WorldWideScience

Sample records for tyrosine phosphatase-kappa mediates

  1. Mechanisms of Peroxynitrite Mediated Nitration of Tyrosine

    Science.gov (United States)

    Gunaydin, Hakan; Houk, K. N.

    2009-01-01

    The mechanisms of tyrosine nitration by peroxynitrous acid or nitrosoperoxycarbonate were investigated with the CBS-QB3 method. Either the protonation of peroxynitrite, or a reaction with carbon dioxide gives a reactive peroxide intermediate. Peroxynitrous acid mediated nitration of phenol occurs via the unimolecular decomposition to give nitrogen dioxide and hydroxyl radicals. Nitrosoperoxycarbonate also undergoes unimolecular decomposition to give carbonate and nitrogen dioxide radicals. The reactions of tyrosine with the hydroxyl or carbonate radicals give a phenoxy radical intermediate. The reaction of the nitrogen dioxide with this radical intermediate followed by tautomerization gives nitrated tyrosine in both cases. According to CBS-QB3 calculations, the rate-limiting step for the nitration of phenol is the decomposition of peroxynitrous acid or of nitrosoperoxycarbonate. PMID:19374346

  2. Expression of a truncated receptor protein tyrosine phosphatase kappa in the brain of an adult transgenic mouse

    DEFF Research Database (Denmark)

    Shen, P; Canoll, P D; Sap, J

    1999-01-01

    processes such as axonal growth and target recognition, as has been demonstrated for certain Drosophila RPTPs. The brain distribution of RPTP-kappa-expressing cells has not been determined, however. In a gene-trap mouse model with a beta-gal+neo (beta-geo) insertion in the endogenous RPTP-kappa gene......, the consequent loss of RPTP-kappa's enzymatic activity does not produce any obvious phenotypic defects [W.C. Skarnes, J.E. Moss, S.M. Hurtley, R.S.P. Beddington, Capturing genes encoding membrane and secreted proteins important for mouse development, Proc. Natl. Acad. Sci. U.S.A. 92 (1995) 6592...... that goal, we have used this mouse model to map the distribution of the truncated RPTP-kappa/beta-geo fusion protein in the adult mouse brain using beta-galactosidase as a marker enzyme. Visualization of the beta-galactosidase activity revealed a non-random pattern of expression, and identified cells...

  3. Mefloquine neurotoxicity is mediated by non-receptor tyrosine kinase.

    Science.gov (United States)

    Milatovic, Dejan; Jenkins, Jerry W; Hood, Jonathan E; Yu, Yingchun; Rongzhu, Lu; Aschner, Michael

    2011-10-01

    Among several available antimalarial drugs, mefloquine has proven to be effective against drug-resistant Plasmodium falciparum and remains the drug of choice for both therapy and chemoprophylaxis. However, mefloquine is known to cause adverse neurological and/or psychiatric symptoms, which offset its therapeutic advantage. The exact mechanisms leading to the adverse neurological effects of mefloquine are poorly defined. Alterations in neurotransmitter release and calcium homeostasis, the inhibition of cholinesterases and the interaction with adenosine A(2A) receptors have been hypothesized to play prominent roles in mediating the deleterious effects of this drug. Our recent data have established that mefloquine can also trigger oxidative damage and subsequent neurodegeneration in rat cortical primary neurons. Furthermore, we have utilized a system biology-centered approach and have constructed a pathway model of cellular responses to mefloquine, identifying non-receptor tyrosine kinase 2 (Pyk2) as a critical target in mediating mefloquine neurotoxicity. In this study, we sought to establish an experimental validation of Pyk2 using gene-silencing techniques (siRNA). We have examined whether the downregulation of Pyk2 in primary rat cortical neurons alters mefloquine neurotoxicity by evaluating cell viability, apoptosis and oxidative stress. Results from our study have confirmed that mefloquine neurotoxicity is associated with apoptotic response and oxidative injury, and we have demonstrated that mefloquine affects primary rat cortical neurons, at least in part, via Pyk2. The implication of these findings may prove beneficial in suppressing the neurological side effects of mefloquine and developing effective therapeutic modalities to offset its adverse effects. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Receptor tyrosine phosphatase R-PTP-kappa mediates homophilic binding

    DEFF Research Database (Denmark)

    Sap, J; Jiang, Y P; Friedlander, D

    1994-01-01

    Receptor tyrosine phosphatases (R-PTPases) feature PTPase domains in the context of a receptor-like transmembrane topology. The R-PTPase R-PTP-kappa displays an extracellular domain composed of fibronectin type III motifs, a single immunoglobulin domain, as well as a recently defined MAM domain (Y...

  5. Phospho-Tyrosine(s) vs. Phosphatidylinositol Binding in Shc Mediated Integrin Signaling

    OpenAIRE

    Lin, Xiaochen; Vinogradova, Olga

    2015-01-01

    The Shc adaptor protein, particularly its p52 isoform, has been identified as a primary signaling partner for the tyrosine(s)-phosphorylated cytoplasmic tails of activated ? 3 integrins. Inspired by our recent structure of the Shc PTB domain in complex with a bi-phosphorylated peptide derived from ? 3 cytoplasmic tail, we have initiated the investigation of Shc interaction with phospholipids of the membrane. We are particularly focused on PtdIns and their effects on Shc mediated integrin sign...

  6. Specificity is complex and time consuming: mutual exclusivity in tyrosine kinase-mediated signaling.

    Science.gov (United States)

    O'Rourke, Lisa; Ladbury, John E

    2003-06-01

    Most fundamental cellular processes are transduced through tyrosine kinase (TK)-mediated pathways. For transduction without corruption, the protein-protein interactions involved have to be mutually exclusive. Many of these proteins bind via homologous domains whose binding characteristics suggest that their innate specificity is not sufficiently high to account for the integrity of signal transduction. Stimulation of TK-mediated signals is often accompanied by recruitment of a precise, multimolecular protein complex that is itself capable of imposing specificity. Furthermore, this complex provides protection against phosphatase activity, controlling the longevity of the active signaling complex, and thus influencing outcomes in subsequent downstream events.

  7. The carboxyl terminal tyrosine 417 residue of NOK has an autoinhibitory effect on NOK-mediated signaling transductions

    International Nuclear Information System (INIS)

    Li Yinghua; Zhong Shan; Rong Zhili; Ren Yongming; Li Zhiyong; Zhang Shuping; Chang Zhijie; Liu Li

    2007-01-01

    Receptor protein tyrosine kinases (RPTKs) are essential mediators of cell growth, differentiation, migration, and metabolism. Recently, a novel RPTK named NOK has been cloned and characterized. In current study, we investigated the role of the carboxyl terminal tyrosine 417 residue of NOK in the activations of different signaling pathways. A single tyrosine to phenylalanine point mutation at Y417 site (Y417 F) not only dramatically enhanced the NOK-induced activation of extracellular signal-regulated kinase (ERK), but also markedly promoted the NOK-mediated activation of both signal transducer and activator of transcription 1 and 3 (STAT1 and 3). Moreover, the proliferation potential of NIH3T3-NOK (Y417F) stable cells were significantly elevated as compared with that of NIH3T3-NOK. Overall, our results demonstrate that the tyrosine Y417 residue at the carboxyl tail of NOK exhibits an autoinhibitory role in NOK-mediated signaling transductions

  8. Phospho-Tyrosine(s) vs. Phosphatidylinositol Binding in Shc Mediated Integrin Signaling.

    Science.gov (United States)

    Lin, Xiaochen; Vinogradova, Olga

    2015-04-01

    The Shc adaptor protein, particularly its p52 isoform, has been identified as a primary signaling partner for the tyrosine(s)-phosphorylated cytoplasmic tails of activated β 3 integrins. Inspired by our recent structure of the Shc PTB domain in complex with a bi-phosphorylated peptide derived from β 3 cytoplasmic tail, we have initiated the investigation of Shc interaction with phospholipids of the membrane. We are particularly focused on PtdIns and their effects on Shc mediated integrin signaling in vitro . Here we present thermodynamic profiles and molecular details of the interactions between Shc, integrin, and PtdIns, all of which have been studied by ITC and solution NMR methods. A model of p52 Shc interaction with phosphorylated β 3 integrin cytoplasmic tail at the cytosolic face of the plasma membrane is proposed based on these data.

  9. Bruton's tyrosine kinase and phospholipase C gamma 2 mediate chemokine-controlled B cell migration and homing

    NARCIS (Netherlands)

    de Gorter, David J. J.; Beuling, Esther A.; Kersseboom, Rogier; Middendorp, Sabine; van Gils, Janine M.; Hendriks, Rudolf W.; Pals, Steven T.; Spaargaren, Marcel

    2007-01-01

    Control of integrin-mediated adhesion and migration by chemokines plays a critical role in B cell development, differentiation, and function; however, the underlying signaling mechanisms are poorly defined. Here we show that the chemokine SDF-1 induced activation of Bruton's tyrosine kinase (Btk)

  10. Manganese-Mediated Decrease in Levels of c-RET and Tyrosine Hydroxylase Expression In Vitro.

    Science.gov (United States)

    Kumasaka, Mayuko Y; Yajima, Ichiro; Ohgami, Nobutaka; Ninomiya, Hiromasa; Iida, Machiko; Li, Xiang; Oshino, Reina; Tanihata, Hiroko; Yoshinaga, Masafumi; Kato, Masashi

    2017-11-01

    Previous studies showed that overexposure to manganese causes parkinsonism, a disorder of dopaminergic neurons. Previous studies also showed that activity of c-RET kinase controls dopamine production through regulation of tyrosine hydroxylase (TH) expression, suggesting the involvement of c-RET in the development of parkinsonism. To our knowledge, however, there is no report showing a correlation between manganese-mediated parkinsonism and c-RET. In this study, we examined the effect of manganese on the expression and/or activation levels of c-RET and TH in human TH-expressing cells (TGW cells). We first found that treatment with 30 and 100 μM manganese resulted in reduction of c-RET transcript level and degradation of c-RET protein through promotion of ubiquitination. We then examined the biological significance of manganese-mediated decrease of c-RET protein expression. Decreased TH expression with decreased c-RET kinase activity was observed in c-RET protein-depleted TGW cells by treatment with manganese (30 μM) as well as by c-RET siRNA transfection. Since TH protein has been shown to be involved in the dopamine-producing pathway in previous studies, our results indicate the possibility that manganese-mediated reduction of TH expression and phosphorylation via decreased expression of c-RET protein in neural cells is involved in parkinsonism induced by manganese.

  11. c-Abl mediated tyrosine phosphorylation of paxillin regulates LPS-induced endothelial dysfunction and lung injury

    Science.gov (United States)

    Usatyuk, Peter V.; Lele, Abhishek; Harijith, Anantha; Gregorio, Carol C.; Garcia, Joe G. N.; Salgia, Ravi; Natarajan, Viswanathan

    2015-01-01

    Paxillin is phosphorylated at multiple residues; however, the role of tyrosine phosphorylation of paxillin in endothelial barrier dysfunction and acute lung injury (ALI) remains unclear. We used siRNA and site-specific nonphosphorylable mutants of paxillin to abrogate the function of paxillin to determine its role in lung endothelial permeability and ALI. In vitro, lipopolysaccharide (LPS) challenge of human lung microvascular endothelial cells (HLMVECs) resulted in enhanced tyrosine phosphorylation of paxillin at Y31 and Y118 with no significant change in Y181 and significant barrier dysfunction. Knockdown of paxillin with siRNA attenuated LPS-induced endothelial barrier dysfunction and destabilization of VE-cadherin. LPS-induced paxillin phosphorylation at Y31 and Y118 was mediated by c-Abl tyrosine kinase, but not by Src and focal adhesion kinase. c-Abl siRNA significantly reduced LPS-induced endothelial barrier dysfunction. Transfection of HLMVECs with paxillin Y31F, Y118F, and Y31/118F double mutants mitigated LPS-induced barrier dysfunction and VE-cadherin destabilization. In vivo, the c-Abl inhibitor AG957 attenuated LPS-induced pulmonary permeability in mice. Together, these results suggest that c-Abl mediated tyrosine phosphorylation of paxillin at Y31 and Y118 regulates LPS-mediated pulmonary vascular permeability and injury. PMID:25795725

  12. Epidermal growth factor receptor activation by diesel particles is mediated by tyrosine phosphatase inhibition

    International Nuclear Information System (INIS)

    Tal, Tamara L.; Bromberg, Philip A.; Kim, Yumee; Samet, James M.

    2008-01-01

    Exposure to particulate matter (PM) is associated with increased cardiopulmonary morbidity and mortality. Diesel exhaust particles (DEP) are a major component of ambient PM and may contribute to PM-induced pulmonary inflammation. Proinflammatory signaling is mediated by phosphorylation-dependent signaling pathways whose activation is opposed by the activity of protein tyrosine phosphatases (PTPases) which thereby function to maintain signaling quiescence. PTPases contain an invariant catalytic cysteine that is susceptible to electrophilic attack. DEP contain electrophilic oxy-organic compounds that may contribute to the oxidant effects of PM. Therefore, we hypothesized that exposure to DEP impairs PTPase activity allowing for unopposed basal kinase activity. Here we report that exposure to 30 μg/cm 2 DEP for 4 h induces differential activation of signaling in primary cultures of human airway epithelial cells (HAEC), a primary target cell in PM inhalation. In-gel kinase activity assay of HAEC exposed to DEPs of low (L-DEP), intermediate (I-DEP) or high (H-DEP) organic content showed differential activation of intracellular kinases. Exposure to these DEP also induced varying levels of phosphorylation of the receptor tyrosine kinase EGFR in a manner that requires EGFR kinase activity but does not involve receptor dimerization. We demonstrate that treatment with DEP results in an impairment of total and EGFR-directed PTPase activity in HAEC with a potency that is independent of the organic content of these particles. These data show that DEP-induced EGFR phosphorylation in HAEC is the result of a loss of PTPase activities which normally function to dephosphorylate EGFR in opposition to baseline EGFR kinase activity

  13. Energetics of Src homology domain interactions in receptor tyrosine kinase-mediated signaling.

    Science.gov (United States)

    Ladbury, John E; Arold, Stefan T

    2011-01-01

    Intracellular signaling from receptor tyrosine kinases (RTK) on extracellular stimulation is fundamental to all cellular processes. The protein-protein interactions which form the basis of this signaling are mediated through a limited number of polypeptide domains. For signal transduction without corruption, based on a model where signaling pathways are considered as linear bimolecular relays, these interactions have to be highly specific. This is particularly the case when one considers that any cell may have copies of similar binding domains found in numerous proteins. In this work, an overview of the thermodynamics of binding of two of the most common of these domains (SH2 and SH3 domains) is given. This, coupled with insight from high-resolution structural detail, provides a comprehensive survey of how recognition of cognate binding sites for these domains occurs. Based on the data presented, we conclude that specificity offered by these interactions of SH2 and SH3 domains is limited and not sufficient to enforce mutual exclusivity in RTK-mediated signaling. This may explain the current lack of success in pharmaceutical intervention to inhibit the interactions of these domains when they are responsible for aberrant signaling and the resulting disease states such as cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling

    DEFF Research Database (Denmark)

    Lund, I K; Hansen, J A; Andersen, H S

    2005-01-01

    Upon leptin binding, the leptin receptor is activated, leading to stimulation of the JAK/STAT signal transduction cascade. The transient character of the tyrosine phosphorylation of JAK2 and STAT3 suggests the involvement of protein tyrosine phosphatases (PTPs) as negative regulators of this sign...

  15. High Glucose-Mediated Tyrosine Nitration of PI3-Kinase: A Molecular Switch of Survival and Apoptosis in Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Sally L. Elshaer

    2018-03-01

    Full Text Available Diabetes and hyperglycemia are associated with increased retinal oxidative and nitrative stress and vascular cell death. Paradoxically, high glucose stimulates expression of survival and angiogenic growth factors. Therefore, we examined the hypothesis that high glucose-mediated tyrosine nitration causes inhibition of the survival protein PI3-kinase, and in particular, its regulatory p85 subunit in retinal endothelial cell (EC cultures. Retinal EC were cultured in high glucose (HG, 25 mM for 3 days or peroxynitrite (PN, 100 µM overnight in the presence or absence of a peroxynitrite decomposition catalyst (FeTPPs, 2.5 µM, or the selective nitration inhibitor epicatechin (100 µM. Apoptosis of ECs was assessed using TUNEL assay and caspase-3 activity. Immunoprecipitation and Western blot were used to assess protein expression and tyrosine nitration of p85 subunit and its interaction with the p110 subunit. HG or PN accelerated apoptosis of retinal ECs compared to normal glucose (NG, 5 mM controls. HG- or PN-treated cells also showed significant increases in tyrosine nitration on the p85 subunit of PI3-kinase that inhibited its association with the catalytic p110 subunit and impaired PI3-kinase/Akt kinase activity. Decomposing peroxynitrite or blocking tyrosine nitration of p85 restored the activity of PI3-kinase, and prevented apoptosis and activation of p38 MAPK. Inhibiting p38 MAPK or overexpression of the constitutively activated Myr-Akt construct prevented HG- or peroxynitrite-mediated apoptosis. In conclusion, HG impairs pro-survival signals and causes accelerated EC apoptosis, at least in part via tyrosine nitration and inhibition of PI3-kinase. Inhibitors of nitration can be used in adjuvant therapy to delay diabetic retinopathy and microvascular complication.

  16. Endotoxin mediated-iNOS induction causes insulin resistance via ONOO⁻ induced tyrosine nitration of IRS-1 in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Geneviève Pilon

    2010-12-01

    Full Text Available It is believed that the endotoxin lipopolysaccharide (LPS is implicated in the metabolic perturbations associated with both sepsis and obesity (metabolic endotoxemia. Here we examined the role of inducible nitric oxide synthase (iNOS in skeletal muscle insulin resistance using LPS challenge in rats and mice as in vivo models of endotoxemia.Pharmacological (aminoguanidine and genetic strategies (iNOS⁻/⁻ mice were used to counter iNOS induction in vivo. In vitro studies using peroxynitrite (ONOO⁻ or inhibitors of the iNOS pathway, 1400 W and EGCG were conducted in L6 myocytes to determine the mechanism by which iNOS mediates LPS-dependent insulin resistance. In vivo, both pharmacological and genetic invalidation of iNOS prevented LPS-induced muscle insulin resistance. Inhibition of iNOS also prevented insulin resistance in myocytes exposed to cytokine/LPS while exposure of myocytes to ONOO⁻ fully reproduced the inhibitory effect of cytokine/LPS on both insulin-stimulated glucose uptake and PI3K activity. Importantly, LPS treatment in vivo and iNOS induction and ONOO⁻ treatment in vitro promoted tyrosine nitration of IRS-1 and reduced insulin-dependent tyrosine phosphorylation.Our work demonstrates that iNOS-mediated tyrosine nitration of IRS-1 is a key mechanism of skeletal muscle insulin resistance in endotoxemia, and presents nitrosative modification of insulin signaling proteins as a novel therapeutic target for combating muscle insulin resistance in inflammatory settings.

  17. Resistance to EGF receptor inhibitors in glioblastoma mediated by phosphorylation of the PTEN tumor suppressor at tyrosine 240.

    Science.gov (United States)

    Fenton, Tim R; Nathanson, David; Ponte de Albuquerque, Claudio; Kuga, Daisuke; Iwanami, Akio; Dang, Julie; Yang, Huijun; Tanaka, Kazuhiro; Oba-Shinjo, Sueli Mieko; Uno, Miyuki; Inda, Maria del Mar; Wykosky, Jill; Bachoo, Robert M; James, C David; DePinho, Ronald A; Vandenberg, Scott R; Zhou, Huilin; Marie, Suely K N; Mischel, Paul S; Cavenee, Webster K; Furnari, Frank B

    2012-08-28

    Glioblastoma multiforme (GBM) is the most aggressive of the astrocytic malignancies and the most common intracranial tumor in adults. Although the epidermal growth factor receptor (EGFR) is overexpressed and/or mutated in at least 50% of GBM cases and is required for tumor maintenance in animal models, EGFR inhibitors have thus far failed to deliver significant responses in GBM patients. One inherent resistance mechanism in GBM is the coactivation of multiple receptor tyrosine kinases, which generates redundancy in activation of phosphoinositide-3'-kinase (PI3K) signaling. Here we demonstrate that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor is frequently phosphorylated at a conserved tyrosine residue, Y240, in GBM clinical samples. Phosphorylation of Y240 is associated with shortened overall survival and resistance to EGFR inhibitor therapy in GBM patients and plays an active role in mediating resistance to EGFR inhibition in vitro. Y240 phosphorylation can be mediated by both fibroblast growth factor receptors and SRC family kinases (SFKs) but does not affect the ability of PTEN to antagonize PI3K signaling. These findings show that, in addition to genetic loss and mutation of PTEN, its modulation by tyrosine phosphorylation has important implications for the development and treatment of GBM.

  18. Vitamin D regulates tyrosine hydroxylase expression: N-cadherin a possible mediator.

    Science.gov (United States)

    Cui, X; Pertile, R; Liu, P; Eyles, D W

    2015-09-24

    Vitamin D is a neuroactive steroid. Its genomic actions are mediated via the active form of vitamin D, 1,25(OH)2D3, binding to the vitamin D receptor (VDR). The VDR emerges in the rat mesencephalon at embryonic day 12, representing the peak period of dopaminergic cell birth. Our prior studies reveal that developmental vitamin D (DVD)-deficiency alters the ontogeny of dopaminergic neurons in the developing mesencephalon. There is also consistent evidence from others that 1,25(OH)2D3 promotes the survival of dopaminergic neurons in models of dopaminergic toxicity. In both developmental and toxicological studies it has been proposed that 1,25(OH)2D3 may modulate the differentiation and maturation of dopaminergic neurons; however, to date there is lack of direct evidence. The aim of the current study is to investigate this both in vitro using a human SH-SY5Y cell line transfected with rodent VDR and in vivo using a DVD-deficient model. Here we show that in VDR-expressing SH-SY5Y cells, 1,25(OH)2D3 significantly increased production of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis. This effect was dose- and time-dependent, but was not due to an increase in TH-positive cell number, nor was it due to the production of trophic survival factors for dopamine neurons such as glial-derived neurotrophic factor (GDNF). In accordance with 1,25(OH)2D3's anti-proliferative actions in the brain, 1,25(OH)2D3 reduced the percentage of dividing cells from approximately 15-10%. Given the recently reported role of N-cadherin in the direct differentiation of dopaminergic neurons, we examined here whether it may be elevated by 1,25(OH)2D3. We confirmed this in vitro and more importantly, we showed DVD-deficiency decreases N-cadherin expression in the embryonic mesencephalon. In summary, in our in vitro model we have shown 1,25(OH)2D3 increases TH expression, decreases proliferation and elevates N-cadherin, a potential factor that mediates these processes

  19. The differentiation of skeletal muscle cells involves a protein-tyrosine phosphatase-alpha-mediated C-Src signaling pathway

    DEFF Research Database (Denmark)

    Lu, Huogen; Shah, Poonam; Ennis, David

    2002-01-01

    with previous reports, PTPalpha positively regulated the activity of the protein-tyrosine kinase Src. Treatment of L6 cells with PP2 or SU6656, specific inhibitors of Src family kinases, and transient transfection of dominant-inhibitory Src inhibited the formation of myotubes and expression of myogenin....... Moreover, enhanced expression of PTPalpha and activation of Src was detected during myogenesis. Together, these data indicate that PTPalpha is involved in the regulation of L6 myoblast growth and skeletal muscle cell differentiation via an Src-mediated signaling pathway....

  20. A novel role of protein tyrosine kinase2 in mediating chloride secretion in human airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Lihua Liang

    Full Text Available Ca(2+ activated Cl(- channels (CaCC are up-regulated in cystic fibrosis (CF airway surface epithelia. The presence and functional properties of CaCC make it a possible therapeutic target to compensate for the deficiency of Cl(- secretion in CF epithelia. CaCC is activated by an increase in cytosolic Ca(2+, which not only activates epithelial CaCCs, but also inhibits epithelial Na(+ hyperabsorption, which may also be beneficial in CF. Our previous study has shown that spiperone, a known antipsychotic drug, activates CaCCs and stimulates Cl(- secretion in polarized human non-CF and CF airway epithelial cell monolayers in vitro, and in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR knockout mice in vivo. Spiperone activates CaCC not by acting in its well-known role as an antagonist of either 5-HT2 or D2 receptors, but through a protein tyrosine kinase-coupled phospholipase C-dependent pathway. Moreover, spiperone independently activates CFTR through a novel mechanism. Herein, we performed a mass spectrometry analysis and identified the signaling molecule that mediates the spiperone effect in activating chloride secretion through CaCC and CFTR. Proline-rich tyrosine kinase 2 (PYK2 is a non-receptor protein tyrosine kinase, which belongs to the focal adhesion kinase family. The inhibition of PYK2 notably reduced the ability of spiperone to increase intracellular Ca(2+ and Cl(- secretion. In conclusion, we have identified the tyrosine kinase, PYK2, as the modulator, which plays a crucial role in the activation of CaCC and CFTR by spiperone. The identification of this novel role of PYK2 reveals a new signaling pathway in human airway epithelial cells.

  1. Peroxidase-mediated cross-linking of a tyrosine-containing peptide with ferulic acid

    NARCIS (Netherlands)

    Oudgenoeg, G.; Hilhorst, H.; Piersma, S.R.; Boeriu, C.G.; Gruppen, H.; Voragen, A.G.J.; Laane, C.

    2001-01-01

    The tyrosine-containing peptide Gly-Tyr-Gly (GYG) was oxidatively cross-linked by horseradish peroxidase in the presence of hydrogen peroxide. As products, covalently coupled di- to pentamers of the peptide were identified by LC-MS. Oxidative cross-linking of ferulic acid with horseradish peroxidase

  2. The expression of COX-2 in VEGF-treated endothelial cells is mediated through protein tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Pravit Akarasereenont

    2002-01-01

    Full Text Available Cyclooxygenase (COX, existing as the COX-1 and COX-2 isoforms, converts arachidonic acid to prostaglandin H2, which is then further metabolized to various prostaglandins. Vascular endothelial growth factor (VEGF has been shown to play important roles in inflammation and is upregulated by the prostaglandin E series through COX-2 in several cell types. Here, we have investigated the effects of VEGF on the COX isoform expressed in human umbilical vein endothelial cells (HUVEC. The signalling mechanism of the COX isoform expressed in endothelial cells activated with VEGF will be also investigated using the tyrosine kinase inhibitor, genistein, and protein kinase C inhibitor, staurosporine. The activity of COX2 was assessed by measuring the production of 6-keto-prostaglandin F1α in the presence of exogenous arachidonic acids (10 μM, 10 min by enzyme immunoassay. The expression of COX isoform protein was detected by immunoblot using specific antibodies. Untreated HUVEC contained no COX-2 protein. In HUVEC treated with VEGF (0.01-50 ng/ml, COX-2 protein, but not COX-1, and COX activity were increased in a dose-dependent manner. Interestingly, the increased COX-2 protein and activity in response to VEGF (10 ng/ml was inhibited by the tyrosine kinase inhibitor, genistein (0.05-5 μg/ml, but not by the protein kinase C inhibitor, staurosporine (0.1-10 ng/ml. Thus, the induction of COX-2 by VEGF in endothelial cells was mediated through protein tyrosine kinase, and the uses of specific COX-2 inhibitors in these conditions, in which VEGF was involved, might have a role.

  3. Mechanisms of photosensitization by drugs: Involvement of tyrosines in the photomodification of proteins mediated by tiaprofenic acid in vitro.

    Science.gov (United States)

    Miranda, M A; Castell, J V; Sarabia, Z; Hernández, D; Puertes, I; Morera, I M; Gómez-Lechón, M J

    1997-10-01

    The photosensitizing potential of drugs must be related to their photoreactivity towards the target biomolecules. In this context, a representative photosensitizing drug (tiaprofenic acid) was co-irradiated with a model protein, bovine serum albumin (BSA). This led to a significant degree of protein crosslinking and to the formation of trace amounts of drug-BSA photoadducts. Amino acid analysis of the hydrolysed (HC1) protein showed that His and Tyr undergo a dramatic decrease (approx. 90%) as a consequence of drug-mediated photodynamic processes. When the drug was irradiated in the presence of the pure amino acids, extensive phototransformation of the latter was observed. Other photosensitizing drugs gave rise to similar processes when irradiated in the presence of BSA or the isolated amino acids. In conclusion, histidine and tyrosine appear to be key sites for the photosensitized damage to proteins. Photodegradation of the isolated amino acids in vitro may be an indicator of the photosensitizing potential of drugs.

  4. Homophilic interactions mediated by receptor tyrosine phosphatases mu and kappa. A critical role for the novel extracellular MAM domain

    DEFF Research Database (Denmark)

    Zondag, G C; Koningstein, G M; Jiang, Y P

    1995-01-01

    and is found in diverse transmembrane proteins, is not known. We previously reported that both RPTP mu and RPTP kappa can mediate homophilic cell interactions when expressed in insect cells. Here we show that despite their striking structural similarity, RPTP mu and RPTP kappa fail to interact......The receptor-like protein tyrosine phosphatases (RPTP) mu and RPTP kappa have a modular ectodomain consisting of four fibronectin type III-like repeats, a single Ig-like domain, and a newly identified N-terminal MAM domain. The function of the latter module, which comprises about 160 amino acids...... in a heterophilic manner. To examine the role of the MAM domain in homophilic binding, we expressed a mutant RPTP mu lacking the MAM domain in insect Sf9 cells. Truncated RPTP mu is properly expressed at the cell surface but fails to promote cell-cell adhesion. Homophilic cell adhesion is fully restored...

  5. EGFR tyrosine kinase inhibitory peptide attenuates Helicobacter pylori-mediated hyper-proliferation in AGS enteric epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Himaya, S.W.A. [Marine Bio-Process Research Center, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of); Dewapriya, Pradeep [Department of Chemistry, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of); Kim, Se-Kwon, E-mail: sknkim@pknu.ac.kr [Marine Bio-Process Research Center, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of); Department of Chemistry, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of)

    2013-06-15

    Helicobacter pylori infection is one of the most critical causes of stomach cancer. The current study was conducted to explore the protective effects of an isolated active peptide H-P-6 (Pro-Gln-Pro-Lys-Val-Leu-Asp-Ser) from microbial hydrolysates of Chlamydomonas sp. against H. pylori-induced carcinogenesis. The peptide H-P-6 has effectively suppressed H. pylori-induced hyper-proliferation and migration of gastric epithelial cells (AGS). However, the peptide did not inhibit the viability of the bacteria or invasion into AGS cells. Therefore, the effect of the peptide on regulating H. pylori-induced molecular signaling was investigated. The results indicated that H. pylori activates the EGFR tyrosine kinase signaling and nuclear translocation of the β-catenin. The EGFR activation has led to the up-regulation of PI3K/Akt signaling pathway. Moreover, the nuclear translocation levels of β-catenin were significantly increased as a result of Akt mediated down-regulation of GSK3/β protein levels in the cytoplasm. Both of these consequences have resulted in increased expression of cell survival and migration related genes such as c-Myc, cyclin-D, MMP-2 and matrilysin. Interestingly, the isolated peptide potently inhibited H. pylori-mediated EGFR activation and thereby down-regulated the subsequent P13K/Akt signaling leading to β-catenin nuclear translocation. The effect of the peptide was confirmed with the use of EGFR tyrosine kinase inhibitor AG1487 and molecular docking studies. Collectively this study identifies a potent peptide which regulates the H. pylori-induced hyper-proliferation and migration of AGS cells at molecular level. - Highlights: • Chlamydomonas sp. derived peptide H-P-6 inhibits H. pylori-induced pathogenesis. • H-P-6 suppresses H. pylori-induced hyper-proliferation and migration of AGS cells. • The peptide inhibits H. pylori-induced EGFR activation.

  6. Axl, a receptor tyrosine kinase, mediates flow-induced vascular remodeling.

    Science.gov (United States)

    Korshunov, Vyacheslav A; Mohan, Amy M; Georger, Mary A; Berk, Bradford C

    2006-06-09

    Intima-media thickening (IMT) in response to hemodynamic stress is a physiological process that requires coordinated signaling among endothelial, inflammatory, and vascular smooth muscle cells (VSMC). Axl, a receptor tyrosine kinase, whose ligand is Gas6, is highly induced in VSMC after carotid injury. Because Axl regulates cell migration, phagocytosis and apoptosis, we hypothesized that Axl would play a role in IMT. Vascular remodeling in mice deficient in Axl (Axl(-/-)) and wild-type littermates (Axl(+/+)) was induced by ligation of the left carotid artery (LCA) branches maintaining flow via the left occipital artery. Both genotypes had similar baseline hemodynamic parameters and carotid artery structure. Partial ligation altered blood flow equally in both genotypes: increased by 60% in the right carotid artery (RCA) and decreased by 80% in the LCA. There were no significant differences in RCA remodeling between genotypes. However, in the LCA Axl(-/-) developed significantly smaller intima+media compared with Axl(+/+) (31+/-4 versus 42+/-6x10(-6) microm3, respectively). Quantitative immunohistochemistry of Axl(-/-) LCA showed increased apoptosis compared with Axl(+/+) (5-fold). As expected, p-Akt was decreased in Axl(-/-), whereas there was no difference in Gas6 expression. Cell composition also changed significantly, with increases in CD45+ cells and decreases in VSMC, macrophages, and neutrophils in Axl(-/-) compared with Axl(+/+). These data demonstrate an important role for Axl in flow-dependent remodeling by regulating vascular apoptosis and vascular inflammation.

  7. Distinct Receptor Tyrosine Kinase Subsets Mediate Anti-HER2 Drug Resistance in Breast Cancer*

    Science.gov (United States)

    Alexander, Peter B.; Chen, Rui; Gong, Chang; Yuan, Lifeng; Jasper, Jeff S.; Ding, Yi; Markowitz, Geoffrey J.; Yang, Pengyuan; Xu, Xin; McDonnell, Donald P.; Song, Erwei; Wang, Xiao-Fan

    2017-01-01

    Targeted inhibitors of the human epidermal growth factor receptor 2 (HER2), such as trastuzumab and lapatinib, are among the first examples of molecularly targeted cancer therapy and have proven largely effective for the treatment of HER2-positive breast cancers. However, approximately half of those patients either do not respond to these therapies or develop secondary resistance. Although a few signaling pathways have been implicated, a comprehensive understanding of mechanisms underlying HER2 inhibitor drug resistance is still lacking. To address this critical question, we undertook a concerted approach using patient expression data sets, HER2-positive cell lines, and tumor samples biopsied both before and after trastuzumab treatment. Together, these methods revealed that high expression and activation of a specific subset of receptor tyrosine kinases (RTKs) was strongly associated with poor clinical prognosis and the development of resistance. Mechanistically, these RTKs are capable of maintaining downstream signal transduction to promote tumor growth via the suppression of cellular senescence. Consequently, these findings provide the rationale for the design of therapeutic strategies for overcoming drug resistance in breast cancer via combinational inhibition of the limited number of targets from this specific subset of RTKs. PMID:27903634

  8. Protein-tyrosine phosphatases in zebrafish gastrulation

    NARCIS (Netherlands)

    van Eekelen, M.J.L.

    2011-01-01

    Protein tyrosine phosphorylation plays a key role in relaying external stimuli and signals into the cell towards the appropriate responses. This process is mediated by protein-tyrosine kinases adding a phosphor group to a tyrosine residue and protein-tyrosine phosphatases removing a phosphor group

  9. Cis and trans regulatory mechanisms control AP2-mediated B cell receptor endocytosis via select tyrosine-based motifs.

    Directory of Open Access Journals (Sweden)

    Kathleen Busman-Sahay

    Full Text Available Following antigen recognition, B cell receptor (BCR-mediated endocytosis is the first step of antigen processing and presentation to CD4+ T cells, a crucial component of the initiation and control of the humoral immune response. Despite this, the molecular mechanism of BCR internalization is poorly understood. Recently, studies of activated B cell-like diffuse large B cell lymphoma (ABC DLBCL have shown that mutations within the BCR subunit CD79b leads to increased BCR surface expression, suggesting that CD79b may control BCR internalization. Adaptor protein 2 (AP2 is the major mediator of receptor endocytosis via clathrin-coated pits. The BCR contains five putative AP2-binding YxxØ motifs, including four that are present within two immunoreceptor tyrosine-based activation motifs (ITAMs. Using a combination of in vitro and in situ approaches, we establish that the sole mediator of AP2-dependent BCR internalization is the membrane proximal ITAM YxxØ motif in CD79b, which is a major target of mutation in ABC DLBCL. In addition, we establish that BCR internalization can be regulated at a minimum of two different levels: regulation of YxxØ AP2 binding in cis by downstream ITAM-embedded DCSM and QTAT regulatory elements and regulation in trans by the partner cytoplasmic domain of the CD79 heterodimer. Beyond establishing the basic rules governing BCR internalization, these results illustrate an underappreciated role for ITAM residues in controlling clathrin-dependent endocytosis and highlight the complex mechanisms that control the activity of AP2 binding motifs in this receptor system.

  10. Src tyrosine kinases contribute to serotonin-mediated contraction by regulating calcium-dependent pathways in rat skeletal muscle arteries.

    Science.gov (United States)

    Zavaritskaya, Olga; Lubomirov, Lubomir T; Altay, Serdar; Schubert, Rudolf

    2017-06-01

    The Src tyrosine kinase family contributes to the signalling mechanism mediating serotonin (5-hydroxytryptamine (5-HT))-induced vasoconstriction. These kinases were reported to influence the calcium sensitivity of the contractile apparatus. Whether Src kinases affect also the intracellular calcium concentration during constriction of intact arteries is unknown. Thus, we tested the hypothesis that constriction of arteries is associated with a Src kinase-dependent alteration of the intracellular calcium concentration. Contractility of gracilis arteries of Wistar rats was studied using isometric and isobaric myography. The intracellular calcium concentration was measured simultaneously with tension by FURA-2 fluorimetry. Inhibition of Src kinases with 10 μM PP2, 30 μM dasatinib and 100 μM AZM 475271 resulted in a strong attenuation of 5-HT-induced contractions. Vessel incubation with 10 μM PP3, an inactive analogue of PP2, had no effect. Removal of the endothelium did not alter vessel contractile responses to 5-HT nor the action of the Src-kinase inhibitor PP2. The PP2-mediated inhibition of 5-HT-induced contraction was associated with a reduced response of [Ca 2+ ] i to 5-HT. In particular, inhibition of Src kinases attenuates 5-HT-induced calcium influx as well as calcium release from intracellular stores. In contrast, the calcium sensitivity of the contractile apparatus and the filling state of the sarcoplasmic reticulum were not influenced by Src kinases during 5-HT-induced contractions. We conclude that Src kinase activation is a powerful mechanism to produce vasoconstriction of small skeletal muscle arteries of rats. This effect is endothelium-independent. The data further suggest that the action of c-Src kinases is associated with a change in the intracellular calcium concentration that involves Ca 2+ entry and Ca 2+ release pathways.

  11. Tyrosine kinase Btk regulates E-selectin–mediated integrin activation and neutrophil recruitment by controlling phospholipase C (PLC) γ2 and PI3Kγ pathways

    Science.gov (United States)

    Mueller, Helena; Stadtmann, Anika; Van Aken, Hugo; Hirsch, Emilio; Wang, Demin; Ley, Klaus

    2010-01-01

    Selectins mediate leukocyte rolling, trigger β2-integrin activation, and promote leukocyte recruitment into inflamed tissue. E-selectin binding to P-selectin glycoprotein ligand 1 (PSGL-1) leads to activation of an immunoreceptor tyrosine-based activation motif (ITAM)–dependent pathway, which in turn activates the spleen tyrosine kinase (Syk). However, the signaling pathway linking Syk to integrin activation after E-selectin engagement is unknown. To identify the pathway, we used different gene-deficient mice in autoperfused flow chamber, intravital microscopy, peritonitis, and biochemical studies. We report here that the signaling pathway downstream of Syk divides into a phospholipase C (PLC) γ2– and phosphoinositide 3-kinase (PI3K) γ–dependent pathway. The Tec family kinase Bruton tyrosine kinase (Btk) is required for activating both pathways, generating inositol-3,4,5-trisphosphate (IP3), and inducing E-selectin–mediated slow rolling. Inhibition of this signal-transduction pathway diminished Gαi-independent leukocyte adhesion to and transmigration through endothelial cells in inflamed postcapillary venules of the cremaster. Gαi-independent neutrophil recruitment into the inflamed peritoneal cavity was reduced in Btk−/− and Plcg2−/− mice. Our data demonstrate the functional importance of this newly identified signaling pathway mediated by E-selectin engagement. PMID:20167705

  12. Nuclear localization of Lyn tyrosine kinase mediated by inhibition of its kinase activity

    International Nuclear Information System (INIS)

    Ikeda, Kikuko; Nakayama, Yuji; Togashi, Yuuki; Obata, Yuuki; Kuga, Takahisa; Kasahara, Kousuke; Fukumoto, Yasunori; Yamaguchi, Naoto

    2008-01-01

    Src-family kinases, cytoplasmic enzymes that participate in various signaling events, are found at not only the plasma membrane but also subcellular compartments, such as the nucleus, the Golgi apparatus and late endosomes/lysosomes. Lyn, a member of the Src-family kinases, is known to play a role in DNA damage response and cell cycle control in the nucleus. However, it is still unclear how the localization of Lyn to the nucleus is regulated. Here, we investigated the mechanism of the distribution of Lyn between the cytoplasm and the nucleus in epitheloid HeLa cells and hematopoietic THP-1 cells. Lyn was definitely detected in purified nuclei by immunofluorescence and immunoblotting analyses. Nuclear accumulation of Lyn was enhanced upon treatment of cells with leptomycin B (LMB), an inhibitor of Crm1-mediated nuclear export. Moreover, Lyn mutants lacking the sites for lipid modification were highly accumulated in the nucleus upon LMB treatment. Intriguingly, inhibition of the kinase activity of Lyn by SU6656, Csk overexpression, or point mutation in the ATP-binding site induced an increase in nuclear Lyn levels. These results suggest that Lyn being imported into and rapidly exported from the nucleus preferentially accumulates in the nucleus by inhibition of the kinase activity and lipid modification

  13. Tyrosine kinase inhibitors as modulators of trastuzumab-mediated antibody-dependent cell-mediated cytotoxicity in breast cancer cell lines.

    Science.gov (United States)

    Collins, Denis M; Gately, Kathy; Hughes, Clare; Edwards, Connla; Davies, Anthony; Madden, Stephen F; O'Byrne, Kenneth J; O'Donovan, Norma; Crown, John

    2017-09-01

    Trastuzumab is an anti-HER2 monoclonal antibody (mAb) therapy capable of antibody-dependent cell-mediated cytotoxicity (ADCC) and used in the treatment of HER2+ breast cancer. Through interactions with FcƴR+ immune cell subsets, trastuzumab functions as a passive immunotherapy. The EGFR/HER2-targeting tyrosine kinase inhibitor (TKI) lapatinib and the next generation TKIs afatinib and neratinib, can alter HER2 levels, potentially modulating the ADCC response to trastuzumab. Using LDH-release assays, we investigated the impact of antigen modulation, assay duration and peripheral blood mononuclear cell (PBMC) activity on trastuzumab-mediated ADCC in breast cancer models of maximal (SKBR3) and minimal (MCF-7) target antigen expression to determine if modulating the ADCC response to trastuzumab using TKIs may be a viable approach for enhancing tumor immune reactivity. HER2 levels were determined in lapatinib, afatinib and neratinib-treated SKBR3 and MCF-7 using high content analysis (HCA). Trastuzumab-mediated ADCC was assessed following treatment with TKIs utilising a colorimetric LDH release-based protocol at 4 and 12h timepoints. PBMC activity was assessed against non-MHC-restricted K562 cells. A flow cytometry-based method (CFSE/7-AAD) was also used to measure trastuzumab-mediated ADCC in medium-treated SKBR3 and MCF-7. HER2 antigen levels were significantly altered by the three TKIs in both cell line models. The TKIs significantly reduced LDH levels directly in SKBR3 cells but not MCF-7. Lapatinib and neratinib augment trastuzumab-related ADCC in SKBR3 but the effect was not consistent with antigen expression levels and was dependent on volunteer PBMC activity (vs. K562). A 12h assay timepoint produced more consistent results. Trastuzumab-mediated ADCC (PBMC:target cell ratio of 10:1) was measured at 7.6±4.7% (T12) by LDH assay and 19±3.2 % (T12) using the flow cytometry-based method in the antigen-low model MCF-7. In the presence of effector cells with high

  14. Tyrosine phosphorylation of HSC70 and its interaction with RFC mediates methotrexate resistance in murine L1210 leukemia cells.

    Science.gov (United States)

    Liu, Tuoen; Singh, Ratan; Rios, Zechary; Bhushan, Alok; Li, Mengxiong; Sheridan, Peter P; Bearden, Shawn E; Lai, James C K; Agbenowu, Senyo; Cao, Shousong; Daniels, Christopher K

    2015-02-01

    We previously identified and characterized a 66-68 kDa membrane-associated, tyrosine phosphorylated protein in murine leukemia L1210 cells as HSC70 which is a methotrexate (MTX)-binding protein. In order to further characterize the functional role of HSC70 in regulating MTX resistance in L1210 cells, we first showed that HSC70 colocalizes and interacts with reduced folate carrier (RFC) in L1210 cells by confocal laser scanning microscopy and Duolink in situ proximity ligation assay. The tyrosine phosphorylation status of HSC70 found in the membrane fraction was different from the parental L1210/0 and cisplatin (CDDP)-MTX cross resistant L1210/DDP cells. In MTX-binding assays, HSC70 from L1210/DDP cells showed less affinity for MTX-agarose beads than that of L1210/0 cells. In addition, genistein (a tyrosine phosphorylation inhibitor) significantly enhanced the resistance of L1210/0 cells to MTX. Moreover, site-directed mutation studies indicated the importance of tyrosine phosphorylation of HSC70 in regulating its binding to MTX. These findings suggest that tyrosine phosphorylation of HSC70 regulates the transportation of MTX into the cells via the HSC70-RFC system and contributes to MTX resistance in L1210 cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts

    DEFF Research Database (Denmark)

    Su, J; Muranjan, M; Sap, J

    1999-01-01

    BACKGROUND: Fyn and c-Src are two of the most widely expressed Src-family kinases. Both are strongly implicated in the control of cytoskeletal organization and in the generation of integrin-dependent signalling responses in fibroblasts. These proteins are representative of a large family...... of tyrosine kinases, the activity of which is tightly controlled by inhibitory phosphorylation of a carboxyterminal tyrosine residue (Tyr527 in chicken c-Src); this phosphorylation induces the kinases to form an inactive conformation. Whereas the identity of such inhibitory Tyr527 kinases has been well...... established, no corresponding phosphatases have been identified that, under physiological conditions, function as positive regulators of c-Src and Fyn in fibroblasts. RESULTS: Receptor protein tyrosine phosphatase alpha (RPTPalpha) was inactivated by homologous recombination. Fibroblasts derived from...

