makes application of terrestrial drilling techniques problematic. The Drilling Automation for Mars Exploration (DAME) project is developing drilling automation and robotics for projected use in missions to the Moon and Mars in the 2011-15 period. This has been tested recently, drilling in permafrost at a lunar/martian analog site (Haughton Crater, Devon Island, Canada).

  4. Recovery of oil from underground drill sites

    International Nuclear Information System (INIS)

    Streeter, W.S.; Hutchinson, T.S.; Ameri, S.; Wasson, J.A.; Aminian, K.

    1991-01-01

    This paper reports that a significant quantity of oil is left in reservoirs after conventional oil recovery techniques have been applied. In West Virginia and Pennsylvania alone, this oil has been estimated at over 4.5 billion barrels (0.72 billion m 3 ). Conventional recovery methods are already being used when applicable. But a new recovery method is needed for use in reservoirs that have been abandoned. One alternative method for recovery of the residual oil is known as oil recovery from underground drill sites. This recovery technology is a combination of proven methods and equipment from the petroleum, mining, and civil construction industries. Underground oil recovery can be an economically viable method of producing oil. This has been shown in producing fields, field tests, and feasibility, studies. Faced with decreasing domestic oil production, the petroleum industry should give serious consideration to the use of oil recovery from underground drill sites as a safe, practical, and environmentally sensitive alternative method of producing oil from many reservoirs

  5. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    International Nuclear Information System (INIS)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-01-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of approximately minus8 m (minus27 ft.), following a predetermined drill path, tracking the drill path to within a radius of approximately1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of ∼ -21 m (-70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned

  6. Experimental Analysis of Temperature Differences During Implant Site Preparation: Continuous Drilling Technique Versus Intermittent Drilling Technique.

    Science.gov (United States)

    Di Fiore, Adolfo; Sivolella, Stefano; Stocco, Elena; Favero, Vittorio; Stellini, Edoardo

    2018-02-01

    Implant site preparation through drilling procedures may cause bone thermonecrosis. The aim of this in vitro study was to evaluate, using a thermal probe, overheating at implant sites during osteotomies through 2 different drilling methods (continuous drilling technique versus intermittent drilling technique) using irrigation at different temperatures. Five implant sites 13 mm in length were performed on 16 blocks (fresh bovine ribs), for a total of 80 implant sites. The PT-100 thermal probe was positioned 5 mm from each site. Two physiological refrigerant solutions were used: one at 23.7°C and one at 6.0°C. Four experimental groups were considered: group A (continuous drilling with physiological solution at 23.7°C), group B (intermittent drilling with physiological solution at 23.7°C), group C (continuous drilling with physiological solution at 6.0°C), and group D (intermittent drilling with physiological solution at 6.0°C). The Wilcoxon rank-sum test (2-tailed) was used to compare groups. While there was no difference between group A and group B (W = 86; P = .45), statistically significant differences were observed between experimental groups A and C (W = 0; P =.0001), B and D (W = 45; P =.0005), and C and D (W = 41; P = .003). Implant site preparation did not affect the overheating of the bone. Statistically significant differences were found with the refrigerant solutions. Using both irrigating solutions, bone temperature did not exceed 47°C.

  7. A field guide for well site geologists: Cable tool drilling

    International Nuclear Information System (INIS)

    Last, G.V.; Liikala, T.L.

    1987-12-01

    This field is intended for use by Pacific Northwest Laboratory well site geologists who are responsible for data collection during the drilling and construction of monitoring wells on the Hanford Site. This guide presents standardized methods for geologic sample collection and description, and well construction documentation. 5 refs., 5 figs., 2 tabs

  8. Geologic investigations of drill hole sloughing problems, Nevada Test Site

    International Nuclear Information System (INIS)

    Drellack, S.L. Jr.; Davies, W.J.; Gonzales, J.L.; Hawkins, W.L.

    1983-01-01

    Severe sloughing zones encountered while drilling large diameter emplacement holes in Yucca Flat, Nevada Test Site, have been identified, correlated and predicted through detailed geologic investigations. In central and southeastern Area 7 and in northern Area 3, the unstable zones are a very fine-grained, well-sorted, unconsolidated sand deposit, probably eolian in origin, which will readily flow into large diameter drill holes. Other areas exhibit hole erosion related to poor induration or extensive zeolitization of the Tertiary tuff units which are very friable and porous. By examining drill hole samples, geophysical logs, caliper logs and drilling histories, these problem zones can be characterized, correlated and then projected into nearby sites. Maps have been generated to show the depth, thickness and areal extent of these strata. In some cases, they are local and have a lenticular geometry, while in others they are quite extensive. The ability to predict such features can enhance the quality of the hole construction and completion operations to avoid costly delays and the loss of valuable testing real estate. The control of hole enlargements will also eliminate related containment concerns, such as stemming uncertainties

  9. The question of chemical processing of drilling muds when drilling wells at the Bulla Sea site

    Energy Technology Data Exchange (ETDEWEB)

    Ismaylov, A P; Avanesova, A M; Noven' kov, Yu P

    1979-01-01

    Based on the experience in the sinking of a number of deep wells in the Bulla Sea site, an integral chemical processing of drilling muds is recommended. The experience is shown of using inhibited gypsum systems in drilling in the deposits of the Akchagyl'sk stage and the PT to the roof of the V level instead of the previously used KSSB with viscosity reducers. From the roof of the V level because of the increased content of sandstone material the type of chemical processing is changed - instead of gypsum solutions, solutions are recommended, which are processed by KSSB in combination with oxyl with additives of bentonite clay because of their low content in the section.

  10. Site specific health and safety plan for drilling in support of in situ redox manipulation

    International Nuclear Information System (INIS)

    Tuttle, B.G.

    1997-02-01

    This document contains the Site Specific Health and Safety Plan for Drilling in support of the In Situ REDOX Manipulation in the 100-HR-3 Operable Unit. Approximately eight wells will be drilled in the 100-D/DR Area using rotary, sonic, or cable tool drilling methods. Split-spoon sampling will be done in conjunction with the drilling. The drilling may be spread out over several months. Included in this document are checklists for health and safety procedures

  11. Prioritization to limit sampling and drilling in site investigations

    International Nuclear Information System (INIS)

    Burton, J.C.

    1992-01-01

    One of the major goals of the Environmental Research Division of Argonne National Laboratory is to develop and provide governmental agencies with technically sound, cost-effective frameworks for environmental site characterization and remedial programs. An example of the development of such a framework for preremedial site characterization is presented in this paper. Specifically, this paper presents portions of an expanded site investigation program developed for landfills suspected of containing hazardous waste. The work was sponsored by the New Mexico State Office of the US Department of Interior's Bureau of Land Management (BLM). The emphasis of the BLM program was on identifying initial characterization procedures that would decrease the need for sampling and drilling on a random grid

  12. A cadaveric study of bone tissue temperature during pin site drilling utilizing fluoroptic thermography.

    Science.gov (United States)

    Muffly, Matthew; Winegar, Corbett; Miller, Mark Carl; Altman, Gregory

    2018-05-03

    Using fluoroptic thermography, temperature was measured during pin site drilling of intact cortical human cadaver bone with a combination of one-step drilling, graduated drilling, and one-step drilling with irrigation of 5.0 mm Schanz pins. A 1440 rpm constant force drilling was used to on tibial diaphyses while a sensor probe placed 0.5 mm adjacent to the drill hole measured temperature. Four drilling techniques on each of the tibial segments were performed: 3.5mm drill bit, 5.0mm Schanz pin, 5.0 mm Schanz pin in 3.5 mm pre-drilled entry site, 5.0 mm Schanz pin utilizing irrigation. One-step drilling using a 5.0 mm Schanz pin without irrigation produced a temperature that exceeded the threshold temperature for heat-induced injury in 5 of the 8 trials. With the other three drilling techniques, only one in24 trials produced a temperature that would result in thermal injury. This difference was found to be statistically significant (p = 0.003). The use of irrigation significantly reduced the maximum bone tissue temperature in one-step drilling of a 5.0 mm Schanz pin (p = 0.02). One-step drilling with a 3.5 mm drill bit achieved maximum temperature significantly faster than graduated drilling and drilling with irrigation using a 5.0 mm Schanz pin (p drilling with a 5.0 mm Schanz pin into cortical bone can produce temperatures that can lead to heat-induced injury. Irrigation alone can reduce the temperatures sufficiently to avoid damage. Pre-drilling can increase temperatures significantly but the extent of any injury should be small.

  13. Horizontal directional drilling: a green and sustainable technology for site remediation.

    Science.gov (United States)

    Lubrecht, Michael D

    2012-03-06

    Sustainability has become an important factor in the selection of remedies to clean up contaminated sites. Horizontal directional drilling (HDD) is a relatively new drilling technology that has been successfully adapted to site remediation. In addition to the benefits that HDD provides for the logistics of site cleanup, it also delivers sustainability advantages, compared to alternative construction methods.

  14. Geology of the U12n.07 UG-3 drill hole, area 12, Nevada Test Site

    International Nuclear Information System (INIS)

    Terry, S.S.; Cunningham, M.J.

    1975-11-01

    The U12n.07 UG-3 horizontal drill hole, located near the eastern edge of the center of Rainier Mesa, Nevada Test Site, was drilled to a total depth of 809 m (2,653 ft). This hole was drilled to further evaluate the tunnel-level stratigraph, and structure southwest of the U12n tunnel complex. The drill hole is collared in the middle of Tertiary tunnel bed 3A and penetrates upsection through tunnel beds 3 and 4 and terminates in subunit 4K, all of Tertiary age. Stratigraphy, structure, engineering geology, and physical properties and their relation to tunnel engineering are discussed

  15. Techniques Employed to Conduct Postshot Drilling at the former Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Dekin, W D

    2011-04-14

    Postshot drilling provided essential data on the results of the underground nuclear tests conducted at the Nevada Test Site (NTS), now identified as the Nevada National Security Site (NNSS). It was the means by which samples from the zone of interest were obtained for radiochemical analysis. This handbook describes how Lawrence Livermore National Laboratory (LLNL) conducted postshot drilling operations at the NTS, and it provides a general understanding of the process. Postshot drilling is a specialized application of rotary drilling. Accordingly, this handbook gives a brief description of rotary drilling in Section 2 to acquaint the reader with the general subject before proceeding to the specialized techniques used in postshot drilling. In Section 3, the handbook describes the typical postshot drilling situation at the former NTS and the drilling methods used. Section 4 describes the typical sequence of operations in postshot drilling at the former NTS. Detailed information on special equipment and techniques is given in a series of appendices (A through F) at the end of the handbook.

  16. Test plan for sonic drilling at the Hanford Site in FY 1993

    International Nuclear Information System (INIS)

    McLellan, G.W.

    1993-01-01

    This test plan describes the field demonstration of the sonic drilling system being conducted as a coordinated effort between the VOC-Arid ID (Integrated Demonstration) and the 200 West Area Carbon Tetrachloride ERA (Expedited Response Action) programs at Hanford. The purpose of this test is to evaluate the Water Development Corporation's drilling system, modify components as necessary and determine compatible drilling applications for the sonic drilling method for use at facilities in the DOE complex. The sonic demonstration is being conducted as the first field test under the Cooperative Research and Development Agreement (CRADA) which involves the US Department of Energy, Pacific Northwest Laboratory, Westinghouse Hanford Company and Water Development Corporation. The sonic drilling system will be used to drill a 45 degree vadose zone well, two vertical wells at the VOC-Arid ID site, and several test holes at the Drilling Technology Test Site north of the 200 Area fire station. Testing at other locations will depend on the performance of the drilling method. Performance of this technology will be compared to the baseline drilling method (cable-tool)

  17. Heat-flow and lateral seismic-velocity heterogeneities near Deep Sea Drilling Project-Ocean Drilling Program Site 504

    Science.gov (United States)

    Lowell, Robert P.; Stephen, Ralph A.

    1991-11-01

    Both conductive heat-flow and seismic-velocity data contain information relating to the permeability of the oceanic crust. Deep Sea Drilling Project-Ocean Drilling Program Site 504 is the only place where both detailed heat-flow and seismic-velocity field studies have been conducted at the same scale. In this paper we examine the correlation between heat flow and lateral heterogeneities in seismic velocity near Site 504. Observed heterogeneities in seismic velocity, which are thought to be related to variations in crack density in the upper 500 m of the basaltic crust, show little correlation with the heat-flow pattern. This lack of correlation highlights some of the current difficulties in using seismic-velocity data to infer details of spatial variations in permeability that are significant in controlling hydrothermal circulation.

  18. The Hominin Sites and Paleolakes Drilling Project (HSPDP): Understanding the paleoenvironmental and paleoclimatic context of human origins through continental drilling

    Science.gov (United States)

    Cohen, Andrew S.; Campisano, Christopher; Asrat, Asfawossen; Arrowsmith, Ramon; Deino, Alan; Feibel, Craig; Hill, Andrew; Kingston, John; Lamb, Henry; Lowenstein, Tim; Olago, Daniel; Bernhart Owen, R.; Renaut, Robin; Schabitz, Frank; Trauth, Martin

    2015-04-01

    The influence of climate and environmental history on human evolution is an existential question that continues to be hotly debated, in part because of the paucity of high resolution records collected in close proximity to the key fossil and archaeological evidence. To address this issue and transform the scientific debate, the HSPDP was developed to collect lacustrine sediment drill cores from basins in Kenya and Ethiopia that collectively encompass critical time intervals and locations for Plio-Quaternary human evolution in East Africa. After a 17 month campaign, drilling was completed in November, 2014, with over 1750m of core collected from 11 boreholes from five areas (1930m total drilling length, avg. 91% recovery). The sites, from oldest to youngest, include 1) N. Awash, Ethiopia (~3.5-2.9Ma core interval); 2) Baringo-Tugen Hills, Kenya (~3.3-2.5Ma); 3) West Turkana, Kenya (~1.9-1.4Ma); L. Magadi, Kenya (0.8-0Ma) and the Chew Bahir Basin, Ethiopia (~0.5-0Ma). Initial core description (ICD) and sampling for geochronology, geochemistry and paleoecology studies had been completed by mid2014, with the two remaining sites (Magadi and Chew Bahir) scheduled for ICD work in early 2015. Whereas the primary scientific targets were the lacustrine deposits from the hominin-bearing basin depocenters, many intervals of paleosols (representative of low lake stands and probable arid periods) were also encountered in drill cores. Preliminary analyses of drill core sedimentology and geochemistry show both long-term lake level changes and cyclic variability in lake levels, both of which may be indicative of climatic forcing events of interest to paleoanthropologists. Authors of this abstract also include the entire HSPDP field team.

  19. Demonstration of Eastman Christensen horizontal drilling system -- Integrated Demonstration Site, Savannah River Site

    International Nuclear Information System (INIS)

    1992-12-01

    An innovative horizontal drilling system was used to install two horizontal wells as part of an integrated demonstration project at the Savannah River Site (SRS), Aiken, South Carolina. The SRS is located in south-central South Carolina in the upper Coastal Plain physiographic province. The demonstration site is located near the A/M Area, and is currently known as the Integated Demonstration Site. The Department of Energy's Office of Technology Development initiated an integrated demonstration of innovative technologies for cleanup of volatile organic compounds (VOCS) in soils and groundwater at the SRS in 1989. The overall goal of the program is to demonstrate, at a single location, multiple technologies in the fields of drilling, characterization, monitoring, and remediation. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program

  20. Results from exploratory drill hole UE2ce, Northwest Yucca Flat, Nevada Test Site, near the NASH Event

    International Nuclear Information System (INIS)

    Pawloski, G.A.

    1982-01-01

    Exploratory drill hole UE2ce was drilled in January 1977 to determine geologic and geophysical characteristics of this site. This report presents geophysical logs, lithology, geologic structure, water table measurements, and physical properties for this drill hole. The data are then extrapolated to the NASH site, an event in U2ce, 55.6 m due north of UE2ce

  1. Effect of surgical drill guide and irrigans temperature on thermal bone changes during drilling implant sites - thermographic analysis on bovine ribs.

    Science.gov (United States)

    Marković, Aleksa; Lazić, Zoran; Mišić, Tijana; Šćepanović, Miodrag; Todorović, Aleksandar; Thakare, Kaustubh; Janjić, Bojan; Vlahović, Zoran; Glišić, Mirko

    2016-08-01

    During drilling implant sites, mechanical energy is converted into thermal one resulting in transient rise in temperature of surrounding bone. The temperature of 47°C exeeding one minute impairs osseointegration, compromises mechanical properties of the local bone and could cause early implant failure. This in vitro study aimed to assess the effect of surgical drill guide and temperature of irrigans on thermal changes of the local bone during drilling implant sites, and to test the influence of irrigans temperature on the temperature of surgical drill guide. A total of 48 specimens obtained from bovine ribs were randomly allocated to four experimental conditions according to the 2 x 2 factorial design: drill guide (with or without) and saline (at 25°C or 5°C). Real-time infrared thermography was used as a method for temperature measurement. The primary outcome was bone temperature change during drilling implant sites measured at 3 osteotomy depths, whereas the second one was change in the temperature of the drill guide. Data were analyzed by Brunner and Langer nonparametric analysis and Wilcoxon test. The effect of drill guide on the changes of bone temperature was significant at the entrance of osteotomy, whereas the effect of saline temperature was significant at all osteotomy levels (p 0.05). Guided surgery and irrigation with saline at 25°C were associated with the highest bone temperature increase. Increase in drill guide temperature was significantly higher when saline at 25°C was used (p < 0.001). Guided implant site preparation generates higher temperature of the local bone than conventional drilling, not exceeding the threshold for thermal bone necrosis. Although saline at room temperature provides sufficient heat control during drilling, cooled saline is more effective regardless the use of surgical drill guide.

  2. Effect of surgical drill guide and irrigans temperature on thermal bone changes during drilling implant sites - thermographic analysis on bovine ribs

    Directory of Open Access Journals (Sweden)

    Marković Aleksa

    2016-01-01

    Full Text Available Background/Aim. During drilling implant sites, mechanical energy is converted into thermal one resulting in transient rise in temperature of surrounding bone. The temperature of 47°C exeeding one minute impairs osseointegration, compromises mechanical properties of the local bone and could cause early implant failure. This in vitro study aimed to assess the effect of surgical drill guide and temperature of irrigans on thermal changes of the local bone during drilling implant sites, and to test the influence of irrigans temperature on the temperature of surgical drill guide. Methods. A total of 48 specimens obtained from bovine ribs were randomly allocated to four experimental conditions according to the 2 x 2 factorial design: drill guide (with or without and saline (at 25°C or 5°C. Real-time infrared thermography was used as a method for temperature measurement. The primary outcome was bone temperature change during drilling implant sites measured at 3 osteotomy depths, whereas the second one was change in the temperature of the drill guide. Data were analyzed by Brunner and Langer nonparametric analysis and Wilcoxon test. Results. The effect of drill guide on the changes of bone temperature was significant at the entrance of osteotomy, whereas the effect of saline temperature was significant at all osteotomy levels (p 0.05. Guided surgery and irrigation with saline at 25°C were associated with the highest bone temperature increase. Increase in drill guide temperature was significantly higher when saline at 25°C was used (p < 0.001. Conclusion. Guided implant site preparation generates higher temperature of the local bone than conventional drilling, not exceeding the threshold for thermal bone necrosis. Although saline at room temperature provides sufficient heat control during drilling, cooled saline is more effective regardless the use of surgical drill guide.

  3. Lithology and Stratigraphy of Holes Drilled in LANL-Use Areas of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Lance B. Prothro; Sigmund L. Drellack, Jr.; Brian M. Allen

    1999-07-01

    Geologic data for ten holes drilled in areas used by Los Alamos National Laboratory at the Nevada Test Site are presented in this report. The holes include emplacement holes, instrumentation holes, and Underground Test Area wells drilled during calendar years 1991 through 1995. For each hole a stratigraphic log, a detailed lithologic log, and one or two geologic cross sections are presented, along with a supplemental data sheet containing information about the drilling operations, geology, or references. For three of the holes, graphic data summary sheets with geologic and geophysical data are provided as plates.

  4. Bedrock Geology of the DFDP-2 Drill-Site

    Science.gov (United States)

    Toy, V.; Sutherland, R.; Townend, J.

    2015-12-01

    Bedrock was encountered in DFDP-2B at drilled depths (MD) of 238.50-893.18 m (vertical depths of 238.40-818.00 m). Continuous sampling of cuttings revealed the bedrock is composed predominantly of ductilely sheared mylonite-series lithologies exhumed from the roots of the Alpine Fault zone. The protolith is interpreted to be amphibolite facies metasediments classified as part of the Aspiring Subdivision of the Torlesse Supergroup. Onsite description of whole cuttings and thin sections made within a few hours of sample recovery allowed identification of progressive structural changes. Fabrics were schistose in the upper part of the hole, but at greater depths we observed increasing indications that the rocks had been subjected to simple shear deformation. These macro-and micro-structural features are consistent with those that typify the Alpine Fault mylonite sequence previously described, and were used as input to drilling decisions. The structural features found to be the most useful indicators of ductile simple shear strain accommodated by the recovered rocks were the occurrence of shear bands; changes in mean quartz grain size; changes in maximum mica grain size; and redistribution of or changes in microstructural setting of accessory phases (e.g. graphite). The quartz:mica ratio based on mass was also determined but the extent to which this reflects true lithologic variations is unclear, as washing and winnowing of the samples (both by circulating drill fluids and during the sample collection process) probably modified bulk mineralogy in different particle size domains. Nevertheless, the quartz:mica dataset suggests a dramatic change in mineralogy at 730 m MD (vertical depth of 695 m). This coincides with a pronounced step in the temperature gradient, possibly related to large changes in hydrogeology.

  5. Hole Drilling Technique – on site stress measurement

    OpenAIRE

    Schueremans, Luc

    2009-01-01

    2. Hole Drilling Technique for onsite stress measurement has been used to validate the stress level at 2 pillars of the Sint-Jacobschurch (Leuven, B). The technique allows estimating the stress in a stone from measuring deformation when a small hole is made. It is a low intrusive technique. The application of it is limited to local stress measurements and is a complement to stress estimate from calculations of from the use of –for example- flat jacks. In addition to the flat-jack technique...

  6. Invertebrate communities of Arctic tundra ponds as related to proximity to drill site reserve pits

    International Nuclear Information System (INIS)

    Byron, E.; Williams, N.; Hoffman, R.; Elder, B.

    1994-01-01

    Aquatic invertebrate communities were assessed for diversity and abundance in North Slope tundra ponds of Prudhoe Bay, Alaska during the summer of 1992 as part of an evaluation of potential effects of exposure to petroleum drill site reserve pits (previously used for storing drill site wastes). The invertebrate communities of these shallow, tundra ponds provide abundant food for migratory, aquatic birds that use this area during the summer breeding season. The study was designed to compare abundance and diversity estimates of invertebrates in ponds surrounding the drill sites that differed in distance (and presumed exposure) to drill site reserve pits. The pits, themselves, were not sampled as part of this study. Invertebrate abundance and diversity estimates, assessed as standard biological criteria, were evaluated relative to water chemistry of the ponds, distance to the gravel pads or reserve pits, and pond morphometry. The results indicated the importance of pond morphometry in determining the structure of the invertebrate community. Shallow, exposed ponds tended to be dominated by different invertebrate communities than deeper, narrow ponds at the margins of frost polygons. In contrast, pond chemistry and relative exposure to drill sites were not predictive of invertebrate abundance or diversity

  7. Applicability of petroleum horizontal drilling technology to hazardous waste site characterization and remediation

    International Nuclear Information System (INIS)

    Goranson, C.

    1992-09-01

    Horizontal wells have the potential to become an important tool for use in characterization, remediation and monitoring operations at hazardous waste disposal, chemical manufacturing, refining and other sites where subsurface pollution may develop from operations or spills. Subsurface pollution of groundwater aquifers can occur at these sites by leakage of surface disposal ponds, surface storage tanks, underground storage tanks (UST), subsurface pipelines or leakage from surface operations. Characterization and remediation of aquifers at or near these sites requires drilling operations that are typically shallow, less than 500-feet in depth. Due to the shallow nature of polluted aquifers, waste site subsurface geologic formations frequently consist of unconsolidated materials. Fractured, jointed and/or layered high compressive strength formations or compacted caliche type formations can also be encountered. Some formations are unsaturated and have pore spaces that are only partially filled with water. Completely saturated underpressured aquifers may be encountered in areas where the static ground water levels are well below the ground surface. Each of these subsurface conditions can complicate the drilling and completion of wells needed for monitoring, characterization and remediation activities. This report describes some of the equipment that is available from petroleum drilling operations that has direct application to groundwater characterization and remediation activities. A brief discussion of petroleum directional and horizontal well drilling methodologies is given to allow the reader to gain an understanding of the equipment needed to drill and complete horizontal wells. Equipment used in river crossing drilling technology is also discussed. The final portion of this report is a description of the drilling equipment available and how it can be applied to groundwater characterization and remediation activities

  8. The GIN legal problems of multi-parties at the drill site

    International Nuclear Information System (INIS)

    Case, C.W.

    1991-01-01

    The presence of multiple parties working at a drilling site complicates the application of the environmental laws, rules and regulations. A critical decision prior to any physical activities needs to be made as to which person (i.e., company, partnership) will be charged with the obligation of being the designated Generator of hazardous waste for that site. This critical decision is dictated by the refusal of the EPA to assign more than one EPA Generator Identification Number (GIN) to a single drilling site. The decision as to which member of the multiple parties presence at the drill site will obtain the GIN has liability ramifications when a mistake is made in the cleanup of spilled hazardous waste or hazardous substances; an improper situation arises as to the transportation, storage, treatment and disposal of hazardous waste; the waste is improperly classified, or the biennial reporting of hazardous waste activities does not occur. Liability issues arise that go far beyond the ordinary contractual disputes seen in the past arising from drilling activities, with liability in some situations well in excess of any damage claims normally allowed under common law or statutory law in the State of Texas for non-environmental disputes. This paper reviews the liabilities and responsibilities of oil and gas drillers under the Resource Conservation and Recovery Act and the Comprehensive Environmental Response, Compensation and Liability Act

  9. Seismic imaging for an ocean drilling site survey and its verification in the Izu rear arc

    Science.gov (United States)

    Yamashita, Mikiya; Takahashi, Narumi; Tamura, Yoshihiko; Miura, Seiichi; Kodaira, Shuichi

    2018-01-01

    To evaluate the crustal structure of a site proposed for International Ocean Discovery Program drilling, the Japan Agency for Marine-Earth Science and Technology carried out seismic surveys in the Izu rear arc between 2006 and 2008, using research vessels Kaiyo and Kairei. High-resolution dense grid surveys, consisting of three kinds of reflection surveys, generated clear seismic profiles, together with a seismic velocity image obtained from a seismic refraction survey. In this paper, we compare the seismic profiles with the geological column obtained from the drilling. Five volcaniclastic sedimentary units were identified in seismic reflection profiles above the 5 km/s and 6 km/s contours of P-wave velocity obtained from the velocity image from the seismic refraction survey. However, some of the unit boundaries interpreted from the seismic images were not recognised in the drilling core, highlighting the difficulties of geological target identification in volcanic regions from seismic images alone. The geological core derived from drilling consisted of seven lithological units (labelled I to VII). Units I to V were aged at 0-9 Ma, and units VI and VII, from 1320-1806.5 m below seafloor (mbsf) had ages from 9 to ~15 Ma. The strong heterogeneity of volcanic sediments beneath the drilling site U1437 was also identified from coherence, calculated using cross-spectral analysis between grid survey lines. Our results suggest that use of a dense grid configuration is important in site surveys for ocean drilling in volcanic rear-arc situations, in order to recognise heterogeneous crustal structure, such as sediments from different origins.

  10. A field strategy to monitor radioactivity associated with investigation derived wastes returned from deep drilling sites

    International Nuclear Information System (INIS)

    Rego, J.H.; Smith, D.K.; Friensehner, A.V.

    1995-01-01

    The U.S. Department of Energy, Nevada Operations Office, Underground Test Area Operable Unit (UGTA) is drilling deep (>1500m) monitoring wells that penetrate both unsaturated (vadose) and saturated zones potentially contaminated by sub-surface nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. Drill site radiological monitoring returns data on drilling effluents to make informed management decisions concerning fluid management. Because of rapid turn-around required for on-site monitoring, a representative sample will be analyzed simultaneously for α, β and γ emitters by instrumentation deployed on-site. For the purposes of field survey, accurate and precise data is returned, in many cases, with minimal sample treatment. A 30% efficient high purity germanium detector and a discriminating liquid scintillation detector are being evaluated for γ and α/β monitoring respectively. Implementation of these detector systems complements a successful on-site tritium monitoring program. Residual radioactivity associated with underground nuclear tests include tritium, activation products, fission products and actinides. Pulse shape discrimination (PSD) is used in α/β liquid scintillation counting and is a function of the time distribution of photon emission. In particular, we hope to measure 241 Am produced from 241 Pu by β decay. Because 241 Pu is depleted in fissile bomb fuels, maximum PSD resolution will be required. The high purity germanium detector employs a multichannel analyzer to count gamma emitting radionuclides; we will designate specific window configurations to selectively monitor diagnostic fission product radionuclides (i.e., 137 Cs)

  11. Innovative on-site approach to oil based drilling mud waste management

    International Nuclear Information System (INIS)

    Laurell, A.

    1999-01-01

    An innovative system has been developed by Unique Oilfield Technology Services (UNOTEC) for the environmentally safe containment and decomposition of oily drilling residuals. The approach is a complete management system which provides an on-site alternative to off-site disposal. The approach uses the principles of total containment and microbial decomposition of hydrocarbons. The complete management system transforms the waste into an end product suitable for on-site land treatment, in accordance with regulatory guidelines. This paper describes how the approach can eliminate the future environmental risk and economic liability associated with hydrocarbon contaminated materials

  12. The ICDP-Hominin Sites and Paleolakes Drilling Project (HSPDP): new data from the Chew Bahir site in Ethiopia

    Science.gov (United States)

    Leng, Melanie; Dean, Jonathan; Asrat, Asfawossen; Cohen, Andrew; Foerster, Verena; Just, Janna; Klasen, Nicole; Lamb, Henry; Schäbitz, Frank; Trauth, Martin; Viehberg, Finn; Wagner, Bernd

    2016-04-01

    There are currently few long, continuous, Pleistocene records from East Africa, meaning it has been difficult to establish the relative influence of low- versus high-latitude forcing on East African climate and climatic conditions at the time of anatomically modern human origin and subsequent dispersal. We have been attempting to address these gaps in our knowledge by analysing lake sediments taken from Chew Bahir, an area of playa mudflats in southern Ethiopia close to the site of the oldest-known anatomically modern human fossils at Omo-Kibish. In March 2014, Chew Bahir was cored to a depth of ~40 metres, and the resulting sediment sequence is estimated to cover the last ~115ka. In December 2014, a nearby site was drilled to a depth of ~280 metres as part of the International Continental scientific Drilling Programme - Hominin Sites and Paleolakes Drilling Project (HSPDP). The oxygen and carbon isotope composition of endogenic calcite and other data from these cores will be presented. The data show some significant changes in water balance variability, the period prior to 70ka appears very unstable with some significant periods of drought and flood. Between 70-20ka the lake was stable and evaporative. The last 20ka years was wetter.

  13. Archive of Core and Site/Hole Data and Photographs from the Deep Sea Drilling Project (DSDP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Deep Sea Drilling Project (DSDP) operated the D/V GLOMAR CHALLENGER from 1968-1983, drilling 1,112 holes at 624 sites worldwide. The DSDP was funded by the US...

  14. Recent drilling program to investigate radionuclide migration at the Nevada Test Site

    International Nuclear Information System (INIS)

    Smith, D.K.

    1997-01-01

    Recent drilling affords new opportunities to investigate the occurrence, distribution and transport of radionuclides in the unsaturated and saturated zone at the Nevada Test Site (NTS), Nye County, Nevada. This program is unique becmise of the elevated activities of radionuclides encountered during drilling (> 3.7E+6 Bq/L 3H), extreme completion depths (> 950 m), the expense of constructing new wells (> $IE+6/borehole), and collaboration of government, academic, and industrial partners in the planning and execution of the program. The recent chilling is significant because it substantively augments earlier field of radionuclide migration at NTS, most notably the 1974 CAMBRIC RNM experiment Sites of five nuclear tests fired below or adjacent to the saturated zone have been drilled. Three of the events were fired in Yucca Flat which is a hydrologically closed basin and two were fired in fractured volcanics of Pahute Mesa. Results from Yucca Flat indicate that volatile and refractory radionuclides, fractionated at zero time, we not highly mobile under sawmted conditions. In contrast, borcholes completed on Pahute Mesa indicate Wgh concentrations of tritium (> 3.7E+6 Bq/L 3H) and other radionuclides may be rted more than 300 m from event cavities as dissolved species or as colloids

  15. Recent drilling program to investigate radionuclide migration at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.K.

    1997-04-01

    Recent drilling affords new opportunities to investigate the occurrence, distribution and transport of radionuclides in the unsaturated and saturated zone at the Nevada Test Site (NTS), Nye County, Nevada. This program is unique becmise of the elevated activities of radionuclides encountered during drilling (> 3.7E+6 Bq/L 3H), extreme completion depths (> 950 m), the expense of constructing new wells (> $IE+6/borehole), and collaboration of government, academic, and industrial partners in the planning and execution of the program. The recent chilling is significant because it substantively augments earlier field of radionuclide migration at NTS, most notably the 1974 CAMBRIC RNM experiment Sites of five nuclear tests fired below or adjacent to the saturated zone have been drilled. Three of the events were fired in Yucca Flat which is a hydrologically closed basin and two were fired in fractured volcanics of Pahute Mesa. Results from Yucca Flat indicate that volatile and refractory radionuclides, fractionated at zero time, we not highly mobile under sawmted conditions. In contrast, borcholes completed on Pahute Mesa indicate Wgh concentrations of tritium (> 3.7E+6 Bq/L 3H) and other radionuclides may be rted more than 300 m from event cavities as dissolved species or as colloids.

  16. Selected stratigraphic data for drill holes located in Frenchman Flat, Nevada Test Site. Rev. 1

    International Nuclear Information System (INIS)

    Drellack, S.L. Jr.

    1997-02-01

    Stratigraphic data are presented in tabular form for 72 holes drilled in Frenchman Flat, Nevada Test Site, between 1950 and 1993. Three pairs of data presentations are included for each hole: depth to formation tops, formation thicknesses, and formation elevations are presented in both field (English) and metric units. Also included for each hole, where available, are various construction data (hole depth, hole diameter, surface location coordinates) and certain information of hydrogeologic significance (depth to water level, top of zeolitization). The event name is given for holes associated with a particular nuclear test. An extensive set of footnotes is included, which indicates data sources and provides other information. The body of the report describes the stratigraphic setting of Frenchman Flat, gives drill-hole naming conventions and database terminology, and provides other background and reference material

  17. Slimhole drilling and directional drilling for on-site inspections under a Comprehensive Test Ban - An initial assessment

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1995-07-01

    It appears that a short list of four suppliers should be further evaluated to formulate OSI-applicable packages. They are Baker-Hughes ESTTEQ, SLIMDRIL International, Halliburton Energy/ENSCO Technology, and Schlumberger-Dowell/Anadrill. It is noteworthy that all of them are headquartered in Houston, TX, making it a logical place to present the OSI requirements to a community of expert drillers. We have requested from these companies that they let us know of operations with coiled tubing to be conducted in California, so as to use such opportunities to view the systems in action. On such job was just completed by Schlumberger-Dowell near Bakersfield, and they have another one coming up in late July in Long Beach. An example of the 'footprint' of such a C-T drilling operation is shown. The Verification community also can take advantage of drilling conferences to keep up with the state-of-the-art. The next such meeting, co-sponsored by the International Association of Drilling Contractors (IADC) and the Society of Petroleum Engineers (SPE), is scheduled for March 12-15, 1996, in New Orleans. The next step in this study should be to determine an optimal combination of the new drilling methods with the health and safety procedures and the diagnostics which are required when drilling in a radioactive environment. This will involve bringing together the expertise of the NTS/National Laboratories with those of the exploration/production drillers. The final outcome will be the formulation of drilling systems which have significant cost and weight advantages over those of the equipment previously used at NTS

  18. Conventional drilling versus piezosurgery for implant site preparation: a meta-analysis.

    Science.gov (United States)

    Sendyk, Daniel Isaac; Oliveira, Natacha Kalline; Pannuti, Claudio Mendes; Naclério-Homem, Maria da Graça; Wennerberg, Ann; Zindel Deboni, Maria Cristina

    2018-03-27

    The aim of this study was to evaluate the evidence of a correlation between the stability of dental implants placed by piezosurgery, compared with implants placed by conventional drilling. An electronic search in MEDLINE, SCOPUS and the Cochrane Library was undertaken until August 2016 and was supplemented by manual searches and by unpublished studies at OpenGray. Only randomized controlled clinical trials that reported implant site preparation with piezosurgery and with conventional drilling were considered eligible for inclusion in this review. Meta-analyses were performed to evaluate the impact of piezosurgery on implant stability. Of 456 references electronically retrieved, 3 were included in the qualitative analysis and quantitative synthesis. The pooled estimates suggest that there is no significant difference between piezosurgery and conventional drilling at baseline (WMD: 2.20; 95% CI: -5.09, 9,49; p = 0.55). At 90 days, the pooled estimates revealed a statistically significant difference (WMD: 3.63; 95% CI: 0.58, 6.67, p = 0.02) favouring piezosurgery. Implant stability is slightly improved when osteotomy was performed by a piezoelectric device. More randomized controlled clinical trials are needed to verify these findings.

  19. Integrated test plan ResonantSonic drilling system technology demonstration-1995, at the Hanford Site: Revision 1

    International Nuclear Information System (INIS)

    McLellan, G.W.

    1994-01-01

    This integrated test plan describes the demonstration test of the ResonantSonic drilling system. This demonstration is part of the Office of Technology Development's Volatile Organic Compound Arid Integrated Demonstration (VOC-Arid ID). Two main purposes of this demonstration are (1) to continue testing the ResonantSonic drilling system compatibility with the Hanford Site waste characterization programs, and (2) to transfer this method for use at the Hanford Site, other government sites, and the private sector. The ResonantSonic method is a dry drilling technique. Field testing of this method began in July 1993. During the next four months, nine holes were drilled, and continuous core samples were retrieved. Penetration rates were 2 to 3 times the baseline, and the operational downtime rate was less than 10%. Successfully demonstrated equipment refinements included a prototype 300 series ResonantSonic head, a new drill rod design for 18-centimeter diameter pipe, and an automated pipe handling system. Various configurations of sampling equipment and drill bits were tested, depending on geologic conditions. The principal objective of the VOC-Arid ID is to determine the viability of emerging technologies that can be used to characterize, remediate, and/or monitor arid or semiarid sites containing VOCs (e.g., carbon tetrachloride) with or without associated metal and radionuclide contamination

  20. Petrology of tuff units from the J-13 drill site, Jackass Flats, Nevada

    International Nuclear Information System (INIS)

    Heiken, G.H.; Bevier, M.L.

    1979-01-01

    The J-13 drill hole, located in Jackass Flats, Nevada Test Site, has penetrated 125 m of alluvium and 932 m of tuff. Most of the tuff deposits consist of welded tuffs; glass phases in the tuffs have been replaced by authigenic minerals, mainly K-feldspar, silica, and zeolites. The zonation of authigenic minerals, with depth, indictes that alteration of glass phases and filling of vugs occurred during welding and compaction of tuff units soon after deposition and by interaction with groundwater. Zonation of authigenic minerals in tuff deposits at Jackass Flats is similar to mineral zonation in tuffs elsewhere at the Nevada Test Site and in tuff deposits of west Texas. All appear to have been developed by leaching of glass phases and deposition of authigenic minerals in open hydrologic systems. 10 figures, 38 tables

  1. Oman Drilling Project GT3 site survey: dynamics at the roof of an oceanic magma chamber

    Science.gov (United States)

    France, L.; Nicollet, C.; Debret, B.; Lombard, M.; Berthod, C.; Ildefonse, B.; Koepke, J.

    2017-12-01

    Oman Drilling Project (OmanDP) aims at bringing new constraints on oceanic crust accretion and evolution by drilling Holes in the whole ophiolite section (mantle and crust). Among those, operations at GT3 in the Sumail massif drilled 400 m to sample the dike - gabbro transition that corresponds to the top (gabbros) and roof (dikes) of the axial magma chamber, an interface where hydrothermal and magmatic system interacts. Previous studies based on oceanic crust formed at present day fast-spreading ridges and preserved in ophiolites have highlighted that this interface is a dynamic horizon where the axial melt lens that top the main magma chamber can intrude, reheat, and partially assimilate previously hydrothermally altered roof rocks. Here we present the preliminary results obtained in GT3 area that have allowed the community to choose the drilling site. We provide a geological and structural map of the area, together with new petrographic and chemical constraints on the dynamics of the dike - gabbro transition. Our new results allow us to quantify the dynamic processes, and to propose that 1/ the intrusive contact of the varitextured gabbro within the dikes highlights the intrusion of the melt lens top in the dike rooting zone, 2/ both dikes and previously crystallized gabbros are reheated, and recrystallized by underlying melt lens dynamics (up to 1050°C, largely above the hydrous solidus temperature of altered dikes and gabbros), 3/ the reheating range can be > 200°C, 4/ the melt lens depth variations for a given ridge position is > 200m, 5/ the reheating stage and associated recrystallization within the dikes occurred under hydrous conditions, 6/ the reheating stage is recorded at the root zone of the sheeted dike complex by one of the highest stable conductive thermal gradient ever recorded on Earth ( 3°C/m), 7/ local chemical variations in recrystallized dikes and gabbros are highlighted and used to quantify crystallization and anatectic processes, and the

  2. Description of Work for Drilling at the 183-DR Site in Support of the In Situ Gaseous Reduction Test

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Edward C.; Olsen, Khris B.; Schalla, Ronald

    2000-06-26

    In Situ Gaseous Reduction is a technology currently being developed by DOE for the remediation of soil waste sites contaminated with hexavalent chromium. Prior work suggests that a candidate for application of this approach is the 183-DR site at Hanford. However, deep vadose zone drilling is needed to verify the presence of a hexavalent chromium source and to determine the concentration levels and spatial distribution of contamination. This document presents the requirements associated with drilling one to two vadose zone boreholes at the 183-DR site to obtain this information. If hexavalent chromium is determined to be present at levels of at least 10 ppm in the vadose zone in one of the initial boreholes, this hole will be completed for gas injection and six additional gas extraction boreholes will be drilled and completed. This network will be used as a flowcell for performing a gas treatment test at the site.

  3. Chemical analyses of potash-bearing horizons from 21 exploratory holes drilled at a tentative site for the Waste Isolation Pilot Plant, Eddy County, New Mexico

    International Nuclear Information System (INIS)

    Griswold, G.B.

    1977-09-01

    Sandia Laboratories drilled 21 potash drill holes over an 18,960-acre site in east-central Eddy County, New Mexico, to evaluate potash resources as part of their Waste Isolation Pilot Plant (WIPP) project. This report furnishes assay information on samples obtained from the drilling program

  4. Archive of Core and Site/Hole Data and Photographs from the Ocean Drilling Program (ODP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Drilling Program (ODP) operated the drilling vessel JOIDES Resolution from 1984-2003 for over 100 cruises worldwide. The ODP was funded by the U.S....

  5. The archaeology of drill hole U20bc, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    McLane, A.R.; Hemphill, M.L.; Livingston, S.J.; Pippin, L.C.; Walsh, L.A.

    1992-01-01

    Impacts to four sites near drill hole U20bc on Pahute Mesa in the northwestern part of the Nevada Test Site were mitigated through data recovery. The work was done during 1988 by the Desert Research Institute for the Department of Energy, Nevada Field Office (DOE/NV)- The four sites that warranted data recovery were 26NY3171, 26NY3173, 26NY5561 and 26NY5566. These sites had previously been determined eligible to the National Register of Historic Places. They were temporary camps that contained lithic debitage, projectile points, milling stones and pottery, and therefore contributed significant information concerning the prehistory of the area. The study of the archaeological remains shows that the prehistoric people subsisted on plant foods and game animals as determined by the artifacts including manos, metates, pottery, lithic scrapers, and projectile points. The time sensitive arfifacts (pottery and diagnostic points) suggest that the region was used from about 12,000 B.P. to just before the historic period, possibly 150 years ago. DOE/NV has met its obligation to mitigate adverse impacts to the cultural resources at U20bc. Therefore, it is recommended that this project proceed as planned

  6. Phytoremediation of abandoned crude oil contaminated drill sites of Assam with the aid of a hydrocarbon-degrading bacterial formulation.

    Science.gov (United States)

    Yenn, R; Borah, M; Boruah, H P Deka; Roy, A Sarma; Baruah, R; Saikia, N; Sahu, O P; Tamuli, A K

    2014-01-01

    Environmental deterioration due to crude oil contamination and abandoned drill sites is an ecological concern in Assam. To revive such contaminated sites, afield study was conducted to phytoremediate four crude oil abandoned drill sites of Assam (Gelakey, Amguri, Lakwa, and Borholla) with the aid of two hydrocarbon-degrading Pseudomonas strains designated N3 and N4. All the drill sites were contaminated with 15.1 to 32.8% crude oil, and the soil was alkaline in nature (pH8.0-8.7) with low moisture content, low soil conductivity and low activities of the soil enzymes phosphatase, dehydrogenase and urease. In addition, N, P, K, and C contents were below threshold limits, and the soil contained high levels of heavy metals. Bio-augmentation was achieved by applying Pseudomonas aeruginosa strains N3 and N4 followed by the introduction of screened plant species Tectona grandis, Gmelina arborea, Azadirachta indica, and Michelia champaca. The findings established the feasibility of the phytoremediation of abandoned crude oil-contaminated drill sites in Assam using microbes and native plants.

  7. Lapland longspur mortality at an oil well drilling rig site, Laramie County, Wyoming

    Science.gov (United States)

    Ramirez, Pedro; Dickerson, Kimberly K.; Lindstrom, Jim; Meteyer, Carol U.; Darrah, Scott

    2015-01-01

    Two hundred fifty-one Lapland longspur (Calcarius lapponicus) carcasses were recovered around an oil well drilling rig in Laramie County, Wyoming, USA, on December 13–14, 2010, apparent victims of a winter storm and “light entrapment” from the lights on the drilling rig during foggy conditions. We found Lapland longspur carcasses distributed around the drilling rig from 33 m to 171 m. Investigators did not find evidence of bird carcasses on the drilling rig deck or equipment immediately adjacent to the drilling rig. We ruled out chemical toxins and disease as a cause of mortality. Weather conditions, the circular depositional pattern of carcasses around the drilling rig, and bird necropsy results led investigators to conclude that the Lapland longspur mortality was the result of the migrating birds entering the area illuminated by the drilling rig lights in freezing fog and the birds repeatedly circling the drilling rig until they fell to the ground in exhaustion and dying from subsequent trauma. Further research is needed to understand how to most effectively adjust lighting of onshore drilling rigs to reduce the potential for avian light entrapment. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  8. Evaluation of accuracy in implant site preparation performed in single- or multi-step drilling procedures.

    Science.gov (United States)

    Marheineke, Nadine; Scherer, Uta; Rücker, Martin; von See, Constantin; Rahlf, Björn; Gellrich, Nils-Claudius; Stoetzer, Marcus

    2018-06-01

    Dental implant failure and insufficient osseointegration are proven results of mechanical and thermal damage during the surgery process. We herein performed a comparative study of a less invasive single-step drilling preparation protocol and a conventional multiple drilling sequence. Accuracy of drilling holes was precisely analyzed and the influence of different levels of expertise of the handlers and additional use of drill template guidance was evaluated. Six experimental groups, deployed in an osseous study model, were representing template-guided and freehanded drilling actions in a stepwise drilling procedure in comparison to a single-drill protocol. Each experimental condition was studied by the drilling actions of respectively three persons without surgical knowledge as well as three highly experienced oral surgeons. Drilling actions were performed and diameters were recorded with a precision measuring instrument. Less experienced operators were able to significantly increase the drilling accuracy using a guiding template, especially when multi-step preparations are performed. Improved accuracy without template guidance was observed when experienced operators were executing single-step versus multi-step technique. Single-step drilling protocols have shown to produce more accurate results than multi-step procedures. The outcome of any protocol can be further improved by use of guiding templates. Operator experience can be a contributing factor. Single-step preparations are less invasive and are promoting osseointegration. Even highly experienced surgeons are achieving higher levels of accuracy by combining this technique with template guidance. Hereby template guidance enables a reduction of hands-on time and side effects during surgery and lead to a more predictable clinical diameter.

  9. Ecologically least vulnerable sites for exploration drilling in the Wadden Sea and the North Sea coastal area

    International Nuclear Information System (INIS)

    Lindeboom, H.J.; Bergman, M.J.N.; De Gee, A.

    1996-01-01

    The Dutch Oil Company (NAM, abbreviated in Dutch) applied for a number of exploration drilling in the Dutch part of the Wadden Sea and the North Sea coastal area. NAM is obliged to draft a so-called MER (environmental impact report) to indicate the most environment-friendly alternative for the test drilling. By order of NAM, NIOZ and the IBN-DLO (Institute for Research on Forests and Nature) analyzed samples of the animal life in all the potential sites. Based on the results of the analyses, literature and expert knowledge the ecologically least vulnerable sites and the ecologically least vulnerable season were selected during a workshop. In this report the results are given of the workshop, the field sample analyses and a sailing trip along the sites

  10. Improving Site Characterization for Rock Dredging using a Drilling Parameter Recorder and the Point Load Test

    Science.gov (United States)

    1994-09-01

    materials. Also, available data from drilling rates in the mining and tunneling industries (Howarth and Rowlands 1987, Somerton 1959) indicate a...selected uniform natural rock materials and several man -made rock simulants were used to obtain drilling parameter records for materials of known...Dredging Seminar, Atlantic City, NJ, May 1993. Western Dredging Association (WEDA) and Texas A&M University. Somerton , W. H. (1959). "A laboratory study of

  11. Chew Bahir: A Key Site within the Hominin Sites and Paleolakes Drilling Project, towards a Half Million-Year Climate Record from Southern Ethiopia

    Science.gov (United States)

    Schaebitz, F.; Asrat, A.; Lamb, H. F.; Trauth, M. H.; Foerster, V. E.; Junginger, A.; Raub, T. D.; Gromig, R.; Viehberg, F. A.; Roberts, H. M.; Cohen, A.

    2015-12-01

    Chew Bahir, a saline mudflat today, is one of the five sites in East Africa, drilled within the framework of HSPDP (Hominin Site and Paleolakes Drilling Project). It is also one of the key sites of the Collaborative Research Centre (CRC-806) "Our way to Europe" aiming at the reconstruction of environmental conditions in the source region of modern man (H. sapiens). It is suggested that a changing environment could have triggered the mobility and dispersal of modern man. The oldest known fossils of anatomical modern humans (~195 ka BP) were found in the Omo basin, not more than 90km westwards of our drill site. The deposits in the tectonic basin of Chew Bahir in southern Ethiopia were cored in Nov. 2014 in two boreholes down to 280 m and 260 m below surface respectively. The overlapping long cores (drilled ~20 m apart from each other), were opened, scanned, described and sampled in low resolution in April 2015. The recovered sediments mostly contain green-greyish to light coloured and brown to reddish clays and silty clays, interbedded with some laminated mica-rich sand layers and occurrences of carbonate concretions and nodules, which decrease upcore. Here we will present a first set of results on the composite core, comprising mainly lithology and magnetic susceptibility (MS). Based on known sedimentation rates from pre-studies performed on short cores across the basin, we anticipate the deep drilled cores to cover at least 500 ka BP. Moreover, new insights into the role of post-depositional alteration, especially of clay minerals and zeolites, will be presented as a contribution to an improved understanding of formation processes. The results support the identification of wet and dry climate periods in the past. Those pronounced variations of moisture availability, are thought to have influenced the evolution and mobility of Homo sapiens sapiens.

  12. Results of exploratory drill hole UE7nS East-Central Yucca Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Wagoner, J.L.; Ramspott, L.D.

    1981-01-01

    Exploratory hole UE7nS was drilled to a depth of 672.1 m in East-Central Yucca Flat, Nevada Test Site, as part of a program sponsored by the Nuclear Monitoring Office (NMO) of the Advanced Research Projects Agency (ARPA). The purpose of the program is to determine the geologic and geophysical characteristics of selected locations that have demonstrated anomalous seismic signals. The purpose for drilling UE7nS was to provide the aforementioned data for emplacement site U7n. This report presents lithologic and stratigraphic descriptions, geophysical logs, physical properties, and water table measurements. An analysis of these data has been made and a set of recommended values is presented

  13. Results of exploratory drill hole UE7nS East-Central Yucca Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.L.; Ramspott, L.D.

    1981-03-02

    Exploratory hole UE7nS was drilled to a depth of 672.1 m in East-Central Yucca Flat, Nevada Test Site, as part of a program sponsored by the Nuclear Monitoring Office (NMO) of the Advanced Research Projects Agency (ARPA). The purpose of the program is to determine the geologic and geophysical characteristics of selected locations that have demonstrated anomalous seismic signals. The purpose for drilling UE7nS was to provide the aforementioned data for emplacement site U7n. This report presents lithologic and stratigraphic descriptions, geophysical logs, physical properties, and water table measurements. An analysis of these data has been made and a set of recommended values is presented.

  14. Geology of the UE12t No. 3 vertical drill hole, area 12, Nevada Test Site

    International Nuclear Information System (INIS)

    Terry, S.S.

    1975-11-01

    The UE12t No. 3 vertical drill hole, located near the north end of Rainier Mesa, was drilled to a total depth of 663 m (2,176 ft). The UE12t No. 3 vertical hole was drilled to further evaluate the subsurface stratigraphy northwest of the t-tunnel complex area in preparation for mining of the U12t.03 (Husky Pup) drift. The drill hole is collared in the Rainier Mesa Member of the Timber Mountain Tuff and penetrates down the stratigraphic section through the Paintbrush Tuff, the welded Grouse Canyon Member of the Belted Range Tuff, tunnel beds 5-3, the Tub Spring Member of the Belted Range Tuff, tunnel bed 2, Crater Flat Tuff, tunnel bed 1, Redrock Valley Tuff, and bottoms in older Tertiary tuffaceous and Paleozoic quartzite rubble having a partially argillized, tuffaceous, soillike matrix. The tuff of Dead Horse Flat and the bedded and ash-flow tuffs of Area 20 were not differentiated in the logging of this drill hole. Stratigraphy, structure, engineering geology, and physical properties and their relation to tunneling are discussed

  15. Thermal evaluation by infrared measurement of implant site preparation between single and gradual drilling in artificial bone blocks of different densities.

    Science.gov (United States)

    Möhlhenrich, S C; Abouridouane, M; Heussen, N; Hölzle, F; Klocke, F; Modabber, A

    2016-11-01

    The aim of this study was to investigate the influence of bone density and drilling protocol on heat generation during implant bed preparation. Ten single and 10 gradual implant sites with diameters of 2.8, 3.5, and 4.2mm were prepared in four artificial bone blocks (density types I-IV; D1-D4). Drilling was done at constant speed (1500rpm) and with external irrigation (50ml/min); vertical speed was set at 2mm/s. An infrared camera was used for temperature measurements. Significantly higher temperatures for single drilling were found between 2.8-mm drills in D1 (P=0.0014) and D4 (P<0.0001) and between 3.5-mm drills in D3 (P=0.0087) and D4 (P<0.0001), as well as between 4.2-mm drills in D1 (P<0.0001) and D4 (P=0.0014). Low bone density led to a thermal decrease after single drilling and a thermal increase after gradual drilling. Burs with a large diameter always showed a higher temperature generation. In comparisons between 2.8- and 4.2-mm diameters for both single and gradual drills, significant differences (P<0.001) were noted for bone types II, III, and IV. Single drilling could generate more heat than traditional sequential drilling, and bone density, as well as drill diameter, influenced thermal increases. Particularly in lower-density bone, conventional sequential drilling seems to raise the temperature less. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Preliminary geologic and geophysical data of the UE25a-3 exploratory drill hole, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Maldonado, F.; Muller, D.C.; Morrison, J.N.

    1979-09-01

    The UE25a-3 drill hole, located in the Calico Hills area, was drilled as part of an effort to evaluate the Calico Hills area as a possible nuclear waste repository site. The purpose of the drill hole was to verify the existence of an intrusive crystalline body in the subsurface and to determine the stratigraphy, structure, and nature of fractures of the cored rocks. Cored samples were obtained for mineral, chemical, and material property analyses. Numerous high-angle faults and brecciated zones were intersected by the drill hole. The units cored were intensely fractured with fracture analysis of the core consisting of frequency of fractures, dips of fractures, open and closed (sealed) fractures and types of fracture sealing or coating material. Twenty-four hundred and thirty fractures, representing approximately 30 percent of the fractures present, indicate an average fracture frequency of 13.2 fractures per meter, predominantly high-angle dips with 66 percent of the fractures closed. Fractures in the argillite interval are sealed or coated predominantly with kaolinite, nacrite, and dickite. Calcite, chlorite, and magnetite are present in fractures in the altered argillite interval. Fractures in the marble interval are sealed or coated with calcite, dolomite, and ferruginous clay. The core index indicates that the lower half of the drilled interval is more competent than the upper half. Borehole geophysical logs were run by the Birdwell Division of Seismograph Service Corporation for geologic correlations and lithologic characterizations. The logs include: caliper, density, resistivity, spontaneous potential, Vibroseis, 3-D velocity, neutron, and gamma-ray logs

  17. Spatial variability in recruitment of benthos near drilling sites in the Iheya North hydrothermal field in the Okinawa Trough

    Science.gov (United States)

    Nakamura, Masako; Nakajima, Yuichi; Watanabe, Hiromi Kayama; Sasaki, Takenori; Yamamoto, Hiroyuki; Mitarai, Satoshi

    2018-05-01

    Due to increasing anthropogenic impacts on deep-sea hydrothermal vent ecosystems, it is essential to understand population structure and maintenance through larval recruitment and recovery of vent faunas after disturbances. In this study, we quantified vent animal recruitment in the Okinawa Trough, in the western Pacific Ocean. This is the first study to investigate recruitment patterns at a man-made hydrothermal vent. Colonization plates were deployed at three sites. Site 1 manifested new hydrothermal shimmering with small chimneys, white bacterial mats, and some alvinocaridid shrimp that arrived after drilling. Site 2 showed no evidence of newly arrived foundation species after drilling, and Site 3 had pre-existing animal communities in the vicinity of the new vent. Twenty-two months after deployment, colonization plates were retrieved and recruited animals were inventoried. Species composition and abundance differed among sites, but relatively high similarity in species composition was observed at Sites 1 and 3, though not at Site 2. Newly established communities on the plates at Sites 1 and 2 (no pre-existing fauna) showed lower species richness and abundance than at Site 3. Differences in abundance and size-frequency distributions of major recruits on the plates (i.e. Lepetodrilus nux, Bathymodiolus spp.) suggest the importance of reproductive and early life-history characteristics in spatial variability of recruitment. Lepetodrilus nux populations established on the plates at Site 1 showed high genetic connectivity. These results illustrate the importance of localized recruitment, which may have a significant impact on sustainability of vent faunal populations, despite the existence of regional metapopulations.

  18. Imaging the Variscan suture at the KTB deep drilling site, Germany

    Science.gov (United States)

    Bianchi, Irene; Bokelmann, Götz

    2018-06-01

    The upper crust of the KTB (Kontinentales Tiefbohrprogramm) area in the Southeastern Germany is a focal point for the Earth Science community due to the huge amount of information collected throughout the last 30 yr. In this study, we explore the crustal structure of the KTB area through the application of the Receiver Function (RF) technique to a new data set recorded by nine temporary seismic stations and one permanent station. We aim to unravel the isotropic structure and compare our results with previous information from the reflection profiles collected during the initial site investigations. Due to the large amount of information collected by previous studies, in terms of P-wave velocity, depth and location of major reflectors, depth reconstruction of major faults zones, this area represents a unique occasion to test the resolution capability of a passive seismological study performed by the application of the RF. We aim to verify which contribution could be given by the application of the RF technique, for future studies, in order to get clear images of the deep structure and up to which resolution. The RF technique has apparently not been applied in the area before, yet it may give useful additional insight in subsurface structure, particularly at depths larger than the maximum depth reached by drilling, but also on structures in the upper crust, around the area that has been studied in detail previously. In our results vS-depth profiles for stations located on the same geological units display common features and show shallow S-wave velocities typical of the outcropping geological units (i.e. sedimentary basin, granites and metamorphic rocks). At around 10 km depth, we observe a strong velocity increase beneath all stations. For the stations located in the centre of the area, this variation is weaker, which we assume to be the signature of the main tectonic suture in the area (i.e. the Saxothuringian-Moldanubian suture), along a west-to-east extended

  19. Preliminary report on the geology and geophysics of drill hole UE25a-1, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Spengler, R.W.; Muller, D.C.; Livermore, R.B.

    1979-01-01

    A subsurface geologic study in connection with the Nevada Nuclear Waste Storage Investigations has furnished detailed stratigraphic and structural information about tuffs underlying northeastern Yucca Mountain on the Nevada Test Site. Drill hole UE25a-1 penetrated thick sequences of nonwelded to densely welded ash-flow and bedded tuffs of Tertiary age. Stratigraphic units that were identified from the drill-hole data include the Tiva Canyon and Topopah Spring Members of the Paintbrush Tuff, tuffaceous beds of Calico Hills, and the Prow Pass and Bullfrog Members of the Crater Flat Tuff. Structural analysis of the core indicated densely welded zones to be highly fractured. Many fractures show near-vertical inclinations and are commonly coated with secondary silica, manganese and iron oxides, and calcite. Five falt zones were recognized, most of which occurred in the Topopah Spring Member. Shear fractures commonly show oblique-slip movement and some suggest a sizable component of lateral compression. Graphic logs are included that show the correlation of lithology, structural properties, and geophysical logs. Many rock units have characteristic log responses but highly fractured zones, occurring principally in the Tiva Canyon and Topopah Spring Members restricted log coverage to the lower half of the drill hole

  20. Final report of the environmental measurement-while-drilling-gamma ray spectrometer system technology demonstration at the Savannah River Site F-Area Retention Basin

    Energy Technology Data Exchange (ETDEWEB)

    Lockwood, G.J.; Normann, R.A.; Williams, C.V.

    1997-08-01

    The environmental measurement-while-drilling-gamma ray spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides real-time environmental and drill bit data during drilling operations. The EMWD-GRS technology was demonstrated at Savannah River Site F-Area Retention Basin. The EMWD-GRS technology demonstration consisted of continuously monitoring for gamma-radiation-producing contamination while drilling two horizontal boreholes below the backfilled retention basin. These boreholes passed near previously sampled vertical borehole locations where concentrations of contaminant levels of cesium had been measured. Contaminant levels continuously recorded by the EMWD-GRs system during drilling are compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples.

  1. Final report of the environmental measurement-while-drilling-gamma ray spectrometer system technology demonstration at the Savannah River Site F-Area Retention Basin

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Normann, R.A.; Williams, C.V.

    1997-08-01

    The environmental measurement-while-drilling-gamma ray spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides real-time environmental and drill bit data during drilling operations. The EMWD-GRS technology was demonstrated at Savannah River Site F-Area Retention Basin. The EMWD-GRS technology demonstration consisted of continuously monitoring for gamma-radiation-producing contamination while drilling two horizontal boreholes below the backfilled retention basin. These boreholes passed near previously sampled vertical borehole locations where concentrations of contaminant levels of cesium had been measured. Contaminant levels continuously recorded by the EMWD-GRs system during drilling are compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples

  2. S-Wave Velocity Structure of the Taiwan Chelungpu Fault Drilling Project (TCDP) Site Using Microtremor Array Measurements

    Science.gov (United States)

    Wu, Cheng-Feng; Huang, Huey-Chu

    2015-10-01

    The Taiwan Chelungpu Fault Drilling Project (TCDP) drilled a 2-km-deep hole 2.4 km east of the surface rupture of the 1999 Chi-Chi earthquake ( M w 7.6), near the town of Dakeng. Geophysical well logs at the TCDP site were run over depths ranging from 500 to 1,900 m to obtain the physical properties of the fault zones and adjacent damage zones. These data provide good reference material for examining the validity of velocity structures using microtremor array measurement; therefore, we conduct array measurements for a total of four arrays at two sites near the TCDP drilling sites. The phase velocities at frequencies of 0.2-5 Hz are calculated using the frequency-wavenumber ( f- k) spectrum method. Then the S-wave velocity structures are estimated by employing surface wave inversion techniques. The S-wave velocity from the differential inversion technique gradually increases from 1.52 to 2.22 km/s at depths between 585 and 1,710 m. This result is similar to those from the velocity logs, which range from 1.4 km/s at a depth of 597 m to 2.98 km/s at a depth of 1,705 m. The stochastic inversion results are similar to those from the seismic reflection methods and the lithostratigraphy of TCDP-A borehole, comparatively. These results show that microtremor array measurement provides a good tool for estimating deep S-wave velocity structure.

  3. Site investigation SFR. Boremap mapping of core drilled borehole KFR106

    Energy Technology Data Exchange (ETDEWEB)

    Winell, Sofia (Geosigma AB (Sweden))

    2010-06-15

    This report presents the result from the Boremap mapping of the core drilled borehole KFR106, drilled from an islet ca 220 m southeast of the pier above SFR. The borehole has a length of 300.13 m, and a bearing and inclination of 195.1 deg and -69.9 deg, respectively. The purpose of the location and orientation of the borehole is to investigate the possible occurrence of gently dipping, water-bearing structures in the area. The geological mapping is based on simultaneous study of drill core and borehole image (BIPS). The two lowermost meters of the drill core was mapped in Boremap without access to complementary BIPS-image. The dominating rock type, which occupies 72% of KFR106, is fine- to medium-grained, metagranite granodiorite (rock code 101057), which is foliated with a medium to strong intensity. Pegmatite to pegmatitic granite (rock code 101061) is the second most common rock type and it occupies 16% of the mapped interval. It is also frequent as smaller rock occurrences (< 1 m) in other rock types throughout the borehole. Subordinate rock types are fine- to medium-grained granite (rock code 111058), felsic to intermediate meta volcanic rock (rock code 103076), fine- to medium-grained metagranitoid (rock code 101051) and amphibolite (rock code 102017). Totally 49% of the rock in KFR106 has been mapped as altered, where muscovitization and oxidation is the two most common. Additional shorter intervals of alterations are in decreasing order of abundance quartz dissolution, epidotization, argillization, albitization, chloritization, laumontization and carbonatization. A total number of 2801 fractures are registered in KFR106. Of these are 1059 open, 1742 sealed and 84 partly open. This result in the following fracture frequencies: 6.0 sealed fractures/m, 3.7 open fractures/m and 0.3 partly open fractures/m. In addition there are 5 narrow brecciated zones, and 20 sealed networks with a total length of 18 m. The most frequent fracture fillings in KFR106 are

  4. Logs of wells and boreholes drilled during hydrogeologic studies at Lawrence Livermore National Laboratory Site 300, January 1, 1991--September 1, 1992

    International Nuclear Information System (INIS)

    Crow, N.B.; McConihe, W.L.

    1992-01-01

    Lawrence Livermore National Laboratory (LLNL) Site 300 is located in the Altamont Hills between Livermore and Tracy, about 18 road miles southeast of Livermore, California. The site is used as a test facility to support national defense research carried out by LLNL. This Addendum 2 to the Logs of Wells and Boreholes Drilled During Hydrogeologic Studies at Lawrence Livermore National Laboratory Site 300 presents hydrogeologic logs for monitor wells and boreholes drilled primarily between January 1, 1991 and September 1, 1992. Some logs drilled earlier and not incorporated in earlier volumes of this document are also included here. A small number of logs drilled before September 1, 1992, are not available at the time of closing the report for publication of this volume (Addendum 2), but will be included in subsequent documents. By September 1, 1992, a total of 495 monitor wells and 285 exploratory boreholes had been drilled at Site 300 since the beginning of hydrogeologic studies in 1982. The primary purpose of these logs is to document lithologic and hydrogeologic conditions together with well completion information. For this reason, not all chemical analytical data are presented. These logs report concentrations of only the most commonly encountered volatile organic compounds, trace metals, and radionuclides detected in ground water and soil samples collected during drilling

  5. Environmental measurement-while-drilling-gamma ray spectrometer (EMWD-GRS) system technology demonstration plan for use at the Savannah River Site F-Area Retention Basin

    International Nuclear Information System (INIS)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Gruebel, R.D.

    1996-08-01

    The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drillbit data during drilling operations. This demonstration plan presents information on the EMWD-GRS technology, demonstration design, Cs-137 contamination at the Savannah River Site F-Area Retention Basin, responsibilities of demonstration participants, and the policies and procedures for the demonstration to be conducted at the Savannah River Site F-Area Retention Basin. The EMWD-GRS technology demonstration will consist of continuously monitoring for gamma-radiation contamination while drilling two horizontal boreholes below the backfilled retention basin. These boreholes will pass near previously sampled vertical borehole locations where concentrations of contaminant levels are known. Contaminant levels continuously recorded by the EMWD-GRS system during drilling will be compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples

  6. Environmental measurement-while-drilling-gamma ray spectrometer (EMWD-GRS) system technology demonstration plan for use at the Savannah River Site F-Area Retention Basin

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A. [Sandia National Labs., Albuquerque, NM (United States); Gruebel, R.D. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drillbit data during drilling operations. This demonstration plan presents information on the EMWD-GRS technology, demonstration design, Cs-137 contamination at the Savannah River Site F-Area Retention Basin, responsibilities of demonstration participants, and the policies and procedures for the demonstration to be conducted at the Savannah River Site F-Area Retention Basin. The EMWD-GRS technology demonstration will consist of continuously monitoring for gamma-radiation contamination while drilling two horizontal boreholes below the backfilled retention basin. These boreholes will pass near previously sampled vertical borehole locations where concentrations of contaminant levels are known. Contaminant levels continuously recorded by the EMWD-GRS system during drilling will be compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples.

  7. The strontium isotopic composition of interstitial waters from sites 245 and 336 of the deep sea drilling project

    International Nuclear Information System (INIS)

    Hawkesworth, C.J.; Elderfield, H.

    1978-01-01

    Measurements of 87 Sr/ 86 Sr ratios of interstitial waters from leg 25, site 245 and leg 38, site 336 of the Deep Sea Drilling Project show that the enrichment of Sr 2+ with depth is caused both by the alteration of volcanic material and by the introduction of strontium derived from calcium carbonate. 87 Sr/ 86 Sr ratios range from 0.70913 to 0.70794 at site 245 and from 0.70916 to 0.70694 at site 336. The low ratios compared with contemporaneous seawater reflect the release of Sr from a volcanic source having, according to material-balance calculations, a 87 Se/ 86 Sr ratio of about 0.7034 at site 336. At this site the source appears to be volcanic ash and not basaltic basement which acts as a sink for Sr 2+ during in situ low-temperature weathering. The volcanic contribution to the strontium enrichment in the basal interstitial waters varies from 50% at site 336. The remaining Sr 2+ is derived from Sr-rich biogenic carbonate during diagenetic recrystallization to form Sr-poor calcite. (Auth.)

  8. Site investigation SFR. Boremap mapping of percussion drilled borehole HFR106

    Energy Technology Data Exchange (ETDEWEB)

    Winell, Sofia (Geosigma AB (Sweden))

    2010-06-15

    This report presents the result from the Boremap mapping of the percussion drilled borehole HFR106, which is drilled from an islet located ca 220 m southeast of the pier above SFR. The purpose of the location and orientation of the borehole is to investigate the possible occurrence of gently dipping, water-bearing structures in the area. HFR106 has a length of 190.4 m and oriented 269.4 deg/-60.9 deg. The mapping is based on the borehole image (BIPS), investigation of drill cuttings and generalized, as well as more detailed geophysical logs. The dominating rock type, which occupies 68% of HFR106, is fine- to medium-grained, pinkish grey metagranite-granodiorite (rock code 101057) mapped as foliated with a medium to strong intensity. Pegmatite to pegmatitic granite (rock code 101061) occupies 29% of the borehole. Subordinate rock types are felsic to intermediate meta volcanic rock (rock code 103076) and fine- to medium-grained granite (rock code 111058). Rock occurrences (rock types < 1 m in length) occupy about 16% of the mapped interval, of which half is veins, dykes and unspecified occurrences of pegmatite and pegmatitic granite. Only 5.5% of HFR106 is inferred to be altered, mainly oxidation in two intervals with an increased fracture frequency. A total number of 845 fractures are registered in HFR106. Of these are 64 interpreted as open with a certain aperture, 230 open with a possible aperture, and 551 sealed. This result in the following fracture frequencies: 1.6 open fractures/m and 3.0 sealed fractures/m. Three fracture sets of open and sealed fractures with the orientations 290 deg/70 deg, 150 deg/85 deg and 200 deg/85 deg can be distinguished in HFR106. The fracture frequency is generally higher in the second half of the borehole, and particularly in the interval 176-187.4 m.

  9. Site investigation SFR. Boremap mapping of percussion drilled borehole HFR106

    International Nuclear Information System (INIS)

    Winell, Sofia

    2010-06-01

    This report presents the result from the Boremap mapping of the percussion drilled borehole HFR106, which is drilled from an islet located ca 220 m southeast of the pier above SFR. The purpose of the location and orientation of the borehole is to investigate the possible occurrence of gently dipping, water-bearing structures in the area. HFR106 has a length of 190.4 m and oriented 269.4 deg/-60.9 deg. The mapping is based on the borehole image (BIPS), investigation of drill cuttings and generalized, as well as more detailed geophysical logs. The dominating rock type, which occupies 68% of HFR106, is fine- to medium-grained, pinkish grey metagranite-granodiorite (rock code 101057) mapped as foliated with a medium to strong intensity. Pegmatite to pegmatitic granite (rock code 101061) occupies 29% of the borehole. Subordinate rock types are felsic to intermediate meta volcanic rock (rock code 103076) and fine- to medium-grained granite (rock code 111058). Rock occurrences (rock types < 1 m in length) occupy about 16% of the mapped interval, of which half is veins, dykes and unspecified occurrences of pegmatite and pegmatitic granite. Only 5.5% of HFR106 is inferred to be altered, mainly oxidation in two intervals with an increased fracture frequency. A total number of 845 fractures are registered in HFR106. Of these are 64 interpreted as open with a certain aperture, 230 open with a possible aperture, and 551 sealed. This result in the following fracture frequencies: 1.6 open fractures/m and 3.0 sealed fractures/m. Three fracture sets of open and sealed fractures with the orientations 290 deg/70 deg, 150 deg/85 deg and 200 deg/85 deg can be distinguished in HFR106. The fracture frequency is generally higher in the second half of the borehole, and particularly in the interval 176-187.4 m

  10. Drilling and geophysical logs of the tophole at an oil-and-gas well site, Central Venango County, Pennsylvania

    Science.gov (United States)

    Williams, John H.; Bird, Philip H.; Conger, Randall W.; Anderson, J. Alton

    2014-01-01

    In a study conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey, drilling and geophysical logs were used to characterize the geohydrologic framework and the freshwater and saline-water zones penetrated by the tophole at an oil-and-gas well site in central Venango County, Pennsylvania. The geohydrologic setting of the well site is typical of the dissected Appalachian Plateau underlain by Pennsylvanian and Mississippian sandstone and shale. The drilling, gamma, and acoustic-televiewer logs collected from the 575-foot deep tophole define the penetrated Pennsylvanian and Mississippian stratigraphic units and their lithology. The caliper, video, and acoustic-televiewer logs delineate multiple bedding-related and high-angle fractures in the lower Pottsville Group and Shenango Formation from 22 to 249 feet below land surface. The caliper and acoustic-televiewer logs indicate a sparsity of fractures below 249 feet below land surface in the lowermost Shenango Formation, Cuyahoga Group, Corry Sandstone, “Drake Well” formation, and upper Riceville Formation.

  11. Interpretation of geophysical well-log measurements in drill hole UE25a-1, Nevada Test Site, Radioactive Waste Program

    International Nuclear Information System (INIS)

    Hagstrum, J.T.; Daniels, J.J.; Scott, J.H.

    1980-01-01

    An exploratory hole (UE25a-1) was drilled at Nevada Test Site (NTS) to determine the suitability of pyroclastic deposits as storage sites for radioactive waste. Studies have been conducted to investigate the stratigraphy, structure, mineralogy, petrology, and physical properties of the tuff units encountered in the drill hole. This report deals with the interpretation of physical properties for the tuff units from geophysical well-log measurements. The ash-flow and bedded tuff sequences at NTS comprise complex lithologies of variously welded tuffs with superimposed crystallization and altered zones. To characterize these units, resistivity, density, neutron, gamma-ray, induced polarization, and magnetic susceptibility geophysical well-log measurements were made. Although inherently subjective, a consistent interpretation of the well-log measurements was facilitated by a computer program designed to interpret well logs either individually or simultaneously. The broad features of the welded tuff units are readily distinguished by the geophysical well-log measurements. However, many details revealed by the logs indicate that more work is necessary to clarify the casual elements of well-log response in welded tuffs

  12. Assessing hospital disaster preparedness: a comparison of an on-site survey, directly observed drill performance, and video analysis of teamwork.

    Science.gov (United States)

    Kaji, Amy H; Langford, Vinette; Lewis, Roger J

    2008-09-01

    There is currently no validated method for assessing hospital disaster preparedness. We determine the degree of correlation between the results of 3 methods for assessing hospital disaster preparedness: administration of an on-site survey, drill observation using a structured evaluation tool, and video analysis of team performance in the hospital incident command center. This was a prospective, observational study conducted during a regional disaster drill, comparing the results from an on-site survey, a structured disaster drill evaluation tool, and a video analysis of teamwork, performed at 6 911-receiving hospitals in Los Angeles County, CA. The on-site survey was conducted separately from the drill and assessed hospital disaster plan structure, vendor agreements, modes of communication, medical and surgical supplies, involvement of law enforcement, mutual aid agreements with other facilities, drills and training, surge capacity, decontamination capability, and pharmaceutical stockpiles. The drill evaluation tool, developed by Johns Hopkins University under contract from the Agency for Healthcare Research and Quality, was used to assess various aspects of drill performance, such as the availability of the hospital disaster plan, the geographic configuration of the incident command center, whether drill participants were identifiable, whether the noise level interfered with effective communication, and how often key information (eg, number of available staffed floor, intensive care, and isolation beds; number of arriving victims; expected triage level of victims; number of potential discharges) was received by the incident command center. Teamwork behaviors in the incident command center were quantitatively assessed, using the MedTeams analysis of the video recordings obtained during the disaster drill. Spearman rank correlations of the results between pair-wise groupings of the 3 assessment methods were calculated. The 3 evaluation methods demonstrated

  13. Hominin Sites and Paleolakes Drilling Project: A 500,000-year climate record from Chew Bahir, a key site in southern Ethiopia

    Science.gov (United States)

    Foerster, Verena E.; Asrat, Asfawossen; Chapot, Melissa S.; Cohen, Andrew S.; Dean, Jonathan R.; Deino, Alan; Günter, Christina; Junginger, Annett; Lamb, Henry F.; Leng, Melanie J.; Roberts, Helen M.; Schaebitz, Frank; Trauth, Martin H.

    2017-04-01

    What is the environmental context of human evolution and dispersal? In order to evaluate the impact that different timescales and magnitude of climatic shifts have had on the living conditions of anatomically modern humans, the Hominin Sites and Paleolakes Drilling Project (HSPDP) has cored five predominantly-lacustrine sequences to investigate climate change in East Africa (Cohen et al., 2016). The five high-priority areas in Ethiopia and Kenya are located in close proximity to key paleoanthropological sites covering various steps in evolution. One of the five cores is from Chew Bahir. Chew Bahir is a deep tectonically-bound basin in the southern Ethiopian rift, close to the Lower Omo valley, site of the earliest known fossil of anatomically modern humans. As part of the deep drilling initiative between ICDP-HSPDP and the Collaborative Research Center (CRC806), the Chew Bahir sedimentary deposits were cored in late 2014, yielding in two parallel cores reaching 280 m depth and which cover the last 550 ka of environmental history. We present the initial results of on-going lithologic and stratigraphic investigation of the composite core, the results of high resolution MSCL and XRF scanning data, as well as the first results of detailed multi-proxy analysis of the Chew Bahir cores. These analyses are based on more than 14,000 discrete subsamples. An initial chronology, based on Ar/Ar and OSL dating, allows the first reconstructions of dry-wet cycles during the last 550 ka. Both geochemical and sedimentological results show that the Chew Bahir deposits are sensitive recorders of changes in moisture, sediment influx, provenance, transport and diagenetic processes. The core records will allow tests of the various hypotheses regarding the impact of climate variability -from climate flickers to orbital driven transitions- on the evolution and dispersal of anatomically modern humans. References: Cohen, A. et al., 2016. The Hominin Sites and Paleolakes Drilling Project

  14. EXECUTIVE SUMMARY OF STATE DATA RELATED TO ABANDONED CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS

    Energy Technology Data Exchange (ETDEWEB)

    H. Seay Nance

    2003-03-01

    This 2003 Spring Semi-Annual Report contains a summary of the Final Technical Report being prepared for the Soil Remediation Requirements at Commercial and Centralized Drilling-Fluid Disposal (CCDD) Sites project funded by the United States Department of Energy under DOE Award No. DE-AC26-99BC15225. The summary describes (1) the objectives of the investigation, (2) a rationale and methodology of the investigation, (3) sources of data, assessment of data quality, and data availability, (4) examples of well documented centralized and commercial drilling-fluid disposal (CCDD) sites and other sites where drilling fluid was disposed of, and (5) examples of abandoned sites and measures undertaken for their assessment and remediation. The report also includes most of the figures, tables, and appendices that will be included in the final report.

  15. Refined images of the crust around the SAFOD drill site derived from combined active and passive seismic experiment data

    Science.gov (United States)

    Roecker, S.; Thurber, C.; Shuler, A.; Liu, Y.; Zhang, H.; Powell, L.

    2005-12-01

    Five years of effort collecting and analyzing earthquake and explosion data in the vicinity of the SAFOD drill site culminated in the determination of the final trajectory for summer 2005's Phase 2 drilling. The trajectory was defined to optimize the chance of reaching one of two adjacent M2 "target earthquake" fault patches, whose centroids are separated horizontally by about 50 meters, with one or more satellite coreholes planned for Phase 3 drilling in summer 2007. Some of the most critical data for the final targeting were explosion data recorded on a Paulsson Geophysical Services, Inc., 80-element 3-component borehole string and earthquake data recorded on a pair of 3-component Duke University geophones in the SAFOD borehole. We are now utilizing the full 5-year dataset to refine our knowledge of three-dimensional (3D) crustal structure, wave propagation characteristics, and earthquake locations around SAFOD. These efforts are proceeding in parallel in several directions. Improved picks from a careful reanalysis of shear waves observed on the PASO array will be used in deriving an improved tomographic 3D wavespeed model. We are using finite-difference waveform modeling to investigate waveform complexity for earthquakes in and near the target region, including fault-zone head waves and strong secondary S-wave arrivals. A variety of waveform imaging methods are being applied to image fine-scale 3D structure and subsurface scatterers, including fault zones. In the process, we aim to integrate geophysical logging and geologic observations with our models to try to associate the target region earthquake activity, which is occurring on two fault strands about 280 meters apart, with shear zones encountered in the SAFOD Phase-2 borehole. These observations will be agumented and the target earthquake locations further refined over the next 2 years through downhole and surface recording of natural earthquakes and surface shots conducted at PASO station locations.

  16. Preliminary geologic framework developed for a proposed environmental monitoring study of a deep, unconventional Marcellus Shale drill site, Washington County, Pennsylvania

    Science.gov (United States)

    Stamm, Robert G.

    2018-06-08

    BackgroundIn the fall of 2011, the U.S. Geological Survey (USGS) was afforded an opportunity to participate in an environmental monitoring study of the potential impacts of a deep, unconventional Marcellus Shale hydraulic fracturing site. The drill site of the prospective case study is the “Range Resources MCC Partners L.P. Units 1-5H” location (also referred to as the “RR–MCC” drill site), located in Washington County, southwestern Pennsylvania. Specifically, the USGS was approached to provide a geologic framework that would (1) provide geologic parameters for the proposed area of a localized groundwater circulation model, and (2) provide potential information for the siting of both shallow and deep groundwater monitoring wells located near the drill pad and the deviated drill legs.The lead organization of the prospective case study of the RR–MCC drill site was the Groundwater and Ecosystems Restoration Division (GWERD) of the U.S. Environmental Protection Agency. Aside from the USGS, additional partners/participants were to include the Department of Energy, the Pennsylvania Geological Survey, the Pennsylvania Department of Environmental Protection, and the developer Range Resources LLC. During the initial cooperative phase, GWERD, with input from the participating agencies, drafted a Quality Assurance Project Plan (QAPP) that proposed much of the objectives, tasks, sampling and analytical procedures, and documentation of results.Later in 2012, the proposed cooperative agreement between the aforementioned partners and the associated land owners for a monitoring program at the drill site was not executed. Therefore, the prospective case study of the RR–MCC site was terminated and no installation of groundwater monitoring wells nor the collection of nearby soil, stream sediment, and surface-water samples were made.Prior to the completion of the QAPP and termination of the perspective case study the geologic framework was rapidly conducted and nearly

  17. Archive of Core and Site/Hole Data and Photographs from the Integrated Ocean Drilling Program (IODP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The US Science Operator for the Integrated Ocean Drilling Program (IODP) operated the drilling vessel JOIDES Resolution from 2004-2013 for worldwide expeditions...

  18. Preliminary results of the first scientific Drilling on Lake Baikal, Buguldeika site, southeastern Siberia

    Science.gov (United States)

    Williams, Douglas F.; Colman, S.; Grachev, M.; Hearn, P.; Horie, Shoji; Kawai, T.; Kuzmin, Mikhail I.; Logachov, N.; Antipin, V.; Bardardinov, A.; Bucharov, A.; Fialkov, V.; Gorigljad, A.; Tomilov, B.; Khakhaev, B.N.; Kochikov, S.; Logachev, N.; Pevzner, L.A.; Karabanov, E.B.; Mats, V.; Baranova, E.; Khlystov, O.; Khrachenko, E.; Shimaraeva, M.; Stolbova, E.; Efremova, S.; Gvozdkov, A.; Kravchinski, A.; Peck, J.; Fileva, T.; Kashik, S.; Khramtsova, T.; Kalashnikova, I.; Rasskazova, T.; Tatarnikova, V.; Yuretich, Richard; Mazilov, V.; Takemura, K.; Bobrov, V.; Gunicheva, T.; Haraguchi, H.; Ito, S.; Kocho, T.; Markova, M.; Pampura, V.; Proidakova, O.; Ishiwatari, R.; Sawatari, H.; Takeuchi, A.; Toyoda, K.; Vorobieva, S.; Ikeda, A.; Marui, A.; Nakamura, T.; Ogura, K.; Ohta, Takeshi; King, J.; Sakai, H.; Yokoyama, T.; Hayashida, A.; Bezrukova, E.; Fowell, S.; Fujii, N.; Letunova, P.; Misharina, V.; Miyoshi, N.; Chernyaeva, G.; Ignatova, I.; Likhoshvai, E.; Granina, L.; Levina, O.; Dolgikh, P.; Lazo, F.; Lutskaia, N.; Orem, W.; Wada, E.; Yamada, K.; Yamada, S.; Callander, E.; Golobokoval, L.; Shanks, W. C. Pat; Dorofeeva, R.; Duchkov, A.

    1997-01-01

    The Baikal Drilling Project (BDP) is a multinational effort to investigate the paleoclimatic history and tectonic evolution of the Baikal sedimentary basin during the Late Neogene. In March 1993 the Baikal drilling system was successfuly deployed from a barge frozen into position over a topographic high, termed the Buguldeika saddle, in the southern basin of Lake Baikal. The BDP-93 scientific team, made up of Russian, American and Japanese scientists, successfully recovered the first long (>100 m) hydraulic piston cores from two holes in 354 m of water. High quality cores of 98 m (Hole 1) and 102 m (Hole 2), representing sedimentation over the last 500,000 years, were collected in 78 mm diameter plastic liners with an average recovery of 72% and 90%, respectively. Magnetic susceptibility logging reveals an excellent hole-to-hole correlation. In this report the scientific team describes the preliminary analytical results from BDP-93 hole 1 cores. Radiocarbon dating by accelerator mass spectrometry provides an accurate chronology for the upper portion of Hole 1. Detailed lithologic characteristics, rock magnetic properties and inorganic element distributions show a significant change to the depositional environment occuring at 50 m subbottom depth, approximately 250,000 BP. This change may be due to uplift and rotation of the horst block in the Buguldeika saddle. The sedimentary section above 50 m is pelitic with varve-like laminae, whereas the section below 50 m contains a high proportion of sand and gravel horizons often organized into turbidite sequences. Accordingly, high resolution seismic records reveal a change in sonic velocity at this depth. It is inferred that sedimentation prior to 250 ka BP was from the west via the Buguldeika river system. After 250 ka BP the Buguldeika saddle reflects an increase in hemipelagic sediments admixed with fine-grained material from the Selenga River drainage basin, east of Lake Baikal. Variations in the spore

  19. Geology of the UE17e drill hole, Area 17, Nevada Test Site

    International Nuclear Information System (INIS)

    Hodson, J.N.; Hoover, D.L.

    1979-03-01

    The UE17e drill hole, located at the northwest corner of Syncline Ridge, was cored from 3.05 m (10 ft) to a total depth of 914.4 m (3,000 ft) in unit J (Mississippian) of the Eleana (Devonian and Mississippian) to obtain samples for mineral, chemical, and physical-property analyses. UE17e penetrated 73.5 m (241 ft) of the quartzite subunit and 840.9 m (2,759 ft) of the argillite subunit of unit J. Less than 0.4 percent quartzite is present in the argillite subunit. Dips range from 12 0 to 18 0 . Twenty-three faults were observed in the core or on geophysical logs. Most of these faults affect only a few meters of the core and probably have displacements of a few meters. The majority of fractures are parallel to bedding planes. Fracture frequency ranges from 3.4 to 9.4 fractures per meter in the upper part of the cored interval and 1.4 to 5.9 fractures per meter in the lower part of the cored interval. The core index indicates that the lower part of the hole is more competent than the upper part. Lower competency in the upper part of the hole may be caused by weathering and/or near-surface stress relief. Physical, mechanical, and thermal property measurements indicate that bedding and fracturing are the major factors in variation of properties between samples. 17 figures, 10 tables

  20. Accidental Release of Chlorine from a Storage Facility and an On-Site Emergency Mock Drill: A Case Study

    Directory of Open Access Journals (Sweden)

    Ambalathumpara Raman Soman

    2015-01-01

    Full Text Available In the current industrial scenario there is a serious need for formulating strategies to handle hazardous substances in the safest way. Manufacture, storage, and use of hazardous substances pose a serious risk to industry, people, and the environment. Accidental release of toxic chemicals can lead to emergencies. An emergency response plan (ERP is inevitable to minimize the adverse effects of such releases. The on-site emergency plan is an integral component of any process safety and risk management system. This paper deals with an on-site emergency response plan for a chlorine manufacturing industry. It was developed on the basis of a previous study on chlorine release and a full scale mock drill has been conducted for testing the plan. Results indicated that properly trained personnel can effectively handle each level of incidents occurring in the process plant. As an extensive guideline to the district level government authorities for off-site emergency planning, risk zone has also been estimated with reference to a chlorine exposure threshold of 3 ppm.

  1. Clinical analysis of the stability of dental implants after preparation of the site by conventional drilling or piezosurgery.

    Science.gov (United States)

    da Silva Neto, Ulisses Tavares; Joly, Julio Cesar; Gehrke, Sergio Alexandre

    2014-02-01

    We used resonance frequency analysis to evaluate the implant stability quotient (ISQ) of dental implants that were installed in sites prepared by either conventional drilling or piezoelectric tips. We studied 30 patients with bilateral edentulous areas in the maxillary premolar region who were randomised to have the implant inserted with conventional drilling, or with piezoelectric surgery. The stability of each implant was measured by resonance frequency analysis immediately after placement to assess the immediate stability (time 1) and again at 90 days (time 2) and 150 days (time 3). In the conventional group the mean (SD) ISQ for time 1 was 69.1 (6.1) (95% CI 52.4-77.3); for time 2, 70.7 (5.7) (95% CI 60.4-82.8); and for time 3, 71.7 (4.5) (95% CI 64.2-79.2). In the piezosurgery group the corresponding values were: 77.5 (4.6) (95% CI 71.1-84.3) for time 1, 77.0 (4.2) (95% CI, 69.7-85.2) for time 2, and 79.1 (3.1) (95% CI 74.5-87.3) for time 3. The results showed significant increases in the ISQ values for the piezosurgery group at each time point (p=0.04). The stability of implants placed using the piezoelectric method was greater than that of implants placed using the conventional technique. Copyright © 2013 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Occurrence of rhyolytic tuffs at deep sea drilling project site 219 on the Laccadive Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Siddiquie, H.N.; Sukheswala, R.N.

    A study of thin sections from the lower and middle parts of Unit 5 (Paleocene) from Site 219 shows that these largely consist of acidic or rhyolitic tuffs. The overlying limestones in Unit 5 (Paleocene) and Unit 4 (Lower Eocene) also contain...

  3. Site-specific waste management instruction for the 100-KR-4 Operable Unit drilling

    International Nuclear Information System (INIS)

    Hadley, J.T.

    1996-07-01

    This site-specific waste management instruction provides guidance for the management of waste generated as a result of groundwater well installations in the 100-KR-4 Operable Unit (OU). The well installations are necessary to implement the Remedial Action (RA) option (pump-and-treat using ion exchange) to prevent discharge of hexavalent chromium at levels above those considered protective of aquatic life in the Columbia River and riverbed sediments

  4. Site-specific waste management instruction for the 100-KR-4 Operable Unit drilling. Revision 1

    International Nuclear Information System (INIS)

    Hadley, J.T.

    1996-08-01

    This site-specific waste management instruction provides guidance for the management of waste generated as a result of groundwater well installations in the 100-KR-4 Operable Unit (OU). The well installations are necessary to implement the Remedial Action (RA) option (pump-and-treat using ion exchange) to prevent discharge of hexavalent chromium at levels above those considered protective of aquatic life in the Columbia River and riverbed sediments

  5. Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming

    International Nuclear Information System (INIS)

    Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.; Inlow, D.; Flurkey, A.J.; Kratochvil, A.L.; Coolidge, C.M.; Sever, C.K.; Quimby, W.F.

    1981-02-01

    This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre, and drill site geologic maps and cross-sections from most of the holes

  6. Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.; Inlow, D.; Flurkey, A.J.; Kratochvil, A.L.; Coolidge, C.M.; Sever, C.K.; Quimby, W.F.

    1981-02-01

    This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre, and drill site geologic maps and cross-sections from most of the holes.

  7. Sensitivity studies of the common bean (Vigna unguiculata) and maize (Zea mays) to different soil types from the crude oil drilling site at Kutchalli, Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Anoliefo, G.O. [Dept. of Botany, Univ. of Benin, Benin City (Nigeria); Isikhuemhen, O.S. [Dept. of Natural Resources and Environmental Design, NC Agricultural and Technical State Univ., Greensboro, NC (United States); Ohimain, E.I. [Rohi Biotechnologies Ltd., Port Harcourt (Nigeria)

    2006-02-15

    Background, aims and scope. The economic growth that Nigeria has enjoyed as a result of oil revenue has its drawback through exposure of people in the oil producing areas to environmental contamination, due largely to the increase in the movement of oil. Activities associated with oil well drilling on agricultural lands have led to serious economic losses on the communities affected. The local people in most of these communities are peasants who do not know how to react to drilling wastes or polluted fields where they have their crops. A case under study is the Kutchalli oil drilling area. Methods. Waste pit soil from drilling waste dumps in Kutchalli oil drilling area was tested whole and in combinations with 'clean' soil for their abilities to support plant growth and development in common bean (Vigna unguiculata) and maize (Zea mays). Seed germination, plant height, leaf area, biomass accumulation, respiratory activity as well as soil chemical analysis were used to access the ability of waste pit soil to support plant growth and development in the test plants. Results, discussion and conclusions. Waste pit soil completely inhibited the germination of bean and maize seeds. Waste pit soil in combinations with different proportions of Kutchalli soil gave growth (germination, height of plants, number of leaves, leaf area, etc.) values that were inferior to the control soil (Kutchalli) and the independent control soil (Monguno). Seeds planted in the test soil combinations containing waste pit soil showed significantly low respiratory activity. Waste pit soil seems to be toxic to plant growth and development. Drilling mud in combination with native Kutchalli soil significantly enhanced plant growth and development. Recommendations and outlook. The seed germination, growth and development inhibition by waste pit soil suggests its toxicity. We want to suggest the need for strict control and monitoring of waste pit soil in oil drilling sites. (orig.)

  8. Permanent magnetic field treatment of nonpenetrating corneal injuries at oil drilling site medical aid stations in Udmurt ASSR

    Energy Technology Data Exchange (ETDEWEB)

    Zaykova, M.V.; Gorkunov, E.S.; Liyaskin, M.I.; Osipov, N.A.; Koshevoy, V.P.; Vlasova, E.F.; Solovev, A.A.

    1985-01-01

    Therapeutic trials were conducted with permanent magnetic field magnetotherapy in the management of nonpenetrating corneal injuries. The low intensity fields (10 mTesla) were applied to closed eyelids of 100 workers, 20-30 years of age, injured at oil drilling sites in Udmurtia, with another 100 workers treated in the conventional manner without adjunct magnetotherapy to provide a control group. Treatment consisted of 3-20 half-hour sessions following foreign body removal. In the experimental group 98% of the patients showed recovery of 0.9-1.0 visual acuity, with superficial traumatic keratitis evident in only 2% of the subjects. Full recovery of visual acuity was obtained in only 89% of the control group, with 11% of the patients in that group presenting with traumatic keratitis. In addition, discharge time for the former group was 2.5 days on the average, and 4.5 days for the control group. The severity of complications in the magnetotherapy group was also less pronounced than in the control cohort.

  9. Cleanup of radioactive mud spill U20aa postshot drilling site NTS

    International Nuclear Information System (INIS)

    Straume, T.; Kellner, C.R.; Oswald, K.M.

    1977-03-01

    Radioactive decontamination of a large rugged terrain on the NTS (Area 20) was undertaken during the Summer of 1976. Several decontamination methods were used and their effectiveness, as measured by the fraction of radioactivity remaining (FR), ranged from 10 -1 to 10 -3 , depending upon the method used and type of terrain. Front end loading was most efficient in large relatively flat areas of fine grain, compact dirt with an FR of about 10 -2 . Shoveling and bagging achieved FRs of 10 -2 in locations of fine grain, compact dirt. However, if dirt was coarse grain or gravel-like, the contaminated mud/water had seeped to considerable depths, making shoveling impractical. Flushing with water was the method chosen for rocky surfaces and was the primary method of decontamination in Area 4. FRs down to 10 -3 were achieved on smooth surfaces and about 10 -1 in cracks. Vacuuming was very effective in flat areas with fine grain compact dirt achieving FRs down to 10 -3 , but was a very slow process compared to front end loading. Approximately 900 man days were expended on this cleanup, and 2584 yd 3 of contaminated dirt were removed. A similar amount of clean dirt was transported from about two miles away to cover the crater burial site, mud sump, and areas containing residual radiation above 1 mrem/h contact. Total quantity of residual radioactivity present 6 months following the spill and after decontamination was estimated as 900 millicuries of 106 Ru/Rh and 0.034 millicuries 103 Ru. No person was exposed to doses of radiation (external or internal) above the maximum allowable limits listed in ERDAM 0524. Estimates based upon hand dose measurements indicate that no individual should have received more than 584 mrem to hands

  10. Summary of micrographic analysis of fracture coating phases on drill cores from Pahute Mesa, Nevada Test Site. Revision 1

    International Nuclear Information System (INIS)

    1998-12-01

    The flow path between Pahute Mesa and the groundwater discharge area in Oasis Valley (approximately 18 miles to the southwest) is of concern due to the relatively short travel distance between a recharge area where underground nuclear testing has been conducted and the off-site water users. Groundwater flow and transport modeling by IT Corporation (IT) has shown rapid tritium transport in the volcanic rock aquifers along this flow path. The resultant estimates of rapid transport were based on water level data, limited hydraulic conductivity data, estimates of groundwater discharge rates in Oasis Valley, assumed porosities, and estimated retardation rates. Many of these parameters are poorly constrained and may vary considerably. Sampling and analytical techniques are being applied as an independent means to determine transport rates by providing an understanding of the geochemical processes that control solute movement along the flow path. As part of these geochemical investigations, this report summarizes the analysis of fracture coating mineral phases from drill core samples from the Pahute mesa area of the Nevada Test Site (NTS). Archived samples were collected based on the presence of natural fractures and on the types and abundance of secondary mineral phases present on those fracture surfaces. Mineral phases present along fracture surfaces are significant because, through the process of water-rock interaction, they can either contribute (as a result of dissolution) or remove (as a result of precipitation or adsorption) constituents from solution. Particular attention was paid to secondary calcite occurrences because they represent a potential source of exchangeable carbon and can interact with groundwater resulting in a modified isotopic signature and apparent water age

  11. A ~600 kyr duration Early Pleistocene record from the West Turkana (Kenya) HSPDP drill site: elemental XRF variability to reconstruct climate change in Turkana Boy's backyard

    Science.gov (United States)

    Stockhecke, M.; Beck, C. C.; Brown, E. T.; Cohen, A.; Deino, A. L.; Feibel, C. S.; Sier, M.

    2015-12-01

    Outcrops in the Kenyan and Ethiopian rift valleys document repeated occurrences of freshwater lakes and wooded landscapes over the past 4 million years at locations that are currently seasonally-dry savanna. Studies of the rich fossil records, in combination with outcropping lacustrine sequences, led to major breakthroughs in our knowledge of driving factors in human evolution. However, study of continuous drill core from ancient lake basins provides a basis for to unravel East African climate dynamics in an unseen fashion. The Hominin Sites and Paleolakes Drilling Project (HSPDP), and the related Olorgesailie Drilling Project, recovered ~2 km of drill core since 2012. A major project goal is characterization of East African paleoclimate in order to evaluate its impact on hominin evolution. XRF core scanning data provide a means of evaluating records of past environmental conditions continuously and at high resolution. However, the HSPDP records contain complex lithologies reflecting repeated episodes of inundation and desiccation of the lake basins. Nevertheless, careful data evaluation based on detailed lithostratigraphy, which includes smear-slide microscopic analyses and X-radiographic images, allows disentanglement of complex signals and robust identification of continuous sequences for any cyclostratigraphic and statistical analysis. At the HSPDP Turkana Basin site a 175.6 m-long core the covers the Early Pleistocene time window during which hominids first expanded out of Africa and marine records document reorganization of tropical climate and the development of the strong Walker circulation. This drill site carries particular interest as it is located in only 2.5 km from the location of one of the most complete hominin skeletons ever recovered (Turkana Boy). Here we present a methodological approach to address the highly variable lithostratigraphy of the East African records to establish comprehensive and environmentally meaningful paleoclimate timeseries

  12. Casing drilling

    Energy Technology Data Exchange (ETDEWEB)

    Heenan, D. [Tesco Corp., Calgary, AB (Canada)

    2003-07-01

    This paper reviewed the experience that Tesco has gained by drilling several wells using only casings as the drill stem. Tesco has manufactured a mobile and compact hydraulic drilling rig called the Casing Drilling {sup TM} system. The system could be very effective and efficient for exploration and development of coalbed methane (CBM) reserves which typically require extensive coring. Continuous coring while drilling ahead, along wire line retrieval, can offer time savings and quick core recovery of large diameter core which is typically required for exploration core desorption tests. The proposed system may also have the potential to core or drill typically tight gas sands or underbalanced wells with air or foam. This would reduce drilling fluid damage while simultaneously finding gas. Compared to conventional drill pipes, Casing Drilling {sup TM} could also be effective with water production from shallow sands because of the smaller annual clearance which requires less air volumes to lift any produced water. 9 figs.

  13. CENSUS AND STATISTICAL CHARACTERIZATION OF SOIL AND WATER QUALITY AT ABANDONED AND OTHER CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS

    Energy Technology Data Exchange (ETDEWEB)

    Alan R. Dutton; H. Seay Nance

    2003-06-01

    Commercial and centralized drilling-fluid disposal (CCDD) sites receive a portion of spent drilling fluids for disposal from oil and gas exploration and production (E&P) operations. Many older and some abandoned sites may have operated under less stringent regulations than are currently enforced. This study provides a census, compilation, and summary of information on active, inactive, and abandoned CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas, intended as a basis for supporting State-funded assessment and remediation of abandoned sites. Closure of abandoned CCDD sites is within the jurisdiction of State regulatory agencies. Sources of data used in this study on abandoned CCDD sites mainly are permit files at State regulatory agencies. Active and inactive sites were included because data on abandoned sites are sparse. Onsite reserve pits at individual wells for disposal of spent drilling fluid are not part of this study. Of 287 CCDD sites in the four States for which we compiled data, 34 had been abandoned whereas 54 were active and 199 were inactive as of January 2002. Most were disposal-pit facilities; five percent were land treatment facilities. A typical disposal-pit facility has fewer than 3 disposal pits or cells, which have a median size of approximately 2 acres each. Data from well-documented sites may be used to predict some conditions at abandoned sites; older abandoned sites might have outlier concentrations for some metal and organic constituents. Groundwater at a significant number of sites had an average chloride concentration that exceeded nonactionable secondary drinking water standard of 250 mg/L, or a total dissolved solids content of >10,000 mg/L, the limiting definition for underground sources of drinking water source, or both. Background data were lacking, however, so we did not determine whether these concentrations in groundwater reflected site operations. Site remediation has not been found necessary to date for most abandoned

  14. Development of Next-Generation Borehole Magnetometer and Its Potential Application in Constraining the Magnetic Declination of Oman Samail Ophiolite at ICDP Drill Sites

    Science.gov (United States)

    Lee, S. M.; Parq, J. H.; Kim, H.; Moe, K.; Lee, C. S.; Kanamatsu, T.; Kim, K. J.; Bahk, K. S.

    2017-12-01

    Determining the azimuthal orientation of core samples obtained from deep drilling is extremely difficult because the core itself could have rotated during drilling operations. Several indirect methods have been devised to address this issue, but have certain limitations. Thus it is still a challenge to determine the azimuthal orientation consistently over the entire length of the hole. Provided that the recovery rate is high and thus all the other magnetic properties such as magnetization intensity and inclination are measured from the recovered cores, one possible method for ascertaining magnetic declination information is to measure the magnetic field inside the empty borehole and invert for the best fitting declination. However, there are two major problems: one is that present-day borehole magnetometers are not precise enough to resolve changes in direction of magnetization, and the other is that in most rock drilling experiments the rate of recovery is low. To overcome the first major problem which is technical, scientists from Korea and Japan jointly conducted the development for the next-generation borehole magnetometer, namely 3GBM (3rd Generation Borehole Magnetometer). The borehole magnetometer which uses fiber-optic laser gyro promises to provide accurate information on not only the magnetic field itself but also the orientation of the instrument inside the borehole. Our goal is to deploy this borehole magnetometer in the ICDP Oman Drilling Project Phase 2 drilling experiment early 2018. The site may be suitable for the investigation because, as recent Phase 1 of the Oman Samail Ophiolite drilling has demonstrated, the recovery rate was very high. Also the post-drilling measurements onboard DV Chikyu have shown that much of the recovered samples has moderate magnetization intensity on the order of 0.1 and 1 A/m. Here, we present the results of numerical simulation of magnetic field inside the borehole using finite element method to show that magnetic

  15. Rock thermal property measurements with the Posiva TERO56 drill hole device in the forsmark study site

    International Nuclear Information System (INIS)

    Kukkonen, I.; Suppala, I.; Korpisalo, A.

    2007-10-01

    Thermal properties were measured in situ in Forsmark at the SKB study site constructed for large-scale thermal conductivity investigations in an outcrop of anisotropic granite. The Posiva TERO56 drill hole tool was used for in situ measurements in four 20 m deep boreholes KFM90C, D, E and F located within very short distances of each other (less than 2.3 m). Measurements were done at depths of 10-18 m in water-filled holes. The bedrock is granite with thin amphibolite and pegmatite layers and thin felsic veins. The measurement principle of the TERO56 logging device is based on conduction of heat from a cylindrical source placed in a borehole and the thermal parameter values are calculated with a least squares inversion algorithm. Measurements in Forsmark consisted typically of 6 hours heating time followed by 10 hours cooling time, but in one measurement the heating time was reduced to of 2 h 45 min and the cooling time to 5 hours. Average thermal conductivity values range from 3.37 to 3.91 W m -1 K -1 with standard deviations between 0.01 and 0.04 W m -1 K -1 . The result is plausible considering the quite homogeneous target geology and short distances between different experiment stations. Diffusivity values, however, vary much more, and averages range from 0.68 to 2.08 A 10 -6 m 2 s -1 with standard deviations ranging from 0.04 to 0.09 A 10 -6 m 2 s -1 . Variations may be attributed to small flow effects or time-dependent temperature trends related to thermal equilibration of the probe. (orig.)

  16. Drilling unit

    Energy Technology Data Exchange (ETDEWEB)

    Umanchik, N P; Demin, A V; Khrustalev, N N; Linnik, G N; Lovchev, S V; Rozin, M M; Sidorov, R V; Sokolov, S I; Tsaregradskiy, Yu P

    1981-01-01

    A drilling unit is proposed which includes a hydraulic lifter, hydraulic multiple-cylinder pump with valve distribution and sectional drilling pump with separators of the working and flushing fluid. In order to reduce metal consumption and the overall dimensions of the drilling unit, the working cavity of each cylinder of the hydraulic multiple-cylinder pump is equipped with suction and injection valves and is hydraulically connected to the working cavity by one of the sections of the drilling pump.

  17. Technical report for a fluidless directional drilling system demonstrated at Solid Waste Storage Area 6 shallow buried waste sites

    International Nuclear Information System (INIS)

    1995-09-01

    The purpose of the research was to demonstrate a fluidless directional drilling and monitoring system (FDD) specifically tailored to address environmental drilling concerns for shallow buried wasted. The major concerns are related to worker exposure, minimizing waste generation, and confining the spread of contamination. The FDD is potentially applicable to Environmental Restoration (ER) activities for the Oak Ridge National Laboratory Waste Area Grouping 6 (WAG 6) shallow buried waste disposed in unlined trenches. Major ER activities for directional drilling are to develop a drilling system for leachate collection directly beneath trenches, and to provide localized control over leachate release to the environment. Other ER FDD activities could include vadose zone and groundwater monitoring of contaminant transport. The operational constraints pointed the research in the direction of purchasing a steerable impact hammer, or mole, manufactured by Steer-Rite Ltd. of Racine, Wisconsin. This drill was selected due to the very low cost ($25,000) associated with procuring the drill, steering module, instrumentation and service lines. The impact hammer is a self propelled drill which penetrates the soil by compacting cut material along the sidewalls of the borehole. Essentially, it forces its way through the subsurface. Although the pneumatic hammer exhausts compressed air which must be handled at the borehole collar, it does not generate soil cuttings or liquids. This is the basis for the term fluidless. A stub casing muffler was attached to the entrance hole for controlling exhaust gas and any airborne releases. Other environmental compliance modifications made to the equipment included operating the tool without lubrication, and using water instead of hydraulic fluid to actuate the steering fins on the tool

  18. Drilling comparison in "warm ice" and drill design comparison

    DEFF Research Database (Denmark)

    Augustin, L.; Motoyama, H.; Wilhelms, F.

    2007-01-01

    For the deep ice-core drilling community, the 2005/06 Antarctic season was an exciting and fruitful one. In three different Antarctic locations, Dome Fuji, EPICA DML and Vostok, deep drillings approached bedrock (the ice-water interface in the case of Vostok), emulating what had previously been...... achieved at NorthGRIP, Greenland, (summer 2003 and 2004) and at EPICA Dome C2, Antarctica (season 2004/05). For the first time in ice-core drilling history, three different types of drill (KEMS, JARE and EPICA) simultaneously reached the depth of 'warm ice' under high pressure. After excellent progress...... at each site, the drilling rate dropped and the drilling teams had to deal with refrozen ice on cutters and drill heads. Drills have different limits and perform differently. In this comparative study, we examine depth, pressure, temperature, pump flow and cutting speed. Finally, we compare a few...

  19. Geological-geotechnical studies for siting the Superconducting Super Collider in Illinois: results of drilling large-diameter holes in 1986. Environmental geology notes

    International Nuclear Information System (INIS)

    Vaiden, R.C.; Hasek, M.J.; Gendron, C.R.; Curry, B.B.; Graese, A.M.

    1988-01-01

    The Illinois State Geological Survey (ISGS) has completed an extensive four-year exploration of the area near Fermi National Accelerator Laboratory (Fermilab) at Batavia, 30 miles west of Chicago. The comprehensive investigation was conducted to locate the most suitable site for construction and operation of the Superconducting Super Collider (SSC) - a 20-trillion electron volt (TeV) subatomic particle accelerator. Underlying the proposed site in northeastern Illinois, between 250 and 600 feet deep, are the Galena and Platteville dolomites - strong, stable, nearly impermeable bedrock. To confirm that these bedrock units are suitable for construction of the SSC, ISGS geologists designed a four-year study including test drilling, rock sampling and analysis, geophysical logging, hydrogeologic studies, and seismic exploration. Initially, the study covered parts of six counties. Subsequent research focused on successively smaller areas until the final stage of test drilling in spring 1986 concentrated on a proposed corridor for the SSC tunnel. From 1984 to 1986, thirty 3-inch-diameter test holes were drilled and more than 2 miles of bedrock core was recovered for stratigraphic description and geotechnical analysis

  20. Selecting, engineering and constructing drilling sites at the Geysers geothermal field. Geysers chinetsu ryoiki ni okeru kussaku shikichi no sentei engineering kochiku

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This paper describes some examples of selection, engineering and construction of drilling sites at the Geysers geothermal field in the northern district of California State. Steep landform, thin-layered soil and violent rainfall create unstable conditions bringing about numerous landslide in the field. Selection of a well drilling site appropriate in such conditions is started by analyzing the aerial photographs by technical staff. After site selection, prospecting and soil test are conducted and a working plan in the well site is decided to prepare engineering drawings. In the construction, land preparation, the open-cutting of base-line trench, etc. are carried out. The base-line trench is a large and sufficiently deep one which is open-cut to the front end or the middle of the bottom part of the well plateau. The final construction work is to build a leading casing for interpolating cementing. The well site construction in the Geysers geothermal field is done in consideration of protecting human life, health and properties. 1 fig.

  1. Drill site selection process using geophysical (seismic, EM, magnetic) and regional geochemical uranium deposit vectors in the Athabasca Basin

    International Nuclear Information System (INIS)

    Hajnal, Z.; Takacs, E.; Pandit, B.

    2014-01-01

    Conclusions: • High resolution reflection technique, in correlation with other indicative vectors, provides primary structural and alteration information, within the Keefe L. prospect. • Several primary integrated attributes are indicative of mineralization within the SW. • The anomalous zones are more accurately defined in depths than any other geophysical technique, reduce drilling cost significantly.

  2. Changes in implant stability using different site preparation techniques: twist drills versus piezosurgery. A single-blinded, randomized, controlled clinical trial.

    Science.gov (United States)

    Stacchi, Claudio; Vercellotti, Tomaso; Torelli, Lucio; Furlan, Fabio; Di Lenarda, Roberto

    2013-04-01

    The objective of the present investigation was to longitudinally monitor stability changes of implants inserted using traditional rotary instruments or piezoelectric inserts, and to follow their variations during the first 90 days of healing. A randomized, controlled trial was conducted on 20 patients. Each patient received two identical, adjacent implants in the upper premolar area: the test site was prepared with piezosurgery, and the control site was prepared using twist drills. Resonance frequency analysis measurements were taken by a blinded operator on the day of surgery and after 7, 14, 21, 28, 42, 56, and 90 days. At 90 days, 39 out of 40 implants were osseointegrated (one failure in the control group). Both groups showed an initial decrease in mean implant stability quotient (ISQ) values: a shift in implant stability to increasing ISQ values occurred after 14 days in the test group and after 21 days in the control group. The lowest mean ISQ value was recorded at 14 days for test implants (97.3% of the primary stability) and at 21 days for the control implants (90.8% of the primary stability). ISQ variations with respect to primary stability differed significantly between the two groups during the entire period of observation: from day 14 to day 42, in particular, the differences were extremely significant (p < .0001). All 39 implants were in function successfully at the visit scheduled 1 year after insertion. The findings from this study suggest that ultrasonic implant site preparation results in a limited decrease of ISQ values and in an earlier shifting from a decreasing to an increasing stability pattern, when compared with the traditional drilling technique. From a clinical point of view, implants inserted with the piezoelectric technique demonstrated a short-term clinical success similar to those inserted using twist drills. © 2011 Wiley Periodicals, Inc.

  3. Scientific drilling into the San Andreas fault and site characterization research: Planning and coordination efforts. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Zoback, M.D.

    1998-08-30

    The fundamental scientific issue addressed in this proposal, obtaining an improved understanding of the physical and chemical processes responsible for earthquakes along major fault zones, is clearly of global scientific interest. By sampling the San Andreas fault zone and making direct measurements of fault zone properties to 4.0 km at Parkfield they will be studying an active plate-boundary fault at a depth where aseismic creep and small earthquakes occur and where a number of the scientific questions associated with deeper fault zone drilling can begin to be addressed. Also, the technological challenges associated with drilling, coring, downhole measurements and borehole instrumentation that may eventually have to be faced in deeper drilling can first be addressed at moderate depth and temperature in the Parkfield hole. Throughout the planning process leading to the development of this proposal they have invited participation by scientists from around the world. As a result, the workshops and meetings they have held for this project have involved about 350 scientists and engineers from about a dozen countries.

  4. A Reference Section through the Lower Fast-spreading Oceanic Crust in the Wadi Gideah (Sumail ophiolite, Sultanate Oman): Drill Sites GT1A and GT2A within the ICDP Oman Drilling Project

    Science.gov (United States)

    Mueller, S.; Koepke, J.; Garbe-Schoenberg, C. D.; Müller, T.; Mock, D.; Strauss, H.; Schuth, S.; Ildefonse, B.

    2017-12-01

    In the absence of a complete profile through fast-spreading oceanic crust in modern oceans, we established a reference profile through the whole paleocrust of the Sumail Ophiolite (Oman), which is regarded as the best analogue for fast-spreading oceanic crust on land. For establishing a coherent data set, we sampled the Wadi Gideah in the Wadi-Tayin massif from the mantle section up to the pillow basalts and performed different analytical and structural investigations on the same suite of samples (pool sample concept). The whole sample set contains about 400 samples focusing on both primary magmatic rocks and hydrothermal fault zones to characterize initial formation processes and cooling of the crust. The Wadi Gideah hosts the sites GT1A (lower crust) and GT2A (foliated / layered gabbro transition) where 400 m long cores have been drilled in the frame of the ICDP Oman Drilling Project (OmanDP). Thus, the Wadi Gideah crustal transect is well-suited for providing a reference frame for these two drill cores. Major and trace element data on minerals and rocks reveal in-situ crystallization in the deep crust, thus strongly supporting a hybrid accretion model that is characterized by sheeted sill intrusion in the lower part of the plutonic crust and gabbro glacier features in the upper section. This hybrid model is also supported by results on crystallographic preferred orientations (CPO) of the minerals within the gabbros, which call for distinct formation mechanisms in the upper and lower gabbro sections. A requirement for our hybrid model is significant hydrothermal cooling in the lower crust for the consumption of the latent heat of crystallization. This was facilitated by channelled hydrothermal flow zones, preserved today in faulted zones of extensively altered gabbro cutting both layered and foliated gabbros. These gabbros show higher Sr87/Sr86 ratios if compared to the background gabbro, the presence of late stage minerals (amphibole, oxides, orthopyroxene

  5. Mauna Loa lava accumulation rates at the Hilo drill site: Formation of lava deltas during a period of declining overall volcanic growth

    Science.gov (United States)

    Lipman, P.W.; Moore, J.G.

    1996-01-01

    Accumulation rates for lava flows erupted from Mauna Loa, as sampled in the uppermost 280 m of the Hilo drill hole, vary widely for short time intervals (several thousand years), but overall are broadly similar to those documented elsewhere on this volcano since 100 ka. Thickness variations and accumulation rates for Mauna Loa lavas at the Hilo drill site have been strongly affected by local paleotopography, including funneling and ponding between Mauna Kea and Kilauea. In addition, gentle submerged slopes of Mauna Kea in Hilo Bay have permitted large shoreline displacements by Mauna Loa flows. Ages of eruptive intervals have been determined from published isotopic data and from eustatic sea level curves modified to include the isostatic subsidence of the island of Hawaii at 2.2-2.6 mm/yr. Prior to 10 ka, rates of Mauna Loa lava accumulation at the drill site varied from 0.6 to 4.3 mm/yr for dateable intervals, with an overall rate of 1.8 mm/yr. Major eruptive pulses at about 1.3 and 10 ka, each probably representing a single long-lived eruption based on lack of weathering between flow units, increase the overall accumulation rate to 2.4 mm/yr. The higher rate since 10 ka reflects construction of thick near-shoreline lava deltas as postglacial sea levels rose rapidly. Large lava deltas form only along coastal segments where initially subaerial slopes have been submerged by the combined effects of eustatic sea level rise, isostatic subsidence, or spreading of volcano flanks. Overall accumulation of 239 m of lava at the drill site since 100-120 ka closely balances submergence of the Hilo area, suggesting that processes of coastal lava deposition have been modulated by rise in sea level. The Hilo accumulation rate is slightly higher than average rates of 1-2 mm/yr determined elsewhere along the Mauna Loa coast, based on rates of shoreline coverage and dated sea cliff and fault scarp exposures. Low rates of coastal lava accumulation since 100 ka, near or below the rate

  6. Drilling reorganizes

    Science.gov (United States)

    Richman, Barbara T.

    As the first in a proposed series of steps that would move scientific ocean drilling from its own niche within the National Science Foundation's (NSF) Directorate for Astronomical, Atmospheric, Earth, and Ocean Sciences (AAEO) into the agency's Division of Ocean Sciences, Grant Gross, division director, has been appointed acting director of the Office of Scientific Ocean Drilling (OSOD). Gross will retain the directorship of the division, which also is part of AAEO. Allen M. Shinn, Jr., OSOD director for nearly 2 years, has been reassigned effective July 10 to a position in NSF's Office of Planning and Resource Management.The move aims to tie drilling operations more closely to the science with which it is associated, Gross said. This first step is an organizational response to the current leaning toward using a commercial drilling vessel as the drilling platform, he said. Before the market for such commercial drill ships opened (Eos, February 22, 1983, p . 73), other ship options for scientific ocean drilling included refurbishing the aging Glomar Challenger or renovating, at great expense, the Glomar Explorer. A possible next step in the reorganization is to make OSOD the third section within the Ocean Sciences Division. Currently, the division is divided into the Oceanographic Facilities and Support Section and the Ocean Sciences Research Section.