  16. Induction of matrix metalloproteinase-2 by tenascin-X deficiency is mediated through the c-Jun N-terminal kinase and protein tyrosine kinase phosphorylation pathway

    International Nuclear Information System (INIS)

    Matsumoto, Ken-ichi; Minamitani, Takeharu; Orba, Yasuko; Sato, Mami; Sawa, Hirofumi; Ariga, Hiroyoshi

    2004-01-01

    The results of our previous study showed that tumor invasion and metastasis are promoted in extracellular matrix (ECM) tenascin-X-deficient (TNX-/-) mice via increased expression of matrix metalloproteinases (MMPs). However, little is known about the relationship between TNX deficiency and activation of MMP genes. In this study, we investigated the molecular mechanism by which TNX deficiency activates the MMP-2 gene. We examined the intracellular signaling pathways that regulate gene expression of the proteinase in isolated fibroblasts. Results of gelatin zymography showed that MMP-2 was induced to a greater extent in TNX-/- fibroblasts embedded in type I collagen than in wild-type fibroblasts. RT-PCR analysis revealed that the increased level of MMP-2 expression was caused at the transcription level. Conversely, stable overexpression of TNX in a fibroblast cell line reduced MMP-2 expression and suppressed MMP-2 promoter activity. In addition, treatment of TNX-/- fibroblasts with SP600125, a c-Jun N-terminal kinase (JNK) inhibitor, and genistein, a tyrosine kinase inhibitor, suppressed the increased level of proMMP-2 and increased MMP-2 promoter activity in TNX-/- fibroblasts. Furthermore, increased activation of JNK and tyrosine phosphorylation of certain proteins were observed in TNX-/- fibroblasts. These findings suggest that induction of MMP-2 by TNX deficiency is mediated, at least in part, through the JNK and protein tyrosine kinase phosphorylation pathway

  17. Inhibition of peroxynitrite-mediated cellular toxicity, tyrosine nitration, and alpha1-antiproteinase inactivation by 3-mercapto-2-methylpentan-1-ol, a novel compound isolated from Allium cepa.

    Science.gov (United States)

    Rose, Peter; Widder, Sabine; Looft, Jan; Pickenhagen, Wilhelm; Ong, Choon-Nam; Whiteman, Matthew

    2003-03-07

    Peroxynitrite formation in vivo is implicated in numerous human diseases and there is considerable interest in the use of antioxidants and natural products such as thiols as "peroxynitrite scavengers". We therefore investigated the effects of a recently identified constituent of onions, 3-mercapto-2-methylpentan-1-ol (3-MP), for its ability to inhibit peroxynitrite-mediated processes in vitro and using cultured human cells and compared its effectiveness against glutathione. 3-MP significantly inhibited peroxynitrite-mediated tyrosine nitration and inactivation of alpha(1)-antiproteinase to a greater extent than glutathione at each concentration tested (15-500 microM). 3-MP also inhibited peroxynitrite-induced cytotoxicity, intracellular tyrosine nitration, and intracellular reactive oxygen species generation in human HepG2 cells in culture to a greater extent than glutathione. These data suggest that 3-MP has the potential to act as an inhibitor of ONOO(-)-mediated processes in vivo and that the antioxidant action of 3-MP deserves further study.

  18. A novel spleen tyrosine kinase inhibitor blocks c-Jun N-terminal kinase-mediated gene expression in synoviocytes

    NARCIS (Netherlands)

    Cha, Hoon-Suk; Boyle, David L.; Inoue, Tomoyuki; Schoot, Reineke; Tak, Paul P.; Pine, Polly; Firestein, Gary S.

    2006-01-01

    Spleen tyrosine kinase (Syk) is a key regulator of cell signaling induced by cytokines or Fc receptor engagement. However, the role of Syk in rheumatoid arthritis (RA) is not known yet. We investigated the pathways activated by Syk in tumor necrosis factor-alpha (TNFalpha)-stimulated fibroblast-like

  19. Use of double-stranded RNA-mediated interference to determine the substrates of protein tyrosine kinases and phosphatases.

    Science.gov (United States)

    Muda, Marco; Worby, Carolyn A; Simonson-Leff, Nancy; Clemens, James C; Dixon, Jack E

    2002-08-15

    Despite the wealth of information generated by genome-sequencing projects, the identification of in vivo substrates of specific protein kinases and phosphatases is hampered by the large number of candidate enzymes, overlapping enzyme specificity and sequence similarity. In the present study, we demonstrate the power of RNA interference (RNAi) to dissect signal transduction cascades involving specific kinases and phosphatases. RNAi is used to identify the cellular tyrosine kinases upstream of the phosphorylation of Down-Syndrome cell-adhesion molecule (Dscam), a novel cell-surface molecule of the immunoglobulin-fibronectin super family, which has been shown to be important for axonal path-finding in Drosophila. Tyrosine phosphorylation of Dscam recruits the Src homology 2 domain of the adaptor protein Dock to the receptor. Dock, the ortho- logue of mammalian Nck, is also essential for correct axonal path-finding in Drosophila. We further determined that Dock is tyrosine-phosphorylated in vivo and identified DPTP61F as the protein tyrosine phosphatase responsible for maintaining Dock in its non-phosphorylated state. The present study illustrates the versatility of RNAi in the identification of the physiological substrates for protein kinases and phosphatases.

  20. KIT(D816V) Induces SRC-Mediated Tyrosine Phosphorylation of MITF and Altered Transcription Program in Melanoma

    DEFF Research Database (Denmark)

    Phung, Bengt; Kazi, Julhash U; Lundby, Alicia

    2017-01-01

    The oncogenic D816V mutation of the KIT receptor is well characterized in systemic mastocytosis and acute myeloid leukemia. Although KIT(D816V) has been found in melanoma, its function and involvement in this malignancy is not understood. Here we show that KIT(D816V) induces tyrosine phosphorylat.......Implications: This study demonstrates that an oncogenic tyrosine kinase mutant, KIT(D816V), can alter the transcriptional program of the transcription factor MITF in melanoma Mol Cancer Res; 15(9); 1265-74. ©2017 AACR....... complex formation, thus preventing MITF phosphorylation, the cells became hypersensitive to SRC inhibitors. We have therefore delineated a mechanism behind the oncogenic effects of KIT(D816V) in melanoma and provided a rationale for the heightened SRC inhibitor sensitivity in KIT(D816V) transformed cells...

  1. A cross-talk between TrkB and Ret tyrosine kinases receptors mediates neuroblastoma cells differentiation.

    Directory of Open Access Journals (Sweden)

    Carla Lucia Esposito

    Full Text Available Understanding the interplay between intracellular signals initiated by multiple receptor tyrosine kinases (RTKs to give the final cell phenotype is a major pharmacological challenge. Retinoic acid (RA-treatment of neuroblastoma (NB cells implicates activation of Ret and TrkB RTKs as critical step to induce cell differentiation. By studying the signaling interplay between TrkB and Ret as paradigmatic example, here we demonstrate the existence of a cross-talk mechanism between the two unrelated receptors that is needed to induce the cell differentiation. Indeed, we show that TrkB receptor promotes Ret phosphorylation by a mechanism that does not require GDNF. This reveals to be a key mechanism, since blocking either TrkB or Ret by small interfering RNA causes a failure in NB biochemical and morphological differentiation. Our results provide the first evidence that a functional transactivation between distinct tyrosine kinases receptors is required for an important physiological process.

  2. {delta}-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Anika; Ammer, Hermann [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany); Eisinger, Daniela A., E-mail: eisinger@pharmtox.vetmed.uni-muenchen.de [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany)

    2009-07-15

    {delta}-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen{sup 2,5}]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G{sub i/o} proteins, because pre-treatment with pertussis toxin, but not over-expression of the G{sub q/11} scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the G{beta}{gamma} scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  3. Btk29A-mediated tyrosine phosphorylation of armadillo/β-catenin promotes ring canal growth in Drosophila oogenesis.

    Science.gov (United States)

    Hamada-Kawaguchi, Noriko; Nishida, Yasuyoshi; Yamamoto, Daisuke

    2015-01-01

    Drosophila Btk29A is the ortholog of mammalian Btk, a Tec family nonreceptor tyrosine kinase whose deficit causes X-linked agammaglobulinemia in humans. The Btk29AficP mutation induces multiple abnormalities in oogenesis, including the growth arrest of ring canals, large intercellular bridges that allow the flow of cytoplasm carrying maternal products essential for embryonic development from the nurse cells to the oocyte during oogenesis. In this study, inactivation of Parcas, a negative regulator of Btk29A, was found to promote Btk29A accumulation on ring canals with a concomitant increase in the ring canal diameter, counteracting the Btk29AficP mutation. This mutation markedly reduced the accumulation of phosphotyrosine on ring canals and in the regions of cell-cell contact, where adhesion-supporting proteins such as DE-cadherin and β-catenin ortholog Armadillo (Arm) are located. Our previous in vitro and in vivo analyses revealed that Btk29A directly phosphorylates Arm, leading to its release from DE-cadherin. In the present experiments, immunohistological analysis revealed that phosphorylation at tyrosine 150 (Y150) and Y667 of Arm was diminished in Btk29AficP mutant ring canals. Overexpression of an Arm mutant with unphosphorylatable Y150 inhibited ring canal growth. Thus Btk29A-induced Y150 phosphorylation is necessary for the normal growth of ring canals. We suggest that the dissociation of tyrosine-phosphorylated Arm from DE-cadherin allows dynamic actin to reorganize, leading to ring canal expansion and cell shape changes during the course of oogenesis.

  4. Btk29A-mediated tyrosine phosphorylation of armadillo/β-catenin promotes ring canal growth in Drosophila oogenesis.

    Directory of Open Access Journals (Sweden)

    Noriko Hamada-Kawaguchi

    Full Text Available Drosophila Btk29A is the ortholog of mammalian Btk, a Tec family nonreceptor tyrosine kinase whose deficit causes X-linked agammaglobulinemia in humans. The Btk29AficP mutation induces multiple abnormalities in oogenesis, including the growth arrest of ring canals, large intercellular bridges that allow the flow of cytoplasm carrying maternal products essential for embryonic development from the nurse cells to the oocyte during oogenesis. In this study, inactivation of Parcas, a negative regulator of Btk29A, was found to promote Btk29A accumulation on ring canals with a concomitant increase in the ring canal diameter, counteracting the Btk29AficP mutation. This mutation markedly reduced the accumulation of phosphotyrosine on ring canals and in the regions of cell-cell contact, where adhesion-supporting proteins such as DE-cadherin and β-catenin ortholog Armadillo (Arm are located. Our previous in vitro and in vivo analyses revealed that Btk29A directly phosphorylates Arm, leading to its release from DE-cadherin. In the present experiments, immunohistological analysis revealed that phosphorylation at tyrosine 150 (Y150 and Y667 of Arm was diminished in Btk29AficP mutant ring canals. Overexpression of an Arm mutant with unphosphorylatable Y150 inhibited ring canal growth. Thus Btk29A-induced Y150 phosphorylation is necessary for the normal growth of ring canals. We suggest that the dissociation of tyrosine-phosphorylated Arm from DE-cadherin allows dynamic actin to reorganize, leading to ring canal expansion and cell shape changes during the course of oogenesis.

  5. Nonreceptor protein tyrosine and lipid phosphatases in type I Fcepsilon receptor-mediated activation of mast and basophils

    Czech Academy of Sciences Publication Activity Database

    Heneberg, Petr; Dráber, Petr

    2002-01-01

    Roč. 128, č. 4 (2002), s. 253-263 ISSN 1018-2438 R&D Projects: GA MŠk LN00A026; GA ČR GA204/00/0204; GA ČR GA310/00/0205; GA AV ČR IAA5052005; GA AV ČR IAA7052006 Institutional research plan: CEZ:AV0Z5052915 Keywords : phosphatases * tyrosin kinases * lipid phosphorylation Subject RIV: EC - Immunology Impact factor: 1.828, year: 2002

  6. Eps15R is a tyrosine kinase substrate with characteristics of a docking protein possibly involved in coated pits-mediated internalization

    DEFF Research Database (Denmark)

    Coda, L; Salcini, A E; Confalonieri, S

    1998-01-01

    eps15R was identified because of its relatedness to eps15, a gene encoding a tyrosine kinase substrate bearing a novel protein-protein interaction domain, called EH. In this paper, we report a biochemical characterization of the eps15R gene product(s). In NIH-3T3 cells, three proteins of 125, 108......, and 76 kDa were specifically recognized by anti-eps15R sera. The 125-kDa species is a bona fide product of the eps15R gene, whereas p108 and p76 are most likely products of alternative splicing events. Eps15R protein(s) are tyrosine-phosphorylated following epidermal growth factor receptor activation...... in NIH-3T3 cells overexpressing the receptor, even at low levels of receptor occupancy, thus behaving as physiological substrates. A role for eps15R in clathrin-mediated endocytosis is suggested by its localization in plasma membrane-coated pits and in vivo association to the coated pits' adapter protein...

  7. Sesquiterpene dimmer (DSF-27) inhibits the release of neuroinflammatory mediators from microglia by targeting spleen tyrosine kinase (Syk) and Janus kinase 2 (Jak2): Two major non-receptor tyrosine signaling proteins involved in inflammatory events

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ke-Wu [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Wang, Shu [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Department of Medicinal Chemistry and Pharmaceutical Analysis, Logistics College of Chinese People' s Armed Police Forces, Tianjin 300162 (China); Dong, Xin; Jiang, Yong; Jin, Hong-Wei [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Tu, Peng-Fei, E-mail: pengfeitu@vip.163.com [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China)

    2014-03-15

    Non-receptor protein tyrosine kinases (NRPTKs)-dependent inflammatory signal transduction cascades play key roles in immunoregulation. However, drug intervention through NRPTKs-involved immunoregulation mechanism in microglia (the major immune cells of the central nervous system) has not been widely investigated. A main aim of the present study is to elucidate the contribution of two major NRPTKs (Syk and Jak2) in neuroinflammation suppression by a bioactive sesquiterpene dimmer (DSF-27). We found that LPS-stimulated BV-2 cells activated Syk and further initiated Akt/NF-κB inflammatory pathway. This Syk-dependent Akt/NF-κB inflammatory pathway can be effectively ameliorated by DSF-27. Moreover, Jak2 was activated by LPS, which was followed by transcriptional factor Stat3 activation. The Jak2/Stat3 signal was suppressed by DSF-27 through inhibition of Jak2 and Stat3 phosphorylation, promotion of Jak/Stat3 inhibitory factors PIAS3 expression, and down-regulation of ERK and p38 MAPK phosphorylation. Furthermore, DSF-27 protected cortical and mesencephalic dopaminergic neurons against neuroinflammatory injury. Taken together, our findings indicate NRPTK signaling pathways including Syk/NF-κB and Jak2/Stat3 cascades are potential anti-neuroinflammatory targets in microglia, and may also set the basis for the use of sesquiterpene dimmer as a therapeutic approach for neuroinflammation via interruption of these pathways. - Highlights: • Sesquiterpene dimmer DSF-27 inhibits inflammatory mediators' production in microglia. • Syk-dependent Akt/NF-κB pathway is important for DSF-27's anti-inflammation activity. • Jak2/Stat3 pathway is important for DSF-27's anti-inflammation activity. • Jak2/Stat3 signaling pathway is partly regulated by ERK and p38 MAPKs and PIAS3. • DSF-27 protects neurons against microglia-mediated neuroinflammatory injury.

  8. Sesquiterpene dimmer (DSF-27) inhibits the release of neuroinflammatory mediators from microglia by targeting spleen tyrosine kinase (Syk) and Janus kinase 2 (Jak2): Two major non-receptor tyrosine signaling proteins involved in inflammatory events

    International Nuclear Information System (INIS)

    Zeng, Ke-Wu; Wang, Shu; Dong, Xin; Jiang, Yong; Jin, Hong-Wei; Tu, Peng-Fei

    2014-01-01

    Non-receptor protein tyrosine kinases (NRPTKs)-dependent inflammatory signal transduction cascades play key roles in immunoregulation. However, drug intervention through NRPTKs-involved immunoregulation mechanism in microglia (the major immune cells of the central nervous system) has not been widely investigated. A main aim of the present study is to elucidate the contribution of two major NRPTKs (Syk and Jak2) in neuroinflammation suppression by a bioactive sesquiterpene dimmer (DSF-27). We found that LPS-stimulated BV-2 cells activated Syk and further initiated Akt/NF-κB inflammatory pathway. This Syk-dependent Akt/NF-κB inflammatory pathway can be effectively ameliorated by DSF-27. Moreover, Jak2 was activated by LPS, which was followed by transcriptional factor Stat3 activation. The Jak2/Stat3 signal was suppressed by DSF-27 through inhibition of Jak2 and Stat3 phosphorylation, promotion of Jak/Stat3 inhibitory factors PIAS3 expression, and down-regulation of ERK and p38 MAPK phosphorylation. Furthermore, DSF-27 protected cortical and mesencephalic dopaminergic neurons against neuroinflammatory injury. Taken together, our findings indicate NRPTK signaling pathways including Syk/NF-κB and Jak2/Stat3 cascades are potential anti-neuroinflammatory targets in microglia, and may also set the basis for the use of sesquiterpene dimmer as a therapeutic approach for neuroinflammation via interruption of these pathways. - Highlights: • Sesquiterpene dimmer DSF-27 inhibits inflammatory mediators' production in microglia. • Syk-dependent Akt/NF-κB pathway is important for DSF-27's anti-inflammation activity. • Jak2/Stat3 pathway is important for DSF-27's anti-inflammation activity. • Jak2/Stat3 signaling pathway is partly regulated by ERK and p38 MAPKs and PIAS3. • DSF-27 protects neurons against microglia-mediated neuroinflammatory injury

  9. A role for the non-receptor tyrosine kinase ACK1 in TNF-alpha-mediated apoptosis and proliferation in human intestinal epithelial caco-2 cells.

    Science.gov (United States)

    Zhao, Xinmei; Lv, Chaolan; Chen, Shengbo; Zhi, Fachao

    2017-09-16

    The roles of tumor necrosis factor alpha (TNF-alpha) and its mediators in cellular processes related to intestinal diseases remain elusive. In this study, we aimed to determine the biological role of activated Cdc42-associated kinase 1 (ACK1) in TNF-alpha-mediated apoptosis and proliferation in Caco-2 cells. ACK1 expression was knocked down using ACK1-specific siRNAs, and ACK1 activity was disrupted using a small molecule ACK1 inhibitor. The Terminal deoxynucleotidyl transferase biotin-dUTP Nick End Labeling (TUNEL) and the BrdU incorporation assays were used to measure apoptosis and cell proliferation, respectively. ACK1-specific siRNA and the pharmacological ACK1 inhibitor significantly abrogated the TNF-alpha-mediated anti-apoptotic effects and proliferation of Caco-2 cells. Interestingly, TNF-alpha activated ACK1 at tyrosine 284 (Tyr284), and the ErbB family of proteins was implicated in ACK1 activation in Caco-2 cells. ACK1-Tyr284 was required for protein kinase B (AKT) activation, and ACK1 signaling was mediated through recruiting and phosphorylating the down-stream adaptor protein AKT, which likely promoted cell proliferation in response to TNF-alpha. Moreover, ACK1 activated AKT and Src enhanced nuclear factor-кB (NF-кB) activity, suggesting a correlation between NF-кB signaling and TNF-alpha-mediated apoptosis in Caco-2 cells. Our results demonstrate that ACK1 plays an important role in modulating TNF-alpha-induced aberrant cell proliferation and apoptosis, mediated in part by ACK1 activation. ACK1 and its down-stream effectors may hold promise as therapeutic targets in the prevention and treatment of gastrointestinal cancers, in particular, those induced by chronic intestinal inflammation. © 2017 The Authors. Cell Biology International Published by John Wiley & Sons Ltd on behalf of International Federation of Cell Biology.

  10. Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts

    DEFF Research Database (Denmark)

    Su, J; Muranjan, M; Sap, J

    1999-01-01

    BACKGROUND: Fyn and c-Src are two of the most widely expressed Src-family kinases. Both are strongly implicated in the control of cytoskeletal organization and in the generation of integrin-dependent signalling responses in fibroblasts. These proteins are representative of a large family of tyros......BACKGROUND: Fyn and c-Src are two of the most widely expressed Src-family kinases. Both are strongly implicated in the control of cytoskeletal organization and in the generation of integrin-dependent signalling responses in fibroblasts. These proteins are representative of a large family...... established, no corresponding phosphatases have been identified that, under physiological conditions, function as positive regulators of c-Src and Fyn in fibroblasts. RESULTS: Receptor protein tyrosine phosphatase alpha (RPTPalpha) was inactivated by homologous recombination. Fibroblasts derived from...

  11. Bruton's tyrosine kinase mediates the synergistic signalling between TLR9 and the B cell receptor by regulating calcium and calmodulin.

    Directory of Open Access Journals (Sweden)

    Elaine F Kenny

    Full Text Available B cells signal through both the B cell receptor (BCR which binds antigens and Toll-like receptors (TLRs including TLR9 which recognises CpG DNA. Activation of TLR9 synergises with BCR signalling when the BCR and TLR9 co-localise within an auto-phagosome-like compartment. Here we report that Bruton's tyrosine kinase (BTK is required for synergistic IL6 production and up-regulation of surface expression of MHC-class-II, CD69 and CD86 in primary murine and human B cells. We show that BTK is essential for co-localisation of the BCR and TLR9 within a potential auto-phagosome-like compartment in the Namalwa human B cell line. Downstream of BTK we find that calcium acting via calmodulin is required for this process. These data provide new insights into the role of BTK, an important target for autoimmune diseases, in B cell activation.

  12. Src tyrosine kinase mediates platelet-derived growth factor BB-induced and redox-dependent migration in metanephric mesenchymal cells

    Science.gov (United States)

    Gorin, Yves

    2013-01-01

    The adult kidney is derived from the interaction between the metanephric blastema and the ureteric bud. Platelet-derived growth factor (PDGF) receptor β is essential for the development of the mature glomerular tuft, as mice deficient for this receptor lack mesangial cells. This study investigated the role of Src tyrosine kinase in PDGF-mediated reactive oxygen species (ROS) generation and migration of metanephric mesenchymal cells (MMCs). Cultured embryonic MMCs from wild-type and PDGF receptor-deficient embryos were established. Migration was determined via wound-healing assay. Unlike PDGF AA, PDGF BB-induced greater migration in MMCs with respect to control. This was abrogated by neutralizing an antibody to PDGF BB. Phosphatidylinositol 3-kinase (PI3K) inhibitors suppressed PDGF BB-induced migration. Conversely, mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) inhibitors had no effect. Src inhibitors inhibited PDGF-induced cell migration, PI3K activity, and Akt phosphorylation. Adenoviral dominant negative Src (AD DN Src) abrogated PDGF BB-induced Akt phosphorylation. Hydrogen peroxide stimulated cell migration. PDGF BB-induced wound closure was inhibited by the antioxidants N-acetyl-l-cysteine, tiron, and the flavoprotein inhibitor diphenyleneiodonium. These cells express the NADPH oxidase homolog Nox4. Inhibiting Nox4 with antisense oligonucleotides or small interfering RNA (siRNA) suppressed PDGF-induced wound closure. Inhibition of Src with siRNA reduced PDGF BB-induced ROS generation as assessed by 2′,7′-dichlorodihydrofluorescein diacetate fluorescence. Furthermore, PDGF BB-stimulated ROS generation and migration were similarly suppressed by Ad DN Src. In MMCs, PDGF BB-induced migration is mediated by PI3K and Src in a redox-dependent manner involving Nox4. Src may be upstream to PI3K and Nox4. PMID:24197068

  13. Ribosomal Protein S6 Kinase (RSK-2 as a central effector molecule in RON receptor tyrosine kinase mediated epithelial to mesenchymal transition induced by macrophage-stimulating protein

    Directory of Open Access Journals (Sweden)

    Zhang Rui-Wen

    2011-05-01

    Full Text Available Abstract Background Epithelial to mesenchymal transition (EMT occurs during cancer cell invasion and malignant metastasis. Features of EMT include spindle-like cell morphology, loss of epithelial cellular markers and gain of mesenchymal phenotype. Activation of the RON receptor tyrosine kinase by macrophage-stimulating protein (MSP has been implicated in cellular EMT program; however, the major signaling determinant(s responsible for MSP-induced EMT is unknown. Results The study presented here demonstrates that RSK2, a downstream signaling protein of the Ras-Erk1/2 pathway, is the principal molecule that links MSP-activated RON signaling to complete EMT. Using MDCK cells expressing RON as a model, a spindle-shape based screen was conducted, which identifies RSK2 among various intracellular proteins as a potential signaling molecule responsible for MSP-induced EMT. MSP stimulation dissociated RSK2 with Erk1/2 and promoted RSK2 nuclear translocation. MSP strongly induced RSK2 phosphorylation in a dose-dependent manner. These effects relied on RON and Erk1/2 phosphorylation, which is significantly potentiated by transforming growth factor (TGF-β1, an EMT-inducing cytokine. Specific RSK inhibitor SL0101 completely prevented MSP-induced RSK phosphorylation, which results in inhibition of MSP-induced spindle-like morphology and suppression of cell migration associated with EMT. In HT-29 cancer cells that barely express RSK2, forced RSK2 expression results in EMT-like phenotype upon MSP stimulation. Moreover, specific siRNA-mediated silencing of RSK2 but not RSK1 in L3.6pl pancreatic cancer cells significantly inhibited MSP-induced EMT-like phenotype and cell migration. Conclusions MSP-induced RSK2 activation is a critical determinant linking RON signaling to cellular EMT program. Inhibition of RSK2 activity may provide a therapeutic opportunity for blocking RON-mediated cancer cell migration and subsequent invasion.

  14. Homophilic interactions mediated by receptor tyrosine phosphatases mu and kappa. A critical role for the novel extracellular MAM domain

    DEFF Research Database (Denmark)

    Zondag, G C; Koningstein, G M; Jiang, Y P

    1995-01-01

    and is found in diverse transmembrane proteins, is not known. We previously reported that both RPTP mu and RPTP kappa can mediate homophilic cell interactions when expressed in insect cells. Here we show that despite their striking structural similarity, RPTP mu and RPTP kappa fail to interact...... in a heterophilic manner. To examine the role of the MAM domain in homophilic binding, we expressed a mutant RPTP mu lacking the MAM domain in insect Sf9 cells. Truncated RPTP mu is properly expressed at the cell surface but fails to promote cell-cell adhesion. Homophilic cell adhesion is fully restored...... in a chimeric RPTP mu molecule containing the MAM domain of RPTP kappa. However, this chimeric RPTP mu does not interact with either RPTP mu or RPTP kappa. These results indicate that the MAM domain of RPTP mu and RPTP kappa is essential for homophilic cell-cell interaction and helps determine the specificity...

  15. The monoclonal antibody Zt/f2 targeting RON receptor tyrosine kinase as potential therapeutics against tumor growth-mediated by colon cancer cells

    Directory of Open Access Journals (Sweden)

    Zhang Rui-Wen

    2011-07-01

    Full Text Available Abstract Background Overexpression of the RON receptor tyrosine kinase contributes to epithelial cell transformation, malignant progression, and acquired drug resistance. RON also has been considered as a potential target for therapeutic intervention. This study determines biochemical features and inhibitory activity of a mouse monoclonal antibody (mAb Zt/f2 in experimental cancer therapy. Results Zt/f2 is a mouse IgG2a mAb that is highly specific and sensitive to human RON and its oncogenic variants such as RON160 (ED50 = 2.3 nmol/L. Receptor binding studies revealed that Zt/f2 interacts with an epitope(s located in a 49 amino acid sequence coded by exon 11 in the RON β-chain extracellular sequences. This sequence is critical in regulating RON maturation and phosphorylation. Zt/f2 did not compete with ligand macrophage-stimulating protein for binding to RON; however, its engagement effectively induced RON internalization, which diminishes RON expression and impairs downstream signaling activation. These biochemical features provide the cellular basis for the use of Zt/f2 to inhibit tumor growth in animal model. Repeated administration of Zt/f2 as a single agent into Balb/c mice results in partial inhibition of tumor growth caused by transformed NIH-3T3 cells expressing oncogenic RON160. Colon cancer HT-29 cell-mediated tumor growth in athymic nude mice also was attenuated following Zt/f2 treatment. In both cases, ~50% inhibition of tumor growth as measured by tumor volume was achieved. Moreover, Zt/f2 in combination with 5-fluorouracil showed an enhanced inhibition effect of ~80% on HT-29 cell-mediated tumor growth in vivo. Conclusions Zt/f2 is a potential therapeutic mAb capable of inhibiting RON-mediated oncogenesis by colon cancer cells in animal models. The inhibitory effect of Zt/f2 in vivo in combination with chemoagent 5-fluorouracil could represent a novel strategy for future colon cancer therapy.

  16. IL-1 receptor accessory protein-like 1 associated with mental retardation and autism mediates synapse formation by trans-synaptic interaction with protein tyrosine phosphatase δ.

    Science.gov (United States)

    Yoshida, Tomoyuki; Yasumura, Misato; Uemura, Takeshi; Lee, Sung-Jin; Ra, Moonjin; Taguchi, Ryo; Iwakura, Yoichiro; Mishina, Masayoshi

    2011-09-21

    Mental retardation (MR) and autism are highly heterogeneous neurodevelopmental disorders. IL-1-receptor accessory protein-like 1 (IL1RAPL1) is responsible for nonsyndromic MR and is associated with autism. Thus, the elucidation of the functional role of IL1RAPL1 will contribute to our understanding of the pathogenesis of these mental disorders. Here, we showed that knockdown of endogenous IL1RAPL1 in cultured cortical neurons suppressed the accumulation of punctate staining signals for active zone protein Bassoon and decreased the number of dendritic protrusions. Consistently, the expression of IL1RAPL1 in cultured neurons stimulated the accumulation of Bassoon and spinogenesis. The extracellular domain (ECD) of IL1RAPL1 was required and sufficient for the presynaptic differentiation-inducing activity, while both the ECD and cytoplasmic domain were essential for the spinogenic activity. Notably, the synaptogenic activity of IL1RAPL1 was specific for excitatory synapses. Furthermore, we identified presynaptic protein tyrosine phosphatase (PTP) δ as a major IL1RAPL1-ECD interacting protein by affinity chromatography. IL1RAPL1 interacted selectively with certain forms of PTPδ splice variants carrying mini-exon peptides in Ig-like domains. The synaptogenic activity of IL1RAPL1 was abolished in primary neurons from PTPδ knock-out mice. IL1RAPL1 showed robust synaptogenic activity in vivo when transfected into the cortical neurons of wild-type mice but not in PTPδ knock-out mice. These results suggest that IL1RAPL1 mediates synapse formation through trans-synaptic interaction with PTPδ. Our findings raise an intriguing possibility that the impairment of synapse formation may underlie certain forms of MR and autism as a common pathogenic pathway shared by these mental disorders.

  17. Protein tyrosine kinases p53/56lyn and p72syk in MHC class I-mediated signal transduction in B lymphoma cells

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Bregenholt, S; Skov, S

    1998-01-01

    Crosslinking of major histocompatibility complex class I (MHC-I) molecules on the surface of human B lymphoma cells was shown to induce protein tyrosine phosphorylation and mobilization of intracellular free calcium. Immunoprecipitations indicated that the protein tyrosine kinases p53/56lyn and p72......syk are among the tyrosine-phosphorylated proteins. The kinetics of phosphorylation of these kinases after MHC-I crosslinking differ from the kinetics observed after crosslinking of the B cell antigen receptor (BCR). Additional experiments were performed with chicken lyn- and syk-negative DT40 B cells...... and the results indicate that these two kinases have different substrate specificity and regulate intracellular free calcium differently in response to MHC-I crosslinking. In addition MHC-I crosslinking of a sIgM-negative DT40 chicken B cell variant results in less activity of tyrosine kinases and less...

  18. Intracellular signaling of the Ufo/Axl receptor tyrosine kinase is mediated mainly by a multi-substrate docking-site.

    Science.gov (United States)

    Braunger, J; Schleithoff, L; Schulz, A S; Kessler, H; Lammers, R; Ullrich, A; Bartram, C R; Janssen, J W

    1997-06-05

    Ufo/Axl belongs to a new family of receptor tyrosine kinases with an extracellular structure similar to that of neural cell adhesion molecules. In order to elucidate intracellular signaling, the cytoplasmic moiety of Ufo/Axl was used to screen an expression library according to the CORT (cloning of receptor targets) method. Three putative Ufo substrates were identified: phospholipase Cgamma1 (PLCgamma), as well as p85alpha and p85beta subunits of phosphatidylinositol 3'-kinase (PI3-kinase). Subsequently, chimeric EGFR/Ufo receptors consisting of the extracellular domains of the epidermal growth factor receptor (EGFR) and the transmembrane and intracellular moiety of Ufo were engineered. Using different far-Western blot analyses and coimmunoprecipitation assays, receptor binding of PLCgamma and p85 proteins as well as GRB2, c-src and lck was examined in vitro and in vivo. Competitive inhibition of substrate binding and mutagenesis experiments with EGFR/Ufo constructs revealed C-terminal tyrosine 821 (EILpYVNMDEG) as a docking site for multiple effectors, namely PLCgamma, p85 proteins, GRB2, c-src and lck. Tyrosine 779 (DGLpYALMSRC) demonstrated an additional, but lower binding affinity for the p85 proteins in vitro. In addition, binding of PLCgamma occurred through tyrosine 866 (AGRpYVLCPST). Moreover, our in vivo data indicate that further direct or indirect binding sites for PLCgamma, GRB2, c-src and lck on the human Ufo receptor may exist.

  19. Eps15R is a tyrosine kinase substrate with characteristics of a docking protein possibly involved in coated pits-mediated internalization

    DEFF Research Database (Denmark)

    Coda, L; Salcini, A E; Confalonieri, S

    1998-01-01

    , and 76 kDa were specifically recognized by anti-eps15R sera. The 125-kDa species is a bona fide product of the eps15R gene, whereas p108 and p76 are most likely products of alternative splicing events. Eps15R protein(s) are tyrosine-phosphorylated following epidermal growth factor receptor activation...

  20. Spleen tyrosine kinase mediates high glucose-induced transforming growth factor-{beta}1 up-regulation in proximal tubular epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Seok; Chang, Jai Won [Division of Nephrology, Department of Internal Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul (Korea, Republic of); Han, Nam Jeong [Department of Cell Biology, Asan Institute for Life Sciences, Seoul (Korea, Republic of); Lee, Sang Koo [Division of Nephrology, Department of Internal Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul (Korea, Republic of); Park, Su-Kil, E-mail: skpark@amc.seoul.kr [Division of Nephrology, Department of Internal Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul (Korea, Republic of)

    2012-09-10

    The role of spleen tyrosine kinase (Syk) in high glucose-induced intracellular signal transduction has yet to be elucidated. We investigated whether Syk is implicated in high glucose-induced transforming growth factor-{beta}1 (TGF-{beta}1) up-regulation in cultured human proximal tubular epithelial cells (HK-2 cell). High glucose increased TGF-{beta}1 gene expression through Syk, extracellular signal-regulated kinase (ERK), AP-1 and NF-{kappa}B. High glucose-induced AP-1 DNA binding activity was decreased by Syk inhibitors and U0126 (an ERK inhibitor). Syk inhibitors suppressed high glucose-induced ERK activation, whereas U0126 had no effect on Syk activation. High glucose-induced NF-{kappa}B DNA binding activity was also decreased by Syk inhibitors. High glucose increased nuclear translocation of p65 without serine phosphorylation of I{kappa}B{alpha} and without degradation of I{kappa}B{alpha}, but with an increase in tyrosine phosphorylation of I{kappa}B{alpha} that may account for the activation of NF-{kappa}B. Both Syk inhibitors and Syk-siRNA attenuated high glucose-induced I{kappa}B{alpha} tyrosine phosphorylation and p65 nuclear translocation. Depletion of p21-activated kinase 2 (Pak2) by transfection of Pak2-siRNA abolished high glucose-induced Syk activation. In summary, high glucose-induced TGF-{beta}1 gene transcription occurred through Pak2, Syk and subsequent ERK/AP-1 and NF-{kappa}B pathways. This suggests that Syk might be implicated in the diabetic kidney disease.

  1. Protein tyrosine kinases p53/56lyn and p72syk in MHC class I-mediated signal transduction in B lymphoma cells

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Bregenholt, S; Skov, S

    1998-01-01

    syk are among the tyrosine-phosphorylated proteins. The kinetics of phosphorylation of these kinases after MHC-I crosslinking differ from the kinetics observed after crosslinking of the B cell antigen receptor (BCR). Additional experiments were performed with chicken lyn- and syk-negative DT40 B cells...... mobilization of intracellular free calcium compared with MHC-I crosslinking of wild-type DT40 cells. Thus, expression of BCR at the cell surface is likely to be important for the signal cascade initiated by MHC-I crosslinking. Our data suggest that signal transduction initiated through ligation of the MHC...

  2. Roles of tyrosine-rich precursor glycoproteins and dityrosine- and 3,4-dihydroxyphenylalanine-mediated protein cross-linking in development of the oocyst wall in the coccidian parasite Eimeria maxima

    DEFF Research Database (Denmark)

    Belli, Sabina I; Wallach, Michael G; Luxford, Catherine

    2003-01-01

    infection by several organisms of medical and veterinary importance such as Eimeria, Plasmodium, Toxoplasma, Cyclospora, and Neospora could be developed. Here, we show that two tyrosine-rich precursor glycoproteins, gam56 and gam82, found in specialized organelles (wall-forming bodies) in the sexual stage......, together with the detection of a UV autofluorescence in intact oocysts, implicates dityrosine- and possibly DOPA-protein cross-links in oocyst wall hardening. In addition, the identification of peroxidase activity in the wall-forming bodies of macrogametes supports the hypothesis that dityrosine- and DOPA......-mediated cross-linking might be an enzyme-catalyzed event. As such, the mechanism of oocyst wall formation in Eimeria, is analogous to the underlying mechanisms involved in the stabilization of extracellular matrices in a number of organisms, widely distributed in nature, including insect resilin, nematode...

  3. Loss of Function Studies in Mice and Genetic Association Link Receptor Protein Tyrosine Phosphatase a to Schizophrenia

    DEFF Research Database (Denmark)

    Takahashi, Nagahide; Nielsen, Karin Sandager; Aleksic, Branko

    2011-01-01

    Solid evidence links schizophrenia (SZ) susceptibility to neurodevelopmental processes involving tyrosine phosphorylation-mediated signaling. Mouse studies implicate the Ptpra gene, encoding protein tyrosine phosphatase RPTPa, in the control of radial neuronal migration, cortical cytoarchitecture...

  4. Exercise-Mediated Increase in Nigral Tyrosine Hydroxylase Is Accompanied by Increased Nigral GFR-α1 and EAAC1 Expression in Aging Rats.

    Science.gov (United States)

    Arnold, Jennifer C; Salvatore, Michael F

    2016-02-17

    Exercise may alleviate locomotor impairment in Parkinson's disease (PD) or aging. Identifying molecular responses immediately engaged by exercise in the nigrostriatal pathway and allied tissue may reveal critical targets associated with its long-term benefits. In aging, there is loss of tyrosine hydroxylase (TH) and the glial cell line-derived neurotrophic factor (GDNF) receptor, GFR-α1, in the substantia nigra (SN). Exercise can increase GDNF expression, but its effect on GFR-α1 expression is unknown. Infusion of GDNF into striatum or GFR-α1 in SN, respectively, can increase locomotor activity and TH function in SN but not striatum in aged rats. GDNF may also increase glutamate transporter expression, which attenuates TH loss in PD models. We utilized a footshock-free treadmill exercise regimen to determine the immediate impact of short-term exercise on GFR-α1 expression, dopamine regulation, glutamate transporter expression, and glutamate uptake in 18 month old male Brown-Norway/Fischer 344 F1 hybrid rats. GFR-α1 and TH expression significantly increased in SN but not striatum. This exercise regimen did not affect glutamate uptake or glutamate transporter expression in striatum. However, EAAC1 expression increased in SN. These results indicate that nigral GFR-α1 and EAAC1 expression increased in conjunction with increased nigral TH expression following short-term exercise.

  5. A Novel Occulta-Type Spina Bifida Mediated by Murine Double Heterozygotes EphA2 and EphA4 Receptor Tyrosine Kinases

    Directory of Open Access Journals (Sweden)

    Nor Linda Abdullah

    2017-12-01

    Full Text Available Members of the Eph receptor tyrosine kinase have previously been implicated in cranial neural tube development. Failure of neural tube closure leads to the devastating conditions known as anencephaly and spina bifida. EphA2 and EphA4 are expressed at the tips of the closing spinal neural folds prior and during neural tube closure. We investigated the possible role of murine EphA2 and EphA4 during the last step of primary neural tube closure, which is adhesion and fusion. The individual mouse knockouts of EphA2 and EphA4 per se do not exhibit neural tube defects (NTDs. The embryos generated by the crossing of double heterozygotes Epha2tm1Jrui/+Epha4rb-2J/+ displayed NTDs with a wide degree of severity including close exencephaly and close spina bifida (spina bifida occulta. Interestingly, mutants displaying NTDs had skin covering the underlying lesion. The tissue sections revealed the elevated neural folds had not adhered and fused. The phenotypes seen in Epha2tm1Jrui/+Epha4rb-2J/+ double heterozygous embryos suggest both genes play a compensatory role with each other in the adhesion and fusion of the neural tube. In this study, there exists a >50% penetrance of NTDs in the mouse mutants, which genetically have a single allele each of EphA2 and EphA4 absent.

  6. A Novel Occulta-Type Spina Bifida Mediated by Murine Double HeterozygotesEphA2andEphA4Receptor Tyrosine Kinases.

    Science.gov (United States)

    Abdullah, Nor Linda; Mohd-Zin, Siti W; Ahmad-Annuar, Azlina; Abdul-Aziz, Noraishah M

    2017-01-01

    Members of the Eph receptor tyrosine kinase have previously been implicated in cranial neural tube development. Failure of neural tube closure leads to the devastating conditions known as anencephaly and spina bifida. EphA2 and EphA4 are expressed at the tips of the closing spinal neural folds prior and during neural tube closure. We investigated the possible role of murine EphA2 and EphA4 during the last step of primary neural tube closure, which is adhesion and fusion. The individual mouse knockouts of EphA2 and EphA4 per se do not exhibit neural tube defects (NTDs). The embryos generated by the crossing of double heterozygotes Epha2 tm1Jrui/+ Epha4 rb-2J/+ displayed NTDs with a wide degree of severity including close exencephaly and close spina bifida (spina bifida occulta). Interestingly, mutants displaying NTDs had skin covering the underlying lesion. The tissue sections revealed the elevated neural folds had not adhered and fused. The phenotypes seen in Epha2 tm1Jrui/+ Epha4 rb-2J/+ double heterozygous embryos suggest both genes play a compensatory role with each other in the adhesion and fusion of the neural tube. In this study, there exists a >50% penetrance of NTDs in the mouse mutants, which genetically have a single allele each of EphA2 and EphA4 absent.

  7. Polymeric immunoglobulin receptor-mediated invasion of Streptococcus pneumoniae into host cells requires a coordinate signaling of SRC family of protein-tyrosine kinases, ERK, and c-Jun N-terminal kinase.

    Science.gov (United States)

    Agarwal, Vaibhav; Asmat, Tauseef M; Dierdorf, Nina I; Hauck, Christof R; Hammerschmidt, Sven

    2010-11-12

    Streptococcus pneumoniae are commensals of the human nasopharynx with the capacity to invade mucosal respiratory cells. PspC, a pneumococcal surface protein, interacts with the human polymeric immunoglobulin receptor (pIgR) to promote bacterial adherence to and invasion into epithelial cells. Internalization of pneumococci requires the coordinated action of actin cytoskeleton rearrangements and the retrograde machinery of pIgR. Here, we demonstrate the involvement of Src protein-tyrosine kinases (PTKs), focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) but not p38 mitogen-activated protein kinases (MAPK) in pneumococcal invasion via pIgR. Pharmacological inhibitors of PTKs and MAPKs and genetic interference with Src PTK and FAK functions caused a significant reduction of pIgR-mediated pneumococcal invasion but did not influence bacterial adhesion to host cells. Furthermore, pneumococcal ingestion by host cells induces activation of ERK1/2 and JNK. In agreement with activated JNK, its target molecule and DNA-binding protein c-Jun was phosphorylated. We also show that functionally active Src PTK is essential for activation of ERK1/2 upon pneumococcal infections. In conclusion, these data illustrate the importance of a coordinated signaling between Src PTKs, ERK1/2, and JNK during PspC-pIgR-mediated uptake of pneumococci by host epithelial cells.

  8. The pan-ErbB tyrosine kinase inhibitor canertinib induces caspase-mediated cell death in human T-cell leukemia (Jurkat) cells

    Energy Technology Data Exchange (ETDEWEB)

    Trinks, Cecilia, E-mail: Cecilia.trinks@liu.se [Division of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoeping University, Linkoeping (Sweden); Severinsson, Emelie A., E-mail: Emelie.severinsson@liu.se [Division of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoeping University, Linkoeping (Sweden); Holmlund, Birgitta, E-mail: Birgitta.holmlund@lio.se [Department of Oncology, County Council of Ostergoetland, Linkoeping (Sweden); Green, Anna, E-mail: Anna.green@liu.se [Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoeping University, Linkoeping (Sweden); Green, Henrik, E-mail: Henrik.green@liu.se [Clinical Pharmacology, Division of Drug Research, Department of Medical and Health Sciences, Faculty of Health Sciences, Linkoeping University, Linkoeping (Sweden); Joensson, Jan-Ingvar, E-mail: Jan-ingvar.jonsson@liu.se [Experimental Hematology Unit, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoeping University, Linkoeping (Sweden); Hallbeck, Anna-Lotta, E-mail: Anna-Lotta.Hallbeck@lio.se [Division of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoeping University, Linkoeping (Sweden); Department of Oncology, County Council of Ostergoetland, Linkoeping (Sweden); Walz, Thomas M., E-mail: Thomas.Walz@lio.se [Division of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoeping University, Linkoeping (Sweden); Department of Oncology, County Council of Ostergoetland, Linkoeping (Sweden)

    2011-07-08

    Highlights: {yields} Canertinib induces caspase-mediated apoptosis in T-cell leukemia cells in vitro. {yields} Canertinib mediates activation of the intrinsic apoptotic pathway. {yields} Canertinib induces apoptosis in an ErbB receptor independent manner. {yields} Lymphocyte specific proteins as well as survival kinases are inhibited. {yields} Canertinib may act as a multi-kinase inhibiting drug in human T-cell malignancies. -- Abstract: Canertinib is a novel ErbB-receptor inhibitor currently in clinical development for the treatment of solid tumors overexpressing ErbB-receptors. We have recently demonstrated that canertinib displays anti-proliferative and pro-apoptotic effects in human myeloid leukemia cells devoid of ErbB-receptors. The mechanism mediating these effects are however unknown. In this study, we show that canertinib is able to act as a multi-kinase inhibitor by inhibition of several intracellular kinases involved in T-cell signaling such as Akt, Erk1/2 and Zap-70, and reduced Lck protein expression in the human T-cell leukemia cell line Jurkat. Treatment with canertinib at a concentration of 2 {mu}M caused accumulation of Jurkat cells in the G{sub 1} cell cycle phase and increased doses induced apoptosis in a time-dependent manner. Apoptotic signs of treated cells were detected by Annexin V staining and cleavage of PARP, caspase-3, -8, -9, -10 and Bid. A subset of the pro-apoptotic signals mediated by canertinib could be significantly reduced by specific caspase inhibitors. Taken together, these results demonstrate the dual ability of canertinib to downregulate important signaling pathways and to activate caspase-mediated intrinsic apoptosis pathway in human T-cell leukemia cells.