  7. Logging-while-drilling and wireline velocities: Site NGHP-01-10, Krishna-Godavari Basin, India

    Digital Repository Service at National Institute of Oceanography (India)

    Jaiswal, P.; Al-Bulushi, S.; Dewangan, P.

    is through drilling and logging. Logging is like a surface geophysical survey done in a borehole, only with very limited survey aperture due to close source and receiver spacing. There are two methods of logging. The Wireline method has been in practice... is computed as φt - φs, leaving only three independent parameters. In principle it is possible to vary the four input parameters such that VP and VSwill be independentlymatched at every depth. However, this is not the goal.We aim to adjust the input...

  8. Geological-geotechnical studies for siting the Superconducting Super Collider in Illinois: results of the 1986 test drilling program. Environmental geology notes

    International Nuclear Information System (INIS)

    Curry, B.B.; Graese, A.M.; Hasek, M.J.; Vaiden, R.C.; Bauer, R.A.

    1988-01-01

    From 1984 through 1986, geologists from the Illinois State Geological Survey (ISGS) conducted a thorough field investigation in northeastern Illinois to determine whether the surface and subsurface geology would be suitable for constructing the U.S. Department of Energy's 20-TeV (trillion electron volt) particle accelerator - the Superconducting Super Collider (SSC). The third and final stage of test drilling in 1986 concentrated on a specific corridor proposed for the racetrack-shaped SSC that would circle deep below the surface of Kane, Kendall, and Du Page Counties. The main objective was to verify that bedrock lying under the region satisified the site criteria for construction of a 10-foot-diameter tunnel to hold the particle accelerator and the superconducting magnets, large chambers to house the laboratories and computers for conducting and recording experiments, and shafts to provide access to the subterranean facilities. Thirteen test holes, ISGS S-18 through S-30, were drilled to depths ranging from 398.2 to 646.6 feet. The field team recovered 5675 feet of bedrock core and 212 samples of glacial drift (sand, clay, gravel) for laboratory analyses and recorded on-site data that establish the thickness, distribution, lithology (composition), and other properties of the rocks lying under the study area

  9. Basic data report for drilling and hydrologic testing of drillhole DOE-2 at the Waste Isolation Pilot Plant (WIIP) site

    International Nuclear Information System (INIS)

    Mercer, J.W.; Beauheim, R.L.; Snyder, R.P.; Fairer, G.M.

    1987-04-01

    Drillhole DOE-2 was drilled to investigate a structural depression marked by the downward displacement of stratigraphic markers in the Salado Formation. Contrary to several hypotheses, halite layers were thicker in the lower part of the Salado, not thinner as a result of any removal of halite. The upper Castile anhydrite in Drillhole DOE-2 is anomalously thick and is strongly deformed relative to the anhydrite in adjacent drillholes. In contrast, the halite was <8 ft thick and significantly thinner than usually encountered. The lower Castile anhydrite appears to be normal. The depression within the correlated marker beds in the Salado Formation in Drillhole DOE-2 is interpreted as a result of gravity-driven deformation of the underlying Castile Formation. Several stratigraphic units were hydrologically tested in Drillhole DOE-2. Testing of the unsaturated lower portion of the Dewey Lake Red Beds was unsuccessful because of exceptionally small rates of fluid intake. Drill-stem tests were conducted in five intervals in the Rustler Formation, over the Marker Bed 138-139 interval in the Salado formation, and over three sandstone members of the Bell Canyon Formation. A pumping test was conducted in the Culebra Dolomite Member of the Rustler Formation. Pressure-pulse tests were conducted over the entire Salado Formation. Fluid samples were collected from the Culebra Dolomite Member and from the Hays Member of the Bell Canyon Formation. 31 refs., 31 figs., 5 tabs

  10. Basic data report for drilling and hydrologic testing of drillhole DOE-2 at the Waste Isolation Pilot Plant (WIIP) site

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, J.W.; Beauheim, R.L.; Snyder, R.P.; Fairer, G.M.

    1987-04-01

    Drillhole DOE-2 was drilled to investigate a structural depression marked by the downward displacement of stratigraphic markers in the Salado Formation. Contrary to several hypotheses, halite layers were thicker in the lower part of the Salado, not thinner as a result of any removal of halite. The upper Castile anhydrite in Drillhole DOE-2 is anomalously thick and is strongly deformed relative to the anhydrite in adjacent drillholes. In contrast, the halite was <8 ft thick and significantly thinner than usually encountered. The lower Castile anhydrite appears to be normal. The depression within the correlated marker beds in the Salado Formation in Drillhole DOE-2 is interpreted as a result of gravity-driven deformation of the underlying Castile Formation. Several stratigraphic units were hydrologically tested in Drillhole DOE-2. Testing of the unsaturated lower portion of the Dewey Lake Red Beds was unsuccessful because of exceptionally small rates of fluid intake. Drill-stem tests were conducted in five intervals in the Rustler Formation, over the Marker Bed 138-139 interval in the Salado formation, and over three sandstone members of the Bell Canyon Formation. A pumping test was conducted in the Culebra Dolomite Member of the Rustler Formation. Pressure-pulse tests were conducted over the entire Salado Formation. Fluid samples were collected from the Culebra Dolomite Member and from the Hays Member of the Bell Canyon Formation. 31 refs., 31 figs., 5 tabs.

  11. Three years experience with forward-site mass casualty triage-, evacuation-, operating room-, ICU-, and radiography-enabled disaster vehicles: development of usage strategies from drills and deployments.

    Science.gov (United States)

    Griffiths, Jane L; Kirby, Neil R; Waterson, James A

    2014-01-01

    Delineation of the advantages and problems related to the use of forward-site operating room-, Intensive Care Unit (ICU)-, radiography-, and mass casualty-enabled disaster vehicles for site evacuation, patient stabilization, and triage. The vehicles discussed have six ventilated ICU spaces, two ORs, on-site radiography, 21 intermediate acuity spaces with stretchers, and 54 seated minor acuity spaces. Each space has piped oxygen with an independent vehicle-loaded supply. The vehicles are operated by the Dubai Corporate Ambulance Services. Their support hospital is the main trauma center for the Emirate of Dubai and provides the vehicles' surgical, intensivist, anesthesia, and nursing staff. The disaster vehicles have been deployed 264 times in the last 5 years (these figures do not include deployments for drills). Introducing this new service required extensive initial planning and ongoing analysis of the performance of the disaster vehicles that offer ambulance services and receiving hospitals a large array of possibilities in terms of triage, stabilization of priority I and II patients, and management of priority III patients. In both drills and in disasters, the vehicles were valuable in forward triage and stabilization and in the transport of large numbers of priority III patients. This has avoided the depletion of emergency transport available for priority I and II patients. The successful utilization of disaster vehicles requires seamless cooperation between the hospital staffing the vehicles and the ambulance service deploying them. They are particularly effective during preplanned deployments to high-risk situations. These vehicles also potentially provide self-sufficient refuges for forward teams in hostile environments.

  12. Gas hydrates distribution in the Shenhu area, northern South China Sea: comparisons between the eight drilling sites with gashydrate petroleum system

    Energy Technology Data Exchange (ETDEWEB)

    Su, M.; Yang, R.; Wang, H.; Sha, Z.; Liang, J.; Wu, N.; Qiao, S.; Cong, X.

    2016-07-01

    The results of the first marine gas hydrate drilling expedition of Guangzhou Marine Geological Survey (GMGS-1) in northern continental slope of the South China Sea revealed a variable distribution of gas hydrates in the Shenhu area. In this study, comparisons between the eight sites with gas-hydrate petroleum system were used to analyze and re-examine hydrate potential. In the Shenhu gas hydrate drilling area, all the sites were located in a suitable low-temperature, high-pressure environment. Biogenic and thermogenic gases contributed to the formation of hydrates. Gas chimneys and some small-scale faults (or micro-scale fractures) compose the migration pathways for gas-bearing fluids. Between these sites, there are three key differences: the seafloor temperatures and pressures; geothermal gradient and sedimentary conditions. Variations of seafloor temperatures and pressures related to water depths and geothermal gradient would lead to changes in the thickness of gas hydrate stability zones. Although the lithology and grain size of the sediments were similar, two distinct sedimentary units were identified for the first time through seismic interpretation, analysis of deep-water sedimentary processes, and the Cm pattern (plotted one-percentile and median values from grain-size analyses), implying the heterogeneous sedimentary conditions above Bottom Simulating Reflectors (BSRs). Based on the analyses of forming mechanisms and sedimentary processes, these two fine-grained sedimentary units have different physical properties. Fine-grained turbidites (Unit I) with thin-bedded chaotic reflectors at the bottom acted as the host rocks for hydrates; whereas, finegrained sediments related to soft-sediment deformation (Unit II) characterized by thick continuous reflectors at the top would serve as regional homogeneous caprocks. Low-flux methane that migrated upwards along chimneys could be enriched preferentially in fine-grained turbidites, resulting in the formation of

  13. New drilling optimization technologies make drilling more efficient

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.C.-K. [Halliburton Energy Services, Calgary, AB (Canada). Sperry Division

    2004-07-01

    Several new technologies have been adopted by the upstream petroleum industry in the past two decades in order to optimize drilling operations and improve drilling efficiency. Since financial returns from an oil and gas investment strongly depend on drilling costs, it is important to reduce non-productive time due to stuck pipes, lost circulation, hole cleaning and well bore stability problems. The most notable new technologies are the use of computer-based instrumentation and data acquisition systems, integrated rig site systems and networks, and Measurement-While-Drilling and Logging-While-Drilling (MWD/LWD) systems. Drilling optimization should include solutions for drillstring integrity, hydraulics management and wellbore integrity. New drilling optimization methods emphasize information management and real-time decision making. A recent study for drilling in shallow water in the Gulf of Mexico demonstrates that trouble time accounts for 25 per cent of rig time. This translates to about $1.5 MM U.S. per well. A reduction in trouble time could result in significant cost savings for the industry. This paper presents a case study on vibration prevention to demonstrate how the drilling industry has benefited from new technologies. 13 refs., 10 figs.

  14. Multiproxy record of the last interglacial (MIS 5e) off central and northern California, U.S.A., from Ocean Drilling Program sites 1018 and 1020

    Science.gov (United States)

    Poore, Richard Z.; Dowsett, H.J.; Barron, J.A.; Heusser, L.; Ravelo, A.C.; Mix, A.

    2000-01-01

    Environmental and climatic conditions during the last interglacial (about 125,000 years ago) along the Central and Northern California coastal region are interpreted from study of marine cores recovered by the Ocean Drilling Program at sites 1018 and 1020. Marine microfossil and pollen assemblages, oxygen isotopes in benthic foraminifers, physical properties, and calcium carbonate contents of cored sediments are proxies indicating strong links between the marine and terrestrial environments during marine isotope stage 5 (MIS 5). At the beginning of the last interglacial (MIS 5e), reduction in global ice volume, increase in surface temperature, and warming of air temperature along the Central and Northern California coast were synchronous within the resolution of our sampling record.

  15. Site investigation SFR. Rock type coding, overview geological mapping and identification of rock units and possible deformation zones in drill cores from the construction of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Jesper (Vattenfall Power Consultant AB, Stockholm (Sweden)); Curtis, Philip; Bockgaard, Niclas (Golder Associates AB (Sweden)); Mattsson, Haakan (GeoVista AB, Luleaa (Sweden))

    2011-01-15

    This report presents the rock type coding, overview lithological mapping and identification of rock units and possible deformation zones in drill cores from 32 boreholes associated with the construction of SFR. This work can be seen as complementary to single-hole interpretations of other older SFR boreholes earlier reported in /Petersson and Andersson 2010/: KFR04, KFR08, KFR09, KFR13, KFR35, KFR36, KFR54, KFR55, KFR7A, KFR7B and KFR7C. Due to deficiencies in the available material, the necessary activities have deviated somewhat from the established methodologies used during the recent Forsmark site investigations for the final repository for spent nuclear fuel. The aim of the current work has been, wherever possible, to allow the incorporation of all relevant material from older boreholes in the ongoing SFR geological modelling work in spite of the deficiencies. The activities include: - Rock type coding of the original geological mapping according to the nomenclature used during the preceding Forsmark site investigation. As part of the Forsmark site investigation such rock type coding has already been performed on most of the old SFR boreholes if the original geological mapping results were available. This earlier work has been complemented by rock type coding on two further boreholes: KFR01 and KFR02. - Lithological overview mapping, including documentation of (1) rock types, (2) ductile and brittle-ductile deformation and (3) alteration for drill cores from eleven of the boreholes for which no original geological borehole mapping was available (KFR31, KFR32, KFR34, KFR37,KFR38, KFR51, KFR69, KFR70, KFR71, KFR72 and KFR89). - Identification of possible deformation zones and merging of similar rock types into rock units. This follows SKB's established criteria and methodology of the geological Single-hole interpretation (SHI) process wherever possible. Deviations from the standard SHI process are associated with the lack of data, for example BIPS images

  16. Site investigation SFR. Rock type coding, overview geological mapping and identification of rock units and possible deformation zones in drill cores from the construction of SFR

    International Nuclear Information System (INIS)

    Petersson, Jesper; Curtis, Philip; Bockgaard, Niclas; Mattsson, Haakan

    2011-01-01

    This report presents the rock type coding, overview lithological mapping and identification of rock units and possible deformation zones in drill cores from 32 boreholes associated with the construction of SFR. This work can be seen as complementary to single-hole interpretations of other older SFR boreholes earlier reported in /Petersson and Andersson 2010/: KFR04, KFR08, KFR09, KFR13, KFR35, KFR36, KFR54, KFR55, KFR7A, KFR7B and KFR7C. Due to deficiencies in the available material, the necessary activities have deviated somewhat from the established methodologies used during the recent Forsmark site investigations for the final repository for spent nuclear fuel. The aim of the current work has been, wherever possible, to allow the incorporation of all relevant material from older boreholes in the ongoing SFR geological modelling work in spite of the deficiencies. The activities include: - Rock type coding of the original geological mapping according to the nomenclature used during the preceding Forsmark site investigation. As part of the Forsmark site investigation such rock type coding has already been performed on most of the old SFR boreholes if the original geological mapping results were available. This earlier work has been complemented by rock type coding on two further boreholes: KFR01 and KFR02. - Lithological overview mapping, including documentation of (1) rock types, (2) ductile and brittle-ductile deformation and (3) alteration for drill cores from eleven of the boreholes for which no original geological borehole mapping was available (KFR31, KFR32, KFR34, KFR37,KFR38, KFR51, KFR69, KFR70, KFR71, KFR72 and KFR89). - Identification of possible deformation zones and merging of similar rock types into rock units. This follows SKB's established criteria and methodology of the geological Single-hole interpretation (SHI) process wherever possible. Deviations from the standard SHI process are associated with the lack of data, for example BIPS images, or a

  17. Sedimentological, mineralogical, and geochemical results from surface sediments and the sediment record from Site 2 of the ICDP drilling project at Lake Towuti, Indonesia

    Science.gov (United States)

    Hasberg, A. K.; Melles, M.; Wennrich, V.; Vogel, H.; Just, J.; Russell, J. M.; Bijaksana, S.; Morlock, M.; Opitz, S.

    2017-12-01

    More than 1000 m of sediment core were recovered in spring 2015 from three different drill sites in tropical Lake Towuti (2.5°S, 121°E), Indonesia, during the Towuti Drilling Project (TDP) of the International Continental Scientific Drilling Program (ICDP). Furthermore, a set of 84 lake surface sediment samples, distributed over the entire lake, was collected in order to better understand modern sedimentary processes. The surface samples were investigated for physical, chemical, mineralogical, and biological properties at the University of Cologne (UoC), Germany. On the sediment cores macro- and microscopical lithological descriptions, line-scan imaging, logging of physical properties (MSCL), and subsampling was conducted at the National Lacustrine Core Facility of the University of Minnesota, USA, in November 2015 and January 2016. Afterwards, the archive core halves and 672 subsamples of TDP Site 2 were shipped to the UoC for X-Ray Fluorescence (XRF) scanning and sedimentological, geochemical, and mineralogical analyses, respectively, supplemented by visible to near-infrared spectroscopy (VNIR) at Brown University, USA. The data from the surface samples evidence that allochthonous sedimentation in Lake Towuti today is dominated by fluvial supply from five distinguishable source areas: (i) the Mahalona River to the north, which drains lakes Mahalona and Matano, (ii) inlets around the village of Timampu to the northwest, (iii) the Loeha River to the east, (iv) the Lengke River to the south, and (v) the Lemo-Lemo River to the northeast of Lake Towuti. Of these, source areas (ii) and (iii) as well as (iv) and (v) have similar geochemical compositions, respectively. In addition, the lake sedimentation is significantly influenced by gravitational sediment supply from steep slopes as well as lake-internal gravitational and density-driven processes. The uppermost 41 m of sediment core 2A consist of pelagic sediments (totaling 11 m) and event layers from mass movement

  18. Drilling rig

    Energy Technology Data Exchange (ETDEWEB)

    Galiopa, A A; Yegorov, E K

    1981-01-04

    A drilling rig is proposed which contains a tower, lifter in the form of n infinite chain, and mobile rotator with holding device connected to the chain, and pipe holder. In order to accelerate the auxiliary operations to move the drilling string and unloaded rotator, the rotator is equipped with a clamp with means for transverse connection of it to both branches of the chain, while the pipe holders equipped with a clamp with means of connecting it to one of the branches of the chain.

  19. Drilling mud

    Energy Technology Data Exchange (ETDEWEB)

    Rusayev, A A; Bibikov, K V; Simonenkov, I D; Surkova, K I

    1982-01-01

    Drilling mud is proposed which contains clay, water, water output reducer, pH regulator, viscosity reducer and hydrogen sulfide absorber. In order to improve the absorbing capacity of the drilling mud with pH 8-11 and simultaneously preservation of the technological properties of the mud, it contains as the absorber of hydrogen sulfide pyrite cinders with the following ratio of components, % by mass: clay 5.0-35.0; water output reducer 0.2-2.0; pH regulator 0.05-0.25; viscosity reducer 0.1-1.0; pyrite cinders 0.5-4.0; water--the rest.

  20. Imaging the Alpine Fault: preliminary results from a detailed 3D-VSP experiment at the DFDP-2 drill site in Whataroa, New Zealand

    Science.gov (United States)

    Lay, Vera; Bodenburg, Sascha; Buske, Stefan; Townend, John; Kellett, Richard; Savage, Martha; Schmitt, Douglas; Constantinou, Alexis; Eccles, Jennifer; Lawton, Donald; Hall, Kevin; Bertram, Malcolm; Gorman, Andrew

    2017-04-01

    The plate-bounding Alpine Fault in New Zealand is an 850 km long transpressive continental fault zone that is late in its earthquake cycle. The Deep Fault Drilling Project (DFDP) aims to deliver insight into the geological structure of this fault zone and its evolution by drilling and sampling the Alpine Fault at depth. Previously analysed 2D reflection seismic data image the main Alpine Fault reflector at a depth of 1.5-2.2 km with a dip of approximately 48° to the southeast below the DFDP-2 borehole. Additionally, there are indications of a more complex 3D fault structure with several fault branches which have not yet been clearly imaged in detail. For that reason we acquired a 3D-VSP seismic data set at the DFDP-2 drill site in January 2016. A zero-offset VSP and a walk-away VSP survey were conducted using a Vibroseis source. Within the borehole, a permanently installed "Distributed Acoustic Fibre Optic Cable" (down to 893 m) and a 3C Sercel slimwave tool (down to 400 m) were used to record the seismic wavefield. In addition, an array of 160 three-component receivers with a spacing of 10 m perpendicular and 20 m parallel to the main strike of the Alpine Fault was set up and moved successively along the valley to record reflections from the main Alpine Fault zone over a broad depth range and to derive a detailed 3D tomographic velocity model in the hanging wall. We will show a detailed 3D velocity model derived from first-arrival traveltime tomography. Subsets of the whole data set were analysed separately to estimate the corresponding ray coverage and the reliability of the observed features in the obtained velocity model. By testing various inversion parameters and starting models, we derived a detailed near-surface velocity model that reveals the significance of the old glacial valley structures. Hence, this new 3D model improves the velocity model derived previously from a 2D seismic profile line in that area. Furthermore, processing of the dense 3C data

  1. HYDRATE CORE DRILLING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate

  2. Heat flow study at the Chinese Continental Scientific Drilling site: Borehole temperature, thermal conductivity, and radiogenic heat production

    Science.gov (United States)

    He, Lijuan; Hu, Shengbiao; Huang, Shaopeng; Yang, Wencai; Wang, Jiyang; Yuan, Yusong; Yang, Shuchun

    2008-02-01

    The Chinese Continental Scientific Drilling (CCSD) Project offers a unique opportunity for studying the thermal regime of the Dabie-Sulu ultrahigh-pressure metamorphic belt. In this paper, we report measurements of borehole temperature, thermal conductivity, and radiogenic heat production from the 5158 m deep main hole (CCSD MH). We have obtained six continuous temperature profiles from this borehole so far. The temperature logs show a transient mean thermal gradient that has increased from 24.38 to 25.28 K km-1 over a period of about 1.5 years. We measured thermal conductivities and radiogenic heat productions on more than 400 core samples from CCSD MH. The measured thermal conductivities range between 1.71 and 3.60 W m-1 K-1, and the radiogenic heat productions vary from 0.01 μW m-3 to over 5.0 μW m-3, with a mean value of 1.23 ± 0.82 μW m-3 for the upper 5-km layer of the crust. The heat productions in CCSD MH appear to be more rock-type than depth-dependent and, over the depth range of CCSD MH, do not fit the popular model of heat production decreasing exponentially with increasing depth. The measured heat flow decreases with depth from ˜75 mW m-2 near the surface to ˜66 mW m-2 at a depth of 4600 m. High heat flow anomalies occur at ˜1000 and ˜2300 m, and low anomalies occur at 3300-4000 m. A preliminary two-dimensional numerical model suggests that both radiogenic heat production and thermal refraction due to structural heterogeneity are at least partially responsible for the vertical variation of heat flow in CCSD MH.

  3. Drillings at Veitsivaara in Hyrynsalmi

    International Nuclear Information System (INIS)

    Hinkkanen, H.; Oehberg, A.

    1990-04-01

    According to Governmen's decision in principle Teollisuuden Voima Oy is obliged to make bedrock investigations for the final disposal of the spent fuel produced by its power plant in Olkiluoto. Areas in Kuhmo, Hyrynsalmi, Sievi, Konginkangas and Olkiluoto were selected for the preliminary site investigations to be carried out during years 1987-1992. In Veitsivaara, Hyrynsalmi the investigation program was started in April 1987. During years 1987-1988 a deep borehole (1002 m) and 4 and 500 m deep additional boreholes were core drilled in the area. Various parameters were measured from the flushing water during the drilling. Corelogging included collecting detailed data of fractures and determining the weathering degree and petrographical properties. Rock mechanical properties, uniaxial compressive strength, Young's modulus and Poisso's ratio were measured from core samples. The flushing water needed in the drillings was pumped from 100 m deep borehole wells drilled with down-the-hole method in the vicinity of the borehole. The water was labeled with 2 tracers before use. About 75 m deep hole was percussion drilled near the borehole KR1. The spreading of the flushing water in the upper part of bedrock and the quality off the ground of the groundwater were studied by taking watersamples from the hole. 30 vertical holes were core drilled down to the depth of 10 m in bedrock with a light drilling unit. Drilling was carried out in order to determine the thickness of the overburden, to investigate the geophysical anomaly sources and to support geological mapping in areas covered with overburden. Groundwater hydraulics is one of the main subjects during the preliminary site investigation phase. For that reason 7 multilevel piezometers were installed on the site to monitore hydraulic head in 3 levels in the uppermost part of bedrock. The work consisted of borehole drillings to the depth of 100 m, geophysical borehole loggings and installation of piezometers. In addition

  4. Activity plan: Directional drilling and environmental measurements while drilling

    International Nuclear Information System (INIS)

    Myers, D.A.

    1998-01-01

    This activity plan describes the testing of directional drilling combined with environmental measurements while drilling at two Hanford Site locations. A cold test is to be conducted at the 105A Mock Tank Leak Facility in the 200 East Area. A hot test is proposed to be run at the 216-B-8 tile field north of the 241-B Tank Farm in 200 East Area. Criteria to judge the success, partial success or failure of various aspects of the test are included. The TWRS program is assessing the potential for use of directional drilling because of an identified need to interrogate the vadose zone beneath the single-shell tanks. Because every precaution must be taken to assure that investigation activities do not violate the integrity of the tanks, control of the drill bit and ability to follow a predetermined drill path are of utmost importance and are being tested

  5. Activity plan: Directional drilling and environmental measurements while drilling

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.A.

    1998-07-16

    This activity plan describes the testing of directional drilling combined with environmental measurements while drilling at two Hanford Site locations. A cold test is to be conducted at the 105A Mock Tank Leak Facility in the 200 East Area. A hot test is proposed to be run at the 216-B-8 tile field north of the 241-B Tank Farm in 200 East Area. Criteria to judge the success, partial success or failure of various aspects of the test are included. The TWRS program is assessing the potential for use of directional drilling because of an identified need to interrogate the vadose zone beneath the single-shell tanks. Because every precaution must be taken to assure that investigation activities do not violate the integrity of the tanks, control of the drill bit and ability to follow a predetermined drill path are of utmost importance and are being tested.

  6. Magma Differentiation Processes That Develop an "Enriched" Signature in the Izu Bonin Rear Arc: Evidence from Drilling at IODP Site U1437

    Science.gov (United States)

    Heywood, L. J.; DeBari, S. M.; Schindlbeck, J. C.; Escobar-Burciaga, R. D.

    2015-12-01

    The Izu Bonin rear arc represents a unique laboratory to study the development of continental crust precursors at an intraoceanic subduction zone., Volcanic output in the Izu Bonin rear arc is compositionally distinct from the Izu Bonin main volcanic front, with med- to high-K and LREE-enrichment similar to the average composition of the continental crust. Drilling at IODP Expedition 350 Site U1437 in the Izu Bonin rear arc obtained volcaniclastic material that was deposited from at least 13.5 Ma to present. IODP Expedition 350 represents the first drilling mission in the Izu Bonin rear arc region. This study presents fresh glass and mineral compositions (obtained via EMP and LA-ICP-MS) from unaltered tephra layers in mud/mudstone (Lithostratigraphic Unit I) and lapillistone (Lithostratigraphic Unit II) <4.5 Ma to examine the geochemical signature of Izu Bonin rear arc magmas. Unit II samples are coarse-grained tephras that are mainly rhyolitic in composition (72.1-77.5 wt. % SiO2, 3.2-3.9 wt. % K2O and average Mg# 24) and LREE-enriched. These rear-arc rhyolites have an average La/Sm of 2.6 with flat HREEs, average Th/La of 0.15, and Zr/Y of 4.86. Rear-arc rhyolite trace element signature is distinct from felsic eruptive products from the Izu Bonin main volcanic front, which have lower La/Sm and Th/La as well as significantly lower incompatible element concentrations. Rear arc rhyolites have similar trace element ratios to rhyolites from the adjacent but younger backarc knolls and actively-extending rift regions, but the latter is typified by lower K2O, as well as a smaller degree of enrichment in incompatible elements. Given these unique characteristics, we explore models for felsic magma formation and intracrustal differentiation in the Izu Bonin rear arc.

  7. Revised tuning of Ocean Drilling Program Site 964 and KC01B (Mediterranean) and implications for the delta 0-18, tephra, calcareous nannofossil, and geomagnetic reversal chronologies of the past 1.1 Myr

    NARCIS (Netherlands)

    Lourens, L.J.

    2004-01-01

    High-resolution color reflectance records of KC01 and KC01B (Calabrian Ridge, Ionian Sea) are presented and compared with a modified spliced high-resolution color reflectance record of Ocean Drilling Program (ODP) Site 964. This comparison revealed that KC01B is characterized by intensive

  8. Drilling mud

    Energy Technology Data Exchange (ETDEWEB)

    Babets, M A; Nechayev, N D; Vinogradova, G P

    1982-01-01

    A drilling mud is proposed which contains clay, alkali, water and stabilizer reagent. It is distinguished by the fact that in order to improve the viscosity and static shear stress, the stabilizer reagent contained is composted solid general wastes with the following ratio of components (% by weight): clay 10-15, alkali 0.1-0.2; composted solid general wastes 2-5; water--the rest.

  9. Bucket drill

    Energy Technology Data Exchange (ETDEWEB)

    Bezverkhiy, V.M.; Nabokov, I.M.; Podoksik, D.Z.; Sadovskiy, S.S.; Shanyukevich, V.A.

    1983-01-01

    The bucket drill including a cylindrical housing with bottom, ground intake windows and cutting knives is hinged to the housing, the mechanism of rotation of the cutting knives including rods connected by the cutter knives, and drive shaft is distinguished by the fact that in order to improve the effectiveness of drilling by automatic change in the angle of cutting depending on the strength of the drillable rock, the drill is equipped with elastic elements and cap with annular slits in which there are elastic elements. The mechanism of rotation of the cutting knives is equipped with levers hinged to the housing, pins with shaft and rocker arm. The rods are made with a slit and from one end are rigidly connected to the cutting knives, and from the other end to the levers by means of pins which are arranged in slits of the rod with the possibility of movement. The upper ends of the levers are installed with the possibility of movement in the pins whose shafts are arranged with the possibility of rotation in the rocker arm rigidly connected to the drive shaft. The drive shaft is equipped with cantilevers installed in the cap with the possibility of rotation and interaction with the elastic elements.

  10. Drillings at Kivetty in Konginkangas

    International Nuclear Information System (INIS)

    Hinkkanen, H.; Oehberg, A.

    1990-05-01

    According to Government's decision in principle Teollisuuden Voima Oy is obliged to make bedrock investigations for the final disposal of the spent fuel produced by its power plant in Olkiluoto. Areas in Kuhmo, Hyrynsalmi, Sievi, Konginkangas and Olkiluoto were selected for the preliminary site investigations to be carried out during years 1987-1992. In Kivetty, Konginkangas the investigation program was started in spring 1988. During years 1988-1989 a deep borehole (1019 m) and 4 about 500 m deep additional boreholes were core drilled in the area. The structure of the holes makes it possible to carry out many investigations in the holes. Various parameters were measured from the flushing water during the drilling. Corelogging included collecting detailed data of fractures and determining the weathering degree and petrographical properties. Rock mechanical properties, uniaxial compressive strength, Young's modulus and Poisson's ratio were measured from core samples. The flushing water needed in the drillings was pumped from 100 m deep borehole wells drilled with down-the-hole method in the vicinity of the borehole. The water was labeled with 2 tracers before use. 30 vertical holes were core drilled down to the depth of 10 m in bedrock with a light drilling unit. Drilling was carried out in order to determine the thickness of the overburden to investigate the geophysical anomaly sources and to support geological mapping in areas covered with overburden. Groundwater hydraulics is one of the main subjects during the preliminary site investigation phase. For that reason 7 multilevel piezometers were installed on the site to monitore hydraulic head in 3 levels in the uppermost part of bedrock. The work consisted of borehole drillings to the depth of 100 m, geophysical borehole loggings and installation of piezometers. In addition about 65 shotholes were drilled for VSP-, tubewave and seismic measurements

  11. Drillings at Syyry in Sievi

    International Nuclear Information System (INIS)

    Hinkkanen, H.; Oehberg, A.

    1990-10-01

    According to Government's decision in principle Teollisuuden Voima Oy is obliged to make bedrock investigations for the final disposal of the spent fuel produced by its power plant in Olkiluoto. Areas in Kuhmo, Hyrynsalmi, Sievi, Konginkangas and Olkiluoto were selected for the preliminary site investigations to be carried out during years 1987-1992. In Syyry, Sievi the investigation program was started in spring 1988. During years 1988-1989 a deep borehole (1022 m) and 4 about 500-700 m deep additional boreholes were core drilled in the area. The structure of the holes makes it possible to carry out many investigations in the holes. Various parameters were measured from the flushing water during the drilling. Corelogging included collecting detailed data of fractures and determining the weathering degree and petrographical properties. Rock mechanical properties, uniaxial compressive strength, Young's modulus and Poisson's ratio were measured from core samples. The flushing water needed in the drillings was pumped from 100 m deep borehole wells drilled with down-the-hole method in the vicinity of the borehole. The water was labeled with 2 tracers before use. 35 vertical holes were core drilled down to the depth of 10-20 m in bedrock with a light drilling unit. Drilling was carried out in order to determine the thickness of the overburden, to investigate the geophysical anomaly sources and to support geological mapping in areas covered with overburden. Groundwater hydraulics is one of the main subjects during the preliminary site investigation phase. For that reason 7 multilevel piezometers were installed on the site to monitore hydraulic head in 3 levels in the uppermost part of bedrock. The work consisted of borehole drillings to the depth of 100 m, geophysical borehole loggings and installation of piezometers. In addition about 85 shotholes were drilled for VSP-, tubewave and seismic measurements

  12. Drilling mortar

    Energy Technology Data Exchange (ETDEWEB)

    Theodorescu, V; Ditulescu, E

    1979-01-30

    A method is proposed for producing stable drilling mortar from drilled rock which makes it possible to stabilize the walls of the borehole and to maintain producing horizons of oil and gas wells in an undisturbed state. The proposed drilling mortar includes 5-12 wt.-% dry modified calcium lignosulfonate in the form of a solution containing about 30% dry matter with the addition of 0.1 wt.-% anti-foaming agent consisting of C/sub 19/-C/sub 20/ alcohol dissolved in a light petroleum product; cream of milk with about 10 wt.-% Ca(OH)/sub 2/ in a quantity sufficient for reducing the pH value of the ions down to 10.5; sodium chloride in amounts from 5 mg to 100 ml (aqueous phase); ordinarily used agents for ensuring the necessary density, viscosity, and filterability. For example, the preparation of the drilling fluid begins with the processing under laboratory conditions of lignosulfonic pulp obtained in the production of yeast fodder with the following characteristics: specific density, 1.15 kgf/dm/sup 3/; water content, 67% (according to the Dean and Stark method); pH 4.0. In the vessel is placed 1000 cm/sup 3/ lignosulfonic pulp containing 33% dry matter, and the pulp is heated to 90-95/sup 0/C by means of a water bath. To the heated pulp 33 cm/sup 3/ formic acid at a 40-% concentration is added by mixing. The specific temperature of the pulp is maintained in the constant mixing process for two hours. Then the cream of milk containing 10 wt.-% Ca(OH)/sub 2/ is added to raise the pH to 10.5. The cooled product is calcium lignosulfonate. To produce a stable form of the drilling mortar, 750 g clay and 10 g trass gel are added to a vessel containing 1500 cm/sup 3/ fresh water by means of mixing. The resulting dispersed mass remains at rest for 12 hours for purposes of hydration. Then 2 g of an anti-foaming agent dissolved in 6 cm/sup 3/ benzene is introduced to 1000 cm/sup 3/ modified calcium lignosulfonate produced by the above method.

  13. Drilling mud

    Energy Technology Data Exchange (ETDEWEB)

    Baranovskiy, V D; Brintsev, A I; Gusev, V G; Katenev, Ye P; Pokhorenko, I V

    1979-10-25

    A drilling mud is proposed, which contains a dispersion medium, a dispersion phase, for instance, clay, a stabilizer reagent, for instance, carboxymethylcellulose and a weighter. In order to reduce the viscosity and to increase the stability of the mud it contains as the dispersion medium a 75% aqueous solution of the L-7 reagent. To increase the salt resistance of the mud, it additionally contains sodium chloride in a volume of 4.04.5 percent by weight, and to regulate the alkalinity, it additionally contains sodium hydroxide in a volume of 1.1 to 1.3 percent by weight.

  14. Analysis of the magnetic susceptibility well log in drill hole UE25a-5, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Hagstrum, J.T.; Daniels, J.J.; Scott, J.H.

    1980-01-01

    Magnetic susceptibility measurements have been shown to be dependent upon the magnetite content of rocks with variations in rock susceptibility arising from changes in the shape, size, composition, and quantity of the contained magnetite grains. The present study was undertaken to determine the factor(s) responsible for the variation in magnetic susceptibility measurements from borehole UE25a-5 on the Nevada Test Site (NTS). The well logs and sample analyses presented in this paper form part of a larger geophysical well-logging project studying the physical properties of welded tuffs at NTS. The ash-flow sheets at NTS appear to be the products of single compositionally zoned magmas that tend, within a cooling unit, to erupt hotter, more mafic, and more crystal-rich with time. These factors, however, have little effect on the degree to which the tuffs become welded. Furthermore, zones of crystallization and alteration are superimposed upon the welded units. X-ray data show poor correspondence between the relative abundance of magnetite in a sample and the borehole magnetic susceptibility measurement associated with it. Curie balance experiments demonstrate no change in the magnetic mineralogy that could account for the susceptibility variation. Thin-section observations corroborate the x-ray data, but indicate a proportional relationship between the borehole susceptibility measurements and the grain-size distribution of magnetite. The association of magnetic susceptibility anomalies with the crystal-rich zones of the welded tuffs will aid in the identification and correlation of the eruptive sequences at NTS

  15. Sea surface temperature estimates for the mid-Piacenzian Indian Ocean—Ocean Drilling Program sites 709, 716, 722, 754, 757, 758, and 763

    Science.gov (United States)

    Robinson, Marci M.; Dowsett, Harry J.; Stoll, Danielle K.

    2018-01-30

    Despite the wealth of global paleoclimate data available for the warm period in the middle of the Piacenzian Stage of the Pliocene Epoch (about 3.3 to 3.0 million years ago [Ma]; Dowsett and others, 2013, and references therein), the Indian Ocean has remained a region of sparse geographic coverage in terms of microfossil analysis. In an effort to characterize the surface Indian Ocean during this interval, we examined the planktic foraminifera from Ocean Drilling Program (ODP) sites 709, 716, 722, 754, 757, 758, and 763, encompassing a wide range of oceanographic conditions. We quantitatively analyzed the data for sea surface temperature (SST) estimation using both the modern analog technique (MAT) and a factor analytic transfer function. The data will contribute to the U.S. Geological Survey (USGS) Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project’s global SST reconstruction and climate model SST boundary condition for the mid-Piacenzian and will become part of the PRISM verification dataset designed to ground-truth Pliocene climate model simulations (Dowsett and others, 2013).

  16. The effect of load on heat production, thermal effects and expenditure of time during implant site preparation - an experimental ex vivo comparison between piezosurgery and conventional drilling.

    Science.gov (United States)

    Stelzle, Florian; Frenkel, Carsten; Riemann, Max; Knipfer, Christian; Stockmann, Philipp; Nkenke, Emeka

    2014-02-01

    Piezoelectric surgery (PS) is meant to be a gentle osteotomy method. The aim of this study was to compare piezosurgical vs. conventional drilling methods for implant site preparation (ISP) - focusing on load-dependent thermal effect on hard tissue and the expenditure of ISP time. Three hundred and sixty ISP were performed on ex vivo pig heads using piezosurgery, spiral burs (SB) and trephine burs (TB). The load applied was increased from 0 to 1000 g in 100-g intervals. Temperature within the bone was measured with a thermocouple, and duration was recorded with a stop watch. Thermal effects were histomorphometrically analysed. Twelve ISPs per technique were performed at the lateral wall of the maxillary sinus. PS yields the highest mean temperatures (48.6 ± 3.4°C) and thermal effects (200.7 ± 44.4 μm), both at 900-1000 g. Duration is reduced with a plus of load and significantly longer in either case for PS (P < 0.05). There is a correlation of the applied load with all other examined factors for PS and TB. Temperature and histological effects decrease for SB beyond 500 g. PS yields significantly higher temperatures and thermal tissue alterations on load levels higher than 500 g and is significantly slower for ISP compared to SB and TB. For ISP with PS, a maximum load of 400 g should be maintained. © 2012 John Wiley & Sons A/S.

  17. Report of drilling and radionuclide migration investigations at UE20n number-sign 1, Pahute Mesa, Nevada Test Site, 1987

    International Nuclear Information System (INIS)

    Erikson, S.J.

    1991-04-01

    Exploratory hole UE20n number-sign 1 was drilled 305 m down hydraulic gradient of the Cheshire event (U20n) as part of the Radionuclide Migration Program at the Nevada Test Site. The hole was designed to investigate the possibility of groundwater transport of radionuclides from the U20n cavity region. Drilling reached a total depth of 1005.8 m. Composite static water levels in the borehole were measured at approximately 620 m below ground surface. The borehole penetrated about 386 m of saturated zone, which was comprised primarily of rhyolite lava flows of the Upper Rhyolite Lavas, Tuffs, and Rhyolites of Area 20. Evidence from UE20n number-sign 1 suggests the presence of a relatively more permeable zone in the 730 to 750-m depth interval. The neutron log suggests that greater quantities of water were present at depths between 729 and 747 m. Core collected over three depth intervals showed the highest fracture density in a reddish-grey rhyolite lava flow in the 733.8 to 738.1-m core interval. Groundwater flow away from U20n through this permeable zone is suggested by the UE20n number-sign 1 borehole temperature logs. Elevated 3 H activities were observed with the highest activities found near 732 m. The 3 H activities observed in the 732 to 802-m interval in UE20n number-sign 1 were of similar magnitude to those found in the cavity region in the U20n post-shot hole. The activities of 125 Sb and 85 Kr, which are known to be mobile in groundwater, were of similar magnitude to those found near the cavity region, while 137 Cs, which is thought to be adsorbed during transport, was found in activities two to three orders of magnitude lower than near the cavity. These temperature and radioisotope data suggest that radionuclide migration via groundwater flow may be occurring laterally from the U20n rubble chimney through the permeable zone located at the 730 to 750-m depth. 25 refs., 18 figs., 15 tabs

  18. Geothermal modelling of faulted metamorphic crystalline crust: a new model of the Continental Deep Drilling Site KTB (Germany)

    Science.gov (United States)

    Szalaiová, Eva; Rabbel, Wolfgang; Marquart, Gabriele; Vogt, Christian

    2015-11-01

    mainly occurring within the two fault zones. Thus, our model confirms the previous finding that diffusive heat transport is the dominant process at the KTB site. Fitting the observed temperature-depth profile requires a correction for palaeoclimate of about 4 K at 1 km depth. Modelled and observed temperature data fit well within 0.2 °C bounds. Whereas thermal conditions are suitable for geothermal energy production, hydraulic conditions are unfavourable without engineered stimulation.

  19. Rock Magnetic Study of IODP/ICDP Expedition 364 Site M0077A Drill Cores: Post-Impact Sediments, Impact Breccias, Melt, Granitic Basement and Dikes

    Science.gov (United States)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Rebolledo-Vieyra, M.; Tikoo, S.; Zylberman, W.; Lofi, J.

    2017-12-01

    Drilling at Site M0077 sampled post-impact sediments overlying a peak ring consisting of impact breccias, melt rock and granitoids. Here we focus on characterizing the peak ring using magnetic properties, which vary widely and depend on mineralogy, depositional and emplacement conditions and secondary alterations. Rock magnetic properties are integrated with Multi-Sensor Core Logger (MSCL) data, vertical seismic profile, physical properties, petrographic and chemical analyses and geophysical models. We measure low-field magnetic susceptibility at low- and high-frequencies, intensity and direction of natural remanent magnetization (NRM) and laboratory-induced isothermal (IRM) and anhysteretic (ARM) magnetizations, alternating-field demagnetization of NRM, IRM and NRM, susceptibility variation with temperature, anisotropy of magnetic susceptibility, hysteresis and IRM back-field demagnetization. Post-impact carbonates show low susceptibilities and NRM intensities, variable frequency-dependent susceptibilities and multivectorial remanences residing in low and high coercivity minerals. Hysteresis loops show low coercivity saturation magnetizations and variable paramagnetic mineral contents. Impact breccias (suevites) and melt rock show higher susceptibilities, low frequency-dependent susceptibilities, high NRM, ARM and IRM intensities and moderate ARM intensity/susceptibility ratios. Magnetic signal is dominated by fine-grained magnetite and titanomagnetites with PSD domain states. Melt rocks at the base of impactite section show the highest susceptibilities and remanence intensities. Basement section is characterized by low susceptibilities in the granites and higher values in the dikes, with NRM and ARM intensities increasing towards the base. The high susceptibilities and remanence intensities correlate with high seismic velocities, density and decreased porosity and electrical resistivity. Fracturing and alteration account for the reduced seismic velocities

  20. Velocity-porosity relationships for slope apron and accreted sediments in the Nankai Trough Seismogenic Zone Experiment, Integrated Ocean Drilling Program Expedition 315 Site C0001

    Science.gov (United States)

    Hashimoto, Y.; Tobin, H. J.; Knuth, M.

    2010-12-01

    In this study, we focused on the porosity and compressional wave velocity of marine sediments to examine the physical properties of the slope apron and the accreted sediments. This approach allows us to identify characteristic variations between sediments being deposited onto the active prism and those deposited on the oceanic plate and then carried into the prism during subduction. For this purpose we conducted ultrasonic compressional wave velocity measurements on the obtained core samples with pore pressure control. Site C0001 in the Nankai Trough Seismogenic Zone Experiment transect of the Integrated Ocean Drilling Program is located in the hanging wall of the midslope megasplay thrust fault in the Nankai subduction zone offshore of the Kii peninsula (SW Japan), penetrating an unconformity at ˜200 m depth between slope apron sediments and the underlying accreted sediments. We used samples from Site C0001. Compressional wave velocity from laboratory measurements ranges from ˜1.6 to ˜2.0 km/s at hydrostatic pore pressure conditions estimated from sample depth. The compressional wave velocity-porosity relationship for the slope apron sediments shows a slope almost parallel to the slope for global empirical relationships. In contrast, the velocity-porosity relationship for the accreted sediments shows a slightly steeper slope than that of the slope apron sediments at 0.55 of porosity. This higher slope in the velocity-porosity relationship is found to be characteristic of the accreted sediments. Textural analysis was also conducted to examine the relationship between microstructural texture and acoustic properties. Images from micro-X-ray CT indicated a homogeneous and well-sorted distribution of small pores both in shallow and in deeper sections. Other mechanisms such as lithology, clay fraction, and abnormal fluid pressure were found to be insufficient to explain the higher velocity for accreted sediments. The higher slope in velocity-porosity relationship for

  1. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2010-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  2. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2012-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  3. Seismic investigations of ancient Lake Ohrid (Macedonia/Albania): a pre-site survey for the SCOPSCO ICDP-drilling campaign

    Science.gov (United States)

    Lindhorst, K.; Krastel, S.; Schwenk, T.; Kurschat, S.; Daut, G.; Wessel, M.; Wagner, B.

    2009-04-01

    Lake Ohrid (Macedonia/Albania) is probably the oldest lake in Europe (2-5 Ma), and has been found as an important archive to study the sedimentary evolution of a graben system over several million years. Lake Ohrid has a length of 30 km (N-S) and a width of 15 km (W-E) and covers an area of 360 sqkm. Two major mountain chains surround the lake, on the west side the Mocra Mountains (app. 1500 m) and on the east side the Galicica Mountain (app. 2250 m). With more than 210 endemic species described, the lake is a unique aquatic ecosystem that is of worldwide importance. An international group of scientists has recently submitted a full drilling proposal entitled SCOPSCO (Scientific Collaboration On Past Speciation Conditions in Lake Ohrid) to ICDP in order to (i) to obtain more precise information about the age and origin of the lake, (ii) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (iii) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (iv) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. The lake was the target of several geophysical pre-site surveys starting with a first shallow seismic campaign in spring 2004 using a high resolution parametric sediment echosounder (INNOMAR SES-96 light). Airgun multichannel seismic data were collected during two surveys in 2007 and 2008, resulting in a dense grid of seismic lines over the entire lake. In total 650 km of shallow seismic lines 400 km of airgun multichannel seismics demonstrates the potential of Lake Ohrid as target for ICDP. Seismic profiles show that the lake can be divided into slope areas and a large central basin. The slope areas are characterized by a dense net of faults

  4. Hominin Sites and Paleolakes Drilling Project. Chew Bahir, southern Ethiopia: How to get from three tonnes of sediment core to > 500 ka of continuous climate history?

    Science.gov (United States)

    Foerster, Verena; Asrat, Asfawossen; Cohen, Andrew S.; Gromig, Raphael; Günter, Christina; Junginger, Annett; Lamb, Henry F.; Schaebitz, Frank; Trauth, Martin H.

    2016-04-01

    In search of the environmental context of the evolution and dispersal of Homo sapiens and our close relatives within and beyond the African continent, the ICDP-funded Hominin Sites and Paleolakes Drilling Project (HSPDP) has recently cored five fluvio-lacustrine archives of climate change in East Africa. The sediment cores collected in Ethiopia and Kenya are expected to provide valuable insights into East African environmental variability during the last ~3.5 Ma. The tectonically-bound Chew Bahir basin in the southern Ethiopian rift is one of the five sites within HSPDP, located in close proximity to the Lower Omo River valley, the site of the oldest known fossils of anatomically modern humans. In late 2014, the two cores (279 and 266 m long respectively, HSPDP-CHB14-2A and 2B) were recovered, summing up to nearly three tonnes of mostly calcareous clays and silts. Deciphering an environmental record from multiple records, from the source region of modern humans could eventually allow us to reconstruct the pronounced variations of moisture availability during the transition into Middle Stone Age, and its implications for the origin and dispersal of Homo sapiens. Here we present the first results of our analysis of the Chew Bahir cores. Following the HSPDP protocols, the two parallel Chew Bahir sediment cores have been merged into one single, 280 m long and nearly continuous (>90%) composite core on the basis of a high resolution MSCL data set (e.g., magnetic susceptibility, gamma ray density, color intensity transects, core photographs). Based on the obvious cyclicities in the MSCL, correlated with orbital cycles, the time interval covered by our sediment archive of climate change is inferred to span the last 500-600 kyrs. Combining our first results from the long cores with the results from the accomplished pre-study of short cores taken in 2009/10 along a NW-SE transect across the basin (Foerster et al., 2012, Trauth et al., 2015), we have developed a hypothesis

  5. Logs of wells and boreholes drilled during hydrogeologic studies at Lawrence Livermore National Laboratory Site 300, January 1, 1982--June 30, 1988: January 1, 1982 through June 30, 1988

    International Nuclear Information System (INIS)

    Toney, K.C.; Crow, N.B.

    1988-01-01

    We present the hydrogeologic well logs for monitor wells and exploratory boreholes drilled at Lawrence Livermore National Laboratory (LLNL) Site 300 between the beginning of environmental investigations in June 1982 and the end of June 1988. These wells and boreholes were drilled as part of studies made to determine the horizontal and vertical distribution of volatile organic compounds (VOCs), high explosive (HE) compounds, and tritium in soil, rock, and ground water at Site 300. The well logs for 293 installations comprise the bulk of this report. We have prepared summaries of Site 300 geology and project history that provide a context for the well logs. Many of the logs in this report have also been published in previous topical reports, but they are nevertheless included in order to make this report a complete record of the wells and boreholes drilled prior to July 1988. A commercially available computer program, LOGGER has been used since late 1985 to generate these logs. This report presents details of the software programs and the hardware used. We are presently completing a project to devise a computer-aided design (CAD) system to produce hydrogeologic cross sections and fence diagrams, utilizing the digitized form of these logs. We find that our system produces publication-quality well and exploratory borehole logs at a lower cost than that of logs drafted by traditional methods

  6. Optimizing drilling performance using a selected drilling fluid

    Science.gov (United States)

    Judzis, Arnis [Salt Lake City, UT; Black, Alan D [Coral Springs, FL; Green, Sidney J [Salt Lake City, UT; Robertson, Homer A [West Jordan, UT; Bland, Ronald G [Houston, TX; Curry, David Alexander [The Woodlands, TX; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  7. Thermal numerical assessment of jawbone drilling factor during implantology

    Directory of Open Access Journals (Sweden)

    Adel Pirjamali Neisiani

    2016-03-01

    Full Text Available Background and Aims: Optimization drilling parameters in order to temperature decrease during creation of hole in the bone is an interested issue. The aim of this study was to achieve optimum values of drilling parameters based on the creation of minimum temperature during jawbone drilling. Materials and Methods: In this study two models of mandible and maxilla was created and teeth 2, 5 and 8 from maxilla and teeth 25, 28 and 31 from mandible were removed. The drilling operation was performed under different conditions on jawbone models using finite element analysis and the maximum temperatures were measured in adjacent of holes. Results: Drill bit head angle of 70 degrees was created the lowest maximum temperature during drilling operation. The lowest maximum temperatures were observed in the drill bit rotational speed, drill bit feed rate and the force exerted on the drill bit equal to 200 rpm, 120 mm/min and 60 N, respectively. The use of irrigation can decrease the maximum bone temperature about 7ºC. The maximum temperature differences in various regions of mandible and maxilla were approximately about 1ºC. Conclusion: Sharpness of drill bit head angle, reduction of drill bit rotational speed, increasing drill bit feed rate and exerted force on drill bit and also the use of irrigation played effective roles in temperature decrease during jawbone drilling. Drilling site did not have important effect on the temperature changes during jawbone drilling.

  8. Localization of polycyclic aromatic hydrocarbons and heavy metals in surface soil of Asia’s oldest oil and gas drilling site in Assam, north-east India: Implications for the bio-economy

    Directory of Open Access Journals (Sweden)

    Hemen Sarma

    2016-09-01

    Full Text Available The environmental influx of hazardous contaminants viz PAHs and HMs occurs due to oil and gas drilling, and processing of petroleum products in industrial facilities and refineries. This problem plagues crude oil drilling sites as PAHs are an essential component of and HMs coexist with crude oil. We analyzed the spatial distribution of 16 PAHs and 8 HMs in 10 contaminated sites of Assam, a state in India. These included Digboi, where crude oil was drilled in 1867 and the first oil well in Asia that was drilled. The Ʃ16 PAHs in soil were detected with a minimum of 13.48 and a maximum of 86.3 mgkg−1 and Ʃ 8 heavy metal concentrations in the soil ranged between 69.51 and 336.06 mgkg−1. A negative correlation was detected between the relative concentrations of PAHs and HMs. The results confirmed that the non-biodegradable nature of HMs made them stay in the soil for longer periods of time. In our study, we found that the levels of lead, copper, nickel, and chromium (total in soil were 73.62, 11.86, 58.97 and 158.66 mgkg−1. The recovery percentage for PAHs and HMs were in the range of 67–97% and 90–95% respectively. Spatial distribution indices for Phenanthrene/Anthracene, Naphthalene/Acenapthhylene, Chyrsene/Benzo (g, h, i perylene and Fluranthene/Pyrene calculated for soil samples indicated that the spatial distribution of PAHs in soil is uneven which might be due to variations in contaminates disseminated in soil. Such regionalized concentration has serious implications on the bio-economy both in terms of health and economy, especially since the proximity of crude oil sites to paddy fields and/or tea plantations uniquely marks the landscape of upper Assam.

  9. Advantages and limitations of remotely operated sea floor drill rigs

    Science.gov (United States)

    Freudenthal, T.; Smith, D. J.; Wefer, G.

    2009-04-01

    A variety of research targets in marine sciences including the investigation of gas hydrates, slope stability, alteration of oceanic crust, ore formation and palaeoclimate can be addressed by shallow drilling. However, drill ships are mostly used for deep drillings, both because the effort of building up a drill string from a drill ship to the deep sea floor is tremendous and control on drill bit pressure from a movable platform and a vibrating drill string is poor especially in the upper hundred meters. During the last decade a variety of remotely operated drill rigs have been developed, that are deployed on the sea bed and operated from standard research vessels. These developments include the BMS (Bentic Multicoring System, developed by Williamson and Associates, operated by the Japanese Mining Agency), the PROD (Portable Remotely Operated Drill, developed and operated by Benthic Geotech), the Rockdrill 2 (developed and operated by the British geological Survey) and the MeBo (German abbreviation for sea floor drill rig, developed and operated by Marum, University of Bremen). These drill rigs reach drilling depths between 15 and 100 m. For shallow drillings remotely operated drill rigs are a cost effective alternative to the services of drill ships and have the major advantage that the drilling operations are performed from a stable platform independent of any ship movements due to waves, wind or currents. Sea floor drill rigs can be deployed both in shallow waters and the deep sea. A careful site survey is required before deploying the sea floor drill rig. Slope gradient, small scale topography and soil strength are important factors when planning the deployment. The choice of drill bits and core catcher depend on the expected geology. The required drill tools are stored on one or two magazines on the drill rig. The MeBo is the only remotely operated drill rig world wide that can use wire line coring technique. This method is much faster than conventional

  10. CASING DRILLING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2005-12-01

    Full Text Available Casing drilling is an alternative option to conventional drilling and uses standard oilfield casing instead of drillstring. This technology is one of the greatest developments in drilling operations. Casing drilling involves drilling and casing a well simultaneously. In casing driling process, downhole tools can be retrieved, through the casing on wire-line, meaning tool recovery or replacement of tools can take minutes versus hours under conventional methods. This process employs wireline-retrievable tools and a drill-lock assembly, permitting bit and BHA changes, coring, electrical logging and even directional or horizontal drilling. Once the casing point is reached, the casing is cemented in place without tripping pipe.

  11. Advanced Drilling through Diagnostics-White-Drilling

    International Nuclear Information System (INIS)

    FINGER, JOHN T.; GLOWKA, DAVID ANTHONY; LIVESAY, BILLY JOE; MANSURE, ARTHUR J.; PRAIRIE, MICHAEL R.

    1999-01-01

    A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional

  12. Avoiding pollution in scientific ocean drilling

    International Nuclear Information System (INIS)

    Francis, T.J.G.

    1999-01-01

    Scientific ocean drilling has been carried out in the world's oceans since the nineteen sixties. From 1968-83 the Deep Sea Drilling Project (DSDP), managed by the Scripps Institution of Oceanography in California under a contract with the US National Science Foundation, employed the drilling vessel Glomar Challenger for this purpose. In January 1985 the Ocean Drilling Program (GDP), operated by Texas A and M University, began operations with the drillship JOIDES Resolution which continue to this day. The principal funding agency remains the US National Science Foundation, but since its inception GDP has been an international program and currently receives financial support from 21 countries. The ODP operates globally and, as with DSDP before it, drills without a riser or blowout preventer in a wide range of geological environments. Water depths at GDP drill sites have ranged from 38 m to 5969 m, but are typically within the range 1000-5000 m. Depths of penetration at GDP drill sites, while generally less than 1000 m, have ranged up to 2111 m below the sea floor. The drilling fluid is seawater, although occasional slugs of mud are circulated to clean or condition the hole. Thus drilling is carried out without well control, i.e. without the ability to control pressures within the well. Because of the absence of well control, it is vital to ensure that the drillship does not drill into an accumulation of oil or gas. Drilling into a charged reservoir and causing oil or gas to escape into the marine environment is recognised as the main pollution hazard in scientific ocean drilling

  13. Alteration in the IRDP drill hole compared with other drill holes in Iceland

    Science.gov (United States)

    Kristmannsdóttir, Hrefna

    1982-08-01

    The overall alteration pattern in the drill hole at Reydarfjördur is very similar to alteration patterns observed in Icelandic geothermal areas and in low-grade metamorphosed basalts in deep crustal sections elsewhere in Iceland. However more detail is obtained by the study of the IRDP drill core than by study of drill cuttings sampled in previous drill holes in Iceland. A comparatively high fossil thermal gradient is obtained at Reydarfjördur by a combination of mineral stability data and the observed occurence of secondary minerals. This high gradient is consistent with the measured dike dilation at the drill site and the location of the drill site adjacent to a central volcano.

  14. Drilling trends in the nineties

    International Nuclear Information System (INIS)

    1993-01-01

    At a conference on various aspects of well drilling in the 1990s, papers were presented on drilling waste management, well completion and workovers, drilling fluids, drilling rig equipment and design, drilling mechanics, drill stem testing and materials, cementing, business management, health and safety, environmental issues, and directional drilling technology. Separate abstracts have been prepared for 46 papers from this conference

  15. Robotic Planetary Drill Tests

    Science.gov (United States)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  16. Effects of drilling fluids on marine organisms

    International Nuclear Information System (INIS)

    Parrish, P.R.; Duke, T.W.

    1990-01-01

    This paper reports on drilling fluids, also called drilling muds, which are essential to drilling processes in the exploration and production of oil and gas from the U.S. Outer Continental Shelf (OCS). These fluids are usually discharged from drilling platforms into surrounding waters of the OCS and are regulated by the U.S. Environmental Protection Agency (EPA). In a program carried out by the EPA Environmental research Laboratory at Gulf Breeze, Florida, diverse marine species as well as microbiotic and macrobiotic communities were studied. Drilling fluids were toxic to marine organisms in certain concentrations and exposure regimes. Furthermore, the fluids adversely affected the benthos physically by burying them or by altering the substrates. Toxicity of the drilling-fluid components, used drilling fluids from active Gulf of Mexico sites, and laboratory-prepared drilling fluids varied considerably. for example 96-h LC 50 s were from 25 μ liter -1 to > 1500 μl liter -1 for clams, larval lobsters, mysids, and grass shrimp. In most instances, mortality was significantly (α = 0.05) correlated with the diesel-oil content of the fluids collected from the Gulf of Mexico. Data and model simulations suggest a rapid dilution of drilling fluids released into OCS waters, resulting in concentrations below the acute-effect concentration for the water column organisms tested

  17. Development of a bottom-hole gamma-ray diagnostic capability for high-level environments, during CTBT on-site inspection drilling

    International Nuclear Information System (INIS)

    Fontenot, R.; Shakir, S.; Heuze, F.; Butler, M.

    1998-05-01

    Testing completed at NTS confirmed that the Anadrill gamma-ray tool was fully operational up to 50,000 API, as specified in the initial objective. Recorded results were within expected ranges when compared to the hand-held detector. The gamma-ray module will require special 'high-rate' detection software to be loaded prior to drilling operations. The other components within the VIPER system have been modified to operate with either software (normal or 'high-rate') installed in the gamma-ray module. The successful completion of this test is but one step towards the main goal. The next step will be testing this module in the VIPER tool during an actual 're-entry' drilling operation, which could be performed at NTS on a former U.S. event. (author)

  18. Archaeological survey and monitoring of initial excavations within the basalt waste isolation project reference repository location and associated drill borehole site locations

    International Nuclear Information System (INIS)

    McCarthy, M.M.

    1984-01-01

    This letter report concerns cultural resources studies undertaken in November 1982 for the exploratory shaft starter hole and surface facilities for the Basalt Waste Isolation Project (BWIP). These studies were carried out under the provisions of the National Environmental Policy Act, the amended National Historic Preservation Act, and the Archaeological Resources Act. This report concludes that neither cultural nor palentological resources are being affected by the BWIP during the present phase of construction work and test drilling. 4 refs., 10 figs

  19. Coiled tubing drilling with supercritical carbon dioxide

    Science.gov (United States)

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  20. Study for increasing micro-drill reliability by vibrating drilling

    International Nuclear Information System (INIS)

    Yang Zhaojun; Li Wei; Chen Yanhong; Wang Lijiang

    1998-01-01

    A study for increasing micro-drill reliability by vibrating drilling is described. Under the experimental conditions of this study it is observed, from reliability testing and the fitting of a life-distribution function, that the lives of micro-drills under ordinary drilling follow the log-normal distribution and the lives of micro-drills under vibrating drilling follow the Weibull distribution. Calculations for reliability analysis show that vibrating drilling can increase the lives of micro-drills and correspondingly reduce the scatter of drill lives. Therefore, vibrating drilling increases the reliability of micro-drills

  1. The Hans Tausen drill

    DEFF Research Database (Denmark)

    Johnsen, Sigfus Johann; Dahl-Jensen, Dorthe; Steffensen, Jørgen Peder

    2007-01-01

    In the mid-1990s, excellent results from the GRIP and GISP2 deep drilling projects in Greenland opened up funding for continued ice-coring efforts in Antarctica (EPICA) and Greenland (NorthGRIP). The Glaciology Group of the Niels Bohr Institute, University of Copenhagen, was assigned the task...... of providing drilling capability for these projects, as it had done for the GRIP project. The group decided to further simplify existing deep drill designs for better reliability and ease of handling. The drill design decided upon was successfully tested on Hans Tausen Ice Cap, Peary Land, Greenland, in 1995....... The 5.0 m long Hans Tausen (HT) drill was a prototype for the ~11 m long EPICA and NorthGRIP versions of the drill which were mechanically identical to the HT drill except for a much longer core barrel and chips chamber. These drills could deliver up to 4 m long ice cores after some design improvements...

  2. South African drilling

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    According to the president of the South African Drilling Association, the drilling industry is meeting head-on the challenges created by the worldwide recession. The paper is a synopsis of several of the papers presented at the SADA symposium and a look at several mining-related drilling projects in South Africa. These papers include grouting techniques, the use of impregnated bits in hard rock drilling, tunnel boring for mines, surveying improvement methods and the use of explosives to increase groundwater yield

  3. Development of controlled drilling system

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Miyakawa, Kimio; Suzuki, Koichi; Sunaga, Takayuki

    2008-01-01

    In Japan, the soft sedimentary rock of the Neogene tertiary is being focused as a host rock for the High Level Radioactive Waste (HLW) disposal. Especially, the soft sedimentary rock at the offshore, region is thought to be one of the best candidates, since there is no driving force of the underground water. The measurement and logging in the bore hole in order to check the hydro-geological and geomechanical conditions of the host rock is a very important way to examine the potentially of the disposal candidates. The CRIEPI (Central Research Institute of Electric Power Industry) has been conducting the project about the controlled drilling technology and the measurement and logging technologies in its borehole. In 2000, as the beginning year of the project, we made the conceptual design of the drilling and measuring systems, and made key tools concerning each technology on an experimental basis. We have been developing sub tools constructing drilling and measuring systems since 2000, and applying these systems to the Horonobe site recent 5 years. We will briefly report the outline of the system and the results of drilling and measurement that were carried out at the Horonobe site. (author)

  4. Dewatering cuts drilling mud and disposal costs

    International Nuclear Information System (INIS)

    West, G.; Pharis, B.

    1991-01-01

    This paper reports on rig site dewatering of drilling fluids with recycling of processed water that can help an operator to comply with environmental rules by reducing volumes of waste and reducing long term liabilities. It can also reduce disposal costs and provide a cleaner drill site overall. Rig site dewatering is the process of injecting coagulants or flocculating chemicals into the mud entering a large clarifying centrifuge. This coagulates the fine, drilled particles allowing them to be separated from the fluid which can then be handled separately. Most of the environmental concerns during the 1980s involved hazardous materials and toxic wastes. Drilling fluids, many of which are chemically benign, have escaped many of the difficult-to-comply-with rules and regulations. During the 1990s, however, operators may be required to submit a written plan for liquid waste reduction for even nonhazardous materials. Many states and local agencies may institute total bans on oil field wastes. Drilling rigs typically produce about 1 bbl of liquid waste for every 1 ft of hole drilled. Thus, a typical drilling operation can produce a large quantity of waste

  5. Westinghouse GOCO conduct of casualty drills

    International Nuclear Information System (INIS)

    Ames, C.P.

    1996-02-01

    Purpose of this document is to provide Westinghouse Government Owned Contractor Operated (GOCO) Facilities with information that can be used to implement or improve drill programs. Elements of this guide are highly recommended for use when implementing a new drill program or when assessing an existing program. Casualty drills focus on response to abnormal conditions presenting a hazard to personnel, environment, or equipment; they are distinct from Emergency Response Exercises in which the training emphasis is on site, field office, and emergency management team interaction. The DOE documents which require team training and conducting drills in nuclear facilities and should be used as guidance in non-nuclear facilities are: DOE 5480.19 (Chapter 1 of Attachment I) and DOE 5480.20 (Chapter 1, paragraphs 7 a. and d. of continuing training). Casualty drills should be an integral part of the qualification and training program at every DOE facility

  6. Oskarshamn site investigation. Hydrogeochemical monitoring programme for core and percussion drilled boreholes 2009. Summary of ground water chemistry results from spring and autumn sampling

    Energy Technology Data Exchange (ETDEWEB)

    Regander, Claes; Bergman, Bo (Sweco Environment AB (Sweden))

    2010-09-15

    This report summarises the results obtained in 2009 from the hydrogeochemical monitoring programme for core and percussion drilled boreholes. During 2009 groundwater sampling has been performed in monitored (permanently installed) boreholes in two sampling periods, spring (May-June), and autumn (October-November). Both in spring and autumn groundwater sampling was carried out in the following 12 sections; HLX28:2, HLX35:2, HLX37:1, HLX39:1, KLX08:4, KLX10:2, KLX10:5, KLX12A:2, KLX15A:3, KLX15A:6, KLX18A:3, KLX19A:3. The programme started in 2005 and since then water sampling has been performed twice every year. The objective of the hydrogeochemical monitoring programme is to determine the groundwater composition in selected sections chosen for this purpose. In 2009 the sampling of core drilled borehole sections has been conducted in time series, where each borehole section has been sampled at seven occasions. Percussion drilled borehole sections has been sampled at three occasions. The final sample in each section was taken when the electric conductivity had reached a stable level. Obtained results from the activities presented here include groundwater chemistry data in accordance with SKB chemistry class 5 including options and SKB chemistry reduced class 5. SKB chemistry reduced class 5 includes analysis of pH, electric conductivity, alkalinity, density, drill water (uranine), major cations (Chapter 5.4), F-, Br-, Cl-, SO{sub 4}2-, Fe(II)/Fe(tot), HS-, DOC, TOC and the isotopes delta2H, delta18O and 3H. Options for SKB chemistry class 5 include even lanthanoids and other trace elements, As, In, I, environmental metals, NH{sub 4}+, nutrient salts and the isotopes delta34S, delta37Cl, 87Sr/86Sr, 10B/11B, delta13C, 226Ra, 222Rn, 238U, 234U, 230Th and 232Th. All data from the activity are stored in the SICADA database

  7. Drilling contracts and incentives

    International Nuclear Information System (INIS)

    Osmundsen, Petter; Sorenes, Terje; Toft, Anders

    2008-01-01

    Shortages of rigs and personnel have encouraged discussion of designing incentive contracts in the drilling sector. However, for the drilling contracts, there are not a large variety of contract types in use. This article describes and analyses incentives for drilling contractors. These are directly represented by the compensation formats utilised in the present and in the consecutive drilling contracts. Indirectly, incentives are also provided by the evaluation criteria that oil companies use for awarding drilling assignments. Changes in contract format pose a number of relevant questions relating to resource management, and the article takes an in-depth look at some of these. Do evaluation criteria for awarding drilling assignments encourage the development of new technology and solutions? How will a stronger focus on drilling efficiency influence reservoir utilisation?

  8. Drilling and testing specifications for the McGee well

    International Nuclear Information System (INIS)

    Patterson, J.K.

    1982-01-01

    The McGee Well is a part of the Basalt Waste Isolation Project's subsurface site selection and characterization activities. Information from the McGee Well support site hydrologic characterization and repository design. These test specifications include details for the drilling and testing of the McGee. It includes the predicted stratigraphy, the drilling requirements, description of tests to be conducted, intervals selected for hydrologic testing, and a schedule of the drilling and testing activities. 19 refs., 10 figs., 7 tabs

  9. Quality in drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, E; Gervais, I [Sedco Forex Jacintoport Facility, Channelview, TX (United States); Le Moign, Y; Pangarkar, S; Stibbs, B [Sedco Forex, Montrouge (France); McMorran, P [Sedco Forex, Pau (France); Nordquist, E [Dubai Petroleum Company, Dubai (United Arab Emirates); Pittman, T [Sedco Forex, Perth (Australia); Schindler, H [Sedco Forex, Dubai (United Arab Emirates); Scott, P [Woodside Offshore Petroleum Pty. Ltd., Perth (Australia)

    1997-12-31

    Driven by cost and profitability pressures, quality has taken on new meaning and importance in the oil field during the past decade. In drilling operations, new initiatives have led to cooperative team efforts between operators and drilling contractors to enhance quality. In this article examples are given of how one drilling contractor, by adopting a quality culture, is reaping major benefits for its clients as well as its employees. 22 figs., 19 refs.

  10. Quality in drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, E.; Gervais, I. [Sedco Forex Jacintoport Facility, Channelview, TX (United States); Le Moign, Y.; Pangarkar, S.; Stibbs, B. [Sedco Forex, Montrouge (France); McMorran, P. [Sedco Forex, Pau (France); Nordquist, E. [Dubai Petroleum Company, Dubai (United Arab Emirates); Pittman, T. [Sedco Forex, Perth (Australia); Schindler, H. [Sedco Forex, Dubai (United Arab Emirates); Scott, P. [Woodside Offshore Petroleum Pty. Ltd., Perth (Australia)

    1996-12-31

    Driven by cost and profitability pressures, quality has taken on new meaning and importance in the oil field during the past decade. In drilling operations, new initiatives have led to cooperative team efforts between operators and drilling contractors to enhance quality. In this article examples are given of how one drilling contractor, by adopting a quality culture, is reaping major benefits for its clients as well as its employees. 22 figs., 19 refs.

  11. Drill site selection process using geophysical (seismic, EM, magnetic) surveys and regional geochemical uranium deposit vectors within the Keefe Lake Uranium Property and its vicinity – Athabasca Basin, Saskatchewan, Canada

    International Nuclear Information System (INIS)

    Hajnal, Z.; Pandit, B.; Annesley, I.; Takacs, E.

    2014-01-01

    defined several highly favorable structural features in the basement; with some extending into the overlying sandstones. Close correlation between features of potential field data anomalies and the seismic signatures, together with the geochemical uranium deposit vectors, established the north-western corner of the property as a significant site for drilling. (author)

  12. Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology

    Science.gov (United States)

    Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.

    2006-01-01

    This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.

  13. Perturbation of seafloor bacterial community structure by drilling waste discharge.

    Science.gov (United States)

    Nguyen, Tan T; Cochrane, Sabine K J; Landfald, Bjarne

    2018-04-01

    Offshore drilling operations result in the generation of drill cuttings and localized smothering of the benthic habitats. This study explores bacterial community changes in the in the upper layers of the seafloor resulting from an exploratory drilling operation at 1400m water depth on the Barents Sea continental slope. Significant restructurings of the sediment microbiota were restricted to the sampling sites notably affected by the drilling waste discharge, i.e. at 30m and 50m distances from the drilling location, and to the upper 2cm of the seafloor. Three bacterial groups, the orders Clostridiales and Desulfuromonadales and the class Mollicutes, were almost exclusively confined to the upper two centimeters at 30m distance, thereby corroborating an observed increase in anaerobicity inflicted by the drilling waste deposition. The potential of these phylogenetic groups as microbial bioindicators of the spatial extent and persistence of drilling waste discharge should be further explored. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Drilling bits for deep drilling and process for their manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, H.; Juergens, R.; Feenstra, R.; Busking, B.E.

    1978-11-30

    The invention concerns a drilling head or a drilling bit for use in deep drilling in underground formations and particularly concerns a drilling bit with a drilling bit body, which has a shank and a hollow space, which is connected with a duct extending through the shank. The drilling bit body has several separate cutting elements for removing material from the floor of a borehole and hydraulic devices for cooling and/or cleaning the cutting elements are provided.

  15. Environment-friendly drilling operation technology

    Science.gov (United States)

    Luo, Huaidong; Jing, Ning; Zhang, Yanna; Huang, Hongjun; Wei, Jun

    2017-01-01

    Under the circumstance that international safety and environmental standards being more and more stringent, drilling engineering is facing unprecedented challenges, the extensive traditional process flow is no longer accepted, the new safe and environment-friendly process is more suitable to the healthy development of the industry. In 2015, CNPCIC adopted environment-friendly drilling technology for the first time in the Chad region, ensured the safety of well control, at the same time increased the environmental protection measure, reduced the risk of environmental pollution what obtain the ratification from local government. This technology carries out recovery and disposal of crude oil, cuttings and mud without falling on the ground. The final products are used in road and well site construction, which realizes the reutilization of drilling waste, reduces the operating cost, and provides a strong technical support for cost-cutting and performance-increase of drilling engineering under low oil price.

  16. Drilling contract issues

    International Nuclear Information System (INIS)

    Davison, G.B.; Worden, D.R.; Borbridge, G.K.D.

    1997-01-01

    Some selected issues which are facing both operators and contractors in drilling for oil and gas, such as the allocation of risk by contract and by statute and the implementation of new technologies, were discussed. There are three varieties of written drilling contracts used in Canada: (1) day work and meterage contracts, (2) master drilling agreements, and (3) contracts that are used in construction projects that do not specifically relate to drilling. Issues relevant to the contractual allocation of risk, to implementing new drilling technologies, to reconciling contract and statute liability, and the formation of strategic alliances for mutual benefit, and the factors contributing to the success of such alliances were explored. 12 refs

  17. Evaluation of an air drilling cuttings containment system

    Energy Technology Data Exchange (ETDEWEB)

    Westmoreland, J.

    1994-04-01

    Drilling at hazardous waste sites for environmental remediation or monitoring requires containment of all drilling fluids and cuttings to protect personnel and the environment. At many sites, air drilling techniques have advantages over other drilling methods, requiring effective filtering and containment of the return air/cuttings stream. A study of. current containment methods indicated improvements could be made in the filtering of radionuclides and volatile organic compounds, and in equipment like alarms, instrumentation or pressure safety features. Sandia National Laboratories, Dept. 61 11 Environmental Drilling Projects Group, initiated this work to address these concerns. A look at the industry showed that asbestos abatement equipment could be adapted for containment and filtration of air drilling returns. An industry manufacturer was selected to build a prototype machine. The machine was leased and put through a six-month testing and evaluation period at Sandia National Laboratories. Various materials were vacuumed and filtered with the machine during this time. In addition, it was used in an actual air drive drilling operation. Results of these tests indicate that the vacuum/filter unit will meet or exceed our drilling requirements. This vacuum/filter unit could be employed at a hazardous waste site or any site where drilling operations require cuttings and air containment.

  18. Uranium Geologic Drilling Project, Sand Wash Basin, Moffat and Routt Counties, Colorado:

    International Nuclear Information System (INIS)

    1978-01-01

    This environmental assessment of drill holes in Moffat and Routt Counties, Colorado considered the current environment; potential impacts from site preparation, drilling operations, and site restoration; coordination among local, state and federal plans; and consideration of alternative actions for this uranium drilling project

  19. Drilling technologies in hydrogeological survey

    OpenAIRE

    Vorlíček, Petr

    2014-01-01

    This work deals with the drilling technologies used in hydrogeology. The main aim of the work is to explore types of drilling technologies used at hydrogeological drilling wells and modern technologies that could potentially be used in the future. The work also summarizes a historical development of drilling techniques, a drilling process procedure, information obtained from boreholes and the most common types of drilling fluids.

  20. Optimization of Drilling Resistance Measurement (DRM) user-controlled variables

    OpenAIRE

    Tudor, Dumitrescu; Pesce, Giovanni; Ball, Richard

    2017-01-01

    Drilling Resistance Measurement (DRM) is recognised as an important on-site micro-invasive procedure for assessment of construction materials. This paper presents a detailed investigation of user-controlled variables and their influence on drilling resistance. The study proves that the ratio of penetration rate/rotational speed (PR/RPM) is proportional to drilling resistance. Data from Bath stone and an artificial reference stone demonstrates how different materials can be compared using thei...

  1. A vision for drilling

    Energy Technology Data Exchange (ETDEWEB)

    Millheim, K. [Montanuniversitaet Leoben (Austria)

    1995-12-31

    The future of drilling lies in its relationship with the oil and gas industry. This paper examines how the future of drilling is seen from the view point of the exploration manager, the drilling contractor, the drilling engineer and the company president or managing director. The various pressures on the oil and gas industry are examined, such as environmental issues, alternative energy sources, and the price of oil which determines how companies are run. Exploration activity is driven by the price of oil and gas. The development of wells with multiple horizontal wells or multiple horizontal wells with tributaries will reduce the cost of exploration. Companies will rely less and less on reservoir simulation and more on cheap well-bores, multi-lateral well-bores and will exploit oil that could not be exploited before. The cost of exploratory drilling will need to be kept down so that in the future the industry will get better at economically finding fields at the 10 million to 20 million barrel range that would not have been possible before. The future is expected to see drilling contractors tunnelling, making sewerage lines and drilling 10,000 foot wells with purpose built rigs. Franchising will become a feature of the industry as will the use of databases to answer key technical questions. Offshore platforms will be built to be moveable and disposable. The industry is capable of solving problems, meeting challenges and making ideas work, providing much hope for the future. 10 figs., 1 photo.

  2. Drilling cost analysis

    International Nuclear Information System (INIS)

    Anand, A.B.

    1992-01-01

    Drilling assumes greater importance in present day uranium exploration which emphasizes to explore more areas on the basis of conceptual model than merely on surface anomalies. But drilling is as costly as it is important and consumes a major share (50% to 60%) of the exploration budget. As such the cost of drilling has great bearing on the exploration strategy as well as on the overall cost of the project. Therefore, understanding the cost analysis is very much important when planning or intensifying an exploration programme. This not only helps in controlling the current operations but also in planning the budgetary provisions for future operations. Also, if the work is entrusted to a private party, knowledge of in-house cost analysis helps in fixing the rates of drilling in different formations and areas to be drilled. Under this topic, various factors that contribute to the cost of drilling per meter as well as ways to minimize the drilling cost for better economic evaluation of mineral deposits are discussed. (author)

  3. Drilling for scientific purpose

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shoichi

    1987-09-01

    Drilling for scientific purpose is a process of conducting geophysical exploration at deep underground and drilling for collecting crust samples directly. This is because earth science has advanced to get a good understanding about the top of the crust and has shifted its main interest to the lower layer of the crust in land regions. The on-land drilling plan in Japan has just started, and the planned drilling spots are areas around the Minami River, Hidaka Mts., kinds of the Mesozoic and Cenozoic granite in outside zone, the extension of Japan Sea, Ogasawara Is., Minami-Tori Is., and active volcanos. The paper also outlines the present situation of on-land drilling in the world, focusing on the SG-3rd super-deep well SG-3 on the Kola Peninsula, USSR, Satori SG-1st well SG-1 in Azerbaidzhan S.S.R, V.S.S.R, Sweden's wells, Cyprus' wells, Bayearn well Plan in West Germany, and Salton Sea Scientific Drilling Program in the U.S. At its end, the paper explains the present situation and the future theme of the Japanese drilling technique and points out the necessity of developing equipment, and techniques. (14 figs, 5 tabs, 26 refs)

  4. ResonantSonic drilling: History, progress, and advances in environmental restoration programs

    International Nuclear Information System (INIS)

    Moak, D.J.

    1995-01-01

    ResonantSonic drilling is being used in the environmental industry to drill faster, cheaper, and safer than conventional drilling methodologies. The ResonantSonic drilling method requires no mud, air, or water for rapid penetration through geologic materials ranging from rock and clay to sand and boulders. A specialized drill head imparts high frequency vibrations into steel drill pipe and creates a drilling action which allows the retrieval of continuous, undisturbed cores. An added benefit is that the method can be used for angle drilling. The ResonantSonic method has been used in the past for projects ranging from pile driving to horizontal drilling. Current programs utilize the technique as a valuable tool for obtaining in situ, pristine environmental samples. In the future, this drilling technology could be used for remote, automated sampling at hazardous waste sites

  5. ResonantSonic drilling: History, progress and advances in environmental restoration programs

    International Nuclear Information System (INIS)

    Volk, B.W.; McLellan, G.W.; Moak, D.J.; Lerch, R.E.; Thompson, K.M.; Barrow, J.C.

    1993-01-01

    ResonantSonic SM drilling is being used in the environmental industry to drill faster, cheaper, and safer than conventional drilling methodologies. ResonantSonic is a registered service mark of the Water Development Corporation, Woodland, California. The ResonantSonic drilling method, requires no mud, air or water for rapid penetration through geologic materials ranging from rock and clay to sand and boulders. The specialized drill head imparts high frequency vibrations into a steel drill pipe creating a drilling action which allows the retrieval of continuous, undisturbed cores. An added benefit is that the method can be used for angle drilling. The ReasonantSonic method has been used in the past for projects ranging from pile driving to horizontal drilling. Current programs are utilizing the technique as a valuable tool for obtaining in situ, pristine environmental samples. In the future, this drilling technology could be used for remote, automated sampling at hazardous waste sites

  6. Drilling and well technology

    Energy Technology Data Exchange (ETDEWEB)

    Milheim, K. [Mining University Leoben Institute for Drilling Technology, (Austria)

    1996-12-31

    Over a billion dollars a year is lost by exploration and production companies drilling wells because of the lack of learn curve management (LMC) practices. This paper presents the importance of the LMC concept, what it is, why LMC has not yet been recognized as a major initiative for improving drilling cost performance. The paper discusses the different types of planning, problems with implementation of plans, the use and misuse of drilling results and data bases, and the lack of post analysis practices. The major point of the paper is to show the massive savings that can be achieved by valuing LMC, learning LMC and successfully implementing LMC. . 2 refs., 5 figs.

  7. Technical and Economic Comparison MOB location versus Bergermeer Drilling Site. Justification of the Financial section in the Environmental Impact Report (MER)

    International Nuclear Information System (INIS)

    Dekker, W.; Azeem Khan, F.

    2009-09-01

    The Environmental Impact Report for the gas storage location Bergermeer has selected the MOB area (mobilization complex or storage site of the Dutch Ministry of Defense) in Bergen as the most environment-friendly alternative (MMA) for the well area. TAQA asked SGS to elaborate the technical and financial aspects of the MMA alternative and to compare them to the preferred alternative. [nl

  8. Humvee Armor Plate Drilling

    National Research Council Canada - National Science Library

    2004-01-01

    When drilling holes in hard steel plate used in up-armor kits for Humvee light trucks, the Anniston Army Depot, Anniston, Alabama, requested the assistance of the National Center for Defense Manufacturing and Machining (NCDMM...

  9. Effect of Simplifying Drilling Technique on Heat Generation During Osteotomy Preparation for Dental Implant.

    Science.gov (United States)

    El-Kholey, Khalid E; Ramasamy, Saravanan; Kumar R, Sheetal; Elkomy, Aamna

    2017-12-01

    To test the hypothesis that there would be no difference in heat production by reducing the number of drills during the implant site preparation relative to conventional drilling sequence. A total of 120 implant site preparations with 3 different diameters (3.6, 4.3, and 4.6 mm) were performed on bovine ribs. Within the same diameter group, half of the preparations were performed by a simplified drilling procedure (pilot drill + final diameter drill) and other half using the conventional drilling protocol (pilot drill followed by graduated series of drills to widen the site). Heat production by different drilling techniques was evaluated by measuring the bone temperature using k-type thermocouple and a sensitive thermometer before and after each drill. Mean for maximum temperature increase during site preparation of the 3.6, 4.3, and 4.6-mm implants was 2.45, 2.60, and 2.95° when the site was prepared by the simplified procedure, whereas it was 2.85, 3.10, and 3.60° for the sites prepared by the conventional technique, respectively. No significant difference in temperature increase was found when implants of the 3 different diameters were prepared either by the conventional or simplified drilling procedure. The simplified drilling technique produced similar amount of heat comparable to the conventional technique that proved the initial hypothesis.

  10. The Newberry Deep Drilling Project (NDDP)

    Science.gov (United States)

    Bonneville, A.; Cladouhos, T. T.; Petty, S.; Schultz, A.; Sorle, C.; Asanuma, H.; Friðleifsson, G. Ó.; Jaupart, C. P.; Moran, S. C.; de Natale, G.

    2017-12-01

    We present the arguments to drill a deep well to the ductile/brittle transition zone (T>400°C) at Newberry Volcano, central Oregon state, U.S.A. The main research goals are related to heat and mass transfer in the crust from the point of view of natural hazards and geothermal energy: enhanced geothermal system (EGS supercritical and beyond-brittle), volcanic hazards, mechanisms of magmatic intrusions, geomechanics close to a magmatic system, calibration of geophysical imaging techniques and drilling in a high temperature environment. Drilling at Newberry will bring additional information to a very promising field of research initiated by ICDP in the Deep Drilling project in Iceland with IDDP-1 on Krafla in 2009, followed by IDDP-2 on the Reykjanes ridge in 2016, and the future Japan Beyond-Brittle project and Krafla Magma Testbed. Newberry Volcano contains one of the largest geothermal heat reservoirs in the western United States, extensively studied for the last 40 years. All the knowledge and experience collected make this an excellent choice for drilling a well that will reach high temperatures at relatively shallow depths (< 5000 m). The large conductive thermal anomaly (320°C at 3000 m depth), has already been well-characterized by extensive drilling and geophysical surveys. This will extend current knowledge from the existing 3000 m deep boreholes at the sites into and through the brittle-ductile transition approaching regions of partial melt like lateral dykes. The important scientific questions that will form the basis of a full drilling proposal, have been addressed during an International Continental Drilling Program (ICDP) workshop held in Bend, Oregon in September 2017. They will be presented and discussed as well as the strategic plan to address them.

  11. Lessons drawn in matters of preparation, conduct and planning of ''off-site'' nuclear security exercises on basis of three drills recently performed in France

    International Nuclear Information System (INIS)

    Ginot, P.

    1993-01-01

    Most exercises on nuclear security have, up to now, be devoted to the accident phase of the installation and the reflex protection measures during the first hours. The post accidental phase, which deals with the characterization of the contaminated zones and the management of the economic and social life, has been much less tested in exercises. Three recent exercises performed in France bring the following propositions to work out an off site exercise policy: - to benefit from the analysis of the non nuclear accidents - to select the technical and professional aspects of the off site management and to give them priority in the orientation of the exercises or the manoeuvres - to involve representatives of local population - to let the initiative to local Prefect, to enhance the value of the local exercises by specialized services, to accumulate these experiences at a national level

  12. Drilling rig mast

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakov, E.S.; Barashkov, V.A.; Lebedev, A.I.; Panin, N.M.; Sirotkin, N.V.

    1981-01-07

    A drilling rig mast is proposed that contains a portal with a carrier shaft hinged to it and struts with stays. In order to decrease the time expended in the assembly and dessembly of the drilling rig, the portal is constructed from mobile and immobile parts that are connected together by a ball pivot; the immobile section of the portal has a T-shaped recess for directing the mobile section.

  13. Well drilling by rotary percussive drill above ground

    International Nuclear Information System (INIS)

    Sabatier, G.

    1987-01-01

    Originally, the Well Drilling Section of Cogema used only the diamond core drilling technique. The appearance of independent rotation for compressed air rock drills has led to the use and to the development of this drilling system, as a drill core is not indispensable, when the material of the search is radioactive. During the last few years, hydraulic drills have replaced the compressed air drills and have resulted in a very marked improvement: - of the penetration rates; - of the depth achieved. The Well Drilling Section of Cogema has to drill about 400 km per year with rock drills above ground and holds also the record for depth achieved with this technique, i.e. 400 m in granite. In France, the costs of these types of drilling are for the same depth of the order of one-quarter of the core drilling and half of the drilling with a down-the-hole drill. Cogema has greatly developed the types of well logging which now permits the extension of this type of drilling to the search for other materials than uranium [fr

  14. Horizontal drilling under Lake Erie

    Energy Technology Data Exchange (ETDEWEB)

    Meller, R.

    2001-07-01

    Drilling oil wells under Lake Erie calls for horizontal drilling wells to be drilled from shore out into the pay-zone under the lake. The nature and characteristics of horizontal wells as compared to vertical wells are explored. Considerations that have to be taken into account in drilling horizontal wells are explained (the degree of curvature, drilling fluid quality, geosteering in the pay-zone, steering instrumentation, measurements while drilling (MWD), logging while drilling (LWD)). The concept and reasons for extended reach wells are outlined, along with characteristic features of multilateral wells.

  15. Modeling pellet impact drilling process

    Science.gov (United States)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.

    2016-03-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.

  16. Big-hole drilling - the state of the art

    International Nuclear Information System (INIS)

    Lackey, M.D.

    1983-01-01

    The art of big-hole drilling has been in a continual state of evolution at the Nevada Test Site since the start of underground testing in 1961. Emplacement holes for nuclear devices are still being drilled by the rotary-drilling process, but almost all the hardware and systems have undergone many changes during the intervening years. The current design of bits, cutters, and other big-hole-drilling hardware results from contributions of manufacturers and Test Site personnel. The dual-string, air-lift, reverse-circulation system was developed at the Test Site. Necessity was really the Mother of this invention, but this circulation system is worthy of consideration under almost any condition. Drill rigs for big-hole drilling are usually adaptations of large oil-well drill rigs with minor modifications required to handle the big bits and drilling assemblies. Steel remains the favorite shaft lining material, but a lot of thought is being given to concrete linings, especially precast concrete

  17. Evacuation drill at CMS

    CERN Multimedia

    Niels Dupont-Sagorin and Christoph Schaefer

    2012-01-01

    Training personnel, including evacuation guides and shifters, checking procedures, improving collaboration with the CERN Fire Brigade: the first real-life evacuation drill at CMS took place on Friday 3 February from 12p.m. to 3p.m. in the two caverns located at Point 5 of the LHC.   CERN personnel during the evacuation drill at CMS. Evacuation drills are required by law and have to be organized periodically in all areas of CERN, both above and below ground. The last drill at CMS, which took place in June 2007, revealed some desiderata, most notably the need for a public address system. With this equipment in place, it is now possible to broadcast audio messages from the CMS control room to the underground areas.   The CMS Technical Coordination Team and the GLIMOS have focused particularly on preparing collaborators for emergency situations by providing training and organizing regular safety drills with the HSE Unit and the CERN Fire Brigade. This Friday, the practical traini...

  18. What you should know about contract core drilling

    Energy Technology Data Exchange (ETDEWEB)

    Koontz, J.

    1985-07-01

    Most core drilling jobs are on the basis of so much per foot drilled. The driller pays for his crew's wages and overtime pay. He assumes the cost of all necessary supplies and has responsibility for unexpected problems. The customer is responsible for a water supply and must provide access roads to drill sites and prepare the sites. The following are important in selecting a driller; how long they have been in business, how many rigs they have and what condition the rigs are in and their financial condition. Detailed discussions with the driller before he starts the job and a daily drill report are important. A best possible core recovery should be expected. Communication with the driller is the most important factor when involved in a core drilling project.

  19. Study of the radon released from open drill holes

    International Nuclear Information System (INIS)

    Pacer, J.C.

    1981-06-01

    The radon emanating from three open drill holes was measured at a site of known uranium mineralization in the Red Desert of south central Wyoming. The radon flux from the soil and drill holes was measured by the accumulator method with activated charcoal cartridges. The surface soil was found to release radon at an average rate of 0.41 atoms/cm 2 /sec; the radon emanating from the holes was more variable than that from the soil. The three holes studied released an average of 47 atoms/cm 2 /sec of radon. This average is equivalent to the radon released to the atmosphere by 14.5 ft 2 of soil. The data indicate that the radon emanated from an open drill hole is not as significant as other possible activities at a drill site (i.e. digging a trench or drilling a hole) or from household activities involving the usage of water

  20. Mars Drilling Status

    Science.gov (United States)

    Mandell, Humboldt, C., Jr.

    2002-01-01

    This slide presentation reviews the current status of work to explore Mars beneath the surface of planet. One of the objective of this work is to enable further exploration of Mars by humans. One of the requirements for this is to find water on Mars. The presences of water is critical for Human Exploration and a permanent presence on Mars. If water is present beneath the surface it is the best chance of finding life on Mars. The presentation includes a timeline showing the robotic missions, those that have already been on Mars, and planned missions, an explanation of why do we want to drill on Mars, and some of the challenges, Also include are reviews of a missions that would drill 200 and 4,000 to 6,000 meters into the Martian bedrock, and a overview description of the drill. There is a view of some places where we have hopes of finding water.

  1. Field Testing of Environmentally Friendly Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    David Burnett

    2009-05-31

    The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of the environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.

  2. Red Dragon drill missions to Mars

    Science.gov (United States)

    Heldmann, Jennifer L.; Stoker, Carol R.; Gonzales, Andrew; McKay, Christopher P.; Davila, Alfonso; Glass, Brian J.; Lemke, Larry L.; Paulsen, Gale; Willson, David; Zacny, Kris

    2017-12-01

    We present the concept of using a variant of a Space Exploration Technologies Corporation (SpaceX) Dragon space capsule as a low-cost, large-capacity, near-term, Mars lander (dubbed ;Red Dragon;) for scientific and human precursor missions. SpaceX initially designed the Dragon capsule for flight near Earth, and Dragon has successfully flown many times to low-Earth orbit (LEO) and successfully returned the Dragon spacecraft to Earth. Here we present capsule hardware modifications that are required to enable flight to Mars and operations on the martian surface. We discuss the use of the Dragon system to support NASA Discovery class missions to Mars and focus in particular on Dragon's applications for drilling missions. We find that a Red Dragon platform is well suited for missions capable of drilling deeper on Mars (at least 2 m) than has been accomplished to date due to its ability to land in a powered controlled mode, accommodate a long drill string, and provide payload space for sample processing and analysis. We show that a Red Dragon drill lander could conduct surface missions at three possible targets including the ice-cemented ground at the Phoenix landing site (68 °N), the subsurface ice discovered near the Viking 2 (49 °N) site by fresh impact craters, and the dark sedimentary subsurface material at the Curiosity site (4.5 °S).

  3. Selection of new drill sites using a Geographic Information System (GIS) at Los Azufres, Mexico; Seleccion de nuevos sitios de perforacion empleando un Sistema de Informacion Geografica (SIG) en Los Azufres, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Estrada, G.H [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)]. E-mail: gerardo.garcia04@cfe.gob.mx; Lopez-Hernandez, A [Facultad de Ingenieria Civil, Universidad Michoacana de San Nicolas de Hidalgo, Morelia (Mexico); Quijano Leon, J.L Cuauhtemoc [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    2008-07-15

    GIS technology is used to study the effects of distance between producing wells and superficial-thermal features and faults. It is used to interpret topographic lineaments and linear-resistivity interfaces at depth to identify hidden faults. Finally, a geothermal interpretation is conducted by applying a Multi-Criteria Evaluation Method (MCE) on a comprehensive data set, including geology, geophysics, and well production data. Visual comparisons of exploratory and drilling-data maps, with thermal discharge measured from wells, were used to select variables and data ranges that could be more directly associated with energy-production levels. Relative weights assigned by visual inspection are used to extend this knowledge to the whole exploration area. Criteria are compared to calculate a geothermal index representing the geothermal-production suitability for each cell into which the study area is divided. Considering the geometry of fault planes at depths from 700 to 2000 m below the surface, and a 250 m exclusion zone around productive wells, we choose areas from the normalized-geothermal index to propose new drill sites with different levels of risk, ranging from production (low risk) to exploration (high risk) boreholes. [Spanish] Se empleo la tecnologia de Sistemas de Informacion Geografica (SIG) para estudiar el efecto de la distancia de los pozos productores a las manifestaciones termales superficiales y a las fallas, y para interpretar los lineamientos topograficos y las interfaces lineales de resistividad a profundidad para identificar fallas ocultas. Finalmente, se realizo una interpretacion geotermica aplicando un Metodo Multi-Criterio de Evaluacion (MCE) a un conjunto completo de datos que incluye geologia, geofisica y datos de produccion de pozos. Se utilizo una comparacion visual de mapas de datos de exploracion y perforacion con descargas termicas medidas en pozos, a fin de seleccionar variables y rangos de datos que podrian asociarse mas directamente

  4. Ultrasonically assisted drilling of rocks

    Science.gov (United States)

    Mikhailova, N. V.; Onawumi, P. Y.; Roy, A.; Silberschmidt, V. V.

    2018-05-01

    Conventional drilling of rocks can generate significant damage in the drilled material; a material layer is often split off a back surface of a sample during drilling, negatively affecting its strength. To improve finish quality, ultrasonically assisted drilling (UAD) was employed in two rocks - sandstone and marble. Damage areas in both materials were reduced in UAD when compared to conventional drilling. Reductions in a thrust force and a torque reduction were observed only for UAD in marble; ultrasonic assistance in sandstone drilling did not result in improvements in this regard.

  5. Rotary core drills

    Energy Technology Data Exchange (ETDEWEB)

    1967-11-30

    The design of a rotary core drill is described. Primary consideration is given to the following component parts of the drill: the inner and outer tube, the core bit, an adapter, and the core lifter. The adapter has the form of a downward-converging sleeve and is mounted to the lower end of the inner tube. The lifter, extending from the adapter, is split along each side so that it can be held open to permit movement of a core. It is possible to grip a core by allowing the lifter to assume a closed position.

  6. Drilling Information System (DIS and Core Scanner

    Directory of Open Access Journals (Sweden)

    Ronald Conze

    2016-04-01

    Full Text Available The Drilling Information System is a modular structure of databases, tailored user applications as well as web services and instruments including appropriate interfaces to DIS. This tool set has been developed for geoscientific drilling projects but is applicable to other distributed scientific operations. The main focuses are the data acquisition on drill sites (ExpeditionDIS, and the curation of sample material e.g., in core repositories (CurationDIS. Due to the heterogeneity of scientific drilling projects, a project-specific DIS is arranged and adjusted from a collection of existing templates and modules according to the user requirements during a one week training course. The collected data are provided to the Science Team of the drilling project by secured Web services, and stored in long-term archives hosted at GFZ. At the end the data sets and sample material are documented in an Operational Report (e.g., Lorenz et al., 2015 and published with assigned DOI (Digital Object Identifier and IGSN (International Geo Sample Number; for physical samples by GFZ Data Services.

  7. Advanced Seismic While Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII

  8. Drill Sergeant Candidate Transformation

    Science.gov (United States)

    2009-02-01

    leadership styles of NCOs entering Drill Sergeant School (DSS). ARI also developed and administered a prototype DS Assessment Battery to assess...preferred leadership styles . DSS training increases both the degree to which the DSC feels obligated to and identifies with the Army. DSS training...4 TABLE 3. PREFERRED LEADERSHIP STYLES DEFINITIONS .............................................6 TABLE 4. DSC CHANGE IN

  9. Measurement Space Drill Support

    Science.gov (United States)

    2015-08-30

    II) H-47 Block II (I) *H-47 Block II (II) AVN FVL Att (I) * AVN FVL Att (II) TRAC- MTRY F2025B Logistic Flow MS Drill Support FY15 Research...does not have to use other AVN /ground assets to cover the area, freeing these assets to perform other missions and potentially enhancing the

  10. Site selection

    International Nuclear Information System (INIS)

    Olsen, C.W.

    1983-07-01

    The conditions and criteria for selecting a site for a nuclear weapons test at the Nevada Test Site are summarized. Factors considered are: (1) scheduling of drill rigs, (2) scheduling of site preparation (dirt work, auger hole, surface casing, cementing), (3) schedule of event (when are drill hole data needed), (4) depth range of proposed W.P., (5) geologic structure (faults, Pz contact, etc.), (6) stratigraphy (alluvium, location of Grouse Canyon Tuff, etc.), (7) material properties (particularly montmorillonite and CO 2 content), (8) water table depth, (9) potential drilling problems (caving), (10) adjacent collapse craters and chimneys, (11) adjacent expended but uncollapsed sites, (12) adjacent post-shot or other small diameter holes, (13) adjacent stockpile emplacement holes, (14) adjacent planned events (including LANL), (15) projected needs of Test Program for various DOB's and operational separations, and (16) optimal use of NTS real estate

  11. Scientific Drilling with the Sea Floor Drill Rig MeBo

    Directory of Open Access Journals (Sweden)

    Gerold Wefer

    2007-09-01

    Full Text Available In March 2007 the sea floor drill rig MeBo (short for “Meeresboden-Bohrgerät”, ‘sea floor drill rig’ in German returned from a 17-day scientific cruise with the new German research vessel Maria S. Merian. Four sites between 350 m and 1700 m water depth were sampled at the continental slope off Morocco by push coring and rotary drilling. Up to 41.5-m-long sediment cores were recovered from Miocene, Pliocene, and Pleistocene marls. MeBo bridges the gapbetween conventional sampling methods from standard multipurpose research vessels (gravity corer, piston corer, dredges and drill ships. Most bigger research vessels will be able to support deployment of the MeBo. Since the drill system can be easily transported within 20-ft containers, worldwide operation from vessels of opportunity is possible. With the MeBo a new system is available for marine geosciences that allows the recovery of high quality samples from soft sediments and hard rock from the deep sea withoutrelying on the services of expensive drilling vessels.

  12. The Chew Bahir Drilling Project (HSPDP). Deciphering climate information from the Chew Bahir sediment cores: Towards a continuous half-million year climate record near the Omo - Turkana key palaeonanthropological Site

    Science.gov (United States)

    Foerster, Verena E.; Asrat, Asfawossen; Chapot, Melissa S.; Cohen, Andrew S.; Dean, Jonathan R.; Deino, Alan; Günter, Christina; Junginger, Annett; Lamb, Henry F.; Leng, Melanie J.; Roberts, Helen M.; Schaebitz, Frank; Trauth, Martin H.

    2017-04-01

    As a contribution towards an enhanced understanding of human-climate interactions, the Hominin Sites and Paleolakes Drilling Project (HSPDP) has successfully completed coring five dominantly lacustrine archives of climate change during the last 3.5 Ma in East Africa. All five sites in Ethiopia and Kenya are adjacent to key paleoanthropological research areas encompassing diverse milestones in human evolution, dispersal episodes, and technological innovation. The 280 m-long Chew Bahir sediment records, recovered from a tectonically-bound basin in the southern Ethiopian rift in late 2014, cover the past 550 ka of environmental history, a time period that includes the transition to the Middle Stone Age, and the origin and dispersal of modern Homo sapiens. Deciphering climate information from lake sediments is challenging, due to the complex relationship between climate parameters and sediment composition. We will present the first results in our efforts to develop a reliable climate-proxy tool box for Chew Bahir by deconvolving the relationship between sedimentological and geochemical sediment composition and strongly climate-controlled processes in the basin, such as incongruent weathering, transportation and authigenic mineral alteration. Combining our first results from the long cores with those from a pilot study of short cores taken in 2009/10 along a NW-SE transect of the basin, we have developed a hypothesis linking climate forcing and paleoenvironmental signal-formation processes in the basin. X-ray diffraction analysis of the first sample sets from the long Chew Bahir record reveals similar processes that have been recognized for the uppermost 20 m during the pilot-study of the project: the diagenetic illitization of smectites during episodes of higher alkalinity and salinity in the closed-basin lake induced by a drier climate. The precise time resolution, largely continuous record and (eventually) a detailed understanding of site specific proxy formation

  13. Exploratory borehole Schafisheim: constructional- and environmental aspects, drilling technique

    International Nuclear Information System (INIS)

    1991-04-01

    The Schafisheim borehole was the fourth borehole in the Nagra deep drilling programme in Northern Switzerland. The drilling work began on the 26th of November 1983. The final depth of 2000.6 m was reached on June 29th, 1984 and this was followed by a transition to a test phase which lasted until 25th February 1985. To reach the final depth, the borehole passed through around 1500 m of sediments and 500 m of crystalline rock. More than 50% of the drilled section, including more or less all of the crystalline rock, was cored. This report describes the drilling activities, the construction work relating to the Schafisheim site and the measures taken to ensure environmental protection. The report closes with a chapter dealing with the supervisory commission consisting of members of the federal, cantonal and local authorities and with the report series on the drilling work. (author) figs., tabs

  14. Drilling subsurface wellbores with cutting structures

    Science.gov (United States)

    Mansure, Arthur James; Guimerans, Rosalvina Ramona

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  15. Recommended well drilling and testing program

    International Nuclear Information System (INIS)

    Long, J.; Wilson, C.

    1978-07-01

    A well drilling and testing program is recommended by Lawrence Berkeley Laboratory to identify the hydrology of deep basalts in the Pasco Basin. The ultimate objective of this program is to assist in determining the feasibility of locating a nuclear waste repository on the Hanford Reservation. The recommended program has been staged for maximum effectiveness. In the first stage, six wells have been identified for drilling and testing which, when coupled with existing wells, will provide sufficient data for a preliminary overview of basin hydrology and a preliminary determination of the hydrologic suitability of the deep basalt for a repository site. The rate at which the first stage wells are drilled and tested will depend upon the date at which a preliminary determination of site suitability is required. It was assumed that a preliminary determination of suitability would be required in 1980, in which case all six first stage wells would be drilled in FY 1979. If the results of the first stage analysis are favorable for repository siting, tentative repository sites can be identified and a second stage hydrology program can be implemented to provide the necessary details of the flow system. To accomplish this stage, a number of deep wells would be required at locations both inside and outside the basin, with specific sites to be identified as the work progresses to obtain maximum utility of existing data. A program is recommended for testing in each new well and for completion of testing in each existing well. Recommended tests include borehole geophysics, pressure and permeability testing, geochemical sampling, tracer testing, hydrofracturing and borehole fracture logging. The entire data collection program is oriented toward providing the information required to establish and verify an accurate numerical model of the Pasco Basin

  16. Depths of controlled drillings by means of underground drives; Teufen von gesteuerten Bohrungen mittels Untertageantrieben

    Energy Technology Data Exchange (ETDEWEB)

    Hengevoss, Charly [Weatherford Ukraine LLC, Kiev (Ukraine); Homrighausen, Reiner [BAUER Resources GmbH, Schrobenhausen (Germany)

    2013-03-01

    Today, the most modern directional drilling technology not only is used in case of very deep drillings (deeper or longer than 2,000 meter) by means of deep-level drilling rigs, but also with small, highly mobile universal drilling rigs. Thus, drilling costs are reduced, and unconventional hydrocarbons (methane gas - oil shale and shale gas) deposits are explores economically. Furthermore, known near-surface petroleum deposits in Northern Germany as well as in other parts of the Earth (such as in Romania, the U.S.A. or in Canada) which extraction of petroleum is very low already are interesting economically. Furthermore, today it is possible to investigate with controlled drillings more economically and with more safe sites for a possibly final storage of highly radioactive wastes. Controlled drillings may give an answer to geotechnical questions on highly inaccessible on optimum points for drilling wells in order to plan underground cavities or to investigate tunnel axes geotechnical or hydrological.

  17. Robotic and Human-Tended Collaborative Drilling Automation for Subsurface Exploration

    Science.gov (United States)

    Glass, Brian; Cannon, Howard; Stoker, Carol; Davis, Kiel

    2005-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. Human operators listen and feel drill string vibrations coming from kilometers underground. Abundant mass and energy make it possible for terrestrial drilling to employ brute-force approaches to failure recovery and system performance issues. Space drilling will require intelligent and autonomous systems for robotic exploration and to support human exploration. Eventual in-situ resource utilization will require deep drilling with probable human-tended operation of large-bore drills, but initial lunar subsurface exploration and near-term ISRU will be accomplished with lightweight, rover-deployable or standalone drills capable of penetrating a few tens of meters in depth. These lightweight exploration drills have a direct counterpart in terrestrial prospecting and ore-body location, and will be designed to operate either human-tended or automated. NASA and industry now are acquiring experience in developing and building low-mass automated planetary prototype drills to design and build a pre-flight lunar prototype targeted for 2011-12 flight opportunities. A successful system will include development of drilling hardware, and automated control software to operate it safely and effectively. This includes control of the drilling hardware, state estimation of both the hardware and the lithography being drilled and state of the hole, and potentially planning and scheduling software suitable for uncertain situations such as drilling. Given that Humans on the Moon or Mars are unlikely to be able to spend protracted EVA periods at a drill site, both human-tended and robotic access to planetary subsurfaces will require some degree of standalone, autonomous drilling capability. Human-robotic coordination will be important

  18. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  19. Offset drilling obligations

    International Nuclear Information System (INIS)

    Boyd, K.D.; Kalmakoff, J.J.

    1998-01-01

    A review of the 'offset well' clause found in freehold and Crown natural gas and petroleum leases was presented. The objective was to provide lessors and lessees with a clear understanding of the rights and obligations associated with offset wells. It was noted that offset well obligations vary according to the form of lease used, the type of offsetting well, the regulatory regime and the geophysical characteristics of the producing formation. Some suggestions were made as to how current versions of the offset well clause can be amended to overcome some of the problems encountered in applying the clause to an offset horizontal well that has been drilled on adjoining lands. Failure to resolve the new issues presented by horizontal drilling technology in terms of documentation, which records respective rights and obligations on the basis of generally accepted principles, will result in large numbers of conflicts and unnecessary litigation. 144 refs., 1 fig

  20. Development of a Mine Rescue Drilling System (MRDS)

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gaither, Katherine N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Polsky, Yarom [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knudsen, Steven D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broome, Scott Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Su, Jiann-Cherng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Costin, Laurence S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    Sandia National Laboratories (Sandia) has a long history in developing compact, mobile, very high-speed drilling systems and this technology could be applied to increasing the rate at which boreholes are drilled during a mine accident response. The present study reviews current technical approaches, primarily based on technology developed under other programs, analyzes mine rescue specific requirements to develop a conceptual mine rescue drilling approach, and finally, proposes development of a phased mine rescue drilling system (MRDS) that accomplishes (1) development of rapid drilling MRDS equipment; (2) structuring improved web communication through the Mine Safety & Health Administration (MSHA) web site; (3) development of an improved protocol for employment of existing drilling technology in emergencies; (4) deployment of advanced technologies to complement mine rescue drilling operations during emergency events; and (5) preliminary discussion of potential future technology development of specialized MRDS equipment. This phased approach allows for rapid fielding of a basic system for improved rescue drilling, with the ability to improve the system over time at a reasonable cost.

  1. Rapid Response Fault Drilling Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Demian M. Saffer

    2009-09-01

    Full Text Available New information about large earthquakes can be acquired by drilling into the fault zone quickly following a large seismic event. Specifically, we can learn about the levels of friction and strength of the fault which determine the dynamic rupture, monitor the healing process of the fault, record the stress changes that trigger aftershocks and capture important physical and chemical properties of the fault that control the rupture process. These scientific and associated technical issues were the focus of a three-day workshop on Rapid Response Fault Drilling: Past, Present, and Future, sponsored by the International Continental Scientific Drilling Program (ICDP and the Southern California Earthquake Center (SCEC. The meeting drewtogether forty-four scientists representing ten countries in Tokyo, Japan during November 2008. The group discussed the scientific problems and how they could be addressed through rapid response drilling. Focused talks presented previous work on drilling after large earthquakes and in fault zones in general, as well as the state of the art of experimental techniques and measurement strategies. Detailed discussion weighed the tradeoffs between rapid drilling andthe ability to satisfy a diverse range of scientific objectives. Plausible drilling sites and scenarios were evaluated. This is a shortened summary of the workshop report that discusses key scientific questions, measurement strategies, and recommendations. This report can provide a starting point for quickly mobilizing a drilling program following future large earthquakes. The full report can be seen at http://www.pmc.ucsc.edu/~rapid/.

  2. Metre by metre: Advances in drilling technology are unlocking the doors to stubborn reserves

    Energy Technology Data Exchange (ETDEWEB)

    Jaremko, D.

    2004-03-01

    Advances in drilling technology such as horizontal drilling, controlled pressure drilling, underbalanced or reduced overbalanced drilling, steam assisted cavity drainage, the modified magnetic ranging system and a growing arsenal of on-line controls such as measurement-while drilling (MWD) and logging-while-drilling (LWD) are constantly enlarging the sites to which operators can go, the range of the pay zone that they can conquer, and to design increasingly site-specific approaches to deal with the change of formation characteristics from location to location. This article provides an overview of recent advances, focusing on underbalanced, balanced and reduced overbalanced drilling, and latest versions of data acquisition systems such as MWD and LWD which are capable of operating at twice the speed of conventional systems and provide accurate data even under the extremely difficult conditions found in hostile offshore environment.

  3. Sandia's Geothermal Advanced Drill Rig Instrumentation Assists Critical Oil and Gas Drilling Operation

    International Nuclear Information System (INIS)

    Staller, George E.; Whitlow, Gary

    1999-01-01

    On November 23, 1998, an 18,000-foot-deep wild-cat natural gas well being drilled near Bakersfield, CA blew out and caught fire. All attempts to kill this well failed, and the well continues to flow under limited control, producing large volumes of natural gas, salt water, and some oil. The oil and some of the water is being separated and trucked off site, and the remaining gas and water is being burned at the well head. A relief well is being drilled approximately one-quarter mile away in an attempt to intercept the first well. If the relief well is successful, it will be used to cement in and kill the first well. Epoch Wellsite Services, Inc., the mud-logging company for the initial well and the relief well, requested Sandia's rolling float meter (RFM) for these critical drilling operations. The RFM is being used to measure the mud outflow rate and detect kicks while drilling the relief well, which will undoubtedly encounter reservoir conditions similar to those responsible for the blow out. Based on its prior experience with the RFM, Epoch believes that it is the only instrument capable of providing the level of accuracy and response to mudflow needed to quickly detect kicks and minimize the risk of a blowout on this second critical well. In response to the urgent request from industry, Sandia and Epoch technicians installed the RFM on the relief well return line, and completed its initial calibration. The data from the RFM is displayed in real-time for the driller, the companyman, and the toolpusher via Epochs RIGWATCH Drilling Instmmentation System. The RFM has already detected several small kicks while drilling toward the annulus of the blown out well. A conventional paddle meter is located downstream of the RFM to provide redundancy and the opportunity to compare the two meters in an actual drilling operation, The relief well is nearing 14,000 feet deep, targeting an intercept of the first well near 17,600 feet. The relief well is expected to be completed in

  4. Seismic Prediction While Drilling (SPWD: Looking Ahead of the Drill Bit by Application of Phased Array Technology

    Directory of Open Access Journals (Sweden)

    Marco Groh

    2010-04-01

    Full Text Available Geophysical exploration is indispensable for planning deep drilling. Usually 2D- or 3D-seismics investigations are applied and, depending on the resulting geologic model for the underground, the drill site and drilling path are determined. In recent years the focus of exploration has shifted towards small-scale geological structures such as local layers and faults. Depending on the source frequencies and the target depth, 2D- or 3D-seismics from surface cannot always resolve such structures in particular at larger depths. In general, signal frequencies of about 30–70 Hz are typical for surface seismic methods. The deeper and smaller the sought-after structures are, the worse will be the resolution. Therefore, borehole seismic measurements like Vertical Seismic Profile (VSP or Seismic While Drilling (SWD have been developed (Fig. 1. For the VSP method geophones are normally integrated in the borehole, while the seismicsource generates seismic waves at the surface. The SWD method uses the drill bit as the seismic source. Hence, the quality of the seismic signals is highly dependent on the drilled rock and the type of drill bit, but even well-suited rock conditions and adequate drilling may not provide sufficient data quality.

  5. Handbook of Best Practices for Geothermal Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Finger, John Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-02-01

    This Handbook is a description of the complex process that comprises drilling a geothermal well. The focus of the detailed Chapters covering various aspects of the process (casing design, cementing, logging and instrumentation, etc) is on techniques and hardware that have proven successful in geothermal reservoirs around the world. The Handbook will eventually be linked to the GIA web site, with the hope and expectation that it can be continually updated as new methods are demonstrated or proven.

  6. New Proposed Drilling at Surtsey Volcano, Iceland

    Science.gov (United States)

    Jackson, Marie D.

    2014-12-01

    Surtsey, an isolated oceanic island and a World Heritage Site of the United Nations Educational, Scientific and Cultural Organization, is a uniquely well-documented natural laboratory for investigating processes of rift zone volcanism, hydrothermal alteration of basaltic tephra, and biological colonization and succession in surface and subsurface pyroclastic deposits. Deposits from Surtsey's eruptions from 1963 to 1967 were first explored via a 181-meter hole drilled in 1979 by the U.S. Geological Survey and Icelandic Museum of Natural History.

  7. Importance of drill string assembly swivel in horizontal drilling

    Directory of Open Access Journals (Sweden)

    Edmund Tasak

    2006-10-01

    Full Text Available A part of the drill string – the swivel (rotational connector – accomplishes an important task in the horizontal drilling. Its malfunctioning makes it impossible to draw in ( install large diameter and length pipelines. The causes of the connector break-down during the horizontal drilling are investigated in the paper. The drilling has been made for twenty inches gas pipeline installation during reaming operations. A trouble was encountered making good work conditions of a system consisting of the drilling machine drill string reamer swivel tube shield of Cardan joint and the gas pipeline 500 m long. In this case, the swivel brokes down and the planned operation was not finished. The assessment of improper drilling conditions, selection of operation system components, and drilling parameters and the insufficient technological supervising have created an excessive risk of failure. A proper application of technical analysis would considerably decrease the hazard of failure which cause large costs, delays and decrease of confidence to the drilling contractor and pipeline installation.

  8. Drill string gas data

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, E.R.

    1998-05-12

    Data and supporting documentation were compiled and analyzed for 26 cases of gas grab samples taken during waste-tank core sampling activities between September 1, 1995 and December 31, 1997. These cases were tested against specific criteria to reduce uncertainties associated with in-tank sampling location and conditions. Of the 26 possible cases, 16 qualified as drill-string grab samples most likely to represent recently released waste gases. The data from these 16 ``confirmed`` cases were adjusted to remove non-waste gas contributions from core-sampling activities (argon or nitrogen purge), the atmospheric background, and laboratory sampler preparation (helium). The procedure for subtracting atmospheric, laboratory, and argon purge gases was unambiguous. No reliable method for determining the exact amount of nitrogen purge gas was established. Thus, the final set of ``Adjusted`` drill string gas data for the 6 nitrogen-purged cases had a greater degree of uncertainty than the final results for the 10 argon-purged cases. Including the appropriate amounts of uncertainty, this final set of data was added to the set of high-quality results from the Retained Gas Sampler (RGS), and good agreement was found for the N{sub 2}, H{sub 2}, and N{sub 2}O mole fractions sampled from common tanks. These results indicate that under favorable sampling conditions, Drill-String (DS) grab samples can provide reasonably accurate information about the dominant species of released gas. One conclusion from this set of total gas data is that the distribution of the H{sub 2} mole fractions is bimodal in shape, with an upper bound of 78%.

  9. Drilling string lifter

    Energy Technology Data Exchange (ETDEWEB)

    Shakhobalov, A B; Galiopa, A A; Ponomarev, G V; Ushakov, A M

    1981-04-28

    A drilling string lifter is suggested which includes a rotating tower installed on a fixed base, hydraulic cylinder and pipe-clamping assembly connected through a chain gear to the drive motor. In order to simplify the design of the hydraulic lifter, the drive motor is installed on a fixed base so that the axis of the outlet shaft of the drive motor coincides with the axis of rotation of the tower. In addition, the axis of rotation of the tower is made in the form of a tubular element, and the outlet shaft of the drive motor is ranged between the tubular element.

  10. 30 CFR 57.7052 - Drilling positions.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling positions. 57.7052 Section 57.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7052 Drilling positions. Persons shall not drill...

  11. 30 CFR 56.7052 - Drilling positions.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which hinder...