  9. Exploring oxidative modifications of tyrosine

    DEFF Research Database (Denmark)

    Houée-Lévin, C; Bobrowski, K; Horakova, L

    2015-01-01

    residues are oxidised in vivo with impact on cellular homeostasis and redox signalling pathways. A notable example is tyrosine, which can undergo a number of oxidative post-translational modifications to form 3-hydroxy-tyrosine, tyrosine crosslinks, 3-nitrotyrosine and halogenated tyrosine, with different...... effects on cellular functions. Tyrosine oxidation has been studied extensively in vitro, and this has generated detailed information about the molecular mechanisms that may occur in vivo. An important aspect of studying tyrosine oxidation both in vitro and in biological systems is the ability to monitor...... processes are important in vivo and can contribute to cellular pathology....

  10. Tyrosine supplementation for phenylketonuria.

    Science.gov (United States)

    Webster, Diana; Wildgoose, Joanne

    2013-06-05

    Phenylketonuria is an inherited disease for which the main treatment is the dietary restriction of the amino acid phenylalanine. The diet has to be initiated in the neonatal period to prevent or reduce mental handicap. However, the diet is very restrictive and unpalatable and can be difficult to follow. A deficiency of the amino acid tyrosine has been suggested as a cause of some of the neuropsychological problems exhibited in phenylketonuria. Therefore, this review aims to assess the efficacy of tyrosine supplementation for phenylketonuria. To assess the effects of tyrosine supplementation alongside or instead of a phenylalanine-restricted diet for people with phenylketonuria, who commenced on diet at diagnosis and either continued on the diet or relaxed the diet later in life. To assess the evidence that tyrosine supplementation alongside, or instead of a phenylalanine-restricted diet improves intelligence, neuropsychological performance, growth and nutritional status, mortality rate and quality of life. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Trials Register which is comprised of references identified from comprehensive electronic database searches, handsearches of relevant journals and abstract books of conference proceedings. Additional studies were identified from handsearches of the Journal of Inherited Metabolic Disease (from inception in 1978 to 1998). The manufacturers of prescribable dietary products used in the treatment of phenylketonuria were also contacted for further references.Date of the most recent search of the Group's Inborn Errors of Metabolism Trials Register: 28 June 2012. All randomised or quasi-randomised trials investigating the use of tyrosine supplementation versus placebo in people with phenylketonuria in addition to, or instead of, a phenylalanine-restricted diet. People treated for maternal phenylketonuria were excluded. Two authors independently assessed the trial eligibility, methodological quality

  11. Structure-based network analysis of activation mechanisms in the ErbB family of receptor tyrosine kinases: the regulatory spine residues are global mediators of structural stability and allosteric interactions.

    Directory of Open Access Journals (Sweden)

    Kevin A James

    Full Text Available The ErbB protein tyrosine kinases are among the most important cell signaling families and mutation-induced modulation of their activity is associated with diverse functions in biological networks and human disease. We have combined molecular dynamics simulations of the ErbB kinases with the protein structure network modeling to characterize the reorganization of the residue interaction networks during conformational equilibrium changes in the normal and oncogenic forms. Structural stability and network analyses have identified local communities integrated around high centrality sites that correspond to the regulatory spine residues. This analysis has provided a quantitative insight to the mechanism of mutation-induced "superacceptor" activity in oncogenic EGFR dimers. We have found that kinase activation may be determined by allosteric interactions between modules of structurally stable residues that synchronize the dynamics in the nucleotide binding site and the αC-helix with the collective motions of the integrating αF-helix and the substrate binding site. The results of this study have pointed to a central role of the conserved His-Arg-Asp (HRD motif in the catalytic loop and the Asp-Phe-Gly (DFG motif as key mediators of structural stability and allosteric communications in the ErbB kinases. We have determined that residues that are indispensable for kinase regulation and catalysis often corresponded to the high centrality nodes within the protein structure network and could be distinguished by their unique network signatures. The optimal communication pathways are also controlled by these nodes and may ensure efficient allosteric signaling in the functional kinase state. Structure-based network analysis has quantified subtle effects of ATP binding on conformational dynamics and stability of the EGFR structures. Consistent with the NMR studies, we have found that nucleotide-induced modulation of the residue interaction networks is not

  12. Role of the PKCα-c-Src tyrosine kinase pathway in the mediation of p120-catenin degradation in ventilator-induced lung injury.

    Science.gov (United States)

    Zhao, Tao; Zhao, Hongwei; Li, Gang; Zheng, Shengfa; Liu, Mengjie; Gu, Changping; Wang, Yuelan

    2016-11-01

    Ventilator-induced lung injury (VILI) is commonly associated with respiratory barrier dysfunction; however, the mechanisms have not been fully elucidated. This study aimed to determine the order and components of the signalling pathway that mediates the degradation of adherin junction of p120-catenin in VILI. For the in vivo study, C57BL/6 mice were pre-treated with inhibitors for 60 min prior to 4 h of mechanical ventilation. For the in vitro study, mouse lung epithelial 12 (MLE-12) cells were pre-treated with inhibitors for 60 min or small interfering RNA (siRNA) for 48 h prior to cyclic stretch at 20% for 4 h. The protein levels of protein kinase Cα (PKCα), activated c-Src and p120-catenin were determined via western blot analysis. Lung injury was determined via HE staining, immunofluorescence, wet/dry ratio and lung injury scores. High tidal volume mechanical ventilation and 20% cyclic stretch resulted in the degradation of p120-catenin. Inhibitors of PKCα blocked c-Src kinase activation and p120-catenin degradation in VILI. Inhibitors of c-Src kinase or PP2 or siRNA blocked p120-catenin degradation but not PKCα activation. The current findings demonstrates that PKCα and c-Src kinase participate in VILI. PKCα activation phosphorylates c-Src kinase and further decreases p120-catenin in VILI. © 2016 Asian Pacific Society of Respirology.

  13. D-tyrosine negatively regulates melanin synthesis by competitively inhibiting tyrosinase activity.

    Science.gov (United States)

    Park, Jisu; Jung, Hyejung; Kim, Kyuri; Lim, Kyung-Min; Kim, Ji-Young; Jho, Eek-Hoon; Oh, Eok-Soo

    2017-11-09

    Although L-tyrosine is well known for its melanogenic effect, the contribution of D-tyrosine to melanin synthesis was previously unexplored. Here, we reveal that, unlike L-tyrosine, D-tyrosine dose-dependently reduced the melanin contents of human MNT-1 melanoma cells and primary human melanocytes. In addition, 500 μM of D-tyrosine completely inhibited 10 μM L-tyrosine-induced melanogenesis, and both in vitro assays and L-DOPA staining MNT-1 cells showed that tyrosinase activity is reduced by D-tyrosine treatment. Thus, D-tyrosine appears to inhibit L-tyrosine-mediated melanogenesis by competitively inhibiting tyrosinase activity. Furthermore, we found that D-tyrosine inhibited melanogenesis induced by α-MSH treatment or UV irradiation, which are the most common environmental factors responsible for melanin synthesis. Finally, we confirmed that D-tyrosine reduced melanin synthesis in the epidermal basal layer of a 3D human skin model. Taken together, these data suggest that D-tyrosine negatively regulates melanin synthesis by inhibiting tyrosinase activity in melanocyte-derived cells. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Nanoparticle Mediated Drug Delivery of Rolipram to Tyrosine Kinase B Positive Cells in the Inner Ear with Targeting Peptides and Agonistic Antibodies

    Directory of Open Access Journals (Sweden)

    Rudolf eGlueckert

    2015-05-01

    Full Text Available AimSystemic pharmacotherapies have limitation due to blood-labyrinth barrier, so local delivery via the round window membrane opens a path for effective treatment. Multifunctional nanoparticle (NP mediated cell specific drug delivery may enhance efficacy and reduce side effects. Different NPs with ligands to target TrkB receptor were tested. Distribution, uptake mechanisms, trafficking, and bioefficacy of drug release of rolipram loaded NPs were evaluated.Methods We tested lipid based nanocapsules (LNCs, Quantum Dot, silica NPs with surface modification by peptides mimicking TrkB or TrkB activating antibodies. Bioefficacy of drug release was tested with rolipram loaded LNCs to prevent cisplatin induced apoptosis. We established different cell culture models with SH-SY-5Y and inner ear derived cell lines and used neonatal and adult mouse explants. Uptake and trafficking was evaluated with FACS and confocal as well as transmission electron microscopy. ResultsPlain NPs show some selectivity in uptake related to the in-vitro system properties, carrier material and NP size. Some peptide ligands provide enhanced targeted uptake to neuronal cells but failed to show this in cell cultures. Agonistic antibodies linked to silica NPs showed TrkB activation and enhanced binding to inner ear derived cells. Rolipram loaded LNCs proved as effective carriers to prevent cisplatin induced apoptosis.DiscussionMost NPs with targeting ligands showed limited effects to enhance uptake. NP aggregation and unspecific binding may change uptake mechanisms and impair endocytosis by an overload of NPs. This may affect survival signaling. NPs with antibodies activate survival signaling and show effective binding to TrkB positive cells but needs further optimization for specific internalization. Bioefficiacy of rolipram release confirms LNCs as encouraging vectors for drug delivery of lipophilic agents to the inner ear with ideal release characteristics independent of

  15. Tyrosine Modifications in Aging

    OpenAIRE

    Feeney, Maria B.; Schöneich, Christian

    2012-01-01

    Significance: The understanding of physiological and pathological processes involving protein oxidation, particularly under conditions of aging and oxidative stress, can be aided by proteomic identification of proteins that accumulate oxidative post-translational modifications only if these detected modifications are connected to functional consequences. The modification of tyrosine (Tyr) residues can elicit significant changes in protein structure and function, which, in some cases, may cont...

  16. [Tyrosine hydroxylase of the blood leukocytes].

    Science.gov (United States)

    Mineeva, M F

    1987-07-01

    Tyrosine hydroxylase activity has been established in blood plasma leucocytes of rat, cat and man. Tyrosine precursors and some nuclear erythroid cells. GFU-GM did hydroxylase activity in leucocytes shows the Km for tyrosine inhibited by high concentrations of L6 tyrosine (substrate inhibition), alpha-methyl-para-tyrosine dopamine. The kinetic properties of leucocyte tyrosine hydroxylase are qualitatively similar to the properties of brain tyrosine hydroxylase.

  17. Outer membrane protein A (OmpA of Shigella flexneri 2a induces TLR2-mediated activation of B cells: involvement of protein tyrosine kinase, ERK and NF-κB.

    Directory of Open Access Journals (Sweden)

    Rajsekhar Bhowmick

    Full Text Available B cells are critically important in combating bacterial infections and their differentiation into plasma cells and memory cells aids bacterial clearance and long-lasting immunity conferred by essentially all vaccines. Outer membrane protein A (OmpA of Shigella flexneri 2a has been demonstrated to induce the production of IgG and IgA in vivo following immunization of mice through intranasal route, but the direct involvement of B cells in OmpA-mediated immune regulation was not determined. Consequently, we investigated whether OmpA can modulate B cell functions and identified the molecular events involved in OmpA-induced B cell immune response in vitro. We show that OmpA of S. flexneri 2a activates B cells to produce protective cytokines, IL-6 and IL-10 as well as facilitates their differentiation into antibody secreting cells (ASCs. The immunostimulatory properties of OmpA are attributed to the increased surface expression of MHCII and CD86 on B cells. We also report here that B cell activation by OmpA is mediated strictly through recognition by TLR2, resulting in initiation of cascades of signal transduction events, involving increased phosphorylation of protein tyrosine kinases (PTKs, ERK and IκBα, leading to nuclear translocation of NF-κB. Importantly, a TLR2 antibody diminishes OmpA-induced upregulation of MHCII and CD86 on B cell surface as well as significantly inhibits B cell differentiation and cytokine secretion. Furthermore, we illustrate that B cell differentiation into ASCs and induction of cytokine secretion by OmpA are dependent on PTKs activity. Moreover, we identify that OmpA-induced B cell differentiation is entirely dependent on ERK pathway, whereas both NF-κB and ERK are essential for cytokine secretion by B cells. Overall, our data demonstrate that OmpA of S. flexneri 2a amplifies TLR signaling in B cells and triggers B cell immune response, which is critical for the development of an effective adaptive immunity to an

  18. Short-term alpha- or gamma-delta-enriched tocopherol oil supplementation differentially affects the expression of proinflammatory mediators: selective impacts on characteristics of protein tyrosine nitration in vivo

    Directory of Open Access Journals (Sweden)

    Ted H. Elsasser

    2013-10-01

    Full Text Available While vitamin E has been used for decades in cattle diets, the principle form used traditionally is the synthetic α-isoform acetate or succinate and largely no data exist on the biological partitioning or functionality of the major naturally occurring γ- and δ-isoforms in cattle. Using tyrosine 3’-nitrated protein (pNT as a biomarker of nitrosative cell stress, we sought to evaluate the effectiveness of short-term feeding supplementation of high content natural α-tocopherol (α-T, 96% α-isomer compared to high content γ- and δ-enriched low α-content mixed tocopherol oils (γ-T, ~70% γ-, 20% δ-, <5% α-isoform to mitigate systemic and hepatic aspects of the proinflammatory response to endotoxin (LPS. Calves fed diets supplemented with α-T, γ-T for five days or no tocopherol supplement (T0E were challenged with a low-level of LPS (0.25 μg/kg, iv, E. coli 055:B5 sufficient to effect a liver nitration response. As fed, α-T or γ-T increased plasma and liver content of the respective tocopherols reflecting their relative abundance in the respective diets. Plasma or tissue mediators and biomarkers of the proinflammatory response [plasma concentrations of tumor necrosis factor-α (TNF-α, P<0.001, nitrate+nitrite (NOx, P<0.01, and serum amyloid A (SAA, P<0.001], and general liver content of pNT (P<0.005 increased after LPS. LPS-mediated increases in TNF-α were not dif- ferent between diet treatments; both plasma NOx (P<0.05 and generalized liver pNT (P<0.03 responses were attenuated significantly in α-T and γ-T versus T0E calves. Plasma SAA was significantly decreased in γ-T calves at 24 h post-LPS relative to responses in α-T or T0E calves. The nitration of the mitochondrial proteins 24 h post-LPS was not only attenuated in α-T and γ-T vs T0E, but also the mitigating effect of γ-T on these specific nitration events was greater than that of α-T (P<0.01. Results are consistent with the concept that short-term α-T or

  19. Tyrosine 769 of the keratinocyte growth factor receptor is required for receptor signaling but not endocytosis

    International Nuclear Information System (INIS)

    Ceridono, Mara; Belleudi, Francesca; Ceccarelli, Simona; Torrisi, Maria Rosaria

    2005-01-01

    Keratinocyte growth factor receptor (KGFR) is a receptor tyrosine kinase expressed on epithelial cells which belongs to the family of fibroblast growth factor receptors (FGFRs). Following ligand binding, KGFR is rapidly autophosphorylated on specific tyrosine residues in the intracellular domain, recruits substrate proteins, and is rapidly internalized by clathrin-mediated endocytosis. The role of different autophosphorylation sites in FGFRs, and in particular the role of the tyrosine 766 in FGFR1, first identified as PLCγ binding site, has been extensively studied. We analyzed here the possible role of the tyrosine 769 in KGFR, corresponding to tyrosine 766 in FGFR1, in the regulation of KGFR signal transduction and MAPK activation as well as in the control of the endocytic process of KGFR. A mutant KGFR in which tyrosine 769 was substituted by phenylalanine was generated and transfected in NIH3T3 and HeLa cells. Our results indicate that tyrosine 769 is required for the binding to KGFR and tyrosine phosphorylation of PLCγ as well as for the full activation of MAPKs and for cell proliferation through the regulation of FRS2 tyrosine phosphorylation, suggesting that this residue represents a key regulator of KGFR signal transduction. Our data also show that tyrosine 769 is not involved in the regulation of the endocytic process of KGFR

  20. Gi-mediated activation of the Ras/MAP kinase pathway involves a 100 kDa tyrosine-phosphorylated Grb2 SH3 binding protein, but not Src nor Shc

    NARCIS (Netherlands)

    Kranenburg, O.; Verlaan, I.; Hordijk, P. L.; Moolenaar, W. H.

    1997-01-01

    Mitogenic G protein-coupled receptors, such as those for lysophosphatidic acid (LPA) and thrombin, activate the Ras/MAP kinase pathway via pertussis toxin (PTX)-sensitive Gi, tyrosine kinase activity and recruitment of Grb2, which targets guanine nucleotide exchange activity to Ras. Little is known

  1. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration

    Directory of Open Access Journals (Sweden)

    Silvina Bartesaghi

    2018-04-01

    Full Text Available In this review we provide an analysis of the biochemistry of peroxynitrite and tyrosine nitration. Peroxynitrite is the product of the diffusion-controlled reaction between superoxide (O2•- and nitric oxide (•NO. This process is in competition with the enzymatic dismutation of O2•- and the diffusion of •NO across cells and tissues and its reaction with molecular targets (e.g. guanylate cyclase. Understanding the kinetics and compartmentalization of the O2•- / •NO interplay is critical to rationalize the shift of •NO from a physiological mediator to a cytotoxic intermediate. Once formed, peroxynitrite (ONOO- and ONOOH; pKa = 6,8 behaves as a strong one and two-electron oxidant towards a series of biomolecules including transition metal centers and thiols. In addition, peroxynitrite anion can secondarily evolve to secondary radicals either via its fast reaction with CO2 or through proton-catalyzed homolysis. Thus, peroxynitrite can participate in direct (bimolecular and indirect (through secondary radical intermediates oxidation reactions; through these processes peroxynitrite can participate as cytotoxic effector molecule against invading pathogens and/or as an endogenous pathogenic mediator. Peroxynitrite can cause protein tyrosine nitration in vitro and in vivo. Indeed, tyrosine nitration is a hallmark of the reactions of •NO-derived oxidants in cells and tissues and serves as a biomarker of oxidative damage. Protein tyrosine nitration can mediate changes in protein structure and function that affect cell homeostasis. Tyrosine nitration in biological systems is a free radical process that can be promoted either by peroxynitrite-derived radicals or by other related •NO-dependent oxidative processes. Recently, mechanisms responsible of tyrosine nitration in hydrophobic biostructures such as membranes and lipoproteins have been assessed and involve the parallel occurrence and connection with lipid

  2. Tyrosine kinases in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Kobayashi Akiko

    2011-08-01

    Full Text Available Abstract Rheumatoid arthritis (RA is an inflammatory, polyarticular joint disease. A number of cellular responses are involved in the pathogenesis of rheumatoid arthritis, including activation of inflammatory cells and cytokine expression. The cellular responses involved in each of these processes depends on the specific signaling pathways that are activated; many of which include protein tyrosine kinases. These pathways include the mitogen-activated protein kinase pathway, Janus kinases/signal transducers and activators transcription pathway, spleen tyrosine kinase signaling, and the nuclear factor κ-light-chain-enhancer of activated B cells pathway. Many drugs are in development to target tyrosine kinases for the treatment of RA. Based on the number of recently published studies, this manuscript reviews the role of tyrosine kinases in the pathogenesis of RA and the potential role of kinase inhibitors as new therapeutic strategies of RA.

  3. Tyrosine modifications in aging.

    Science.gov (United States)

    Feeney, Maria B; Schöneich, Christian

    2012-12-01

    The understanding of physiological and pathological processes involving protein oxidation, particularly under conditions of aging and oxidative stress, can be aided by proteomic identification of proteins that accumulate oxidative post-translational modifications only if these detected modifications are connected to functional consequences. The modification of tyrosine (Tyr) residues can elicit significant changes in protein structure and function, which, in some cases, may contribute to biological aging and age-related pathologies, such as atherosclerosis, neurodegeneration, and cataracts. Studies characterizing proteins in which Tyr has been modified to 3-nitrotyrosine, 3,4-dihydroxyphenylalanine, 3,3'-dityrosine and other cross-links, or 3-chlorotyrosine are reviewed, with an emphasis on structural and functional consequences. Distinguishing between inconsequential modifications and functionally significant ones requires careful biochemical and biophysical analysis of target proteins, as well as innovative methods for isolating the effects of the multiple modifications that often occur under oxidizing conditions. The labor-intensive task of isolating and characterizing individual modified proteins must continue, especially given the expanding list of known modifications. Emerging approaches, such as genetic and metabolic incorporation of unnatural amino acids, hold promise for additional focused studies of this kind.

  4. Csk-Induced Phosphorylation of Src at Tyrosine 530 is Essential for H2O2-Mediated Suppression of ERK1/2 in Human Umbilical Vein Endothelial Cells

    Science.gov (United States)

    Jeon, Bo Kyung; Kwon, Kihwan; Kang, Jihee Lee; Choi, Youn-Hee

    2015-01-01

    Mitogen-activated protein kinases (MAPKs) are key signal transducers involved in various cellular events such as growth, proliferation, and differentiation. Previous studies have reported that H2O2 leads to phosphorylation of extracellular signal-regulated kinase (ERK), one of the MAPKs in endothelial cells. The current study shows that H2O2 suppressed ERK1/2 activation and phosphorylation at specific concentrations and times in human umbilical vein endothelial cells but not in immortalized mouse aortic endothelial cells or human astrocytoma cell line CRT-MG. Phosphorylation of other MAPK family members (i.e., p38 and JNK) was not suppressed by H2O2. The decrease in ERK1/2 phosphorylation induced by H2O2 was inversely correlated with the level of phosphorylation of Src tyrosine 530. Using siRNA, it was found that H2O2-induced suppression of ERK1/2 was dependent on Csk. Physiological laminar flow abrogated, but oscillatory flow did not affect, the H2O2-induced suppression of ERK1/2 phosphorylation. In conclusion, H2O2-induced Csk translocation to the plasma membrane leads to phosphorylation of Src at the tyrosine 530 residue resulting in a reduction of ERK1/2 phosphorylation. Physiological laminar flow abrogates this effect of H2O2 by inducing phosphorylation of Src tyrosine 419. These findings broaden our understanding of signal transduction mechanisms in the endothelial cells against oxidative stress. PMID:26234813

  5. Mediatization

    DEFF Research Database (Denmark)

    Hjarvard, Stig

    2017-01-01

    Mediatization research shares media effects studies' ambition of answering the difficult questions with regard to whether and how media matter and influence contemporary culture and society. The two approaches nevertheless differ fundamentally in that mediatization research seeks answers...... research is concerned with long-term structural changes involving media, culture, and society, i.e. the influences of the media are understood in relation to how media are implicated in social and cultural changes and how these processes come to create new conditions for human communication and interaction....... From the perspective of mediatization research, the most important effect of the media stems from their embeddedness in culture and society....

  6. ROR-Family Receptor Tyrosine Kinases.

    Science.gov (United States)

    Stricker, Sigmar; Rauschenberger, Verena; Schambony, Alexandra

    2017-01-01

    ROR-family receptor tyrosine kinases form a small subfamily of receptor tyrosine kinases (RTKs), characterized by a conserved, unique domain architecture. ROR RTKs are evolutionary conserved throughout the animal kingdom and act as alternative receptors and coreceptors of WNT ligands. The intracellular signaling cascades activated downstream of ROR receptors are diverse, including but not limited to ROR-Frizzled-mediated activation of planar cell polarity signaling, RTK-like signaling, and antagonistic regulation of WNT/β-Catenin signaling. In line with their diverse repertoire of signaling functions, ROR receptors are involved in the regulation of multiple processes in embryonic development such as development of the axial and paraxial mesoderm, the nervous system and the neural crest, the axial and appendicular skeleton, and the kidney. In humans, mutations in the ROR2 gene cause two distinct developmental syndromes, recessive Robinow syndrome (RRS; MIM 268310) and dominant brachydactyly type B1 (BDB1; MIM 113000). In Robinow syndrome patients and animal models, the development of multiple organs is affected, whereas BDB1 results only in shortening of the distal phalanges of fingers and toes, reflecting the diversity of functions and signaling activities of ROR-family RTKs. In this chapter, we give an overview on ROR receptor structure and function. We discuss their signaling functions and role in vertebrate embryonic development with a focus on those developmental processes that are affected by mutations in the ROR2 gene in human patients. © 2017 Elsevier Inc. All rights reserved.

  7. Roles of tyrosine-rich precursor glycoproteins and dityrosine- and 3,4-dihydroxyphenylalanine-mediated protein cross-linking in development of the oocyst wall in the coccidian parasite Eimeria maxima

    DEFF Research Database (Denmark)

    Belli, Sabina I; Wallach, Michael G; Luxford, Catherine

    2003-01-01

    The oocyst wall of apicomplexan parasites protects them from the harsh external environment, preserving their survival prior to transmission to the next host. If oocyst wall formation could be disrupted, then logically, the cycle of disease transmission could be stopped, and strategies to control...... infection by several organisms of medical and veterinary importance such as Eimeria, Plasmodium, Toxoplasma, Cyclospora, and Neospora could be developed. Here, we show that two tyrosine-rich precursor glycoproteins, gam56 and gam82, found in specialized organelles (wall-forming bodies) in the sexual stage...

  8. Treatment of Breast Cancer Cells by IGF1R Tyrosine Kinase Inhibitor Combined with Conventional Systemic Drugs

    NARCIS (Netherlands)

    Hartog, H.; Van der Graaf, W. T. A.; Boezen, H. M.; Wesseling, J.

    Aim: Insulin-like growth factor-1 receptor (IGF1R) is a tyrosine kinase receptor mediating cell growth and survival of cancer cells. We studied responses to IGF1R tyrosine kinase inhibitor NVP-AEW541 combined with conventional systemic drugs in breast cancer cell lines of different clinical subtype.

  9. Treatment of breast cancer cells by IGF1R tyrosine kinase inhibitor combined with conventional systemic drugs.

    NARCIS (Netherlands)

    Hartog, H.; Graaf, W.T.A. van der; Boezen, H.M.; Wesseling, J.

    2012-01-01

    AIM: Insulin-like growth factor-1 receptor (IGF1R) is a tyrosine kinase receptor mediating cell growth and survival of cancer cells. We studied responses to IGF1R tyrosine kinase inhibitor NVP-AEW541 combined with conventional systemic drugs in breast cancer cell lines of different clinical subtype.

  10. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    phosphorylation. Protein-tyrosine phosphorylation in bacteria is particular with respect to very low occupancy of phosphorylation sites in vivo; this has represented a major challenge for detection techniques. Only the recent breakthroughs in gel-free high resolution mass spectrometry allowed the systematic...... detection of phosphorylated tyrosines by phosphoprotomics studies in bacteria. Other pioneering studies conducted in recent years, such as the first structures of BY-kinases and biochemical and phyiological studies of new BY-kinase substrates significantly furthered our understanding of these enzymes...

  11. Dietary Tyrosine Protects Striatal Dopamine Receptors from the Adverse Effects of REM Sleep Deprivation.

    Science.gov (United States)

    Hamdi, A; Brock, J W; Payne, S; Ross, K D; Bond, S P; Prasad, C

    1998-01-01

    L-Tyrosine is a non-essential amino acid that is produced as an intermediary metabolite in the conversion of phenylalanine to 3,4-dihyroxyphenylalanine (DOPA), and is a precursor of the neurotransmitter dopamine. In previous studies, tyrosine pretreatment was shown to protect against the neurochemical and behavioral deficits of acute stress caused by tail shock or cold exposure in rodents. The present study addressed the hypothesis that tyrosine administration may be an effective counter-measure to dopamine-mediated behaviors induced by rapid eye-movement sleep deprivation (RSD). In order to test the hypothesis, Sprague-Dawley rats were divided into 9 treatment groups: RSD-treated rats on normal-protein diet (20% casein: 1% tyrosine, 1% valine); tank control (TC) rats on a normal diet; cage control (CC) rats on normal diet; RSD-treated rats on 4% tyrosine diet; TC rats on 4% tyrosine diet; CC rats on 4% tyrosine diet; RSD-treated rats on 4% valine diet; TC rats on 4% valine diet; CC rats on 4% valine diet. In the RSD group receiving tyrosine, there was no apparent change in Bmax for binding of the dopamine D2 receptor ligand [(3)H]YM-09151-2 in the striata as compared to the respective TC and CC groups; whereas RSD-treated rats maintained on the normal diet and valine supplementation demonstrated expected increases in Bmax for ligand binding. The TC group on the tyrosine diet showed attenuated catalepsy compared to the corresponding CC group, while the RSD group consuming tyrosine showed a catalepsy that was significantly increased, and similar to that of cage control animais on a control diet. These data suggest that the tyrosine-supplemented diet significantly attenuated RSD-induced changes in striatal dopamine D2 receptors, and the effect appeared sufficient to influence RSD-induced behaviors.

  12. A curvature-dependent membrane binding by tyrosine kinase Fer involves an intrinsically disordered region.

    Science.gov (United States)

    Yamamoto, Hikaru; Kondo, Akihiro; Itoh, Toshiki

    2018-01-01

    Tyrosine kinases are important enzymes that mediate signal transduction at the plasma membrane. While the significance of membrane localization of tyrosine kinases has been well evaluated, the role of membrane curvature in their regulation is unknown. Here, we demonstrate that an intrinsically disordered region in the tyrosine kinase Fer acts as a membrane curvature sensor that preferentially binds to highly curved membranes in vitro. This region forms an amphipathic α-helix upon interaction with curved membranes, aligning hydrophobic residues on one side of the helical structure. Further, the tyrosine kinase activity of Fer is significantly enhanced by the membrane in a manner dependent on curvature. We propose a model for the regulation of Fer based on an intramolecular interaction and the curvature-dependent membrane binding mediated by its intrinsically disordered region. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Tyrosine phosphorylation in human lymphomas

    NARCIS (Netherlands)

    Haralambieva, E; Jones, M.; Roncador, GM; Cerroni, L; Lamant, L; Ott, G; Rosenwald, A; Sherman, C; Thorner, P; Kusec, R; Wood, KM; Campo, E; Falini, B; Ramsay, A; Marafioti, T; Stein, H; Kluin, PM; Pulford, K; Mason, DY

    2002-01-01

    In a previous study, we showed that the high level of protein tyrosine phosphorylation present in lymphomas containing an anaplastic lymphoma kinase (ALK) can be demonstrated in routinely processed paraffin tissue sections using immunolabelling techniques. In the present study we investigated

  14. Tyrosine phosphorylation in signal transduction

    International Nuclear Information System (INIS)

    Roberts, T.M.; Kaplan, D.; Morgan, W.; Keller, T.; Mamon, H.; Piwnica-Worms, H.; Druker, B.; Whitman, M.; Morrison, D.; Cohen, B.; Schaffhausen, B.; Cantley, L.; Rapp, U.

    1988-01-01

    Recent work has focused on the elucidation of the mechanisms by which membrane-bound tyrosine kinases transmit signals within the cell. To examine the role of tyrosine phosphorylation the authors have employed the following strategy. First, they have utilized antibodies to phosphotyrosine (anti-P.Tyr) to identify candidate substrates of various tyrosine kinases, such as pp60 c-src , the CSF- receptor, or the platelet-derived growth factor (PDGF) receptor. Second, they have attempted to characterize the biochemical properties of the putative substrates and to determine in what manner these properties are modified by phosphorylation on tyrosine residues. In this endeavor, they are recapitulating the classic biochemical analysis used to study the effect of kinases on metabolism. The final portion of our work consists of using modern molecular biological strategies to clone the genes or cDNAs for the substrates and overproduce the relevant proteins for studies in vitro in defined systems. This paper describes the first and second aspects of this strategy, the identification and characterization of novel substrate molecules

  15. The role of GH receptor tyrosine phosphorylation in Stat5 activation

    DEFF Research Database (Denmark)

    Hansen, J A; Hansen, L H; Wang, X

    1997-01-01

    . Mutated GH receptors lacking all but one of these three tyrosines are able to mediate a transcriptional response when transiently transfected into CHO cells together with a Spi 2.1 promoter/luciferase construct. Similarly, these GH receptors were found to be able to mediate activation of Stat5 DNA...

  16. DMPD: Bruton's tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signalling? [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15081522 Bruton's tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signall...ruton's tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signalling? PubmedID 15081522 Title Bruton...'s tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signalling? Authors

  17. Receptor Tyrosine Kinases in Drosophila Development

    Science.gov (United States)

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  18. Salivary peptide tyrosine-tyrosine 3-36 modulates ingestive behavior without inducing taste aversion.

    Science.gov (United States)

    Hurtado, Maria D; Sergeyev, Valeriy G; Acosta, Andres; Spegele, Michael; La Sala, Michael; Waler, Nickolas J; Chiriboga-Hurtado, Juan; Currlin, Seth W; Herzog, Herbert; Dotson, Cedrick D; Gorbatyuk, Oleg S; Zolotukhin, Sergei

    2013-11-20

    Hormone peptide tyrosine-tyrosine (PYY) is secreted into circulation from the gut L-endocrine cells in response to food intake, thus inducing satiation during interaction with its preferred receptor, Y2R. Clinical applications of systemically administered PYY for the purpose of reducing body weight were compromised as a result of the common side effect of visceral sickness. We describe here a novel approach of elevating PYY in saliva in mice, which, although reliably inducing strong anorexic responses, does not cause aversive reactions. The augmentation of salivary PYY activated forebrain areas known to mediate feeding, hunger, and satiation while minimally affecting brainstem chemoreceptor zones triggering nausea. By comparing neuronal pathways activated by systemic versus salivary PYY, we identified a metabolic circuit associated with Y2R-positive cells in the oral cavity and extending through brainstem nuclei into hypothalamic satiety centers. The discovery of this alternative circuit that regulates ingestive behavior without inducing taste aversion may open the possibility of a therapeutic application of PYY for the treatment of obesity via direct oral application.

  19. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson's disease.

    Science.gov (United States)

    Azzouz, Mimoun; Martin-Rendon, Enca; Barber, Robert D; Mitrophanous, Kyriacos A; Carter, Emma E; Rohll, Jonathan B; Kingsman, Susan M; Kingsman, Alan J; Mazarakis, Nicholas D

    2002-12-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the selective loss of dopaminergic neurons in the substantia nigra. This loss leads to complete dopamine depletion in the striatum and severe motor impairment. It has been demonstrated previously that a lentiviral vector system based on equine infectious anemia virus (EIAV) gives rise to highly efficient and sustained transduction of neurons in the rat brain. Therefore, a dopamine replacement strategy using EIAV has been investigated as a treatment in the 6-hydroxydopamine (6-OHDA) animal model of PD. A self-inactivating EIAV minimal lentiviral vector that expresses tyrosine hydroxylase (TH), aromatic amino acid dopa decarboxylase (AADC), and GTP cyclohydrolase 1 (CH1) in a single transcription unit has been generated. In cultured striatal neurons transduced with this vector, TH, AADC, and CH1 proteins can all be detected. After stereotactic delivery into the dopamine-denervated striatum of the 6-OHDA-lesioned rat, sustained expression of each enzyme and effective production of catecholamines were detected, resulting in significant reduction of apomorphine-induced motor asymmetry compared with control animals (p < 0.003). Expression of each enzyme in the striatum was observed for up to 5 months after injection. These data indicate that the delivery of three catecholaminergic synthetic enzymes by a single lentiviral vector can achieve functional improvement and thus open the potential for the use of this vector for gene therapy of late-stage PD patients.

  20. Clustering of Helicobacter pylori VacA in lipid rafts, mediated by its receptor, receptor-like protein tyrosine phosphatase beta, is required for intoxication in AZ-521 Cells

    DEFF Research Database (Denmark)

    Nakayama, Masaaki; Hisatsune, Jyunzo; Yamasaki, Eiki

    2006-01-01

    Helicobacter pylori vacuolating cytotoxin, VacA, induces multiple effects on epithelial cells through different cellular events: one involves pore formation, leading to vacuolation, mitochondrial damage, and apoptosis, and the second involves cell signaling, resulting in stimulation of proinflamm......Helicobacter pylori vacuolating cytotoxin, VacA, induces multiple effects on epithelial cells through different cellular events: one involves pore formation, leading to vacuolation, mitochondrial damage, and apoptosis, and the second involves cell signaling, resulting in stimulation...... of proinflammatory responses and cell detachment. Our recent data demonstrated that VacA uses receptor-like protein tyrosine phosphatase beta (RPTPbeta) as a receptor, of which five residues (QTTQP) at positions 747 to 751 are involved in binding. In AZ-521 cells, which mainly express RPTPbeta, VacA, after binding...... to RPTPbeta in non-lipid raft microdomains on the cell surface, is localized with RPTPbeta in lipid rafts in a temperature- and VacA concentration-dependent process. Methyl-beta-cyclodextrin (MCD) did not block binding to RPTPbeta but inhibited translocation of VacA with RPTPbeta to lipid rafts and all...

  1. Dityrosine, 3,4-Dihydroxyphenylalanine (DOPA), and radical formation from tyrosine residues on milk proteins with globular and flexible structures as a result of riboflavin-mediated photo-oxidation

    DEFF Research Database (Denmark)

    Dalsgaard, Trine Kastrup; Nielsen, Jacob Holm; Brown, Bronwyn

    2011-01-01

    Riboflavin-mediated photo-oxidative damage to protein Tyr residues has been examined to determine whether protein structure influences competing protein oxidation pathways in single proteins and protein mixtures. EPR studies resulted in the detection of Tyr-derived o-semiquione radicals, with thi......Riboflavin-mediated photo-oxidative damage to protein Tyr residues has been examined to determine whether protein structure influences competing protein oxidation pathways in single proteins and protein mixtures. EPR studies resulted in the detection of Tyr-derived o-semiquione radicals...

  2. Reciprocal regulation of C-Maf tyrosine phosphorylation by Tec and Ptpn22.

    Science.gov (United States)

    Liu, Chih-Chun; Lai, Chen-Yen; Yen, Wei-Feng; Lin, Yu-Hsien; Chang, Hui-Hsin; Tai, Tzong-Shyuan; Lu, Yu-Jung; Tsao, Hsiao-Wei; Ho, I-Cheng; Miaw, Shi-Chuen

    2015-01-01

    C-Maf plays an important role in regulating cytokine production in TH cells. Its transactivation of IL-4 is optimized by phosphorylation at Tyr21, Tyr92, and Tyr131. However, the molecular mechanism regulating its tyrosine phosphorylation remains unknown. In this study, we demonstrate that Tec kinase family member Tec, but not Rlk or Itk, is a tyrosine kinase of c-Maf and that Tec enhances c-Maf-dependent IL-4 promoter activity. This effect of Tec is counteracted by Ptpn22, which physically interacts with and facilitates tyrosine dephosphorylation of c-Maf thereby attenuating its transcriptional activity. We further show that phosphorylation of Tyr21/92/131 of c-Maf is also critical for its recruitment to the IL-21 promoter and optimal production of this cytokine by TH17 cells. Thus, manipulating tyrosine phosphorylation of c-Maf through its kinases and phosphatases can have significant impact on TH cell-mediated immune responses.

  3. Protein-Tyrosine Phosphorylation in Bacillus subtilis

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Bottini, N.

    2005-01-01

    of protein-tyrosine phosphorylation. We discuss the approaches currently used to chart this network: ranging from studies of substrate specifi city and the physiological role of tyrosine phosphorylation of individual enzymes to the global approaches at the level of systems biology....... on protein-tyrosine phosphorylation in this gram-positive model organism. With its two kinases, two kinase modulators, three phosphatases and at least four different tyrosine-phosphorylated substrates, B. subtilis is the bacterium with the highest number of presently known participants in the global network...

  4. Nonreceptor Tyrosine Kinases in Prostate

    Directory of Open Access Journals (Sweden)

    Cancer Yu-Ming Chang

    2007-02-01

    Full Text Available BACKGROUND: Carcinoma of the prostate (CaP is the most commonly diagnosed cancer in men in the United States. Signal transduction molecules such as tyrosine kinases play important roles in CaP. Src, a nonreceptor tyrosine kinase (NRTK and the first proto-oncogene discovered is shown to participate in processes such as cell proliferation and migration in CaP. Underscoring NRTK's and, specifically, Src's importance in cancer is the recent approval by the US Food and Drug Administration of dasatinib, the first commercial Src inhibitor for clinical use in chronic myelogenous leukemia (CML. In this review we will focus on NRTKs and their roles in the biology of CaP. MATERIALS AND METHODS: Publicly available literature from PubMed regarding the topic of members of NRTKs in CaP was searched and reviewed. RESULTS: Src, FAK, JaK1/2, and ETK are involved in processes indispensable to the biology of CaP: cell growth, migration, invasion, angiogenesis, and apoptosis. CONCLUSIONS: Src emerges as a common signaling and regulatory molecule in multiple biological processes in CaP. Src's relative importance in particular stages of CaP, however, required further definition. Continued investigation of NRTKs will increase our understanding of their biological function and potential role as new therapeutic targets.

  5. Dietary Tyrosine Benefits Cognitive and Psychomotor Performance During Body Cooling

    National Research Council Canada - National Science Library

    O'Brien, Catherine; Mahoney, Caroline; Tharion, William J; Sils, Ingrid V; Castellani, John W

    2007-01-01

    Supplemental tyrosine is effective at limiting cold-induced decreases in working memory, presumably by augmenting brain catecholamine levels, since tyrosine is a precursor for catecholamine synthesis...

  6. Roles of the C-terminal tyrosine residues of LAT in GPVI-induced platelet activation: insights into the mechanism of PLC gamma 2 activation.

    Science.gov (United States)

    Ragab, Ashraf; Séverin, Sonia; Gratacap, Marie-Pierre; Aguado, Enrique; Malissen, Marie; Jandrot-Perrus, Martine; Malissen, Bernard; Ragab-Thomas, Jeannie; Payrastre, Bernard

    2007-10-01

    Linker for activation of T cells (LAT) is an adaptor protein required for organization of the signaling machinery downstream of the platelet collagen receptor, the glycoprotein VI (GPVI). Here, we investigated the effect of LAT mutations on specific signaling pathways and on platelet functions in response to GPVI triggering by convulxin (Cvx). Using mice containing tyrosine to phenylalanine mutations of the adaptor, we show the crucial role played by the tyrosine residues at positions 175, 195, and 235 in the phosphorylation of LAT and in the whole pattern of protein tyrosine phosphorylation in response to Cvx. These 3 C-terminal tyrosine residues are important to recruit the tyrosine kinase Fyn, which may be involved in LAT phosphorylation. Efficient phosphoinositide 3-kinase (PI3K) activation requires the 3 C-terminal tyrosine residues of LAT but not its tyrosine 136. Interestingly, single mutation of the tyrosine 136 results in the loss of phospholipase C gamma2 (PLCgamma2) activation without affecting its PI3K-dependent membrane association, and is sufficient to impair platelet responses to Cvx. Thus, activation of PLCgamma2 via GPVI is dependent on 2 complementary events: its interaction with the tyrosine 136 of LAT and its membrane location, which itself requires events mediated by the 3 C-terminal tyrosines of LAT.

  7. Dityrosine formation is impaired by tyrosine phosphorylation.

    Science.gov (United States)

    Christian, S; Bernhard, G; Patrizia, R; Brigitte, M

    1992-10-15

    Using pure tyrosine and phosphotyrosine we have recently shown that phosphotyrosine is unable to form peroxidase catalyzed dimers (1989, FEBS Lett. 255, 395-397). In the present report, the effect of phosphotyrosine residues within a protein structure on dityrosine formation was studied using casein as a model protein. Dephosphorylation of casein resulted in a dose and time dependent increased synthesis of dityrosines following treatment with peroxidase/H2O2. The extent of crosslink formation was inversely related to the amount of phosphorylated tyrosine residues as quantitated by immunoblotting. Thus, phosphorylation of tyrosine residues could play a regulatory role in protein-crosslinking where dityrosine bonds are involved.

  8. PTEN is a protein tyrosine phosphatase for IRS1.

    Science.gov (United States)

    Shi, Yuji; Wang, Junru; Chandarlapaty, Sarat; Cross, Justin; Thompson, Craig; Rosen, Neal; Jiang, Xuejun

    2014-06-01

    The biological function of the PTEN tumor suppressor is mainly attributed to its lipid phosphatase activity. This study demonstrates that mammalian PTEN is a protein tyrosine phosphatase that selectively dephosphorylates insulin receptor substrate-1 (IRS1), a mediator of insulin and IGF signals. IGF signaling was defective in cells lacking NEDD4, a PTEN ubiquitin ligase, whereas AKT activation triggered by EGF or serum was unimpaired. Defective IGF signaling caused by NEDD4 deletion, including phosphorylation of IRS1 and AKT, was rescued by PTEN ablation. We demonstrate the nature of PTEN as an IRS1 phosphatase by direct biochemical analysis and cellular reconstitution, showing that NEDD4 supports insulin-mediated glucose metabolism and is required for the proliferation of IGF1 receptor-dependent but not EGF receptor-dependent tumor cells. Thus, PTEN is a protein phosphatase for IRS1, and its antagonism by NEDD4 promotes signaling by IGF and insulin.

  9. Protein tyrosine nitration in the cell cycle

    International Nuclear Information System (INIS)

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-01-01

    Highlights: → Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. → Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. → Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  10. Transient appearance of tyrosine hydroxylase immunoreactive cells in the midline epithelial seam of the human fetal secondary palate.

    Science.gov (United States)

    Katori, Yukio; Shibata, Shunichi; Kawase, Tetsuaki; Cho, Baik Hwan; Murakami, Gen

    2012-07-01

    Transient immunoreactivity for tyrosine hydroxylase, which mediates the conversion of the amino acid L-tyrosine to dihydroxyphenylalanine, in the midline epithelial seam between the bilateral palatal shelves was investigated in human fetuses. Horizontal or frontal paraffin sections of two human fetuses at 9 and 15 weeks of gestation were used to examine the distribution of tyrosine hydroxylase-immunoreactive cells in regions of the entire head other than the brain. Immunohistochemical staining for S100 protein, calretinin, cytokeratin 14, and vimentin was examined using adjacent or near sections. Tyrosine hydroxylase-immunoreactive cells were large and densely distributed in the midline epithelial seam at the site of palatal fusion in fetuses at 9 weeks but not in fetuses at 15 weeks, in which the midline epithelial seam had already disappeared. No expression of S100 protein, calretinin, or vimentin was detected, but the midline epithelial seam was positive for cytokeratin 14. Tyrosine hydroxylase immunoreactivity was not detected in epithelia during the process of palatal fusion in mice from E 14.0 to 15.0. These findings indicate that tyrosine hydroxylase-immunoreactive cells in the midline epithelial seams are nonneural epithelial cells and suggest that the tyrosine hydroxylase is a novel factor involved in normal palatal formation, especially the fate of the midline epithelial seam in humans.

  11. Nicotinic stimulation of catecholamine synthesis and tyrosine hydroxylase phosphorylation in cervine adrenal medullary chromaffin cells.

    Science.gov (United States)

    Knowles, P J; Douglas, S A; Bunn, S J

    2011-03-01

    The synthesis and secretion of catecholamines by the adrenal medulla is of major importance in the stress response. Tyrosine hydroxylase, the rate-limiting enzyme for catecholamine biosynthesis, has been extensively studied in adrenal medullary chromaffin cells from a number of species. Cervine chromaffin cells are of interest because the deer is known to be a relatively stress-prone reactive species. We report the first characterisation of tyrosine hydroxylase regulation in cervine chromaffin cells. Nicotinic receptor activation resulted in a time- and concentration-dependent increase in catecholamine synthesis, which was significantly reduced by the extracellular signal-regulated kinase (ERK)1/2 signalling pathway inhibitor PD98059 and the calcium/calmodulin protein kinase II inhibitor KN-93, but not by H89 or bisindolylmaleimide I, inhibitors of protein kinase A and C, respectively. Nicotinic stimulation also increased the phosphorylation of ERK1/2 and tyrosine hydroxylase. This latter response occurred on serine residues 19, 31 and 40 of the enzyme. The nicotinic-induced phosphorylation of ERK1/2 and serine 31 of tyrosine hydroxylase was suppressed by PD98059 but not bisindolylmaleimide I. These data indicate that nicotinic stimulation of tyrosine hydroxylase involves the phosphorylation of serine 31 via an ERK1/2-dependent, protein kinase C-independent pathway. Protein kinase C activation by phorbol 12-myristate 13-acetate also caused an ERK1/2-dependent increase in the serine 31 phosphorylation of tyrosine hydroxylase but, in contrast to the nicotinic response, was not accompanied by an increase in enzyme activity. Thus, ERK1/2-mediated serine 31 phosphorylation of tyrosine hydroxylase appears necessary but not sufficient for nicotinic activation of catecholamine synthesis in cervine chromaffin cells. These data present potentially important similarities and differences between the regulation of catecholamine synthesis in cervine and the more widely studied

  12. No effect of oral tyrosine on total tyrosine levels in breast milk: implications for dietary supplementation in early postpartum.