  12. Control procedure for well drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Bourdon, J C

    1988-09-09

    A control procedure of rotary drilling operations is proposed. It uses the Drill off test. The drill-off test permits to determine the rock drill speed variation as a function of the wright applied on the top of the pipe. We can deduce from that a rock drill wear parameter. The method permits to prevent a rupture and its grave economic consequences.

  13. 30 CFR 33.34 - Drilling test.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes, without...

  14. Drilling history core hole DC-8

    International Nuclear Information System (INIS)

    1978-10-01

    Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored

  15. Drilling history core hole DC-8

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored.

  16. Design and Exploitation Problems of Drill String in Directional Drilling

    Directory of Open Access Journals (Sweden)

    Bednarz Stanislaw

    2004-09-01

    Full Text Available Drill string design for directional drilling requires accounting for a number of factors. First, types and expected values of loads should be determined. Then, elements of the drill string should be so selected as to enable realization of the plan at specified loads. Some of additional factors, e. g. purchase, exploitation cost, geological conditions in the bore-hole, washing of the bore-hole, stability, trajectory, rig parameters, accuracy of gauges, pumps parameters remain in conflict. Drill pipes are made of rolled pipes, upset and welded with tool joints to 9,5 m long; the shorter ones can be made of hot forged rods. Exploitation requirements, being a result of practical experience supported by theoretical and laboratory analyses should be a part of syllabuses of technical staff educational programs. Apart from designing the string, it is also vital to lower the risk of a drilling failure. The significance of these aspects seems to be unquestionable.

  17. A new drilling method-Earthworm-like vibration drilling.

    Science.gov (United States)

    Wang, Peng; Ni, Hongjian; Wang, Ruihe

    2018-01-01

    The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed "earthworm-like drilling" is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a "soft-string" model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling.

  18. Case drilling - an innovative approach to reducing drilling costs

    Energy Technology Data Exchange (ETDEWEB)

    Madell, G.; Tessari, R. M. [Tesco Corp., Calgary, AB (Canada); Warren, T. [Tesco Drilling Technology, Calgary, AB (Canada)

    1999-11-01

    Casing drilling is introduced as a new drilling technique that uses standard oil field casing to simultaneously drill and case the well. The technology includes both rig and downhole equipment, customized to function effectively as an integrated drilling system. This paper describes the testing program designed to identify and overcome technical challenges. Although not fully optimized, it appears that the system is functional. Test results indicate the need for improvements in the pump down cement float equipment and the tools and procedures for drilling up the cement plugs. The pump down latch and retrieval system also needs to be further developed and tested for high angle directional applications. Cost savings in the range of 10 to 15 per cent are expected for trouble-free wells. By eliminating the cost of unscheduled events encountered in troublesome wells, cost savings may reach as high as 30 per cent. 3 refs., 7 figs.

  19. Ocean Drilling: Forty Years of International Collaboration

    Science.gov (United States)

    Smith, Deborah K.; Exon, Neville; Barriga, Fernando J. A. S.; Tatsumi, Yoshiyuki

    2010-10-01

    International cooperation is an essential component of modern scientific research and societal advancement [see Ismail-Zadeh and Beer, 2009], and scientific ocean drilling represents one of Earth science's longest-running and most successful international collaborations. The strength of this collaboration and its continued success result from the realization that scientific ocean drilling provides a unique and powerful tool to study the critical processes of both short-term change and the long-term evolution of Earth systems. A record of Earth's changing tectonics, climate, ocean circulation, and biota is preserved in marine sedimentary deposits and the underlying basement rocks. And because the ocean floor is the natural site for accumulation and preservation of geological materials, it may preserve a continuous record of these processes.

  20. Vadose zone drilling at the NTS

    International Nuclear Information System (INIS)

    Efurd, D.W.

    1994-01-01

    The Yucca Mountain Project has an opportunity to evaluate possible mobilization and transport of radioactive materials away from the storage horizon in the proposed repository. One scenario by which such transport could occur involves water leaving the storage area and carrying radioactive particulates of colloidal size. The colloids could move along the gas-liquid interface in partially filled fractures within the vadose zone. It should be possible to check the reality of this proposed scenario by examining ''anthropogenic analogs'' of the repository. These are sites of nuclear tests conducted in unsaturated tuff at the Nevada Test Site (NTS). We propose to drill under one or more such sites to determine if radionuclides have moved from their original confinement in the puddle- glass at the bottom of the cavity. This document examines the characteristics of an ideal test site for such a study, suggests several possible locations that have some of the desired characteristics, and recommends one of these sites for the proposed drilling

  1. Site investigation SFR. Overview Boremap mapping of drill cores from KFR04, KFR08, KFR09, KFR13, KFR35, KFR36, KFR54, KFR55, KFR7A, KFR7B and KFR7C

    International Nuclear Information System (INIS)

    Petersson, Jesper; Andersson, Ulf B.

    2011-01-01

    This report presents the results from a renewed geological overview mapping of 11 drill cores obtained during the construction of the final repository for low and middle level radioactive operational waste (SFR) during the 80's. Drill cores from KFR04, KFR08, KFR09, KFR13, KFR35, KFR36, KFR54, KFR55, KFR7A, KFR7B and KFR7C, with a total length of 837 m, was selected primarily because of their distinctly crosscutting relationship with inferred deformation zones in the area. The main purpose for this geological mapping is calibration with the original mappings, which in turn aims to facilitate geological single-hole interpretation. The mapping was generally focused on the location and infilling mineralogy of broken and unbroken fractures, as well as crush zones, breccias and sealed networks. Also the overview lithology, alterations and ductile shear zones were documented. All boreholes selected for renewed mapping are located in a ductile, high-strain belt, which defines the northeastern margin of a structurally more homogeneous tectonic lens. The main component of the high-strain belt is felsic to intermediate rocks of inferred volcanic origin. The predominant rock in the selected drill cores is, however, a fine- to finely medium-grained metagranite, which clearly appears to be a high-strain variety of the typically medium-grained metagranite-granodiorite that prevails the tectonic lens. It is obvious that varieties of this high-strain rock previously was inferred to be meta volcanic rocks. Other volumetrically important rock types in the drill cores are pegmatitic granite, finely medium-grained granite and metagranodiorite-tonalite, aplitic metagranite, amphibolites and slightly coarser metagabbros. Virtually all rocks in the borehole have experienced Svecofennian metamorphism under amphibolite facies conditions. Excluding fractures within crush zones and sealed networks, there is a predominance of broken fractures in most of the drill cores. The total fracture

  2. Site investigation SFR. Overview Boremap mapping of drill cores from KFR04, KFR08, KFR09, KFR13, KFR35, KFR36, KFR54, KFR55, KFR7A, KFR7B and KFR7C

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Jesper; Andersson, Ulf B. (Vattenfall Power Consultant AB, Stockholm (Sweden))

    2011-01-15

    This report presents the results from a renewed geological overview mapping of 11 drill cores obtained during the construction of the final repository for low and middle level radioactive operational waste (SFR) during the 80's. Drill cores from KFR04, KFR08, KFR09, KFR13, KFR35, KFR36, KFR54, KFR55, KFR7A, KFR7B and KFR7C, with a total length of 837 m, was selected primarily because of their distinctly crosscutting relationship with inferred deformation zones in the area. The main purpose for this geological mapping is calibration with the original mappings, which in turn aims to facilitate geological single-hole interpretation. The mapping was generally focused on the location and infilling mineralogy of broken and unbroken fractures, as well as crush zones, breccias and sealed networks. Also the overview lithology, alterations and ductile shear zones were documented. All boreholes selected for renewed mapping are located in a ductile, high-strain belt, which defines the northeastern margin of a structurally more homogeneous tectonic lens. The main component of the high-strain belt is felsic to intermediate rocks of inferred volcanic origin. The predominant rock in the selected drill cores is, however, a fine- to finely medium-grained metagranite, which clearly appears to be a high-strain variety of the typically medium-grained metagranite-granodiorite that prevails the tectonic lens. It is obvious that varieties of this high-strain rock previously was inferred to be meta volcanic rocks. Other volumetrically important rock types in the drill cores are pegmatitic granite, finely medium-grained granite and metagranodiorite-tonalite, aplitic metagranite, amphibolites and slightly coarser metagabbros. Virtually all rocks in the borehole have experienced Svecofennian metamorphism under amphibolite facies conditions. Excluding fractures within crush zones and sealed networks, there is a predominance of broken fractures in most of the drill cores. The total

  3. Drilling history core hole DC-4

    International Nuclear Information System (INIS)

    1978-12-01

    Core hole DC-4 was completed at a depth of 3998 feet in December, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Sicsson, Inc. furnished the engineering, daily supervision of the cable tool and core drilling activities, and geological core logging for DC-4. Core hole DC-4 is located on the Hanford Site about 3 miles east of the Yakima Barricade and approximately 103 feet southwest of rotary hole DC-5, which was completed to 3990 feet in February, 1978. Hanford Site coordinates reported for hole DC-4 are north 49,385.62 feet and west 85,207.63 feet, and Washington State coordinates are north 454,468.73 feet and east 2,209,990.87 feet. No elevation survey is available for hole DC-4, but it is approximately 745 feet above mean sea level based upon the survey of hole DC-5, which has a reported elevation of 745.16 feet on the top of the 3-inch flange. The purpose of core hole DC-4 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing, cross-hole seismic shear, and pressure wave velocity studies with rotary hole DC-5. Hole DC-4 was drilled through the overburden into basalt bedrock by cable tool methods (0-623 feet) and continuously cored through the final interval (623 to 3998 feet).Core recovery was 95.8 percent of the total footage cored

  4. Reinforcement and Drill by Microcomputer.

    Science.gov (United States)

    Balajthy, Ernest

    1984-01-01

    Points out why drill work has a role in the language arts classroom, explores the possibilities of using a microcomputer to give children drill work, and discusses the characteristics of a good software program, along with faults found in many software programs. (FL)

  5. High cost for drilling ships

    International Nuclear Information System (INIS)

    Hooghiemstra, J.

    2007-01-01

    Prices for the rent of a drilling ship are very high. Per day the rent is 1% of the price for building such a ship, and those prices have risen as well. Still, it is attractive for oil companies to rent a drilling ship [nl

  6. The oil and gas industry in Alberta: drilling and production

    International Nuclear Information System (INIS)

    Anon

    2001-11-01

    This document outlined the impacts of drilling and production on the forest structure and integrity. The cumulative impact of all 11,898 wells drilled in 2000 in Alberta, coupled with previously drilled wells that is of primary concern. It is estimated that an 886 square kilometres area of the boreal forest has been cleared as a result of well drilling, based on an assumption of 1 hectare cleared per well site. No regulations govern the reforestation of the areas once the activities have been terminated, and nothing to regulate the cumulative road densities or pipeline densities. A progressive loss and fragmentation of habitat, increased access, and damage to aquatic systems are all consequences of the drilling and production activities. These activities also lead to the contamination of soil and water. Reductions in air quality are associated with drilling and production activities, mainly through the release of various gases in the atmosphere, such as sulphur dioxide and nitrogen dioxide, both responsible for acid rain deposition. Explicit limits on cumulative densities of well sites, pipelines and access roads are part of best practices that can result in a minimization of the negative environmental impacts. Integrated planning with the forest industry, the development and implementation of new operating practices, and a reduction in the pace of development would also go a long way toward the reduction of the ecological footprint

  7. Chesapeake Bay Impact Structure Deep Drilling Project Completes Coring

    Directory of Open Access Journals (Sweden)

    the Scientific Staff of the Chesapeake Bay Impact Structure Deep Drilling Project

    2006-09-01

    Full Text Available The Chesapeake Bay Impact Structure Deep Drilling Project (CBIS Project completed its coring operations during September–December 2005 and April–May 2006. Cores were collected continuously to a total depth of 1766 m. The recovered section consists of 1322 m of impactites beneath 444 m of post-impact continental shelf sediments.The CBIS Project is a joint venture of the International Continental Scientifi c Drilling Program (ICDP and the U.S. Geological Survey (USGS. Project activities began with a planning workshop in September 2003 attended by sixtythree scientists from ten countries. Field operations began with site preparation in July 2005, and coring began in September 2005. Drilling, Observation and Sampling of theEarth’s Continental Crust (DOSECC was the general contractor for the drilling operations throughout 2005.

  8. Ultrasonic rotary-hammer drill

    Science.gov (United States)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Kassab, Steve (Inventor)

    2010-01-01

    A mechanism for drilling or coring by a combination of sonic hammering and rotation. The drill includes a hammering section with a set of preload weights mounted atop a hammering actuator and an axial passage through the hammering section. In addition, a rotary section includes a motor coupled to a drive shaft that traverses the axial passage through the hammering section. A drill bit is coupled to the drive shaft for drilling by a combination of sonic hammering and rotation. The drill bit includes a fluted shaft leading to a distal crown cutter with teeth. The bit penetrates sampled media by repeated hammering action. In addition, the bit is rotated. As it rotates the fluted bit carries powdered cuttings helically upward along the side of the bit to the surface.

  9. The Marskhod Egyptian Drill Project

    Science.gov (United States)

    Shaltout, M. A. M.

    We describe a possible participation of Egypt in a future Mars rover Mission. It was suggested that Egypt participate through involvement in the design, building and testing of a drill to obtain sub-surface samples. The Space Research Institute of the Russian Academy of Sciences (IKI), formally invited the Egyptian Ministry of Scientific Research to study the concept for potential use on the Russian Mars 2001 Mission. As one of the objectives of the Marskhod mission was the analysis of sub-surface samples, a drilling mechanism in the payload would be essential. The Egyptian expertise in drill development is associated with the archaeological exploration of the Pyramids. A sophisticated drilling system perforated limestone to a depth of 2 m without the use of lubricants or cooling fluids that might have contaminated the Pit's environment. This experience could have been applied to a drill development Mars 2001 mission, which was unfortunately canceled due to economic problems.

  10. Drilling waste makes concrete

    International Nuclear Information System (INIS)

    Rosfjord, A.

    1993-01-01

    The article deals with a method of drilling waste reclamation by utilizing the converted oil-containing cuttings from the North Sea in the concrete production in Norway. The oil content is to be removed in an incineration process by heating the cuttings to about 800 o C. The output capacity from the exhaust gas water cooling system is 7500 kW/hour, and is to be used in different industrial heating processes. The remaining content of pollutants in the cleaned exhaust gas outlet corresponds to the required limits with the exception of SO 2 and HCl. In addition, an exhaust gas washing plant is to be installed in the near future designed for the further reduction of pollutants by 90%. The converted raw materials are used as a supplement for lessening the demand of sand and cement in the production of concrete-made pipes. 1 fig

  11. Hospital preparation and drills

    International Nuclear Information System (INIS)

    Marshall, J.C.; Mettler, F.A. Jr.

    1990-01-01

    The authors discuss how effective management of radiation accidents requires a large amount of preparation and thought. In addition, training of the staff is absolutely essential. This is best accomplished through annual drills, but also may be accomplished through the use of videotapes. The critical points to be remembered in the handling of such accidents and in writing the procedures is that treatment of non-radiation-related injuries and medical stabilization are paramount. The second point is that it is important to be able to distinguish between a patient who has been irradiated from an external radiation source and one who is contaminated with radioactive materials. The handling of these two types of accidents is entirely different and this distinction needs to be made early. All of the items outlined in this chapter concern the care of the severely injured and radioactively contaminated

  12. Characterization of Under-Building Contamination at Rocky Flats Implementing Environmental-Measurement While Drilling Process with Horizontal Directional Drilling

    International Nuclear Information System (INIS)

    WILLIAMS, CECELIA V.; LOCKWOOD, GRANT J.; NORMANN, RANDY A.; LINDSAY, THOMAS

    2001-01-01

    Characterization is required on thirty-one buildings at Rocky Flats Environmental Technology Site (RFETS or the Site) with known or suspected under building contamination. The Site has teamed with Sandia National Laboratory (SNL) to deploy Environmental Measure-While-Drilling (EMWD) in conjunction with horizontal directional drilling (HDD) to characterize under building contamination and to evaluate the performance and applicability for future characterization efforts. The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental drill bit data during drilling operations. The project investigated two locations, Building 886 and Building 123. Building 886 is currently undergoing D and D activities. Building 123 was demolished in 1998; however, the slab is present with under building process waste lines and utilities. This report presents the results of the EMWD Gamma Ray Spectrometer logging of boreholes at these two sites. No gamma emitting contamination was detected at either location.(author)

  13. Microgravity Drill and Anchor System

    Science.gov (United States)

    Parness, Aaron; Frost, Matthew A.; King, Jonathan P.

    2013-01-01

    This work is a method to drill into a rock surface regardless of the gravitational field or orientation. The required weight-on-bit (WOB) is supplied by a self-contained anchoring mechanism. The system includes a rotary percussive coring drill, forming a complete sampling instrument usable by robot or human. This method of in situ sample acquisition using micro - spine anchoring technology enables several NASA mission concepts not currently possible with existing technology, including sampling from consolidated rock on asteroids, providing a bolt network for astronauts visiting a near-Earth asteroid, and sampling from the ceilings or vertical walls of lava tubes and cliff faces on Mars. One of the most fundamental parameters of drilling is the WOB; essentially, the load applied to the bit that allows it to cut, creating a reaction force normal to the surface. In every drilling application, there is a minimum WOB that must be maintained for the system to function properly. In microgravity (asteroids and comets), even a small WOB could not be supported conventionally by the weight of the robot or astronaut. An anchoring mechanism would be needed to resist the reactions, or the robot or astronaut would push themselves off the surface and into space. The ability of the system to anchor itself to a surface creates potential applications that reach beyond use in low gravity. The use of these anchoring mechanisms as end effectors on climbing robots has the potential of vastly expanding the scope of what is considered accessible terrain. Further, because the drill is supported by its own anchor rather than by a robotic arm, the workspace is not constrained by the reach of such an arm. Yet, if the drill is on a robotic arm, it has the benefit of not reflecting the forces of drilling back to the arm s joints. Combining the drill with the anchoring feet will create a highly mobile, highly stable, and highly reliable system. The drilling system s anchor uses hundreds of

  14. Preliminary Site Characterization Report, Rulsion Site, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report is a summary of environmental information gathered during a review of the documents pertaining to Project Rulison and interviews with personnel who worked on the project. Project Rulison was part of Operation Plowshare (a program designed to explore peaceful uses for nuclear devices). The project consisted of detonating a 43-kiloton nuclear device on September 10, 1969, in western Colorado to stimulate natural gas production. Following the detonation, a reentry well was drilled and several gas production tests were conducted. The reentry well was shut-in after the last gas production test and was held in standby condition until the general cleanup was undertaken in 1972. A final cleanup was conducted after the emplacement and testing wells were plugged in 1976. However, some surface radiologic contamination resulted from decontamination of the drilling equipment and fallout from the gas flaring during drilling operations. With the exception of the drilling effluent pond, all surface contamination at the Rulison Site was removed during the cleanup operations. All mudpits and other excavations were backfilled, and both upper and lower drilling pads were leveled and dressed. This report provides information regarding known or suspected areas of contamination, previous cleanup activities, analytical results, a review of the regulatory status, the site`s physical environment, and future recommendations for Project Ruhson. Based on this research, several potential areas of contamination have been identified. These include the drilling effluent pond and mudpits used during drilling operations. In addition, contamination could migrate in the gas horizon.

  15. Drilling miniature holes, Part III

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1978-07-01

    Miniature components for precision electromechanical mechanisms such as switches, timers, and actuators typically require a number of small holes. Because of the precision required, the workpiece materials, and the geometry of the parts, most of these holes must be produced by conventional drilling techniques. The use of such techniques is tedious and often requires considerable trial and error to prevent drill breakage, minimize hole mislocation and variations in hole diameter. This study of eight commercial drill designs revealed that printed circuit board drills produced better locational and size repeatability than did other drills when centerdrilling was not used. Boring holes 1 mm in dia, or less, as a general rule did not improve hole location in brass or stainless steel. Hole locations of patterns of 0.66-mm holes can be maintained within 25.4-..mu..m diametral positional tolerance if setup misalignments can be eliminated. Size tolerances of +- 3.8 ..mu..m can be maintained under some conditions when drilling flat plates. While these levels of precision are possible with existing off-the-shelf drills, they may not be practical in many cases.

  16. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results

    Energy Technology Data Exchange (ETDEWEB)

    Ross, H.P.; Forsgren, C.K. (eds.)

    1992-04-01

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  17. A new drilling method—Earthworm-like vibration drilling

    Science.gov (United States)

    Wang, Peng; Wang, Ruihe

    2018-01-01

    The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed “earthworm-like drilling” is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a “soft-string” model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling. PMID:29641615

  18. Inverted emulsion drilling fluid

    Energy Technology Data Exchange (ETDEWEB)

    Ana, I; Astanei, E; Mireanu, G; Orosz, M; Popescu, F; Vasile, I

    1979-07-28

    The subject of the invention is the method of obtaining inverted drilling fluid which is required during stripping of a productive bed and ending of a well where difficulties develop during drilling of the argillaceous rock. Example: in a reservoir with capacity 30 m/sup 3/, 10 m/sup 3/ of diesel fuel are added. A total of 1000 kg of emulsifier are added to the diesel fuel consisting of: 85 mass% of a mixture of sodium and potassium salts of fatty acids, residues of fatty acids or naphthene acids with high molecular weight taken in proportion of 10:90; 5 mass% of a mixture of polymers with hydrophilic-hydrophobic properties obtained by mixing 75 mass% of polyethylene oxide with molecular weight 10,000 and 25 mass% of propylene oxide with molecular weight 15,000, and 10 mass% of salt on alkaline earth metal (preferably calcium chloride). The mixture is mixed into complete dissolving. Then 1200 kg of filtering accelerator are added obtained from concentrated sulfuric acid serving for sulfur oxidation, asphalt substance with softening temperature 85-104/sup 0/C and fatty acids C/sub 10/-C/sub 20/ taken in a proportion of 23.70 and 7 mass% The mixture obtained in this manner is neutralized by adding calcium hydroxide and equal quantities of alumina and activated bentonite clay in a concentration of 1-10 mass%, more preferably 5 mass% in relation to the initial mixture. The obtained mass is mixed until complete dispersion, after which 200 kg of organophilic clay are added obtained from bentonite of the type montmorillonite of sodium by processing with derivate obtained from amine of the type of the quaternary base of ammonium salt, and agent of hydrophobization of the type of fatty alcohols, fatty acids, nonion surfactants of the block-polymer type. After complete dispersion of the organophilic clay, 100 kg of stabilizer of emulsion of the surfactant type was added with molecular weight of 250010,000, more preferably 5000, in concentration of 0.1-5.0 mass%, more

  19. A drilling rig tower

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, A.A.; Barashkov, V.A.; Bulgakov, E.S.; Kuldoshin, I.P.; Lebedev, A.I.; Papin, N.M.; Rebrik, B.M.; Sirotkin, N.V.

    1981-05-23

    Presentation is made of a drilling rig tower, comprising a gantry, a support shaft with a bracing strut and drawings out, and turn buckles. In order to increase the reliability of the tower in operation, to decrease the over all dimensions in a transport position, and to decrease the amount of time taken to transfer the tower from an operational position into a transportable one, and vice versa, the tower is equipped with a rotary frame made in the form of a triangular prism, whose lateral edges are connected by hinges: the first one with the lower part of the support shaft, the second with the gantry, and the third one to the upper part of the support shaft by means of the drawings out. The large boundary of the rotary frame is connected by a hinge to the support shaft by means of a bracing strut, which is equipped with a slide block connected to it by a hinge, and the rotary frame has a guide for the slide block reinforced to it on the large boundary. Besides this, the lateral edge of the rotary frame is connected to the gantry by means of turn buckles.

  20. Core drilling of short drillholes at Olkiluoto in Eurajoki 2006

    International Nuclear Information System (INIS)

    Rautio, T.

    2007-05-01

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled six short drillholes with a diameter of 75.7 mm at Olkiluoto in July - August 2006. The identification numbers of the drillholes are OL-PP51 - OL-PP56. The deviation of the drillholes was measured with the deviation measuring instruments Reflex EMS. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. The volume of the drilling water was recorded. Sodium fluorescein was used as a label agent in the drilling water. The total volume of the used drilling and flushing water were 37 m 3 . (orig.)

  1. Drilling a borehole for LEP

    CERN Multimedia

    1981-01-01

    Boreholes were drilled along the earlier proposed line of the LEP tunnel under the Jura to find out the conditions likely to be encountered during the construction of the LEP tunnel (Annual Report 1981 p. 106, Fig. 10).

  2. Computed tomography of drill cores

    International Nuclear Information System (INIS)

    Taylor, T.

    1985-08-01

    A preliminary computed tomography evaluation of drill cores of granite and sandstone has generated geologically significant data. Density variations as small as 4 percent and fractures as narrow as 0.1 mm were easily detected

  3. Geothermal drilling in Cerro Prieto

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez A., Bernardo

    1982-08-10

    The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of control have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.

  4. Advanced Mud System for Microhole Coiled Tubing Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Oglesby

    2008-12-01

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  5. Synthesis of engineering designs of drilling facilities

    Science.gov (United States)

    Porozhsky, K.

    2018-03-01

    The article sets forth key principles of engineering of drilling equipment based on successive analysis of the goals of the production method, technologies of its implementation and conditions of mineral mining using a new approach to systematization of drilling methods. Potential advancement in the technologies and equipment of drilling is illustrated in terms of oil-well drilling.

  6. Atacama Rover Astrobiology Drilling Studies: Roving to Find Subsurface Preserved Biomarkers

    Science.gov (United States)

    Glass, B.; Davila, A.; Parro, V.; Quinn, R.; Willis, P.; Brinckerhoff, W.; DiRuggiero, J.; Williams, M.; Bergman, D.; Stoker, C.

    2016-05-01

    The ARADS project is a NASA PSTAR that will drill into a Mars analog site in search of biomarkers. Leading to a field test of an integrated rover-drill system with four prototype in-situ instruments for biomarker detection and analysis.

  7. Testing sequence stratigraphic models by drilling Miocene foresets on the New Jersey shallow shelf

    DEFF Research Database (Denmark)

    Miller, Kenneth G.; Mountain, Gregory S.; Browning, James V.

    2013-01-01

    continental shelf (Integrated Ocean Drilling Program Expedition 313, Sites M27-M29). We recognize stratal surfaces and systems tracts by integrating seismic stratigraphy, litho-facies successions, gamma logs, and foraminiferal paleodepth trends. Our interpretations of systems tracts, particularly......) and coarsening- and shallowing-upward highstand systems tracts (HST). Drilling through the foresets yields thin (

  8. Sublethal Toxic effects of spent Oil Based Drilling Mud and Cuttings ...

    African Journals Online (AJOL)

    Sublethal toxic effects of spent oil based drilling mud collected from an abandoned oil drilling site in Mpanak, Akwa Ibom State, Nigeria were assessed in the earthworm Aporrectodea longa. The test annelid was exposed to sub-lethal Concentration of 0ppm SPP; 62,500ppm SPP; 125, 000ppm SPP; 250,000ppm SPP and ...

  9. Device for storing drilling pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kolasinski, A; Wedrychowicz, J

    1981-02-16

    The patented device contains a profiled arch 14 (see figure) installed in the upper part of the drilling rig 15. On base 16 of the drilling unit, there is bin 1 which is installed on frame 2 to which it is hinge connected with the help of pin 3. On the other side, the bin rests on rollers 4 which are attached to lever 5 of lifting mechanism 6. Bin 1 is a series of parallel-arranged guides rigidly connected by transverse beams. Frame 2 contains the collapsible support 10. During operation of the device, the hydraulic lifter 6 with the help of frame 5 and rollers 4 lifts bin 1 with drilling pipes installed on it, giving it an angle of 4/sup 0/ in relation to the plane of frame 2. The collapsible support 10 is installed in a vertical position and holds bin 1. This position of bin 1 is the most suitable for movement of the vertically installed drilling pipes on the guides. The distinguishing feature of the patented device is the possibility of convenient arrangement of the drilling pipes on the guides of bin 1. Because of this, the time spent on lifting and lowering the drill apparatus is considerably reduced.

  10. Application of the Drilling Impact Study (DIS) to Forsmark groundwaters

    International Nuclear Information System (INIS)

    Gascoyne, Mel; Gurban, Ioana

    2008-01-01

    Characterisation of a geological formation as a repository for nuclear fuel waste requires deep drilling into the bedrock to gain an understanding of the geological structure, rock types, groundwater flow and the chemical composition of groundwater and the adjacent rock. The methods of characterisation from a hydrogeochemical point of view, might be affected by the various drilling activities and techniques for determining groundwater composition have been employed so that the composition can be corrected for these activities. SKB has developed and supported the Drilling Impact Study (DIS) project in which a tracer is used as an indicator of contamination to attempt to correct the groundwater composition for dilution or contamination by surface waters. The project began about five years ago with the intention of developing a routine method for determining the extent of contamination of borehole groundwater by drilling water. The main objectives of this work were: 1. Determine the extent of drilling water contamination in permeable zones in a test borehole on the Forsmark site. 2. Correct measured chemical compositions of the groundwaters based on contamination results. 3. Provide a workable methodology for routine correction of groundwater composition. 4. Apply the modified DIS model to suitable borehole zones at the Forsmark site in a systematic fashion 5. Determine uncertainties in DIS modelling. A memorandum was prepared by describing the characteristics of borehole KFM06 and its drilling history. Estimates were made of the amount of drilling water in permeable zones in the borehole and the various approaches to applying results of DIS were described and recommendations made, with an example calculation

  11. Drilling a better pair : new technologies in SAGD directional drilling

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, C.; Richter, D. [Statoil Canada Ltd., Calgary, AB (Canada); Person, J.; Tilley, J.; Bittar, M. [Halliburton Energy Services, Calgary, AB (Canada)

    2010-07-01

    The Leismer Demonstration Project (LDP) is the first of 8 proposed major steam assisted gravity drainage (SAGD) projects for Statoil's Kai Kos Dehseh (KKD) asset in the Athabasca oil sands deposit. The bitumen resources are expected to produce approximately 2.2 billion barrels of oil over approximately 35 years with a peak production of 220,000 bbl/day. To date, 23 well pairs have been drilled on 4 drilling pads. The precise placement of well pairs is among the most important factors in a successful SAGD drilling program. The producer well must be placed in relation to the reservoir boundaries. It must also be accurately twinned with the injector well. A strong focus on technological innovation is needed in order to deliver on these high expectations in unconsolidated formations, such as the McMurray oil sands. Lateral SAGD pairs are often drilled with conventional steerable mud motors and logging-while-drilling (LWD) resistivity measurements, but this combination imposes certain limitations in terms of wellbore quality and placement. Several industry firsts were successfully implemented at the Statoil LDP, including a combination of the newest and most cutting-edge directional, measurement, and LWD technology. The keystone of these industry firsts was the use of a soft formation modified, point-the-bit rotary steerable system (RSS), used on 20 horizontal wells. The RRS was combined with an ultra deep azimuthal resistivity sensor to provide precise geosteering along the bottom bed boundary in the producer wells, resulting in improved reservoir capture and reservoir characterization. This paper described the new drilling system and its impact on the progressive future of directional drilling in SAGD. 8 refs., 1 tab., 22 figs.

  12. 500.000 years of environmental history in Eastern Anatolia: The PALEOVAN drilling project

    DEFF Research Database (Denmark)

    Litt, Thomas; Anselmetti, Flavio; Baumgarten, Henrike

    2012-01-01

    International Continental Scientific Drilling Program (ICDP) drilled a complete succession of the lacustrine sediment sequence deposited during the last ~500,000 years in Lake Van, Eastern Anatolia (Turkey). Based on a detailed seismic site survey, two sites at a water depth of up to 360 m were...... drilled in summer 2010, and cores were retrieved from sub-lake-floor depths of 140 m (Northern Basin) and 220 m (Ahlat Ridge). To obtain a complete sedimentary section, the two sites were multiple-cored in order to investigate the paleoclimate history of a sensitive semi-arid region between the Black...

  13. Measurement of temperature induced in bone during drilling in minimally invasive foot surgery.

    Science.gov (United States)

    Omar, Noor Azzizah; McKinley, John C

    2018-02-19

    There has been growing interest in minimally invasive foot surgery due to the benefits it delivers in post-operative outcomes in comparison to conventional open methods of surgery. One of the major factors determining the protocol in minimally invasive surgery is to prevent iatrogenic thermal osteonecrosis. The aim of the study is to look at various drilling parameters in a minimally invasive surgery setting that would reduce the risk of iatrogenic thermal osteonecrosis. Sixteen fresh-frozen tarsal bones and two metatarsal bones were retrieved from three individuals and drilled using various settings. The parameters considered were drilling speed, drill diameter, and inter-individual cortical variability. Temperature measurements of heat generated at the drilling site were collected using two methods; thermocouple probe and infrared thermography. The data obtained were quantitatively analysed. There was a significant difference in the temperatures generated with different drilling speeds (pdrilled using different drill diameters. Thermocouple showed significantly more sensitive tool in measuring temperature compared to infrared thermography. Drilling at an optimal speed significantly reduced the risk of iatrogenic thermal osteonecrosis by maintaining temperature below the threshold level. Although different drilling diameters did not produce significant differences in temperature generation, there is a need for further study on the mechanical impact of using different drill diameters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Characterization of drilling waste from shale gas exploration in Central and Eastern Poland.

    Science.gov (United States)

    Mikos-Szymańska, Marzena; Rusek, Piotr; Borowik, Krzysztof; Rolewicz, Maciej; Bogusz, Paulina; Gluzińska, Joanna

    2018-05-28

    The purpose of this research was to determine and evaluate the chemical properties of drilling waste from five well sites in Central and Eastern Poland. It was found that spent drilling fluids can contain high values of nickel and mercury (270 and 8.77 mg kg -1 , respectively) and can exceed the maximum permissible limits recommended by the EC regulations for safety of soils (75 mg kg -1 for nickel and 1.5 mg kg -1 for mercury). The heavy metal concentrations in the studied drill cuttings did not exceed the maximum permissible limits recommended by the EC regulation. Drilling wastes contain macroelements (e.g., calcium, magnesium, and potassium) as well as trace elements (e.g., copper, iron, zinc, and manganese) that are essential for the plant growth. It was stated that water extracts of drilling fluids and drill cuttings, according to anions presence, had not any specific constituents of concern based on FAO irrigation guidelines, the USEPA WQC, and toxicity values. X-ray diffraction analysis was used to understand the structure and texture of waste drilling fluid solids and drill cuttings. Analysis of the mineralogical character of drilling fluid solids revealed that they contained calcite, quartz, muscovite, sylvite, barite, dolomite, and orthoclase. Drill cuttings contained calcite quartz, muscovite, barite, dolomite, and barium chloride.

  15. Rotary steerable motor system for underground drilling

    Science.gov (United States)

    Turner, William E [Durham, CT; Perry, Carl A [Middletown, CT; Wassell, Mark E [Kingwood, TX; Barbely, Jason R [Middletown, CT; Burgess, Daniel E [Middletown, CT; Cobern, Martin E [Cheshire, CT

    2008-06-24

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  16. Diagnostic System of Drill Condition in Laminated Chipboard Drilling Process

    Directory of Open Access Journals (Sweden)

    Swiderski Bartosz

    2017-01-01

    Full Text Available The paper presents an on-line automatic system for recognition of the drill condition in a laminated chipboard drilling process. Two states of the drill are considered: the sharp enough (still able to drill holes acceptable for processing quality and worn out (excessive drill wear, not satisfactory from the quality point of view of the process. The automatic system requires defining the diagnostic features, which are used as the input attributes to the classifier. The features have been generated from 5 registered signals: feed force, cutting torque, noise, vibration and acoustic emission. The statistical parameters defined on the basis of the auto regression model of these signals have been used as the diagnostic features. The sequential step-wise feature selection is applied for choosing the most discriminative set of features. The final step of recognition is done by support vector machine classifier working in leave one out mode. The results of numerical experiments have confirmed good quality of the proposed diagnostic system.

  17. Western Canada drilling cycle optimization

    International Nuclear Information System (INIS)

    2003-06-01

    The oil and gas industry in western Canada operates in annual and seasonal cycles with peak activity periods that require a large skilled labour force for short periods of time. This study examines why seismic and drilling activity is greatest during the first quarter of the year instead of being distributed evenly over the year. The objective of the study was to provide recommendations that would help optimize the industry cycle. The study includes an analysis of historical trends that validate the industry first quarter peaking activity. It also includes interviews with 36 industry representatives and provides insight and validation of trends. The final phase of the report includes recommendations that both industry and governments may wish to implement. The study includes financial, operational and environmental considerations. It was shown that natural gas directed drilling activity is strongly correlated with changes in natural gas prices. In the case of oil drilling activity, peak activity responds to oil prices from the prior quarter. In general, drilling and seismic costs are higher in the winter months because of increased demand for equipment and services. In addition winter drilling operations require a diesel fired boiler to generate steam. 36 refs., 2 tabs., 52 figs

  18. Statistical guidelines for planning a limited drilling program

    International Nuclear Information System (INIS)

    Campbell, K.

    1988-06-01

    Site characterization for potential nuclear waste repository at Yucca Mountain in south-central Nevada will include the construction of a limited number of new drill holes to depths below the repository horizon from which information about the properties of the surrounding and underlying tuffs can be obtained. Quantitative techniques to estimate the amount of information to be gained from a proposed drilling plan are developed. These estimates are to be compared with economic costs and with risk analysis requirements for the potential repository. In some cases the existing data, although extremely limited, are sufficient for preliminary application of these methods. 33 refs., 19 figs., 3 tabs

  19. Permeability of granular beds emplaced in vertical drill holes

    International Nuclear Information System (INIS)

    Griffiths, S.K.; Morrison, F.A. Jr.

    1979-01-01

    To determine the permeabilities of granular materials emplaced in vertical drill holes used for underground nuclear tests, an experiment at the USDOE Nevada Test Site (NTS) was conducted. As the hole is being filled, falling material increases pressure above and within the granular beds beneath. When the filling operation starts or stops, a transient pressure response occurs within the beds; measurements of this response in beds of various compositions were made. The permeabilities after emplacement were found by matching analytical predictions of the response to these data. This information is useful in assuring the containment of nuclear tests conducted in such drill holes

  20. Modeling of hydrologic perturbations during reverse circulation drilling: 1, System and model description

    International Nuclear Information System (INIS)

    Sagar, B.; Connelly, M.P.; Long, P.E.

    1988-05-01

    The Hanford site located in southeastern Washington state was under consideration for the location of a high-level nuclear waste repository. As a part of site investigation, a borehole of depth > 3000 ft was drilled using reverse circulation drilling technique with water as the drilling fluid. After completion of drilling, seven piezometers were to be installed in the borehole with their lower ends at different depths to measure equilibrated hydraulic heads and aquifer response during future pumping tests. The hydrologic perturbations caused during the drilling, clean up, and piezometer installation process were of primary concern. A numerical model was used to predict these perturbations and determine efficiency of borehole cleanup. It was found that the boundary condition at the borehole was the most difficult to model. 9 refs., 5 figs

  1. Review of casing while drilling technology

    Directory of Open Access Journals (Sweden)

    Pavković Bojan

    2016-01-01

    Full Text Available Conventional drilling methods have been plagued with huge operational and financial challenges, such as cost of purchasing, inspecting, handling, transporting the drill equipment and most importantly, tripping in-and-out of the drill string whenever the Bottom Hole Assembly (BHA needs a replacement, needs of wiper trip or when total depth is reached. The tripping in-and-out of the drill string not only contributes to Non Productive Time (NPT but also leads to well control difficulties including wellbore instability and lost circulation. All this has led Oil and Gas industry, as well as any other engineering industry, to seek for new ways and methods in order to reduce these problems. Thanks to the advances in technical solutions and constant improvements of conventional drilling methods, a new drilling method - casing while drilling has been developed. Casing Drilling encompasses the process of simultaneously drilling and casing a well, using the active casing and thus optimizes the production. This paper presents a review of casing while drilling method (CwD and its practical usage in drilling wells. The comparison of conventional drilling method and casing while drilling is also presented. The CwD method achieves significantly better results than conventional drilling method.

  2. Geological-geotechnical investigation for large horizontal directional drilling

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Pedro R.R.; Rocha, Ronaldo; Avesani Neto, Jose Orlando; Placido, Rafael R.; Ignatius, Scandar G.; Galli, Vicente Luiz [Instituto de Pesquisas Tecnologicas do Estado de Sao Paulo (IPT), Sao Paulo, SP (Brazil); Amaral, Claudio S. [Centro de Pesquisa Leopoldo A. Miguez de Melo (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Use of Horizontal Directional Drilling - HDD for large diameter (OD>20 inches) pipeline installation started in the second half of the seventies. Since then the method became the preferred alternative for situations in which it is necessary an underground pipeline but there are concerns about digging trenches. Crossings of roadways, water bodies and environmental sensitive areas are typical examples of its application. Technical and economic feasibility of HDD depends significantly on the properties of the materials that will be drilled. Lack of information about these materials can lead to several problems as: schedule delays, cost elevation, pipeline damage, unforeseen environmental impacts and even the failure of the entire operation. Ground investigation campaigns for HDD should define a consistent geological-geotechnical model, which must include determination of behaviour parameters for soil and rock masses that will be drilled. Thus it is proposed an investigation in tree stages: review of available geological-geotechnical information, site reconnaissance, and field survey. (author)

  3. Method for monitoring drilling materials for gamma ray activity

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Arnold, D.M.; Schultz, W.E.

    1985-01-01

    In the preferred and illustrated embodiment taught herein, method steps for monitoring of raw materials to be used in drilling mud are disclosed. The materials are monitored for radioactivity. Procedures for taking such measurements are disclosed, and the extent of gamma radioactivity in the raw materials used in drilling mud is, determined. This is correlated to the increased radiation attributable to mud made from these materials and the effect the mud would have on gamma ray measuring logs. An alternate procedure for testing drilling mud, typically at the well site, is also disclosed. The method detects mud radioactivity from any additives including barite, potassium chloride, well cuttings or others. Excessive background levels due to mud gamma radioactivity in a well may very well mask the data obtained by various logging procedures dependent on gamma radiation. Procedures are also described for either rejecting mud which is too radioactive or correcting the log measurements for mud effects

  4. Addressing submarine geohazards through scientific drilling

    Science.gov (United States)

    Camerlenghi, A.

    2009-04-01

    Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the

  5. Active Suppression of Drilling System Vibrations For Deep Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  6. Visual effects of test drilling for natural gas in the Waddenzee and the North Sea coastal area

    International Nuclear Information System (INIS)

    Dijkstra, H.

    1996-01-01

    The potential hindrance of the view, caused by offshore platforms, has been investigated as part of the environmental impact reports for test drilling for natural gas in the North Sea area, on the island Ameland and in the Wadden Sea. The hindrance is determined by calculating the weighed numbers of inhabitants and vacationers within 10 km of 26 drilling sites, divided over 12 drilling areas. For each drilling area the preferred location was determined. The hindrance of the view is the lowest when drilling tests are carried out in the winter. Also digital photo paste-ups were made by which it can be shown how drilling installations look like in a landscape. Finally, measures are given by which the visual effects of drilling installations and burn off can be reduced. 34 figs., 33 tabs., 2 appendices, 35 refs

  7. Semantic Approaches Applied to Scientific Ocean Drilling Data

    Science.gov (United States)

    Fils, D.; Jenkins, C. J.; Arko, R. A.

    2012-12-01

    The application of Linked Open Data methods to 40 years of data from scientific ocean drilling is providing users with several new methods for rich-content data search and discovery. Data from the Deep Sea Drilling Project (DSDP), Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP) have been translated and placed in RDF triple stores to provide access via SPARQL, linked open data patterns, and by embedded structured data through schema.org / RDFa. Existing search services have been re-encoded in this environment which allows the new and established architectures to be contrasted. Vocabularies including computed semantic relations between concepts, allow separate but related data sets to be connected on their concepts and resources even when they are expressed somewhat differently. Scientific ocean drilling produces a wide range of data types and data sets: borehole logging file-based data, images, measurements, visual observations and the physical sample data. The steps involved in connecting these data to concepts using vocabularies will be presented, including the connection of data sets through Vocabulary of Interlinked Datasets (VoID) and open entity collections such as Freebase and dbPedia. Demonstrated examples will include: (i) using RDF Schema for inferencing and in federated searches across NGDC and IODP data, (ii) using structured data in the data.oceandrilling.org web site, (iii) association through semantic methods of age models and depth recorded data to facilitate age based searches for data recorded by depth only.

  8. Chemical monitoring of mud products on drilled cuttings

    International Nuclear Information System (INIS)

    Hughes, T.L.; Jones, T.G.J.; Tomkins, P.G.; Gilmour, A.; Houwen, O.H.; Sanders, M.

    1991-01-01

    An increasing area of concern for offshore drilling practices in the environmental impact of discharged drilled cuttings contaminated with drilling fluids. The standard retort analysis is of limited accuracy and chemical specificity. Anticipating future requirements for a more complete accounting of mud chemicals discharged to the environment, we present here results for chemical monitoring using a modern comprehensive chemical analysis technique. Fourier transform infrared (FT-IR) spectrometry. In this paper description is given of sampling methods found to be practical and the main calibration requirements are discussed. The techniques developed in the course of this work give a good mineralogical breakdown of mud solids (commercial and drilled solids) in addition to the environmentally relevant measurements relating to mud on cuttings. The possibility of using the new technique for the rigsite monitoring of drilling cuttings is demonstrated. Cuttings samples simultaneously from the flow line, shaker screen, desilter and mud cleaner were analyzed. It is found that mud polymers and other organic additives can be measured with sufficient accuracy to measure the removal of mud products by discharged cuttings. The technique is also applicable to quantify the losses of oil-based mud on cuttings. Field testing has shown that the instrumentation used in sufficiently robust and simple to use for rig-site application

  9. Environmental effects of exploratory drilling offshore Canada : environmental effects monitoring data and literature review : final report

    International Nuclear Information System (INIS)

    Hurley, G.; Ellis, J.

    2004-10-01

    This study examined pertinent environmental effects monitoring (EEM) information and data associated with offshore exploratory and development drilling in Canada. Two approaches were used: (1) a review of scientific literature was conducted to provide a synthesis of knowledge concerning interactions between exploratory drilling and the environment; and (2) a review of pertinent Canadian EEM data was conducted to evaluate interactions between exploratory drilling and the environment. Virtually all the east coast Canadian data reviewed in the study related to the effects of multiple wells. Although the effects of drilling waste were a primary focus, the effects of accidental discharges, lights and flaring, atmospheric emissions and noise emissions were also considered. Changes in the diversity and abundance of benthic organisms were detected within 1000 metres of many drill sites. The fine particles in drilling wastes contributed to the environmental effects observed around drilling platforms, and elevated body burden concentrations of drill waste indicators were detected over larger scales in a wide range of taxonomic groups. The results of laboratory and field studies suggested a lower potential for toxicity on commercial finfish and shellfish species. However, it was observed that measuring the effects of elevated concentrations of contaminants remained a challenge due to high levels variability in literature studies. A precautionary approach to the management of seismic surveys was recommended. It was concluded that the potential cumulative impacts of exploration drilling should be considered in the context of other anthropogenic activities. 138 refs., 6 tabs.

  10. Comprehensive borehole management for shorter drilling time; Umfassendes Bohrfortschrittsmanagement zur Verkuerzung der Bohrprojektdauer

    Energy Technology Data Exchange (ETDEWEB)

    Roehrlich, M. [ExxonMobil Production Deutschland GmbH, Hannover (Germany)

    2007-09-13

    In 2006, the trademarked ExxonMobil Fast Drill Process (FDP) was introduced also in the German ExxonMobil boreholes. The process is to maximize the drilling speed for every meter drilled. The process makes it possible to ensure borehole management on the basis of quantitative data and in consideration of all phases that are relevant for sinking a borehole. The FDP is used world-wide in all ExxonMobil drilling departments. More than 1.35 million meters are drilled annually in many different boreholes with different geological conditions, drilling profiles and international sites. The results were similar in many cases, with a significant increase in ROP and drill bit life, and with less damage caused by vibrations. FDP was developed on the basis of real time monitoring of the specific mechanical energy (MSE) required for drilling. MSE monitoring was found to be an effective tool dor detecting inefficient functioning of the drill bit and the overall system. To make operation more efficient, the causes must be identified and measures must be taken accordingly, taking into account the potential risks involved in such measures. MSE monitoring is a tool while FDPL is a broad management process ensuring that MSE and many other data sources are used effectively for optimisation of the ROP. Consequent implementation of the process resulted in a significant increase of the ROP. The major elements required for achieving this goal are discussed. (orig.)

  11. Selective-placement burial of drilling fluids: 2. Effects on buffalograss and fourwing saltbrush

    International Nuclear Information System (INIS)

    McFarland, M.L.; Hartmann, S.; Ueckert, D.N.; Hons, F.M.

    1992-01-01

    Surface disposal of spent drilling fluids used in petroleum and natural gas exploration causes surface soil contamination that severely inhibits secondary plant succession and artificial revegetation efforts. Selective-placement burial was evaluated at two locations in western Texas for on-site disposal of drilling fluids in arid and semiarid regions. Establishment, yield, and chemical composition of fourwing saltbrush [Atriplex canescens (Pursh Nutt.)] and buffalograss [Buchloe dactyloides (Nutt.) Engelm.] transplants on undisturbed soils and on plots with spent drilling fluids and cuttings buried 30, 90 (with and without a 30-cm coarse limestone capillary barrier) and 150 cm were compared. Survival of both species was 97 to 100% 17 months after planting on plots with buried drilling wastes. Canopy cover and aboveground biomass of fourwing saltbrush were greater over buried drilling wastes than on untreated plots, whereas canopy cover and aboveground biomass of buffalograss were not affected by the treatments. Significant increases in Na, M, and Mg concentrations in buffalograss after 17 months on plots with drilling fluids buried 30 cm deep at one location indicated plant uptake of some drilling fluid constituents. Elevated Zn concentrations in fourwing saltbush indicated that a portion of the Zn in the drilling fluids was available for plant uptake, while no evidence of plant accumulation of Ba, Cr, Cu, or Ni from drilling fluids was detected

  12. Core drilling of deep drillhole OL-KR54 at Olkiluoto in Eurajoki 2010

    International Nuclear Information System (INIS)

    Toropainen, V.

    2010-11-01

    As a part of the confirming site investigations at Olkiluoto, Suomen Malmi Oy (Smoy) core drilled a 500.18 m deep drillhole with a diameter of 75.7 mm at Olkiluoto in July - August 2010. The identification number of the drillhole is OL-KR54. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling water were recorded. The drill rig was computer controlled and the computer recorded drilling parameters during drilling. The objective of the measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volume of the used drilling, washing and flushing water was 382 m 3 . The measured volume of the returning water in the drillhole was 334 m 3 . The deviation of the drillhole was measured with the deviation measuring instruments EMS and Gyro. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength was 111.5 MPa, the average Young's Modulus was 43.7 GPa and the average Poisson's ratio was 0.17. The main rock types are diatexitic and veined gneisses, pegmatitic granite and mafic gneiss. The average fracture frequency is 1.6 pcs/m and the average RQD value is 97.6 %. Nine fractured zones were penetrated by the drillhole. (orig.)

  13. Drilling history of core hole DB-15

    International Nuclear Information System (INIS)

    Diediker, L.D.; Ledgerwood, R.K.

    1980-09-01

    This core hole was drilled to obtain hydrologic and chemical data on the permeable zones of the Saddle Mountains and Wanapum Formations. These data were obtained by testing the zones that were penetrated during drilling. This testing-as-drilled method reduced the potential problems of interflow and water contamination. This report summarizes the drilling and coring operations; geologic logging, hydrologic testing, and geophysical logging activities; and cementing operations of DB-15 during drilling. The successful completion of DB-15 demonstrated that hydrologic testing can be conducted during core drilling operations. More reliable head measurements and uncontaminated representative water samples from isolated permeable zones, which have not been exposed to potential open borehole cross-flow and head equilibration problems, were benefits derived from the testing-as-drilled method. Disadvantages of the technique were a longer time to complete the borehole caused by time required for testing and increased drilling costs due to rig standby time during testing. Extension of the testing-as-drilled method to the drilling of future core holes is recommended. An evaluation should be made of the required hydrologic data and expected borehole stratigraphy before and during drilling to allow uninterrupted drilling in zones of low permeability that can be tested after drilling is complete

  14. GEO-ECOLOGICAL PROBLEMS OF DRILLING WASTE DISPOSAL IN THE YAMAL PENINSULA

    Directory of Open Access Journals (Sweden)

    Oreshkin Dmitrij Vladimirovich

    2012-10-01

    Full Text Available Crude oil and gas fields are located in remote areas known for their severe geological and climatic conditions that are aggravated by the presence of the paleocrystic frozen rock. Borehole drilling causes generation of the substantial amount of drilling waste. The sludge weighs millions of tons. Any rock is to remain frozen at any drilling site in the Yamal peninsula. Semifluid drilling waste occupies extensive areas around drilling sites; they prevent development of the surface infrastructure, they interfere with the work of drilling technicians and contribute to hazardous working conditions, they are a challenge to the local ecology. The above factors produce a negative impact on the environment and prevent sustainable development of the region. For example, disposal of drilling waste at condensed gas fields operated in the Yamal peninsula represents a substantial problem. Drilling waste contains drilling fluid used in the process of borehole drilling. It was discovered in the course of the preliminary research that drilling fluids were composite suspensions that contained bentonite, heavy spar, caustic soda, dilutants, and polymers. It was found out that the sludge was composed of silica, calcite, dolomite, aragonite, magnesite, some feldspars, heavy spar, gypsum and anhydrite, micas, hydromicas, clay minerals. Projections provided in the paper say that pre-neutralized sludge may be used in the manufacturing of building materials, such as bricks, claydite, small-size building units, etc. The authors argue that further research of the sludge elements and microstructure, as well as its chemical, mineral, granulometric and X-ray phase analyses need to be performed.

  15. Additive to clay drilling muds

    Energy Technology Data Exchange (ETDEWEB)

    Voytenko, V.S.; Nekrasova, V.B.; Nikitinskiy, E.L.; Ponomarev, V.N.

    1984-01-01

    The purpose of the invention is to improve the lubricating and strengthening properties of clay drilling muds. This goal is achieved because the lubricating and strengthening additive used is waste from the pulp and paper industry at the stage of reprocessing crude sulfate soap into phytosterol.

  16. Drilling azimuth gamma embedded design

    Directory of Open Access Journals (Sweden)

    Zhou Yi Ren

    2016-01-01

    Full Text Available Embedded drilling azimuth gamma design, the use of radioactive measuring principle embedded gamma measurement while drilling a short section analysis. Monte Carlo method, in response to the density of horizontal well logging numerical simulation of 16 orientation, the orientation of horizontal well analysed, calliper, bed boundary location, space, different formation density, formation thickness, and other factors inclined strata dip the impact by simulating 137Cs sources under different formation conditions of the gamma distribution, to determine the orientation of drilling density tool can detect window size and space, draw depth of the logging methods. The data 360° azimuth imaging, image processing method to obtain graph, display density of the formation, dip and strata thickness and other parameters, the logging methods obtain real-time geo-steering. To establish a theoretical basis for the orientation density logging while drilling method implementation and application of numerical simulation in-depth study of the MWD azimuth and density log response factors of horizontal wells.

  17. Hydraulics calculation in drilling simulator

    Science.gov (United States)

    Malyugin, Aleksey A.; Kazunin, Dmitry V.

    2018-05-01

    The modeling of drilling hydraulics in the simulator system is discussed. This model is based on the previously developed quasi-steady model of an incompressible fluid flow. The model simulates the operation of all parts of the hydraulic drilling system. Based on the principles of creating a common hydraulic model, a set of new elements for well hydraulics was developed. It includes elements that correspond to the in-drillstring and annular space. There are elements controlling the inflow from the reservoir into the well and simulating the lift of gas along the annulus. New elements of the hydrosystem take into account the changing geometry of the well, loss in the bit, characteristics of the fluids including viscoplasticity. There is an opportunity specify the complications, the main one of which is gas, oil and water inflow. Correct work of models in cases of complications makes it possible to work out various methods for their elimination. The coefficients of the model are adjusted on the basis of incomplete experimental data provided by operators of drilling platforms. At the end of the article the results of modeling the elimination of gas inflow by a continuous method are presented. The values displayed in the simulator (drill pipe pressure, annulus pressure, input and output flow rates) are in good agreement with the experimental data. This exercise took one hour, which is less than the time on a real rig with the same configuration of equipment and well.

  18. DM Considerations for Deep Drilling

    OpenAIRE

    Dubois-Felsmann, Gregory

    2016-01-01

    An outline of the current situation regarding the DM plans for the Deep Drilling surveys and an invitation to the community to provide feedback on what they would like to see included in the data processing and visualization of these surveys.

  19. Stakeholder acceptance analysis ResonantSonic drilling

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    This report presents evaluations, recommendations, and requirements concerning ResonantSonic Drilling (Sonic Drilling), derived from a three-year program of stakeholder involvement. Sonic Drilling is an innovative method to reach contamination in soil and groundwater. The resonant sonic drill rig uses counter-rotating weights to generate energy, which causes the drill pipe to vibrate elastically along its entire length. In the resonant condition, forces of up to 200,000 pounds are transmitted to the drill bit face to create a cutting action. The resonant energy causes subsurface materials to move back into the adjacent formation, permitting the drill pipe to advance. This report is for technology developers and those responsible for making decisions about the use of technology to remediate contamination by volatile organic compounds. Stakeholders' perspectives help those responsible for technology deployment to make good decisions concerning the acceptability and applicability of sonic drilling to the remediation problems they face

  20. Drill machine guidance using natural occurring radiation

    International Nuclear Information System (INIS)

    Dahl, H.D.; Schroeder, R.L.; Williams, B.J.

    1980-01-01

    A drilling machine guidance system is described which uses only the naturally occuring radiation within the seam or stratum of interest. The apparatus can be used for guiding horizontal drilling machines through coal seams and the like. (U.K.)

  1. Economic environmental management of drilling operations

    International Nuclear Information System (INIS)

    Longwell, H.J.; Akers, T.J.

    1992-01-01

    This paper presents significant environmental and regulatory initiatives developed by Exxon's New Orleans Drilling Organization. Specifically, the paper will cover drilling waste minimization techniques and disposal options, recycling of drilling waste streams, and environmentally managed drilling location design considerations. The implementation of some of these initiatives at Exxon's Chalkley field land locations have resulted in a fifty percent reduction in drilling location waste management costs. Some of these same initiatives have been successfully applied to Exxon's barge drilling locations. For operations at the environmentally sensitive Mobile Bay, Exxon contracted with a local company and assisted in the development of an economically and environmentally superior drilling waste disposal and treatment system. In summary, it is possible for drilling operators to pro-actively manage escalating environmental and regulatory challenges through the implementation of economic and practical initiatives

  2. Catamaran type semisubmersible platform for offshore drilling

    Energy Technology Data Exchange (ETDEWEB)

    Pouget, G; Chevallier, J; Hampton, G

    1988-06-10

    A semi-submersible oil rig which allows the vertical storage of drilling tubes and drill pipes is presented. The structure which links the floaters to the bridge consists of hollow columns forming caissons and containing means for storing tubes.

  3. Petrologic studies of drill cores USW-G2 and UE25b-1H, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Caporuscio, F.; Vaniman, D.; Bish, D.; Broxton, D.; Arney, B.; Heiken, G.; Byers, F.; Gooley, R.; Semarge, E.

    1982-07-01

    The tuffs of the Nevada Test Site are currently under investigation as a possible deep geologic site for high-level radioactive waste disposal. This report characterizes tuff retrieved in core from two drill holes, USW-G2 and UE25b-1H, at the Yucca Mountain block. The USW-G2 drill core is from the northernmost extent of the block, whereas UE25b-1H is adjacent to an earlier drill hole, UE25a-1. The drill cores USW-G2 and UE25b-1H bottomed at 6000 and 4200 ft, respectively. Petrographic and x-ray diffraction studies of the two drill cores are presented in this report and indicate that tuffs (composed primarily of variably welded ash flows) are partially recrystallized to secondary minerals. Correlations of stratigraphy are also made with previous drill cores from Yucca Mountain

  4. Heat accumulation during sequential cortical bone drilling.

    Science.gov (United States)

    Palmisano, Andrew C; Tai, Bruce L; Belmont, Barry; Irwin, Todd A; Shih, Albert; Holmes, James R

    2016-03-01

    Significant research exists regarding heat production during single-hole bone drilling. No published data exist regarding repetitive sequential drilling. This study elucidates the phenomenon of heat accumulation for sequential drilling with both Kirschner wires (K wires) and standard two-flute twist drills. It was hypothesized that cumulative heat would result in a higher temperature with each subsequent drill pass. Nine holes in a 3 × 3 array were drilled sequentially on moistened cadaveric tibia bone kept at body temperature (about 37 °C). Four thermocouples were placed at the center of four adjacent holes and 2 mm below the surface. A battery-driven hand drill guided by a servo-controlled motion system was used. Six samples were drilled with each tool (2.0 mm K wire and 2.0 and 2.5 mm standard drills). K wire drilling increased temperature from 5 °C at the first hole to 20 °C at holes 6 through 9. A similar trend was found in standard drills with less significant increments. The maximum temperatures of both tools increased from drill sizes was found to be insignificant (P > 0.05). In conclusion, heat accumulated during sequential drilling, with size difference being insignificant. K wire produced more heat than its twist-drill counterparts. This study has demonstrated the heat accumulation phenomenon and its significant effect on temperature. Maximizing the drilling field and reducing the number of drill passes may decrease bone injury. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Drill cuttings mount formation study

    Science.gov (United States)

    Teh, Su Yean; Koh, Hock Lye

    2014-07-01

    Oil, Gas and Energy sector has been identified as an essential driving force in the Malaysian Economic Transformation Programs (ETP). Recently confirmed discovery of many offshore oil and gas deposits in Malaysian waters has ignited new confidence in this sector. However, this has also spurred intense interest on safeguarding the health and environment of coastal waters in Malaysia from adverse impact resulting from offshore oil and gas production operation. Offshore discharge of spent drilling mud and rock cuttings is the least expensive and simplest option to dispose of large volumes of drilling wastes. But this onsite offshore disposal may have adverse environmental impacts on the water column and the seabed. It may also pose occupational health hazards to the workers living in the offshore platforms. It is therefore important to model the transport and deposition of drilling mud and rock cuttings in the sea to enable proper assessment of their adverse impacts on the environment and the workers. Further, accumulation of drill particles on the seabed may impede proper operation of pipelines on the seabed. In this paper, we present an in-house application model TUNA-PT developed to cater to local oil and gas industry needs to simulate the dispersion and mount formation of drill cuttings by offshore oil and gas exploration and production platforms. Using available data on Malaysian coastal waters, simulation analyses project a pile formation on the seabed with a maximum height of about 1 m and pile radius of around 30 to 50 m. Simulated pile heights are not sensitive to the heights of release of the cuttings as the sensitivity has been mitigated by the depth of water.

  6. Surgical drill system and surgical drill bit to be used therein

    NARCIS (Netherlands)

    Margallo Balbas, E.; Wieringa, P.A.; French, P.J.; Lee, R.A.; Breedveld, P.

    2007-01-01

    Surgical drill system comprising a mechanical drill bit and means for imaging the vicinity of the drill bit tip, said means comprising: at least one optical fiber having a distal end and a proximal end, said distal end being located adjacent said drill bit tip, an optical processing unit, said

  7. 25 CFR 226.33 - Line drilling.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Line drilling. 226.33 Section 226.33 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS FOR OIL AND GAS MINING Requirements of Lessees § 226.33 Line drilling. Lessee shall not drill within 300 feet...

  8. 30 CFR 256.71 - Directional drilling.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Directional drilling. 256.71 Section 256.71... drilling. In accordance with an approved exploration plan or development and production plan, a lease may be maintained in force by directional wells drilled under the leased area from surface locations on...

  9. Drilling of bone: A comprehensive review

    Science.gov (United States)

    Pandey, Rupesh Kumar; Panda, S.S.

    2013-01-01

    Background Bone fracture treatment usually involves restoring of the fractured parts to their initial position and immobilizing them until the healing takes place. Drilling of bone is common to produce hole for screw insertion to fix the fractured parts for immobilization. Orthopaedic drilling during surgical process causes increase in the bone temperature and forces which can cause osteonecrosis reducing the stability and strength of the fixation. Methods A comprehensive review of all the relevant investigations carried on bone drilling is conducted. The experimental method used, results obtained and the conclusions made by the various researchers are described and compared. Result Review suggests that the further improvement in the area of bone drilling is possible. The systematic review identified several consequential factors (drilling parameters and drill specifications) affecting bone drilling on which there no general agreement among investigators or are not adequately evaluated. These factors are highlighted and use of more advanced methods of drilling is accentuated. The use of more precise experimental set up which resembles the actual situation and the development of automated bone drilling system to minimize human error is addressed. Conclusion In this review, an attempt has been made to systematically organize the research investigations conducted on bone drilling. Methods of treatment of bone fracture, studies on the determination of the threshold for thermal osteonecrosis, studies on the parameters influencing bone drilling and methods of the temperature measurement used are reviewed and the future work for the further improvement of bone drilling process is highlighted. PMID:26403771

  10. 30 CFR 250.1605 - Drilling requirements.

    Science.gov (United States)

    2010-07-01

    ... deposit. (2) Inclinational surveys shall be obtained on all vertical wells at intervals not exceeding 1... to that leaseholder. (f) Fixed drilling platforms. Applications for installation of fixed drilling... removed or have been otherwise immobilized are classified as fixed bottom founded drilling platforms. (g...

  11. Development of vertical drilling apparatus (Terra-Drill); Entwicklung eines Vertikal-Bohrgeraets (Terra-Drill) - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Jenne, D.

    2009-05-15

    This well-illustrated final report for the Swiss Federal Office of Energy (SFOE) reports on the development of a vertical drilling apparatus named Terra-Drill. The various stages of the development of the apparatus, which is based on earlier designs, is discussed. New norms issued in Germany for the size of boreholes for buried vertical heat-exchangers and the appropriate linings to be used are discussed. The new Terra Drill 4407 V drilling apparatus and its testing are discussed. The drill is quoted as being particularly suitable for cramped locations. Technical details are presented and a comprehensive collection of photographs is included. Various preliminary reports and development documentation are included.

  12. Study on drilling induced delamination of woven kenaf fiber reinforced epoxy composite using carbide drills

    Science.gov (United States)

    Suhaily, M.; Hassan, C. H. Che; Jaharah, A. G.; Azmi, H.; Afifah, M. A.; Khairusshima, M. K. Nor

    2018-04-01

    In this research study, it presents the influences of drilling parameters on the delamination factor during the drilling of woven kenaf fiber reinforced epoxy composite laminates when using the carbide drill bits. The purpose of this study is to investigate the influence of drilling parameters such as cutting speed, feed rate and drill sizes on the delamination produced when drilling woven kenaf reinforced epoxy composite using the non-coated carbide drill bits. The damage generated on the woven kenaf reinforced epoxy composite laminates were observed both at the entrance and exit surface during the drilling operation. The experiments were conducted according to the Box Behnken experimental designs. The results indicated that the drill diameter has a significant influence on the delamination when drilling the woven kenaf fiber reinforced epoxy composites.

  13. A drilling mud for drilling wells in collapsing rocks

    Energy Technology Data Exchange (ETDEWEB)

    Bochkarev, G P; Anderson, B A; Minkhayrov, K A; Sharipov, A U

    1982-01-01

    In a known drilling mud for drilling wells in collapsing rocks, which contains clay, sodium silicate and polyacrylamide (PAA), in order to increase its specific electrical resistance and to increase the strengthening properties, a silicoorganic liquid is additionally introduced into its composition with the following component ratio (percent): clay, 5 to 7; sodium silicate, 5 to 7; polyacrylamide, 0.3 to 0.5; silicoorganic liquid, GKZh-94, 0.5 to 1.5 and water, the remainder. The GKZh-94 is a chemical compound based on alkylphenylchlorsilanes and substituted ethers of orthosilicic acid, used for waterproofing fabrics and soils. The addition of GKZh-94 provides the required values of the specific electric resistance of the mud and does not distort the gas logging indications. The proposed mud has low water production (4 to 6 cubic centimeters), optimal viscosity (25 to 31 seconds) and high structural and mechanical properties. Its strengthening properties are substantially above those of the known mud.

  14. Engineering report on drilling in the western Prescott and Williams Quadrangles, Arizona

    International Nuclear Information System (INIS)

    McCaslin, J.L.

    1980-04-01

    This report presents engineering details, statistics, and individual borehole histories of the 18 holes drilled for this project. Charts showing daily drilling progress are included in Appendix A, and geophysical logs, on microfiche, are included. This project consisted of 18 drill holes ranging in depth from 1,341 ft (408.7m) to 5,491 ft (1,673.7m). A total of 63,520 feet (19,360.9m) was drilled during the project. The objective of the project was to obtain subsurface data that would permit a more accurate estimate to be made of the uranium potential in the Tertiary basins within the project area. This project began on June 22, 1979. All drilling was completed on October 30, 1979, and final site restoration continued through November and December

  15. Automatic real time drilling support on Ekofisk utilizing eDrilling

    Energy Technology Data Exchange (ETDEWEB)

    Rommetveit, Rolv; Bjorkevoll, Knut S.; Halsey, George W.; Kluge, Roald; Molde, Dag Ove; Odegard, Sven Inge [SINTEF Petroleum Research, Trondheim (Norway); Herbert, Mike [HITEC Products Drilling, Stavanger (Norway); ConocoPhillips Norge, Stavanger (Norway)

    2008-07-01

    eDrilling is a new and innovative system for real time drilling simulation, 3D visualization and control from a remote drilling expert centre. The concept uses all available real time drilling data (surface and downhole) in combination with real time modelling to monitor and optimize the drilling process. This information is used to visualize the wellbore in 3D in real time. eDrilling has been implemented in an Onshore Drilling Center in Norway. The system is composed of the following elements, some of which are unique and ground-breaking: an advanced and fast Integrated Drilling Simulator which is capable to model the different drilling sub-processes dynamically, and also the interaction between these sub-processes in real time; automatic quality check and corrections of drilling data; making them suitable for processing by computer models; real time supervision methodology for the drilling process using time based drilling data as well as drilling models / the integrated drilling simulator; methodology for diagnosis of the drilling state and conditions. This is obtained from comparing model predictions with measured data. Advisory technology for more optimal drilling. A Virtual Wellbore, with advanced visualization of the downhole process. Dat low and computer infrastructure. e-Drilling has been implemented in an Onshore Drilling Center on Ekofisk in Norway. The system is being used on drilling operations, and experiences from its use are presented. The supervision and diagnosis functionalities have been useful in particular, as the system has given early warnings on ECD and friction related problems. This paper will present the eDrilling system as well as experiences from its use. (author)

  16. Exploratory Hydrocarbon Drilling Impacts to Arctic Lake Ecosystems

    Science.gov (United States)

    Thienpont, Joshua R.; Kokelj, Steven V.; Korosi, Jennifer B.; Cheng, Elisa S.; Desjardins, Cyndy; Kimpe, Linda E.; Blais, Jules M.; Pisaric, Michael FJ.; Smol, John P.

    2013-01-01

    Recent attention regarding the impacts of oil and gas development and exploitation has focused on the unintentional release of hydrocarbons into the environment, whilst the potential negative effects of other possible avenues of environmental contamination are less well documented. In the hydrocarbon-rich and ecologically sensitive Mackenzie Delta region (NT, Canada), saline wastes associated with hydrocarbon exploration have typically been disposed of in drilling sumps (i.e., large pits excavated into the permafrost) that were believed to be a permanent containment solution. However, failure of permafrost as a waste containment medium may cause impacts to lakes in this sensitive environment. Here, we examine the effects of degrading drilling sumps on water quality by combining paleolimnological approaches with the analysis of an extensive present-day water chemistry dataset. This dataset includes lakes believed to have been impacted by saline drilling fluids leaching from drilling sumps, lakes with no visible disturbances, and lakes impacted by significant, naturally occurring permafrost thaw in the form of retrogressive thaw slumps. We show that lakes impacted by compromised drilling sumps have significantly elevated lakewater conductivity levels compared to control sites. Chloride levels are particularly elevated in sump-impacted lakes relative to all other lakes included in the survey. Paleolimnological analyses showed that invertebrate assemblages appear to have responded to the leaching of drilling wastes by a discernible increase in a taxon known to be tolerant of elevated conductivity coincident with the timing of sump construction. This suggests construction and abandonment techniques at, or soon after, sump establishment may result in impacts to downstream aquatic ecosystems. With hydrocarbon development in the north predicted to expand in the coming decades, the use of sumps must be examined in light of the threat of accelerated permafrost thaw, and the

  17. Space weather effects on drilling accuracy in the North Sea

    Directory of Open Access Journals (Sweden)

    S. J. Reay

    2005-11-01

    Full Text Available The oil industry uses geomagnetic field information to aid directional drilling operations when drilling for oil and gas offshore. These operations involve continuous monitoring of the azimuth and inclination of the well path to ensure the target is reached and, for safety reasons, to avoid collisions with existing wells. Although the most accurate method of achieving this is through a gyroscopic survey, this can be time consuming and expensive. An alternative method is a magnetic survey, where measurements while drilling (MWD are made along the well by magnetometers housed in a tool within the drill string. These MWD magnetic surveys require estimates of the Earth's magnetic field at the drilling location to correct the downhole magnetometer readings. The most accurate corrections are obtained if all sources of the Earth's magnetic field are considered. Estimates of the main field generated in the core and the local crustal field can be obtained using mathematical models derived from suitable data sets. In order to quantify the external field, an analysis of UK observatory data from 1983 to 2004 has been carried out. By accounting for the external field, the directional error associated with estimated field values at a mid-latitude oil well (55° N in the North Sea is shown to be reduced by the order of 20%. This improvement varies with latitude, local time, season and phase of the geomagnetic activity cycle. By accounting for all sources of the field, using a technique called Interpolation In-Field Referencing (IIFR, directional drillers have access to data from a "virtual" magnetic observatory at the drill site. This leads to an error reduction in positional accuracy that is close to matching that of the gyroscopic survey method and provides a valuable independent technique for quality control purposes.

  18. Exploration Drilling and Technology Demonstration At Fort Bliss

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Ben; Moore, Joe [EGI; Segall, Marylin; Nash, Greg; Simmons, Stuart; Jones, Clay; Lear, Jon; Bennett, Carlon

    2014-02-26

    The Tularosa-Hueco basin in south-central New Mexico has long been known as an extensional area of high heat flow. Much of the basin is within the Fort Bliss military reservation, which is an exceptionally high value customer for power independent of the regional electric grid and for direct use energy in building climate control. A series of slim holes drilled in the 1990s established the existence of a thermal anomaly but not its practical value. This study began in 2009 with a demonstration of new exploration drilling technology. The subsequent phases reported here delivered a useful well, comparative exploration data sets and encouragement for further development. A production-size well, RMI56-5, was sited after extensive study of archival and newly collected data in 2010-2011. Most of 2012 was taken up with getting state and Federal authorities to agree on a lead agency for permitting purposes, getting a drilling permit and redesigning the drilling program to suit available equipment. In 2013 we drilled, logged and tested a 924 m well on the McGregor Range at Fort Bliss using a reverse circulation rig. Rig tests demonstrated commercial permeability and the well has a 7-inch slotted liner for use either in production or injection. An August 2013 survey of the completed well showed a temperature of 90 C with no reversal, the highest such temperature in the vicinity. The well’s proximity to demand suggests a potentially valuable resource for direct use heat and emergency power generation. The drilling produced cuttings of excellent size and quality. These were subjected to traditional analyses (thin sections, XRD) and to the QEMScan™ for comparison. QEMScan™ technology includes algorithms for determining such properties of rocks as density, mineralogy, heavy/light atoms, and porosity to be compared with direct measurements of the cuttings. In addition to a complete cuttings set, conventional and resistivity image logs were obtained in the open hole before

  19. Advanced control strategies for a drill rig

    International Nuclear Information System (INIS)

    Banerjee, A.; Hiller, M.; Fink, B.

    1996-01-01

    The construction of tunnels is usually undertaken using a combination of blasting and drilling to achieve rock excavation. Easy handling and high accuracy, and thus greater efficiency, in drilling rigs is an essential ingredient of successful competition in the market place. This article describes a cartesian control concept used for a twin boom drill rig. This simplifies the handling of a drilling boom, reduces the duration of a working cycle and increases security. A remote control system has been added to the drill rig to support the operator working in complicated environments. (UK)

  20. Oman Drilling Project Phase I Borehole Geophysical Survey

    Science.gov (United States)

    Matter, J. M.; Pezard, P. A.; Henry, G.; Brun, L.; Célérier, B.; Lods, G.; Robert, P.; Benchikh, A. M.; Al Shukaili, M.; Al Qassabi, A.

    2017-12-01

    The Oman Drilling Project (OmanDP) drilled six holes at six sites in the Samail ophiolite in the southern Samail and Tayin massifs. 1500-m of igneous and metamorphic rocks were recovered at four sites (GT1, GT2, GT3 and BT1) using wireline diamond core drilling and drill cuttings at two sites (BA1, BA2) using air rotary drilling, respectively. OmanDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, NASA, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, and with in-kind support in Oman from Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University and the German University of Technology. A comprehensive borehole geophysical survey was conducted in all the OmanDP Phase I boreholes shortly after drilling in April 2017. Following geophysical wireline logs, using slim-hole borehole logging equipment provided and run by the Centre National De La Recherche Scientifique (CNRS) and the Université de Montpellier/ Géosciences Montpellier, and logging trucks from the Ministry of Regional Municipalities and Water Resources, were collected in most of the holes: electrical resistivity (dual laterolog resistivity, LLd and LLs), spectral gamma ray (K, U, and Th contents), magnetic susceptibility, total natural gamma ray, full waveform sonic (Vp and Vs), acoustic borehole wall imaging, optical borehole wall imaging, borehole fluid parameters (pressure, temperature, electrical conductivity, dissolved oxygen, pH, redox potential, non-polarized spontaneous electrical potential), and caliper (borehole diameter). In addition, spinner flowmeter (downhole fluid flow rate along borehole axis) and heatpulse flow meter logs (dowhole fluid flow rate along borehole axis) were collected in BA1 to characterize downhole fluid flow rates along borehole axis. Unfortuantely, only incomplete wireline logs are available for

  1. Development of controlled drilling technology and measurement method in the borehole (Phase 1)

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Shin, Koichi; Suzuki, Koichi; Miyakawa, Kimio; Okada, Tetsuji; Masuhara, Yasunobu; Igeta, Noriyuki; Kobayakawa, Hiroaki; Yamamoto, Shinya

    2006-01-01

    In Japan, the soft sedimentary rock of the Neogene tertiary is being focused as a host rock for High Level Waste (HLW) disposal. Especially, the soft sedimentary rock at the coastal area is thought to be one of the best candidates, since there is little driving force of the underground water. The measurement and logging of the bore hole in order to investigate the hydro-geological and geo-mechanical conditions of the host rock is a very important way to examine the potential of the disposal candidates. Central Research Institute of Electric Power Industry (CRIEPI) has been conducting the project on controlled drilling and the logging/measurement technologies in its boreholes. The key technologies of the project were defined as follows; (1) Drilling technology to bent the hole as intend. (2) Locality detection technology of the drill bit (MWD). (3) Core sampling technology to obtain the undisturbed rock core. (4) Logging and measurement technology during drilling. The drilling system and measuring system were integrated and systemized after each apparatus was manufactured and its performance was checked. The performance of the drilling system was checked to drill the artificial rock mass to the depth of 80 m before conducting in-situ drilling. The performance of the drilling and measurement systems were investigated to drill the mudstone of the Neogene Tertiary to the length of 547 m and to conduct the downhole measurement and logging in its borehole at the Horonobe site. Considering these performance testing, the flow diagram of the controlled drilling and measurement system was established. (author)

  2. Evaluation of unilateral versus bilateral ovarian drilling in clomiphene citrate resistant cases of polycystic ovarian syndrome.

    Science.gov (United States)

    Roy, K K; Baruah, Jinee; Moda, Nidhi; Kumar, Sunesh

    2009-10-01

    Laparoscopic ovarian drilling (LOD) has been put forward as the treatment of choice in women with clomiphene citrate (CC)-resistant polycystic ovary syndrome (PCOS), with tubo-ovarian adhesion formation as the major disadvantage. Our study proposed to compare the efficacy of laparoscopic unilateral ovarian drilling with bilateral ovarian drilling in terms of ovulation and pregnancy rate with the expected advantage of decreasing postoperative adhesion rate and change in fimbiro ovarian relationship with unilateral drilling. This prospective randomized study included 44 patients with anovulatory infertility due to PCOS. Twenty-two patients underwent unilateral ovarian drilling in group-I and 22 patients underwent bilateral ovarian drilling in group-II between June 2005 and June 2007. The number of drilling site in each ovary was limited to five. The clinical and biochemical response, ovulation and pregnancy rates over a follow-up period of 1 year were compared. Tubo-ovarian adhesion rate was compared during cesarean section or during repeat laparoscopy. There was no statistical difference between the two groups in terms of clinical and biochemical response, ovulation rate and pregnancy rate. Postoperatively, tubo-ovarian adhesions could be assessed in 36.3% of the patients and no adhesions were found in a single case in either group. Unilateral drilling cauterization of ovary is equally efficacious as bilateral drilling in inducing ovulation and achieving pregnancy. Unilateral ovarian drilling may be a suitable option in clomiphene citrate resistant infertility patient of PCOS which can replace bilateral ovarian drilling with the potential advantage of decreasing the chances of adhesion formation.

  3. Impact of exploratory offshore drilling on benthic communities in the Minerva gas field, Port Campbell, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Currie, D.R.; Isaacs, L.R. [Central Queensland Univ., Gladstone (Australia). Centre for Environmental Management

    2005-04-01

    Changes to benthic infauna caused by exploratory gas drilling operations in the Minerva field were examined experimentally using a BACI (before, after, control, impact) design. Analysis of 72 x 0.1 m{sup 2} Smith-McIntyre grab samples obtained from one pre-drilling and three post-drilling periods yielded a diverse fauna consisting of 196 invertebrate species and 5035 individuals. Changes to benthic community structure were assessed using ANOVA and nonmetric multidimensional scaling (MDS). The abundances of two common species (Apseudes sp. 1 and Prionospio coorilla) decreased significantly at the well-head site immediately after drilling. The size of these reductions in abundance ranged between 71% and 88%, and persisted for less than 4 months after drilling. A third common species (Katlysia sp. 1) increased in abundance 200 m east of the well-head following drilling. Most species occurred at densities too low to be analysed individually and so were pooled at higher taxonomic levels. Changes in the abundance of species aggregated by phylum varied, but significant declines in the most abundant phyla (Crustaceans and Polychaetes) of 45-73% were observed at all sites within a 100 m radius of the well-head following drilling. In most cases these changes became undetectable four months after drilling following species recruitments. MDS ordinations confirm that drilling related changes to benthic community structure are most pronounced at stations located closest to the well-head. Additionally, the ordinations indicate that modified communities persist at the well-head for more than 11 months following exploratory drilling. (author)

  4. Electric drill-string telemetry

    CERN Document Server

    Carcione, J M

    2003-01-01

    We design a numerical algorithm for simulation of low-frequency electric-signal transmission through a drill string. This is represented by a transmission line with varying geometrical and electromagnetic properties versus depth, depending on the characteristics of the drill-string/formation system. These properties are implicitly modeled by the series impedance and the shunt admittance of the transmission line. The differential equations are parabolic, since at low frequencies the wave field is diffusive. We use an explicit scheme for the solution of parabolic problems, based on a Chebyshev expansion of the evolution operator and the Fourier pseudospectral method to compute the spatial derivatives. The results are verified by comparison to analytical solutions obtained for the initial-value problem with a voltage source.

  5. Innovative techniques cut costs in wetlands drilling

    International Nuclear Information System (INIS)

    Navarro, A.R.

    1991-01-01

    This paper reports on an approach to drilling oil and gas wells in sensitive wetlands areas contributed to a savings of over $1.2 million on a three-well, $3 million drilling project in south Louisiana. ARCO Oil and Gas Co. drilled a three-well project in the Bayou Sale field with a truck-mounted workover rig and a modified solids-control system. This smaller equipment eliminated the need to build a large location in the marsh. Traditional drilling techniques require a large drillsite to accommodate all the equipment of a modern drilling complex. However, recently imposed environmental regulations substantially limit, and in some cases prohibit, the use of these conventional techniques for drilling wells in wetlands areas. Based on the potentially huge economic and operational impact on the drilling industry because of these stricter regulations, alternatives to these traditional practices are essential

  6. Chemical Speciation of Chromium in Drilling Muds

    International Nuclear Information System (INIS)

    Taguchi, Takeyoshi; Yoshii, Mitsuru; Shinoda, Kohzo

    2007-01-01

    Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. We have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility

  7. Seismic Prediction While Drilling (SPWD): Seismic exploration ahead of the drill bit using phased array sources

    Science.gov (United States)

    Jaksch, Katrin; Giese, Rüdiger; Kopf, Matthias

    2010-05-01

    maximize the energy of the seismic source in order to reach a sufficient exploration range. The next step for focusing is to use the method of phased array. Dependent of the seismic wave velocities of the surrounding rock, the distance of the actuators to each other and the used frequencies the signal phases for each actuator can be determined. Since one year several measurements with the prototype have been realized under defined conditions at a test site in a mine. The test site consists of a rock block surrounded from three galleries with a dimension of about 100 by 200 meters. For testing the prototype two horizontal boreholes were drilled. They are directed to one of the gallery to get a strong reflector. The quality of the data of the borehole seismics in amplitude and frequency spectra show overall a good signal-to-noise ratio and correlate strongly with the fracture density along the borehole and are associated with a lower signal-to-noise ratio. Additionally, the geophones of the prototype show reflections from ahead and rearward in the seismic data. In particular, the reflections from the gallery ahead are used for the calibration of focusing. The direct seismic wave field indicates distinct compression and shear waves. The analysis of several seismic measurements with a focus on the direct seismic waves shows that the phased array technology explicit can influence the directional characteristics of the radiated seimic waves. The amplitudes of the seismic waves can be enhanced up to three times more in the desired direction and simultaneously be attenuated in the reverse direction. A major step for the directional investigation in boreholes has accomplished. But the focusing of the seismic waves has to be improved to maximize the energy in the desired direction in more measurements by calibrating the initiating seismic signals of the sources. A next step this year is the development of a wireline prototype for application in vertical boreholes with depths not

  8. Effects of offshore oil drilling on benthic invertebrate communities on the Grand Banks (North Atlantic)

    Energy Technology Data Exchange (ETDEWEB)

    DeBlois, E. [Jacques Whitford Ltd., St. John' s, NL (Canada); Wight, F. [Husky Oil Operations Ltd., St. John' s, NL (Canada); Taylor, D. [DG Taylor Inc., Conception Bay South, NL (Canada); Paine, M. [Paine, Ledge and Associates, North Vancouver, BC (Canada)

    2007-07-01

    Drilling occurs at three different drill centres of the White Rose (WR) oil platform that lies 350 km offshore from St. John's Newfoundland. An extensive environmental effects monitoring (EEM) program conducted by Husky Energy is underway at the WR site. The sediment component of the program involves the measurement of physical and chemical characteristics, an assessment of toxicity in laboratory tests, and an assessment of in situ benthic invertebrate communities. Baseline sampling occurred in 2000, followed by post-drilling sampling in 2004 to 2006. The sediment is 95 per cent sand, with polychaetes and bivalves dominating the invertebrate communities. A comparative evaluation was performed for regressions between community variables and distances from drill centres before and after drilling. Concentration-response relationships between community variables and concentrations of major constituents in drilling muds (C10-C21 HCs) were also compared among years. It was shown that the biological effects on invertebrate communities were highly restricted to reductions in the amount of Paraonidae and Amphipoda near drill centres and at higher C10-C21 HC concentrations. The study revealed that the two most abundant invertebrate communities were not influenced by drilling in terms of standing crop, richness, diversity and evenness.

  9. Petroleum drilling and production operations in the Gulf of Mexico

    International Nuclear Information System (INIS)

    Fang, C.S.

    1991-01-01

    Decades of offshore and inland petroleum drilling and production in the Gulf of Mexico and on the Gulf Coast have provided the much needed energy and chemical feedstocks to the nation, and also have made an impact on the environment in the area. Our study showed deposits of contaminated sediment on the ocean floor around offshore platforms, old reserve pits, and dump sites next to many surface facilities and compressor stations. The substances found on the ocean floor and in dump sites are simple or emulsified mixtures of silt, hydrocarbons, and water. The cleaning of the ocean floor and pits is an economic and technical challenge. Hydrocarbons are from crude oil and chemical additions fro various operational necessities, including additions of biocides, corrosion inhibitors, antifreezes, and coagulants. When the new government regulations lower the allowable maximum total organic carbon level to the 50 ppm range, these hydrocarbons can no longer be ignored by drilling and production operators

  10. Drilling to investigate processes in active tectonics and magmatism

    Science.gov (United States)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.

    2014-12-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and

  11. Drilling Performance of Rock Drill by High-Pressure Water Jet under Different Configuration Modes

    Directory of Open Access Journals (Sweden)

    Songyong Liu

    2017-01-01

    Full Text Available In the rock drilling progress, the resistant force results in tools failure and the low drilling efficiency; thus, it is necessary to reduce the tools failure and enhance the drilling efficiency. In this paper, different configuration modes of drilling performance assisted with water jet are explored based on the mechanism and experiment analysis of rock drilling assisted with water jet. Moreover, the rotary sealing device with high pressure is designed to achieve the axial and rotation movement simultaneously as well as good sealing effect under high-pressure water jet. The results indicate that the NDB and NFB have better effects on drilling performance compared with that of NSB. Moreover, the high-pressure water jet is helpful not only to reduce the drill rod deflection, but also to reduce the probability of drill rod bending and improve the drill rod service life.

  12. Demonstration of a utility industry horizontal drilling system: Horizontal well AMH-5 installation report

    International Nuclear Information System (INIS)

    1992-01-01

    The Department of Energy's Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of VOCs in soils and groundwater at the Savannah River Site (SRS) in 1989. The overall goal of the program is demonstration of multiple technologies and systems in the fields of drilling, characterization, monitoring, and remediation at a single test bed. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program. Directional drilling has been shown to be a successful technique for enhancing access to the subsurface, thus improving remediation systems, especially remediation systems which perform in situ. Demonstration of an innovative directional drilling system at the Integrated Demonstration Site at the SRS, was initiated in June of 1992. The directional drilling system was designed to install an in situ remediation system. The drilling system is an experimental compaction/dry drilling technique developed by Charles Machine Works (Ditch Witch reg-sign) of Perry, Oklahoma. A horizontal well was installed in the M Area of the SRS below and parallel to an abandoned tile process sewer line. The installation of the horizontal well was a two-part process. Part one consisted of drilling the borehole, and part two was the horizontal well completion

  13. Slant rigs offer big payoffs in shallow drilling

    International Nuclear Information System (INIS)

    Smith, J.; Edwards, B.

    1992-01-01

    Slant hole drilling technology can result in considerable savings over conventionally drilled deviated holes because mud motors and deviation control with measurement while drilling tools are usually unnecessary. The benefits of using slant hole rigs for development drilling improve after the bit walk tendencies and the correct bottom hole assemblies have been determined for a particular area. This article discusses three recent drilling operations that successfully used slant drilling technology on land-based projects: drilling for heavy oil in Alberta, drilling for gas in Alberta, and drilling a river crossing for a gas pipeline in British Columbia. These examples demonstrate the flexibility of slant drilling technology

  14. Experience with drilling and blasting work during construction of Mochovce nuclear power plant

    International Nuclear Information System (INIS)

    Mraz, M.; Vojta, A.; Podel, R.

    1986-01-01

    The results are discussed of four years of investigating the technical and economic parameters of drilling and blasting equipment employed on the building site of the Mochovce nuclear power plant. The technical and operating characteristics are given of tested breaking and drilling sets manufactured by various foreign companies. The final choice was based on output, hard currency prices, power demand, operating reliability and number of personnel required for operation. The optimal set consists of two Hausherr HBM 70 drilling systems (holes with a diameter of 130 to 150 mm) and two ROC 601-02 Atlas Copco machines (auxiliary work, breaking foundation holes for nuclear reactors). (J.C.)

  15. CFPL installs products pipeline with directional drilling

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Central Florida Pipeline Company (CFPL), a subsidiary of GATX Terminals Corp., Tampa, FL, has used directional drilling under seven water bodies in Hillsborough, Polk and Osceola Counties in constructing its new pipeline from Tampa to Orlando. Primary reason for using directional drilling is to protect the environment by minimizing water turbidity while the 16-inch diameter, 109-mile refined petroleum products pipeline is being installed. Total cost of the project is pegged at $68.5 million. Directional drilling enabled the pipe to be placed about 20 feet below the bottom of: The Alafia River in Riverview with 999 feet drilled; Port Sutton Channel near the Port of Tampa with 2,756 feet drilled; Reedy Creek Swamp at the intersection of Interstate 4 and Highway 192 which had 1,111 feet drilled; Wetland number-sign 70 southwest of Lake Wales with 1,575 feet drilled; Peace River south of Bartow had 2,470 feet drilled; Bonnet Creek west of Kissimmee had 693 feet drilled. Shingle Creek near the borders of Osceola and Orange Counties with 1,700 feet drilled. This paper reviews the design plans for construction and the emergency response plans should a rupture occur in the line

  16. Development of controlled drilling technology and measurement method in the borehole. Phase 2. Upgrading of drilling and measurement system and its application to the fault

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Shin, Koichi; Ohtsu, Masashi

    2009-01-01

    In Japan, the soft sedimentary rock of the Neogene tertiary is being focused as a host rock for High Level Waste (HLW) disposal. Especially, the soft sedimentary rock at the coastal area is thought to be one of the best candidates, since there is little driving force of the underground water. The measurement and logging of the bore hole in order to investigate the hydro-geological and geo-mechanical conditions of the host rock is a very important way to examine the potential of the disposal candidates. Since 2000, CRIEPI (Central Research Institute of Electric Power Industry) has been conducting the project on controlled drilling and the logging/measurement technologies in its boreholes. Based on the results of phase 1(2000-2004), CRIEPI has been developing the drilling and logging/measurement technologies for fault zone during phase 2 (2005-2007). The drilling technology such as drilling for fault zone, horizontal drilling, long hole drilling, coring and locality detection was developed and these applicability was confirmed while drilling. The permeability/water-sampling/imaging tool was revised to apply wider borehole and longer measuring section. The WL-LWD was improved to be tougher in the hole. The borehole pressure meter and stress measurement tools were unified. Each tools necessary for the monitoring system is manufactured. The applicability of these tools and systems were verified in the borehole. After conducting surveys for the Omagari fault distributing at the Kami-horonobe area, the drilling site and borehole trace was decided in 2005. Considering the planned trace, the bore hole was drilled to the 683.5m long and its core recovery was 99.8%. Using borehole logging/measurement/survey, the geological, hydrological, geo-mechanical, geophysical and geochemical data were collected and the Omagari fault was characterized. (author)

  17. Drilling history core hole DC-6 Hanford, Washington

    International Nuclear Information System (INIS)

    1978-06-01

    Core hole DC-6 was completed in May 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scisson, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-6. Core hole DC-6 is located within the boundary of the Hanford Site at the old Hanford town site. The Hanford Site coordinates for DC-6 are North 54,127.17 feet and West 17,721.00 feet. The surface elevation is approximately 402 feet above sea level. The purpose of core hole DC-6 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection and to provide a borehole for hydrologic testing. The total depth of core hole DC-6 was 4336 feet. Core recovery was 98.4% of the total footage cored

  18. Methods to ensure optimal off-bottom and drill bit distance under pellet impact drilling

    Science.gov (United States)

    Kovalyov, A. V.; Isaev, Ye D.; Vagapov, A. R.; Urnish, V. V.; Ulyanova, O. S.

    2016-09-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rock for various purposes. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The paper presents the survey of methods ensuring an optimal off-bottom and a drill bit distance. The analysis of methods shows that the issue is topical and requires further research.

  19. Pen Branch fault: Confirmatory drilling results

    International Nuclear Information System (INIS)

    Stieve, A.; Coruh, C.; Costain, J.K.

    1994-01-01

    The Confirmatory Drilling Project is the final investigation under the Pen Branch Fault Program initiated to determine the capability of the Pen Branch fault (PBF) to release seismic energy. This investigation focused on a small zone over the fault where previously collected seismic reflection data had indicated the fault deforms the subsurface at 150 msec (with reference to an 80 m reference datum). Eighteen drill holes, 2 to basement and the others to 300 ft, were arranged in a scatter pattern over the fault. To adequately define configuration of the layers deformed by the fault boreholes were spaced over a zone of 800 ft, north to south. The closely spaced data were to confirm or refute the existence of flat lying reflectors observed in seismic reflection data and to enable the authors to identify and correlate lithologic layers with seismic reflection data. Results suggest that deformation by the fault in sediments 300 ft deep ad shallower is subtle. Corroboration of the geologic interpretation with the seismic reflection profile is ongoing but preliminary results indicate that specific reflectors can be assigned to lithologic layers. A large amplitude package of reflections below a flat lying continuous reflection at 40 msec can be correlated with a lithology that corresponds to carbonate sediments in geologic cross-section. Further, data also show that a geologic layer as shallow as 30 ft can be traced on these seismic data over the same subsurface distance where geologic cross-section shows corresponding continuity. The subsurface structure is thus corroborated by both methods at this study site

  20. Environmental effects monitoring for exploration drilling

    International Nuclear Information System (INIS)

    Buchanan, R.A.; Cook, J.A.; Mathieu, A.

    2003-01-01

    Strategies for monitoring the environmental effects of single exploratory offshore wells on the east coast of Canada were evaluated. The report was compiled from consultations with scientists, regulators and stakeholders as well as a review of regulatory regimes and toxicity results. The aim of the report was to develop a decision tree for determining when to conduct environmental effects monitoring (EEM). Respondents evinced lower levels of concern for single exploratory wells than for production developments. A number of scientists argued for full statistical treatment of all data, and many people argued that more assurance was needed that the marine environment was not being unduly harmed. Respondents also considered that biological effects should be a primary focus, rather than the occurrence of trace chemical signals, and that seabirds and mammals should be monitored. Concern was expressed over the value of data collected from monitoring the effects of exploratory drilling activities. It was suggested that local and site-specific issues should be considered in the design of EEM programs. Respondents expressed strong concern about potential cumulative effects with other industrial activities, and suggested that test cases should be established and monitored to develop a scientific rationale for the inclusion or exclusion of specific variables in future EEM programs. A decision tree was developed based on 3 scenarios: (1) compliance monitoring only in well known areas with no sensitive issues; opportunistic EEM surveys of sediments, benthos, seabirds and marine mammals in shallow or deep areas with no known sensitive issues; and (3) custom EEM surveys for sensitive areas. Currently, there are EEM requirements for drilling exploratory wells offshore Canada's east coast. 58 refs., 2 tabs., 7 figs

  1. Deep drilling KLX 02. Drilling and documentation of a 1700 m deep borehole at Laxemar, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, O [VBB VIAK AB, Malmoe (Sweden)

    1994-08-01

    In this report the preparation and execution of the deep core drilling KLX 02 is described. The hole was drilled with the wireline methods, NQ dimension (diameter 76 mm), to a final depth of 1700.5 m. Prior to core drilling a diameter 215 mm pilot hole was pre drilled to 200 m with controlled hammer drilling (DTH). In this hole casing and air-lift equipment was installed with the aim to support the circulation of drilling fluid. During core drilling there was a measurement of major drilling parameters and drilling fluid in and out of hole. As a fluid tracer uranine was used. Each 300 m of core drilling air-lift pump tests were performed. After completion a flow-meter log was run to finalize the project phase. It can be concluded that both the pre drilling and core drilling methods used proved to be successful. No severe technical problem occurred. However, potential risks have been pointed at in the report. The air-lift system functioned only partly and has to be modified for further use. Also the technique for monitoring of drilling parameters needs improvement as does the method for air-lift pump tests with packer. The organisation model for planning and realization functioned satisfactory and can be recommended for similar future projects. 9 refs, numerous tabs and figs.

  2. New optimized drill pipe size for deep-water, extended reach and ultra-deep drilling

    Energy Technology Data Exchange (ETDEWEB)

    Jellison, Michael J.; Delgado, Ivanni [Grant Prideco, Inc., Hoston, TX (United States); Falcao, Jose Luiz; Sato, Ademar Takashi [PETROBRAS, Rio de Janeiro, RJ (Brazil); Moura, Carlos Amsler [Comercial Perfuradora Delba Baiana Ltda., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    A new drill pipe size, 5-7/8 in. OD, represents enabling technology for Extended Reach Drilling (ERD), deep water and other deep well applications. Most world-class ERD and deep water wells have traditionally been drilled with 5-1/2 in. drill pipe or a combination of 6-5/8 in. and 5-1/2 in. drill pipe. The hydraulic performance of 5-1/2 in. drill pipe can be a major limitation in substantial ERD and deep water wells resulting in poor cuttings removal, slower penetration rates, diminished control over well trajectory and more tendency for drill pipe sticking. The 5-7/8 in. drill pipe provides a significant improvement in hydraulic efficiency compared to 5-1/2 in. drill pipe and does not suffer from the disadvantages associated with use of 6-5/8 in. drill pipe. It represents a drill pipe assembly that is optimized dimensionally and on a performance basis for casing and bit programs that are commonly used for ERD, deep water and ultra-deep wells. The paper discusses the engineering philosophy behind 5-7/8 in. drill pipe, the design challenges associated with development of the product and reviews the features and capabilities of the second-generation double-shoulder connection. The paper provides drilling case history information on significant projects where the pipe has been used and details results achieved with the pipe. (author)

  3. Deep drilling KLX 02. Drilling and documentation of a 1700 m deep borehole at Laxemar, Sweden

    International Nuclear Information System (INIS)

    Andersson, O.

    1994-08-01

    In this report the preparation and execution of the deep core drilling KLX 02 is described. The hole was drilled with the wireline methods, NQ dimension (diameter 76 mm), to a final depth of 1700.5 m. Prior to core drilling a diameter 215 mm pilot hole was pre drilled to 200 m with controlled hammer drilling (DTH). In this hole casing and air-lift equipment was installed with the aim to support the circulation of drilling fluid. During core drilling there was a measurement of major drilling parameters and drilling fluid in and out of hole. As a fluid tracer uranine was used. Each 300 m of core drilling air-lift pump tests were performed. After completion a flow-meter log was run to finalize the project phase. It can be concluded that both the pre drilling and core drilling methods used proved to be successful. No severe technical problem occurred. However, potential risks have been pointed at in the report. The air-lift system functioned only partly and has to be modified for further use. Also the technique for monitoring of drilling parameters needs improvement as does the method for air-lift pump tests with packer. The organisation model for planning and realization functioned satisfactory and can be recommended for similar future projects. 9 refs, numerous tabs and figs

  4. Trends in the Drilling Waste Management

    Directory of Open Access Journals (Sweden)

    Lucyna Czekaj

    2006-10-01

    Full Text Available Petroleum Industry is trying to achieve sustainable development goals. Each year new solutions are implemented to minimize the environmental impact of drilling operations. The paper presents trends in the drilling waste management caused by introducing the sustainable development into the petroleum industry. Old solutions such as the drilling waste disposal at the waste dump or dumping ground are not acceptable from the environmental point of view. The paper presents an analysis of new solutions as the sustainable solutions. The most important problem is the chemical pollution in cuttings and the waste drilling mud. The industrial solutions as well as the laboratory research on the pollution removing from drilling wastes are analysed. The most promising method seems to be the recycling and design for the environment of drilling mud.

  5. PDVSA INTEVEP Technologies in oil well drilling

    International Nuclear Information System (INIS)

    Bolivar, C.; Rafael, A.; Davila, Manuel A.

    1998-01-01

    The orimulsion, the generation of catalytic technologies and the development of HDH (process which transform heavy crudes in light crudes), are examples of some of the well known technologies developed by PDVSA INTEVEP. But the drilling oil wells technologies developed by the same entreprise, even though are very important, are less known all around the world. This document describes some products developed through those technologies: THIXOGAS T M which is an antimigratory aditive; INTEFLOW T M which is a fluid for drilling, complementation and rehabilitation of oil drills; INTERCAB T M which is an aditive for fluids in drilling; orimatita which is a denser for drilling fluids; CARBOLIG T M which is an aditive for drilling fluids; and many other products and technologies in development, impacted considerably the venezuelan economy by preserving the environment and saving quite an important amount of money in 1997 (Bs. 3.000 M M)

  6. Replacement team of mining drilling rigs

    OpenAIRE

    Hamodi, Hussan; Lundberg, Jan

    2014-01-01

    This paper presents a practical model to calculate the optimal replacement time (ORT) of drilling rigs used in underground mining. As a case study, cost data for drilling rig were collected over four years from a Swedish mine. The cost data include acquisition, operating, maintenance and downtime costs when using a redundant rig. A discount rate is used to determine the value of these costs over time. The study develops an optimisation model to identify the ORT of a mining drilling rig which ...

  7. Test plan for core drilling ignitability testing

    International Nuclear Information System (INIS)

    Witwer, K.S.

    1996-01-01

    The objective of this testing is to determine if ignition occurs while core drilling in a flammable gas environment. Drilling parameters are chosen so as to provide bounding conditions for the core sampling environment. If ignition does not occur under the conditions set forth in this test, then a satisfactory level of confidence will be obtained which would allow field operations under the normal drilling conditions

  8. Rulison Site corrective action report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Project Rulison was a joint US Atomic Energy Commission (AEC) and Austral Oil Company (Austral) experiment, conducted under the AEC`s Plowshare Program, to evaluate the feasibility of using a nuclear device to stimulate natural gas production in low-permeability gas-producing geologic formations. The experiment was conducted on September 10, 1969, and consisted of detonating a 40-kiloton nuclear device at a depth of 2,568 m below ground surface (BGS). This Corrective Action Report describes the cleanup of petroleum hydrocarbon- and heavy-metal-contaminated sediments from an old drilling effluent pond and characterization of the mud pits used during drilling of the R-EX well at the Rulison Site. The Rulison Site is located approximately 65 kilometers (40 miles) northeast of Grand Junction, Colorado. The effluent pond was used for the storage of drilling mud during drilling of the emplacement hole for the 1969 gas stimulation test conducted by the AEC. This report also describes the activities performed to determine whether contamination is present in mud pits used during the drilling of well R-EX, the gas production well drilled at the site to evaluate the effectiveness of the detonation in stimulating gas production. The investigation activities described in this report were conducted during the autumn of 1995, concurrent with the cleanup of the drilling effluent pond. This report describes the activities performed during the soil investigation and provides the analytical results for the samples collected during that investigation.

  9. Rulison Site corrective action report

    International Nuclear Information System (INIS)

    1996-09-01

    Project Rulison was a joint US Atomic Energy Commission (AEC) and Austral Oil Company (Austral) experiment, conducted under the AEC's Plowshare Program, to evaluate the feasibility of using a nuclear device to stimulate natural gas production in low-permeability gas-producing geologic formations. The experiment was conducted on September 10, 1969, and consisted of detonating a 40-kiloton nuclear device at a depth of 2,568 m below ground surface (BGS). This Corrective Action Report describes the cleanup of petroleum hydrocarbon- and heavy-metal-contaminated sediments from an old drilling effluent pond and characterization of the mud pits used during drilling of the R-EX well at the Rulison Site. The Rulison Site is located approximately 65 kilometers (40 miles) northeast of Grand Junction, Colorado. The effluent pond was used for the storage of drilling mud during drilling of the emplacement hole for the 1969 gas stimulation test conducted by the AEC. This report also describes the activities performed to determine whether contamination is present in mud pits used during the drilling of well R-EX, the gas production well drilled at the site to evaluate the effectiveness of the detonation in stimulating gas production. The investigation activities described in this report were conducted during the autumn of 1995, concurrent with the cleanup of the drilling effluent pond. This report describes the activities performed during the soil investigation and provides the analytical results for the samples collected during that investigation

  10. Newberry exploratory slimhole: Drilling and testing

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1997-11-01

    During July--November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 feet exploratory slimhole (3.895 inch diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  11. Numerical Modeling of Foam Drilling Hydraulics

    Directory of Open Access Journals (Sweden)

    Ozcan Baris

    2007-12-01

    Full Text Available The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow.

  12. Fracture coatings in Topopah Spring Tuff along drill hole wash

    International Nuclear Information System (INIS)

    Carlos, B.A.; Chipera, S.J.; Bish, D.L.

    1994-01-01

    Fracture-lining minerals are being studied as part of site characterization to determine the suitability of Yucca Mountain, Nevada as a potential high level nuclear waste repository. Fracture coatings in the Paintbrush Group provide information on potential flow paths above the water table both toward and away from the potential repository and provide information on the distribution of fracture-lining minerals needed to model thermal effects of waste emplacement. Fracture coatings within the predominantly non-zeolitic Paintbrush Group vary both with depth and laterally across Yucca Mountain, whereas fracture coatings in tuffs below the Paintbrush Group are related to the mineralogy of the tuffs and follow a consistent pattern of distribution with predominantly quartz, calcite, and manganese oxides in the devitrified intervals and mordenite and clinoptilolite in the zeolitic intervals. The zeolites stellerite and heulandite are more abundant in fractures in the Topopah Spring Tuff in drill holes USW G-1 and UE-25 a number-sign l, located along Drill Hole Wash (at the northern end of Yucca Mountain) than in core from other parts of Yucca Mountain. Buesch et al. (2) present evidence for a complex fault system along Drill Hole Wash. To investigate the possibility that the abundant fracture-lining zeolites in USW G-1 and UE-25 a number-sign 1 are related to the Drill Hole Wash fault, the Topopah Spring Tuff was examined in drill cores from USW UZ-14, USW G-1, USW NRG-7/7a, and UE-25 a number-sign l

  13. Slow drilling speeds for single-drill implant bed preparation. Experimental in vitro study.

    Science.gov (United States)

    Delgado-Ruiz, R A; Velasco Ortega, E; Romanos, G E; Gerhke, S; Newen, I; Calvo-Guirado, J L

    2018-01-01

    To evaluate the real-time bone temperature changes during the preparation of the implant bed with a single-drill protocol with different drill designs and different slow drilling speeds in artificial type IV bone. For this experimental in vitro study, 600 implant bed preparations were performed in 10 bovine bone disks using three test slow drilling speeds (50/150/300 rpm) and a control drilling speed (1200 rpm). The temperature at crestal and apical areas and time variations produced during drilling with three different drill designs with similar diameter and length but different geometry were recorded with real-life thermographic analysis. Statistical analysis was performed by two-way analysis of variance. Multiple comparisons of temperatures and time with the different drill designs and speeds were performed with the Tukey's test. T Max values for the control drilling speed with all the drill designs (D1 + 1200; D2 + 1200; D3 + 1200) were higher compared to those for the controls for 11 ± 1.32 °C (p drilling at 50 rpm resulted in the lowest temperature increment (22.11 ± 0.8 °C) compared to the other slow drilling speeds of 150 (24.752 ± 1.1 °C) and 300 rpm (25.977 ± 1.2 °C) (p drilling speeds compared to that for the control drilling speed. Slow drilling speeds required significantly more time to finish the preparation of the implant bed shown as follows: 50 rpm > 150 rpm > 300 rpm > control (p drill protocol with slow drilling speeds (50, 150, and 300 rpm) without irrigation in type IV bone increases the temperature at the coronal and apical levels but is below the critical threshold of 47 °C. The drill design in single-drill protocols using slow speeds (50, 150, and 300 rpm) does not have an influence on the thermal variations. The time to accomplish the implant bed preparation with a single-drill protocol in type IV bone is influenced by the drilling speed and not by the drill design. As the speed decreases, then

  14. Advancing Understanding of Earthquakes by Drilling an Eroding Convergent Margin

    Science.gov (United States)

    von Huene, R.; Vannucchi, P.; Ranero, C. R.

    2010-12-01

    A program of IODP with great societal relevance is sampling and instrumenting the seismogenic zone. The zone generates great earthquakes that trigger tsunamis, and submarine slides thereby endangering coastal communities containing over sixty percent of the earth’s population. To asses and mitigate this endangerment it is urgent to advance understanding of fault dynamics that allows more timely anticipation of hazardous seismicity. Seismogenesis on accreting and eroding convergent plate boundaries apparently differ because of dissimilar materials along the interplate fault. As the history of instrumentally recorded earthquakes expands the difference becomes clearer. The more homogeneous clay, silt and sand subducted at accreting margins is associated with great earthquakes (M 9) whereas the fragmented upper plate rock that can dominate subducted material along an eroding margin plate interface is associated with many tsunamigenic earthquakes (Bilek, 2010). Few areas have been identified where the seismogenic zone can be reached with scientific drilling. In IODP accreting margins are studied on the NanTroSeize drill transect off Japan where the ultimate drilling of the seismogenic interface may occur by the end of IODP. The eroding Costa Rica margin will be studied in CRISP where a drill program will begin in 2011. The Costa Rican geophysical site survey will be complete with acquisition and processing of 3D seismic data in 2011 but the entire drilling will not be accomplished in IODP. It is appropriate that the accreting margin study be accomplished soon considering the indications of a pending great earthquake that will affect a country that has devoted enormous resources to IODP. However, understanding the erosional end-member is scientifically as important to an understanding of fault mechanics. Transoceanic tsunamis affect the entire Pacific rim where most subduction zones are eroding margins. The Costa Rican subduction zone is less complex operationally and

  15. Arctic Ocean Paleoceanography and Future IODP Drilling

    Science.gov (United States)

    Stein, Ruediger

    2015-04-01

    areas and approaches for drilling and recovering undisturbed and complete sedimentary sequences are depth transects across the major ocean ridge systems, such as the Lomonosov Ridge. These new detailed climate records spanning time intervals from the (late Cretaceous/)Paleogene Greenhouse world to the Neogene-Quaternary Icehouse world will give new insights into our understanding of the Arctic Ocean within the global climate system and provide an opportunity to test the performance of climate models used to predict future climate change. During the Polarstern Expedition PS87 in August-September 2014, new site survey data including detailed multibeam bathymetry, multi-channel seismic and Parasound profiling as well as geological coring, were obtained on Lomonosov Ridge (Stein, 2015), being the basis for a more precise planning and update for a future IODP drilling campaign. Reference: Stein, R. (Ed.), 2015. Cruise Report of Polarstern Expedition PS87-2014 (Arctic Ocean/Lomonosov Ridge). Reps. Pol. Mar. Res., in press. Stein, R. , Weller, P. , Backman, J. , Brinkhuis, H., Moran, K. , Pälike, H., 2014. Cenozoic Arctic Ocean Climate History: Some highlights from the IODP Arctic Coring Expedition (ACEX). Developments in Marine Geology 7, Elsevier Amsterdam/New York, pp. 259-293.

  16. 30 CFR 57.7050 - Tool and drill steel racks.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  17. Numerical modelling for quantitative environmental risk assessment for the disposal of drill cuttings and mud

    Science.gov (United States)

    Wahab, Mohd Amirul Faiz Abdul; Shaufi Sokiman, Mohamad; Parsberg Jakobsen, Kim

    2017-10-01

    To investigate the fate of drilling waste and their impacts towards surrounding environment, numerical models were generated using an environmental software; MIKE by DHI. These numerical models were used to study the transportation of suspended drill waste plumes in the water column and its deposition on seabed in South China Sea (SCS). A random disposal site with the model area of 50 km × 25 km was selected near the Madalene Shoal in SCS and the ambient currents as well as other meteorological conditions were simulated in details at the proposed location. This paper was focusing on sensitivity study of different drill waste particle characteristics on impacts towards marine receiving environment. The drilling scenarios were obtained and adapted from the oil producer well at offshore Sabah (Case 1) and data from actual exploration drilling case at Pumbaa location (PL 469) in the Norwegian Sea (Case 2). The two cases were compared to study the effect of different drilling particle characteristics and their behavior in marine receiving environment after discharged. Using the Hydrodynamic and Sediment Transport models simulated in MIKE by DHI, the variation of currents and the behavior of the drilling waste particles can be analyzed and evaluated in terms of multiple degree zones of impacts.

  18. Environmental effects of a discharge of drill cuttings contaminated with ester-based drilling muds in the North Sea

    International Nuclear Information System (INIS)

    Daan, R.; Booij, K.; Mulder, M.; Weerlee, E.M. van

    1996-01-01

    A field-monitoring program has been carried out to assess the environmental effects associated with drill cutting discharges at a drilling location in the North Sea, after drilling with ester-based muds. The study included a baseline survey just before drilling started and three postdrilling surveys, 1, 4, and 11 months after termination of drilling. During these surveys, ester concentrations and macrofauna densities were determined at distances between 75 and 3,000 m from the well. For the first and second postdrilling surveys, ester concentrations ranged between 2 and 4,700 mg·kg -1 dry sediment. During the third survey, esters were detected up to 200 m, with concentrations between 1 and 250 mg·kg -1 dry sediment. Between 500 and 3,000 m, ester concentrations were below detection level. The half-life was estimated as 133 d. This value reflects the composite effects of biodegradation and sediment relocation. During the second postdrilling survey, a reduced abundance as well as a reduced species richness of the macrofauna was observed up to 200 m from the well. Also, the presence of Capitella capitata was an obvious sign of disturbed sediment conditions in this area. A few species showed abundance gradients over the whole sampling transect and occurred in reduced abundance up to 500 or 1,000 m compared to the 3,000-m reference station. The third postdrilling survey clearly revealed effects at 75 to 200 m from the well. At distances ≥500 m, persistent effects could no longer be demonstrated. Although the results of the present study show that effects had not completely disappeared after 1 year, there are signs of recovery of the macrobenthos, because a reasonable number of species had recolonized the area in the vicinity of the well site, particularly at 200 m, in fairly high numbers

  19. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole

  20. Drilling technology advances on four fronts

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.

    2002-01-01

    Trends and advances in drilling technology are discussed. Four different major trends have been identified. One of these is proprietary case drilling which is said to allow operators to simultaneously drill, case, and evaluate oil and gas wells. In proprietary case drilling, the well is drilled with standard oil field casing which remains in the hole all the time, eliminating the need for tripping. Drill bits and other downhole tools are lowered via wireline inside the casing and latched to the last joint of casing. Wells are drilled either by rotating the casing or by using a downhole mud motor for steering, using conventional directional tools. This technology was introduced by Tesco and is marketed in 25 countries along with a full range of drilling products and services. Super single rigs are an other trend which, owing to their versatility, combined with relatively small environmental footprint have become the rig of choice in a growing number of drilling programs. Super single rigs use 45-ft. joints of drill pipe, more versatile top drives and they have an automated pipe handling system. Super singles can be used on both vertical and slant wells and offer advantages of lower costs, higher efficiencies and greater drilling depths. Given their low environmental impact hydraulic capability, super singles also find application where zero disturbance rules are in effect, as for example, in some parts of southern Alberta. Directional drilling and MWD are most associated with SAGD projects but they also have been used and made significant difference in other spheres of oil recovery as well. The fact is that about 35 percent of wells drilled today are drilled with some form of directional drilling; this will stimulate the growth of ever more advanced MWD technology. Northern rigs are in a class of their own in that here the emphasis is on keeping the crew warm, as opposed to lots of gadgets. The most immediately-visible heat-conserving modification is the 60-ft wind

  1. Laser Drilling - Drilling with the Power of Light

    Energy Technology Data Exchange (ETDEWEB)

    Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

    2007-02-28

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and

  2. Stratigraphy and depositional history of the Apollo 17 drill core

    Science.gov (United States)

    Taylor, G. J.; Warner, R. D.; Keil, K.

    1979-01-01

    Lithologic abundances obtained from modal analyses of a continuous string of polished thin sections indicate that the Apollo 17 deep drill core can be divided into three main zones: An upper zone (0-19 cm depth) characterized by high abundances of agglutinates (30%) and a high ratio of mare to non-mare lithic fragments (less than 0.8); a coarse-grained layer (24-56 cm) rich in fragments of high-Ti mare basalts and mineral fragments derived from them, and poor in agglutinates (6%); and a lower zone (56-285 cm) characterized by variable but generally high agglutinate abundances (25%) and a low ratio of mare to nonmare lithic fragments (0.6). Using observations of the geology of the landing site, the principles of cratering dynamics, and the vast amount of data collected on the core, the following depositional history for the section of regolith sampled by the Apollo 17 drill core: was devised.

  3. Environmental Measurement While Drilling System for Real-Time Field Screening of Contaminants

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Normann, R.A.; Williams, C.V.

    1999-01-01

    Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of subsurface contaminants. However, analysis of the samples is expensive and time-consuming: off-site laboratory analysis can take weeks or months. Real-time information on environmental conditions, drill bit location and temperature during drilling is valuable in many environmental restoration operations. This type of information can be used to provide field screening data and improved efficiency of site characterization activities. The Environmental Measurement-While-Drilling (EMWD) System represents an innovative blending of new and existing technology in order to obtain real-time data during drilling. The system consists of two subsystems. The down-hole subsystem (at the drill bit) consists of sensors, a power supply, a signal conditioning and transmitter board, and a radio-frequency (RF) coaxial cable. The up-hole subsystem consists of a battery pack/coil, pickup coil, receiver, and personal computer. The system is compatible with fluid miser drill pipe, a directional drilling technique that uses minimal drilling fluids and generates little to no secondary waste. In EMWD, downhole sensors are located behind the drill bit and linked by a high-speed data transmission system to a computer at the surface. Sandia-developed Windowstrademark-based software is used for data display and storage. As drilling is conducted, data is collected on the nature and extent of contamination, enabling on-the-spot decisions regarding drilling and sampling strategies. Initially, the downhole sensor consisted of a simple gamma radiation detector, a Geiger-Mueller tube (GMT). The design includes data assurance techniques to increase safety by reducing the probability of giving a safe indication when an unsafe condition exists. The EMWD system has been improved by the integration of a Gamma Ray Spectrometer (GRS) in place of the GMT. The GRS consists of a sodium iodide

  4. 30 CFR 77.1007 - Drilling; general.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling; general. 77.1007 Section 77.1007 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Control § 77.1007 Drilling; general. (a) Equipment that is to be used during a shift shall be inspected...

  5. Electric motor for laser-mechanical drilling

    Science.gov (United States)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  6. Neurosurgical robotic arm drilling navigation system.

    Science.gov (United States)

    Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai

    2017-09-01

    The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Drilling Fluids Using Multiwall Carbon Nanotube (MWCNT

    Directory of Open Access Journals (Sweden)

    Mostafa Sedaghatzadeh

    2012-11-01

    Full Text Available Designing drilling fluids for drilling in deep gas reservoirs and geothermal wells is a major challenge. Cooling drilling fluids and preparing stable mud with high thermal conductivity are of great concern. Drilling nanofluids, i.e. a low fraction of carbon nanotube (CNT well dispersed in mud, may enhance the mixture thermal conductivity compared to the base fluids. Thus, they are potentially useful for advanced designing high temperature and high pressure (HTHP drilling fluids. In the present study, the impacts of CNT volume fraction, ball milling time, functionalization, temperature, and dispersion quality (by means of scanning electron microscopy, SEM on the thermal and rheological properties of water-based mud are experimentally investigated. The thermal conductivities of the nano-based drilling fluid are measured with a transient hot wire method. The experimental results show that the thermal conductivity of the water-based drilling fluid is enhanced by 23.2% in the presence of 1 vol% functionalized CNT at room temperature; it increases by 31.8% by raising the mud temperature to 50 °C. Furthermore, significant improvements are seen in the rheological properties—such as yield point, filtration properties, and annular viscosity—of the CNTmodified drilling fluid compared to the base mud, which pushes forward their future development.