    Science.gov (United States)

    Dowlati, Yekta; Ravindran, Arun V; Maheux, Maxim; Steiner, Meir; Stewart, Donna E; Meyer, Jeffrey H

    2014-12-01

    Postpartum depression (PPD) is the most common complication of childbearing with a 13 % prevalence rate, and there is no widespread approach for prevention. There is an appealing theoretical rationale for oral tyrosine to help prevent PPD. However, the effect of oral tyrosine on its total and free concentrations in breast milk and plasma of breastfeeding mothers is not known. Twenty-four healthy breastfeeding women were randomly assigned to 0, 2, 5, or 10 g of oral tyrosine. Free and total tyrosine in breast milk and free tyrosine in plasma were measured. Free tyrosine was also measured in 12 different infant formulas. Total tyrosine in breast milk did not rise, but there was a slight tendency towards a reduction (up to −12 %; repeated measures ANOVA (RMANOVA): p = 0.074). Maternal plasma tyrosine rose (RMANOVA: p oral tyrosine on its concentration in breast milk supports further development of oral tyrosine as part of a prevention strategy for PPD.

  13. Replacement of insulin receptor tyrosine residues 1162 and 1163 does not alter the mitogenic effect of the hormone

    International Nuclear Information System (INIS)

    Debant, A.; Clauser, E.; Ponzio, G.; Filloux, C.; Auzan, C.; Contreres, J.O.; Rossi, B.

    1988-01-01

    Chinese hamster ovary transfectants that express insulin receptors in which tyrosine residues 1162 and 1163 were replaced by phenylalanine exhibit a total inhibition of the insulin-mediated tyrosine kinase activity toward exogenous substrates; this latter activity is associated with total inhibition of the hypersensitivity reported for insulin in promoting 2-deoxyglucose uptake. The authors now present evidence that the twin tyrosines also control the insulin-mediated stimulation of glycogen synthesis. Surprisingly, this type of Chinese hamster ovary transfectant is as hypersensitive to insulin for its mitogenic effect as are Chinese hamster ovary cells expressing many intact insulin receptors. Such data suggest that (i) the insulin mitogenic effect routes through a different pathway than insulin uses to activate the transport and metabolism of glucose and (ii) the mitogenic effect of insulin is not controlled by the twin tyrosines. At the molecular level, the solubilized mutated receptor has not insulin-dependent tyrosine kinase activity, whereas this receptor displays measurable insulin-stimulated phosphorylation of its β subunit in 32 P-labeled cells. The authors therefore propose that the autocatalytic phosphorylating activity of the receptor reports a cryptic tyrosine kinase activity that cannot be visualized by the use of classical exogenous substrates

  14. The oncogenic tyrosine kinase Lyn impairs the pro-apoptotic function of Bim.

    Science.gov (United States)

    Aira, Lazaro E; Villa, Elodie; Colosetti, Pascal; Gamas, Parvati; Signetti, Laurie; Obba, Sandrine; Proics, Emma; Gautier, Fabien; Bailly-Maitre, Béatrice; Jacquel, Arnaud; Robert, Guillaume; Luciano, Frédéric; Juin, Philippe P; Ricci, Jean-Ehrland; Auberger, Patrick; Marchetti, Sandrine

    2018-02-02

    Phosphorylation of Ser/Thr residues is a well-established modulating mechanism of the pro-apoptotic function of the BH3-only protein Bim. However, nothing is known about the putative tyrosine phosphorylation of this Bcl-2 family member and its potential impact on Bim function and subsequent Bax/Bak-mediated cytochrome c release and apoptosis. As we have previously shown that the tyrosine kinase Lyn could behave as an anti-apoptotic molecule, we investigated whether this Src family member could directly regulate the pro-apoptotic function of Bim. In the present study, we show that Bim is phosphorylated onto tyrosine residues 92 and 161 by Lyn, which results in an inhibition of its pro-apoptotic function. Mechanistically, we show that Lyn-dependent tyrosine phosphorylation of Bim increases its interaction with anti-apoptotic members such as Bcl-xL, therefore limiting mitochondrial outer membrane permeabilization and subsequent apoptosis. Collectively, our data uncover one molecular mechanism through which the oncogenic tyrosine kinase Lyn negatively regulates the mitochondrial apoptotic pathway, which may contribute to the transformation and/or the chemotherapeutic resistance of cancer cells.

  15. Mutant torsinA interacts with tyrosine hydroxylase in cultured cells.

    Science.gov (United States)

    O'Farrell, C A; Martin, K L; Hutton, M; Delatycki, M B; Cookson, M R; Lockhart, P J

    2009-12-15

    A specific mutation (DeltaE302/303) in the torsinA gene underlies most cases of dominantly inherited early-onset torsion dystonia. This mutation causes the protein to aggregate and form intracellular inclusion bodies in cultured cells and animal models. Co-expression of the wildtype and mutant proteins resulted in the redistribution of the wildtype protein from the endoplasmic reticulum to inclusion bodies in cultured HEK293 cells, and this was associated with increased interaction between the two proteins. Expression of DeltaE302/303 but not wildtype torsinA in primary postnatal midbrain neurons resulted in the formation of intracellular inclusion bodies, predominantly in dopaminergic neurons. Tyrosine hydroxylase was sequestered in these inclusions and this process was mediated by increased protein-protein interaction between mutant torsinA and tyrosine hydroxylase. Analysis in an inducible neuroblastoma cell culture model demonstrated altered tyrosine hydroxylase activity in the presence of the mutant but not wildtype torsinA protein. Our results suggest that the interaction of tyrosine hydroxylase and mutant torsinA may contribute to the phenotype and reported dopaminergic dysfunction in torsinA-mediated dystonia.

  16. Tyrosine Mutation in AAV9 Capsid Improves Gene Transfer to the Mouse Lung

    Directory of Open Access Journals (Sweden)

    Sabrina V. Martini

    2016-07-01

    Full Text Available Background/Aims: Adeno-associated virus (AAV vectors are being increasingly used as the vector of choice for in vivo gene delivery and gene therapy for many pulmonary diseases. Recently, it was shown that phosphorylation of surface-exposed tyrosine residues from AAV capsid targets the viral particles for ubiquitination and proteasome-mediated degradation, and mutations of these tyrosine residues lead to highly efficient vector transduction in vitro and in vivo in different organs. In this study, we evaluated the pulmonary transgene expression efficacy of AAV9 vectors containing point mutations in surface-exposed capsid tyrosine residues. Methods: Eighteen C57BL/6 mice were randomly assigned into three groups: (1 a control group (CTRL animals underwent intratracheal (i.t. instillation of saline, (2 the wild-type AAV9 group (WT-AAV9, 1010 vg, and (3 the tyrosine-mutant Y731F AAV9 group (M-AAV9, 1010 vg, which received (i.t. self-complementary AAV9 vectors containing the DNA sequence of enhanced green fluorescence protein (eGFP. Four weeks after instillation, lung mechanics, morphometry, tissue cellularity, gene expression, inflammatory cytokines, and growth factor expression were analyzed. Results: No significant differences were observed in lung mechanics and morphometry among the experimental groups. However, the number of polymorphonuclear cells was higher in the WT-AAV9 group than in the CTRL and M-AAV9 groups, suggesting that the administration of tyrosine-mutant AAV9 vectors was better tolerated. Tyrosine-mutant AAV9 vectors significantly improved transgene delivery to the lung (30% compared with their wild-type counterparts, without eliciting an inflammatory response. Conclusion: Our results provide the impetus for further studies to exploit the use of AAV9 vectors as a tool for pulmonary gene therapy.

  17. Phenylketonuria : tyrosine supplementation in phenylalanine-restricted diets

    NARCIS (Netherlands)

    van Spronsen, FJ; van Rijn, M; Bekhof, J; Koch, R; Smit, PGA

    Treatment of phenylketonuria (PKU) consists of restriction of natural protein and provision of a protein substitute that lacks phenylalanine but is enriched in tyrosine. Large and unexplained differences exist, however, in the tyrosine enrichment of the protein substitutes. Furthermore, some

  18. Conformational basis for substrate recruitment in Protein Tyrosine Phosphatase 10D†

    OpenAIRE

    Madan, Lalima L.; Gopal, B.

    2011-01-01

    The coordinated activity of Protein Tyrosine Phosphatases (PTP) is crucial to initiate, modulate and terminate diverse cellular processes. The catalytic activity of this protein depends on a nucleophilic cysteine at the active site that mediates the hydrolysis of the incoming phosphotyrosine substrate. While the role of conserved residues in the catalytic mechanism of PTPs has been extensively examined, the diversity in the mechanisms of substrate recognition and modulation of catalytic activ...

  19. Chlorinated tyrosine derivatives in insect cuticle

    DEFF Research Database (Denmark)

    Andersen, Svend Olav

    2004-01-01

    , not-yet sclerotized cuticle of adult femur and tibia, the amounts increased rapidly during the first 24 h after ecdysis and more slowly during the next two weeks. Control analyses using stable isotope dilution mass spectrometry have confirmed that the chlorinated tyrosines are not artifacts formed...

  20. Enzyme kinetic characterization of protein tyrosine phosphatases

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Branner, S.; Møller, K. B.

    2003-01-01

    Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta...

  1. Morphological Features of Tyrosine Hydroxylase Immunoreactive ...

    African Journals Online (AJOL)

    The current immunohistochemical study used the antibody against tyrosine hydroxylase (TH) to observe the immunoreactive elements in the mouse pancreas. The results indicated the presence of immunoreactive nerve fibers and endocrine cells. The immunopositive nerve fibers appeared as thick and thin bundles; thick ...

  2. Primary cilia and coordination of receptor tyrosine kinase (RTK) and transforming growth factor β (TGF-β) signaling

    DEFF Research Database (Denmark)

    Christensen, Søren Tvorup; Morthorst, Stine Kjær; Mogensen, Johanne Bay

    2017-01-01

    are at the root of a pleiotropic group of diseases and syndromic disorders called ciliopathies. In this review, we present an overview of primary cilia-mediated regulation of receptor tyrosine kinase (RTK) and transforming growth factor β (TGF-β) signaling. Further, we discuss how defects in the coordination...

  3. Phenylketonuria : Tyrosine beyond the phenylalanine-restricted diet

    NARCIS (Netherlands)

    van Spronsen, FJ; Smit, PGA; Koch, R

    Controversies exist on the role of tyrosine in the pathogenesis of phenylketonuria (PKU) and, consequently, on the therapeutic role of tyrosine. This review examines data and theoretical considerations on the role of tyrosine in the pathogenesis and treatment of PKU. It is concluded that treatment

  4. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides

    DEFF Research Database (Denmark)

    Winterbourn, Christine C; Parsons-Mair, Helena N; Gebicki, Silvia

    2004-01-01

    requirements for hydroperoxide formation using tyrosine analogues and di- and tri-peptides. Superoxide and phenoxyl radicals were generated using xanthine oxidase, peroxidase and the respective tyrosine derivative, or by gamma-radiation. Peroxides were measured using FeSO4/Xylenol Orange. Tyrosine and tyramine...

  5. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

    International Nuclear Information System (INIS)

    Zhong Li; Li Baozheng; Jayandharan, Giridhararao; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Herzog, Roland W.

    2008-01-01

    We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, their transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by ∼ 68% and ∼ 74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which results from ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy

  6. Receptor tyrosine phosphatase R-PTP-alpha is tyrosine-phosphorylated and associated with the adaptor protein Grb2

    DEFF Research Database (Denmark)

    Su, J; Batzer, A; Sap, J

    1994-01-01

    Receptor tyrosine phosphatases (R-PTPases) have generated interest because of their suspected involvement in cellular signal transduction. The adaptor protein Grb2 has been implicated in coupling receptor tyrosine kinases to Ras. We report that a ubiquitous R-PTPase, R-PTP-alpha, is tyrosine-phos...

  7. Ror receptor tyrosine kinases: orphans no more.

    Science.gov (United States)

    Green, Jennifer L; Kuntz, Steven G; Sternberg, Paul W

    2008-11-01

    Receptor tyrosine kinase-like orphan receptor (Ror) proteins are a conserved family of tyrosine kinase receptors that function in developmental processes including skeletal and neuronal development, cell movement and cell polarity. Although Ror proteins were originally named because the associated ligand and signaling pathway were unknown, recent studies in multiple species have now established that Ror proteins are Wnt receptors. Depending on the cellular context, Ror proteins can either activate or repress transcription of Wnt target genes and can modulate Wnt signaling by sequestering Wnt ligands. New evidence implicates Ror proteins in planar cell polarity, an alternative Wnt pathway. Here, we review the progress made in understanding these mysterious proteins and, in particular, we focus on their function as Wnt receptors.

  8. Analysis of tyrosine-O-sulfation

    DEFF Research Database (Denmark)

    Bundgaard, J.R.; Sen, J.W.; Johnsen, A.H.

    2008-01-01

    Tyrosine O-sulfation was first described about 50 years ago as a post-translational modification of fibrinogen. In the following 30 years it was considered to be a rare modification affecting only a few proteins and peptides. However, in the beginning of the 1980s tyrosine (Tyr) sulfation was shown...... to be a common modification and since then an increasing number of proteins have been identified as sulfated. The target proteins belong to the classes of secretory, plasma membrane, and lysosomal proteins, which reflects the intracellular localization of the enzymes catalyzing Tyr sulfation, the tyrosylprotein...... sulfotransferases (TPSTs).Traditionally, Tyr sulfation has been analyzed by incorporation of radiolabeled sulfate into target cells followed by purification of the target protein. Subsequently, the protein is degraded enzymatically or by alkaline hydrolysis followed by thin-layer electrophoresis to demonstrate...

  9. Analysis of tyrosine-O-sulfation

    DEFF Research Database (Denmark)

    Bundgaard, J.R.; Sen, J.W.; Johnsen, A.H.

    2008-01-01

    to be a common modification and since then an increasing number of proteins have been identified as sulfated. The target proteins belong to the classes of secretory, plasma membrane, and lysosomal proteins, which reflects the intracellular localization of the enzymes catalyzing Tyr sulfation, the tyrosylprotein......Tyrosine O-sulfation was first described about 50 years ago as a post-translational modification of fibrinogen. In the following 30 years it was considered to be a rare modification affecting only a few proteins and peptides. However, in the beginning of the 1980s tyrosine (Tyr) sulfation was shown...... sulfotransferases (TPSTs).Traditionally, Tyr sulfation has been analyzed by incorporation of radiolabeled sulfate into target cells followed by purification of the target protein. Subsequently, the protein is degraded enzymatically or by alkaline hydrolysis followed by thin-layer electrophoresis to demonstrate...

  10. Tyrosine nitration affects thymidylate synthase properties.

    Science.gov (United States)

    Dąbrowska-Maś, Elżbieta; Frączyk, Tomasz; Ruman, Tomasz; Radziszewska, Karolina; Wilk, Piotr; Cieśla, Joanna; Zieliński, Zbigniew; Jurkiewicz, Agata; Gołos, Barbara; Wińska, Patrycja; Wałajtys-Rode, Elżbieta; Leś, Andrzej; Nizioł, Joanna; Jarmuła, Adam; Stefanowicz, Piotr; Szewczuk, Zbigniew; Rode, Wojciech

    2012-01-14

    Highly purified preparations of thymidylate synthase, isolated from calf thymus, and L1210 parental and FdUrd-resistant cells, were found to be nitrated, as indicated by a specific reaction with anti-nitro-tyrosine antibodies, suggesting this modification to appear endogenously in normal and tumor tissues. Each human, mouse and Ceanorhabditis elegans recombinant TS preparation, incubated in vitro in the presence of NaHCO(3), NaNO(2) and H(2)O(2) at pH 7.5, underwent tyrosine nitration, leading to a V(max)(app) 2-fold lower following nitration of 1 (with human or C. elegans TS) or 2 (with mouse TS) tyrosine residues per monomer. Enzyme interactions with dUMP, meTHF or 5-fluoro-dUMP were not distinctly influenced. Nitration under the same conditions of model tripeptides of a general formula H(2)N-Gly-X-Gly-COOH (X = Phe, Tyr, Trp, Lys, Arg, His, Ser, Thr, Cys, Gly), monitored by NMR spectroscopy, showed formation of nitro-species only for H-Gly-Tyr-Gly-OH and H-Gly-Phe-Gly-OH peptides, the chemical shifts for nitrated H-Gly-Tyr-Gly-OH peptide being in a very good agreement with the strongest peak found in (15)N-(1)H HMBC spectrum of nitrated protein. MS analysis of nitrated human and C. elegans proteins revealed several thymidylate synthase-derived peptides containing nitro-tyrosine (at positions 33, 65, 135, 213, 230, 258 and 301 in the human enzyme) and oxidized cysteine (human protein Cys(210), with catalytically critical Cys(195) remaining apparently unmodified) residues.

  11. Cytochrome C is tyrosine 97 phosphorylated by neuroprotective insulin treatment.

    Directory of Open Access Journals (Sweden)

    Thomas H Sanderson

    Full Text Available Recent advancements in isolation techniques for cytochrome c (Cytc have allowed us to discover post-translational modifications of this protein. We previously identified two distinct tyrosine phosphorylated residues on Cytc in mammalian liver and heart that alter its electron transfer kinetics and the ability to induce apoptosis. Here we investigated the phosphorylation status of Cytc in ischemic brain and sought to determine if insulin-induced neuroprotection and inhibition of Cytc release was associated with phosphorylation of Cytc. Using an animal model of global brain ischemia, we found a ∼50% decrease in neuronal death in the CA1 hippocampal region with post-ischemic insulin administration. This insulin-mediated increase in neuronal survival was associated with inhibition of Cytc release at 24 hours of reperfusion. To investigate possible changes in the phosphorylation state of Cytc we first isolated the protein from ischemic pig brain and brain that was treated with insulin. Ischemic brains demonstrated no detectable tyrosine phosphorylation. In contrast Cytc isolated from brains treated with insulin showed robust phosphorylation of Cytc, and the phosphorylation site was unambiguously identified as Tyr97 by immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry. We next confirmed these results in rats by in vivo application of insulin in the absence or presence of global brain ischemia and determined that Cytc Tyr97-phosphorylation is strongly induced under both conditions but cannot be detected in untreated controls. These data suggest a mechanism whereby Cytc is targeted for phosphorylation by insulin signaling, which may prevent its release from the mitochondria and the induction of apoptosis.

  12. Quantitative Tyrosine Phosphoproteomics of Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor-treated Lung Adenocarcinoma Cells Reveals Potential Novel Biomarkers of Therapeutic Response.

    Science.gov (United States)

    Zhang, Xu; Maity, Tapan; Kashyap, Manoj K; Bansal, Mukesh; Venugopalan, Abhilash; Singh, Sahib; Awasthi, Shivangi; Marimuthu, Arivusudar; Charles Jacob, Harrys Kishore; Belkina, Natalya; Pitts, Stephanie; Cultraro, Constance M; Gao, Shaojian; Kirkali, Guldal; Biswas, Romi; Chaerkady, Raghothama; Califano, Andrea; Pandey, Akhilesh; Guha, Udayan

    2017-05-01

    Mutations in the Epidermal growth factor receptor (EGFR) kinase domain, such as the L858R missense mutation and deletions spanning the conserved sequence 747 LREA 750 , are sensitive to tyrosine kinase inhibitors (TKIs). The gatekeeper site residue mutation, T790M accounts for around 60% of acquired resistance to EGFR TKIs. The first generation EGFR TKIs, erlotinib and gefitinib, and the second generation inhibitor, afatinib are FDA approved for initial treatment of EGFR mutated lung adenocarcinoma. The predominant biomarker of EGFR TKI responsiveness is the presence of EGFR TKI-sensitizing mutations. However, 30-40% of patients with EGFR mutations exhibit primary resistance to these TKIs, underscoring the unmet need of identifying additional biomarkers of treatment response. Here, we sought to characterize the dynamics of tyrosine phosphorylation upon EGFR TKI treatment of mutant EGFR-driven human lung adenocarcinoma cell lines with varying sensitivity to EGFR TKIs, erlotinib and afatinib. We employed stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative mass spectrometry to identify and quantify tyrosine phosphorylated peptides. The proportion of tyrosine phosphorylated sites that had reduced phosphorylation upon erlotinib or afatinib treatment correlated with the degree of TKI-sensitivity. Afatinib, an irreversible EGFR TKI, more effectively inhibited tyrosine phosphorylation of a majority of the substrates. The phosphosites with phosphorylation SILAC ratios that correlated with the TKI-sensitivity of the cell lines include sites on kinases, such as EGFR-Y1197 and MAPK7-Y221, and adaptor proteins, such as SHC1-Y349/350, ERRFI1-Y394, GAB1-Y689, STAT5A-Y694, DLG3-Y705, and DAPP1-Y139, suggesting these are potential biomarkers of TKI sensitivity. DAPP1, is a novel target of mutant EGFR signaling and Y-139 is the major site of DAPP1 tyrosine phosphorylation. We also uncovered several off-target effects of these TKIs, such as MST1R-Y1238

  13. A Drosophila protein-tyrosine phosphatase associates with an adapter protein required for axonal guidance.

    Science.gov (United States)

    Clemens, J C; Ursuliak, Z; Clemens, K K; Price, J V; Dixon, J E

    1996-07-19

    We have used the yeast two-hybrid system to isolate a novel Drosophila adapter protein, which interacts with the Drosophila protein-tyrosine phosphatase (PTP) dPTP61F. Absence of this protein in Drosophila causes the mutant photoreceptor axon phenotype dreadlocks (dock) (Garrity, P. A., Rao, Y., Salecker, I., and Zipursky, S. L.(1996) Cell 85, 639-650). Dock is similar to the mammalian oncoprotein Nck and contains three Src homology 3 (SH3) domains and one Src homology 2 (SH2) domain. The interaction of dPTP61F with Dock was confirmed in vivo by immune precipitation experiments. A sequence containing five PXXP motifs from the non-catalytic domain of the PTP is sufficient for interaction with Dock. This suggests that binding to the PTP is mediated by one or more of the SH3 domains of Dock. Immune precipitations of Dock also co-precipitate two tyrosine-phosphorylated proteins having molecular masses of 190 and 145 kDa. Interactions between Dock and these tyrosine-phosphorylated proteins are likely mediated by the Dock SH2 domain. These findings identify potential signal-transducing partners of Dock and propose a role for dPTP61F and the unidentified phosphoproteins in axonal guidance.

  14. Tyrosine Phosphorylation of Caspase-8 Abrogates Its Apoptotic Activity and Promotes Activation of c-Src

    Science.gov (United States)

    Tsang, Jennifer LY; Jia, Song Hui; Parodo, Jean; Plant, Pamela; Lodyga, Monika; Charbonney, Emmanuel; Szaszi, Katalin; Kapus, Andras; Marshall, John C.

    2016-01-01

    Src family tyrosine kinases (SFKs) phosphorylate caspase-8A at tyrosine (Y) 397 resulting in suppression of apoptosis. In addition, the phosphorylation of caspase-8A at other sites including Y465 has been implicated in the regulation of caspase-8 activity. However, the functional consequences of these modifications on caspase-8 processing/activity have not been elucidated. Moreover, various Src substrates are known to act as potent Src regulators, but no such role has been explored for caspase-8. We asked whether the newly identified caspase-8 phosphorylation sites might regulate caspase-8 activation and conversely, whether caspase-8 phosphorylation might affect Src activity. Here we show that Src phosphorylates caspase-8A at multiple tyrosine sites; of these, we have focused on Y397 within the linker region and Y465 within the p12 subunit of caspase-8A. We show that phosphomimetic mutation of caspase-8A at Y465 prevents its cleavage and the subsequent activation of caspase-3 and suppresses apoptosis. Furthermore, simultaneous phosphomimetic mutation of caspase-8A at Y397 and Y465 promotes the phosphorylation of c-Src at Y416 and increases c-Src activity. Finally, we demonstrate that caspase-8 activity prevents its own tyrosine phosphorylation by Src. Together these data reveal that dual phosphorylation converts caspase-8 from a pro-apoptotic to a pro-survival mediator. Specifically, tyrosine phosphorylation by Src renders caspase-8 uncleavable and thereby inactive, and at the same time converts it to a Src activator. This novel dynamic interplay between Src and caspase-8 likely acts as a potent signal-integrating switch directing the cell towards apoptosis or survival. PMID:27101103

  15. Protein-tyrosine Phosphatase SHP2 Contributes to GDNF Neurotrophic Activity through Direct Binding to Phospho-Tyr687 in the RET Receptor Tyrosine Kinase*

    Science.gov (United States)

    Perrinjaquet, Maurice; Vilar, Marçal; Ibáñez, Carlos F.

    2010-01-01

    The signaling mechanisms by which neurotrophic receptors regulate neuronal survival and axonal growth are still incompletely understood. In the receptor tyrosine kinase RET, a receptor for GDNF (glial cell line-derived neurotrophic factor), the functions of the majority of tyrosine residues that become phosphorylated are still unknown. Here we have identified the protein-tyrosine phosphatase SHP2 as a novel direct interactor of RET and the first effector known to bind to phosphorylated Tyr687 in the juxtamembrane region of the receptor. We show that SHP2 is recruited to RET upon ligand binding in a cooperative fashion, such that both interaction with Tyr687 and association with components of the Tyr1062 signaling complex are required for stable recruitment of SHP2 to the receptor. SHP2 recruitment contributes to the ability of RET to activate the PI3K/AKT pathway and promote survival and neurite outgrowth in primary neurons. Furthermore, we find that activation of protein kinase A (PKA) by forskolin reduces the recruitment of SHP2 to RET and negatively affects ligand-mediated neurite outgrowth. In agreement with this, mutation of Ser696, a known PKA phosphorylation site in RET, enhances SHP2 binding to the receptor and eliminates the effect of forskolin on ligand-induced outgrowth. Together, these findings establish SHP2 as a novel positive regulator of the neurotrophic activities of RET and reveal Tyr687 as a critical platform for integration of RET and PKA signals. We anticipate that several other phosphotyrosines of unknown function in neuronal receptor tyrosine kinases will also support similar regulatory functions. PMID:20682772

  16. Protein-tyrosine phosphatase SHP2 contributes to GDNF neurotrophic activity through direct binding to phospho-Tyr687 in the RET receptor tyrosine kinase.

    Science.gov (United States)

    Perrinjaquet, Maurice; Vilar, Marçal; Ibáñez, Carlos F

    2010-10-08

    The signaling mechanisms by which neurotrophic receptors regulate neuronal survival and axonal growth are still incompletely understood. In the receptor tyrosine kinase RET, a receptor for GDNF (glial cell line-derived neurotrophic factor), the functions of the majority of tyrosine residues that become phosphorylated are still unknown. Here we have identified the protein-tyrosine phosphatase SHP2 as a novel direct interactor of RET and the first effector known to bind to phosphorylated Tyr(687) in the juxtamembrane region of the receptor. We show that SHP2 is recruited to RET upon ligand binding in a cooperative fashion, such that both interaction with Tyr(687) and association with components of the Tyr(1062) signaling complex are required for stable recruitment of SHP2 to the receptor. SHP2 recruitment contributes to the ability of RET to activate the PI3K/AKT pathway and promote survival and neurite outgrowth in primary neurons. Furthermore, we find that activation of protein kinase A (PKA) by forskolin reduces the recruitment of SHP2 to RET and negatively affects ligand-mediated neurite outgrowth. In agreement with this, mutation of Ser(696), a known PKA phosphorylation site in RET, enhances SHP2 binding to the receptor and eliminates the effect of forskolin on ligand-induced outgrowth. Together, these findings establish SHP2 as a novel positive regulator of the neurotrophic activities of RET and reveal Tyr(687) as a critical platform for integration of RET and PKA signals. We anticipate that several other phosphotyrosines of unknown function in neuronal receptor tyrosine kinases will also support similar regulatory functions.

  17. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin, E-mail: binli@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Eyer, Peter, E-mail: peter.eyer@lrz.uni-muenchen.de [Walther-Straub-Institut Für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München (Germany); Eddleston, Michael, E-mail: M.Eddleston@ed.ac.uk [Clinical Pharmacology Unit, University of Edinburgh, Edinburgh (United Kingdom); Jiang, Wei, E-mail: wjiang@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Schopfer, Lawrence M., E-mail: lmschopf@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Lockridge, Oksana, E-mail: olockrid@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States)

    2013-06-15

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates.

  18. Euglena mitochondria and chloroplasts form tyrosine-O-sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Saidha, T.; Hanfstingl, U.; Schiff, J.A. (Brandeis Univ., Waltham, MA (USA))

    1989-04-01

    Mitochondria from light-grown wild-type Euglena gracilis var. bacillaris Cori or dark-grown mutant W{sub 10}BSmL incubated with {sup 35}SO{sub 4}{sup 2{minus}} and ATP, or with {sup 14}C-tyrosine, non-radioactive sulfate and ATP accumulate a labeled compound in the medium. Since this compound shows exact coelectrophoresis with tyrosine-O-sulfate (TOS) at pH 2.0, 5.8 or 8.0., yields sulfate and tyrosine on acid hydrolysis, and treatment with aryl sulfatase from Aerobacter aerogenes yields sulfate and tyrosine but no tyrosine methyl ester, it is identified as TOS. No TOS is found outside purified developing chloroplasts incubated with {sup 35}SO{sub 4}{sup 2{minus}} and ATP, but both chloroplasts and mitochondria form to {sup 35}S externally when incubated with adenosine 3{prime} phosphate 5{prime}phospho({sup 35}S) sulfate (PAP{sup 35}S). Since no tyrosine need be added, tyrosine is provided from endogenous sources. Although TOS is found in the free pool of Euglena cells it cannot be detected in proteins of cells or mucus ruling our sulfation of tyrosine of protein or incorporation of TOS into proteins. The system forming TOS is membrane-bound and may be involved in tyrosine transport.

  19. Tyrosine metabolic enzymes from insects and mammals: a comparative perspective.

    Science.gov (United States)

    Vavricka, Christopher John; Han, Qian; Mehere, Prajwalini; Ding, Haizhen; Christensen, Bruce M; Li, Jianyong

    2014-02-01

    Differences in the metabolism of tyrosine between insects and mammals present an interesting example of molecular evolution. Both insects and mammals possess fine-tuned systems of enzymes to meet their specific demands for tyrosine metabolites; however, more homologous enzymes involved in tyrosine metabolism have emerged in many insect species. Without knowledge of modern genomics, one might suppose that mammals, which are generally more complex than insects and require tyrosine as a precursor for important catecholamine neurotransmitters and for melanin, should possess more enzymes to control tyrosine metabolism. Therefore, the question of why insects actually possess more tyrosine metabolic enzymes is quite interesting. It has long been known that insects rely heavily on tyrosine metabolism for cuticle hardening and for innate immune responses, and these evolutionary constraints are likely the key answers to this question. In terms of melanogenesis, mammals also possess a high level of regulation; yet mammalian systems possess more mechanisms for detoxification whereas insects accelerate pathways like melanogenesis and therefore must bear increased oxidative pressure. Our research group has had the opportunity to characterize the structure and function of many key proteins involved in tyrosine metabolism from both insects and mammals. In this mini review we will give a brief overview of our research on tyrosine metabolic enzymes in the scope of an evolutionary perspective of mammals in comparison to insects. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  20. Dietary Tyrosine Benefits Cognitive and Psychomotor Performance During Body Cooling

    National Research Council Canada - National Science Library

    O'Brien, Catherine; Mahoney, Caroline; Tharion, William J; Sils, Ingrid V; Castellani, John W

    2007-01-01

    ... examined. This study evaluated the effect of tyrosine supplementation on cognitive, psychomotor, and physical performance following a cold water immersion protocol that lowered body core temperature...

  1. SH3 domain tyrosine phosphorylation--sites, role and evolution.

    Directory of Open Access Journals (Sweden)

    Zuzana Tatárová

    Full Text Available BACKGROUND: SH3 domains are eukaryotic protein domains that participate in a plethora of cellular processes including signal transduction, proliferation, and cellular movement. Several studies indicate that tyrosine phosphorylation could play a significant role in the regulation of SH3 domains. RESULTS: To explore the incidence of the tyrosine phosphorylation within SH3 domains we queried the PhosphoSite Plus database of phosphorylation sites. Over 100 tyrosine phosphorylations occurring on 20 different SH3 domain positions were identified. The tyrosine corresponding to c-Src Tyr-90 was by far the most frequently identified SH3 domain phosphorylation site. A comparison of sequences around this tyrosine led to delineation of a preferred sequence motif ALYD(Y/F. This motif is present in about 15% of human SH3 domains and is structurally well conserved. We further observed that tyrosine phosphorylation is more abundant than serine or threonine phosphorylation within SH3 domains and other adaptor domains, such as SH2 or WW domains. Tyrosine phosphorylation could represent an important regulatory mechanism of adaptor domains. CONCLUSIONS: While tyrosine phosphorylation typically promotes signaling protein interactions via SH2 or PTB domains, its role in SH3 domains is the opposite - it blocks or prevents interactions. The regulatory function of tyrosine phosphorylation is most likely achieved by the phosphate moiety and its charge interfering with binding of polyproline helices of SH3 domain interacting partners.

  2. Large daily fluctuations in plasma tyrosine in treated patients with phenylketonuria

    NARCIS (Netherlands)

    vanSpronsen, FJ; vanDijk, T; Smit, GPA; vanRijn, M; Reijngoud, DJ; Berger, Ruud; Heymans, HSA

    1996-01-01

    In patients with phenylketonuria (PKU), extra tyrosine supplementation is advocated in addition to tyrosine-enriched amino acid mixtures. PKU patients have low fasting plasma tyrosine concentrations, but little is known about tyrosine fluctuations during the day. Plasma tyrosine concentrations were

  3. Extracellular phosphorylation of a receptor tyrosine kinase controls synaptic localization of NMDA receptors and regulates pathological pain

    Science.gov (United States)

    Sheffler-Collins, Sean I.; Xia, Nan L.; Henderson, Nathan; Tillu, Dipti V.; Hassler, Shayne; Spellman, Daniel S.; Zhang, Guoan; Neubert, Thomas A.; Price, Theodore J.

    2017-01-01

    Extracellular phosphorylation of proteins was suggested in the late 1800s when it was demonstrated that casein contains phosphate. More recently, extracellular kinases that phosphorylate extracellular serine, threonine, and tyrosine residues of numerous proteins have been identified. However, the functional significance of extracellular phosphorylation of specific residues in the nervous system is poorly understood. Here we show that synaptic accumulation of GluN2B-containing N-methyl-D-aspartate receptors (NMDARs) and pathological pain are controlled by ephrin-B-induced extracellular phosphorylation of a single tyrosine (p*Y504) in a highly conserved region of the fibronectin type III (FN3) domain of the receptor tyrosine kinase EphB2. Ligand-dependent Y504 phosphorylation modulates the EphB-NMDAR interaction in cortical and spinal cord neurons. Furthermore, Y504 phosphorylation enhances NMDAR localization and injury-induced pain behavior. By mediating inducible extracellular interactions that are capable of modulating animal behavior, extracellular tyrosine phosphorylation of EphBs may represent a previously unknown class of mechanism mediating protein interaction and function. PMID:28719605

  4. Expression of Tyrosine Hydroxylase is Negatively Regulated Via Prion Protein.

    Science.gov (United States)

    da Luz, Marcio Henrique Mello; Glezer, Isaias; Xavier, Andre Machado; da Silva, Marcelo Alberti Paiva; Pino, Jessica Monteiro Volejnik; Zamith, Thiago Panaro; Vieira, Taynara Fernanda; Antonio, Bruno Brito; Antunes, Hanna Karen Moreira; Martins, Vilma Regina; Lee, Kil Sun

    2016-07-01

    Cellular prion protein (PrP(C)) is a glycoprotein of the plasma membrane that plays pleiotropic functions by interacting with multiple signaling complexes at the cell surface. Recently, a number of studies have reported the involvement of PrP(C) in dopamine metabolism and signaling, including its interactions with tyrosine hydroxylase (TH) and dopamine receptors. However, the outcomes reported by independent studies are still debatable. Therefore in this study, we investigated the effects of PrP(C) on the TH expression during the differentiation of N2a cells with dibutyryl-cAMP, a well-known cAMP analog that activates TH transcription. Upon differentiation, TH was induced with concomitant reduction of PrP(C) at protein level, but not at mRNA level. shRNA-mediated PrP(C) reduction increased the basal level of TH at both mRNA and protein levels without dibutyryl-cAMP treatment. This phenotype was reversed by re-expression of PrP(C). PrP(C) knockdown also potentiated the effect of dibutyryl-cAMP on TH expression. Our findings suggest that PrP(C) has suppressive effects on TH expression. As a consequence, altered PrP(C) functions may affect the regulation of dopamine metabolism and related neurological disorders.

  5. Deuterium Labelling of L-Tyrosine with Raney Alloys in Alkaline Deuterium Oxide Solutions

    OpenAIRE

    Tsuzuki, Hirohisa; Mukumoto, Mamoru; Udagawa, Jun; Mataka, Shuntaro; Tashiro, Masashi

    1997-01-01

    The synthesis of deuteriated L-tyrosines with Raney alloys in alkaline deuterium oxide solutions, involving reductive debromination of brominated L-tyrosines and hydrogen-deuterium (H-D) exchange of L-tyrosines, without causing racemization, is presented.

  6. Determination of o-tyrosine in irradiated chicken

    International Nuclear Information System (INIS)

    Zoller, O.; Schoeni, D.; Zimmerli, B.

    1991-01-01

    The author explains his method to determine O-Tyrosine in irradiated chickens with a high-performance liquid chromatography. The method is simple and fast, but a proper chromatographic separation is difficult. The detection limit with a high sensitive detector is about 0.05-0.1 mg O-Tyrosine/kg meat (9 refs)

  7. Tyrosine improves working memory in a multitasking environment.

    Science.gov (United States)

    Thomas, J R; Lockwood, P A; Singh, A; Deuster, P A

    1999-11-01

    Previous studies indicate that tyrosine may prove useful in promoting improved performance in situations in which performance is compromised by stress. To extend the generality of previous tyrosine findings, the present study examined the effects of tyrosine ingestion on performance during both a Multiple Task and a Simple Task battery. The multiple task battery was designed to measure working memory, arithmetic skills, and visual and auditory monitoring simultaneously, whereas the simple task battery measured only working memory and visual monitoring. Ten men and 10 women subjects underwent these batteries 1 h after ingesting 150 mg/kg of l-tyrosine or placebo. Administration of tyrosine significantly enhanced accuracy and decreased frequency of list retrieval on the working memory task during the multiple task battery compared with placebo. However, tyrosine induced no significant changes in performance on the arithmetic, visual, or auditory tasks during the Multiple Task, or modified any performance measures during the Simple Task battery. Blood levels of ACTH and cortisol were not, but heart rate and blood pressure were significantly increased during the performance tasks. The present results indicate that tyrosine may sustain working memory when competing requirements to perform other tasks simultaneously degrade performance, and that supplemental tyrosine may be appropriate for maintaining performance when mild to severe decrements are anticipated.

  8. Functional interaction between nonreceptor tyrosine kinase c-Abl and SR-Rich protein RBM39

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Sanyue [Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850 (China); Qu, Xiuhua [General Navy Hospital of PLA, 6 Fucheng Rd, Haidian District, Beijing 100037 (China); Li, Ping; Ma, Qingjun [Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850 (China); Liu, Xuan, E-mail: liux931932@163.com [Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850 (China); Cao, Cheng, E-mail: cao_c@sohu.com [Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850 (China)

    2016-04-22

    RBM39, also known as splicing factor HCC1.4, acts as a transcriptional coactivator for the steroid nuclear receptors JUN/AP-1, ESR1/ER-α and ESR2/ER-β. RBM39 is involved in the regulation of the transcriptional responses of these steroid nuclear receptors and promotes transcriptional initiation. In this paper, we report that RBM39 interacts with the nonreceptor tyrosine kinase c-Abl. Both the Src homology (SH) 2 and SH3 domains of c-Abl interact with RBM39. The major tyrosine phosphorylation sites on RBM39 that are phosphorylated by c-Abl are Y95 and Y99, as demonstrated by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) and mutational analysis. c-Abl was shown boost the transcriptional coactivation activity of RBM39 for ERα and PRβ in a tyrosine kinase-dependent manner. The results suggest that mammalian c-Abl plays an important role in steroid hormone receptor-mediated transcription by regulating RBM39. - Highlights: • c-Abl interacts with RBM39. • RBM39 is phosphorylated by c-Abl. • c-Abl regulates transcriptional coactivation activity of RBM39 on the ERα and PRβ.

  9. Src Inhibits the Hippo Tumor Suppressor Pathway through Tyrosine Phosphorylation of Lats1.

    Science.gov (United States)

    Si, Yuan; Ji, Xinyan; Cao, Xiaolei; Dai, Xiaoming; Xu, Lingyi; Zhao, Hongxia; Guo, Xiaocan; Yan, Huan; Zhang, Haitao; Zhu, Chu; Zhou, Qi; Tang, Mei; Xia, Zongping; Li, Li; Cong, Yu-Sheng; Ye, Sheng; Liang, Tingbo; Feng, Xin-Hua; Zhao, Bin

    2017-09-15

    The Hippo pathway regulates cell proliferation, apoptosis, and stem cell self-renewal, and its inactivation in animal models causes organ enlargement followed by tumorigenesis. Hippo pathway deregulation occurs in many human cancers, but the underlying mechanisms are not fully understood. Here, we report tyrosine phosphorylation of the Hippo pathway tumor suppressor LATS1 as a mechanism underlying its regulation by cell adhesion. A tyrosine kinase library screen identified Src as the kinase to directly phosphorylate LATS1 on multiple residues, causing attenuated Mob kinase activator binding and structural alteration of the substrate-binding pocket in the kinase domain. Cell matrix adhesion activated the Hippo pathway effector transcription coactivator YAP partially through Src-mediated phosphorylation and inhibition of LATS1. Aberrant Src activation abolished the tumor suppressor activity of LATS1 and induced tumorigenesis in a YAP-dependent manner. Protein levels of Src in human breast cancer tissues correlated with accumulation of active YAP dephosphorylated on the LATS1 target site. These findings reveal tyrosine phosphorylation of LATS1 by Src as a novel mechanism of Hippo pathway regulation by cell adhesion and suggest Src activation as an underlying reason for YAP deregulation in tumorigenesis. Cancer Res; 77(18); 4868-80. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Functional interaction between nonreceptor tyrosine kinase c-Abl and SR-Rich protein RBM39

    International Nuclear Information System (INIS)

    Mai, Sanyue; Qu, Xiuhua; Li, Ping; Ma, Qingjun; Liu, Xuan; Cao, Cheng

    2016-01-01

    RBM39, also known as splicing factor HCC1.4, acts as a transcriptional coactivator for the steroid nuclear receptors JUN/AP-1, ESR1/ER-α and ESR2/ER-β. RBM39 is involved in the regulation of the transcriptional responses of these steroid nuclear receptors and promotes transcriptional initiation. In this paper, we report that RBM39 interacts with the nonreceptor tyrosine kinase c-Abl. Both the Src homology (SH) 2 and SH3 domains of c-Abl interact with RBM39. The major tyrosine phosphorylation sites on RBM39 that are phosphorylated by c-Abl are Y95 and Y99, as demonstrated by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) and mutational analysis. c-Abl was shown boost the transcriptional coactivation activity of RBM39 for ERα and PRβ in a tyrosine kinase-dependent manner. The results suggest that mammalian c-Abl plays an important role in steroid hormone receptor-mediated transcription by regulating RBM39. - Highlights: • c-Abl interacts with RBM39. • RBM39 is phosphorylated by c-Abl. • c-Abl regulates transcriptional coactivation activity of RBM39 on the ERα and PRβ.

  11. Insulin stimulates the tyrosine phosphorylation of a Mr = 160,000 glycoprotein in adipocyte plasma membranes

    International Nuclear Information System (INIS)

    Yu, K.T.; Khalaf, N.; Czech, M.P.

    1986-01-01

    In an attempt to identify putative substrates for the insulin receptor kinase, adipocyte plasma membranes were incubated with [γ- 32 P]ATP in the presence and absence of insulin. Insulin stimulates the tyrosine phosphorylation of its receptor β subunit but does not detectably alter the phosphorylation of other membrane proteins. In contrast, when plasma membranes from insulin-treated adipocytes are phosphorylated, the 32 P-labeling of a Mr=160,000 species (p160) and insulin receptor β subunit are markedly increased when compared to controls. p160 exhibits a rapid response (max. at 1 min) and high sensitivity (ED 50 = 2 x 10 -10 M) to insulin. The stimulatory effect of insulin on the phosphorylation of p160 is rapidly reversed following the addition of anti-insulin serum. Cold chase experiments indicate that insulin promotes the phosphorylation of p160 rather than inhibiting its dephosphorylation. p160 is a glycoprotein as evidenced by its adsorption to immobilized lectins and does not represent the insulin receptor precursor. The action of insulin on p160 tyrosine phosphorylation is mimicked by concanavalin A but not by EGF and other insulin-like agents such as hydrogen peroxide and vanadate. These results suggest that p160 tyrosine phosphorylation is an insulin receptor-mediated event and may participate in signalling by the insulin receptor

  12. One-step expression and tyrosine O-sulfonation of Ax21 in Escherichia coli.

    Science.gov (United States)

    Shuguo, Hou; Wei, Zhang; Chao, Zhang; Daoji, Wu

    2012-03-01

    Ax21 (activator of Xa21-mediated immunity), a pathogen-associated molecular pattern secreted by Xanthomonas oryzae pv. oryzae, can be perceived by a membrane-located pattern recognition receptor Xa21 and triggered immune responses in rice. An Ax21-derived peptide (17-amino acid) containing a sulfated tyrosine-22 (axY(S)22) is sufficient for Ax21 activity. Here, we expressed Ax21 and O-sulfated its tyrosine-22 through coexpressing a putative tyrosine sulfotransferase, raxST, and two other genes involved in the synthesis of 3'-phosphoadenosine 5'-phosphosulfate in Escherichia coli BL21 (DE3). The sulfated Ax21 fused with a histidine tag in its N-terminus was extracted and bound onto a Ni-NTA agarose and then cleaved with Factor Xa and CNBr in turn. Δax21Y(S)22, a 36-amino acid peptide covering axY(S)22 in the lysate supernatant, was finally yielded after ultrafiltration. The purified peptide was further verified by Tricine-SDS-PAGE and isoelectrofocusing electrophoresis. Lesion length analysis, reactive oxygen species production, and mitogen-activated protein kinase (MAPK) activation of rice leaves inoculated with Δax21Y(S)22 confirmed the activity of the sulfated peptide. Overall, this study successfully established an efficient system for expression and purification of a sulfated peptide. In addition, the sulfotransferase activity of RaxST was confirmed for the first time.

  13. Measurement of optical purity of p-BPA-Tyrosine dipeptide

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, K.; Sato, N.; Kitta, K.; Saitake, Y. [Shinshu Univ., Faculty of Science, Matsumoto, Nagano (Japan); Hiratsuka, J. [Kawasaki Medical School, Dept. of Radiation Oncology, Kurashiki, Okayama (Japan); Ichihashi, M. [Kobe Univ. (Japan). School of Medicine

    2000-10-01

    Melanin biosynthesis is very active in melanoma cells, and tyrosine is one of the substrates of the melanin biosynthesis. Tyrosine is oxidized to dopa by tyrosinase at the beginning of melanin biosynthesis process. Therefore, p-boronophenylalanine (BPA)-tyrosine dipeptide is expected to be a substrate of melanin biosynthesis process, and the peptide will be incorporated in melanoma cells, and then tumor boron concentration lasts in their cells for long time. Since p-BPA tyrosine are amino acids, they have D, L isomers. Therefore, we have tried to synthesize four isomers (L-L, L-D, D-L, D-D) of p-BPA-Tyrosine dipeptide, and have measured their optical purity with HPLC. (author)

  14. The Sulfinator: predicting tyrosine sulfation sites in protein sequences.

    Science.gov (United States)

    Monigatti, Flavio; Gasteiger, Elisabeth; Bairoch, Amos; Jung, Eva

    2002-05-01

    Protein tyrosine sulfation is an important post-translational modification of proteins that go through the secretory pathway. No clear-cut acceptor motif can be defined that allows the prediction of tyrosine sulfation sites in polypeptide chains. The Sulfinator is a software tool that can be used to predict tyrosine sulfation sites in protein sequences with an overall accuracy of 98%. Four different Hidden Markov Models were constructed, each of them specialized to recognize sulfated tyrosine residues depending on their location within the sequence: near the N-terminus, near the C-terminus, in the center of a window with a size of at least 25 amino acids, as well as in windows containing several tyrosine residues. The Sulfinator is accessible at (http://www.expasy.org/tools/sulfinator/). Sulfinator documentation is accessible at (http://www.expasy.org/tools/sulfinator/sulfinator-doc.html).

  15. Evidence for requirement of tyrosine phosphorylation in endothelial P2Y- and P2U- purinoceptor stimulation of prostacyclin release.

    Science.gov (United States)

    Bowden, A.; Patel, V.; Brown, C.; Boarder, M. R.

    1995-01-01

    1. The release of prostacyclin (PGI2) from vascular endothelial cells is stimulated by ATP acting at G protein-coupled P2-purinoceptors. Here we investigate the hypothesis that tyrosine protein phosphorylations are involved in this response. 2. The use of Western blots with anti-phosphotyrosine antibodies showed that 30 microM 2MeSATP (selective for P2Y-purinoceptors), 300 microM UTP (selective for P2U-purinoceptors) and 300 microM ATP (effective at both these purinoceptors), each stimulate the tyrosine phosphorylation of proteins in bovine cultured aortic endothelial cells. Each of these agonists also stimulates 6-keto PGF1 alpha accumulation in the medium (an index of PGI2 release) in these cells in the same period. 3. The tyrosine kinase inhibitor, genistein, inhibits the 6-keto PGF1 alpha response with the same concentration-dependency (1-100 microM) as the tyrosine phosphorylation response. 4. Tyrphostin, a structurally and functionally distinct tyrosine kinase inhibitor, is also a potent inhibitor (0.1-10 microM) of the 6-keto PGF1 alpha response. 5. Neither tyrphostin nor genistein inhibit the phospholipase C response to P2-purinoceptor stimulation. Furthermore, these inhibitors do not affect the 6-keto PGF1 alpha response to ionomycin. 6. These results show that the regulation of vascular endothelial cells by ATP acting at both P2Y- and P2U-purinoceptors involves the stimulation of tyrosine phosphorylation, and suggest that this is a necessary event for the purinoceptor-mediated stimulation of PGI2 production. Images Figure 1 Figure 5 PMID:8590971

  16. Bruton tyrosine kinase inhibitor ONO/GS-4059: from bench to bedside.

    Science.gov (United States)

    Wu, Jingjing; Zhang, Mingzhi; Liu, Delong

    2017-01-24

    The Bruton tyrosine kinase (BTK) inhibitor, ibrutinib, has been approved for the treatment of chronic lymphocytic leukemia, mantle cell lymphoma, and Waldenstrom's macroglobulinemia. Acquired resistance to ibrutinib due to BTK C481S mutation has been reported. Mutations in PLCγ2 can also mediate resistance to ibrutinib. Untoward effects due to off-target effects are also disadvantages of ibrutinib. More selective and potent BTK inhibitors (ACP-196, ONO/GS-4059, BGB-3111, CC-292) are being investigated. This review summarized the preclinical research and clinical data of ONO/GS-4059.

  17. A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9.

    Science.gov (United States)

    Demoulin, J B; Uyttenhove, C; Van Roost, E; DeLestré, B; Donckers, D; Van Snick, J; Renauld, J C

    1996-09-01

    Interleukin-9 (IL-9), a T-cell-derived cytokine, interacts with a specific receptor associated with the IL-2 receptor gamma chain. In this report, we analyze the functional domains of the human IL-9 receptor transfected into mouse lymphoid cell lines. Three different functions were examined: growth stimulation in factor-dependent pro-B Ba/F3 cells, protection against dexamethasone-induced apoptosis, and Ly-6A2 induction in BW5147 lymphoma cells. The results indicated that a single tyrosine, at position 116 in the cytoplasmic domain, was required for all three activities. In addition, we observed that human IL-9 reduced the proliferation rate of transfected BW5147 cells, an effect also dependent on the same tyrosine. This amino acid was necessary for IL-9-mediated tyrosine phosphorylation of the receptor and for STAT activation but not for IRS-2/4PS activation or for JAK1 phosphorylation, which depended on a domain closer to the plasma membrane. We also showed that JAK1 was constitutively associated with the IL-9 receptor. Activated STAT complexes induced by IL-9 were found to contain STAT1, STAT3, and STAT5 transcription factors. Moreover, sequence homologies between human IL-9 receptor tyrosine 116 and tyrosines (of other receptors activating STAT3 and STAT5 were observed. Taken together, these data indicate that a single tyrosine of the IL-9 receptor, required for activation of three different STAT proteins, is necessary for distinct activities of this cytokine, including proliferative responses.

  18. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying-Nan P.; LaMarche, Matthew J.; Chan, Ho Man; Fekkes, Peter; Garcia-Fortanet, Jorge; Acker, Michael G.; Antonakos, Brandon; Chen, Christine Hiu-Tung; Chen, Zhouliang; Cooke, Vesselina G.; Dobson, Jason R.; Deng, Zhan; Fei, Feng; Firestone, Brant; Fodor, Michelle; Fridrich, Cary; Gao, Hui; Grunenfelder, Denise; Hao, Huai-Xiang; Jacob, Jaison; Ho, Samuel; Hsiao, Kathy; Kang, Zhao B.; Karki, Rajesh; Kato, Mitsunori; Larrow, Jay; La Bonte, Laura R.; Lenoir, Francois; Liu, Gang; Liu, Shumei; Majumdar, Dyuti; Meyer, Matthew J.; Palermo, Mark; Perez, Lawrence; Pu, Minying; Price, Edmund; Quinn, Christopher; Shakya, Subarna; Shultz, Michael D.; Slisz, Joanna; Venkatesan, Kavitha; Wang, Ping; Warmuth, Markus; Williams, Sarah; Yang, Guizhi; Yuan, Jing; Zhang, Ji-Hu; Zhu, Ping; Ramsey, Timothy; Keen, Nicholas J.; Sellers, William R.; Stams, Travis; Fortin , Pascal D. (Novartis)

    2016-06-29

    The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase1. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma1, 2, 3, 4, 5. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS–ERK signalling pathway2, 3. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways6, 7. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy8, 9. Here we report the discovery of a highly potent (IC50 = 0.071 μM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS–ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers.

  19. Protein Tyrosine Nitration: Selectivity, physicochemical and biological consequences, denitration and proteomics methods for the identification of tyrosine-nitrated proteins

    NARCIS (Netherlands)

    Abello, N.; Kerstjens, H.A.M.; Postma, D.S; Bischoff, Rainer

    2009-01-01

    Protein tyrosine nitration (PTN) is a post-translational modification occurring under the action of a nitrating agent. Tyrosine is modified in the 3-position of the phenolic ring through the addition of a nitro group (NO2). In the present article, we review the main nitration reactions and elucidate

  20. Protein Tyrosine Nitration : Selectivity, Physicochemical and Biological Consequences, Denitration, and Proteomics Methods for the Identification of Tyrosine-Nitrated Proteins

    NARCIS (Netherlands)

    Abello, Nicolas; Kerstjens, Huib A. M.; Postma, Dirkje S.; Bischoff, Rainer

    Protein tyrosine nitration (PTN) is a post-translational modification occurring under the action of a nitrating agent. Tyrosine is modified in the 3-position of the phenolic ring through the addition of a nitro group (NO(2)). In the present article, we review the main nitration reactions and

  1. Receptor tyrosine phosphatase R-PTP-alpha is tyrosine-phosphorylated and associated with the adaptor protein Grb2

    DEFF Research Database (Denmark)

    Su, J; Batzer, A; Sap, J

    1994-01-01

    Receptor tyrosine phosphatases (R-PTPases) have generated interest because of their suspected involvement in cellular signal transduction. The adaptor protein Grb2 has been implicated in coupling receptor tyrosine kinases to Ras. We report that a ubiquitous R-PTPase, R-PTP-alpha, is tyrosine......-phosphorylated and associated in vivo with the Grb2 protein. This association can be reproduced in stably and transiently transfected cells, as well as in vitro using recombinant Grb2 protein. Association requires the presence of an intact SH2 domain in Grb2, as well as tyrosine phosphorylation of R-PTP-alpha. This observation...... links a receptor tyrosine phosphatase with a key component of a central cellular signalling pathway and provides a basis for addressing R-PTP-alpha function....

  2. Single Tyrosine Mutation in AAV8 Vector Capsid Enhances Gene Lung Delivery and Does Not Alter Lung Morphofunction in Mice

    Directory of Open Access Journals (Sweden)

    Sabrina V. Martini

    2014-08-01

    Full Text Available Background/Aims: Vectors derived from adeno-associated viruses (AAVs are important gene delivery tools for treating pulmonary diseases. Phosphorylation of surface-exposed tyrosine residues from AAV2 capsid targets the viral particles for ubiquitination and proteasome-mediated degradation, and mutations of these tyrosine residues lead to highly efficient vector transduction in vitro and in vivo in different organs. We evaluated the pulmonary transduction efficiency of AAV8 vectors containing point mutations in surface-exposed capsid tyrosine residues. Methods: Male C57BL/6 mice (20-25 g, n=24 were randomly assigned into three groups: control group animals received intratracheal (i.t. instillation of saline (50 μl, wild-type AAV8 group, and capsid mutant Y733F AAV8 group, which received (i.t. AAV8 vectors containing the DNA sequence of enhanced green fluorescence protein (eGFP. Four weeks after instillation, lung mechanics and morphometry, vector transduction (immunohistochemistry and mRNA expression of eGFP, and inflammatory cytokines and growth factor expression were analyzed. Results: Tyrosine-mutant AAV8 vectors displayed significantly increased transduction efficiency in the lung compared with their wild-type counterparts. No significant differences were observed in lung mechanics and morphometry between experimental groups. There was no evidence of inflammatory response in any group. Conclusion: AAV8 vectors may be useful for new therapeutic strategies for the treatment of pulmonary diseases.

  3. Protein tyrosine nitration and thiol oxidation by peroxynitrite-strategies to prevent these oxidative modifications.

    Science.gov (United States)

    Daiber, Andreas; Daub, Steffen; Bachschmid, Markus; Schildknecht, Stefan; Oelze, Matthias; Steven, Sebastian; Schmidt, Patrick; Megner, Alexandra; Wada, Masayuki; Tanabe, Tadashi; Münzel, Thomas; Bottari, Serge; Ullrich, Volker

    2013-04-08

    The reaction product of nitric oxide and superoxide, peroxynitrite, is a potent biological oxidant. The most important oxidative protein modifications described for peroxynitrite are cysteine-thiol oxidation and tyrosine nitration. We have previously demonstrated that intrinsic heme-thiolate (P450)-dependent enzymatic catalysis increases the nitration of tyrosine 430 in prostacyclin synthase and results in loss of activity which contributes to endothelial dysfunction. We here report the sensitive peroxynitrite-dependent nitration of an over-expressed and partially purified human prostacyclin synthase (3.3 μM) with an EC50 value of 5 μM. Microsomal thiols in these preparations effectively compete for peroxynitrite and block the nitration of other proteins up to 50 μM peroxynitrite. Purified, recombinant PGIS showed a half-maximal nitration by 10 μM 3-morpholino sydnonimine (Sin-1) which increased in the presence of bicarbonate, and was only marginally induced by freely diffusing NO2-radicals generated by a peroxidase/nitrite/hydrogen peroxide system. Based on these observations, we would like to emphasize that prostacyclin synthase is among the most efficiently and sensitively nitrated proteins investigated by us so far. In the second part of the study, we identified two classes of peroxynitrite scavengers, blocking either peroxynitrite anion-mediated thiol oxidations or phenol/tyrosine nitrations by free radical mechanisms. Dithiopurines and dithiopyrimidines were highly effective in inhibiting both reaction types which could make this class of compounds interesting therapeutic tools. In the present work, we highlighted the impact of experimental conditions on the outcome of peroxynitrite-mediated nitrations. The limitations identified in this work need to be considered in the assessment of experimental data involving peroxynitrite.

  4. Protein Tyrosine Nitration and Thiol Oxidation by Peroxynitrite—Strategies to Prevent These Oxidative Modifications

    Science.gov (United States)

    Daiber, Andreas; Daub, Steffen; Bachschmid, Markus; Schildknecht, Stefan; Oelze, Matthias; Steven, Sebastian; Schmidt, Patrick; Megner, Alexandra; Wada, Masayuki; Tanabe, Tadashi; Münzel, Thomas; Bottari, Serge; Ullrich, Volker

    2013-01-01

    The reaction product of nitric oxide and superoxide, peroxynitrite, is a potent biological oxidant. The most important oxidative protein modifications described for peroxynitrite are cysteine-thiol oxidation and tyrosine nitration. We have previously demonstrated that intrinsic heme-thiolate (P450)-dependent enzymatic catalysis increases the nitration of tyrosine 430 in prostacyclin synthase and results in loss of activity which contributes to endothelial dysfunction. We here report the sensitive peroxynitrite-dependent nitration of an over-expressed and partially purified human prostacyclin synthase (3.3 μM) with an EC50 value of 5 μM. Microsomal thiols in these preparations effectively compete for peroxynitrite and block the nitration of other proteins up to 50 μM peroxynitrite. Purified, recombinant PGIS showed a half-maximal nitration by 10 μM 3-morpholino sydnonimine (Sin-1) which increased in the presence of bicarbonate, and was only marginally induced by freely diffusing NO2-radicals generated by a peroxidase/nitrite/hydrogen peroxide system. Based on these observations, we would like to emphasize that prostacyclin synthase is among the most efficiently and sensitively nitrated proteins investigated by us so far. In the second part of the study, we identified two classes of peroxynitrite scavengers, blocking either peroxynitrite anion-mediated thiol oxidations or phenol/tyrosine nitrations by free radical mechanisms. Dithiopurines and dithiopyrimidines were highly effective in inhibiting both reaction types which could make this class of compounds interesting therapeutic tools. In the present work, we highlighted the impact of experimental conditions on the outcome of peroxynitrite-mediated nitrations. The limitations identified in this work need to be considered in the assessment of experimental data involving peroxynitrite. PMID:23567270

  5. Complement receptor-3 negatively regulates the phagocytosis of degenerated myelin through tyrosine kinase Syk and cofilin

    Directory of Open Access Journals (Sweden)

    Hadas Smadar

    2012-07-01

    Full Text Available Abstract Background Intact myelin, which normally surrounds axons, breaks down in Wallerian degeneration following axonal injury and during neurodegenerative diseases such as multiple sclerosis. Clearance of degenerated myelin by phagocytosis is essential since myelin impedes repair and exacerbates damage. CR3 (complement receptor-3 is a principal phagocytic receptor in myelin phagocytosis. We studied how tyrosine kinase Syk (spleen tyrosine kinase and cofilin control phagocytosis of degenerated myelin by CR3 in microglia and macrophages. Syk is a non-receptor tyrosine kinase that CR3 recruits to convey cellular functions. Cofilin is an actin-depolymerizing protein that controls F-actin (filamentous actin remodeling (i.e., disassembly and reassembly by shifting between active unphosphorylated and inactive phosphorylated states. Results Syk was continuously activated during prolonged phagocytosis. Phagocytosis increased when Syk activity and expression were reduced, suggesting that normally Syk down regulates CR3-mediated myelin phagocytosis. Levels of inactive p-cofilin (phosphorylated cofilin decreased transiently during prolonged phagocytosis. In contrast, p-cofilin levels decreased continuously when Syk activity and expression were continuously reduced, suggesting that normally Syk advances the inactive state of cofilin. Observations also revealed inverse relationships between levels of phagocytosis and levels of inactive p-cofilin, suggesting that active unphosphorylated cofilin advances phagocytosis. Active cofilin could advance phagocytosis by promoting F-actin remodeling, which supports the production of membrane protrusions (e.g., filopodia, which, as we also revealed, are instrumental in myelin phagocytosis. Conclusions CR3 both activates and downregulates myelin phagocytosis at the same time. Activation was previously documented. We presently demonstrate that downregulation is mediated through Syk, which advances the inactive

  6. Tyrosine sulfation of the amino terminus of PSGL-1 is critical for enterovirus 71 infection.

    Directory of Open Access Journals (Sweden)

    Yorihiro Nishimura

    Full Text Available Enterovirus 71 (EV71 is one of the major causative agents of hand, foot, and mouth disease, a common febrile disease in children; however, EV71 has been also associated with various neurological diseases including fatal cases in large EV71 outbreaks particularly in the Asia Pacific region. Recently we identified human P-selectin glycoprotein ligand-1 (PSGL-1 as a cellular receptor for entry and replication of EV71 in leukocytes. PSGL-1 is a sialomucin expressed on the surface of leukocytes, serves as a high affinity counterreceptor for selectins, and mediates leukocyte rolling on the endothelium. The PSGL-1-P-selectin interaction requires sulfation of at least one of three clustered tyrosines and an adjacent O-glycan expressing sialyl Lewis x in an N-terminal region of PSGL-1. To elucidate the molecular basis of the PSGL-1-EV71 interaction, we generated a series of PSGL-1 mutants and identified the post-translational modifications that are critical for binding of PSGL-1 to EV71. We expressed the PSGL-1 mutants in 293T cells and the transfected cells were assayed for their abilities to bind to EV71 by flow cytometry. We found that O-glycosylation on T57, which is critical for PSGL-1-selectin interaction, is not necessary for PSGL-1 binding to EV71. On the other hand, site-directed mutagenesis at one or more potential tyrosine sulfation sites in the N-terminal region of PSGL-1 significantly impaired PSGL-1 binding to EV71. Furthermore, an inhibitor of sulfation, sodium chlorate, blocked the PSGL-1-EV71 interaction and inhibited PSGL-1-mediated viral replication of EV71 in Jurkat T cells in a dose-dependent manner. Thus, the results presented in this study reveal that tyrosine sulfation, but not O-glycosylation, in the N-terminal region of PSGL-1 may facilitate virus entry and replication of EV71 in leukocytes.

  7. On the role of adenylate cyclase, tyrosine kinase, and tyrosine phosphatase in the response of nerve and glial cells to photodynamic impact

    Science.gov (United States)

    Kolosov, Mikhail S.; Bragin, D. E.; Dergacheva, Olga Y.; Vanzha, O.; Oparina, L.; Uzdensky, Anatoly B.

    2004-08-01

    The role of different intercellular signaling pathways involving adenylate cyclase (AC), receptor tyrosine kinase (RTK), tyrosine and serine/threonine protein phosphatases (PTP or PP, respectively) in the response of crayfish mechanoreceptor neuron (MRN) and surrounding glial cells to photodynamic effect of aluminum phthalocyanine Photosens have been studied. AC inhibition by MDL-12330A decreased neuron lifetime, whereas AC activation by forskolin increase it. Thus, increase in cAMP produced by activated AC protects SRN against photodynamic inactivation. Similarly, RTK inhibition by genistein decreased neuron lifetime, while inhibition of PTP or PP that remove phosphate groups from proteins, prolonged neuronal activity. AC inhibition reduced photoinduced damage of the plasma membrane, and, therefore, necrosis in neuronal and glial cells. RTK inhibition protected only neurons against PDT-induced membrane permeabilization while glial cells became lesser permeable under ortovanadate-mediated PTP inhibition. AC activation also prevented PDT-induced apoptosis in glial cells. PP inhibition enhanced apoptotic processes in photosensitized glial cells. Therefore, both intercellular signaling pathways involving AC and TRK are involved in the maintenance of neuronal activity, integrity of the neuronal and glial plasma membranes and in apoptotic processes in glia under photosensitization.

  8. Direct observation of spin-injection in tyrosinate-functionalized single-wall carbon nanotubes

    NARCIS (Netherlands)

    Tsoufis, Theodoros; Ampoumogli, Asem; Gournis, Dimitrios; Georgakilas, Vasilios; Jankovic, Lubos; Christoforidis, Konstantinos C.; Deligiannakis, Yiannis; Mavrandonakis, Andreas; Froudakis, George E.; Maccallini, Enrico; Rudolf, Petra; Mateo-Alonso, Aurelio; Prato, Maurizio

    In this work, we report on the interaction of a tyrosinate radical with single wall carbon nanotubes (CNT). The tyrosinate radical was formed from tyrosine (ester) by Fenton's reagent and, reacted in situ with carbon nanotubes resulting in novel tyrosinated carbon nanotube derivatives. The covalent

  9. Tyrosine phosphorylation of Rab7 by Src kinase.

    Science.gov (United States)

    Lin, Xiaosi; Zhang, Jiaming; Chen, Lingqiu; Chen, Yongjun; Xu, Xiaohui; Hong, Wanjin; Wang, Tuanlao

    2017-07-01

    The small molecular weight GTPase Rab7 is a key regulator for late endosomal/lysosomal membrane trafficking, it was known that Rab7 is phosphorylated, but the corresponding kinase and the functional regulation of Rab7 phosphorylation remain unclear. We provide evidence here that Rab7 is a substrate of Src kinase, and is tyrosine-phosphorylated by Src, withY183 residue of Rab7 being the optimal phosphorylation site for Src. Further investigations demonstrated that the tyrosine phosphorylation of Rab7 depends on the guanine nucleotide binding activity of Rab7 and the activity of Src kinase. The tyrosine phosphorylation of Rab7 is physiologically induced by EGF, and impairs the interaction of Rab7 with RILP, consequently inhibiting EGFR degradation and sustaining Akt signaling. These results suggest that the tyrosine phosphorylation of Rab7 may be involved in coordinating membrane trafficking and cell signaling. Copyright © 2017. Published by Elsevier Inc.

  10. Cytochrome c Is Tyrosine 97 Phosphorylated by Neuroprotective Insulin Treatment

    Czech Academy of Sciences Publication Activity Database

    Sanderson, T. H.; Mahapatra, G.; Pecina, Petr; Ji, Q.; Yu, K.; Sinkler, Ch.; Varughese, A.; Kumar, R.; Bukowski, M. J.; Tousignant, R. N.; Salomon, A. R.; Lee, I.; Hüttemann, M.

    2013-01-01

    Roč. 8, č. 11 (2013), e78627 E-ISSN 1932-6203 Institutional support: RVO:67985823 Keywords : cytochrome c * tyrosine phosphorylation * brain ischemia * insulin Subject RIV: ED - Physiology Impact factor: 3.534, year: 2013

  11. Phosphorylation of tyrosine residues 31 and 118 on paxillin regulates cell migration through an association with CRK in NBT-II cells.

    Science.gov (United States)

    Petit, V; Boyer, B; Lentz, D; Turner, C E; Thiery, J P; Vallés, A M

    2000-03-06

    Identification of signaling molecules that regulate cell migration is important for understanding fundamental processes in development and the origin of various pathological conditions. The migration of Nara Bladder Tumor II (NBT-II) cells was used to determine which signaling molecules are specifically involved in the collagen-mediated locomotion. We show here that paxillin is tyrosine phosphorylated after induction of motility on collagen. Overexpression of paxillin mutants in which tyrosine 31 and/or tyrosine 118 were replaced by phenylalanine effectively impaired cell motility. Moreover, stimulation of motility by collagen preferentially enhanced the association of paxillin with the SH2 domain of the adaptor protein CrkII. Mutations in both tyrosine 31 and 118 diminished the phosphotyrosine content of paxillin and prevented the formation of the paxillin-Crk complex, suggesting that this association is necessary for collagen-mediated NBT-II cell migration. Other responses to collagen, such as cell adhesion and spreading, were not affected by these mutations. Overexpression of wild-type paxillin or Crk could bypass the migration-deficient phenotype. Both the SH2 and the SH3 domains of CrkII are shown to play a critical role in this collagen-mediated migration. These results demonstrate the important role of the paxillin-Crk complex in the collagen-induced cell motility.

  12. Tyrosine biosynthesis, metabolism, and catabolism in plants.

    Science.gov (United States)

    Schenck, Craig A; Maeda, Hiroshi A

    2018-05-01

    L-Tyrosine (Tyr) is an aromatic amino acid (AAA) required for protein synthesis in all organisms, but synthesized de novo only in plants and microorganisms. In plants, Tyr also serves as a precursor of numerous specialized metabolites that have diverse physiological roles as electron carriers, antioxidants, attractants, and defense compounds. Some of these Tyr-derived plant natural products are also used in human medicine and nutrition (e.g. morphine and vitamin E). While the Tyr biosynthesis and catabolic pathways have been extensively studied in microbes and animals, respectively, those of plants have received much less attention until recently. Accumulating evidence suggest that the Tyr biosynthetic pathways differ between microbes and plants and even within the plant kingdom, likely to support the production of lineage-specific plant specialized metabolites derived from Tyr. The interspecies variations of plant Tyr pathway enzymes can now be used to enhance the production of Tyr and Tyr-derived compounds in plants and other synthetic biology platforms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Manzamenones Inhibit T-Cell Protein Tyrosine Phosphatase

    Directory of Open Access Journals (Sweden)

    Jun'ichi Kobayashi

    2006-02-01

    Full Text Available Abstract: Manzamenones A~C (1~3 and E~F (5~6, unique oxylipin metabolites isolated from a marine sponge Plakortis sp., have been found to exhibit inhibitory activity against Tcell protein tyrosine phosphatase (TCPTP. The inhibitory activity of 2 and 5 against TCPTP was 4 times more potent than that against protein tyrosine phosphatase-1B (PTP1B.

  14. Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity

    DEFF Research Database (Denmark)

    Argetsinger, Lawrence S; Kouadio, Jean-Louis K; Steen, Hanno

    2004-01-01

    or which of the 49 tyrosines in JAK2 are autophosphorylated. In this study, mass spectrometry and two-dimensional peptide mapping were used to determine that tyrosines 221, 570, and 1007 in JAK2 are autophosphorylated. Phosphorylation of tyrosine 570 is particularly robust. In response to growth hormone......, JAK2 was rapidly and transiently phosphorylated at tyrosines 221 and 570, returning to basal levels by 60 min. Analysis of the sequences surrounding tyrosines 221 and 570 in JAK2 and tyrosines in other proteins that are phosphorylated in response to ligands that activate JAK2 suggests that the YXX......[L/I/V] motif is one of the motifs recognized by JAK2. Experiments using JAK2 with tyrosines 221 and 570 mutated to phenylalanine suggest that tyrosines 221 and 570 in JAK2 may serve as regulatory sites in JAK2, with phosphorylation of tyrosine 221 increasing kinase activity and phosphorylation of tyrosine 570...

  15. Src homology 2 domain-based high throughput assays for profiling downstream molecules in receptor tyrosine kinase pathways.

    Science.gov (United States)

    Yaoi, Takuro; Chamnongpol, Sangpen; Jiang, Xin; Li, Xianqiang

    2006-05-01

    Src homology 2 (SH2) domains are evolutionary conserved small protein modules that bind specifically to tyrosine-phosphorylated peptides. More than 100 SH2 domains have been identified in proteins encoded by the human genome. The binding specificity of these domains plays a critical role in signaling within the cell, mediating the relocalization and interaction of proteins in response to changes in tyrosine phosphorylation states. Here we developed an SH2 domain profiling method based on a multiplexed fluorescent microsphere assay in which various SH2 domains are used to probe the global state of tyrosine phosphorylation within a cell and to screen synthetic peptides that specifically bind to each SH2 domain. The multiplexed, fluorescent microsphere-based assay is a recently developed technology that can potentially detect a wide variety of interactions between biological molecules. We constructed 25-plex SH2 domain-GST fusion protein-conjugated fluorescent microsphere sets to investigate phosphorylation-mediated cell signaling through the specific binding of SH2 domains to activated target proteins. The response of HeLa, COS-1, A431, and 293 cells and four breast cancer cell lines to epidermal growth factor and insulin were quantitatively profiled using this novel microsphere-based, multiplexed, high throughput assay system.

  16. Identification of BCAP-{sub L} as a negative regulator of the TLR signaling-induced production of IL-6 and IL-10 in macrophages by tyrosine phosphoproteomics

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Takayuki [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku-ku, Tokyo 162-0041 (Japan); Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480 (Japan); Oyama, Masaaki; Kozuka-Hata, Hiroko [Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Ishikawa, Kosuke; Inoue, Takafumi [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku-ku, Tokyo 162-0041 (Japan); Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480 (Japan); Muta, Tatsushi [Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578 (Japan); Semba, Kentaro, E-mail: ksemba@waseda.jp [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku-ku, Tokyo 162-0041 (Japan); Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480 (Japan); Inoue, Jun-ichiro, E-mail: jun-i@ims.u-tokyo.ac.jp [Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan)

    2010-09-17

    Research highlights: {yields} Twenty five tyrosine-phosphorylated proteins in LPS-stimulated macrophages were determined. {yields} BCAP is a novel tyrosine-phosphorylated protein in LPS-stimulated macrophages. {yields} BCAP-{sub L} inhibits IL-6 and IL-10 production in LPS-stimulated macrophages. -- Abstract: Toll-like receptor (TLR) signaling in macrophages is essential for anti-pathogen responses such as cytokine production and antigen presentation. Although numerous reports suggest that protein tyrosine kinases (PTKs) are involved in cytokine induction in response to lipopolysaccharides (LPS; TLR4 ligand) in macrophages, the PTK-mediated signal transduction pathway has yet to be analyzed in detail. Here, we carried out a comprehensive and quantitative dynamic tyrosine phosphoproteomic analysis on the TLR4-mediated host defense system in RAW264.7 macrophages using stable isotope labeling by amino acids in cell culture (SILAC). We determined the temporal profiles of 25 proteins based on SILAC-encoded peptide(s). Of these, we focused on the tyrosine phosphorylation of B-cell adaptor for phosphatidylinositol 3-kinase (BCAP) because the function of BCAP remains unknown in TLR signaling in macrophages. Furthermore, Bcap has two distinct transcripts, a full-length (Bcap-{sub L}) and an alternatively initiated or spliced (Bcap-{sub S}) mRNA, and little is known about the differential functions of the BCAP-{sub L} and BCAP-{sub S} proteins. Our study showed, for the first time, that RNAi-mediated selective depletion of BCAP-{sub L} enhanced IL-6 and IL-10 production but not TNF-{alpha} production in TLR ligand-stimulated macrophages. We propose that BCAP-{sub L} (but not BCAP-{sub S}) is a negative regulator of the TLR-mediated host defense system in macrophages.

  17. Tyrosine phosphorylation and proteolytic cleavage of Notch are required for non-canonical Notch/Abl signaling inDrosophilaaxon guidance.

    Science.gov (United States)

    Kannan, Ramakrishnan; Cox, Eric; Wang, Lei; Kuzina, Irina; Gu, Qun; Giniger, Edward

    2018-01-17

    Notch signaling is required for the development and physiology of nearly every tissue in metazoans. Much of Notch signaling is mediated by transcriptional regulation of downstream target genes, but Notch controls axon patterning in Drosophila by local modulation of Abl tyrosine kinase signaling, via direct interactions with the Abl co-factors Disabled and Trio. Here, we show that Notch-Abl axonal signaling requires both of the proteolytic cleavage events that initiate canonical Notch signaling. We further show that some Notch protein is tyrosine phosphorylated in Drosophila , that this form of the protein is selectively associated with Disabled and Trio, and that relevant tyrosines are essential for Notch-dependent axon patterning but not for canonical Notch-dependent regulation of cell fate. Based on these data, we propose a model for the molecular mechanism by which Notch controls Abl signaling in Drosophila axons. © 2018. Published by The Company of Biologists Ltd.

  18. MHC-I-induced apoptosis in human B-lymphoma cells is dependent on protein tyrosine and serine/threonine kinases

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Bregenholt, S; Johansen, B

    1999-01-01

    B lymphoma cells, is dependent on protein tyrosine kinases and the phosphatidylinositol 3 (PI-3) kinase. Functional studies showed that MHC-I crosslinking induced almost complete inhibition of the spontaneous proliferation of the B lymphoma cells as early as 6 h post-crosslinking and apoptosis 24 h...... post-crosslinking. Preincubation with either protein tyrosine kinase or protein serine/threonine kinase inhibitors reduced the MHC-I-induced apoptosis to background levels, whereas inhibition of PI-3 kinase had no effect. These data demonstrate a pivotal role for protein tyrosine and serine....../threonine kinases in MHC-I-mediated apoptosis in human B-cells and suggest the presence of several MHC-I signaling pathways leading to diverse effects in these cells....

  19. Implications of tyrosine phosphoproteomics in cervical carcinogenesis

    Directory of Open Access Journals (Sweden)

    DeFord James

    2008-01-01

    Full Text Available Abstract Background Worldwide cervical cancer remains a leading cause of mortality from gynecologic malignancies. The link between cervical cancer and persistent infection with HPV has been established. At a molecular level little is known about the transition from the precancerous state to invasive cancer. To elucidate this process, cervical biopsies from human specimens were obtained from precancerous state to stage III disease. Methods Cervical biopsies were obtained from patients with a diagnosis of cervical cancer undergoing definitive surgery or staging operation. Biopsies were obtained from patients with precancerous lesions at the time of their excisional procedure. Control samples were obtained from patients undergoing hysterectomy for benign conditions such as fibroids. Samples were subjected to proteomic profiling using two dimensional gel electrophoresis with subsequent trypsin digestion followed by MALDI-TOF protein identification. Candidate proteins were then further studied using western blotting, immunoprecipitation and immunohistochemistry. Results Annexin A1 and DNA-PKcs were found to be differentially expressed. Phosphorylated annexin A1 was up regulated in diseased states in comparison to control and its level was strongly detected in the serum of cervical cancer patients compared to controls. DNA-PKcs was noted to be hyperphosphorylated and fragmented in cancer when compared to controls. By immunohistochemistry annexin A1 was noted in the vascular environment in cancer and certain precancerous samples. Conclusion This study suggests a probable role for protein tyrosine phosphorylation in cervical carcinogenesis. Annexin A1 and DNA-PK cs may have synergistic effects with HPV infection. Precancerous lesions that may progress to cervical cancer may be differentiated from lesions that will not base on similar immunohistochemical profile to invasive squamous cell carcinoma.

  20. Protein tyrosine phosphatase receptor type z negatively regulates oligodendrocyte differentiation and myelination.

    Directory of Open Access Journals (Sweden)

    Kazuya Kuboyama

    Full Text Available BACKGROUND: Fyn tyrosine kinase-mediated down-regulation of Rho activity through activation of p190RhoGAP is crucial for oligodendrocyte differentiation and myelination. Therefore, the loss of function of its counterpart protein tyrosine phosphatase (PTP may enhance myelination during development and remyelination in demyelinating diseases. To test this hypothesis, we investigated whether Ptprz, a receptor-like PTP (RPTP expressed abuntantly in oligodendrocyte lineage cells, is involved in this process, because we recently revealed that p190RhoGAP is a physiological substrate for Ptprz. METHODOLOGY/PRINCIPAL FINDINGS: We found an early onset of the expression of myelin basic protein (MBP, a major protein of the myelin sheath, and early initiation of myelination in vivo during development of the Ptprz-deficient mouse, as compared with the wild-type. In addition, oligodendrocytes appeared earlier in primary cultures from Ptprz-deficient mice than wild-type mice. Furthermore, adult Ptprz-deficient mice were less susceptible to experimental autoimmune encephalomyelitis (EAE induced by active immunization with myelin/oligodendrocyte glycoprotein (MOG peptide than were wild-type mice. After EAE was induced, the tyrosine phosphorylation of p190RhoGAP increased significantly, and the EAE-induced loss of MBP was markedly suppressed in the white matter of the spinal cord in Ptprz-deficient mice. Here, the number of T-cells and macrophages/microglia infiltrating into the spinal cord did not differ between the two genotypes after MOG immunization. All these findings strongly support the validity of our hypothesis. CONCLUSIONS/SIGNIFICANCE: Ptprz plays a negative role in oligodendrocyte differentiation in early central nervous system (CNS development and remyelination in demyelinating CNS diseases, through the dephosphorylation of substrates such as p190RhoGAP.

  1. Modulation of catalytic activity in multi-domain protein tyrosine phosphatases.

    Directory of Open Access Journals (Sweden)

    Lalima L Madan

    Full Text Available Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzymes are regulated by several mechanisms which include variation in the catalytic turnover rate based on redox stimuli, subcellular localization or protein-protein interactions. In the case of Receptor Protein Tyrosine Phosphatases (RPTPs containing two PTP domains, phosphatase activity is localized in their membrane-proximal (D1 domains, while the membrane-distal (D2 domain is believed to play a modulatory role. Here we report our analysis of the influence of the D2 domain on the catalytic activity and substrate specificity of the D1 domain using two Drosophila melanogaster RPTPs as a model system. Biochemical studies reveal contrasting roles for the D2 domain of Drosophila Leukocyte antigen Related (DLAR and Protein Tyrosine Phosphatase on Drosophila chromosome band 99A (PTP99A. While D2 lowers the catalytic activity of the D1 domain in DLAR, the D2 domain of PTP99A leads to an increase in the catalytic activity of its D1 domain. Substrate specificity, on the other hand, is cumulative, whereby the individual specificities of the D1 and D2 domains contribute to the substrate specificity of these two-domain enzymes. Molecular dynamics simulations on structural models of DLAR and PTP99A reveal a conformational rationale for the experimental observations. These studies reveal that concerted structural changes mediate inter-domain communication resulting in either inhibitory or activating effects of the membrane distal PTP domain on the catalytic activity of the membrane proximal PTP domain.

  2. Cytoplasmic retention of protein tyrosine kinase 6 promotes growth of prostate tumor cells.

    Science.gov (United States)

    Brauer, Patrick M; Zheng, Yu; Wang, Lin; Tyner, Angela L

    2010-10-15

    Protein tyrosine kinase 6 (PTK6) is an intracellular tyrosine kinase that is nuclear in epithelial cells of the normal prostate, but cytoplasmic in prostate tumors and in the PC3 prostate tumor cell line. The impact of altered PTK6 intracellular localization in prostate tumor cells has not been extensively explored. Knockdown of endogenous cytoplasmic PTK6 resulted in decreased PC3 cell proliferation and colony formation, suggesting that cytoplasmic PTK6 stimulates oncogenic pathways. In contrast, reintroduction of PTK6 into nuclei of PC3 cells had a negative effect on growth. Enhanced tyrosine phosphorylation of the PTK6 substrate Sam68 was detected in cells expressing nuclear-targeted PTK6. We found that mechanisms regulating nuclear localization of PTK6 are intact in PC3 cells. Transiently overexpressed PTK6 readily enters the nucleus. Ectopic expression of ALT-PTK6, a catalytically inactive splice variant of PTK6, did not affect localization of endogenous PTK6 in PC3 cells. Using leptomycin B, we confirmed that cytoplasmic localization of endogenous PTK6 is not due to Crm-1/exportin-1 mediated nuclear export. In addition, overexpression of the PTK6 nuclear substrate Sam68 is not sufficient to bring PTK6 into the nucleus. While exogenous PTK6 was readily detected in the nucleus when transiently expressed at high levels, low-level expression of inducible wild type PTK6 in stable cell lines resulted in its cytoplasmic retention. Our results suggest that retention of PTK6 in the cytoplasm of prostate cancer cells disrupts its ability to regulate nuclear substrates and leads to aberrant growth. In prostate cancer, restoring PTK6 nuclear localization may have therapeutic advantages.

  3. Modification of Hypoxic Respiratory Response by Protein Tyrosine Kinase in Brainstem Ventral Respiratory Neuron Group.

    Science.gov (United States)

    Wang, Hui; Huai, Ruituo; Yang, Junqing; Li, Yanchun

    2016-01-01

    Protein tyrosine kinase (PTK) mediated the tyrosine phosphorylation modification of neuronal receptors and ion channels. Whether such modification resulted in changes of physiological functions was not sufficiently studied. In this study we examined whether the hypoxic respiratory response-which is the enhancement of breathing in hypoxic environment could be affected by the inhibition of PTK at brainstem ventral respiratory neuron column (VRC). Experiments were performed on urethane anesthetized adult rabbits. Phrenic nerve discharge was recorded as the central respiratory motor output. Hypoxic respiratory response was produced by ventilating the rabbit with 10% O2-balance 90% N2 for 5 minutes. The responses of phrenic nerve discharge to hypoxia were observed before and after microinjecting PTK inhibitor genistein, AMPA receptor antagonist CNQX, or inactive PTK inhibitor analogue daidzein at the region of ambiguus nucleus (NA) at levels 0-2 mm rostral to obex where the inspiratory subgroup of VRC were recorded. Results were as follows: 1. the hypoxic respiratory response was significantly attenuated after microinjection of genistein and/or CNQX, and no additive effect (i.e., further attenuation of hypoxic respiratory response) was observed when genistein and CNQX were microinjected one after another at the same injection site. Microinjection of daidzein had no effect on hypoxic respiratory response. 2. Fluorescent immunostaining showed that hypoxia significantly increased the number of phosphotyrosine immunopositive neurons in areas surrounding NA and most of these neurons were also immunopositive to glutamate AMPA receptor subunit GluR1. These results suggested that PTK played an important role in regulating the hypoxic respiratory response, possibly through the tyrosine phosphorylation modification of glutamate AMPA receptors on the respiratory neurons of ventral respiratory neuron column.

  4. Tyrosine sulfation modulates activity of tick-derived thrombin inhibitors

    Science.gov (United States)

    Thompson, Robert E.; Liu, Xuyu; Ripoll-Rozada, Jorge; Alonso-García, Noelia; Parker, Benjamin L.; Pereira, Pedro José Barbosa; Payne, Richard J.

    2017-09-01

    Madanin-1 and chimadanin are two small cysteine-free thrombin inhibitors that facilitate blood feeding in the tick Haemaphysalis longicornis. Here, we report a post-translational modification—tyrosine sulfation—of these two proteins that is critical for potent anti-thrombotic and anticoagulant activity. Inhibitors produced in baculovirus-infected insect cells displayed heterogeneous sulfation of two tyrosine residues within each of the proteins. One-pot ligation-desulfurization chemistry enabled access to homogeneous samples of all possible sulfated variants of the proteins. Tyrosine sulfation of madanin-1 and chimadanin proved crucial for thrombin inhibitory activity, with the doubly sulfated variants three orders of magnitude more potent than the unmodified inhibitors. The three-dimensional structure of madanin-1 in complex with thrombin revealed a unique mode of inhibition, with the sulfated tyrosine residues binding to the basic exosite II of the protease. The importance of tyrosine sulfation within this family of thrombin inhibitors, together with their unique binding mode, paves the way for the development of anti-thrombotic drug leads based on these privileged scaffolds.

  5. Identifying proteins that can form tyrosine-cysteine crosslinks.

    Science.gov (United States)

    Martinie, Ryan J; Godakumbura, Pahan I; Porter, Elizabeth G; Divakaran, Anand; Burkhart, Brandon J; Wertz, John T; Benson, David E

    2012-10-01

    Protein cofactors represent a unique class of redox active posttranslational protein modifications formed in or by metalloproteins. Once formed, protein cofactors provide a one-electron oxidant, which is tethered to the protein backbone. Twenty-five proteins are known to contain protein cofactors, but this number is likely limited by the use of crystallography as the identification technique. In order to address this limitation, a search of all reported protein structures for chemical environments conducive to forming a protein cofactor through tyrosine and cysteine side chain crosslinking yielded three hundred candidate proteins. Using hydrogen bonding and metal center proximity, the three hundred proteins were narrowed to four highly viable candidates. An orphan metalloprotein (BF4112) was examined to validate this methodology, which identifies proteins capable of crosslinking tyrosine and cysteine sidechains. A tyrosine-cysteine crosslink was formed in BF4112 using copper-dioxygen chemistry, as in galactose oxidase. Liquid chromatography-MALDI mass spectrometry and optical spectroscopy confirmed tyrosine-cysteine crosslink formation in BF4112. This finding demonstrates the efficacy of these predictive methods and the minimal constraints, provided by the BF4112 protein structure, in tyrosine-cysteine crosslink formation. This search method, when coupled with physiological evidence for crosslink formation and function as a cofactor, could identify additional protein-derived cofactors.

  6. Metabotropic glutamate receptor 5 activation enhances tyrosine phosphorylation of the N-methyl-D-aspartate (NMDA) receptor and NMDA-induced cell death in hippocampal cultured neurons.

    Science.gov (United States)

    Takagi, Norio; Besshoh, Shintaro; Marunouchi, Tetsuro; Takeo, Satoshi; Tanonaka, Kouichi

    2012-01-01

    The activation of group I metabotropic glutamate receptors (mGluRs), which are coupled with Gq-protein, initiates a variety physiological responses in different types of cells. While Gq-protein-coupled receptors can upregulate N-methyl-D-aspartate (NMDA) receptor function, group I mGluR-mediated regulations of NMDA receptor function are not fully understood. To determine biochemical roles of group I mGluRs in the regulation of the NMDA receptor, we have investigated changes in tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B induced by a selective mGluR5 agonist, (RS)-chloro-5-hydroxyphenylglycine (CHPG) in hippocampal neuronal cultures. Activation of mGluR5 by CHPG increased active-forms of Src. CHPG also enhanced tyrosine phosphorylation of NR2A and NR2B in hippocampal neuronal cultures. In addition, NMDA-induced cell death was enhanced by CHPG-induced mGluR5 stimulation at the concentration, which increased tyrosine phosphorylation of Src and NR2A/2B but did not induce cell death. This effect was inhibited by selective mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP). The results suggest that in hippocampal neurons, mGluR5 may regulate NMDA receptor activity, involving tyrosine phosphorylation of NR2A and NR2B and may be involved in NMDA receptor-mediated cell injury.

  7. Pharmacologic inhibition of L-tyrosine degradation ameliorates cerebral dopamine deficiency in murine phenylketonuria (PKU).