  8. Basic Land Drills for Swimming Stroke Acquisition

    Science.gov (United States)

    Zhang, Peng

    2014-01-01

    Teaching swimming strokes can be a challenging task in physical education. The purpose of the article is to introduce 12 on land drills that can be utilized to facilitate the learning of swimming strokes, including elementary back stroke, sidestroke, front crawl, back stroke, breaststroke, and butterfly. Each drill consists of four components…

  9. Status Report A Review of Slimhole Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Tao; Carroll, Herbert B.

    1994-09-01

    This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

  10. Drilling and geohydrologic data for test hole USW UZ-1, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Whitfield, M.S.; Thordarson, W.; Hammermeister, D.P.; Warner, J.B.

    1990-01-01

    This report presents data collected to determine the hydrologic characteristics of tuffaceous rocks penetrated in test hole USW UZ-1. The borehole is the first of two deep, large-diameter, unsaturated-zone test holes dry drilled using the vacuum/reverse-air-circulation method. This test hole was drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in a program conducted in cooperation with the US Department of Energy. These investigations are part of the Yucca Mountain Project (formerly the Nevada Nuclear Waste Storage Investigations) to identify a potentially suitable site for the storage of high-level radioactive wastes. Data are presented for bit and casing configurations, coring methods, sample collection, drilling rate, borehole deviation, and out-of-gage borehole. Geologic data for this borehole include geophysical logs, a lithologic log of drill-bit cuttings, and strike and distribution of fractures. Hydrologic data include water-content and water-potential measurements of drill-bit cuttings, water-level measurements, and physical and chemical analyses of water. Laboratory measurements of moisture content and matric properties from the larger drill-bit cutting fragments were considered to be representative of in-situ conditions. 3 refs., 5 figs., 10 tabs

  11. Kaisten exploration well. Civil construction work, environemntal protection and drilling techniques

    International Nuclear Information System (INIS)

    Anon.

    1986-02-01

    The exploration well at Kaisten was realized as the fifth well within the Nagra Deep Drilling Program in Northern Switzerland. The drilling work was startet February 13, 1984. Having reached the final depth of 1305.8 m on June 27, 1984, the test phase was initiated and completed by May 3, 1985. The well drilled approx. 300 m of sediments and approx. 1000 m of crystalline rock. Oriented cores were taken over the whole length of the well. The present report presents the drilling activities, civil construction work related to the site and precautions taken to account for environmental protection aspects. A chapter dealing with the commission representing members of the federal, cantonal and local authorities and about reporting is given at the end of this report. (author)

  12. Lifting device for drilling rods

    Energy Technology Data Exchange (ETDEWEB)

    Radzivilovich, L L; Laptev, A G; Lipkovich, V A

    1982-01-01

    A lifter is proposed for drilling rods including a spacer stand with rotating bracket, boom with by-pass rollers, spacing and lifting hydrocylinders with rods and flexible tie mechanism. In order to improve labor productivity by improving maneuverability and to increase the maintenance zone, the lifter is equipped with a hydrocylinder of advance and a cross piece which is installed with the possibility of forward and rotational movement on the stand, and in which by means of the hydrocylinder of advance a boom is attached. Within the indicated boom there is a branch of the flexible tie mechanism with end attached with the possibility of regulation over the length on a rotating bracket, while the rod of the lifting hydrocylinder is connected to the cross piece.

  13. Core drilling of deep drillhole OL-KR57 at Olkiluoto in Eurajoki 2011-2012

    International Nuclear Information System (INIS)

    Toropainen, V.

    2012-07-01

    As a part of the confirming site investigations at Olkiluoto, Suomen Malmi Oy (Smoy) core drilled 401.71 m and 45.01 m deep drillholes, OL-KR57 and OL-KR57B, at Olkiluoto in September 2011 - January 2012. The diameter of the drillholes is 75.7 mm. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling water were recorded. The drill rig was computer controlled and the computer recorded drilling parameters during drilling. The objective of the measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling, flushing and washing water were 350 m3 and 30 m3 in the drillholes OL-KR57 and OL-KR57B, respectively. The measured volumes of the returning water in the drillholes were 328 m 3 and 16.8 m 3 , respectively. The deviations of the drillholes were measured with the deviation measuring instruments EMS and Gyro. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength was 123.9 MPa, the average Young's Modulus was 42.6 GPa and the average Poisson's ratio was 0.23. The main rock types are veined and diatexitic gneisses, mica gneiss and tonaliticgranodioritic- granitic gneiss. The average fracture frequency is 2.5 pcs/m in drillhole OL-KR57 and 3.3 pcs/m in the drillhole OL-KR57B. The average RQD values are 95.0 % and 93.0 %. Seven separate fractured zones were interpreted from OL-KR57 and three fractured zones from OL-KR57B. (orig.)

  14. Core drilling of deep drillhole OL-KR56 at Olkiluoto in Eurajoki 2011 - 2012

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2012-07-15

    As a part of the confirming site investigations at Olkiluoto, Suomen Malmi Oy (Smoy) core drilled a 1201.65 m deep drillhole with a diameter of 75.7 mm at Olkiluoto in October 2011 - January 2012. The identification number of the drillhole is OL-KR56. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling water were recorded. The drill rig was computer controlled and the computer recorded drilling parameters during drilling. The objective of the measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volume of the used drilling, washing and flushing water was 1628 m{sup 3}. The measured volume of the returning water in the drillhole was 1142 m{sup 3}. The deviation of the drillhole was measured with the deviation measuring instruments Reflex EMS and Reflex Gyro. The main rock types are veined and diatexitic gneisses, pegmatitic granite and mica gneiss. The average fracture frequency is 2.4 pcs/m and the average RQD value is 96.2 %. Fifty fractured zones were penetrated by the drillhole. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength was 120.0 MPa, the average Young's Modulus was 38.3 GPa and the average Poisson's ratio was 0.22. (orig.)

  15. Core drilling of deep drillhole OL-KR50 at Olkiluoto in Eurajoki 2008

    International Nuclear Information System (INIS)

    Toropainen, V.

    2009-02-01

    As a part of the confirming site investigations at Olkiluoto, Suomen Malmi Oy (Smoy) core drilled 939.33 m and 45.44 m deep drillholes with a diameter of 75.7 mm at Olkiluoto in September - November 2008. The identification numbers of the drillholes are OL-KR50 and OL-KR50B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling water were recorded. The drill rig was computer controlled and the computer recorded drilling parameters during drilling. The objective of the measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and washing water were 1135 m 3 and 20 m 3 in the drillholes OL-KR50 and OL-KR50B, respectively. The measured volume of the returning water in the drillhole OL-KR50 was 954 m 3 . The deviation of the drillholes was measured with the deviation measuring instruments EMS and Maxibor II. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength was 129.7 MPa, the average Young's Modulus was 45.8 GPa and the average Poisson's ratio was 0.15. The main rock types were veined and diatexitic gneisses, pegmatitic granite and tonaliticgranodioritic-granitic gneiss. The average fracture frequency is 2.0 pcs/m in drillhole OL KR50 and 3.6 pcs/m in the drillhole OL-KR50B. The average RQD values are 96.1 % and 94.3 %, respectively. 39 fractured zones were penetrated by drillhole OL-KR50 and four by drillhole OL-KR50B. (orig.)

  16. Drilling the North Anatolian Fault

    Directory of Open Access Journals (Sweden)

    Mustafa Aktar

    2008-07-01

    Full Text Available An international workshop entitled “GONAF: A deep Geophysical Observatory at the North Anatolian Fault”, was held 23–27 April 2007 in Istanbul, Turkey. The aim of this workshop was to refine plans for a deep drilling project at the North Anatolian Fault Zone (NAFZ in northwestern Turkey. The current drilling target is located in the Marmara Sea offshore the megacity of Istanbul in the direct vicinity of the main branch of the North Anatolian Fault on the PrinceIslands (Figs. 1 and 2.The NAFZ represents a 1600-km-long plate boundary that slips at an average rate of 20–30 mm·yr-1 (McClusky et al., 2000. It has developed in the framework of the northward moving Arabian plate and the Hellenic subduction zone where the African lithosphere is subducting below the Aegean. Comparison of long-term slip rates with Holocene and GPS-derived slip rates indicate an increasing westwardmovement of the Anatolian plate with respect to stable Eurasia. During the twentieth century, the NAFZ has ruptured over 900 km of its length. A series of large earthquakes starting in 1939 near Erzincan in Eastern Anatolia propagated westward towards the Istanbul-Marmara region in northwestern Turkey that today represents a seismic gap along a ≥100-km-long segment below the Sea of Marmara. This segment did not rupture since 1766 and, if locked, may have accumulated a slip deficit of 4–5 m. It is believed being capable of generating two M≥7.4 earthquakes within the next decades (Hubert-Ferrari et al., 2000; however, it could even rupture in a large single event (Le Pichon et al., 1999.

  17. Study on Monitoring Rock Burst through Drill Pipe Torque

    OpenAIRE

    Zhonghua Li; Liyuan Zhu; Wanlei Yin; Yanfang Song

    2015-01-01

    This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the a...

  18. Disposal of drilling fluids and solids generated from water-based systems in Alberta

    International Nuclear Information System (INIS)

    Parenteau, S.E.

    1999-01-01

    The different disposal options for drilling wastes as outlined in Guide 50 of the Alberta Energy and Utilities Board (EUB) are discussed. Guide 50 provides for the cost effective and environmentally sound disposal of drilling waste generated in Alberta. Each disposal option of the guide is reviewed and common methods of operation are outlined. Relative costs, environmental suitability and liability issues associated with each option are described. Issues regarding overall disposal considerations, on-site and off-site disposal options, hydrocarbon contamination, salt contaminated waste, toxic waste, and documentation of waste disposal outlined. Some recent programs which have been in the trial phase for a few years are also addressed

  19. Impact of Drill and Blast Excavation on Repository Performance Confirmation

    International Nuclear Information System (INIS)

    Keller, R.; Francis, N.; Houseworth, J.; Kramer, N.

    2000-01-01

    parameters, encompassing all the rock types that will be encountered for the proposed repository site at Yucca Mountain. This paper suggests that, based on predicted and verified vibration levels from blasting a distance equal to four standard deviations is unlikely to affect properties that govern water flow in the host rock. The authors propose this predicted distance and verification of vibration levels may be applied to the excavation of repository subsurface openings that may be most efficiently excavated by drill and blast methods with a reasonable assurance of safety

  20. Scientific Drilling in the Arctic Ocean: A challenge for the next decades

    Science.gov (United States)

    Stein, R.; Coakley, B.

    2009-04-01

    Nansen Arctic Drilling Program as well as by sponsorships from British Petroleum, ConocoPhillips, ExxonMobil, Norwegian Petroleum Directorate, StatoilHydro, and Shell International. The major targets of the workshop were: (1) to bring together an international group of Arctic scientists, young scientists and ocean drilling scientists to learn and exchange ideas, experience and enthusiasm about the Arctic Ocean; (2) to develop a scientific drilling strategy to investigate the tectonic and paleoceanographic history of the Arctic Ocean and its role in influencing the global climate system; (3) to summarize the technical needs, opportunities, and limitations of drilling in the Arctic; (4) to define scientific and drilling targets for specific IODP-type campaigns in Arctic Ocean key areas to be finalized in the development of drilling proposals. Following overview presentations about the history of the Arctic Ocean, legacy of high-latitude ocean drilling, existing site-survey database, technical needs for high-latitude drilling, possibilities of collaboration with industry, and the process of developing ocean-drilling legs through IODP, the main part of the workshop was spent in thematic and regional break-out groups discussing the particular questions to be addressed by drilling and the particular targets for Arctic scientific drilling. Within the working groups, key scientific questions (related to the overall themes paleoceanography, tectonic evolution, petrology/geochemistry of basement, and gas hydrates) and strategies for reaching the overall goals were discussed and - as one of the main results - core groups for further developing drilling proposals were formed. Based on discussions at this workshop, approximately ten new pre-proposals are planned to be submitted to IODP for the April 01- 2009 deadline. We hope that the development of new scientific objectives through the pre-proposal process will help reshape plans for scientific ocean drilling beyond 2013 and direct

  1. The Auto-Gopher Deep Drill

    Science.gov (United States)

    Badescu, Mircea

    2014-01-01

    Subsurface penetration by coring, drilling or abrading is of great importance for a large number of space and earth applications. An Ultrasonic/Sonic Drill/Corer (USDC) has been in development at JPL's Nondestructive Evaluation and Advanced Actuators (NDEAA) lab as an adaptable tool for many of these applications. The USDC uses a novel drive mechanism to transform the high frequency ultrasonic or sonic vibrations of the tip of a horn into a lower frequency sonic hammering of a drill bit through an intermediate free-flying mass. The USDC device idea has been implemented at various scales from handheld drills to large diameter coring devices. A series of computer programs that model the function and performance of the USDC device were developed and were later integrated into an automated modeling package. The USDC has also evolved from a purely hammering drill to a rotary hammer drill as the design requirements increased form small diameter shallow drilling to large diameter deep coring. A synthesis of the Auto-Gopher development is presented in this paper.

  2. Rock melting technology and geothermal drilling

    Science.gov (United States)

    Rowley, J. C.

    1974-01-01

    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  3. Method for monitoring drilling materials for gamma ray activity

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Arnold, D.M.; Schultz, W.E.

    1985-01-01

    This invention relates to a method of verifying the radioactivity levels in raw barite prior to its use in drilling mud. Certain gamma ray measurements are taken of the raw barite and extrapolated to a well bore environment using the projected drilling mud weight made from this barite and the dimensions of the well bore. The natural radioactivity occurring in the formations in the vicinity of the well bore is then compared with the projected levels to enable a determination of whether or not the barite has sufficient radioactive trace elements to forbid its use in a well. Alternatively, the method indicates the ratios by which such additives containing radioactive trace elements must be diluted with non-radioactive additives before use in the drilling mud. A second use of the method involves mud testing at the well site for radioactivity from mud additives, including barite, potassium chloride, and well cuttings. Additional uses include testing other weight materials prior to or subsequent to addition to the mud, and methods for correcting observed gamma ray measurements for the mud-induced background

  4. California study compares natural/drilling discharge contaminants offshore

    International Nuclear Information System (INIS)

    Steinhauer, W.G.; Imamura, E.; Barminski, J.R.; Neff, J.M.

    1992-01-01

    An analysis of drilling fluid and this paper reports that cuttings discharges in the southern Santa Maria basin offshore California indicates that the amount of metal and hydrocarbon contaminants from drilling operations is small relative to that from natural sources. The metal and hydrocarbon discharges were calculated for only one of the three platforms discharging between 1986 and 1989 in the Point Arguello field. However, assuming concentrations are similar on each platform, the combined input of metals and hydrocarbons over the 3-year period was still low (except for barium and lead) compared to the average annual flux from natural sources. The MMS is monitoring the Santa Maria basin to understand possible long-term environmental effects of oil and gas development (California Monitoring Program, Phase II; and Effects of OCS Production Platforms on Rocky Reef Fishes and Fisheries). A site-specific study area was established to determine effects of drilling-related discharges at Chevron U.S.S. Inc.'s platform Hidalgo in the Point Arguello field. Part of the study included review of discharge records for platforms Hidalgo, Hermosa (Chevron), and Harvest (Texaco Exploration and Production Inc.)

  5. A wash fluid for drilling into a field

    Energy Technology Data Exchange (ETDEWEB)

    Belyakov, V M; Badzhurak, R F; Koptelova, Ye K; Rogovoy, V K; Sapozhnikov, N G

    1979-01-18

    A wash fluid is proposed, used in drilling wells in water and a content of 3-5% by weight starch products. To speed up destruction of the starch products, to the fluid are added amylolytic enzymes in the amount of 0.01-0.1 percent by weight of the starch products' weight. To lower the use of starch products, up to 3% clay can be added to the fluid. The wash fluid is prepared directly at the work site. Dry powder of modified starch is mixed with cold water until a colloidal solution is obtained. Such a wash fluid preserves the required structural-mechanical properties for 3-5 days, which ensures prompt drilling into the waterbearing layer and installation of the filter. Then, during the work process, 5-6 hours before the moment required for lowering the viscosity, to the wash fluid is added the amylolytic enzyme; under its influence, the starch molecules split up, and the viscosity drops sharply. Using this wash fluid enables a reduction in well construction times from the beginning of drilling to the end of development of the water-bearing layer, and a rise in outputs and well service lives by reducing sedimentation of the water-bearing formation and elimination of down times during work required while waiting for destruction of the starch wash fluid under natural conditions.

  6. Cascade geothermal drilling/corehole N-1

    Energy Technology Data Exchange (ETDEWEB)

    Swanberg, C.A.; Combs, J. (Geothermal Resources International, Inc., San Mateo, CA (USA)); Walkey, W.C. (GEO Operator Corp., Bend, OR (USA))

    1988-07-19

    Two core holes have been completed on the flanks of Newberry Volcano, Oregon. Core hole GEO N-1 has a heat flow of 180 mWm-2 reflecting subsurface temperature sufficient for commerical exploitation of geothermally generated electricity. GEO N-3, which has a heat flow of 86 mWm-2, is less encouraging. Considerable emphasis has been placed on the ''rain curtain'' effect with the hope that a detailed discussion of this phenomenon at two distinct localities will lead to a better understanding of the physical processes in operation. Core hole GEO N-1 was cored to a depth of 1387 m at a site located 9.3 km south of the center of the volcano. Core hole GEO N-3 was cored to a depth of 1220 m at a site located 12.6 km north of the center of the volcano. Both core holes penetrated interbedded pyroclastic lava flows and lithic tuffs ranging in composition from basalt to rhyolite with basaltic andesite being the most common rock type. Potassium-argon age dates range up to 2 Ma. Difficult drilling conditions were encountered in both core holes at depths near the regional water table. Additionally, both core holes penetrate three distinct thermal regimes (isothermal (the rain curtain), transition, and conductive) each having its own unique features based on geophysical logs, fluid geochemistry, age dates, and rock alteration. Smectite alteration, which seems to control the results of surface geoelectrical studies, begins in the isothermal regime close to and perhaps associated with the regional water table. 28 refs., 15 figs., 2 tabs.

  7. Cascade geothermal drilling/corehole N-3

    Energy Technology Data Exchange (ETDEWEB)

    Swanberg, C.A.

    1988-07-19

    Two core holes have been completed on the flanks of Newberry Volcano, Oregon. Core holes GEO N-1 has a heat flow of 180 mWm-2 reflecting subsurface temperature sufficient for commercial exploitation of geothermally generated electricity. GEO N-3, which has a heat flow of 86 mWm-2, is less encouraging. Considerable emphasis has been placed on the rain curtain'' effect with the hope that a detailed discussion of this phenomenon at two distinct localities will lead to a better understanding of the physical processes in operation. Core hole GEO N-1 was cored to a depth of 1387 m at a site located 9.3 km south of the center of the volcano. Core hole GEO N-3 was cored to a depth of 1220 m at a site located 12.6 km north of the center of the volcano. Both core holes penetrated interbedded pyroclastic lava flows and lithic tuffs ranging in composition from basalt to rhyolite with basaltic andesite being the most common rock type. Potassium-argon age dates range up to 2 Ma. Difficult drilling conditions were encountered in both core holes at depths near the regional water table. Additionally, both core holes penetrate three distinct thermal regimes (isothermal (the rain curtain), transition, and conductive) each having its own unique features based on geophysical logs, fluid geochemistry, age dates, and rock alteration. Smectite alteration, which seems to control the results of surface geoelectrical studies, begins in the isothermal regime close to and perhaps associated with the regional water table.

  8. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  9. Hydraulic lifter for an underwater drilling rig

    Energy Technology Data Exchange (ETDEWEB)

    Garan' ko, Yu L

    1981-01-15

    A hydraulic lifter is suggested for an underwater drilling rig. It includes a base, hydraulic cylinders for lifting the drilling pipes connected to the clamp holder and hydraulic distributor. In order to simplify the design of the device, the base is made with a hollow chamber connected to the rod cavities and through the hydraulic distributor to the cavities of the hydraulic cylinders for lifting the drilling pipes. The hydraulic distributor is connected to the hydrosphere through the supply valve with control in time or by remote control. The base is equipped with reverse valves whose outlets are on the support surface of the base.

  10. Hydraulic lifter of a drilling unit

    Energy Technology Data Exchange (ETDEWEB)

    Velikovskiy, L S; Demin, A V; Shadchinov, L M

    1979-01-08

    The invention refers to drilling equipment, in particular, devices for lowering and lifting operations during drilling. A hydraulic lifter of the drilling unit is suggested which contains a hydraulic cylinder, pressure line and hollow plunger whose cavities are hydraulically connected. In order to improve the reliability of the hydraulic lifter by balancing the forces of compression in the plunger of the hydraulic cylinder, a closed vessel is installed inside the plunger and rigidly connected to its ends. Its cavity is hydraulically connected to the pressure line.

  11. Seismic Monitoring Prior to and During DFDP-2 Drilling, Alpine Fault, New Zealand: Matched-Filter Detection Testing and the Real-Time Monitoring System

    Science.gov (United States)

    Boese, C. M.; Chamberlain, C. J.; Townend, J.

    2015-12-01

    In preparation for the second stage of the Deep Fault Drilling Project (DFDP) and as part of related research projects, borehole and surface seismic stations were installed near the intended DFDP-2 drill-site in the Whataroa Valley from late 2008. The final four borehole stations were installed within 1.2 km of the drill-site in early 2013 to provide near-field observations of any seismicity that occurred during drilling and thus provide input into operational decision-making processes if required. The basis for making operational decisions in response to any detected seismicity had been established as part of a safety review conducted in early 2014 and was implemented using a "traffic light" system, a communications plan, and other operational documents. Continuous real-time earthquake monitoring took place throughout the drilling period, between September and late December 2014, and involved a team of up to 15 seismologists working in shifts near the drill-site and overseas. Prior to drilling, records from 55 local earthquakes and 14 quarry blasts were used as master templates in a matched-filter detection algorithm to test the capabilities of the seismic network for detecting seismicity near the drill site. The newly detected microseismicity was clustered near the DFDP-1 drill site at Gaunt Creek, 7.4 km southwest of DFDP-2. Relocations of these detected events provide more information about the fault geometry in this area. Although no detectable seismicity occurred within 5 km of the drill site during the drilling period, the region is capable of generating earthquakes that would have required an operational response had they occurred while drilling was underway (including a M2.9 event northwest of Gaunt Creek on 15 August 2014). The largest event to occur while drilling was underway was of M4.5 and occurred approximately 40 km east of the DFDP-2 drill site. In this presentation, we summarize the setup and operations of the seismic network and discuss key

  12. Clay-free drilling mud

    Energy Technology Data Exchange (ETDEWEB)

    Akhmadeyev, R G; Panov, V B; Simonenkov, O I

    1982-01-01

    A clay-free drilling mud is proposed which contains humate-containing substance, alkali electrolyte, gel-former, inhibitor and water. In order to reduce viscosity of the static shear stress and water output under conditions of polyvalent aggression, it additionally contains organic stabilizer with the following ratio of components, % by mass: humate-containing substance 4.0-8.0; alkali electrolyte 0.2-1.5; gel-former 1.0-3.0; organic stabilizer 0.1-1.0; inhibitor 1.0-40.0; water--the rest. The solution is also distinguished by the fact that the gel-former used is magnesium chloride or magnesium sulfate, or calcium chloride or aluminum sulfate, or iron chloride (III) or iron sulfate (II) or waste of chlorides of titanium production with average chemical composition, % by mass: Ti 1.5-7.0; Fe 5.0-15.0; Al 1.5-10.0; Na 5.0-16.0; Mg 0.5-3.0; Cl 30.0-60.0; Ca 0.2-2.0; Cr 0.2-2.0; Cu 0.2-1.5.

  13. The Swedish Deep Drilling Program - an emerging scientific drilling program and new infrastructure.

    Science.gov (United States)

    Lorenz, Henning; Juhlin, Christopher

    2010-05-01

    Scientific drilling projects imply numerous aspects that are difficult to handle for individual research groups. Therefore, about three years ago a joint effort was launched in the Swedish geoscientific community to establish a national program for scientific drilling, the Swedish Deep Drilling Program (SDDP). Soon afterwards, several working groups established drilling proposals with Nordic and, also, international participation. With this serious interest in scientific drilling SDDP was able to successfully promote the Swedish membership in ICDP which commenced in 2008. Two SDDP projects achieved workshop grants from the International Continental Scientific Drilling Program (ICDP) in 2009. In the same year the Swedish Research Council decided to support an application for a truck-mounted drill rig - a big success for the SDDP working group. Scientific Drilling infrastructure: SDDP envisages a mobile platform that is capable of core drilling to at least 2500 m depth. The procurement will be made during 2010 and first operations are planned for 2011. This drill rig is primarily intended for use in the SDDP drilling projects, but will be rented out to other scientific drilling projects or even commercial enterprises in the remaining time to cover maintenance and future upgrade costs. SDDP's drill rig will be unique in Europe and complementary to the deep drilling InnovaRig of the GFZ German Research Centre for Geosciences. Until now, drilling to 2000 - 3000 m implied the use of a full-sized drill rig like the InnovaRig or the mobilization of a core drill rig from another continent. This gap will now be filled by Sweden's upcoming scientific drilling infrastructure. Drilling projects and proposals: Presently, SDDP serves six projects: "Collisional Orogeny in the Scandinavian Caledonides" (COSC; ICDP workshop spring 2010), the "Postglacial Fault Drilling Project" (PFDP; ICDP workshop autumn 2010), a "Deep Rock Laboratory" (DRL), "Palaeoproterozoic Mineralized Volcanic

  14. Environmental Measurement-While-Drilling system for real-time field screening of contaminants

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Normann, R.A.; Bishop, L.B.; Floran, R.J.; Williams, C.V.

    1995-01-01

    Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of near surface contaminants. However, the analysis of these samples is not only expensive, but can take weeks or months when sent to an off-site laboratory. In contrast, measurement-while-drilling (MWD) screening capability could save money and valuable time by quickly distinguishing between contaminated and uncontaminated areas. Real-time measurements provided by a MVM system would enable on-the-spot decisions to be made regarding sampling strategies, enhance worker safety, and provide the added flexibility of being able to ''steer'' the drill bit in or out hazardous zones. During measurement-while-drilling, down-hole sensors are located behind the drill bit and linked by a rapid data transmission system to a computer at the surface. As drilling proceeds, data are collected on the nature and extent of the subsurface contamination in real-time. The down-hole sensor is a Geiger-Mueller tube (GMT) gamma radiation detector. In addition to the GMT signal, the MWD system monitors these required down-hole voltages and two temperatures associated with the detector assembly. The Gamma Ray Detection System (GRDS) and electronics package are discussed in as well as the results of the field test. Finally, our conclusions and discussion of future work are presented

  15. Are EM surveys effective in finding drilling sumps in northern Alberta?

    International Nuclear Information System (INIS)

    Muloin, T.; Finlayson, N.

    2005-01-01

    Many non-intrusive environmental and geotechnical problems can be solved by using geophysical electromagnetic (EM) surveys. The oil and gas industry produces large volumes of brines containing hydrocarbons, which if spilled, cause soils to have elevated conductivities resulting from increases in pore water ionic strength. EM surveys are used to guide and reduce clean up costs by delineating and mapping salt impacted areas through the detection of faint changes in ground conductivity. Recent changes to Alberta Environment's well site reclamation certification process requires the delineation of all drilling sumps that do not have adequate drilling mud disposal information. As a result, EM surveys are used more frequently to find suspected saline drilling mud sumps as part of the second phase of a site assessment process. Data from several recent phase 2 site assessments were reviewed to determine if EM surveys are useful in locating drilling sumps. The sites included abandoned oil and gas leases throughout northern Alberta. Information from EM surveys was correlated with empirical lab data and on-site observations

  16. Propagation of Measurement-While-Drilling Mud Pulse during High Temperature Deep Well Drilling Operations

    OpenAIRE

    Li, Hongtao; Meng, Yingfeng; Li, Gao; Wei, Na; Liu, Jiajie; Ma, Xiao; Duan, Mubai; Gu, Siman; Zhu, Kuanliang; Xu, Xiaofeng

    2013-01-01

    Signal attenuates while Measurement-While-Drilling (MWD) mud pulse is transmited in drill string during high temperature deep well drilling. In this work, an analytical model for the propagation of mud pulse was presented. The model consists of continuity, momentum, and state equations with analytical solutions based on the linear perturbation analysis. The model can predict the wave speed and attenuation coefficient of mud pulse. The calculated results were compared with the experimental dat...

  17. Test report for core drilling ignitability testing

    International Nuclear Information System (INIS)

    Witwer, K.S.

    1996-01-01

    Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing

  18. Logging-while-drilling (LWD) pressure test

    Energy Technology Data Exchange (ETDEWEB)

    Thirud, Aase P.

    2003-07-01

    Statoil and Halliburton have completed a successful test of a new ground-breaking formation evaluation technology on the Norwegian shelf. An LWD formation tester, the GeoTapTM sensor, was used to quantify formation pressure during drilling operations. The inaugural job was completed by Halliburton's Sperry-Sun product service line onboard the Bideford Dolphin at the Borg Field while drilling a horizontal production well in the Vigdis Extension development. The GeoTap tool, part of Sperry-Sun's StellarTM MWD/LWT suite, was run in combination with a complete logging-while-drilling sensor package and the Geo-Pilot rotary steerable drilling system. Repeat formation pressures were taken and successfully transmitted to surface. This is the first time this type of technology has been successfully applied on the Norwegian shelf.

  19. Drilling and logging in uranium exploration

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The report reviews drilling and logging practices in exploration of uranium ores and summarizes the papers presented in the panel meeting. Recommendations for further research and development are given

  20. HORIZONTAL WELL DRILL-IN FLUIDS

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1998-12-01

    Full Text Available Main objective of horizontal driling is to place a drain-hole for a long distance within the pay zone to enhance productivity or injectivity. In drilling horizontal wells, more serious problems appear than in drilling vertical wells. These problems are: poor hole cleaning, excessive torque and drag, hole filling, pipe stucking, wellbore instability, loss of circulation, formation damage, poor cement job, and difficulties at logging jobs. From that reason, successful drilling and production of horizontal well depends largely on the fluid used during drilling and completion phases. Several new fluids, that fulfill some or all of required properties (hole cleaning, cutting suspension, good lubrication, and relative low formation damage, are presented in this paper.

  1. An elevator for locked drilling pipes

    Energy Technology Data Exchange (ETDEWEB)

    Gurbanov, R.S.; Abbasov, E.M.; Ismailov, A.A.; Mamedov, Yu.S.; Safarov, A.A.

    1983-01-01

    An elevator is proposed, which includes a body with a door. To reduce the probability of gas shows in a well with high speed lowering and lifting of the column of locked drilling pipes through providing the possibility of feeding a drilling mud in this case into the mine, the elevator is equipped with a pneumatic cylinder with a two way hollow rod, on one face of which a sealing element is mounted for sealing the drilling pipe and on the other, an adapter for feeding the drilling mud. The rod is linked with the sleeve of the pneumatic cylinder, which is rigidly linked with the body with the capability of axial movement without rotation.

  2. Intensities of drilling predation of molluscan assemblages in intertidal and subtidal soft substrates in the Persian (Arabian) Gulf

    Science.gov (United States)

    Handler, Sabine M.; Albano, Paolo G.; Bentlage, Rudolf; Drummond, Hannah; García-Ramos, Diego A.; Zuschin, Martin

    2016-04-01

    Intensities of drilling predation of molluscan assemblages in intertidal and subtidal soft substrates in the Persian (Arabian) Gulf Sabine Maria Handler1, Paolo G. Albano1, Rudolf Bentlage2, Hannah Drummond2, D.A. García-Ramos1, Martin Zuschin1 1 Department of Paleontology, University of Vienna, Austria 2 St. Lawrence University, Canton, New York 13617, USA Trace fossils left by predators in the skeleton of their prey are arguably one of the most powerful sources of direct data on predator-prey interactions available in the fossil record. Drill holes, especially those attributed to naticid and muricid gastropods, are unambiguous marks of predation and allow discriminating between successful and unsuccessful predation attempts (complete and incomplete holes, respectively). Latitude and water depth influence drilling frequency. We inspected death assemblages of an intertidal flat and of two subtidal (water depth between 6 and 20 m) sandy sites in the Persian (Arabian) Gulf, off the coast of the United Arab Emirates, to determine the patterns of predation on shelled molluscs along the depth gradient. The study is based on ~7,000 and ~60,000 shells from the intertidal and subtidal, respectively. Drilling Frequency (DF, the number of drilled individuals), Incomplete Drilling Frequency (IDF, number of incomplete drill holes), and Prey Effectiveness (ratio between the number of incomplete drill holes and the total number of drilling attempts) were used as metrics of drilling intensity. We observed major differences between the intertidal and subtidal study areas. Drilling frequencies were generally remarkably low and intertidal flats showed a much lower drilling frequency than the subtidal (1.4% and 6.7%, respectively). In the subtidal, we observed significant differences of drilling intensity among bivalve species and between the two sites. However, predation metrics did not correlate with environmental factors such as substrate type and depth, nor with species life

  3. Stratigraphy in Apollo 16 drill section 60002

    Science.gov (United States)

    Blanford, G. E.; Morrison, D. A.

    1976-01-01

    Contacts in drill stem 60002 which indicate layers at least several centimeters thick and with one firm age of about 2.5 x 10 to the 7th yr are observed on the basis of characteristic patterns of track density variation with depth from the contact. The patterns can be observed primarily because the drill stem has a large immature component (path II soils).

  4. A reagent for processing drilling muds

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, G.A.; Khon-Pak, A.T.; Khon, A.V.; Normatov, L.N.; Telegin, B.V.

    1983-01-01

    A reagent is proposed for processing drilling muds. It contains an acrylic polymer and potassium permanganate. The reagent is distinguished by the fact that in order to improve the quality of the drilling muds by increasing their salt resistance, the reagent contains hydrolized nitron fiber as the acrylic polymer with the following component relationship (in percent by weight): potassium permanganate, 0.015 to 0.065 and hydrolyzed nitron fiber, the remainder.

  5. SITE-94. Mineralogy of the Aespoe site

    International Nuclear Information System (INIS)

    Andersson, Karin

    1996-12-01

    The water composition has several impacts on the repository. It will influence the behaviour of the engineered materials (e.g. corrosion). It may also determine the possible solubility and speciation of released radionuclides. It also acts as a transport medium for the released elements. The groundwater composition and the potential development of the composition due to the presence of the repository as well as due to external variations is thus an important issue in a safety analysis. The development of the groundwater composition is strongly dependent on reactions with the minerals present in water bearing fractures. Here equilibrium chemistry may be of importance, but also reaction kinetics is important to the long-term behaviour. Within the SITE-94 project, a safety analysis is performed for the conditions at the Aespoe site. The mineralogy of the area has been evaluated from drill cores at various places at the site. In this report a recommendation for selection of mineralogy to be used in geochemical modelling of the repository is given. Calcite and iron containing minerals dominate the fracture filling mineralogy at the Aespoe site. Some typical fracture filling mineralogies may be identified in the fractures: epidote, chlorite, calcite, hematite, some illite/smectite + quartz, fluorite, pyrite and goethite. In addition to these a number of minor minerals are found in the fractures. Uncertainties in the fracture filling data may be due to problems when taking out the drill cores. Drilling water may remove important clay minerals and sealed fractures may be reopened mechanically and treated as water conducting fractures. The problem of determining the variability of the mineralogy along the flow paths also remains. This problem will never be solved when the investigation is performed by drilling investigation holes

  6. Percussive Augmenter of Rotary Drills for Operating as a Rotary-Hammer Drill

    Science.gov (United States)

    Aldrich, Jack Barron (Inventor); Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor); Scott, James Samson (Inventor)

    2014-01-01

    A percussive augmenter bit includes a connection shaft for mounting the bit onto a rotary drill. In a first modality, an actuator percussively drives the bit, and an electric slip-ring provides power to the actuator while being rotated by the drill. Hammering action from the actuator and rotation from the drill are applied directly to material being drilled. In a second modality, a percussive augmenter includes an actuator that operates as a hammering mechanism that drives a free mass into the bit creating stress pulses that fracture material that is in contact with the bit.

  7. A self propelled drilling system for hard-rock, horizontal and coiled tube drilling

    Energy Technology Data Exchange (ETDEWEB)

    Biglin, D.; Wassell, M.

    1997-12-31

    Several advancements are needed to improve the efficiency and reliability of both hard rock drilling and extended reach drilling. This paper will present a Self Propelled Drilling System (SPDS) which can grip the borehole wall in order to provide a stable platform for the application of weight on bit (WOB) and resisting the reactive torque created by the downhole drilling motor, bit and formation interaction. The system will also dampen the damaging effects of drill string vibration. This tool employs two hydraulically activated anchors (front and rear) to grip the borehole wall, and a two-way thrust mandrel to apply both the drilling force to the bit, and a retraction force to pull the drill string into the hole. Forward drilling motion will commence by sequencing the anchor pistons and thrust mandrel to allow the tool to walk in a stepping motion. The SPDS has a microprocessor to control valve timing, sensing and communication functions. An optional Measurement While Drilling (MWD) interface can provide two-way communication of critical operating parameters such as hydraulic pressure and piston location. This information can then be telemetered to the surface, or used downhole to autonomously control system parameters such as anchor and thrust force or damping characteristics.

  8. Interim report for SNL/NM environmental drilling project

    Energy Technology Data Exchange (ETDEWEB)

    Wemple, R.P.; Meyer, R.D. [Sandia National Labs., Albuquerque, NM (United States); Layne, R.R. [Charles Machine Works, Inc., Perry, OK (United States)

    1994-02-01

    Concern for the environment and cost reduction are the driving forces for a broad effort in government and the private sector to develop new, more cost-effective technologies for characterizing, monitoring and remediating environmental sites. Secondary goals of the characterization, monitoring and remediation (CMR) activity are: minimize secondary waste generation, minimize site impact, protect water tables, and develop methods/strategies to apply new technologies. The Sandia National Laboratories (SNL) project in directional boring for CMR of waste sites with enhanced machinery from the underground utility installation industry was initiated in 1990. Preliminary activities included surveying the directional drilling access needs of various DOE sites, identifying an existing class of machinery that could be enhanced for environmental work through development, and establishing a mutually beneficial working relationship with an industry partner. Since that time the project has tested a variety of prototype machinery and hardware built by the industrial partner, and SNL. The project continues to test and develop the machinery and technique refinements needed for future applications at DOE, DOD, and private sector sites. The original goal of cost-effectiveness is being met through innovation, adaptation, and application of fundamental concepts. Secondary goals are being met via a basic philosophy of ``cut/thrust and compact cuttings without adding large quantities of fluid`` to an environmental problem site. Technology transfer to the private sector is ongoing and ultimately should result in commercial availability of the machinery. Education of regulatory agencies resulting in restructuring appropriate regulatory standards for specification of the horizontal drilling techniques will be a final project goal.

  9. 30 CFR 56.7013 - Covering or guarding drill holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Covering or guarding drill holes. 56.7013 Section 56.7013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Rotary Jet Piercing Drilling § 56.7013 Covering or guarding drill holes. Drill holes large enough to...

  10. 30 CFR 57.7013 - Covering or guarding drill holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Covering or guarding drill holes. 57.7013 Section 57.7013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... and Rotary Jet Piercing Drilling-Surface Only § 57.7013 Covering or guarding drill holes. Drill holes...

  11. 30 CFR 250.463 - Who establishes field drilling rules?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Who establishes field drilling rules? 250.463... GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Other Drilling Requirements § 250.463 Who establishes field drilling rules? (a) The District Manager may...

  12. 21 CFR 872.4130 - Intraoral dental drill.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraoral dental drill. 872.4130 Section 872.4130...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4130 Intraoral dental drill. (a) Identification. An intraoral dental drill is a rotary device intended to be attached to a dental handpiece to drill holes in...

  13. Aerated drilling cutting transport analysis in geothermal well

    Science.gov (United States)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  14. Multi-state autonomous drilling for lunar exploration

    Directory of Open Access Journals (Sweden)

    Chen Chongbin

    2016-10-01

    Full Text Available Due to the lack of information of subsurface lunar regolith stratification which varies along depth, the drilling device may encounter lunar soil and lunar rock randomly in the drilling process. To meet the load safety requirements of unmanned sampling mission under limited orbital resources, the control strategy of autonomous drilling should adapt to the indeterminable lunar environments. Based on the analysis of two types of typical drilling media (i.e., lunar soil and lunar rock, this paper proposes a multi-state control strategy for autonomous lunar drilling. To represent the working circumstances in the lunar subsurface and reduce the complexity of the control algorithm, lunar drilling process was categorized into three drilling states: the interface detection, initiation of drilling parameters for recognition and drilling medium recognition. Support vector machine (SVM and continuous wavelet transform were employed for the online recognition of drilling media and interface, respectively. Finite state machine was utilized to control the transition among different drilling states. To verify the effectiveness of the multi-state control strategy, drilling experiments were implemented with multi-layered drilling media constructed by lunar soil simulant and lunar rock simulant. The results reveal that the multi-state control method is capable of detecting drilling state variation and adjusting drilling parameters timely under vibration interferences. The multi-state control method provides a feasible reference for the control of extraterrestrial autonomous drilling.

  15. Stinger Enhanced Drill Bits For EGS

    Energy Technology Data Exchange (ETDEWEB)

    Durrand, Christopher J. [Novatek International, Inc., Provo, UT (United States); Skeem, Marcus R. [Novatek International, Inc., Provo, UT (United States); Crockett, Ron B. [Novatek International, Inc., Provo, UT (United States); Hall, David R. [Novatek International, Inc., Provo, UT (United States)

    2013-04-29

    The project objectives were to design, engineer, test, and commercialize a drill bit suitable for drilling in hard rock and high temperature environments (10,000 meters) likely to be encountered in drilling enhanced geothermal wells. The goal is provide a drill bit that can aid in the increased penetration rate of three times over conventional drilling. Novatek has sought to leverage its polycrystalline diamond technology and a new conical cutter shape, known as the Stinger®, for this purpose. Novatek has developed a fixed bladed bit, known as the JackBit®, populated with both shear cutter and Stingers that is currently being tested by major drilling companies for geothermal and oil and gas applications. The JackBit concept comprises a fixed bladed bit with a center indenter, referred to as the Jack. The JackBit has been extensively tested in the lab and in the field. The JackBit has been transferred to a major bit manufacturer and oil service company. Except for the attached published reports all other information is confidential.

  16. Post-drilling changes in seabed landscape and megabenthos in a deep-sea hydrothermal system, the Iheya North field, Okinawa Trough.

    Science.gov (United States)

    Nakajima, Ryota; Yamamoto, Hiroyuki; Kawagucci, Shinsuke; Takaya, Yutaro; Nozaki, Tatsuo; Chen, Chong; Fujikura, Katsunori; Miwa, Tetsuya; Takai, Ken

    2015-01-01

    There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea hydrothermal field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible hydrothermal fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature hydrothermal fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, 'artificially' creating a new hydrothermal vent habitat. Widespread microbial mats developed on the seafloor with the diffusing hydrothermal fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established hydrothermal vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area has

  17. Supervisory control of drilling of composite materials

    Science.gov (United States)

    Ozaki, Motoyoshi

    Composite materials have attractive features, such as high ratios of strength-to-weight and stiffness-to-weight. However, they are easily damaged when they are machined. A typical damage is delamination, which can occur when fiber reinforced composite laminates are drilled. The objective of this research is to study the drilling processes of carbon fiber reinforced laminates, and to develop and test a supervisory control strategy for their delamination-free drilling. Characterization of thrust force and torque is achieved through constant feedrate drilling experiments. The average values of thrust force and torque during the full engagement of the drill are utilized to obtain the Shaw's equations' parameters. The thrust force profile just before exit is given special attention. The Hocheng-Dharan equations, which give conservative values of delamination at the entrance and at the exit, are modified to express the influence of one lamina thickness explicitly. They are utilized not only for the characterization of thrust force but also for the determination of the thrust force reference for force control. In the design of the controllers of thrust force and torque, both thrust force and torque are assumed to be proportional to FPHR (Feed Per Half Revolution). A discrete-time dynamic model is established for the case when the time interval for a half revolution of the drill is divided by the sampling time, and the model is extended to the case of general spindle speeds. PI controllers are designed for the dynamic models of thrust force and torque. Root-locus techniques are used in the analysis. The phases of the drilling process are introduced and the control strategy at each phase is explained. The supervisory controller chooses not only the best control strategy for each phase, but also the reference value and the controller gain that are suitable at each drill position. Drilling experiments are conducted to show the usefulness of the concepts introduced in this

  18. Drilling and blasting parameters in sublevel caving in Sheregesh mine

    Science.gov (United States)

    Eremenko, AA; Filippov, VN; Konurin, AI; Khmelinin, AP; Baryshnikov, DV; Khristolyubov, EA

    2018-03-01

    The factors that influence geomechanical state of rock mass in Sheregesh Mine are determined. The authors discuss a variant of geotechnology with fan drilling. The drill-hole patterns and drilling-and-blasting parameters are presented. The revealed causes of low-quality fragmentation of rocks include the presence of closed and open fractures at different distances from drill-hole mouths, both in case of rings and fans, as well as the blocking of drill-holes with rocks.

  19. Innovative approach for restoring coastal wetlands using treated drill cuttings

    International Nuclear Information System (INIS)

    Veil, J. A.; Hocking, E. K.

    1999-01-01

    The leading environmental problem facing coastal Louisiana regions is the loss of wetlands. Oil and gas exploration and production activities have contributed to wetland damage through erosion at numerous sites where canals have been cut through the marsh to access drilling sites. An independent oil and gas producer, working with Southeastern Louisiana University and two oil field service companies, developed a process to stabilize drill cuttings so that they could be used as a substrate to grow wetlands vegetation. The U.S. Department of Energy (DOE) funded a project under which the process would be validated through laboratory studies and field demonstrations. The laboratory studies demonstrated that treated drill cuttings support the growth of wetlands vegetation. However, neither the Army Corps of Engineers (COE) nor the U.S. Environmental Protection Agency (EPA) would grant regulatory approval for afield trial of the process. Argonne National Laboratory was asked to join the project team to try to find alternative mechanisms for gaining regulatory approval. Argonne worked with EPA's Office of Reinvention and learned that EPA's Project XL would be the only regulatory program under which the proposed field trial could be done. One of the main criteria for an acceptable Project XL proposal is to have a formal project sponsor assume the responsibility and liability for the project. Because the proposed project involved access to private land areas, the team felt that an oil and gas company with coastal Louisiana land holdings would need to serve as sponsor. Despite extensive communication with oil and gas companies and industry associations, the project team was unable to find any organization willing to serve as sponsor. In September 1999, the Project XL proposal was withdrawn and the project was canceled

  20. Real Time Seismic Prediction while Drilling

    Science.gov (United States)

    Schilling, F. R.; Bohlen, T.; Edelmann, T.; Kassel, A.; Heim, A.; Gehring, M.; Lüth, S.; Giese, R.; Jaksch, K.; Rechlin, A.; Kopf, M.; Stahlmann, J.; Gattermann, J.; Bruns, B.

    2009-12-01

    Efficient and safe drilling is a prerequisite to enhance the mobility of people and goods, to improve the traffic as well as utility infrastructure of growing megacities, and to ensure the growing energy demand while building geothermal and in hydroelectric power plants. Construction within the underground is often building within the unknown. An enhanced risk potential for people and the underground building may arise if drilling enters fracture zones, karsts, brittle rocks, mixed solid and soft rocks, caves, or anthropogenic obstacles. Knowing about the material behavior ahead of the drilling allows reducing the risk during drilling and construction operation. In drilling operations direct observations from boreholes can be complemented with geophysical investigations. In this presentation we focus on “real time” seismic prediction while drilling which is seen as a prerequisite while using geophysical methods in modern drilling operations. In solid rocks P- and S-wave velocity, refraction and reflection as well as seismic wave attenuation can be used for the interpretation of structures ahead of the drilling. An Integrated Seismic Imaging System (ISIS) for exploration ahead of a construction is used, where a pneumatic hammer or a magnetostrictive vibration source generate repetitive signals behind the tunneling machine. Tube waves are generated which travel along the tunnel to the working face. There the tube waves are converted to mainly S- but also P-Waves which interact with the formation ahead of the heading face. The reflected or refracted waves travel back to the working front are converted back to tube waves and recorded using three-component geophones which are fit into the tips of anchor rods. In near real time, the ISIS software allows for an integrated 3D imaging and interpretation of the observed data, geological and geotechnical parameters. Fracture zones, heterogeneities, and variations in the rock properties can be revealed during the drilling

  1. Future scientific drilling in the Arctic Ocean: Key objectives, areas, and strategies

    Science.gov (United States)

    Stein, R.; Coakley, B.; Mikkelsen, N.; O'Regan, M.; Ruppel, C.

    2012-04-01

    In spite of the critical role of the Arctic Ocean in climate evolution, our understanding of the short- and long-term paleoceanographic and paleoclimatic history through late Mesozoic-Cenozoic times, as well as its plate-tectonic evolution, remains behind that from the other world's oceans. This lack of knowledge is mainly caused by the major technological/logistic problems in reaching this permanently ice-covered region with normal research vessels and in retrieving long and undisturbed sediment cores. With the Arctic Coring Expedition - ACEX (or IODP Expedition 302), the first Mission Specific Platform (MSP) expedition within IODP, a new era in Arctic research began (Backman, Moran, Mayer, McInroy et al., 2006). ACEX proved that, with an intensive ice-management strategy, successful scientific drilling in the permanently ice-covered central Arctic Ocean is possible. ACEX is certainly a milestone in Arctic Ocean research, but - of course - further drilling activities are needed in this poorly studied ocean. Furthermore, despite the success of ACEX fundamental questions related to the long- and short-term climate history of the Arctic Ocean during Mesozoic-Cenozoic times remain unanswered. This is partly due to poor core recovery during ACEX and, especially, because of a major mid-Cenozoic hiatus in this single record. Since ACEX, a series of workshops were held to develop a scientific drilling strategy for investigating the tectonic and paleoceanographic history of the Arctic Ocean and its role in influencing the global climate system: - "Arctic Ocean History: From Speculation to Reality" (Bremerhaven/Germany, November 2008); - "Overcoming barriers to Arctic Ocean scientific drilling: the site survey challenge" (Copenhagen/Denmark, November 2011); - Circum-Arctic shelf/upper continental slope scientific drilling workshop on "Catching Climate Change in Progress" (San Francisco/USA, December 2011); - "Coordinated Scientific Drilling in the Beaufort Sea: Addressing

  2. Drill-string design for directional wells

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, R; Corbett, K T [Exxon Production Research Co., Houston, TX (USA)

    1983-01-01

    This paper is concerned with predicting the tension and torsion loads on drill strings in directional wells and with adjusting the string design or well plan to provide adequate strength. Drill-string drag is the incremental force that is required to move the pipe up or down in the hole; torque is the moment required to rotate the pipe. Drag forces are usually given relative to the string weight measured with the string roating but not reciprocating. Measured from the roating string weight, the pick-up drag is usually slightly greater than the slack-off drag. The magnitudes of torque and drag are related in any particular well; high drag forced and exessive torque loads normally occur together. There are a number of phenomena wich contribute to torque and drag. Included are tight hole conditions, sloughing hole, keyseats, differential sticking, cuttings build up due to poor hole cleaning and sliding wellbore friction. With the exception of sliding friction, these causes are associated with problem conditions in the wellbore. Conversely, in wells with good hole conditions, the primary source of torque and drag is sliding friction. This paper is only concerned with the torque and drag caused by sliding friction. The cabability to predict frictional loads on drill pipe has two main benefits. First, more complete knowledge of drill-string loading allows use of improved drill-string design techniques. Drill-string components can be chosen using a systematic approach considering the force involved. Second, deep, highly-deviated wells can be planned to minimize torque and drag. Use of torque and drag as a criteria to select the most appropriate well path will help ensure successful drilling operations to total depth. 1 fig., 2 tabs. (Author).

  3. Drilling Predation on Serpulid Polychaetes (Ditrupa arietina) from the Pliocene of the Cope Basin, Murcia Region, Southeastern Spain

    Science.gov (United States)

    Martinell, Jordi; Kowalewski, Michał; Domènech, Rosa

    2012-01-01

    We report quantitative analyses of drilling predation on the free-living, tube-dwelling serpulid polychaete Ditrupa arietina from the Cope Cabo marine succession (Pliocene, Spain). Tubes of D. arietina are abundant in the sampled units: 9 bulk samples from 5 horizons yielded ∼5925 specimens of D. arietina. Except for fragmentation, tubes were well preserved. Complete specimens ranged from 3.1 to 13.4 mm in length and displayed allometric growth patterns, with larger specimens being relatively slimmer. Drilled Ditrupa tubes were observed in all samples. Drillholes, identified as Oichnus paraboloides, were characterized by circular to elliptical outline (drillhole eccentricity increased with its diameter), parabolic vertical profile, outer diameter larger than inner diameter, penetration of one tube wall only, narrow range of drill-hole sizes, and non-random (anterior) distribution of drillholes. A total of 233 drilled specimens were identified, with drilling frequencies varying across horizons from 2.7% to 21% (3.9% for pooled data). Many tube fragments were broken across a drillhole suggesting that the reported frequencies are conservative and that biologically-facilitated (drill-hole induced) fragmentation hampers fossil preservation of complete serpulid tubes. No failed or repaired holes were observed. Multiple complete drillholes were present (3.9%). Drilled specimens were significantly smaller than undrilled specimens and tube length and drill-hole diameter were weakly correlated. The results suggest that drillholes were produced by a size-selective, site-stereotypic predatory organism of unknown affinity. The qualitative and quantitative patterns reported here are mostly consistent with previous reports on recent and fossil Ditrupa and reveal parallels with drilling patterns documented for scaphopod mollusks, a group that is ecologically and morphologically similar to Ditrupa. Consistent with previous studies, the results suggest that free-dwelling serpulid

  4. Differing opinions about natural gas drilling in two adjacent counties with different levels of drilling activity

    International Nuclear Information System (INIS)

    Kriesky, J.; Goldstein, B.D.; Zell, K.; Beach, S.

    2013-01-01

    The pace of development of shale gas plays varies greatly among US states and globally. Through analysis of telephone survey responses, we explore support for natural gas drilling in residents of Washington County (WC), PA (n=502) vs. residents of Allegheny County (AC), PA (n=799). WC has had intense Marcellus Shale (MS) drilling activity, in comparison to adjacent AC, which has had little drilling activity. WC residents are marginally more supportive of MS drilling than are AC residents (p=0.0768). Residents of WC are more likely to perceive MS as an economic opportunity than are AC residents (p=0.0015); to be in a family that has signed a MS lease (p<0.0001); to follow the MS issue closely (p=0.0003); to get MS information from neighbors, friends, and relatives (p<0.0001); and are marginally less likely to perceive MS as an environmental threat (p=0.1090). WC leaseholders are significantly more supportive of MS drilling than WC non-leaseholders and AC non-leaseholders (p=0.0024). Mediation analyses show that county-based differences in support of MS drilling are due to WC residents seeing more of an economic opportunity in the MS and their greater likelihood of having a family-held lease. - Highlights: • Telephone survey analysis of sources of support for Marcellus Shale drilling. • Perceived positive economic impact of drilling drives support among respondents. • Mineral rights leaseholders are significantly more supportive than non-leaseholders

  5. Influence of Drilling Parameters on Torque during Drilling of GFRP Composites Using Response Surface Methodology

    Science.gov (United States)

    Mohan, N. S.; Kulkarni, S. M.

    2018-01-01

    Polymer based composites have marked their valuable presence in the area of aerospace, defense and automotive industry. Components made of composite, are assembled to main structure by fastener, which require accurate, precise high quality holes to be drilled. Drilling the hole in composite with accuracy require control over various processes parameters viz., speed, feed, drill bit size and thickens of specimen. TRIAC VMC machining center is used to drill the hole and to relate the cutting and machining parameters on the torque. MINITAB 14 software is used to analyze the collected data. As a function of cutting and specimen parameters this method could be useful for predicting torque parameters. The purpose of this work is to investigate the effect of drilling parameters to get low torque value. Results show that thickness of specimen and drill bit size are significant parameters influencing the torque and spindle speed and feed rate have least influence and overlaid plot indicates a feasible and low region of torque is observed for medium to large sized drill bits for the range of spindle speed selected. Response surface contour plots indicate the sensitivity of the drill size and specimen thickness to the torque.

  6. Influence of drill helical direction on exit damage development in drilling carbon fiber reinforced plastic

    Science.gov (United States)

    Bai, Y.; Jia, Z. Y.; Wang, F. J.; Fu, R.; Guo, H. B.; Cheng, D.; Zhang, B. Y.

    2017-06-01

    Drilling is inevitable for CFRP components’ assembling process in the aviation industry. The exit damage frequently occurs and affects the load carrying capacity of components. Consequently, it is of great urgency to enhance drilling exit quality on CFRP components. The article aims to guide the reasonable choice of drill helical direction and effectively reduce exit damage. Exit observation experiments are carried out with left-hand helical, right-hand helical and straight one-shot drill drilling T800S CFRP laminates separately. The development rules of exit damage and delamination factor curves are obtained. Combined with loading conditions and fracture modes of push-out burrs, and thrust force curves, the influence of drill helical direction on exit damage development is derived. It is found that the main fracture modes for left-hand helical, right-hand helical, and straight one-shot drill are mode I, extrusive fracture, mode III respectively. Among them, mode III has the least effect on exit damage development. Meanwhile, the changing rate of thrust force is relative slow for right-hand helical and straight one-shot drill in the thrust force increasing phase of stage II, which is disadvantaged for exit damage development. Therefore, straight one-shot drill’s exit quality is the best.

  7. Lower crustal section of the Oman Ophiolite drilled in Hole GT1A, ICDP Oman Drilling Project

    Science.gov (United States)

    Umino, S.; Kelemen, P. B.; Matter, J. M.; Coggon, J. A.; Takazawa, E.; Michibayashi, K.; Teagle, D. A. H.

    2017-12-01

    Hole GT1A (22° 53.535'N, 58° 30.904'E) was drilled by the Oman Drilling Project (OmDP) into GT1A of the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole GT1A was diamond cored in 22 Jan to 08 Feb 2017 to a total depth of 403.05 m. The outer surfaces of the cores were imaged and described on site before being curated, boxed and shipped to the IODP drill ship Chikyu, where they underwent comprehensive visual and instrumental analysis. Hole GT1A drilled the lower crustal section in the southern Oman Ophiolite and recovered 401.52 m of total cores (99.6% recovery). The main lithology is dominated by olivine gabbro (65.9%), followed in abundance by olivine-bearing gabbro (21.5%) and olivine melagabbro (3.9%). Minor rock types are orthopyroxene-bearing olivine gabbro (2.4%), oxide-bearing olivine gabbro (1.5%), gabbro (1.1%), anorthositic gabbro (1%), troctolitic gabbro (0.8%); orthopyroxene-bearing gabbro (0.5%), gabbronorite (0.3%); and dunite (0.3%). These rocks are divided into Lithologic Unit I to VII at 26.62 m, 88.16 m, 104.72 m, 154.04 m, 215.22 m, 306.94 m in Chikyu Curated Depth in descending order; Unit I and II consist of medium-grained olivine gabbro with lower olivine abundance in Unit II. Unit III is medium-grained olivine melagabbros, marked by an increase in olivine. Unit IV is relatively homogenous medium-grained olivine gabbros with granular textures. Unit V is identified by the appearance of fine-grained gabbros, but the major rocktypes are medium grained olivine gabbros. Unit VI is medium-grained olivine gabbro, marked by appearance of orthopyroxene. Unit VII

  8. To drill or not to drill? An econometric analysis of US public opinion

    International Nuclear Information System (INIS)

    Mukherjee, Deep; Rahman, Mohammad Arshad

    2016-01-01

    Offshore drilling in the United States (US) has been the subject of public and political discourse due to multiple reasons which include economic impact, energy security, and environmental hazard. Consequently, several polls have been conducted over time to gauge public attitude towards offshore drilling. Nevertheless, the economic literature on this issue is sparse. This paper contributes to the literature and analyzes support for offshore drilling based on demographic, economic, social, belief, and shock (e.g. spill) factors. The data is taken from ten nationwide surveys conducted before, during and after the British Petroleum (BP) oil spill and analyzed within the framework of discrete choice model. The results from an ordinal probit model demonstrate that age, annual household income, affiliation to Republican Party, and residence in oil-rich states positively affect the probability of strong support and reduce the probability of strong opposition for offshore drilling. In contrast, the female gender, higher education, association to Democratic Party, and environmental concern affect opinion in opposite direction. Marginal effects show that belief about environmental consequences of drilling has the highest impact on opinion. Binary probit model also yields a similar result and suggests that BP oil disaster resulted in a transient decrease in support for offshore drilling. - Highlights: •US public opinion on offshore drilling is analyzed based on ten national polls. •Ordinal and binary probit models are utilized to identify the underlying factors that shape public opinion. •Belief about environmental cost of drilling and educational attainment have the highest negative impact on opinion. •Age, income, affiliation to Republican party and oil-rich states positively affect support for drilling. •BP oil spill resulted in a transient decrease in support for offshore drilling.