    Science.gov (United States)

    Harding, Cary O; Winn, Shelley R; Gibson, K Michael; Arning, Erland; Bottiglieri, Teodoro; Grompe, Markus

    2014-09-01

    Monoamine neurotransmitter deficiency has been implicated in the etiology of neuropsychiatric symptoms associated with chronic hyperphenylalaninemia in phenylketonuria (PKU). Two proposed explanations for neurotransmitter deficiency in PKU include first, that chronically elevated blood L-phenylalanine (Phe) inhibits the transport of L-tyrosine (Tyr) and L-tryptophan (Trp), the substrates for dopamine and serotonin synthesis respectively, into brain. In the second hypothesis, elevated Phe competitively inhibits brain tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) activities, the rate limiting steps in dopamine and serotonin synthesis. Dietary supplementation with large neutral amino acids (LNAA) including Tyr and Trp has been recommended for individuals with chronically elevated blood Phe in an attempt to restore amino acid and monoamine homeostasis in brain. As a potential alternative treatment approach, we demonstrate that pharmacologic inhibition of Tyr degradation through oral administration of nitisinone (NTBC) yielded sustained increases in blood and brain Tyr, decreased blood and brain Phe, and consequently increased dopamine synthesis in a murine model of PKU. Our results suggest that Phe-mediated inhibition of TH activity is the likely mechanism of impaired dopamine synthesis in PKU. Pharmacologic inhibition of Tyr degradation may be a promising adjunct therapy for CNS monoamine neurotransmitter deficiency in hyperphenylalaninemic individuals with PKU.

  8. Integrins team up with tyrosine kinase receptors and plexins to control angiogenesis.

    Science.gov (United States)

    Serini, Guido; Napione, Lucia; Bussolino, Federico

    2008-05-01

    Understanding the role of integrins in the formation of vascular bed is important for designing new therapeutic approaches to ameliorate or inhibit pathological vascularization. Besides regulating cell adhesion and migration, integrins dynamically participate in a network with soluble molecules and their receptors. This study summarizes recent progress in the understanding of the reciprocal interactions between integrins, tyrosine kinase, and semaphorin receptors. During angiogenic remodeling, endothelial cells that line blood vessel walls dynamically modify their integrin-mediated adhesive contacts with the surrounding extracellular matrix. During angiogenesis, opposing autocrine and paracrine loops of growth factors and semaphorins regulate endothelial integrin activation and function through tyrosine kinase receptors and the neuropilin/plexins system. Moreover, proangiogenic and antiangiogenic factors can directly bind integrins and regulate endothelial cell behavior. Studies describing these intense research areas are discussed. Alteration in the balance between the angiogenic growth factors and semaphorins results in an impairment of integrin functions and could account for cardiovascular malformation and structural and functional abnormalities of the tumor vasculature.

  9. Pharmacologic inhibition of L-tyrosine degradation ameliorates cerebral dopamine deficiency in murine phenylketonuria (PKU)

    Science.gov (United States)

    Harding, Cary O.; Winn, Shelley R.; Gibson, K. Michael; Arning, Erland; Bottiglieri, Teodoro; Grompe, Markus

    2014-01-01

    Summary Monoamine neurotransmitter deficiency has been implicated in the etiology of neuropsychiatric symptoms associated with chronic hyperphenylalaninemia in phenylketonuria (PKU). Two proposed explanations for neurotransmitter deficiency in PKU include first, that chronically elevated blood L-phenylalanine (Phe) inhibits the transport of L-tyrosine (Tyr) and L-tryptophan (Trp), the substrates for dopamine and serotonin synthesis respectively, into brain. In the second hypothesis, elevated Phe competitively inhibits brain tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) activities, the rate limiting steps in dopamine and serotonin synthesis. Dietary supplementation with large neutral amino acids (LNAA) including Tyr and Trp has been recommended for individuals with chronically elevated blood Phe in an attempt to restore amino acid and monoamine homeostasis in brain. As a potential alternative treatment approach, we demonstrate that pharmacologic inhibition of Tyr degradation through oral administration of nitisinone (NTBC) yielded sustained increases in blood and brain Tyr, decreased blood and brain Phe, and consequently increased dopamine synthesis in a murine model of PKU. Our results suggest that Phe-mediated inhibition of TH activity is the likely mechanism of impaired dopamine synthesis in PKU. Pharmacologic inhibition of Tyr degradation may be a promising adjunct therapy for CNS monoamine neurotransmitter deficiency in hyperphenylalaninemic individuals with PKU. PMID:24487571

  10. Evaluation of Brachypodium distachyon L-Tyrosine Decarboxylase Using L-Tyrosine Over-Producing Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Shuhei Noda

    Full Text Available To demonstrate that herbaceous biomass is a versatile gene resource, we focused on the model plant Brachypodium distachyon, and screened the B. distachyon for homologs of tyrosine decarboxylase (TDC, which is involved in the modification of aromatic compounds. A total of 5 candidate genes were identified in cDNA libraries of B. distachyon and were introduced into Saccharomyces cerevisiae to evaluate TDC expression and tyramine production. It is suggested that two TDCs encoded in the transcripts Bradi2g51120.1 and Bradi2g51170.1 have L-tyrosine decarboxylation activity. Bradi2g51170.1 was introduced into the L-tyrosine over-producing strain of S. cerevisiae that was constructed by the introduction of mutant genes that promote deregulated feedback inhibition. The amount of tyramine produced by the resulting transformant was 6.6-fold higher (approximately 200 mg/L than the control strain, indicating that B. distachyon TDC effectively converts L-tyrosine to tyramine. Our results suggest that B. distachyon possesses enzymes that are capable of modifying aromatic residues, and that S. cerevisiae is a suitable host for the production of L-tyrosine derivatives.

  11. Protein-bound glycogen is linked to tyrosine residues.

    OpenAIRE

    Aon, M A; Curtino, J A

    1985-01-01

    Tyrosine-glycogen obtained from retina proteoglycogen by exhaustive proteolytic digestion was radiolabelled with 125I. The 125I-labelled tyrosine-glycogen was degraded by amylolytic digestion to a very small radioactive product, which was identified as iodotyrosine by h.p.l.c. The amylolytic mixture used released glucose and maltose that were alpha-linked to the phenolic hydroxy group of p-nitrophenol. No free iodotyrosine was found before or after the intact [125I]iodotyrosine-glycogen was s...

  12. Structure determination of T-cell protein-tyrosine phosphatase

    DEFF Research Database (Denmark)

    Iversen, L.F.; Møller, K. B.; Pedersen, A.K.

    2002-01-01

    Protein-tyrosine phosphatase 1B (PTP1B) has recently received much attention as a potential drug target in type 2 diabetes. This has in particular been spurred by the finding that PTP1B knockout mice show increased insulin sensitivity and resistance to diet-induced obesity. Surprisingly, the highly...... homologous T cell protein-tyrosine phosphatase (TC-PTP) has received much less attention, and no x-ray structure has been provided. We have previously co-crystallized PTP1B with a number of low molecular weight inhibitors that inhibit TC-PTP with similar efficiency. Unexpectedly, we were not able to co...

  13. Novel tyrosine phosphorylation sites in rat skeletal muscle revealed by phosphopeptide enrichment and HPLC-ESI-MS/MS

    DEFF Research Database (Denmark)

    Zhang, Xiangmin; Højlund, Kurt; Luo, Moulun

    2012-01-01

    Tyrosine phosphorylation plays a fundamental role in many cellular processes including differentiation, growth and insulin signaling. In insulin resistant muscle, aberrant tyrosine phosphorylation of several proteins has been detected. However, due to the low abundance of tyrosine phosphorylation (...

  14. LDL cholesterol counteracts the antitumour effect of tyrosine kinase inhibitors against renal cell carcinoma.

    Science.gov (United States)

    Naito, Sei; Makhov, Peter; Astsaturov, Igor; Golovine, Konstantin; Tulin, Alexei; Kutikov, Alexander; Uzzo, Robert G; Kolenko, Vladimir M

    2017-04-25

    Treatment with tyrosine kinase inhibitors (TKIs) significantly improves survival of patients with renal cell carcinoma (RCC). However, about one-quarter of the RCC patients are primarily refractory to treatment with TKIs. We examined viability of RCC and endothelial cells treated with low-density lipoprotein (LDL) and/or TKIs. Next, we validated the potential role of PI3K/AKT signalling in LDL-mediated TKI resistance. Finally, we examined the effect of a high-fat/high-cholesterol diet on the response of RCC xenograft tumours to sunitinib. The addition of LDL cholesterol increases activation of PI3K/AKT signalling and compromises the antitumour efficacy of TKIs against RCC and endothelial cells. Furthermore, RCC xenograft tumours resist TKIs in mice fed a high-fat/high-cholesterol diet. The ability of renal tumours to maintain their cholesterol homoeostasis may be a critical component of TKI resistance in RCC patients.

  15. Redox modulation of tyrosine phosphorylation-dependent neutrophil adherence to endothelial cells

    International Nuclear Information System (INIS)

    Thibodeau, Paul A.; Gozin, Alexia; Gougerot-Pocidalo, Marie-Anne; Pasquier, Catherine

    2005-01-01

    Reactive oxygen species (ROS) are now well known to be involved in an increased interaction between neutrophils and endothelial cells. Previously, we have shown that the increased adhesion of neutrophils to ROS-stimulated endothelial cells involves an increase in tyrosine phosphorylation of the focal adhesion kinase, p125 FAK , and several cytoskeleton proteins. This review article focuses on the involvement of adhesion molecules in the increased adhesion of neutrophils to ROS-stimulated endothelial cells, on the oxygen species responsible for this adhesion, and on the intracellular signaling pathway leading to the modification of the cytoskeleton by ROS. The evidence from our laboratory and others describing these events is summarized. Finally, the future perspectives that need to be explored in order to inhibit or reduce the ROS-mediated adhesion of neutrophils to endothelial cells are addressed

  16.   A rationally designed tyrosine hydroxylase DNA vaccine induces specific antineuroblastoma immunity

    DEFF Research Database (Denmark)

    Huebener, Nicole; Fest, Stefan; Strandsby, Anne Bystrup

    2008-01-01

    hydroxylase (TH) DNA minigene vaccine. We identified three novel mouse TH (mTH3) derived peptides with high predicted binding affinity to MHC class I antigen H2-K(k) according to the prediction program SYFPEITHI and computer modeling of epitopes into the MHC class I antigen binding groove. Subsequently, a DNA...... following the mTH3 DNA minigene vaccination was mediated by CD8(+) T cells as indicated by infiltration of primary tumors and TH-specific cytolytic activity in vitro. Importantly, no cell infiltration was detectable in TH-expressing adrenal medulla, indicating the absence of autoimmunity. In summary, we......Therapeutic vaccination against tumor antigens without induction of autoimmunity remains a major challenge in cancer immunotherapy. Here, we show for the first time effective therapeutic vaccination followed by suppression of established spontaneous neuroblastoma metastases using a tyrosine...

  17. Modulation of fatty acid synthase degradation by concerted action of p38 MAP kinase, E3 ligase COP1, and SH2-tyrosine phosphatase Shp2.

    Science.gov (United States)

    Yu, Jianxiu; Deng, Rong; Zhu, Helen H; Zhang, Sharon S; Zhu, Changhong; Montminy, Marc; Davis, Roger; Feng, Gen-Sheng

    2013-02-08

    The Src-homology 2 (SH2) domain-containing tyrosine phosphatase Shp2 has been known to regulate various signaling pathways triggered by receptor and cytoplasmic tyrosine kinases. Here we describe a novel function of Shp2 in control of lipid metabolism by mediating degradation of fatty acid synthase (FASN). p38-phosphorylated COP1 accumulates in the cytoplasm and subsequently binds FASN through Shp2 here as an adapter, leading to FASN-Shp2-COP1 complex formation and FASN degradation mediated by ubiquitination pathway. By fasting p38 is activated and stimulates FASN protein degradation in mice. Consistently, the FASN protein levels are dramatically elevated in mouse liver and pancreas in which Shp2/Ptpn11 is selectively deleted. Thus, this study identifies a new activity for Shp2 in lipid metabolism.

  18. Modulation of Fatty Acid Synthase Degradation by Concerted Action of p38 MAP Kinase, E3 Ligase COP1, and SH2-Tyrosine Phosphatase Shp2*

    Science.gov (United States)

    Yu, Jianxiu; Deng, Rong; Zhu, Helen H.; Zhang, Sharon S.; Zhu, Changhong; Montminy, Marc; Davis, Roger; Feng, Gen-Sheng

    2013-01-01

    The Src-homology 2 (SH2) domain-containing tyrosine phosphatase Shp2 has been known to regulate various signaling pathways triggered by receptor and cytoplasmic tyrosine kinases. Here we describe a novel function of Shp2 in control of lipid metabolism by mediating degradation of fatty acid synthase (FASN). p38-phosphorylated COP1 accumulates in the cytoplasm and subsequently binds FASN through Shp2 here as an adapter, leading to FASN-Shp2-COP1 complex formation and FASN degradation mediated by ubiquitination pathway. By fasting p38 is activated and stimulates FASN protein degradation in mice. Consistently, the FASN protein levels are dramatically elevated in mouse liver and pancreas in which Shp2/Ptpn11 is selectively deleted. Thus, this study identifies a new activity for Shp2 in lipid metabolism. PMID:23269672

  19. Metformin as a prevention and treatment for preeclampsia: effects on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion and endothelial dysfunction.

    Science.gov (United States)

    Brownfoot, Fiona C; Hastie, Roxanne; Hannan, Natalie J; Cannon, Ping; Tuohey, Laura; Parry, Laura J; Senadheera, Sevvandi; Illanes, Sebastian E; Kaitu'u-Lino, Tu'uhevaha J; Tong, Stephen

    2016-03-01

    Preeclampsia is associated with placental ischemia/hypoxia and secretion of soluble fms-like tyrosine kinase 1 and soluble endoglin into the maternal circulation. This causes widespread endothelial dysfunction that manifests clinically as hypertension and multisystem organ injury. Recently, small molecule inhibitors of hypoxic inducible factor 1α have been found to reduce soluble fms-like tyrosine kinase 1 and soluble endoglin secretion. However, their safety profile in pregnancy is unknown. Metformin is safe in pregnancy and is also reported to inhibit hypoxic inducible factor 1α by reducing mitochondrial electron transport chain activity. The purposes of this study were to determine (1) the effects of metformin on placental soluble fms-like tyrosine kinase 1 and soluble endoglin secretion, (2) to investigate whether the effects of metformin on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion are regulated through the mitochondrial electron transport chain, and (3) to examine its effects on endothelial dysfunction, maternal blood vessel vasodilation, and angiogenesis. We performed functional (in vitro and ex vivo) experiments using primary human tissues to examine the effects of metformin on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion from placenta, endothelial cells, and placental villous explants. We used succinate, mitochondrial complex II substrate, to examine whether the effects of metformin on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion were mediated through the mitochondria. We also isolated mitochondria from preterm preeclamptic placentas and gestationally matched control subjects and measured mitochondrial electron transport chain activity using kinetic spectrophotometric assays. Endothelial cells or whole maternal vessels were incubated with metformin to determine whether it rescued endothelial dysfunction induced by either tumor necrosis factor-α (to endothelial cells) or placenta villous

  20. Tyrosine phosphorylation of 3BP2 is indispensable for the interaction with VAV3 in chicken DT40 cells

    International Nuclear Information System (INIS)

    Chihara, Kazuyasu; Kimura, Yukihiro; Honjoh, Chisato; Yamauchi, Shota; Takeuchi, Kenji; Sada, Kiyonao

    2014-01-01

    Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2) is known to play regulatory roles in immunoreceptor-mediated signal transduction. We have previously demonstrated that Tyr 174 , Tyr 183 and Tyr 446 in mouse 3BP2 are predominantly phosphorylated by Syk, and the phosphorylation of Tyr 183 and the Src homology 2 (SH2) domain of mouse 3BP2 are critical for B cell receptor (BCR)-induced activation of nuclear factor of activated T cells (NFAT) in human B cells. In this report, we have shown that Syk, but not Abl family protein-tyrosine kinases, is critical for BCR-mediated tyrosine phosphorylation of 3BP2 in chicken DT40 cells. Mutational analysis showed that Tyr 174 , Tyr 183 and Tyr 426 of chicken 3BP2 are the major phosphorylation sites by Syk and the SH2 domain of 3BP2 is critical for tyrosine phosphorylation. In addition, phosphorylation of Tyr 426 is required for the inducible interaction with the SH2 domain of Vav3. Moreover, the expression of the mutant form of 3BP2 in which Tyr 426 was substituted to Phe resulted in the reduction in BCR-mediated Rac1 activation, when compared with the case of wild-type. Altogether, these data suggest that 3BP2 is involved in the activation of Rac1 through the regulation of Vav3 by Syk-dependent phosphorylation of Tyr 426 following BCR stimulation. - Highlights: • 3BP2 is phosphorylated by Syk, but not Abl family kinases in BCR signaling. • Tyr183 and Tyr426 in chicken 3BP2 are the major phosphorylation sites by Syk. • The SH2 domain of 3BP2 is critical for tyrosine phosphorylation of 3BP2. • Phosphorylation of Tyr426 in 3BP2 is required for the inducible binding with Vav3. • 3BP2 is involved in the regulation of BCR-mediated Rac1 activation

  1. Tyrosine phosphorylation of 3BP2 is indispensable for the interaction with VAV3 in chicken DT40 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chihara, Kazuyasu [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193 (Japan); Kimura, Yukihiro [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Honjoh, Chisato [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Third Department of Internal Medicine, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Yamauchi, Shota; Takeuchi, Kenji [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193 (Japan); Sada, Kiyonao, E-mail: ksada@u-fukui.ac.jp [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193 (Japan)

    2014-03-10

    Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2) is known to play regulatory roles in immunoreceptor-mediated signal transduction. We have previously demonstrated that Tyr{sup 174}, Tyr{sup 183} and Tyr{sup 446} in mouse 3BP2 are predominantly phosphorylated by Syk, and the phosphorylation of Tyr{sup 183} and the Src homology 2 (SH2) domain of mouse 3BP2 are critical for B cell receptor (BCR)-induced activation of nuclear factor of activated T cells (NFAT) in human B cells. In this report, we have shown that Syk, but not Abl family protein-tyrosine kinases, is critical for BCR-mediated tyrosine phosphorylation of 3BP2 in chicken DT40 cells. Mutational analysis showed that Tyr{sup 174}, Tyr{sup 183} and Tyr{sup 426} of chicken 3BP2 are the major phosphorylation sites by Syk and the SH2 domain of 3BP2 is critical for tyrosine phosphorylation. In addition, phosphorylation of Tyr{sup 426} is required for the inducible interaction with the SH2 domain of Vav3. Moreover, the expression of the mutant form of 3BP2 in which Tyr{sup 426} was substituted to Phe resulted in the reduction in BCR-mediated Rac1 activation, when compared with the case of wild-type. Altogether, these data suggest that 3BP2 is involved in the activation of Rac1 through the regulation of Vav3 by Syk-dependent phosphorylation of Tyr{sup 426} following BCR stimulation. - Highlights: • 3BP2 is phosphorylated by Syk, but not Abl family kinases in BCR signaling. • Tyr183 and Tyr426 in chicken 3BP2 are the major phosphorylation sites by Syk. • The SH2 domain of 3BP2 is critical for tyrosine phosphorylation of 3BP2. • Phosphorylation of Tyr426 in 3BP2 is required for the inducible binding with Vav3. • 3BP2 is involved in the regulation of BCR-mediated Rac1 activation.

  2. Molecular mechanism of 17-allylamino-17-demethoxygeldanamycin (17-AAG)-induced AXL receptor tyrosine kinase degradation.

    Science.gov (United States)

    Krishnamoorthy, Gnana Prakasam; Guida, Teresa; Alfano, Luigi; Avilla, Elvira; Santoro, Massimo; Carlomagno, Francesca; Melillo, Rosa Marina

    2013-06-14

    The receptor tyrosine kinase AXL is overexpressed in many cancer types including thyroid carcinomas and has well established roles in tumor formation and progression. Proper folding, maturation, and activity of several oncogenic receptor tyrosine kinases require HSP90 chaperoning. HSP90 inhibition by the antibiotic geldanamycin or its derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG) causes destabilization of its client proteins. Here we show that AXL is a novel client protein of HSP90. 17-AAG induced a time- and dose-dependent down-regulation of endogenous or ectopically expressed AXL protein, thereby inhibiting AXL-mediated signaling and biological activity. 17-AAG-induced AXL down-regulation specifically affected fully glycosylated mature receptor present on cell membrane. By using biotin and [(35)S]methionine labeling, we showed that 17-AAG caused depletion of membrane-localized AXL by mediating its degradation in the intracellular compartment, thus restricting its exposure on the cell surface. 17-AAG induced AXL polyubiquitination and subsequent proteasomal degradation; under basal conditions, AXL co-immunoprecipitated with HSP90. Upon 17-AAG treatment, AXL associated with the co-chaperone HSP70 and the ubiquitin E3 ligase carboxyl terminus of HSC70-interacting protein (CHIP). Overexpression of CHIP, but not of the inactive mutant CHIP K30A, induced accumulation of AXL polyubiquitinated species upon 17-AAG treatment. The sensitivity of AXL to 17-AAG required its intracellular domain because an AXL intracellular domain-deleted mutant was insensitive to the compound. Active AXL and kinase-dead AXL were similarly sensitive to 17-AAG, implying that 17-AAG sensitivity does not require receptor phosphorylation. Overall our data elucidate the molecular basis of AXL down-regulation by HSP90 inhibitors and suggest that HSP90 inhibition in anticancer therapy can exert its effect through inhibition of multiple kinases including AXL.

  3. Molecular Mechanism of 17-Allylamino-17-demethoxygeldanamycin (17-AAG)-induced AXL Receptor Tyrosine Kinase Degradation*

    Science.gov (United States)

    Krishnamoorthy, Gnana Prakasam; Guida, Teresa; Alfano, Luigi; Avilla, Elvira; Santoro, Massimo; Carlomagno, Francesca; Melillo, Rosa Marina

    2013-01-01

    The receptor tyrosine kinase AXL is overexpressed in many cancer types including thyroid carcinomas and has well established roles in tumor formation and progression. Proper folding, maturation, and activity of several oncogenic receptor tyrosine kinases require HSP90 chaperoning. HSP90 inhibition by the antibiotic geldanamycin or its derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG) causes destabilization of its client proteins. Here we show that AXL is a novel client protein of HSP90. 17-AAG induced a time- and dose-dependent down-regulation of endogenous or ectopically expressed AXL protein, thereby inhibiting AXL-mediated signaling and biological activity. 17-AAG-induced AXL down-regulation specifically affected fully glycosylated mature receptor present on cell membrane. By using biotin and [35S]methionine labeling, we showed that 17-AAG caused depletion of membrane-localized AXL by mediating its degradation in the intracellular compartment, thus restricting its exposure on the cell surface. 17-AAG induced AXL polyubiquitination and subsequent proteasomal degradation; under basal conditions, AXL co-immunoprecipitated with HSP90. Upon 17-AAG treatment, AXL associated with the co-chaperone HSP70 and the ubiquitin E3 ligase carboxyl terminus of HSC70-interacting protein (CHIP). Overexpression of CHIP, but not of the inactive mutant CHIP K30A, induced accumulation of AXL polyubiquitinated species upon 17-AAG treatment. The sensitivity of AXL to 17-AAG required its intracellular domain because an AXL intracellular domain-deleted mutant was insensitive to the compound. Active AXL and kinase-dead AXL were similarly sensitive to 17-AAG, implying that 17-AAG sensitivity does not require receptor phosphorylation. Overall our data elucidate the molecular basis of AXL down-regulation by HSP90 inhibitors and suggest that HSP90 inhibition in anticancer therapy can exert its effect through inhibition of multiple kinases including AXL. PMID:23629654

  4. Recent advances in understanding the role of protein-tyrosine phosphatases in development and disease

    NARCIS (Netherlands)

    Hale, Alexander James; Ter Steege, Eline; den Hertog, Jeroen

    2017-01-01

    Protein-tyrosine phosphatases (PTPs) remove phosphate groups from tyrosine residues, and thereby propagate or inhibit signal transduction, and hence influence cellular processes such as cell proliferation and differentiation. The importance of tightly controlled PTP activity is reflected by the

  5. Solution structure of the receptor tyrosine kinase EphB2 SAM domain and identification of two distinct homotypic interaction sites.

    OpenAIRE

    Smalla, M.; Schmieder, P.; Kelly, M.; Ter Laak, A.; Krause, G.; Ball, L.; Wahl, M.; Bork, P.; Oschkinat, H.

    1999-01-01

    The sterile alpha motif (SAM) is a protein interaction domain of around 70 amino acids present predominantly in the N- and C-termini of more than 60 diverse proteins that participate in signal transduction and transcriptional repression. SAM domains have been shown to homo- and hetero-oligomerize and to mediate specific protein-protein interactions. A highly conserved subclass of SAM domains is present at the intracellular C-terminus of more than 40 Eph receptor tyrosine kinases that are invo...

  6. The KIM-family protein-tyrosine phosphatases use distinct reversible oxidation intermediates: Intramolecular or intermolecular disulfide bond formation.

    Science.gov (United States)

    Machado, Luciana E S F; Shen, Tun-Li; Page, Rebecca; Peti, Wolfgang

    2017-05-26

    The kinase interaction motif (KIM) family of protein-tyrosine phosphatases (PTPs) includes hematopoietic protein-tyrosine phosphatase (HePTP), striatal-enriched protein-tyrosine phosphatase (STEP), and protein-tyrosine phosphatase receptor type R (PTPRR). KIM-PTPs bind and dephosphorylate mitogen-activated protein kinases (MAPKs) and thereby critically modulate cell proliferation and differentiation. PTP activity can readily be diminished by reactive oxygen species (ROS), e.g. H 2 O 2 , which oxidize the catalytically indispensable active-site cysteine. This initial oxidation generates an unstable sulfenic acid intermediate that is quickly converted into either a sulfinic/sulfonic acid (catalytically dead and irreversible inactivation) or a stable sulfenamide or disulfide bond intermediate (reversible inactivation). Critically, our understanding of ROS-mediated PTP oxidation is not yet sufficient to predict the molecular responses of PTPs to oxidative stress. However, identifying distinct responses will enable novel routes for PTP-selective drug design, important for managing diseases such as cancer and Alzheimer's disease. Therefore, we performed a detailed biochemical and molecular study of all KIM-PTP family members to determine their H 2 O 2 oxidation profiles and identify their reversible inactivation mechanism(s). We show that despite having nearly identical 3D structures and sequences, each KIM-PTP family member has a unique oxidation profile. Furthermore, we also show that whereas STEP and PTPRR stabilize their reversibly oxidized state by forming an intramolecular disulfide bond, HePTP uses an unexpected mechanism, namely, formation of a reversible intermolecular disulfide bond. In summary, despite being closely related, KIM-PTPs significantly differ in oxidation profiles. These findings highlight that oxidation protection is critical when analyzing PTPs, for example, in drug screening. © 2017 by The American Society for Biochemistry and Molecular Biology

  7. Expression of tyrosine kinase gene in mouse thymic stromal cells

    NARCIS (Netherlands)

    Rinke de Wit, T. F.; Izon, D. J.; Revilla, C.; Oosterwegel, M.; Bakker, A. Q.; van Ewijk, W.; Kruisbeek, A. M.

    1996-01-01

    Amongst the most important signal transduction molecules involved in regulating growth and differentiation are the protein tyrosine kinases (PTK). Since T cell development is a consequence of interactions between thymic stromal cells (TSC) and thymocytes, identification of the PTK in both

  8. Protein tyrosine phosphorylation is involved in osmoregulation of ionic conductances

    NARCIS (Netherlands)

    B.C. Tilly (Bernard); N. van den Berghe (Nina); L.G. Tertoolen; M.J. Edixhoven (Marcel); H.R. de Jonge (Hugo)

    1993-01-01

    textabstractUsing the human Intestine 407 cell line as a model, we investigated a possible role for tyrosine kinase(s) in regulating the ion efflux pathways induced by hyposmotic stimulation (regulatory volume decrease, RVD). Pretreatment of 125I(-)-and 86Rb(+)-loaded

  9. Auto-thiophosphorylation activity of Src tyrosine kinase.

    Science.gov (United States)

    Cabail, M Zulema; Chen, Emily I; Koller, Antonius; Miller, W Todd

    2016-07-07

    Intermolecular autophosphorylation at Tyr416 is a conserved mechanism of activation among the members of the Src family of nonreceptor tyrosine kinases. Like several other tyrosine kinases, Src can catalyze the thiophosphorylation of peptide and protein substrates using ATPγS as a thiophosphodonor, although the efficiency of the reaction is low. Here, we have characterized the ability of Src to auto-thiophosphorylate. Auto-thiophosphorylation of Src at Tyr416 in the activation loop proceeds efficiently in the presence of Ni(2+), resulting in kinase activation. Other tyrosine kinases (Ack1, Hck, and IGF1 receptor) also auto-thiophosphorylate in the presence of Ni(2+). Tyr416-thiophosphorylated Src is resistant to dephosphorylation by PTP1B phosphatase. Src and other tyrosine kinases catalyze auto-thiophosphorylation in the presence of Ni(2+). Thiophosphorylation of Src occurs at Tyr416 in the activation loop, and results in enhanced kinase activity. Tyr416-thiophosphorylated Src could serve as a stable, persistently-activated mimic of Src.

  10. Tyrosine phosphorylation of the human guanylyl cyclase C receptor

    Indian Academy of Sciences (India)

    Unknown

    5, in Luria Bertani broth ..... bacteria has been used by Larose et al (1993) to identify residues in the platelet derived growth factor ... GCC by EphB1 within bacterial cells suggests that GCC may be a substrate for the Eph family of tyrosine ...

  11. Cloning and Characterization of Secretory Tyrosine Phosphatases of Mycobacterium tuberculosis

    Science.gov (United States)

    Koul, Anil; Choidas, Axel; Treder, Martin; Tyagi, Anil K.; Drlica, Karl; Singh, Yogendra; Ullrich, Axel

    2000-01-01

    Two genes with sequence homology to those encoding protein tyrosine phosphatases were cloned from genomic DNA of Mycobacterium tuberculosis H37Rv. The calculated molecular masses of these two putative tyrosine phosphatases, designated MPtpA and MPtpB, were 17.5 and 30 kDa, respectively. MPtpA and MPtpB were expressed as glutathione S-transferase fusion proteins in Escherichia coli. The affinity-purified proteins dephosphorylated the phosphotyrosine residue of myelin basic protein (MBP), but they failed to dephosphorylate serine/threonine residues of MBP. The activity of these phosphatases was inhibited by sodium orthovanadate, a specific inhibitor of tyrosine phosphatases, but not by okadaic acid, an inhibitor of serine/threonine phosphatases. Mutations at the catalytic site motif, cysteine 11 of MPtpA and cysteine 160 of MPtpB, abolished enzyme activity. Southern blot analysis revealed that, while mptpA is present in slow-growing mycobacterial species as well as fast-growing saprophytes, mptpB was restricted to members of the M. tuberculosis complex. These phosphatases were present in both whole-cell lysates and culture filtrates of M. tuberculosis, suggesting that these proteins are secreted into the extracellular medium. Since tyrosine phosphatases are essential for the virulence of several pathogenic bacteria, the restricted distribution of mptpB makes it a good candidate for a virulence gene of M. tuberculosis. PMID:10986245

  12. Cloning and expression of a widely expressed receptor tyrosine phosphatase

    DEFF Research Database (Denmark)

    Sap, J; D'Eustachio, P; Givol, D

    1990-01-01

    antigen yielded cDNA clones coding for a 794-amino acid transmembrane protein [hereafter referred to as receptor protein tyrosine phosphatase alpha (R-PTP-alpha)] with an intracellular domain displaying clear homology to the catalytic domains of CD45 and LAR (45% and 53%, respectively). The 142-amino acid...

  13. Role of Bruton's tyrosine kinase in B cells and malignancies

    NARCIS (Netherlands)

    Pal Singh, S. (Simar); F. Dammeijer (Floris); R.W. Hendriks (Rudi)

    2018-01-01

    textabstractBruton's tyrosine kinase (BTK) is a non-receptor kinase that plays a crucial role in oncogenic signaling that is critical for proliferation and survival of leukemic cells in many B cell malignancies. BTK was initially shown to be defective in the primary immunodeficiency X-linked

  14. Cloning and characterization of secretory tyrosine phosphatases of Mycobacterium tuberculosis.

    Science.gov (United States)

    Koul, A; Choidas, A; Treder, M; Tyagi, A K; Drlica, K; Singh, Y; Ullrich, A

    2000-10-01

    Two genes with sequence homology to those encoding protein tyrosine phosphatases were cloned from genomic DNA of Mycobacterium tuberculosis H(37)Rv. The calculated molecular masses of these two putative tyrosine phosphatases, designated MPtpA and MPtpB, were 17. 5 and 30 kDa, respectively. MPtpA and MPtpB were expressed as glutathione S-transferase fusion proteins in Escherichia coli. The affinity-purified proteins dephosphorylated the phosphotyrosine residue of myelin basic protein (MBP), but they failed to dephosphorylate serine/threonine residues of MBP. The activity of these phosphatases was inhibited by sodium orthovanadate, a specific inhibitor of tyrosine phosphatases, but not by okadaic acid, an inhibitor of serine/threonine phosphatases. Mutations at the catalytic site motif, cysteine 11 of MPtpA and cysteine 160 of MPtpB, abolished enzyme activity. Southern blot analysis revealed that, while mptpA is present in slow-growing mycobacterial species as well as fast-growing saprophytes, mptpB was restricted to members of the M. tuberculosis complex. These phosphatases were present in both whole-cell lysates and culture filtrates of M. tuberculosis, suggesting that these proteins are secreted into the extracellular medium. Since tyrosine phosphatases are essential for the virulence of several pathogenic bacteria, the restricted distribution of mptpB makes it a good candidate for a virulence gene of M. tuberculosis.

  15. Understanding proton affinity of tyrosine sidechain in hydrophobic ...

    Indian Academy of Sciences (India)

    Tyrosine (Tyr), like histidine (His), is known to play a crucial role in a wide range of chemical and biochemi- cal processes3 primarily through (a) deprotonation of the phenolic –OH group present in its sidechain and. #Dedicated to Prof. N Sathyamurthy on his 60th birthday. ∗. For correspondence. (b) formation of hydrogen ...

  16. Isolation of a tyrosine-activating enzyme from baker's yeast

    NARCIS (Netherlands)

    Ven, A.M. van de; Koningsberger, V.V.; Overbeek, J.Th.G.

    1958-01-01

    The extracts of ether-CO2-frozen baker's yeast contain enzymes that catalyze the ATP-linked amino acid activation by way of pyrophosphate elimination. From the extract a tyrosine-activating enzyme could be isolated, which, judging from ultracentrifugation and electrophoretic data, was about 70% pure

  17. Identification of a novel immunoreceptor tyrosine-based activation motif-containing molecule, STAM2, by mass spectrometry and its involvement in growth factor and cytokine receptor signaling pathways

    DEFF Research Database (Denmark)

    Pandey, A; Fernandez, M M; Steen, H

    2000-01-01

    to epidermal growth factor receptor-induced phosphorylation, this required the ITAM domain since mutants lacking this region did not undergo tyrosine phosphorylation. Finally, overexpression of wild type STAM2 led to an increase in IL-2-mediated induction of c-Myc promoter activation indicating...

  18. Development of a new paper based nano-biosensor using the co-catalytic effect of tyrosinase from banana peel tissue (Musa Cavendish) and functionalized silica nanoparticles for voltammetric determination of l-tyrosine.

    Science.gov (United States)

    Rahimi-Mohseni, Mohadeseh; Raoof, Jahan Bakhsh; Ojani, Reza; Aghajanzadeh, Tahereh A; Bagheri Hashkavayi, Ayemeh

    2018-02-12

    In this paper, a new and facile method for the electrochemical determination of l-tyrosine was designed. First, 3-mercaptopropyl trimethoxysilane-functionalized silica nanoparticles were added to a paper disc. Then, the banana peel tissue and the mediator potassium hexacyanoferrate were dropped onto the paper, respectively. The modified paper disc was placed on the top of the graphite screen printed electrode and electrochemical characterization of this biosensor was studied by cyclic voltammetry and electrochemical impedance spectroscopy methods. The effective parameters like pH, banana peel tissue percentage, and the amount of mediator loading were optimized. l-tyrosine measurements were done by differential pulse voltammetry with a little sample (3 μL) for analysis. The biosensor showed a linear response for l-tyrosine in the wide concentration range of 0.05-600 μM and a low detection limit about 0.02 μM because of the co-catalytic effect of enzyme and nanoparticles. The stability of the biosensor and its selectivity were evaluated. This biosensor was applied for the voltammetric determination of l-tyrosine in the blood plasma sample. The results of the practical application study were comparable with the standard method (HPLC). In conclusion, a simple, inexpensive, rapid, sensitive and selective technique was successfully applied to the l-tyrosine analysis of the little samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. HER2 oncogenic function escapes EGFR tyrosine kinase inhibitors via activation of alternative HER receptors in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Anthony Kong

    2008-08-01

    Full Text Available The response rate to EGFR tyrosine kinase inhibitors (TKIs may be poor and unpredictable in cancer patients with EGFR expression itself being an inadequate response indicator. There is limited understanding of the mechanisms underlying this resistance. Furthermore, although TKIs suppress the growth of HER2-overexpressing breast tumor cells, they do not fully inhibit HER2 oncogenic function at physiological doses.Here we have provided a molecular mechanism of how HER2 oncogenic function escapes TKIs' inhibition via alternative HER receptor activation as a result of autocrine ligand release. Using both Förster Resonance Energy Transfer (FRET which monitors in situ HER receptor phosphorylation as well as classical biochemical analysis, we have shown that the specific tyrosine kinase inhibitors (TKIs of EGFR, AG1478 and Iressa (Gefitinib decreased EGFR and HER3 phosphorylation through the inhibition of EGFR/HER3 dimerization. Consequent to this, we demonstrate that cleavage of HER4 and dimerization of HER4/HER2 occur together with reactivation of HER3 via HER2/HER3, leading to persistent HER2 phosphorylation in the now resistant, surviving cells. These drug treatment-induced processes were found to be mediated by the release of ligands including heregulin and betacellulin that activate HER3 and HER4 via HER2. Whereas an anti-betacellulin antibody in combination with Iressa increased the anti-proliferative effect in resistant cells, ligands such as heregulin and betacellulin rendered sensitive SKBR3 cells resistant to Iressa.These results demonstrate the role of drug-induced autocrine events leading to the activation of alternative HER receptors in maintaining HER2 phosphorylation and in mediating resistance to EGFR tyrosine kinase inhibitors (TKIs in breast cancer cells, and hence specify treatment opportunities to overcome resistance in patients.

  20. Thy-1/CD3 coengagement promotes TCR signaling and enhances particularly tyrosine phosphorylation of the raft molecule LAT.

    Science.gov (United States)

    Leyton, L; Quest, A F; Bron, C

    1999-08-01

    Clustering of the glycosyl-phosphatidylinositol (GPI)-anchored protein Thy-1 on the cell surface leads to T cell activation. However, despite the similarity to TCR-mediated events, cell signaling triggered by Thy-1 crosslinking, reportedly occurs in a manner independent of the TCR/CD3 complex. To investigate the relationship between responses resulting from Thy-1 or TCR engagement, a biochemically well defined system employing only affinity purified antibodies was used to crosslink these surface molecules and activation was assessed by monitoring tyrosine phosphorylation, intracellular calcium influx and IL-2 production. By these criteria, anti-CD3 mAbs moderately activated EL-4 thymoma or 2B4 hybridoma cell lines, while costimulation with anti-Thy-1-mAb strongly enhanced TCR signaling. Furthermore, a Thy-1 loss mutant cell line, did not respond to stimulation through CD3 despite expressing all essential signaling molecules. Together these results emphasized the existence of a poorly appreciated mutual interdependence between Thy-1 and CD3 for efficient cellular signaling. Thy-1/CD3-mediated activation enhanced mostly tyrosine phosphorylation of a 40 kDa protein which was identified as a transmembrane protein lacking N-linked oligosaccharides. These biochemical properties are identical to those described for a recently cloned adaptor protein called 'Linker for Activation of T cells' (LAT). Indeed, polyclonal Abs raised against a LAT-peptide (amino acids 103-131) specifically recognized the 40 kDa protein. LAT is present in microdomains of the plasma membrane enriched in sphingolipids, cholesterol, GPI-anchored proteins and a variety of signaling molecules. By contrast, the TCR/CD3 complex is excluded from these domains at least until stimulation takes place. Hence, we propose that Thy-1 promotes TCR/CD3 dependent signaling by facilitating LAT phosphorylation on tyrosine and the subsequent recruitment of downstream effector molecules.

  1. Phosphoproteomics identifies driver tyrosine kinases in sarcoma cell lines and tumors.

    Science.gov (United States)

    Bai, Yun; Li, Jiannong; Fang, Bin; Edwards, Arthur; Zhang, Guolin; Bui, Marilyn; Eschrich, Steven; Altiok, Soner; Koomen, John; Haura, Eric B

    2012-05-15

    Driver tyrosine kinase mutations are rare in sarcomas, and patterns of tyrosine phosphorylation are poorly understood. To better understand the signaling pathways active in sarcoma, we examined global tyrosine phosphorylation in sarcoma cell lines and human tumor samples. Anti-phosphotyrosine antibodies were used to purify tyrosine phosphorylated peptides, which were then identified by liquid chromatography and tandem mass spectrometry. The findings were validated with RNA interference, rescue, and small-molecule tyrosine kinase inhibitors. We identified 1,936 unique tyrosine phosphorylated peptides, corresponding to 844 unique phosphotyrosine proteins. In sarcoma cells alone, peptides corresponding to 39 tyrosine kinases were found. Four of 10 cell lines showed dependence on tyrosine kinases for growth and/or survival, including platelet-derived growth factor receptor (PDGFR)α, MET, insulin receptor/insulin-like growth factor receptor signaling, and SRC family kinase signaling. Rhabdomyosarcoma samples showed overexpression of PDGFRα in 13% of examined cases, and sarcomas showed abundant tyrosine phosphorylation and expression of a number of tyrosine phosphorylated tyrosine kinases, including DDR2, EphB4, TYR2, AXL, SRC, LYN, and FAK. Together, our findings suggest that integrating global phosphoproteomics with functional analyses with kinase inhibitors can identify drivers of sarcoma growth and survival. ©2012 AACR.

  2. A receptor tyrosine kinase inhibitor, Tyrphostin A9 induces cancer cell death through Drp1 dependent mitochondria fragmentation

    International Nuclear Information System (INIS)

    Park, So Jung; Park, Young Jun; Shin, Ji Hyun; Kim, Eun Sung; Hwang, Jung Jin; Jin, Dong-Hoon; Kim, Jin Cheon; Cho, Dong-Hyung

    2011-01-01

    Highlights: → We screened and identified Tyrphostin A9, a receptor tyrosine kinase inhibitor as a strong mitochondria fission inducer. → Tyrphostin A9 treatment promotes mitochondria dysfunction and contributes to cytotoxicity in cancer cells. → Tyrphostin A9 induces apoptotic cell death through a Drp1-mediated pathway. → Our studies suggest that Tyrphostin A9 induces mitochondria fragmentation and apoptotic cell death via Drp1 dependently. -- Abstract: Mitochondria dynamics controls not only their morphology but also functions of mitochondria. Therefore, an imbalance of the dynamics eventually leads to mitochondria disruption and cell death. To identify specific regulators of mitochondria dynamics, we screened a bioactive chemical compound library and selected Tyrphostin A9, a tyrosine kinase inhibitor, as a potent inducer of mitochondrial fission. Tyrphostin A9 treatment resulted in the formation of fragmented mitochondria filament. In addition, cellular ATP level was decreased and the mitochondrial membrane potential was collapsed in Tyr A9-treated cells. Suppression of Drp1 activity by siRNA or over-expression of a dominant negative mutant of Drp1 inhibited both mitochondrial fragmentation and cell death induced by Tyrpohotin A9. Moreover, treatment of Tyrphostin A9 also evoked mitochondrial fragmentation in other cells including the neuroblastomas. Taken together, these results suggest that Tyrphostin A9 induces Drp1-mediated mitochondrial fission and apoptotic cell death.

  3. D-tyrosine affects aggregation behavior of Pantoea agglomerans.

    Science.gov (United States)

    Yang, Jing; Yu, Jiajia; Jiang, Jing; Liang, Chen; Feng, Yongjun

    2017-02-01

    D-amino acids have been proved to disassemble biofilms by disassociating the matrix. Pantoea agglomerans is characterized by the formation of another kind of multicellular structure called symplasmata, which also remains the ability to form biofilms. In this study, a rice diazotrophic endophyte P. agglomerans YS19 was selected as a model strain to explore the effects of D-amino acids on these two kinds of cell aggregate structures. It was discovered that D-tyrosine disassociates biofilm, yet promotes symplasmata formation. D-tyrosine showed no influence on bacterial growth yet promoted the bacterial motility and inhibited the expression of cellular MalE and OmpF proteins, which enriched our knowledge of the biological effect of D-amino acids and expanded the research ideas of symplasmata formation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Receptor tyrosine kinases: the emerging tip of systems control.

    Science.gov (United States)

    Seger, R; Rodeck, U; Yarden, Y

    2008-01-01

    Receptor tyrosine kinases (RTKs) are transmembrane allosteric enzymes: binding of ligand growth factors to their ectodomains stimulates a cytoplasm-facing tyrosine kinase activity, which initiates a plethora of cellular processes. The enormous complexity of RTK signalling, along with rich involvement in pathologies (e.g. cancer and diabetes), motivated the establishment of the international, multi-disciplinary RTK consortium (http://www.rtkconsort.org/) in 2005. In collaboration with the British Society for Proteome Research and the European Bioinformatics Institute, the Consortium held on July 23rd and 24th a Workshop on Proteomics and Phosphoproteomics of RTK Signalling Networks (Hinxton Hall Conference Centre, Cambridge, UK). As highlighted below, systems control (a layered web of regulatory loops summarised in Fig.1) emerged throughout the workshop as a common theme of many presentations.

  5. Novel Bruton's tyrosine kinase inhibitors currently in development

    Directory of Open Access Journals (Sweden)

    D'Cruz OJ

    2013-03-01

    Full Text Available Osmond J D'Cruz,1 Fatih M Uckun1,21Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA; 2Department of Pediatrics, University of Southern California, Los Angeles, CA, USAAbstract: Bruton's tyrosine kinase (Btk is intimately involved in multiple signal-transduction pathways regulating survival, activation, proliferation, and differentiation of B-lineage lymphoid cells. Btk is overexpressed and constitutively active in several B-lineage lymphoid malignancies. Btk has emerged as a new antiapoptotic molecular target for treatment of B-lineage leukemias and lymphomas. Preclinical and early clinical results indicate that Btk inhibitors may be useful in the treatment of leukemias and lymphomas.Keywords: tyrosine kinase, personalized therapy, kinase inhibitors, Btk, leukemia, lymphoma

  6. Stress signaling by Tec tyrosine kinase in the ischemic myocardium.

    Science.gov (United States)

    Zhang, Michael J; Franklin, Sarah; Li, Yifeng; Wang, Sujing; Ru, Xiaochen; Mitchell-Jordan, Scherise A; Mano, Hiroyuki; Stefani, Enrico; Ping, Peipei; Vondriska, Thomas M

    2010-09-01

    Nonreceptor tyrosine kinases have an increasingly appreciated role in cardiac injury and protection. To investigate novel tasks for members of the Tec family of nonreceptor tyrosine kinases in cardiac phenotype, we examined the behavior of the Tec isoform in myocardial ischemic injury. Ischemia-reperfusion, but not cardiac protective agents, induced altered intracellular localization of Tec, highlighting distinct actions of this protein compared with other isoforms, such as Bmx, in the same model. Tec is abundantly expressed in cardiac myocytes and assumes a diffuse intracellular localization under basal conditions but is recruited to striated structures upon various stimuli, including ATP. To characterize Tec signaling targets in vivo, we performed an exhaustive proteomic analysis of Tec-binding partners. These experiments expand the role of the Tec family in the heart, identifying the Tec isoform as an ischemic injury-induced isoform, and map the subproteome of its interactors in isolated cells.

  7. Cloning and expression of a widely expressed receptor tyrosine phosphatase

    DEFF Research Database (Denmark)

    Sap, J; D'Eustachio, P; Givol, D

    1990-01-01

    and Bmp-2a loci. The corresponding mRNA (3.0 kilobases) is expressed in most murine tissues and most abundantly expressed in brain and kidney. Antibodies against a synthetic peptide of R-PTP-alpha identified a 130-kDa protein in cells transfected with the R-PTP-alpha cDNA.......We describe the identification of a widely expressed receptor-type (transmembrane) protein tyrosine phosphatase (PTPase; EC 3.1.3.48). Screening of a mouse brain cDNA library under low-stringency conditions with a probe encompassing the intracellular (phosphatase) domain of the CD45 lymphocyte...... antigen yielded cDNA clones coding for a 794-amino acid transmembrane protein [hereafter referred to as receptor protein tyrosine phosphatase alpha (R-PTP-alpha)] with an intracellular domain displaying clear homology to the catalytic domains of CD45 and LAR (45% and 53%, respectively). The 142-amino acid...

  8. Bone sialoprotein II synthesized by cultured osteoblasts contains tyrosine sulfate

    International Nuclear Information System (INIS)

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C.

    1989-01-01

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with [35S] sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoprotein II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I

  9. Proteomic analysis of tyrosine phosphorylation during human liver transplantation

    Directory of Open Access Journals (Sweden)

    Boutros Tarek

    2007-01-01

    Full Text Available Abstract Background Ischemia-reperfusion (I/R causes a dramatic reprogramming of cell metabolism during liver transplantation and can be linked to an alteration of the phosphorylation level of several cellular proteins. Over the past two decades, it became clear that tyrosine phosphorylation plays a pivotal role in a variety of important signalling pathways and was linked to a wide spectrum of diseases. Functional profiling of the tyrosine phosphoproteome during liver transplantation is therefore of great biological significance and is likely to lead to the identification of novel targets for drug discovery and provide a basis for novel therapeutic strategies. Results Using liver biopsies collected during the early phases of organ procurement and transplantation, we aimed at characterizing the global patterns of tyrosine phosphorylation during hepatic I/R. A proteomic approach, based on the purification of tyrosine phosphorylated proteins followed by their identification using mass spectrometry, allowed us to identify Nck-1, a SH2/SH3 adaptor, as a potential regulator of I/R injury. Using immunoblot, cell fractionation and immunohistochemistry, we demonstrate that Nck-1 phosphorylation, expression and localization were affected in liver tissue upon I/R. In addition, mass spectrometry identification of Nck-1 binding partners during the course of the transplantation also suggested a dynamic interaction between Nck-1 and actin during I/R. Conclusion Taken together, our data suggest that Nck-1 may play a role in I/R-induced actin reorganization, which was previously reported to be detrimental for the hepatocytes of the transplanted graft. Nck-1 could therefore represent a target of choice for the design of new organ preservation strategies, which could consequently help to reduce post-reperfusion liver damages and improve transplantation outcomes.

  10. Bruton's tyrosine kinase is essential for hydrogen peroxide-induced calcium signaling.

    Science.gov (United States)

    Qin, S; Chock, P B

    2001-07-10

    Using Btk-deficient DT40 cells and the transfectants expressing wild-type Btk or Btk mutants in either kinase (Arg(525) to Gln), Src homology 2 (SH2, Arg(307) to Ala), or pleckstrin homology (PH, Arg(28) to Cys) domains, we investigated the roles and structure-function relationships of Btk in hydrogen peroxide-induced calcium mobilization. Our genetic evidence showed that Btk deficiency resulted in a significant reduction in hydrogen peroxide-induced calcium response. This impaired calcium signaling is correlated with the complete elimination of IP3 production and the significantly reduced tyrosine phosphorylation of PLCgamma2 in Btk-deficient DT40 cells. All of these defects were fully restored by the expression of wild-type Btk in Btk-deficient DT40 cells. The data from the point mutation study revealed that a defect at any one of the three functional domains would prevent a full recovery of Btk-mediated hydrogen peroxide-induced intracellular calcium mobilization. However, mutation at either the SH2 or PH domain did not affect the hydrogen peroxide-induced activation of Btk. Mutation at the SH2 domain abrogates both IP3 generation and calcium release, while the mutant with the nonfunctional PH domain can partially activate PLCgamma2 and catalyze IP3 production but fails to produce significant calcium mobilization. Thus, these observations suggest that Btk-dependent tyrosine phosphorylation of PLCgamma2 is required but not sufficient for hydrogen peroxide-induced calcium mobilization. Furthermore, hydrogen peroxide stimulates a Syk-, but not Btk-, dependent tyrosine phosphorylation of B cell linker protein BLNK. The overall results, together with those reported earlier [Qin et al. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 7118], are consistent with the notion that functional SH2 and PH domains are required for Btk to form a complex with PLCgamma2 through BLNK in order to position the Btk, PLCgamma2, and phosphatidylinositol 4,5-bisphosphate in close proximity for

  11. Protein tyrosine phosphorylation during meiotic divisions of starfish oocytes

    Energy Technology Data Exchange (ETDEWEB)

    Peaucellier, G.; Andersen, A.C.; Kinsey, W.H. (Univ. of Miami School of Medicine, FL (USA))

    1990-04-01

    We have used an antibody specific for phosphotyrosine to investigate protein phosphorylation on tyrosine during hormone-induced maturation of starfish oocytes. Analysis of immunoprecipitates from cortices of in vivo labeled Marthasterias glacialis oocytes revealed the presence of labeled phosphotyrosine-containing proteins only after hormone addition. Six major phosphoproteins of 195, 155, 100, 85, 45, and 35 kDa were detected. Total activity in immunoprecipitates increased until first polar body emission and was greatly reduced upon completion of meiosis but some proteins exhibited different kinetics. The labeling of the 155-kDa protein reached a maximum at germinal vesicle breakdown, while the 35-kDa appeared later and disappeared after polar body emission. Similar results were obtained with Asterias rubens oocytes. In vitro phosphorylation of cortices showed that tyrosine kinase activity is a major protein kinase activity in this fraction, the main endogenous substrate being a 68-kDa protein. The proteins phosphorylated on tyrosine in vitro were almost similar in extracts from oocytes treated or not with the hormone.

  12. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  13. UV?Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore

    OpenAIRE

    Antosiewicz, Jan M.; Shugar, David

    2016-01-01

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV?Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  14. Increased activity of the Vesicular Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor TI-VAMP/VAMP7 by Tyrosine Phosphorylation in the Longin Domain*

    Science.gov (United States)

    Burgo, Andrea; Casano, Alessandra M.; Kuster, Aurelia; Arold, Stefan T.; Wang, Guan; Nola, Sébastien; Verraes, Agathe; Dingli, Florent; Loew, Damarys; Galli, Thierry

    2013-01-01

    Vesicular (v)- and target (t)-SNAREs play essential roles in intracellular membrane fusion through the formation of cytoplasmic α-helical bundles. Several v-SNAREs have a Longin N-terminal extension that, by promoting a closed conformation, plays an autoinhibitory function and decreases SNARE complex formation and membrane fusion efficiency. The molecular mechanism leading to Longin v-SNARE activation is largely unknown. Here we find that exocytosis mediated by the Longin v-SNARE TI-VAMP/VAMP7 is activated by tonic treatment with insulin and insulin-like growth factor-1 but not by depolarization and intracellular calcium rise. In search of a potential downstream mechanism, we found that TI-VAMP is phosphorylated in vitro by c-Src kinase on tyrosine 45 of the Longin domain. Accordingly, a mutation of tyrosine 45 into glutamate, but not phenylalanine, activates both t-SNARE binding and exocytosis. Activation of TI-VAMP-mediated exocytosis thus relies on tyrosine phosphorylation. PMID:23471971

  15. Sphingosine 1-Phosphate Induces Platelet/Endothelial Cell Adhesion Molecule-1 Tyrosine Phosphorylation in Bovine Aortic Endothelial Cells through a PP2-Inhibitable Mechanism

    Directory of Open Access Journals (Sweden)

    Yu-Ting Huang

    2007-12-01

    Full Text Available Sphingosine-1-phosphate (S1P is a low-molecular-weight phospholipid derivative released by activated platelets. S1P transduces signals through a family of G protein-coupled receptors to modulate various physiological behaviors of endothelial cells. Platelet/endothelial cell adhesion molecule-1 (PECAM-1; CD31 is a 130-kDa protein expressed on the surfaces of leukocytes, platelets, and endothelial cells. Upon PECAM-1 activation, its cytoplasmic tyrosine residues become phosphorylated and bind with SH2 domain-containing proteins, thus leading to the downstream functions mediated by PECAM-1. In the present study, we found that S1P induced PECAM-1 tyrosine phosphorylation and SHP-2 association in bovine aortic endothelial cells (BAECs by immunoprecipitation and western blotting. The pretreatment of BAECs with a series of chemical inhibitors to determine the signaling pathway showed that the PECAM-1 phosphorylation was inhibited by PP2, indicating the participation of Src family kinases. These results demonstrated that S1P induced PECAM-1 tyrosine phosphorylation in BAECs through mediation of Src family kinases, and this may regulate the physiological behaviors of endothelial cells.

  16. An Evolution-Guided Analysis Reveals a Multi-Signaling Regulation of Fas by Tyrosine Phosphorylation and its Implication in Human Cancers

    Science.gov (United States)

    Chakrabandhu, Krittalak; Huault, Sébastien; Durivault, Jérôme; Lang, Kévin; Ta Ngoc, Ly; Bole, Angelique; Doma, Eszter; Dérijard, Benoit; Gérard, Jean-Pierre; Pierres, Michel; Hueber, Anne-Odile

    2016-01-01

    Demonstrations of both pro-apoptotic and pro-survival abilities of Fas (TNFRSF6/CD95/APO-1) have led to a shift from the exclusive “Fas apoptosis” to “Fas multisignals” paradigm and the acceptance that Fas-related therapies face a major challenge, as it remains unclear what determines the mode of Fas signaling. Through protein evolution analysis, which reveals unconventional substitutions of Fas tyrosine during divergent evolution, evolution-guided tyrosine-phosphorylated Fas proxy, and site-specific phosphorylation detection, we show that the Fas signaling outcome is determined by the tyrosine phosphorylation status of its death domain. The phosphorylation dominantly turns off the Fas-mediated apoptotic signal, while turning on the pro-survival signal. We show that while phosphorylations at Y232 and Y291 share some common functions, their contributions to Fas signaling differ at several levels. The findings that Fas tyrosine phosphorylation is regulated by Src family kinases (SFKs) and the phosphatase SHP-1 and that Y291 phosphorylation primes clathrin-dependent Fas endocytosis, which contributes to Fas pro-survival signaling, reveals for the first time the mechanistic link between SFK/SHP-1-dependent Fas tyrosine phosphorylation, internalization route, and signaling choice. We also demonstrate that levels of phosphorylated Y232 and Y291 differ among human cancer types and differentially respond to anticancer therapy, suggesting context-dependent involvement of Fas phosphorylation in cancer. This report provides a new insight into the control of TNF receptor multisignaling by receptor phosphorylation and its implication in cancer biology, which brings us a step closer to overcoming the challenge in handling Fas signaling in treatments of cancer as well as other pathologies such as autoimmune and degenerative diseases. PMID:26942442

  17. Effects of hemorrhagic hypotension on tyrosine concentrations in rat spinal cord and plasma

    Science.gov (United States)

    Conlay, L. A.; Maher, T. J.; Roberts, C. H.; Wurtman, R. J.

    1988-01-01

    Tyrosine is the precursor for catecholamine neurotransmitters. When catecholamine-containing neurons are physiologically active (as sympathoadrenal cells are in hypotension), tyrosine administration increases catecholamine synthesis and release. Since hypotension can alter plasma amino acid composition, the effects of an acute hypotensive insult on tyrosine concentrations in plasma and spinal cord were examined. Rats were cannulated and bled until the systolic blood pressure was 50 mmHg, or were kept normotensive for 1 h. Tyrosine and other large neutral amino acids (LNAA) known to compete with tyrosine for brain uptake were assayed in plasma and spinal cord. The rate at which intra-arterial (H-3)tyrosine disappeared from the plasma was also estimated in hemorrhaged and control rats. In plasma of hemorrhaged animals, both the tyrosine concentration and the tyrosine/LNAA ratio was elevated; moreover, the disappearance of (H-3)tyrosine was slowed. Tyrosine concentrations also increased in spinal cords of hemorrhaged-hypotensive rats when compared to normotensive controls. Changes in plasma amino acid patterns may thus influence spinal cord concentrations of amino acid precursors for neurotransmitters during the stress of hemorrhagic shock.

  18. Toxoplasma growth in vitro is dependent on exogenous tyrosine and is independent of AAH2 even in tyrosine-limiting conditions.

    Science.gov (United States)

    Marino, Nicole D; Boothroyd, John C

    2017-05-01

    Toxoplasma gondii is an obligate intracellular parasite capable of infecting virtually all nucleated cell types in almost all warm-blooded animals. Interestingly, Toxoplasma has a relatively full repertoire of amino acid biosynthetic machinery, perhaps reflecting its broad host range and, consequently, its need to adapt to a wide array of amino acid resources. Although Toxoplasma has been shown to be auxotrophic for tryptophan and arginine, it has not previously been determined if Toxoplasma is also auxotrophic for tyrosine. Toxoplasma tachyzoites and bradyzoites were recently found to express an amino acid hydroxylase (AAH2) that is capable of synthesizing tyrosine and dihydroxyphenylalanine (DOPA) from phenylalanine; however, the role of AAH2 in tachyzoite and bradyzoite infection has not yet been identified. To determine if Toxoplasma requires exogenous tyrosine for growth, we performed growth assays on tachyzoites and bradyzoites in nutrient-rich media titrated with varying amounts of tyrosine. We found that Toxoplasma tachyzoites form significantly smaller plaques in tyrosine-limiting media in a dose-dependent manner and that this phenotype is not affected by deletion of TgAAH2. To determine if bradyzoites require exogenous tyrosine for growth, we induced differentiation from tachyzoites in vitro in tyrosine-limiting media and found that replication and vacuole number are all decreased in tyrosine-deficient media. Importantly, culture of confluent human fibroblasts in tyrosine-deficient media does not affect their viability, indicating that, at least in vitro, the need for tyrosine is at the level of Toxoplasma, not the host cell supporting its growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Methotrexate administration induces differential and selective protein tyrosine nitration and cysteine nitrosylation in the subcellular organelles of the small intestinal mucosa of rats.

    Science.gov (United States)

    Natarajan, Kasthuri; Abraham, Premila

    2016-05-05

    Gastrointestinal toxicity is one of the most frequent dose limiting side effects of methotrexate (MTX), a commonly used chemotherapeutic drug. Peroxynitrite (PON) overproduction is reported to contribute to MTX induced gastrointestinal mucositis. However, the consequence of PON overproduction i.e. protein tyrosine nitration and protein cysteine nitrosylation, the subcellular distribution of these modified proteins and their molecular weights have not been investigated yet. Mucositis was induced in Wistar rats by the administration of 3 consecutive i.p. injections of MTX. Tyrosine nitrated proteins and cysteine nitrosylated proteins were determined in the subcellular organelles fractions of mucosa using immunoprecipitation and western blot. The proteins in the subcellular fractions were separated by 1D electrophoresis, and probed with anti -nitrotyrosine antibody and anti-nitrosocysteine antibody. After MTX treatment, a general increase in protein tyrosine nitration as well as a change in the spectrum of proteins that underwent nitration was observed. The relative densities of the 3 nitrotyrosine protein adducts were as follows: Mitochondria > cytosol > microsomes > nucleus. In the mitochondrial fraction increased nitration of 12 kDa, 25 kDa 29Kda, 47 kDa, and 62Kda proteins, in the cytosol increased nitration of 12 kDa, 19 kDa, 45 kDa, and 60 kDa proteins and in the nuclear fraction increased nitration of 17 kDa, 35 kDa, and 58 kDa proteins was observed. On the other hand, MTX treatment resulted to a general decrease in protein cysteine nitrosylation in all the subcellular fractions. These results suggest that MTX induced, PON mediated small intestinal injury is mediated by differential nitration and nitrosylation of proteins in the subcellular organelles with increased protein tyrosine nitration and decreased cysteine nitrosylation. In addition MTX treatment results in selective nitration and nitrosylation of proteins in the intestinal mucosa. This differential

  20. αE-catenin inhibits a Src–YAP1 oncogenic module that couples tyrosine kinases and the effector of Hippo signaling pathway

    Science.gov (United States)

    Li, Peng; Silvis, Mark R.; Honaker, Yuchi; Lien, Wen-Hui; Arron, Sarah T.; Vasioukhin, Valeri

    2016-01-01

    Cell–cell adhesion protein αE-catenin inhibits skin squamous cell carcinoma (SCC) development; however, the mechanisms responsible for this function are not completely understood. We report here that αE-catenin inhibits β4 integrin-mediated activation of SRC tyrosine kinase. SRC is the first discovered oncogene, but the protein substrate critical for SRC-mediated transformation has not been identified. We found that YAP1, the pivotal effector of the Hippo signaling pathway, is a direct SRC phosphorylation target, and YAP1 phosphorylation at three sites in its transcription activation domain is necessary for SRC–YAP1-mediated transformation. We uncovered a marked increase in this YAP1 phosphorylation in human and mouse SCC tumors with low/negative expression of αE-catenin. We demonstrate that the tumor suppressor function of αE-catenin involves negative regulation of the β4 integrin–SRC signaling pathway and that SRC-mediated phosphorylation and activation of YAP1 are an alternative to the canonical Hippo signaling pathway that directly connect oncogenic tyrosine kinase signaling with YAP1. PMID:27013234

  1. Post-paralysis tyrosine kinase inhibition with masitinib abrogates neuroinflammation and slows disease progression in inherited amyotrophic lateral sclerosis.

    Science.gov (United States)

    Trias, Emiliano; Ibarburu, Sofía; Barreto-Núñez, Romina; Babdor, Joël; Maciel, Thiago T; Guillo, Matthias; Gros, Laurent; Dubreuil, Patrice; Díaz-Amarilla, Pablo; Cassina, Patricia; Martínez-Palma, Laura; Moura, Ivan C; Beckman, Joseph S; Hermine, Olivier; Barbeito, Luis

    2016-07-11

    In the SOD1(G93A) mutant rat model of amyotrophic lateral sclerosis (ALS), neuronal death and rapid paralysis progression are associated with the emergence of activated aberrant glial cells that proliferate in the degenerating spinal cord. Whether pharmacological downregulation of such aberrant glial cells will decrease motor neuron death and prolong survival is unknown. We hypothesized that proliferation of aberrant glial cells is dependent on kinase receptor activation, and therefore, the tyrosine kinase inhibitor masitinib (AB1010) could potentially control neuroinflammation in the rat model of ALS. The cellular effects of pharmacological inhibition of tyrosine kinases with masitinib were analyzed in cell cultures of microglia isolated from aged symptomatic SOD1(G93A) rats. To determine whether masitinib prevented the appearance of aberrant glial cells or modified post-paralysis survival, the drug was orally administered at 30 mg/kg/day starting after paralysis onset. We found that masitinib selectively inhibited the tyrosine kinase receptor colony-stimulating factor 1R (CSF-1R) at nanomolar concentrations. In microglia cultures from symptomatic SOD1(G93A) spinal cords, masitinib prevented CSF-induced proliferation, cell migration, and the expression of inflammatory mediators. Oral administration of masitinib to SOD1(G93A) rats starting after paralysis onset decreased the number of aberrant glial cells, microgliosis, and motor neuron pathology in the degenerating spinal cord, relative to vehicle-treated rats. Masitinib treatment initiated 7 days after paralysis onset prolonged post-paralysis survival by 40 %. These data show that masitinib is capable of controlling microgliosis and the emergence/expansion of aberrant glial cells, thus providing a strong biological rationale for its use to control neuroinflammation in ALS. Remarkably, masitinib significantly prolonged survival when delivered after paralysis onset, an unprecedented effect in preclinical models

  2. Collagen Type I Selectively Activates Ectodomain Shedding of the Discoidin Domain Receptor 1: Involvement of Src Tyrosine Kinase

    Science.gov (United States)

    Slack, Barbara E.; Siniaia, Marina S.; Blusztajn, Jan K.

    2008-01-01

    The discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that is highly expressed in breast carcinoma cells. Upon binding to collagen, DDR1 undergoes autophosphorylation followed by limited proteolysis to generate a tyrosine phosphorylated C-terminal fragment (CTF). Although it was postulated that this fragment is formed as a result of shedding of the N-terminal ectodomain, collagen-dependent release of the DDR1 extracellular domain has not been demonstrated. We now report that, in conjunction with CTF formation, collagen type I stimulates concentration-dependent, saturable shedding of the DDR1 ectodomain from two carcinoma cell lines, and from transfected cells. In contrast, collagen did not promote cleavage of other transmembrane proteins including the amyloid precursor protein (APP), ErbB2, and E-cadherin. Collagen-dependent tyrosine phosphorylation and proteolysis of DDR1 in carcinoma cells were reduced by a pharmacologic Src inhibitor. Moreover, expression of a dominant negative Src mutant protein in human embryonic kidney cells inhibited collagen-dependent phosphorylation and shedding of co-transfected DDR1. The hydroxamate-based metalloproteinase inhibitor TAPI-1 (tumor necrosis factor-α protease inhibitor-1), and tissue inhibitor of metalloproteinase (TIMP)-3, also blocked collagen-evoked DDR1 shedding, but did not reduce levels of the phosphorylated CTF. Neither shedding nor CTF formation were affected by the γ-secretase inhibitor, L-685,458. The results demonstrate that collagen-evoked ectodomain cleavage of DDR1 is mediated in part by Src-dependent activation or recruitment of a matrix- or disintegrin metalloproteinase, and that CTF formation can occur independently of ectodomain shedding. Delayed shedding of the DDR1 ectodomain may represent a mechanism that limits DDR1-dependent cell adhesion and migration on collagen matrices. PMID:16440311

  3. Crosstalk between G protein-coupled receptors (GPCRs and tyrosine kinase receptor (TXR in the heart after morphine withdrawal

    Directory of Open Access Journals (Sweden)

    Pilar eAlmela

    2013-12-01

    Full Text Available G protein-coupled receptors (GPCRs comprise a large family of membrane receptors involved in signal transduction. These receptors are linked to a variety of physiological and biological processes such as regulation of neurotransmission, growth and cell differentiation among others. Some of the effects of GPCRs are known to be mediated by the activation of mitogen-activated extracellular kinase (MAPK pathways. Cross-talk among various signal pathways plays an important role in activation of intracellular and intranuclear signal transduction cascades. Naloxone-induced morphine withdrawal leads to an up-regulation of adenyl cyclase-mediated signalling, resulting in high expression of protein kinase (PK A. In addition, there is also an increased expression of extracellular signal regulated kinase (ERK, one member of MAPK. For this reason, the crosstalk between these GPCRs and receptors with tyrosine kinase activity (TKR can be considered a possible mechanism for adaptive changes that occurs after morphine withdrawal. Morphine withdrawal activates ERK1/2 and phosphorylated tyrosine hydroxylase (TH at Ser31 in the right and left ventricle. When N-(2-guanidinoethyl-5-isoquinolinesulfonamide (HA-1004, a PKA inhibitor was infused, the ability of morphine withdrawal to activate ERK, which phosphorylates TH at Ser31, was reduced. The present finding demonstrated that the enhancement of ERK1/2 expression and the phosphorylation state of TH at Ser31 during morphine withdrawal are dependent on PKA and suggest cross-talk between PKA and ERK1/2 transduction pathway mediating morphine withdrawal-induced activation of TH. Increasing understanding of the mechanisms that interconnect the two pathway regulated by GPCRs and TKRs may facilitate the design of new therapeutic strategies.

  4. BRK targets Dok1 for ubiquitin-mediated proteasomal degradation to promote cell proliferation and migration.

    Directory of Open Access Journals (Sweden)

    Sayem Miah

    Full Text Available Breast tumor kinase (BRK, also known as protein tyrosine kinase 6 (PTK6, is a non-receptor tyrosine kinase overexpressed in more that 60% of human breast carcinomas. The overexpression of BRK has been shown to sensitize mammary epithelial cells to mitogenic signaling and to promote cell proliferation and tumor formation. The molecular mechanisms of BRK have been unveiled by the identification and characterization of BRK target proteins. Downstream of tyrosine kinases 1 or Dok1 is a scaffolding protein and a substrate of several tyrosine kinases. Herein we show that BRK interacts with and phosphorylates Dok1 specifically on Y362. We demonstrate that this phosphorylation by BRK significantly downregulates Dok1 in a ubiquitin-proteasome-mediated mechanism. Together, these results suggest a novel mechanism of action of BRK in the promotion of tumor formation, which involves the targeting of tumor suppressor Dok1 for degradation through the ubiquitin proteasomal pathway.

  5. BRK targets Dok1 for ubiquitin-mediated proteasomal degradation to promote cell proliferation and migration.

    Science.gov (United States)

    Miah, Sayem; Goel, Raghuveera Kumar; Dai, Chenlu; Kalra, Natasha; Beaton-Brown, Erika; Bagu, Edward T; Bonham, Keith; Lukong, Kiven E

    2014-01-01

    Breast tumor kinase (BRK), also known as protein tyrosine kinase 6 (PTK6), is a non-receptor tyrosine kinase overexpressed in more that 60% of human breast carcinomas. The overexpression of BRK has been shown to sensitize mammary epithelial cells to mitogenic signaling and to promote cell proliferation and tumor formation. The molecular mechanisms of BRK have been unveiled by the identification and characterization of BRK target proteins. Downstream of tyrosine kinases 1 or Dok1 is a scaffolding protein and a substrate of several tyrosine kinases. Herein we show that BRK interacts with and phosphorylates Dok1 specifically on Y362. We demonstrate that this phosphorylation by BRK significantly downregulates Dok1 in a ubiquitin-proteasome-mediated mechanism. Together, these results suggest a novel mechanism of action of BRK in the promotion of tumor formation, which involves the targeting of tumor suppressor Dok1 for degradation through the ubiquitin proteasomal pathway.

  6. Nitrated type III collagen as a biological marker of nitric oxide-mediated synovial tissue metabolism in osteoarthritis

    DEFF Research Database (Denmark)

    Richardot, P; Charni-Ben Tabassi, N; Toh, L

    2009-01-01

    OBJECTIVES: Nitric oxide (NO) is a major mediator of joint tissue inflammation and damage in osteoarthritis (OA) and mediates the nitration of tyrosine (Y*) residues in proteins. We investigated the nitration of type III collagen, a major constituent of synovial membrane, in knee OA. METHODS: A p...... investigation of oxidative-related alterations of synovial tissue metabolism in OA....

  7. Tyrosine-rich crystals associated with oncocytic salivary gland neoplasms.

    Science.gov (United States)

    Gilcrease, M Z; Nelson, F S; Guzman-Paz, M

    1998-07-01

    Crystalloids have been identified ultrastructurally within the epithelial cells of Warthin's tumors, but there have been no studies characterizing crystals or crystalloids in Warthin's tumors by light microscopy. The finding of abundant needle-shaped crystals in a fine-needle aspirate of a cystadenoma of the parotid prompted us to examine the prevalence of crystals and crystalloids in oncocytic salivary gland neoplasms. Ninety-seven oncocytic neoplasms (93 Warthin's tumors, 3 cystadenomas, and 1 oncocytoma) excised at our institution between 1950 and 1996 were examined, to identify crystals. Neoplasms with crystals were further characterized by means of a variety of histochemical stains and electron microscopy. Ninety-nine pleomorphic adenomas were similarly reviewed. Seven cases with crystals were identified. Five of these were Warthin's tumors, 1 was a cystadenoma, and 1 was an oncocytoma. The crystals were noted within tumor cysts but were not limited to the neoplasms. The crystals were predominantly either needle-shaped or tabular, but some cases contained mixtures of both as well as intermediate forms. They stained pink with hematoxylin-eosin, although the tabular forms also exhibited a focal yellow hue. The crystals were not discernible under polarized light. They stained a red-brown color with Millon's reagent, which indicated the presence of tyrosine. Trichrome, periodic acid-Schiff stain with diastase, alcian blue (pH 2.5), and Congo red stains were negative. Electron microscopy revealed sharply defined, elongate, electron-dense structures with periodicity, both extracellular and within epithelial cells. No crystals or crystalloids were identified in any of 99 pleomorphic adenomas reviewed. The findings indicate that tyrosine-rich crystals associated with several oncocytic salivary gland neoplasms are morphologically, histochemically, and ultrastructurally distinct from previously described tyrosine-rich crystalloids and collagenous crystalloids of

  8. Genomic organization of Bruton`s tyrosine kinase

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, J.; Conley, M.E. [Univ. of Tennessee, Memphis, TN (United States)

    1994-09-01

    Bruton`s tyrosine kinase (Btk), is a nonreceptor tyrosine kinase that has been identified as the defective gene in X-linked agammaglobulinemia (XLA). XLA patients have profound hypogammaglobulinemia and markedly reduced numbers of B cells while their T cell and phagocyte numbers remain normal. To determine the genomic organization of Btk, intron/exon borders were identified by sequencing cosmid DNA using cDNA primers. Nineteen exons spanning 37 kb of genomic DNA were identified. All the intron/exon splice junctions followed the GT/AG rule. The translational ATG start codon was in exon 2 which was 6 kb downstream of exon 1. Exon 19, 519 bp in length and 3.8 kb distal to exon 18, was the largest exon and included the 450 bp of the 3{prime} untranslated region. Exons 6 through 18 formed the largest cluster of exons with no intron being longer than 1550 bp. There was no apparent correlation between the exon boundaries of Btk and the functional domains of the protein or the exon boundaries of src, the nonreceptor protein tyrosine kinase prototype. The region 500 bp upstream of the presumed transcriptional start site was sequenced and found to have a G+C content of 52%. No TATA-type promoter elements in the -20 bp to -30 bp region were identified. However, at position -48 bp, a TGTGAA motif was found that bears some similarity to the TATA box. This sequence was preceded by a perfect inverted CCAAT box at position -90 bp. Three retinoic acid binding sites were also identified at positions -50 bp, -83 bp and -197 bp. Defining the genomic structure of Btk will permit us to identify regulatory elements in this gene and to identify mutations in genomic DNA of patients with XLA.

  9. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mehere, P.; Robinson, H.; Han, Q.; Lemkul, J. A.; Vavricka, C. J.; Bevan, D. R.; Li, J.

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  10. Tyrosine Aminotransferase: Biochemical and Structural Properties and Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    P Mehere; Q Han; J Lemkul; C Vavricka; H Robinson; D Bevan; J Li

    2011-12-31

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  11. Phenylalanine as substrate for tyrosine hydroxylase in bovine adrenal chromaffin cells.

    OpenAIRE

    Fukami, M H; Haavik, J; Flatmark, T

    1990-01-01

    Incubation of bovine chromaffin cells with L-[14C]phenylalanine resulted in label accumulation in catecholamines at about 30% of the rate seen with L-tyrosine as precursor. Studies with purified tyrosine hydroxylase (EC 1.14.16.2) showed that the enzyme catalysed the hydroxylation of L-phenylalanine first to L-p-tyrosine and then to 3,4-dihydroxyphenylalanine (DOPA). No evidence for a significant involvement of an L-m-tyrosine intermediate in DOPA formation was found.

  12. Food for thought: association between dietary tyrosine and cognitive performance in younger and older adults.

    Science.gov (United States)

    Kühn, Simone; Düzel, Sandra; Colzato, Lorenza; Norman, Kristina; Gallinat, Jürgen; Brandmaier, Andreas M; Lindenberger, Ulman; Widaman, Keith F

    2017-12-18

    The fact that tyrosine increases dopamine availability that, in turn, may enhance cognitive performance has led to numerous studies on healthy young participants taking tyrosine as a food supplement. As a result of this dietary intervention, participants show performance increases in working memory and executive functions. However, the potential association between habitual dietary tyrosine intake and cognitive performance has not been investigated to date. The present study aims at clarifying the association of episodic memory (EM), working memory (WM) and fluid intelligence (Gf), and tyrosine intake in younger and older adults. To this end, we acquired habitual tyrosine intake (food frequency questionnaire) from 1724 participants of the Berlin Aging Study II (1383 older adults, 341 younger adults) and modelled its relations to cognitive performance assessed in a broad battery of cognitive tasks using structural equation modeling. We observed a significant association between tyrosine intake and the latent factor capturing WM, Gf, and EM in the younger and the older sample. Due to partial strong factorial invariance between age groups for a confirmatory factor analysis on cognitive performance, we were able to compare the relationship between tyrosine and cognition between age groups and found no difference. Above and beyond previous studies on tyrosine food supplementation the present result extend this to a cross-sectional association between habitual tyrosine intake levels in daily nutrition and cognitive performance (WM, Gf, and EM). This corroborates nutritional recommendations that are thus far derived from single-dose administration studies.

  13. Organization and evolution of the rat tyrosine hydroxylase gene

    International Nuclear Information System (INIS)

    Brown, E.R.; Coker, G.T. III; O'Malley, K.L.

    1987-01-01

    This report describes the organization of the rat tyrosine hydroxylase (TH) gene and compares its structure with the human phenylalanine hydroxylase gene. Both genes are single copy and contain 13 exons separated by 12 introns. Remarkably, the positions of 10 out 12 intron/exon boundaries are identical for the two genes. These results support the idea that these hydroxylases genes are members of a gene family which has a common evolutionary origin. The authors predict that this ancestral gene would have encoded exons similar to those of TH prior to evolutionary drift to other members of this gene family

  14. Tyrosine Kinase Inhibitor Treatment for Newly Diagnosed Chronic Myeloid Leukemia.

    Science.gov (United States)

    Radich, Jerald P; Mauro, Michael J

    2017-08-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder that accounts for approximately 10% of new cases of leukemia. The introduction of tyrosine kinase inhibitors has led to a reduction in mortalities. Thus, the estimated prevalence of CML is increasing. The National Comprehensive Cancer Network and the European Leukemia Net guidelines incorporate frequent molecular monitoring of the fusion BCR-ABL transcript to ensure that patients reach and keep treatment milestones. Most patients with CML are diagnosed in the chronic phase, and approximately 10% to 30% of these patients will at some time in their course meet definition criteria of resistance to imatinib. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Second-generation inhibitors of Bruton tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Jingjing Wu

    2016-09-01

    Full Text Available Abstract Bruton tyrosine kinase (BTK is a critical effector molecule for B cell development and plays a major role in lymphoma genesis. Ibrutinib is the first-generation BTK inhibitor. Ibrutinib has off-target effects on EGFR, ITK, and Tec family kinases, which explains the untoward effects of ibrutinib. Resistance to ibrutinib was also reported. The C481S mutation in the BTK kinase domain was reported to be a major mechanism of resistance to ibrutinib. This review summarizes the clinical development of novel BTK inhibitors, ACP-196 (acalabrutinib, ONO/GS-4059, and BGB-3111.

  16. Second-generation inhibitors of Bruton tyrosine kinase.

    Science.gov (United States)

    Wu, Jingjing; Liu, Christina; Tsui, Stella T; Liu, Delong

    2016-09-02

    Bruton tyrosine kinase (BTK) is a critical effector molecule for B cell development and plays a major role in lymphoma genesis. Ibrutinib is the first-generation BTK inhibitor. Ibrutinib has off-target effects on EGFR, ITK, and Tec family kinases, which explains the untoward effects of ibrutinib. Resistance to ibrutinib was also reported. The C481S mutation in the BTK kinase domain was reported to be a major mechanism of resistance to ibrutinib. This review summarizes the clinical development of novel BTK inhibitors, ACP-196 (acalabrutinib), ONO/GS-4059, and BGB-3111.

  17. LRIG1 modulates cancer cell sensitivity to Smac mimetics by regulating TNFα expression and receptor tyrosine kinase signaling.

    Science.gov (United States)

    Bai, Longchuan; McEachern, Donna; Yang, Chao-Yie; Lu, Jianfeng; Sun, Haiying; Wang, Shaomeng

    2012-03-01

    Smac mimetics block inhibitor of apoptosis proteins to trigger TNFα-dependent apoptosis in cancer cells. However, only a small subset of cancer cells seem to be sensitive to Smac mimetics and even sensitive cells can develop resistance. Herein, we elucidated mechanisms underlying the intrinsic and acquired resistance of cancer cells to Smac mimetics. In vitro and in vivo investigations revealed that the expression of the cell surface protein LRIG1, a negative regulator of receptor tyrosine kinases (RTK), is downregulated in resistant derivatives of breast cancer cells sensitive to Smac mimetics. RNA interference-mediated downregulation of LRIG1 markedly attenuated the growth inhibitory activity of the Smac mimetic SM-164 in drug-sensitive breast and ovarian cancer cells. Furthermore, LRIG1 downregulation attenuated TNFα gene expression induced by Smac mimetics and increased the activity of multiple RTKs, including c-Met and Ron. The multitargeted tyrosine kinase inhibitors Crizotinib and GSK1363089 greatly enhanced the anticancer activity of SM-164 in all resistant cell derivatives, with the combination of SM-164 and GSK1363089 also completely inhibiting the outgrowth of resistant tumors in vivo. Together, our findings show that both upregulation of RTK signaling and attenuated TNFα expression caused by LRIG1 downregulation confers resistance to Smac mimetics, with implications for a rational combination strategy.

  18. Rapid tyrosine phosphorylation of Lck following ligation of the tumor-associated cell surface molecule A6H

    DEFF Research Database (Denmark)

    Labuda, T; Gerwien, J; Ødum, Niels

    1999-01-01

    and the TCR-CD3 complex takes place and which signaling pathway might be involved. Here we show that ligation of the A6H antigen with mAb induces tyrosine phosphorylation of the Lck protein tyrosine kinase (PTK). Co-ligation of the A6H antigen with CD3 resulted in augmented Lck phosphorylation and mitogenesis....... In addition, A6H ligation induced an up-regulation of CD3-mediated phosphorylation of the 23 kDa high mol. wt form of TCR zeta and the zeta-associated protein, ZAP-70. Co-precipitation of Lck and ZAP-70 was only seen in T cells activated by combined A6H and anti-CD3 stimulation. In contrast, another Src...... family PTK, Fyn, was not affected by A6H ligation. In conclusion, we now demonstrate, for the first time, that A6H ligation triggers Lck phosphorylation, and that cross-talk between A6H and the TCR-CD3 complex involves Lck, ZAP-70 and the slow migrating isoform of TCR zeta. These results further suggests...

  19. ARQ 197, a novel and selective inhibitor of the human c-Met receptor tyrosine kinase with antitumor activity.

    Science.gov (United States)

    Munshi, Neru; Jeay, Sébastien; Li, Youzhi; Chen, Chang-Rung; France, Dennis S; Ashwell, Mark A; Hill, Jason; Moussa, Magdi M; Leggett, David S; Li, Chiang J

    2010-06-01

    The met proto-oncogene is functionally linked with tumorigenesis and metastatic progression. Validation of the receptor tyrosine kinase c-Met as a selective anticancer target has awaited the emergence of selective c-Met inhibitors. Herein, we report ARQ 197 as the first non-ATP-competitive small molecule that selectively targets the c-Met receptor tyrosine kinase. Exposure to ARQ 197 resulted in the inhibition of proliferation of c-Met-expressing cancer cell lines as well as the induction of caspase-dependent apoptosis in cell lines with constitutive c-Met activity. These cellular responses to ARQ 197 were phenocopied by RNAi-mediated c-Met depletion and further demonstrated by the growth inhibition of human tumors following oral administration of ARQ 197 in multiple mouse xenograft efficacy studies. Cumulatively, these data suggest that ARQ 197, currently in phase II clinical trials, is a promising agent for targeting cancers in which c-Met-driven signaling is important for their survival and proliferation.

  20. I-mediated signaling events by Lyn kinase C-terminal tyrosine phosphorylation

    Czech Academy of Sciences Publication Activity Database

    Tolar, Pavel; Dráberová, Lubica; Tolarová, Helena; Dráber, Petr

    2004-01-01

    Roč. 34, č. 4 (2004), s. 1136-1145 ISSN 0014-2980 R&D Projects: GA MŠk LN00A026; GA ČR GA204/00/0204; GA ČR GA310/00/0205; GA ČR GA204/03/0594; GA ČR GA301/03/0596; GA AV ČR IAA5052005; GA AV ČR IAA7052006; GA AV ČR IAA5052310 Institutional research plan: CEZ:AV0Z5052915 Keywords : mast cell * Fc receptor * signal transduction Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.005, year: 2004

  1. Residue 182 influences the second step of protein-tyrosine phosphatase-mediated catalysis

    DEFF Research Database (Denmark)

    Pedersen, A.K.; Guo, X.; Møller, K.B.

    2004-01-01

    , in comparison with Phe(182)-PTPs, have significantly decreased k(cat) values, and to a lesser degree, decreased k(cat)/K-m values. Combined enzyme kinetic, X-ray crystallographic and molecular dynamics studies indicate that the effect of His(182) is due to interactions with Asp(181) and with Gln(262). We...

  2. Catabolism of L-tyrosine in Trichosporon cutaneum.

    Science.gov (United States)

    Sparnins, V L; Burbee, D G; Dagley, S

    1979-01-01

    Protocatechuic acid was a catabolite in the degradation of L-tyrosine by Trichosporon cutaneum. Intact cells oxidized to completion various compounds proposed as intermediates in this conversion, but they did not readily oxidize catabolites of the homogentisate and homoprotocatechuate metabolic pathways, which are known to function in other organisms. Cell extracts converted tyrosine first to 4-hydroxycinnamic acid and then to 4-hydroxybenzaldehyde and 4-hydroxybenzoic acid. The proposed hydration product of 4-hydroxycinnamic acid, namely, beta-(4-hydroxyphenyl)-hydracrylic acid, was synthesized chemically, and its enzymatic degradation to 4-hydroxybenzaldehyde was shown to be dependent upon additions of adenosine triphosphate and coenzyme A. The hydroxylase that attacked 4-hydroxybenzoate showed a specific requirement for reduced nicotinamide adenine dinucleotide phosphate. Protocatechuate, the product of this reaction, was oxidized by cell extracts supplemented with reduced nicotinamide adenine dinucleotide or, less effectively, with reduced nicotinamide adenine dinucleotide phosphate, but these extracts contained no ring fission dioxygenase for protocatechuate. Evidence is presented that the principal hydroxylation product of protocatechuate was hydroxyquinol, the benzene nucleus of which was cleaved oxidatively to give maleylacetic acid. PMID:571434

  3. Dielectric Relaxation Behavior of Tyrosine-Derived Polycarbonate.

    Science.gov (United States)

    Suarez, N.; Laredo, E.; Bello, A.; Kohn, J.

    1996-03-01

    Tyrosine-derived polycarbonates represent a new family of polymers that were specifically designed for medical applications. In this work we have used Thermally Stimulated Depolarization Currents (TSDC) to study for the first time the dielectric relaxation behavior of a series of degradable tyrosine-derived polycarbonates. The test polymers differed only in the length of the pendent chain which was increased from two to eight carbons by the use of ethyl, butyl, hexyl and octyl esters as C-terminus protecting groups. The high temperature zone of the spectra shows the glass transition relaxation located at decreasing temperatures as the length of the pendent chain is increased. The low temperature spectrum exhibits a complex dielectric relaxation composed of 4 peaks. The relative intensities of these four peaks are sensitive to packing and entanglement effects caused by the variation in the length of the pendent chain. For data analysis, the Direct Signal Analysis (DSA) procedure was used. This procedure allows the precise determination of the relaxation parameters without having to use peak cleaning techniques. To analyze the whole spectra the Vogel-Fulcher temperature dependence of the relaxation time was used for the glass transition relaxation, and the Arrhenius dependence for the remaining relaxations.

  4. Role of Receptor Tyrosine Kinase Signaling in Renal Fibrosis

    Directory of Open Access Journals (Sweden)

    Feng Liu

    2016-06-01

    Full Text Available Renal fibrosis can be induced in different renal diseases, but ultimately progresses to end stage renal disease. Although the pathophysiologic process of renal fibrosis have not been fully elucidated, it is characterized by glomerulosclerosis and/or tubular interstitial fibrosis, and is believed to be caused by the proliferation of renal inherent cells, including glomerular epithelial cells, mesangial cells, and endothelial cells, along with defective kidney repair, renal interstitial fibroblasts activation, and extracellular matrix deposition. Receptor tyrosine kinases (RTKs regulate a variety of cell physiological processes, including metabolism, growth, differentiation, and survival. Many studies from in vitro and animal models have provided evidence that RTKs play important roles in the pathogenic process of renal fibrosis. It is also showed that tyrosine kinases inhibitors (TKIs have anti-fibrotic effects in basic research and clinical trials. In this review, we summarize the evidence for involvement of specific RTKs in renal fibrosis process and the employment of TKIs as a therapeutic approach for renal fibrosis.

  5. Tyrosine Sulfation as a Protein Post-Translational Modification

    Directory of Open Access Journals (Sweden)

    Yuh-Shyong Yang

    2015-01-01

    Full Text Available Integration of inorganic sulfate into biological molecules plays an important role in biological systems and is directly involved in the instigation of diseases. Protein tyrosine sulfation (PTS is a common post-translational modification that was first reported in the literature fifty years ago. However, the significance of PTS under physiological conditions and its link to diseases have just begun to be appreciated in recent years. PTS is catalyzed by tyrosylprotein sulfotransferase (TPST through transfer of an activated sulfate from 3'-phosphoadenosine-5'-phosphosulfate to tyrosine in a variety of proteins and peptides. Currently, only a small fraction of sulfated proteins is known and the understanding of the biological sulfation mechanisms is still in progress. In this review, we give an introductory and selective brief review of PTS and then summarize the basic biochemical information including the activity and the preparation of TPST, methods for the determination of PTS, and kinetics and reaction mechanism of TPST. This information is fundamental for the further exploration of the function of PTS that induces protein-protein interactions and the subsequent biochemical and physiological reactions.

  6. DHA mediates the protective effect of fish consumption on new episodes of depression among women.

    Science.gov (United States)

    Reeves, John L; Otahal, Petr; Magnussen, Costan G; Dwyer, Terry; Kangas, Antti J; Soininen, Pasi; Ala-Korpela, Mika; Venn, Alison J; Smith, Kylie J

    2017-11-01

    In a longitudinal cohort study of young Australian adults, we reported that for women higher baseline levels of fish consumption were associated with reduced incidence of new depressive episodes during the 5-year follow-up. Fish are high in both n-3 fatty acids and tyrosine. In this study, we seek to determine whether n-3 fatty acids or tyrosine explain the observed association. During 2004-2006, a FFQ (nine fish items) was used to estimate weekly fish consumption among 546 women aged 26-36 years. A fasting blood sample was taken and high-throughput NMR spectroscopy was used to measure 233 metabolites, including serum n-3 fatty acids and tyrosine. During 2009-2011, new episodes of depression since baseline were identified using the lifetime version of the Composite International Diagnostic Interview. Relative risks were calculated using log-binomial regression and indirect effects estimated using the STATA binary_mediation command. Potential mediators were added to separate models, and mediation was quantified as the proportion of the total effect due to the mediator. The n-3 DHA mediated 25·3 % of the association between fish consumption and depression when fish consumption was analysed as a continuous variable and 16·6 % when dichotomised (reference group: fish other than n-3 fatty acids and tyrosine might be beneficial for women's mental health.