  9. Changing the fundamentals[Drill technology

    Energy Technology Data Exchange (ETDEWEB)

    Flatern, R. von

    2003-02-01

    Evolution of the science of drilling oil and gas wells has evolved in fits and starts. From drilling with cables to rotary tables to top drives, from straight holes to horizontal, it has been a process interrupted occasionally by flashes of revolutionary brilliance. In this article the author looks at the state of just a few of the technologies that define or threaten to change how drillers go about their business. In the early days of deepwater exploration drillers responded more to technical challenges than financial ones, primarily with immense semisubmersibles and drillships, together with all he necessary ancillary items. The goal of getting deeper faster is not a new one, better performance bits, muds, LWD and MWD, together with numerous other developments all emerged as a result of the desire to shorten the time between spud and TD. But whereas saving a day or two drilling onshore or nearshore is desirable, it has never before been possible to realize the kind of substantial financial benefits from relatively small time savings. Research and development into these type of savings with the design and improvement of different types drill bits and casing drilling is described.

  10. MDS system increases drilling safety and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, J.; Turner, L. (Sedco Forex, Paris (FR))

    1989-09-01

    There's a great deal of data recorded during drilling operations on rigs these days, but it is seldom well utilized. The operator's company person relies upon mud loggers for collecting and recording most information. The methods used to process and display this information are often inadequate for those who need it the most the driller and toolpusher. Drilling contractor personnel usually have only rudimentary displays of drilling parameters, and practically no serious method of analysis except for daily paper reports. These are cumbersome to use and provide only incomplete data, after the fact. The MDS system, presented in this article, is a new information and alarm network, which rectifies this situation by bringing to the rig, for the first time, the latest in sensor and computer technologies. This system acquires key drilling data on the rig floor, pump room, and return line, and displays it in a clear graphical format to both the driller and the toolpusher in real time. It also provides the toolpusher with a workstation for easy access to the same information for evaluation and planning of the drilling program.

  11. New method speeds drilling, attracts takeover

    Energy Technology Data Exchange (ETDEWEB)

    Brimble, S.

    2000-06-12

    Plains Energy Services Ltd is currently building a prototype drilling rig known as the Cisco 2000. It is expected to extend the limit of coiled tubing applications into deeper formations and in so doing challenge conventional drilling methods to match its performance in terms of speed and pricing. An indication of the seriousness of this challenge is the uninvited takeover bid by Precision Drilling Corporation, the largest Canadian oilfield contractor. The Cisco 2000 is said to have a pulling capacity of 120,000 lbs in bench tests, twice as much as existing rigs, and is capable of drilling to 7,200 feet using a 3.5 inch coil. Plain Energy's existing units are capable of penetrating only about 4,900 feet. The new technology involves a modified injector design which will resemble a conveyor belt with the gripper blocks located on top. This allows the tubing to be gripped from all four sides which accounts for the increased pulling power. The advantage of coiled tube drilling lies in the speed with which the operation can be completed and the corresponding cost reductions which result from the reduced rental cost of support equipment. Plains Energy urged its shareholders to reject the takeover offer in its present form, but is said to be open to better offers.

  12. ODP Leg 210 Drills the Newfoundland Margin in the Newfoundland-Iberia Non-Volcanic Rift

    Science.gov (United States)

    Tucholke, B. E.; Sibuet, J.

    2003-12-01

    The final leg of the Ocean Drilling Project (Leg 210, July-September 2003) was devoted to studying the history of rifting and post-rift sedimentation in the Newfoundland-Iberia rift. For the first time, drilling was conducted in the Newfoundland Basin along a transect conjugate to previous drill sites on the Iberia margin (Legs 149 and 173) to obtain data on a complete `non-volcanic' rift system. The prime site during this leg (Site 1276) was drilled in the transition zone between known continental crust and known oceanic crust at chrons M3 and younger. Extensive geophysical work and deep-sea drilling have shown that this transition-zone crust on the conjugate Iberia margin is exhumed continental mantle that is strongly serpentinized in its upper part. Transition-zone crust on the Newfoundland side, however, is typically a kilometer or more shallower and has much smoother topography, and seismic refraction data suggest that the crust may be thin (about 4 km) oceanic crust. A major goal of Site 1276 was to investigate these differences by sampling basement and a strong, basinwide reflection (U) overlying basement. Site 1276 was cored from 800 to 1737 m below seafloor with excellent recovery (avg. 85%), bottoming in two alkaline diabase sills >10 m thick that are estimated to be 100-200 meters above basement. The sills have sedimentary contacts that show extensive hydrothermal metamorphism. Associated sediment structural features indicate that the sills were intruded at shallow levels within highly porous sediments. The upper sill likely is at the level of the U reflection, which correlates with lower Albian - uppermost Aptian(?) fine- to coarse-grained gravity-flow deposits. Overlying lower Albian to lower Oligocene sediments record paleoceanographic conditions similar to those on the Iberia margin and in the main North Atlantic basin, including deposition of `black shales'; however, they show an extensive component of gravity-flow deposits throughout.

  13. Progress in reducing the environmental impacts of offshore drilling wastes

    International Nuclear Information System (INIS)

    Flemming, D; Candler, J.E.

    2002-01-01

    Full text:Over the past several years, great progress has been made in understanding and reducing the environmental impacts of offshore drilling wastes. Our understanding of sea floor impacts has been helped along by new environmental assessment tools such us computer modeling of sea floor deposition of drilling discharges, sediment profile imaging, and in situ sediment toxicity bioassays. To further reduce environmental impacts, new pollution prevention technologies have been developed that can shrink the environmental footprint of offshore drilling. These technologies reduce the total amount of drilling wastes discharged and include cuttings dryers and centrifuges that can reduce the drilling fluid content of drill cuttings to below 10 percent. In conclusion, the oil and gas industry is adopting more environmentally compatible drilling fluids, new environmental assessment tools and pollution prevention technologies that dramatically reduce the amount of drilling wastes discharged. Together, all of these elements have the potential to reduce environmental impacts of offshore drilling

  14. Core drilling of deep borehole OL-KR39 at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Niinimaeki, R. [Suomen Malmi Oy, Espoo (Finland)

    2005-11-15

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 502.97 m and 45.11 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in August- October 2005. The identification numbers of the boreholes are OL-KR39 and OL-KR39B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 415m{sup 3} and 25 m{sup 3} and the measured volumes of the returning water were 175 m{sup 3} and 7 m{sup 3} in boreholes OLKR39 and OL-KR39B, respectively. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 110 MPa, the average Young's Modulus is 49 GP a and the average Poisson' s ratio is 0.25. The main rock types are migmatitic mica gneiss and granite. Filled fracture is the most common

  15. Core drilling of deep borehole OL-KR37 at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Niinimaeki, R. [Suomen Malmi Oy, Espoo (Finland)

    2005-11-15

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 350.00 m and 45.10 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in June- August 2005. The identification numbers of the boreholes are OL-KR37 and OL-KR37B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded information about drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 273 m{sup 3} and 21m{sup 3} and the measured volumes of the returning water were 221m{sup 3} and 16m{sup 3} in boreholes OL-KR37 and OL-KR37B, respectively. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 106 MPa, the average Young's modulus is 40 GPa and the average Poisson's ratio is 0.20. The main rock types are migmatitic mica gneiss, granite and tonalite. Filled

  16. Core drilling of deep borehole OL-KR39 at Olkiluoto in Eurajoki 2005

    International Nuclear Information System (INIS)

    Niinimaeki, R.

    2005-11-01

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 502.97 m and 45.11 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in August- October 2005. The identification numbers of the boreholes are OL-KR39 and OL-KR39B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 415m 3 and 25 m 3 and the measured volumes of the returning water were 175 m 3 and 7 m 3 in boreholes OLKR39 and OL-KR39B, respectively. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 110 MPa, the average Young's Modulus is 49 GP a and the average Poisson' s ratio is 0.25. The main rock types are migmatitic mica gneiss and granite. Filled fracture is the most common fracture type. The average fracture

  17. Core drilling of deep borehole OL-KR43 at Olkiluoto in Eurajoki 2006

    Energy Technology Data Exchange (ETDEWEB)

    Niinimaeki, R. [Suomen Malmi Oy, Espoo (Finland)

    2006-12-15

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 1000.26 m and 45.01 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in July - October 2006. The identification numbers of the boreholes are OL-KR43 and OL-KR43B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 1103 m{sup 3} and 16 m{sup 3} in boreholes OL-KR43 and OL-KR43B, respectively. Measured volumes of the returning water were 916m{sup 3} in borehole OL-KR43 and 13m{sup 3} in borehole OL-KR43B. The deviation of the boreholes was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is about 131 MPa, the average Young's Modulus is 37 GPa and the average Poisson's ratio is 0.19. The main rock types are veined gneiss, diatexitic gneiss

  18. Core drilling of deep borehole OL-KR46 at Olkiluoto in Eurajoki 2007

    International Nuclear Information System (INIS)

    Toropainen, V.

    2007-09-01

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 600.10 m and 45.16 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in May - June 2007. The identification numbers of the boreholes are OL-KR46 and OL-KR46B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning water, and the volume of drilling water were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 466 m 3 and 20 m 3 in boreholes OL-KR46 and OL-KR46B, respectively. Measured volumes of the returning water were 407 m 3 in borehole OL-KR46 and 12 m 3 in borehole OL-KR46B. The deviation of the boreholes was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is 116.5 MPa, the average Young's Modulus is 31.5 GPa and the average Poisson's ratio is 0.20. The main rock types are veined gneiss, tonalitic-granodioritic-granitic gneiss and pegmatite

  19. Core drilling of deep drillhole OL-KR47 at Olkiluoto in Eurajoki 2007-2008

    International Nuclear Information System (INIS)

    Toropainen, V.

    2008-02-01

    As a part of the confirming site investigations for ONKALO rock characterisation facility, Suomen Malmi Oy (Smoy) core drilled 1008.76 m and 44.31 m deep drillholes with a diameter of 75.7 mm at Olkiluoto in October 2007 - January 2008. The identification numbers of the drillholes are OL-KR47 and OL-KR47B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling waters were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 1229 m 3 and 13.6 m 3 in drillholes OL-KR47 and OL-KR47B, respectively. Measured volume of the returning water in drillhole OL-KR47 was 1125 m 3 , water did not return in drillhole OL-KR47B. The deviation of the drillholes was measured with the deviation measuring instruments EMS and Maxibor II. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is 92.1 MPa, the average Young's Modulus is 32.5 GPa and the average Poisson's ratio is 0.33. The main rock types are diatexitic and veined gneisses, pegmatitic granite and tonaliticgranodioritic- granitic gneiss. The average fracture frequency is 2.2 pcs / m in drillhole OL-KR47 and 3.4 pcs / m in drillhole OL-KR47B. The average RQD values were 95.3 % and 94.1 %. In drillhole OL-KR47 46 fractured zones and in drillhole OL-KR47B two fractured zones were penetrated during drilling work. (orig.)

  20. Core drilling of deep drillhole OL-KR45 at Olkiluoto in Eurajoki 2007

    International Nuclear Information System (INIS)

    Toropainen, V.

    2007-11-01

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 1023.30 m and 44.75 m deep drillholes with a diameter of 75.7 mm at Olkiluoto in June - September 2007. The identification numbers of the drillholes are OL-KR45 and OL-KR45B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling waters were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and washing water were 1186 m 3 and 19 m 3 in drillholes OL-KR45 and OL-KR45B, respectively. Measured volumes of the returning water were 962 m 3 in drillhole OL-KR45 and 15 m 3 in drillhole OL-KR45B. The deviation of the drillholes was measured with the deviation measuring instruments EMS and Maxibor II. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is 126.2 MPa, the average Young's Modulus is 42.5 GPa and the average Poisson's ratio is 0.21. The main rock types are veined and diatexitic gneisses, pegmatitic granite and tonalitic

  1. High Temperature 300°C Directional Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Kamalesh [Baker Hughes Oilfield Operations, Houston, TX (United States); Aaron, Dick [Baker Hughes Oilfield Operations, Houston, TX (United States); Macpherson, John [Baker Hughes Oilfield Operations, Houston, TX (United States)

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°C capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100

  2. Drilling of deep boreholes and associated geological investigations. Final disposal of spent fuel

    International Nuclear Information System (INIS)

    Anttila, P.

    1983-12-01

    Teollisuuden Voima Oy (Industrial Power Company Ltd.) will take precautions for the final disposal of spent fuel in the Finnish bedrock. The first stage of the site selection studies includes drilling of a deep borehole down to approximately 1000 metres in the winter of 1984. The choice of drilling method and equipment depends on the geological circumstances and the target of the investigation. The most common drilling methods used with the investigations of nuclear waste disposal are diamond core drilling and percussion drilling. The Precambrian bedrock outcropping in Finland exists also in Sweden and Canada, where deep boreholes have been done down to more than 1000 metres using diamond core drilling. This method can be also used in Finland and equipment for the drilling are available. One of the main targets of the investigation is to clarify the true strike and dip of fractures and other discontinuities. The methods used abroad are taking of oriented cores, borehole television survey and geophysical measurements. TV-survey and geophysical methods seem to be most favourable in deep boreholes. Also the accurate position (inclination, bearing) of the borehole is essential to know and many techniques are used for measuring of it. Investigations performed on the core samples include core logging and laboratory tests. For the core logging there is no uniform practice concerning the nuclear waste investigations. Different counries use their own classifications. All of these, however, are based on the petrography and fracture properties of the rock samples. Laboratory tests (petrographical and rock mechanical tests) are generally performed according to the recommendations of international standards. The large volumes of data obtained during investigations require computer techniques which allow more comprehensive collection, storage and processing of data. This kind of systems are already used in Sweden and Canada, for instance, and they could be utilize in Finland

  3. Downhole drilling hammer. Marteau de forage

    Energy Technology Data Exchange (ETDEWEB)

    Techy, M.

    1987-07-28

    This invention concerns a drilling hammer of the downhole type, comprising a tubular body fed by compressed air, a drilling cutter and a hammer piston set into movement inside an interior cylinder by a compressed air distribution mechanism alternately above and below the piston. The hammer includes a gas-oil injection device in the chamber above the piston and a mechanism for initiating the injection during the rising of the piston; the additional compression provokes the combustion of the gas-oil-air mixture, which hurls the piston towards the cutter. This type of apparatus permits an important reduction in costs of materials and of operation, and permits at the same time an increase in drilling power and a reduction in energy consumption. 8 figs.

  4. The LITA Drill and Sample Delivery System

    Science.gov (United States)

    Paulsen, G.; Yoon, S.; Zacny, K.; Wettergreeng, D.; Cabrol, N. A.

    2013-12-01

    The Life in the Atacama (LITA) project has a goal of demonstrating autonomous roving, sample acquisition, delivery and analysis operations in Atacama, Chile. To enable the sample handling requirement, Honeybee Robotics developed a rover-deployed, rotary-percussive, autonomous drill, called the LITA Drill, capable of penetrating to ~80 cm in various formations, capturing and delivering subsurface samples to a 20 cup carousel. The carousel has a built-in capability to press the samples within each cup, and position target cups underneath instruments for analysis. The drill and sample delivery system had to have mass and power requirements consistent with a flight system. The drill weighs 12 kg and uses less than 100 watt of power to penetrate ~80 cm. The LITA Drill auger has been designed with two distinct stages. The lower part has deep and gently sloping flutes for retaining powdered sample, while the upper section has shallow and steep flutes for preventing borehole collapse and for efficient movement of cuttings and fall back material out of the hole. The drill uses the so called 'bite-sampling' approach that is samples are taken in short, 5-10 cm bites. To take the first bite, the drill is lowered onto the ground and upon drilling of the first bite it is then retracted into an auger tube. The auger with the auger tube are then lifted off the ground and positioned next to the carousel. To deposit the sample, the auger is rotated and retracted above the auger tube. The cuttings retained on the flutes are either gravity fed or are brushed off by a passive side brush into the cup. After the sample from the first bite has been deposited, the drill is lowered back into the same hole to take the next bite. This process is repeated until a target depth is reached. The bite sampling is analogous to peck drilling in the machining process where a bit is periodically retracted to clear chips. If there is some fall back into the hole once the auger has cleared the hole, this

  5. SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.

    Science.gov (United States)

    Sass, J.H.; Elders, W.A.

    1986-01-01

    The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.

  6. Engineering report on drilling in the Sand Wash Basin intermediate grade project

    International Nuclear Information System (INIS)

    1980-09-01

    The Sand Wash Basin Intermediate Grade Drilling Project was conducted by Bendix Field Engineering Corporation in support of the US Department of Energy (DOE) National Uranium Resource Evaluation (NURE) program. This project consisted of 19 drill holes ranging in depth from 275 to 1220 feet (83.9 to 372.1 m). A total of 11,569 feet (3528.5 m) was rotary drilled and 130 feet (39.7 m) were cored for a total of 11,699 feet (3568.2 m) for the project. The project objective was to provide comprehensive subsurface geologic data relevant to Intermediate Grade uranium mineralization of the Browns Park Formation in the Sugar Loaf Peak Site A, and the Little Juniper Mountain Site B areas. All boreholes are located on the USGS Juniper Hot Springs and the Lay 7.5-Minute Series (Topographic) Quadrangles. The project began May 2, 1980; drilling was completed June 3, 1980. Site restoration and clean up was initiated immediately upon the completion of the last borehole and was completed June 8, 1980

  7. IODP Expedition 319, NanTroSEIZE Stage 2: First IODP Riser Drilling Operations and Observatory Installation Towards Understanding Subduction Zone Seismogenesis

    Directory of Open Access Journals (Sweden)

    Sean Toczko

    2010-09-01

    Full Text Available The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE is a major drilling project designed to investigate fault mechanics and the seismogenic behavior of subduction zone plate boundaries. Expedition 319 is the first riser drilling operation within scientific ocean drilling. Operations included riser drilling at Site C0009 in the forearc basin above the plate boundary fault, non-riser drilling at Site C0010 across the shallow part of the megasplay faultsystem—which may slip during plate boundary earthquakes—and initial drilling at Site C0011 (incoming oceanic plate for Expedition 322. At Site C0009, new methods were tested, including analysis of drill mud cuttings and gas, and in situ measurements of stress, pore pressure, and permeability. These results, in conjunction with earlier drilling, will provide a the history of forearc basin development (including links to growth of the megasplay fault system and modern prism, b the first in situ hydrological measurements of the plate boundary hanging wall, and c integration of in situ stress measurements (orientation and magnitude across the forearc and with depth. A vertical seismic profile (VSP experiment provides improved constraints on the deeper structure of the subduction zone. At Site C0010, logging-while-drilling measurements indicate significantchanges in fault zone and hanging wall properties over short (<5 km along-strike distances, suggesting different burial and/or uplift history. The first borehole observatory instruments were installed at Site C0010 to monitor pressure and temperature within the megasplay fault zone, and methods of deployment of more complex observatoryinstruments were tested for future operations.

  8. Evaluation of the Cortical Bone Reaction Around of Implants Using a Single-Use Final Drill: A Histologic Study.

    Science.gov (United States)

    Gehrke, Sergio Alexandre

    2015-07-01

    This study was designed to compare the cortical bone reaction following traditional osteotomy or the use of a single-use final drill in the osseointegration of implants in the tibia of rabbits. For this study, 48 conical implants, of standard surface type and design and manufactured by the same company, were inserted into the tibiae of 12 rabbits and removed after 30 or 60 days for histologic analysis. Two test groups were prepared according to the drill sequence used for the osteotomy at the preparation sites: in the control group was used a conventional drill sequence with several uses, whereas the test group (tesG) used a single-use final drill. The bone-to-implant contact and qualitative factors of the resulting cortical bone were assessed. Both techniques produced good implant integration. Differences in the linear bone-to-implant contact were observed between the drilling procedures as time elapsed in vivo, with the tesG appearing to have clinical advantages. Both groups exhibited new bone in quantity and in quality; however, the tesG exhibited a higher level of new bone deposition than the control group. Within the limitations of this study, the findings suggest that the use of a single-use final drill leads to better and faster organization of the cortical bone area during the evaluated period and may avoid the possible problems that can be caused by worn drills.

  9. The condition and ways to develop operations to establish standards for drilling muds in the ''Grozneft''' Union

    Energy Technology Data Exchange (ETDEWEB)

    Baranov, V S; Volkova, A P

    1979-01-01

    Four intervals are strictly defined in the geological section of the sites of ''Grozneft''', which require the use of different types of drilling muds (R). The upper part of the section to the Karagano-Chokraksk sediments inclusively should be drilled with wash through by limestone clay mud, whose use should begin immediately after the lowering of the conducter. The upper Maykop sediments should be drilled with the use of a weighted limestone mud, strictly observing the concentration of the lime and the caustic soda in the mud. In the deposits of the lower Maykop, where the temperature reaches 120/sup 0/C, a gypsum and clay mud should be used, using oxyl for regulating its viscosity. In the deposits of the Upper Cretaceous, for which absorption is characteristic, it is expedient to wash through with water or clay mud, processed by UShchR and bichromate. The deposits of the lower Cretaceous should be drilled with wash through by a gypsum mud, processed by lignosulfonates, where it is recommended to use KSSB-4. The capability is assumed of using chlorocalcium clay mud in drilling the Maykop clays. A condition for the effective use of any types of drilling muds is the improved system for removing drilled out rock from the mud.

  10. Real time observation system for monitoring environmental impact on marine ecosystems from oil drilling operations.

    Science.gov (United States)

    Godø, Olav Rune; Klungsøyr, Jarle; Meier, Sonnich; Tenningen, Eirik; Purser, Autun; Thomsen, Laurenz

    2014-07-15

    Environmental awareness and technological advances has spurred development of new monitoring solutions for the petroleum industry. This paper presents experience from a monitoring program off Norway. To maintain operation within the limits of the government regulations Statoil tested a new monitoring concept. Multisensory data were cabled to surface buoys and transmitted to land via wireless communication. The system collected information about distribution of the drilling wastes and the welfare of the corals in relation to threshold values. The project experienced a series of failures, but the backup monitoring provided information to fulfil the requirements of the permit. The experience demonstrated the need for real time monitoring and how such systems enhance understanding of impacts on marine organisms. Also, drilling operations may improve by taking environmental information into account. The paper proposes to standardize and streamline monitoring protocols to maintain comparability during all phases of the operation and between drill sites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Engineering report on the drilling in the Spor Mountain area of Utah

    International Nuclear Information System (INIS)

    1979-07-01

    The Spor Mountain Drilling Project was conducted by Bendix Field Engineering Corporation in support of the United States Department of Energy (DOE) National Uranium Resource Evaluation (NURE) program. This project consisted of 30 drill holes, ranging in depth from 372 feet (113.39 m) to 2,525 feet (769.62 m). A total of 33,143 feet (10,101.99 m) were drilled, of which 11,579 feet (3,529.28 m) were cored. The objective of the project was to test the continuity of uranium bearing host rocks, including the Beryllium Tuff and Yellow Chief sandstones, in several geologically favorable areas of the Thomas Range. This project began June 22, 1978, and continued through May 1979 with final site restoration and cleanup

  12. Experimental evaluation of training accelerators for surgical drilling

    Directory of Open Access Journals (Sweden)

    Gosselin Florian

    2011-12-01

    Full Text Available In some specific maxillo-facial surgeries, like the Epker, the cortical part of the lower maxilla must be drilled with minimum penetration into the spongy bone to avoid the trigeminal nerve. The result of the surgery is highly dependent on the quality of the drill. Drilling must therefore be mastered by students before acting as surgeon. The study compares the efficiency of two punctual drilling training programs developed on a virtual reality platform with non medical participants. The results show better benefit of training on relevant haptic aspects of the task before introducing multimodal drilling over repeated multimodal simulated drilling exercises.

  13. Rapid Development of Drilling Technology and Market of China

    Institute of Scientific and Technical Information of China (English)

    Wang Guanqing; Ni Rongfu

    1994-01-01

    @@ China's developing drilling market Now, CNPC is the owner of more than 1 000 rigs of large and medium size, including imported electric-drive rigs with 6 000 to 9 000 m drilling capacity, imported mechanical drive rigs with 5 000 to 6 000 m drilling capacity, imported mobile rigs with 1 500 to 3 000 m drilling capacity and a lot of home-made mechanical rigs with 2 000,3 200, 4 500 and 6 000m drilling capacity, which can meet the requirement of the domestic and foreign drilling market.

  14. Drilling supervision procedure for the Exploratory Shaft Facility: Final draft

    International Nuclear Information System (INIS)

    1986-11-01

    Drilling supervision will be undertaken in the Exploratory Shaft Facility (ESF) for boreholes drilled primarily for the purpose of hydrologic testing, downhole mechanical/thermal testing, sampling for laboratory testing, and for the placement of instrumentation. The primary purpose of this procedure is documentation of drilling activities prescribed by other procedures. Supervision of drilling includes designation of positions of authority, lines of communication, and methodology of supervising, monitoring, and documenting drilling and associated activities. The rationale for the specific applications of core drilling is provided by the test procedures for each activity. 2 figs

  15. Technology strategy for cost-effective drilling and intervention; Technology Target Areas; TTA4 - Cost effective drilling and intervention

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The main goals of the OG21 initiative are to (1) develop new technology and knowledge to increase the value creation of Norwegian oil and gas resources and (2) enhance the export of Norwegian oil and gas technology. The OG21 Cost-effective Drilling and Intervention (CEDI) Technology Target Area (TTA) has identified some key strategic drilling and well intervention needs to help meet the goals of OG21. These key strategic drilling and well intervention needs are based on a review of present and anticipated future offshore-Norway drilling and well intervention conditions and the Norwegian drilling and well intervention industry. A gap analysis has been performed to assess the extent to which current drilling and well intervention research and development and other activities will meet the key strategic needs. Based on the identified strategic drilling and well intervention needs and the current industry res each and development and other activities, the most important technology areas for meeting the OG21 goals are: environment-friendly and low-cost exploration wells; low-cost methods for well intervention/sidetracks; faster and extended-reach drilling; deep water drilling, completion and intervention; offshore automated drilling; subsea and sub-ice drilling; drilling through basalt and tight carbonates; drilling and completion in salt formation. More specific goals for each area: reduce cost of exploration wells by 50%; reduce cost for well intervention/sidetracks by 50%; increase drilling efficiency by 40%; reduce drilling cost in deep water by 40 %; enable offshore automated drilling before 2012; enable automated drilling from seabed in 2020. Particular focus should be placed on developing new technology for low-cost exploration wells to stem the downward trends in the number of exploration wells drilled and the volume of discovered resources. The CEDI TTA has the following additional recommendations: The perceived gaps in addressing the key strategic drilling and

  16. Geothermal wells: a forecast of drilling activity

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.L.; Mansure, A.J.; Miewald, J.N.

    1981-07-01

    Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

  17. Validating Acquisition IS Integration Readiness with Drills

    DEFF Research Database (Denmark)

    Wynne, Peter J.

    2017-01-01

    To companies, mergers and acquisitions are important strategic tools, yet they often fail to deliver their expected value. Studies have shown the integration of information systems is a significant roadblock to the realisation of acquisition benefits, and for an IT department to be ready......), to understand how an IT department can use them to validate their integration plans. The paper presents a case study of two drills used to validate an IT department’s readiness to carry out acquisition IS integration, and suggests seven acquisition IS integration drill characteristics others could utilise when...

  18. Reagent for treating clay drilling muds

    Energy Technology Data Exchange (ETDEWEB)

    Tkachenko, P V; Leshchinskiy, P A; Shnaper, B I; Zinchuk, I F; Zlobin, V P

    1982-01-01

    A reagent is proposed for treating clay drilling muds. It contains lignite, caustic soda and modifying agent. It is distinguished by the fact that in order to reduce the cost of the reagent with simultaneous decrease in the viscosity and static shear stress of the drilling mud, it additionally contains iron sulfate, and the modifying agent contained is wastes of carbonic acid production with the following ratio of components (parts by weight): lignite 10.0-15.0, caustic soda 2.0-3.0, wastes of carbonic acid production 0.5-0.75; iron sulfate 1.0-2.0.

  19. Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones.

    Science.gov (United States)

    Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun

    2016-11-01

    This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. The effect of drilling parameters for surface roughness in drilling of AA7075 alloy

    Directory of Open Access Journals (Sweden)

    Yaşar Nafiz

    2017-01-01

    Full Text Available AA7075 aluminum alloy has been very popular significantly interest in the production of structural components in automotive and aviation applications due to its high strength, low density, good plasticity and better machinability comparable to many metals. Particularly, final products must have uniformly high quality to ensure essential safety standards in the aircraft industry. The optimization of hole quality which can variable according to tool geometry and drilling parameters is important in spite of high machinability rate of AA7075 alloy. In this study, the effects of drilling parameters on average surface roughness (Ra has been investigated in drilling of AA7075 with tungsten carbide drills. Machining experiments were performed with three different drill point angles and three different levels of cutting parameters (feed rate, cutting speed. The effects of drilling parameters on thrust force has been determined with ANOVA in %95 confidence level. Feed rate was determined as the most important factor on Ra according to ANOVA results. Moreover, it was shown that increasing feed rate leads to increase of Ra while increasing drill point angle leads to decrease of Ra. The optimum surface roughness was obtained with point angle of 130°, cutting speed of 40 m/min and feed rate of 0.1 mm/rev, thereby the validity of optimization was confirmed with Taguchi method.

  1. Optimum fluid design for drilling and cementing a well drilled with coil tubing technology

    Energy Technology Data Exchange (ETDEWEB)

    Swendsen, O.; Saasen, A.; Vassoy, B. [Statoil (Norway); Skogen, E.; Mackin, F.; Normann, S. H.

    1998-12-31

    The strategy, design and drilling fluid and cementing operations in the first two wells drilled with coil tubing technology in the Gullfaks field in the Tampen Spur Area of the Norwegian sector of the North Sea are discussed. The drilling fluid use was a solids-free potassium formate/polymer brine-based fluid with a density of 1,50-1.56 g/cc, with flow properties characterized by very low fluid loss due to high extensional viscosity, a low viscosity at all shear rates, and a low degree of shear-thinning. The low viscous drilling fluid is considered to have been the major contributing factor in achieving excellent hole cleaning, no differential sticking, successful setting of cement kick-off plugs, problem-free running of the liner, and excellent zonal isolation when cementing the liner. These experiences led the authors to conclude that it is possible to formulate a brine-based solids-free drilling fluid with low viscosity and fluid loss properties for most formation pressure regimes, and that such a drilling fluid is well suited to drilling highly deviated slim hole wells where hole cleaning and differential sticking present special challenges. 12 refs., 2 tabs., 3 figs.

  2. Coral ages and island subsidence, Hilo drill hole

    Science.gov (United States)

    Moore, J.G.; Ingram, B.L.; Ludwig, K. R.; Clague, D.A.

    1996-01-01

    A 25.8-m-thick sedimentary section containing coral fragments occurs directly below a surface lava flow (the ???1340 year old Panaewa lava flow) at the Hilo drill hole. Ten coral samples from this section dated by accelerator mass spectrometry (AMS) radiocarbon and five by thermal infrared multispectral scanner (TIMS) 230Th/U methods show good agreement. The calcareous unit is 9790 years old at the bottom and 1690 years old at the top and was deposited in a shallow lagoon behind an actively growing reef. This sedimentary unit is underlain by a 34-m-thick lava flow which in turn overlies a thin volcaniclastic silt with coral fragments that yield a single 14C date of 10,340 years. The age-depth relations of the dated samples can be compared with proposed eustatic sea level curves after allowance for island subsidence is taken. Island subsidence averages 2.2 mm/yr for the last 47 years based on measurements from a tide gage near the drill hole or 2.5-2.6 mm/yr for the last 500,000 years based on the ages and depths of a series of drowned coral reefs offshore from west Hawaii. The age-depth measurements of coral fragments are more consistent with eustatic sea levels as determined by coral dating at Barbados and Albrolhos Islands than those based on oxygen isotopic data from deep sea cores. The Panaewa lava flow entered a lagoon underlain by coral debris and covered the drill site with 30.9 m of lava of which 11 m was above sea level. This surface has now subsided to 4.2 m above sea level, but it demonstrates how a modern lava flow entering Hilo Bay would not only change the coastline but could extensively modify the offshore shelf.

  3. Archaeological studies at Drill Hole U20az Pahute Mesa, Nye county, Nevada. [Contains bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, A.H.; Hemphill, M.L.; Henton, G.H.; Lockett, C.L.; Nials, F.L.; Pippin, L.C.; Walsh, L.

    1991-07-01

    During the summer of 1987, the Quaternary Sciences Center (formerly Social Science Center) of the Desert Research Institute (DRI), University of Nevada System, conducted data recovery investigations at five archaeological sites located near Drill Hole U20az on the Nevada Test Site in southern Nevada. These sites were among 12 recorded earlier during an archaeological survey of the drill hole conducted as part of the environmental compliance activities of the Department of Energy (DOE). The five sites discussed in this report were considered eligible for the National Register of Historic Places and were in danger of being adversely impacted by construction activities or by effects of the proposed underground nuclear test. Avoidance of these sites was not a feasible alternative; thus DRI undertook a data recovery program to mitigate expected adverse impacts. DRI's research plan included controlled surface collections and excavation of the five sites in question, and had the concurrence of the Nevada Division of Historic Preservation and Archaeology and the Advisory Council of Historic Preservation. Of the five sites investigated, the largest and most complex, 26Ny5207, consists of at least three discrete artifact concentrations. Sites 26Ny5211 and 26Ny5215, both yielded considerable assemblages. Site 26Ny5206 is very small and probably is linked to 26Ny5207. Site 26Ny5205 contained a limited artifact assemblage. All of the sites were open-air occurrences, and, with one exception contained no or limited subsurface cultural deposits. Only two radiocarbon dates were obtained, both from 26Ny5207 and both relatively recent. While the investigations reported in the volume mitigate most of the adverse impacts from DOE activities at Drill Hole U20az, significant archaeological sites may still exist in the general vicinity. Should the DOE conduct further activities in the region, additional cultural resource investigations may be required. 132 refs., 71 figs., 44 tabs.

  4. Preliminary evaluation of uranium deposits. A geostatistical study of drilling density in Wyoming solution fronts

    International Nuclear Information System (INIS)

    Sandefur, R.L.; Grant, D.C.

    1976-01-01

    Studies of a roll-front uranium deposit in Shirley Basin Wyoming indicate that preliminary evaluation of the reserve potential of an ore body is possible with less drilling than currently practiced in industry. Estimating ore reserves from sparse drilling is difficult because most reserve calculation techniques do not give the accuracy of the estimate. A study of several deposits with a variety of drilling densities shows that geostatistics consistently provides a method of assessing the accuracy of an ore reserve estimate. Geostatistics provides the geologist with an additional descriptive technique - one which is valuable in the economic assessment of a uranium deposit. Closely spaced drilling on past properties provides both geological and geometric insight into the occurrence of uranium in roll-front type deposits. Just as the geological insight assists in locating new ore bodies and siting preferential drill locations, the geometric insight can be applied mathematically to evaluate the accuracy of a new ore reserve estimate. By expressing the geometry in numerical terms, geostatistics extracts important geological characteristics and uses this information to aid in describing the unknown characteristics of a property. (author)

  5. SMART MONITORING AND DECISION MAKING FOR REGULATING ANNULUS BOTTOM HOLE PRESSURE WHILE DRILLING OIL WELLS

    Directory of Open Access Journals (Sweden)

    M. P. Vega

    Full Text Available Abstract Real time measurements and development of sensor technology are research issues associated with robustness and safety during oil well drilling operations, making feasible the diagnosis of problems and the development of a regulatory strategy. The major objective of this paper is to use an experimental plant and also field data, collected from a basin operation, offshore Brazil, for implementing smart monitoring and decision making, in order to assure drilling inside operational window, despite the commonly observed disturbances that produce fluctuations in the well annulus bottom hole pressure. Using real time measurements, the performance of a continuous automated drilling unit is analyzed under a scenario of varying levels of rate of penetration; aiming pressure set point tracking (inside the operational drilling window and also rejecting kick, a phenomenon that occurs when the annulus bottom hole pressure is inferior to the porous pressure, producing the migration of reservoir fluids into the annulus region. Finally, an empirical model was built, using real experimental data from offshore Brazil basins, enabling diagnosing and regulating a real drilling site by employing classic and advanced control strategies.

  6. Accuracy of linear drilling in temporal bone using drill press system for minimally invasive cochlear implantation.

    Science.gov (United States)

    Dillon, Neal P; Balachandran, Ramya; Labadie, Robert F

    2016-03-01

    A minimally invasive approach for cochlear implantation involves drilling a narrow linear path through the temporal bone from the skull surface directly to the cochlea for insertion of the electrode array without the need for an invasive mastoidectomy. Potential drill positioning errors must be accounted for to predict the effectiveness and safety of the procedure. The drilling accuracy of a system used for this procedure was evaluated in bone surrogate material under a range of clinically relevant parameters. Additional experiments were performed to isolate the error at various points along the path to better understand why deflections occur. An experimental setup to precisely position the drill press over a target was used. Custom bone surrogate test blocks were manufactured to resemble the mastoid region of the temporal bone. The drilling error was measured by creating divots in plastic sheets before and after drilling and using a microscope to localize the divots. The drilling error was within the tolerance needed to avoid vital structures and ensure accurate placement of the electrode; however, some parameter sets yielded errors that may impact the effectiveness of the procedure when combined with other error sources. The error increases when the lateral stage of the path terminates in an air cell and when the guide bushings are positioned further from the skull surface. At contact points due to air cells along the trajectory, higher errors were found for impact angles of [Formula: see text] and higher as well as longer cantilevered drill lengths. The results of these experiments can be used to define more accurate and safe drill trajectories for this minimally invasive surgical procedure.

  7. Research borehole drilling activity for boreholes DH-18, DH-19, DC-12, DC-13, DC-14, DC-15, and deepening of existing borehole DC-7

    International Nuclear Information System (INIS)

    1979-09-01

    This report is an environmental evaluation of the impacts of proposed borehole drilling activities at the Hanford Site, northwest of Richland, Washington. The proposed action is to drill six research boreholes ranging in depth from 137 to 1372 meters (m) [250 to 4500 +- feet (ft)]. In addition, an existing borehole (DC-7) will be extended from 1249 to 1524 m (4099 to 5000 +- ft). The purpose of the US Department of Energy's (DOE) borehole drilling activities is to collect data on in situ rock formations that are considered potentialy suitable for nuclear waste repositories. The technical program efforts necessary to identify and qualify specific underground waste facility sites in candidate rock formations include geologic and hydrologic studies (seismicity and tectonics, rock structure and stratigraphy, lithology, etc.). Borehole drilling is an integral part of the geological studies and is essential to a thorough understanding of potentially suitable geologic formations. The purpose of the proposed drilling activities is to obtain data for evaluating Columbia River basalts that are being evaluated by the National Waste Terminal Storage (NWTS) Program to determine their suitability potential for nuclear waste repositories. Unavoidable impact to the environment is limited primarily to the clearing of land needed for access and drilling operations. Considerations exercised during site preparation, drilling, and subsequent site restoration will limit modification of the natural environment to the minimum required for accomplishment of test objectives

  8. Excavation and drilling at a spent-fuel test facility in granitic rock

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, W.C.; Mayr, M.C.

    1981-10-01

    Funding for a project to test the feasibility of safe and reliable storage and retrieval of spent fuel from a commercial nuclear reactor was approved by the Department of Energy on June 2, 1978. By May 28, 1980, 11 spent-fuel assemblies had been emplaced 420 m below the surface in the Climax granitic stock at the Nevada Test Site. Design and construction of the Spent Fuel Test-Climax, including fuel emplacement, had taken less than two years, at a total cost of $18.4 million. Construction activities were preceded by geologic exploration using four cored holes and existing underground workings. The sinking of a 0.76-m-diam shaft to the 420-m level initiated construction at the site. Effective rates of sinking varied from 0.16 m/h with a rotary tricone drill to 0.5 m/h with a hammer drill. Underground excavation included a central canister-storage drift 4.6 x 6.1 x 64 m long, two parallel 3.4 x 3.4-m heater drifts, and a tail drift. About 6700 m{sup 3} were excavated at an average rate of 2 m{sup 3}/h, and 178 cored holes, with diameters from 38 to 152 mm, were drilled. A total length of nearly 1100 m was drilled at rates ranging from 0.4 m/h to 1 m/h, depending on hole size and drilling equipment. Eighteen 610-mm-diam canister emplacement holes were hammer-drilled at an average rate of 1.4 m/h. The use of the critical path method, integrated contractors, and close cooperation between project participants facilitated completion of the project on schedule.

  9. Excavation and drilling at a spent-fuel test facility in granitic rock

    International Nuclear Information System (INIS)

    Patrick, W.C.; Mayr, M.C.

    1981-10-01

    Funding for a project to test the feasibility of safe and reliable storage and retrieval of spent fuel from a commercial nuclear reactor was approved by the Department of Energy on June 2, 1978. By May 28, 1980, 11 spent-fuel assemblies had been emplaced 420 m below the surface in the Climax granitic stock at the Nevada Test Site. Design and construction of the Spent Fuel Test-Climax, including fuel emplacement, had taken less than two years, at a total cost of $18.4 million. Construction activities were preceded by geologic exploration using four cored holes and existing underground workings. The sinking of a 0.76-m-diam shaft to the 420-m level initiated construction at the site. Effective rates of sinking varied from 0.16 m/h with a rotary tricone drill to 0.5 m/h with a hammer drill. Underground excavation included a central canister-storage drift 4.6 x 6.1 x 64 m long, two parallel 3.4 x 3.4-m heater drifts, and a tail drift. About 6700 m 3 were excavated at an average rate of 2 m 3 /h, and 178 cored holes, with diameters from 38 to 152 mm, were drilled. A total length of nearly 1100 m was drilled at rates ranging from 0.4 m/h to 1 m/h, depending on hole size and drilling equipment. Eighteen 610-mm-diam canister emplacement holes were hammer-drilled at an average rate of 1.4 m/h. The use of the critical path method, integrated contractors, and close cooperation between project participants facilitated completion of the project on schedule

  10. Vacuum drilling of unsaturated tuffs at a potential radioactive-waste repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Whitfield, M.S.

    1985-01-01

    A vacuum reverse-air circulation drilling method was used to drill two 17-1/2-inch (44.5-centimeter) diameter test holes to depths of 1269 feet (387 meters) and 1887 feet (575 meters) at Yucca Mountain near the Nevada Test Site. The site is being considered by the US Department of Energy for construction of a high-level radioactive-waste repository. One of these two test holes (USW UZ-1) has been equipped with instrumentation to obtain a long-term record of pressure and moisture potential data; the other test hole (USW UZ-6) will be similarly instrumented in the near future. These investigations are being conducted as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. The test holes were drilled using a 5-1/2-inch (14-centimeter) by 8-5/8-inch (22-centimeter) dual-string reverse-vacuum assembly. A vacuum, induced at the land surface, removed the drill cuttings through the inner string. Compressed air was injected into the dual-string annulus to cool the bit and to keep the bit and inner string clean. A tracer gas, sulfur hexafluoride (SF 6 ), was added to the compressed air for a later determination of atmospheric contamination that might have occurred during the drilling. After reaching the surface, the drill cuttings were routed to a dry separator for sample collection. Then return air and dust from the cuttings were routed to a wet separator where the dust was removed by a water spray, and the remaining air was exhausted through the vacuum unit (blower) to the atmosphere. 6 refs., 4 figs

  11. Ultrasonic/Sonic Rotary-Hammer Drills

    Science.gov (United States)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Kassab, Steve

    2010-01-01

    Ultrasonic/sonic rotary-hammer drill (USRoHD) is a recent addition to the collection of apparatuses based on ultrasonic/sonic drill corer (USDC). As described below, the USRoHD has several features, not present in a basic USDC, that increase efficiency and provide some redundancy against partial failure. USDCs and related apparatuses were conceived for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. They have been described in numerous previous NASA Tech Briefs articles. To recapitulate: A USDC can be characterized as a lightweight, lowpower, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. A basic USDC includes a piezoelectric stack, an ultrasonic transducer horn connected to the stack, a free mass ( free in the sense that it can bounce axially a short distance between hard stops on the horn and the bit), and a tool bit. The piezoelectric stack creates ultrasonic vibrations that are mechanically amplified by the horn. The bouncing of the free mass between the hard stops generates the sonic vibrations. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, little applied axial force is needed to make the apparatus advance into the material of interest. There are numerous potential applications for USDCs and related apparatuses in geological exploration on Earth and on remote planets. In early USDC experiments, it was observed that accumulation of cuttings in a drilled hole causes the rate of penetration of the USDC to decrease steeply with depth, and that the rate of penetration can be increased by removing the cuttings. The USRoHD concept provides for

  12. Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)

    Energy Technology Data Exchange (ETDEWEB)

    FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

    2000-02-01

    This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

  13. Controlled drilling technology for HLW management. Directional drilling and mechanics/stress measurements in the borehole

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Shin, Koichi; Okada, Tetsuji; Obuchi, Yasuyoshi; Sunaga, Takayuki; Hase, Kazunori

    2013-01-01

    Since 2000, Central Research Institute of Electric Power Industry (CRIEPI) has been conducting the project on controlled drilling and the logging/measurement technologies in its boreholes. Especially borehole pressure meter and bore hole stress measurement apparatus which can apply to the controlled drilling system was developed. The bore hole was drilled to the 1000 m long in order to intersect the Omagari fault located at Horonobe town in Hokkaido and its core recovery was 99.8% as of FY. 2011. Using borehole logging/measurement/survey, the geological, hydrological, geo-mechanical, geophysical and geochemical data were collected and the Omagari fault was characterized. (author)

  14. Biological Evaluation of Implant Drill Made from Zirconium Dioxide.

    Science.gov (United States)

    Akiba, Yosuke; Eguchi, Kaori; Akiba, Nami; Uoshima, Katsumi

    2017-04-01

    Zirconia is a good candidate material in the dental field. In this study, we evaluated biological responses against a zirconia drill using a bone cavity healing model. Zirconia drills, stainless steel drills, and the drilled bone surface were observed by scanning electron microscopy (SEM), before and after cavity preparation. For the bone cavity healing model, the upper first and second molars of Wistar rats were extracted. After 4 weeks, cavities were prepared with zirconia drills on the left side. As a control, a stainless steel drill was used on the right side. At 3, 7, and 14 days after surgery, micro-CT images were taken. Samples were prepared for histological staining. SEM images revealed that zirconia drills maintained sharpness even after 30 drilling procedures. The bone surface was smoother with the zirconia drill. Micro-CT images showed faster and earlier bone healing in the zirconia drill cavity. On H-E staining, at 7 days, the zirconia drill defect had a smaller blank lacunae area. At 14 days, the zirconia drill defect was filled with newly formed bone. The zirconia drill induces less damage during cavity preparation and is advantageous for bone healing. (197 words). © 2016 The Authors Clinical Implant Dentistry and Related Research Published by Wiley Periodicals, Inc.

  15. Cortical bone drilling: An experimental and numerical study.

    Science.gov (United States)

    Alam, Khurshid; Bahadur, Issam M; Ahmed, Naseer

    2014-12-16

    Bone drilling is a common surgical procedure in orthopedics, dental and neurosurgeries. In conventional bone drilling process, the surgeon exerts a considerable amount of pressure to penetrate the drill into the bone tissue. Controlled penetration of drill in the bone is necessary for safe and efficient drilling. Development of a validated Finite Element (FE) model of cortical bone drilling. Drilling experiments were conducted on bovine cortical bone. The FE model of the bone drilling was based on mechanical properties obtained from literature data and additionally conducted microindentation tests on the cortical bone. The magnitude of stress in bone was found to decrease exponentially away from the lips of the drill in simulations. Feed rate was found to be the main influential factor affecting the force and torque in the numerical simulations and experiments. The drilling thrust force and torque were found to be unaffected by the drilling speed in numerical simulations. Simulated forces and torques were compared with experimental results for similar drilling conditions and were found in good agreement.CONCLUSIONS: FE schemes may be successfully applied to model complex kinematics of bone drilling process.

  16. Effect of 2 Different Drilling Speeds on the Osseointegration of Implants Placed With Flapless Guided Surgery: A Study in Rabbits

    DEFF Research Database (Denmark)

    Landazuri-Del Barrio, Ricardo Andres; Nunes de Paula, Wagner; Spin-Neto, Rubens

    2017-01-01

    OBJECTIVE: The aim of this study was to evaluate the influence of the drilling speed on bone healing and the osseointegration of implants placed with a guided flapless surgical technique in rabbit tibias. METHODS: For the evaluation of bone healing, a total of 30 perforations (defects) were made...... in both tibias of 15 rabbits using 2 different drilling speeds (1500 rpm-control group; 50 rpm-test group). The regeneration of bone tissue in the surgical sites was evaluated at 0, 7, and 14 days. For the evaluation of implant osseointegration, another 15 rabbits underwent drilling in both tibias...... with no statistically significant differences in the assessment of the osseointegration between the groups. CONCLUSION: In the experimental models used, the drilling speed does not prejudice the pattern of bone healing and osseointegration of implants placed with guided flapless surgery....

  17. Development of a Piezoelectric Rotary Hammer Drill

    Science.gov (United States)

    Domm, Lukas N.

    2011-01-01

    The Piezoelectric Rotary Hammer Drill is designed to core through rock using a combination of rotation and high frequency hammering powered by a single piezoelectric actuator. It is designed as a low axial preload, low mass, and low power device for sample acquisition on future missions to extraterrestrial bodies. The purpose of this internship is to develop and test a prototype of the Piezoelectric Rotary Hammer Drill in order to verify the use of a horn with helical or angled cuts as a hammering and torque inducing mechanism. Through an iterative design process using models in ANSYS Finite Element software and a Mason's Equivalent Circuit model in MATLAB, a horn design was chosen for fabrication based on the predicted horn tip motion, electromechanical coupling, and neutral plane location. The design was then machined and a test bed assembled. The completed prototype has proven that a single piezoelectric actuator can be used to produce both rotation and hammering in a drill string through the use of a torque inducing horn. Final data results include bit rotation produced versus input power, and best drilling rate achieved with the prototype.

  18. Formation evaluation using measurements recorded while drilling

    International Nuclear Information System (INIS)

    Coope, D.F.; Hendricks, W.E.

    1984-01-01

    Two of the measurements recorded while drilling (MWD), gamma ray and resistivity, are traditionally formation evaluation measurements. However, their primary user thus far has been the drilling engineer. The authors believe that MWD will have increasing importance in formation evaluation, and that a good understanding of MWD resistivity and gamma ray logs will be needed by the log analyst. MWD gamma ray and resistivity logs are similar to their wireline counterparts, but there are significant differences. The differences stem from different invasion (or lack of invasion) development for MWD as opposed to open hole wireline; drill collar influence on both the resistivity and gamma ray (GR) measurements - this influence is both positive and negative; and logging speed (drilling rate for MWD) is much slower for MWD and can vary erratically. The MWD logs presented in this paper demonstrate the value of using MWD logs. Emphasis is placed on both the qualitative and quantitative techniques available to the log analyst to help him get maximum benefit from the MWD logs

  19. An Improved Triangular Element With Drilling Rotations

    DEFF Research Database (Denmark)

    Damkilde, Lars; Grønne, Mikael

    2002-01-01

    by rotations in the corner nodes. Compared to Allman's plane element which was the first succesfull implementation of drilling rotations the proposed element has extra displacements in the mid-side nodes parallel to the element sides. The performance should therefore be better and closer to the LST...

  20. Simulation of friction stir drilling process

    Science.gov (United States)

    Vijayabaskar, P.; Hynes, N. Rajesh Jesudoss

    2018-05-01

    The project is the study of the thermal drilling process. The process is a hole forming process in the sheet metals using the heat generated by means of friction. The main advantage of the process over the conventional drilling process is that the holes formed using this process does not need any backing arrangements such as weld nuts, rivet nuts etc. Because the extruded bush itself acts as a supporting structure for the fasteners. This eliminates the need for the access to the backside of the work material for fastening operations. The major factors contributing the thermal drilling operation are the spindle speed and the thrust force required for forming a hole. The process of finding out the suitable thrust force and the speed for drilling a particular material with particular thickness is a tedious process. The process can be simplified by forming a mathematical model by combining the empirical formulae from the literature. These formulae were derived in the literature from the experimental trials by following certain assumptions. In this paper a suitable mathematical model is formed by replicating the experiments and tried to be validated by the results from numerical analysis. The numerical analysis of the model is done using the ANSYS software.

  1. 75 FR 877 - Drill Pipe From China

    Science.gov (United States)

    2010-01-06

    ... Pipe From China AGENCY: International Trade Commission. ACTION: Institution of antidumping and... States is materially retarded, by reason of imports from China of drill pipe, provided for in subheadings... Government of China. Unless the Department of Commerce extends the time for initiation pursuant to sections...

  2. 75 FR 8113 - Drill Pipe From China

    Science.gov (United States)

    2010-02-23

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-474 and 731-TA-1176 (Preliminary)] Drill Pipe From China AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject antidumping and countervailing duty investigations. DATES: Effective Date: February 16, 2010. FOR...

  3. Electric motor for laser-mechanical drilling

    Science.gov (United States)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2017-10-10

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for performing a laser operation. A system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam having a wavelength less than 1060 nm through the electrical motor.

  4. Putting a damper on drilling's bad vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, S [Sedco forex, Montrouge (France); Malone, D [Anadrill, Sugar Land, TX (United States); Sheppard, M [Schlumberger Cambridge Research, Cambridge (United Kingdom)

    1994-01-01

    Harmful drilling vibrations are costing the industry dearly. Three main vibration types (axial, torsional and transverse) are explained and its causes discussed. Technology exists to eliminate most vibrations, but requires more systematic deployment than is usual. Hardware that eliminates vibrations is reviewed, including downhole shock measurement, torque feedback shock guards and antiwhirl bits. 9 figs., 11 refs.

  5. Ground Motion Relations While TBM Drilling in Unconsolidated Sediments

    Science.gov (United States)

    Grund, Michael; Ritter, Joachim R. R.; Gehrig, Manuel

    2016-05-01

    The induced ground motions due to the tunnel boring machine (TBM), which has been used for the drilling of the urban metro tunnel in Karlsruhe (SW Germany), has been studied using the continuous recordings of seven seismological monitoring stations. The drilling has been undertaken in unconsolidated sediments of the Rhine River system, relatively close to the surface at 6-20 m depth and in the vicinity of many historic buildings. Compared to the reference values of DIN 4150-3 (1-80 Hz), no exceedance of the recommended peak ground velocity (PGV) limits (3-5 mm/s) was observed at the single recording site locations on building basements during the observation period between October 2014 and February 2015. Detailed analyses in the time and frequency domains helped with the detection of the sources of several specific shaking signals in the recorded time series and with the comparison of the aforementioned TBM-induced signals. The amplitude analysis allowed for the determination of a PGV attenuation relation (quality factor Q ~ 30-50) and the comparison of the TBM-induced ground motion with other artificially induced and natural ground motions of similar amplitudes.

  6. A new approach to development drilling in Trinidad-Tesoro

    Energy Technology Data Exchange (ETDEWEB)

    Persad, K.M.

    1972-01-01

    A detailed correlation of the Upper Cruse by means of electric logs from wells in Central Palo Seco field in S. Trinidad was done in an attempt to trace sands which have yielded very high oil productions, but which shaled out completely, very rapidly, in seemingly random directions. A new approach was attempted, namely, using the S.P. shapes from the logs to identify depositional environments of the sands, with a view to determining the paleogeography of the area. This study has revealed a meander belt channel running from west to east and ending in a delta, with several distributary chanels. It has also been possible to distinguish areas of lagoonal or pro-deltaic deposition. On the basis of this study, one well P.S. 816, was drilled but found only part of the channel. Another location has been recommended, but has not yet been drilled. If this well finds the main channel, a dipmeter will be run to help in the siting of new locations.

  7. Aerobic Degradation of Drill Muds by Axenic and Mixed Bacterial ...

    African Journals Online (AJOL)

    Prof. Ogunji

    significant difference in the degradation of the drilling muds by the isolates (p > 0.05). ... the potentials of some indigenous bacteria to biodegrade drilling muds used in ... transported to the laboratory aseptically for evaluation, in labeled plastic.

  8. 3D Model Optimization of Four-Facet Drill for 3D Drilling Simulation

    Directory of Open Access Journals (Sweden)

    Buranský Ivan

    2016-09-01

    Full Text Available The article is focused on optimization of four-facet drill for 3D drilling numerical modelling. For optimization, the process of reverse engineering by PowerShape software was used. The design of four-facet drill was created in NumrotoPlus software. The modified 3D model of the drill was used in the numerical analysis of cutting forces. Verification of the accuracy of 3D models for reverse engineering was implemented using the colour deviation maps. The CAD model was in the STEP format. For simulation software, 3D model in the STEP format is ideal. STEP is a solid model. Simulation software automatically splits the 3D model into finite elements. The STEP model was therefore more suitable than the STL model.

  9. Casing drilling - first experience in Brazil; Casing drilling - primeira experiencia no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Placido, Joao Carlos Ribeiro; Medeiros, Fernando; Lucena, Humberto; Medeiros, Joao Carlos Martins de; Costa, Vicente Abel Soares Rosa da; Silva, Paulo Roberto Correa da [PETROBRAS, Rio de Janeiro, RJ (Brazil); Alves, Renato J.M. [Tesco, London (United Kingdom)

    2004-07-01

    This paper describes the 'Casing Drilling' technology and its first experience in Brazil. This new process of casing while drilling was first developed to reduce costs. This system integrates the drilling process and casing running in one operation, promoting a more efficient well construction system, reducing trip time and costs of drill pipes and their transportation. Besides, this methodology intends to eliminate hole problems related to trouble zones with abnormal pressure with loss circulation, to overcome zones with wellbore instabilities, and to facilitate well control. Two companies have been identified using this technology: Tesco and Weatherford. However, there are differences between the techniques used by these companies, which are described in this paper. In the first experience in Brazil, it was decided to field test the technology developed by Tesco. This paper describes the preparation, the operation and the results of this first test. (author)

  10. Oil drilling gets more dangerous; Oljeboring blir farligere

    Energy Technology Data Exchange (ETDEWEB)

    Helgesen, Ole K.

    2010-07-01

    The government calls for accelerating the development of new drilling technologies. Incredible value may be lost if drilling is not made safer. But when public funding will be awarded, one of the world's major drilling facilities is far behind in the queue. Statoil has placed a big part of their research to the drilling rig Ullrig and the results from this has resulted in significant value creation for Norway and the oil and gas industry. (AG)

  11. Systems and Methods for Gravity-Independent Gripping and Drilling

    Science.gov (United States)

    Parness, Aaron (Inventor); Frost, Matthew A. (Inventor); Thatte, Nitish (Inventor); King, Jonathan P. (Inventor)

    2016-01-01

    Systems and methods for gravity independent gripping and drilling are described. The gripping device can also comprise a drill or sampling devices for drilling and/or sampling in microgravity environments, or on vertical or inverted surfaces in environments where gravity is present. A robotic system can be connected with the gripping and drilling devices via an ankle interface adapted to distribute the forces realized from the robotic system.

  12. Novel annular flow electromagnetic measurement system for drilling engineering.

    OpenAIRE

    Ge, L.; Wei, G. H.; Wang, Q.; Hu, Z.; Li, J. L.

    2017-01-01

    Downhole micro-flux control drilling technology can effectively solve drilling accidents, such as kick and loss in narrow density window drilling scenarios. Using a downhole annular flow measurement system to obtain real-time information of downhole annular flow is the core and foundation of downhole micro-flux control drilling technology. The research work of electromagnetic flowmeters in recent years creates a challenge for downhole annular flow measurement. This paper proposes a new method...

  13. EIA completes corrections to drilling estimates series

    International Nuclear Information System (INIS)

    Trapmann, W.; Shambaugh, P.

    1998-01-01

    The Energy Information Administration (EIA) has published monthly and annual estimates of US oil and gas drilling activity since 1978. These data are key information for many industry analysts, serving as a leading indicator of trends in the industry and a barometer of general industry status. They are assessed directly for trends, as well as in combination with other measures to assess the productivity and profitability of upstream industry operations. They are major reference points for federal and state policymakers. EIA does not itself collect drilling activity data. Instead, it relies on an external source for data on oil, bas, and dry well completions. These data are provided to EIA monthly on an as reported basis. During a recent effort to enhance EIA's well completion data system, the detection of unusual patterns in the well completion data as received led to an expanded examination of these data. Substantial discrepancies between the data as received by EIA and correct record counts since 1987 were identified. For total wells by year, the errors ranged up to more than 2,300 wells, 11% of the 1995 total, and the impact of these errors extended backward in time to at least the early 1980s. When the magnitude and extent of the as reported well completion data problem were confirmed, EIA suspended its publication and distribution of updated drilling data. EIA staff proceeded to acquire replacement files with the as reported records and then revise the statistical portion of its drilling data system to reflect the new information. The replacement files unfortunately also included erroneous data based on the improper allocation of wells between exploration and development. EIA has now resolved the two data problems and generated revised time series estimates for well completions and footage drilled. The paper describes the problems in the data, differences between the series, and maintaining future data quality

  14. Well successfully drilled with high performance water-based fluid: Santos Basins, offshore Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Fornasier, Frank C.; Luzardo, Juan P. [Halliburton Company, Houston, TX (United States); Bishnoi, M.L. [Oil and Natural Gas Corporation Ltda. (ONGC), Dehradun (India)

    2012-07-01

    Santos Basin i