  7. An Inducible TGF-β2-TGFβR Pathway Modulates the Sensitivity of HNSCC Cells to Tyrosine Kinase Inhibitors Targeting Dominant Receptor Tyrosine Kinases.

    Directory of Open Access Journals (Sweden)

    Emily K Kleczko

    Full Text Available The epidermal growth factor receptor (EGFR is overexpressed in approximately 90% of head and neck squamous cell carcinomas (HNSCC, and molecularly targeted therapy against the EGFR with the monoclonal antibody cetuximab modestly increases overall survival in head and neck cancer patients. We hypothesize that co-signaling through additional pathways limits the efficacy of cetuximab and EGFR-specific tyrosine kinase inhibitors (TKIs in the clinical treatment of HNSCC. Analysis of gene expression changes in HNSCC cell lines treated 4 days with TKIs targeting EGFR and/or fibroblast growth factor receptors (FGFRs identified transforming growth factor beta 2 (TGF-β2 induction in the three cell lines tested. Measurement of TGF-β2 mRNA validated this observation and extended it to additional cell lines. Moreover, TGF-β2 mRNA was increased in primary patient HNSCC xenografts treated for 4 weeks with cetuximab, demonstrating in vivo relevance of these findings. Functional genomics analyses with shRNA libraries identified TGF-β2 and TGF-β receptors (TGFβRs as synthetic lethal genes in the context of TKI treatment. Further, direct RNAi-mediated silencing of TGF-β2 inhibited cell growth, both alone and in combination with TKIs. Also, a pharmacological TGFβRI inhibitor similarly inhibited basal growth and enhanced TKI efficacy. In summary, the studies support a TGF-β2-TGFβR pathway as a TKI-inducible growth pathway in HNSCC that limits efficacy of EGFR-specific inhibitors.

  8. A Tyrosine-Hydroxylase Characterization of Dopaminergic Neurons in the Honey Bee Brain

    Directory of Open Access Journals (Sweden)

    Stevanus R. Tedjakumala

    2017-07-01

    Full Text Available Dopamine (DA plays a fundamental role in insect behavior as it acts both as a general modulator of behavior and as a value system in associative learning where it mediates the reinforcing properties of unconditioned stimuli (US. Here we aimed at characterizing the dopaminergic neurons in the central nervous system of the honey bee, an insect that serves as an established model for the study of learning and memory. We used tyrosine hydroxylase (TH immunoreactivity (ir to ensure that the neurons detected synthesize DA endogenously. We found three main dopaminergic clusters, C1–C3, which had been previously described; the C1 cluster is located in a small region adjacent to the esophagus (ES and the antennal lobe (AL; the C2 cluster is situated above the C1 cluster, between the AL and the vertical lobe (VL of the mushroom body (MB; the C3 cluster is located below the calyces (CA of the MB. In addition, we found a novel dopaminergic cluster, C4, located above the dorsomedial border of the lobula, which innervates the visual neuropils of the bee brain. Additional smaller processes and clusters were found and are described. The profuse dopaminergic innervation of the entire bee brain and the specific connectivity of DA neurons, with visual, olfactory and gustatory circuits, provide a foundation for a deeper understanding of how these sensory modules are modulated by DA, and the DA-dependent value-based associations that occur during associative learning.

  9. A targeted enzyme approach to sensitization of tyrosine kinase inhibitor-resistant breast cancer cells.

    Science.gov (United States)

    Giordano, Courtney R; Mueller, Kelly L; Terlecky, Laura J; Krentz, Kendra A; Bollig-Fischer, Aliccia; Terlecky, Stanley R; Boerner, Julie L

    2012-10-01

    Gefitinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) of potential use in patients with breast cancer. Unfortunately, in clinical studies, gefitinib is often ineffective indicating that resistance to EGFR inhibitors may be a common occurrence in cancer of the breast. EGFR has been shown to be overexpressed in breast cancer, and in particular remains hyperphosphorylated in cell lines such as MDA-MB-468 that are resistant to EGFR inhibitors. Here, we investigate the cause of this sustained phosphorylation and the molecular basis for the ineffectiveness of gefitinib. We show that reactive oxygen species (ROS), known to damage cellular macromolecules and to modulate signaling cascades in a variety of human diseases including cancers, appear to play a critical role in mediating EGFR TKI-resistance. Furthermore, elimination of these ROS through use of a cell-penetrating catalase derivative sensitizes the cells to gefitinib. These results suggest a new approach for the treatment of TKI-resistant breast cancer patients specifically, the targeting of ROS and attendant downstream oxidative stress and their effects on signaling cascades. Copyright © 2012. Published by Elsevier Inc.

  10. FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase

    Science.gov (United States)

    Doan, Khanh V.; Kinyua, Ann W.; Yang, Dong Joo; Ko, Chang Mann; Moh, Sang Hyun; Shong, Ko Eun; Kim, Hail; Park, Sang-Kyu; Kim, Dong-Hoon; Kim, Inki; Paik, Ji-Hye; DePinho, Ronald A.; Yoon, Seul Gi; Kim, Il Yong; Seong, Je Kyung; Choi, Yun-Hee; Kim, Ki Woo

    2016-01-01

    Dopaminergic (DA) neurons are involved in the integration of neuronal and hormonal signals to regulate food consumption and energy balance. Forkhead transcriptional factor O1 (FoxO1) in the hypothalamus plays a crucial role in mediation of leptin and insulin function. However, the homoeostatic role of FoxO1 in DA system has not been investigated. Here we report that FoxO1 is highly expressed in DA neurons and mice lacking FoxO1 specifically in the DA neurons (FoxO1 KODAT) show markedly increased energy expenditure and interscapular brown adipose tissue (iBAT) thermogenesis accompanied by reduced fat mass and improved glucose/insulin homoeostasis. Moreover, FoxO1 KODAT mice exhibit an increased sucrose preference in concomitance with higher dopamine and norepinephrine levels. Finally, we found that FoxO1 directly targets and negatively regulates tyrosine hydroxylase (TH) expression, the rate-limiting enzyme of the catecholamine synthesis, delineating a mechanism for the KO phenotypes. Collectively, these results suggest that FoxO1 in DA neurons is an important transcriptional factor that directs the coordinated control of energy balance, thermogenesis and glucose homoeostasis. PMID:27681312

  11. Voltage sensitive phosphatases: emerging kinship to protein tyrosine phosphatases from structure-function research

    Directory of Open Access Journals (Sweden)

    Kirstin eHobiger

    2015-02-01

    Full Text Available The transmembrane protein Ci-VSP from the ascidian Ciona intestinalis was described as first member of a fascinating family of enzymes, the voltage sensitive phosphatases (VSPs. Ci-VSP and its voltage-activated homologs from other species are stimulated by positive membrane potentials and dephosphorylate the head groups of negatively charged phosphoinositide phosphates (PIPs. In doing so, VSPs act as control centers at the cytosolic membrane surface, because they intervene in signaling cascades that are mediated by PIP lipids. The characteristic motif CX5RT/S in the active site classifies VSPs as members of the huge family of cysteine-based protein tyrosine phosphatases (PTPs. Although PTPs have already been well characterized regarding both, structure and function, their relationship to VSPs has drawn only limited attention so far. Therefore, the intention of this review is to give a short overview about the extensive knowledge about PTPs in relation to the facts known about VSPs. Here, we concentrate on the structural features of the catalytic domain which are similar between both classes of phosphatases and their consequences for the enzymatic function. By discussing results obtained from crystal structures, molecular dynamics simulations, and mutagenesis studies, a possible mechanism for the catalytic cycle of VSPs is presented based on that one proposed for PTPs. In this way, we want to link the knowledge about the catalytic activity of VSPs and PTPs.

  12. Activation of the low molecular weight protein tyrosine phosphatase in keratinocytes exposed to hyperosmotic stress.

    Directory of Open Access Journals (Sweden)

    Rodrigo A Silva

    Full Text Available Herein, we provide new contribution to the mechanisms involved in keratinocytes response to hyperosmotic shock showing, for the first time, the participation of Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP activity in this event. We reported that sorbitol-induced osmotic stress mediates alterations in the phosphorylation of pivotal cytoskeletal proteins, particularly Src and cofilin. Furthermore, an increase in the expression of the phosphorylated form of LMWPTP, which was followed by an augment in its catalytic activity, was observed. Of particular importance, these responses occurred in an intracellular milieu characterized by elevated levels of reduced glutathione (GSH and increased expression of the antioxidant enzymes glutathione peroxidase and glutathione reductase. Altogether, our results suggest that hyperosmostic stress provides a favorable cellular environment to the activation of LMWPTP, which is associated with increased expression of antioxidant enzymes, high levels of GSH and inhibition of Src kinase. Finally, the real contribution of LMWPTP in the hyperosmotic stress response of keratinocytes was demonstrated through analysis of the effects of ACP1 gene knockdown in stressed and non-stressed cells. LMWPTP knockdown attenuates the effects of sorbitol induced-stress in HaCaT cells, mainly in the status of Src kinase, Rac and STAT5 phosphorylation and activity. These results describe for the first time the participation of LMWPTP in the dynamics of cytoskeleton rearrangement during exposure of human keratinocytes to hyperosmotic shock, which may contribute to cell death.

  13. Self-Assembly of Telechelic Tyrosine End-Capped PEO Star Polymers in Aqueous Solution.

    Science.gov (United States)

    Edwards-Gayle, Charlotte J C; Greco, Francesca; Hamley, Ian W; Rambo, Robert P; Reza, Mehedi; Ruokolainen, Janne; Skoulas, Dimitrios; Iatrou, Hermis

    2018-01-08

    We investigate the self-assembly of two telechelic star polymer-peptide conjugates based on poly(ethylene oxide) (PEO) four-arm star polymers capped with oligotyrosine. The conjugates were prepared via N-carboxy anhydride-mediated ring-opening polymerization from PEO star polymer macroinitiators. Self-assembly occurs above a critical aggregation concentration determined via fluorescence probe assays. Peptide conformation was examined using circular dichroism spectroscopy. The structure of self-assembled aggregates was probed using small-angle X-ray scattering and cryogenic transmission electron microscopy. In contrast to previous studies on linear telechelic PEO-oligotyrosine conjugates that show self-assembly into β-sheet fibrils, the star architecture suppresses fibril formation and micelles are generally observed instead, a small population of fibrils only being observed upon pH adjustment. Hydrogelation is also suppressed by the polymer star architecture. These peptide-functionalized star polymer solutions are cytocompatible at sufficiently low concentration. These systems present tyrosine at high density and may be useful in the development of future enzyme or pH-responsive biomaterials.

  14. Tec protein tyrosine kinase inhibits CD25 expression in human T-lymphocyte.

    Science.gov (United States)

    Susaki, Kentaro; Kitanaka, Akira; Dobashi, Hiroaki; Kubota, Yoshitsugu; Kittaka, Katsuharu; Kameda, Tomohiro; Yamaoka, Genji; Mano, Hiroyuki; Mihara, Keichiro; Ishida, Toshihiko

    2010-01-04

    The Tec protein tyrosine kinase (PTK) belongs to a group of structurally related nonreceptor PTKs that also includes Btk, Itk, Rlk, and Bmx. Previous studies have suggested that these kinases play important roles in hematopoiesis and in the lymphocyte signaling pathway. Despite evidence suggesting the involvement of Tec in the T-lymphocyte activation pathway via T-cell receptor (TCR) and CD28, Tec's role in T-lymphocytes remains unclear because of the lack of apparent defects in T-lymphocyte function in Tec-deficient mice. In this study, we investigated the role of Tec in human T-lymphocyte using the Jurkat T-lymphoid cell line stably transfected with a cDNA encoding Tec. We found that the expression of wild-type Tec inhibited the expression of CD25 induced by TCR cross-linking. Second, we observed that LFM-A13, a selective inhibitor of Tec family PTK, rescued the suppression of TCR-induced CD25 expression observed in wild-type Tec-expressing Jurkat cells. In addition, expression of kinase-deleted Tec did not alter the expression level of CD25 after TCR ligation. We conclude that Tec PTK mediates signals that negatively regulate CD25 expression induced by TCR cross-linking. This, in turn, implies that this PTK plays a role in the attenuation of IL-2 activity in human T-lymphocytes.

  15. Protein tyrosine kinase but not protein kinase C inhibition blocks receptor induced alveolar macrophage activation

    Directory of Open Access Journals (Sweden)

    K. Pollock

    1993-01-01

    Full Text Available The selective enzyme inhibitors genistein and Ro 31-8220 were used to assess the importance of protein tyrosine kinase (PTK and protein kinase C (PKC, respectively, in N-formyl-methionyl-leucyl-phenylalanine (FMLP induced generation of superoxide anion and thromboxane B2 (TXB2 in guinea-pig alveolar macrophages (AM. Genistein (3–100 μM dose dependently inhibited FMLP (3 nM induced superoxide generation in non-primed AM and TXB2 release in non-primed or in lipopolysaccharide (LPS (10 ng/ml primed AM to a level > 80% but had litle effect up to 100 μM on phorbol myristate acetate (PMA (10 nM induced superoxide release. Ro 31-8220 inhibited PMA induced superoxide generation (IC50 0.21 ± 0.10 μM but had no effect on or potentiated (at 3 and 10 μM FMLP responses in non-primed AM. In contrast, when present during LPS priming as well as during FMLP challenge Ro 31-8220 (10 μM inhibited primed TXB2 release by > 80%. The results indicate that PTK activation is required for the generation of these inflammatory mediators by FMLP in AM. PKC activation appears to be required for LPS priming but not for transducing the FMLP signal; rather, PKC activation may modulate the signal by a negative feedback mechanism.

  16. State-by-State Investigation of Destructive Interference in Resonance Raman Spectra of Neutral Tyrosine and the Tyrosinate Anion with the Simplified Sum-over-States Approach

    OpenAIRE

    Cabalo, Jerry B.; Saikin, Semion K.; Emmons, Erik D.; Rappoport, Dmitrij; Aspuru-Guzik, Alan

    2014-01-01

    UV resonance Raman scattering is uniquely sensitive to the molecular electronic structure as well as intermolecular interactions. To better understand the relationship between electronic structure and resonance Raman cross section, we carried out combined experimental and theoretical studies of neutral tyrosine and the tyrosinate anion. We studied the Raman cross sections of four vibrational modes as a function of excitation wavelength, and we analyzed them in terms of the contributions of th...

  17. Unlocking Doors without Keys: Activation of Src by Truncated C-terminal Intracellular Receptor Tyrosine Kinases Lacking Tyrosine Kinase Activity

    Directory of Open Access Journals (Sweden)

    Belén Mezquita

    2014-02-01

    Full Text Available One of the best examples of the renaissance of Src as an open door to cancer has been the demonstration that just five min of Src activation is sufficient for transformation and also for induction and maintenance of cancer stem cells [1]. Many tyrosine kinase receptors, through the binding of their ligands, become the keys that unlock the structure of Src and activate its oncogenic transduction pathways. Furthermore, intracellular isoforms of these receptors, devoid of any tyrosine kinase activity, still retain the ability to unlock Src. This has been shown with a truncated isoform of KIT (tr-KIT and a truncated isoform of VEGFR-1 (i21-VEGFR-1, which are intracellular and require no ligand binding, but are nonetheless able to activate Src and induce cell migration and invasion of cancer cells. Expression of the i21-VEGFR-1 is upregulated by the Notch signaling pathway and repressed by miR-200c and retinoic acid in breast cancer cells. Both Notch inhibitors and retinoic acid have been proposed as potential therapies for invasive breast cancer.

  18. Peptide Microarray Analysis of the Cross-talk Between O-GlcNAcylation and Tyrosine Phosphorylation

    NARCIS (Netherlands)

    Shi, Jie; Tomašič, Tihomir; Sharif, Suhela; Brouwer, Arwin J; Anderluh, Marko; Ruijtenbeek, Rob; Pieters, Roland J

    2017-01-01

    O-GlcNAcylation of proteins regulates important cellular processes. A few reports noted that O-GlcNAcylation exhibits cross-talk with tyrosine phosphorylation. With an activity-based microarray analysis of 256 tyrosine kinase peptide substrates, we found that phosphorylation of 6 peptides by Jak2

  19. Ionization of tyrosine residues in human serum albumin and in its complexes with bilirubin and laurate

    DEFF Research Database (Denmark)

    Honoré, B; Brodersen, R

    1992-01-01

    Spectrophotometric titration of human serum albumin indicates that ionization of the 18 tyrosine residues takes place between pH 9 and 12.7. A Hill plot indicates that protons dissociate co-operatively from tyrosine residues, in pure albumin between pH 11.0 and 11.4 with a Hill coefficient 1.7, a...

  20. The Relationship among Tyrosine Decarboxylase and Agmatine Deiminase Pathways in Enterococcus faecalis

    Directory of Open Access Journals (Sweden)

    Marta Perez

    2017-11-01

    Full Text Available Enterococci are considered mainly responsible for the undesirable accumulation of the biogenic amines tyramine and putrescine in cheeses. The biosynthesis of tyramine and putrescine has been described as a species trait in Enterococcus faecalis. Tyramine is formed by the decarboxylation of the amino acid tyrosine, by the tyrosine decarboxylase (TDC route encoded in the tdc cluster. Putrescine is formed from agmatine by the agmatine deiminase (AGDI pathway encoded in the agdi cluster. These biosynthesis routes have been independently studied, tyrosine and agmatine transcriptionally regulate the tdc and agdi clusters. The objective of the present work is to study the possible co-regulation among TDC and AGDI pathways in E. faecalis. In the presence of agmatine, a positive correlation between putrescine biosynthesis and the tyrosine concentration was found. Transcriptome studies showed that tyrosine induces the transcription of putrescine biosynthesis genes and up-regulates pathways involved in cell growth. The tyrosine modulation over AGDI route was not observed in the mutant Δtdc strain. Fluorescence analyses using gfp as reporter protein revealed PaguB (the promoter of agdi catabolic genes was induced by tyrosine in the wild-type but not in the mutant strain, confirming that tdc cluster was involved in the tyrosine induction of putrescine biosynthesis. This study also suggests that AguR (the transcriptional regulator of agdi was implicated in interaction among the two clusters.

  1. Serine/threonine/tyrosine phosphorylation regulates DNA binding of bacterial transcriptional regulators

    DEFF Research Database (Denmark)

    Kalantari, Aida; Derouiche, Abderahmane; Shi, Lei

    2015-01-01

    of residue, i.e. serine, threonine, tyrosine and cysteine, is also quite common. The phosphorylation of the ester type (phospho-serine/threonine/tyrosine) is more stable than the aspartate phosphorylation of TCSs. The kinases which catalyse these phosphorylation events (Hanks-type serine/threonine protein...

  2. Bosutinib induced pleural effusions: Case report and review of tyrosine kinase inhibitors induced pulmonary toxicity

    Directory of Open Access Journals (Sweden)

    Natalia I. Moguillansky, MD

    2017-01-01

    Full Text Available Tyrosine kinase inhibitors are known to cause pulmonary complications. We report a case of bosutinib related bilateral pleural effusions in a patient with chronic myeloid leukemia. Characteristics of the pleural fluid are presented. We also discuss other tyrosine kinase inhibitors induced pulmonary toxicities, including pulmonary hypertension and interstitial lung disease.

  3. From immune response to cancer : a spot on the low molecular weight protein tyrosine phosphatase

    NARCIS (Netherlands)

    Souza, A. C. S.; Azoubel, S.; Queiroz, K. C. S.; Peppelenbosch, M. P.; Ferreira, C. V.

    Reversible tyrosine phosphorylation is a key posttranslational regulatory modification of proteins in all eukaryotic cells in normal and pathological processes. Recently a pivotal janus-faced biological role of the low molecular weight protein tyrosine phosphatase (LMWPTP) has become clear. On the

  4. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Macek, B

    2006-01-01

    by kinase YwqD and phosphatase YwqE. Phosphorylation of B.subtilis SSB increased binding almost 200-fold to single-stranded DNA in vitro. Tyrosine phosphorylation of B.subtilis, S.coelicolor and Escherichia coli SSBs occured while they were expressed in E.coli, indicating that tyrosine phosphorylation...

  5. Internalization of glial cell-derived neurotrophic factor receptor GFR alpha 1 in the absence of the ret tyrosine kinase coreceptor.

    Science.gov (United States)

    Vieira, P; Thomas-Crusells, J; Vieira, A

    2003-02-01

    1. Glial cell-derived neurothrophic factor (GDNF) interacts with a cell surface receptor, GFRalpha1, that is linked via a glycosyl-phosphatidylinositol (GPI) lipid to the cell membrane. The neurotrophic activities of GDNF are mediated by binding to GFRalpha1 and further interaction of the GDNF-GFRalpha1 complex with a coreceptor tyrosine kinase encoded by the c-Ret protooncogene. There is also evidence for the existence of cell signaling by GDNF and GFRalpha1 in the absence of Ret. 2. To further delineate the Ret-dependent and -independent functions of GDNF, cellular internalization of GDNF and GFRalpha1 was examined in cells lines and primary neurons. 3. Relative to other GPI-anchored receptors, efficient endocytosis (approximately 30-40% of total surface-bound ligand internalized after 2 min) of GNDF and GFRalpha1 was observed in neuroblastoma and transfected-fibroblast cell lines that lack Ret. Primary hippocampal neurons from transgenic mice that express a wild-type GFRalpha1 together with a mutant, tyrosine kinase-inactive Ret also internalized GDNF efficiently (approximately 20% of total surface-bound ligand internalized after 2 min). We also observed a ligand dependence for GFRalpha1 internalization in the cell lines that lack Ret. Furthermore, a comparison in the presence and absence of Ret indicates that this coreceptor tyrosine kinase slows internalization at early time points. 4. The data suggest different mechanisms of internalization for GDNF-GFRalpha1 in the absence and presence of the Ret coreceptor.

  6. Prevention of pulmonary vascular and myocardial remodeling by the combined tyrosine and serine-/threonine kinase inhibitor, sorafenib, in pulmonary hypertension and right heart failure

    Directory of Open Access Journals (Sweden)

    M. Klein

    2008-06-01

    Full Text Available Inhibition of tyrosine kinases can reverse pulmonary hypertension but little is known about the role of serine-/threonine kinases in vascular and myocardial remodeling. We investigated the effects of sorafenib, an inhibitor of the tyrosine kinases VEGFR, PDGFR and c-kit as well as the serine-/threonine kinase Raf-1, in pulmonary hypertension and right ventricular (RV pressure overload. In monocrotaline treated rats, sorafenib (10 mg·kg–1·d–1 p.o. reduced pulmonary arterial pressure, pulmonary artery muscularization and RV hypertrophy, and improved systemic hemodynamics (table 1. Sorafenib prevented phosphorylation of Raf-1 and suppressed activation of downstream signaling pathways (Erk 1/2. After pulmonary banding, sorafenib, but not the PDGFR/c-KIT/ABL-inhibitor imatinib reduced RV mass and RV filling pressure significantly. Congruent with these results, sorafenib only prevented ERK phosphorylation and vasopressin induced hypertrophy of the cardiomyocyte cell line H9c2 dose dependently (IC50 = 300 nM. Combined inhibition of tyrosine and serine-/threonine kinases by sorafenib prevents vascular and cardiac remodeling in pulmonary hypertension, which is partly mediated via inhibition of the Raf kinase pathway.

  7. The non-receptor tyrosine kinase Tec controls assembly and activity of the noncanonical caspase-8 inflammasome.

    Science.gov (United States)

    Zwolanek, Florian; Riedelberger, Michael; Stolz, Valentina; Jenull, Sabrina; Istel, Fabian; Köprülü, Afitap Derya; Ellmeier, Wilfried; Kuchler, Karl

    2014-12-01

    Tec family kinases are intracellular non-receptor tyrosine kinases implicated in numerous functions, including T cell and B cell regulation. However, a role in microbial pathogenesis has not been described. Here, we identified Tec kinase as a novel key mediator of the inflammatory immune response in macrophages invaded by the human fungal pathogen C. albicans. Tec is required for both activation and assembly of the noncanonical caspase-8, but not of the caspase-1 inflammasome, during infections with fungal but not bacterial pathogens, triggering the antifungal response through IL-1β. Furthermore, we identify dectin-1 as the pathogen recognition receptor being required for Syk-dependent Tec activation. Hence, Tec is a novel innate-specific inflammatory kinase, whose genetic ablation or inhibition by small molecule drugs strongly protects mice from fungal sepsis. These data demonstrate a therapeutic potential for Tec kinase inhibition to combat invasive microbial infections by attenuating the host inflammatory response.

  8. A platinum-based hybrid drug design approach to circumvent acquired resistance to molecular targeted tyrosine kinase inhibitors

    Science.gov (United States)

    Wei, Yuming; Poon, Daniel C.; Fei, Rong; Lam, Amy S. M.; Au-Yeung, Steve C. F.; To, Kenneth K. W.

    2016-05-01

    Three molecular targeted tyrosine kinase inhibitors (TKI) were conjugated to classical platinum-based drugs with an aim to circumvent TKI resistance, predominately mediated by the emergence of secondary mutations on oncogenic kinases. The hybrids were found to maintain specificity towards the same oncogenic kinases as the original TKI. Importantly, they are remarkably less affected by TKI resistance, presumably due to their unique structure and the observed dual mechanism of anticancer activity (kinase inhibition and DNA damage). The study is also the first to report the application of a hybrid drug approach to switch TKIs from being efflux transporter substrates into non-substrates. TKIs cannot penetrate into the brain for treating metastases because of efflux transporters at the blood brain barrier. The hybrids were found to escape drug efflux and they accumulate more than the original TKI in the brain in BALB/c mice. Further development of the hybrid compounds is warranted.

  9. Protein-tyrosine kinase activity profiling in knock down zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Simone Lemeer

    Full Text Available BACKGROUND: Protein-tyrosine kinases (PTKs regulate virtually all biological processes. PTKs phosphorylate substrates in a sequence-specific manner and relatively short peptide sequences determine selectivity. Here, we developed new technology to determine PTK activity profiles using peptide arrays. The zebrafish is an excellent model system to investigate signaling in the whole organism, given its wealth of genetic tools, including morpholino-mediated knock down technology. We used zebrafish embryo lysates to determine PTK activity profiles, thus providing the unique opportunity to directly compare the effect of protein knock downs on PTK activity profiles on the one hand and phenotypic changes on the other. METHODOLOGY: We used multiplex arrays of 144 distinct peptides, spotted on a porous substrate, allowing the sample to be pumped up and down, optimizing reaction kinetics. Kinase reactions were performed using complex zebrafish embryo lysates or purified kinases. Peptide phosphorylation was detected by fluorescent anti-phosphotyrosine antibody binding and the porous chips allowed semi-continuous recording of the signal. We used morpholinos to knock down protein expression in the zebrafish embryos and subsequently, we determined the effects on the PTK activity profiles. RESULTS AND CONCLUSION: Reproducible PTK activity profiles were derived from one-day-old zebrafiish embryos. Morpholino-mediated knock downs of the Src family kinases, Fyn and Yes, induced characteristic phenotypes and distinct changes in the PTK activity profiles. Interestingly, the peptide substrates that were less phosphorylated upon Fyn and Yes knock down were preferential substrates of purified Fyn and Yes. Previously, we demonstrated that Wnt11 knock down phenocopied Fyn/Yes knock down. Interestingly, Wnt11 knock down induced similar changes in the PTK activity profile as Fyn/Yes knock down. The control Nacre/Mitfa knock down did not affect the PTK activity profile

  10. A Multifeatures Fusion and Discrete Firefly Optimization Method for Prediction of Protein Tyrosine Sulfation Residues.

    Science.gov (United States)

    Guo, Song; Liu, Chunhua; Zhou, Peng; Li, Yanling

    2016-01-01

    Tyrosine sulfation is one of the ubiquitous protein posttranslational modifications, where some sulfate groups are added to the tyrosine residues. It plays significant roles in various physiological processes in eukaryotic cells. To explore the molecular mechanism of tyrosine sulfation, one of the prerequisites is to correctly identify possible protein tyrosine sulfation residues. In this paper, a novel method was presented to predict protein tyrosine sulfation residues from primary sequences. By means of informative feature construction and elaborate feature selection and parameter optimization scheme, the proposed predictor achieved promising results and outperformed many other state-of-the-art predictors. Using the optimal features subset, the proposed method achieved mean MCC of 94.41% on the benchmark dataset, and a MCC of 90.09% on the independent dataset. The experimental performance indicated that our new proposed method could be effective in identifying the important protein posttranslational modifications and the feature selection scheme would be powerful in protein functional residues prediction research fields.

  11. Phosphotyrosine enrichment identifies focal adhesion kinase and other tyrosine kinases for targeting in canine hemangiosarcoma.

    Science.gov (United States)

    Marley, K; Maier, C S; Helfand, S C

    2012-09-01

    Canine hemangiosarcoma (HSA) is an endothelial cell malignancy driven, in part, by activating mutations in receptor and non-receptor tyrosine kinases. Proteomics, Western blots and a tyrosine kinase inhibitor were used to elucidate activating mechanisms in HSA cell lines. Phosphotyrosine peptides from focal adhesion kinase (FAK) STAT3, Lyn, Fyn and other signal transduction kinases were identified by mass spectrometry. FAK was constitutively activated at tyrosine 397, the autophosphorylation site, and this was reversible with high concentrations of a FAK inhibitor. FAK inhibitor-14 suppressed migration and phosphorylation of FAK tyrosine 397 and tyrosines 576/577 and was cytotoxic to HSA cells suggesting FAK signalling may be an important contributor to canine HSA survival. © 2012 Blackwell Publishing Ltd.

  12. Ca2+/Calmodulin and Apo-Calmodulin Both Bind to and Enhance the Tyrosine Kinase Activity of c-Src.

    Directory of Open Access Journals (Sweden)

    Silviya R Stateva

    Full Text Available Src family non-receptor tyrosine kinases play a prominent role in multiple cellular processes, including: cell proliferation, differentiation, cell survival, stress response, and cell adhesion and migration, among others. And when deregulated by mutations, overexpression, and/or the arrival of faulty incoming signals, its hyperactivity contributes to the development of hematological and solid tumors. c-Src is a prototypical member of this family of kinases, which is highly regulated by a set of phosphorylation events. Other factor contributing to the regulation of Src activity appears to be mediated by the Ca2+ signal generated in cells by different effectors, where the Ca2+-receptor protein calmodulin (CaM plays a key role. In this report we demonstrate that CaM directly interacts with Src in both Ca2+-dependent and Ca2+-independent manners in vitro and in living cells, and that the CaM antagonist N-(6-aminohexyl-5-chloro-1-naphthalenesulfonamide (W-7 inhibits the activation of this kinase induced by the upstream activation of the epidermal growth factor receptor (EGFR, in human carcinoma epidermoide A431 cells, and by hydrogen peroxide-induced oxidative stress, in both A431 cells and human breast adenocarcinoma SK-BR-3 cells. Furthermore, we show that the Ca2+/CaM complex strongly activates the auto-phosphorylation and tyrosine kinase activity of c-Src toward exogenous substrates, but most relevantly and for the first time, we demonstrate that Ca2+-free CaM (apo-CaM exerts a far higher activatory action on Src auto-phosphorylation and kinase activity toward exogenous substrates than the one exerted by the Ca2+/CaM complex. This suggests that a transient increase in the cytosolic concentration of free Ca2+ is not an absolute requirement for CaM-mediated activation of Src in living cells, and that a direct regulation of Src by apo-CaM could be inferred.

  13. Identification of genomic regions that interact with a viable allele of the Drosophila protein tyrosine phosphatase corkscrew.

    Science.gov (United States)

    Firth, L; Manchester, J; Lorenzen, J A; Baron, M; Perkins, L A

    2000-10-01

    Signaling by receptor tyrosine kinases (RTKs) is critical for a multitude of developmental decisions and processes. Among the molecules known to transduce the RTK-generated signal is the nonreceptor protein tyrosine phosphatase Corkscrew (Csw). Previously, Csw has been demonstrated to function throughout the Drosophila life cycle and, among the RTKs tested, Csw is essential in the Torso, Sevenless, EGF, and Breathless/FGF RTK pathways. While the biochemical function of Csw remains to be unambiguously elucidated, current evidence suggests that Csw plays more than one role during transduction of the RTK signal and, further, the molecular mechanism of Csw function differs depending upon the RTK in question. The isolation and characterization of a new, spontaneously arising, viable allele of csw, csw(lf), has allowed us to undertake a genetic approach to identify loci required for Csw function. The rough eye and wing vein gap phenotypes exhibited by adult flies homo- or hemizygous for csw(lf) has provided a sensitized background from which we have screened a collection of second and third chromosome deficiencies to identify 33 intervals that enhance and 21 intervals that suppress these phenotypes. We have identified intervals encoding known positive mediators of RTK signaling, e.g., drk, dos, Egfr, E(Egfr)B56, pnt, Ras1, rolled/MAPK, sina, spen, Src64B, Star, Su(Raf)3C, and vein, as well as known negative mediators of RTK signaling, e.g., aos, ed, net, Src42A, sty, and su(ve). Of particular interest are the 5 lethal enhancing intervals and 14 suppressing intervals for which no candidate genes have been identified.

  14. Tyrosine kinase inhibitor SU6668 represses chondrosarcoma growth via antiangiogenesis in vivo

    International Nuclear Information System (INIS)

    Klenke, Frank M; Abdollahi, Amir; Bertl, Elisabeth; Gebhard, Martha-Maria; Ewerbeck, Volker; Huber, Peter E; Sckell, Axel

    2007-01-01

    As chondrosarcomas are resistant to chemotherapy and ionizing radiation, therapeutic options are limited. Radical surgery often cannot be performed. Therefore, additional therapies such as antiangiogenesis represent a promising strategy for overcoming limitations in chondrosarcoma therapy. There is strong experimental evidence that SU6668, an inhibitor of the angiogenic tyrosine kinases Flk-1/KDR, PDGFRbeta and FGFR1 can induce growth inhibition of various primary tumors. However, the effectiveness of SU6668 on malignant primary bone tumors such as chondrosarcomas has been rarely investigated. Therefore, the aim of this study was to investigate the effects of SU6668 on chondrosarcoma growth, angiogenesis and microcirculation in vivo. In 10 male severe combined immunodeficient (SCID) mice, pieces of SW1353 chondrosarcomas were implanted into a cranial window preparation where the calvaria serves as the site for the orthotopic implantation of bone tumors. From day 7 after tumor implantation, five animals were treated with SU6668 (250 mg/kg body weight, s.c.) at intervals of 48 hours (SU6668), and five animals with the equivalent amount of the CMC-based vehicle (Control). Angiogenesis, microcirculation, and growth of SW 1353 tumors were analyzed by means of intravital microscopy. SU6668 induced a growth arrest of chondrosarcomas within 7 days after the initiation of the treatment. Compared to Controls, SU6668 decreased functional vessel density and tumor size, respectively, by 37% and 53% on day 28 after tumor implantation. The time course of the experiments demonstrated that the impact on angiogenesis preceded the anti-tumor effect. Histological and immunohistochemical results confirmed the intravital microscopy findings. SU6668 is a potent inhibitor of chondrosarcoma tumor growth in vivo. This effect appears to be induced by the antiangiogenic effects of SU6668, which are mediated by the inhibition of the key angiogenic receptor tyrosine kinases Flk-1/KDR, PDGFRbeta

  15. Translation of tyrosine hydroxylase from poly(A)-mRNA in pheochromocytoma cells is enhanced by dexamethasone.

    OpenAIRE

    Baetge, E E; Kaplan, B B; Reis, D J; Joh, T H

    1981-01-01

    Polysomal poly(A)-mRNA was purified from a clonal cell line of rat pheochromocytoma (PC 12) and translated in a reticulocyte cell-free protein-synthesizing system. Tyrosine hydroxylase [tyrosine 3-monooxygenase; L-tyrosine, tetrahyropteridine:oxygen oxidoreductase (3-hydroxylating), EC 1.14.16.2] was isolated from other protein by immunoprecipitation and NaDodSO4/polyacrylamide gel electrophoresis. The molecular weight and relative proportion of tyrosine hydroxylase to other proteins synthesi...

  16. Effect of radiation on tyrosine and tetracycline in poultry meat

    International Nuclear Information System (INIS)

    Vachin, I.; Pavlov, A.; Lashev, L.

    1994-01-01

    The effect of gamma rays on tissue level changes of unbound tyrosine and tetracycline was examined in comparative trials with broiler chicken meat. White meat and dark meat samples were taken from the killed chicken and were frozen at -18 o C. The three experimental groups were gamma irradiated with doses of 1.0, 1.5 and 2 kGy. The contents of the unbound antibiotics were microbiologically tested on 24th hour and 45th day after irradiation using Bacillus subtilis ATCC 6633, respectively Bac. mycoides HB 2 as test organisms. It was found that on 25th hour after irradiation both antibiotics were not significantly changed compared to the controls. After 45 days of storage a tendency towards decreasing the antibiotic concentrations in both the white and dark meat had been detected. (author)

  17. Tyrosine Kinase Receptor Landscape in Lung Cancer: Therapeutical Implications

    Directory of Open Access Journals (Sweden)

    A. Quintanal-Villalonga

    2016-01-01

    Full Text Available Lung cancer is a heterogeneous disease responsible for the most cases of cancer-related deaths. The majority of patients are clinically diagnosed at advanced stages, with a poor survival rate. For this reason, the identification of oncodrivers and novel biomarkers is decisive for the future clinical management of this pathology. The rise of high throughput technologies popularly referred to as “omics” has accelerated the discovery of new biomarkers and drivers for this pathology. Within them, tyrosine kinase receptors (TKRs have proven to be of importance as diagnostic, prognostic, and predictive tools and, due to their molecular nature, as therapeutic targets. Along this review, the role of TKRs in the different lung cancer histologies, research on improvement of anti-TKR therapy, and the current approaches to manage anti-TKR resistance will be discussed.

  18. The Receptor Tyrosine Kinase AXL in Cancer Progression

    Directory of Open Access Journals (Sweden)

    Erinn B. Rankin

    2016-11-01

    Full Text Available The AXL receptor tyrosine kinase (AXL has emerged as a promising therapeutic target for cancer therapy. Recent studies have revealed a central role of AXL signaling in tumor proliferation, survival, stem cell phenotype, metastasis, and resistance to cancer therapy. Moreover, AXL is expressed within cellular components of the tumor microenvironment where AXL signaling contributes to the immunosuppressive and protumorigenic phenotypes. A variety of AXL inhibitors have been developed and are efficacious in preclinical studies. These agents offer new opportunities for therapeutic intervention in the prevention and treatment of advanced disease. Here we review the literature that has illuminated the cellular and molecular mechanisms by which AXL signaling promotes tumor progression and we will discuss the therapeutic potential of AXL inhibition for cancer therapy.

  19. Design and Synthesis of Novel Macrocyclic Mer Tyrosine Kinase Inhibitors.

    Science.gov (United States)

    Wang, Xiaodong; Liu, Jing; Zhang, Weihe; Stashko, Michael A; Nichols, James; Miley, Michael J; Norris-Drouin, Jacqueline; Chen, Zhilong; Machius, Mischa; DeRyckere, Deborah; Wood, Edgar; Graham, Douglas K; Earp, H Shelton; Kireev, Dmitri; Frye, Stephen V

    2016-12-08

    Mer tyrosine kinase (MerTK) is aberrantly elevated in various tumor cells and has a normal anti-inflammatory role in the innate immune system. Inhibition of MerTK may provide dual effects against these MerTK-expressing tumors through reducing cancer cell survival and redirecting the innate immune response. Recently, we have designed novel and potent macrocyclic pyrrolopyrimidines as MerTK inhibitors using a structure-based approach. The most active macrocycles had an EC 50 below 40 nM in a cell-based MerTK phosphor-protein ELISA assay. The X-ray structure of macrocyclic analogue 3 complexed with MerTK was also resolved and demonstrated macrocycles binding in the ATP binding pocket of the MerTK protein as anticipated. In addition, the lead compound 16 (UNC3133) had a 1.6 h half-life and 16% oral bioavailability in a mouse PK study.

  20. Receptor tyrosine kinase structure and function in health and disease

    Directory of Open Access Journals (Sweden)

    Oleg A. Karpov

    2015-09-01

    Full Text Available Receptor tyrosine kinases (RTKs are membrane proteins that control the flow of information through signal transduction pathways, impacting on different aspects of cell function. RTKs are characterized by a ligand-binding ectodomain, a single transmembrane α-helix, a cytosolic region comprising juxtamembrane and kinase domains followed by a flexible C-terminal tail. Somatic and germline RTK mutations can induce aberrant signal transduction to give rise to cardiovascular, developmental and oncogenic abnormalities. RTK overexpression occurs in certain cancers, correlating signal strength and disease incidence. Diverse RTK activation and signal transduction mechanisms are employed by cells during commitment to health or disease. Small molecule inhibitors are one means to target RTK function in disease initiation and progression. This review considers RTK structure, activation, and signal transduction and evaluates biological relevance to therapeutics and clinical outcomes.

  1. Tyrosine kinase inhibitors induced immune thrombocytopenia in chronic myeloid leukemia?

    Directory of Open Access Journals (Sweden)

    Avital F. Barak

    2011-12-01

    Full Text Available The outcome and quality of life of chronic myeloid leukemia (CML patients has remarkably changed with the treatment of tyrosine kinase inhibitors (TKIs. Currently, hematopoietic stem cell transplantation (HSCT is considered mainly as a third line salvage therapy in cases of TKIs resistance or intolerance. Here we describe a patient with chronic phase CML who developed both resistance and late occurrence of s severe thrombocytopenia on first and second generation TKIs and eventually underwent HSCT. Although the mechanism of the myelosuppression is not fully understood, we showed for the first time the development of dose dependent platelet antibodies in the presence of TKIs, suggesting the possibility of TKIs induced thrombocytopenia. Our case emphasizes that late development of severe myelosuppression during imatinib treatment is probably an important indication for consideration of early HSCT.

  2. Lyn tyrosine kinase promotes silencing of ATM-dependent checkpoint signaling during recovery from DNA double-strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Yasunori, E-mail: fukumoto@faculty.chiba-u.jp; Kuki, Kazumasa; Morii, Mariko; Miura, Takahito; Honda, Takuya; Ishibashi, Kenichi; Hasegawa, Hitomi; Kubota, Sho; Ide, Yudai; Yamaguchi, Noritaka; Nakayama, Yuji; Yamaguchi, Naoto, E-mail: nyama@faculty.chiba-u.jp

    2014-09-26

    Highlights: • Inhibition of Src family kinases decreased γ-H2AX signal. • Inhibition of Src family increased ATM-dependent phosphorylation of Chk2 and Kap1. • shRNA-mediated knockdown of Lyn increased phosphorylation of Kap1 by ATM. • Ectopic expression of Src family kinase suppressed ATM-mediated Kap1 phosphorylation. • Src is involved in upstream signaling for inactivation of ATM signaling. - Abstract: DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the process by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint.

  3. Lyn tyrosine kinase promotes silencing of ATM-dependent checkpoint signaling during recovery from DNA double-strand breaks

    International Nuclear Information System (INIS)

    Fukumoto, Yasunori; Kuki, Kazumasa; Morii, Mariko; Miura, Takahito; Honda, Takuya; Ishibashi, Kenichi; Hasegawa, Hitomi; Kubota, Sho; Ide, Yudai; Yamaguchi, Noritaka; Nakayama, Yuji; Yamaguchi, Naoto

    2014-01-01

    Highlights: • Inhibition of Src family kinases decreased γ-H2AX signal. • Inhibition of Src family increased ATM-dependent phosphorylation of Chk2 and Kap1. • shRNA-mediated knockdown of Lyn increased phosphorylation of Kap1 by ATM. • Ectopic expression of Src family kinase suppressed ATM-mediated Kap1 phosphorylation. • Src is involved in upstream signaling for inactivation of ATM signaling. - Abstract: DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the process by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint

  4. Growth hormone-dependent phosphorylation of tyrosine 333 and/or 338 of the growth hormone receptor

    DEFF Research Database (Denmark)

    VanderKuur, J A; Wang, X; Zhang, L

    1995-01-01

    Many signaling pathways initiated by ligands that activate receptor tyrosine kinases have been shown to involve the binding of SH2 domain-containing proteins to specific phosphorylated tyrosines in the receptor. Although the receptor for growth hormone (GH) does not contain intrinsic tyrosine...

  5. The protein oxidation product 3,4-dihydroxyphenylalanine (DOPA) mediates oxidative DNA damage

    DEFF Research Database (Denmark)

    Morin, B; Davies, Michael Jonathan; Dean, R T

    1998-01-01

    of the present work was to investigate whether DOPA, and especially PB-DOPA, can mediate oxidative damage to DNA. We chose to generate PB-DOPA using mushroom tyrosinase, which catalyses the hydroxylation of tyrosine residues in protein. This permitted us to study the reactions of PB-DOPA in the virtual absence...

  6. Determination of o-tyrosine as a marker for the detection of irradiated shrimps

    International Nuclear Information System (INIS)

    Hunková, J.; Simat, T.J.; Steinhart, H.

    2000-01-01

    o-tyrosine is proposed as a marker for the identification of irradiated protein-rich food. An HPLC method for qualitative and quantitative determination of non-protein bound o-tyrosine in shrimps (Crangon crangon) has been developed. For this purpose the o-tyrosine was extracted from non-irradiated as well as irradiated samples with perchloric acid, then separated isocratically (ammoniumformiat buffer, pH 4) on an RP-C18 column and detected by FLD (275/305 nm). The quantification of o-tyrosine was based on the use of alfa-methyl-p-tyrosine as internal standard. In non-irradiated shrimps a background level of 28.9 microg/kg was found. The content of o-tyrosine in 1 kGy irradiated shrimps was found to be 119.9 mikrog/kg, which was well 4-fold over the background level. The dependency between radiation dose and the amount of o-tyrosine was observed in the range of 0-5 kGy

  7. Production of tyrosine through phenylalanine hydroxylation bypasses the intrinsic feedback inhibition in Escherichia coli.

    Science.gov (United States)

    Huang, Jin; Lin, Yuheng; Yuan, Qipeng; Yan, Yajun

    2015-04-01

    Tyrosine is a proteinogenic aromatic amino acid that is often used as a supplement of food and animal feed, as well as a (bio-)synthetic precursor to various pharmaceutically or industrially important molecules. Extensive metabolic engineering efforts have been made towards the efficient and cost-effective microbial production of tyrosine. Conventional strategies usually focus on eliminating intrinsic feedback inhibition and redirecting carbon flux into the shikimate pathway. In this study, we found that continuous conversion of phenylalanine into tyrosine by the action of tetrahydromonapterin (MH4)-utilizing phenylalanine 4-hydroxylase (P4H) can bypass the feedback inhibition in Escherichia coli, leading to tyrosine accumulation in the cultures. First, expression of the P4H from Xanthomonas campestris in combination with an MH4 recycling system in wild-type E. coli allowed the strain to accumulate tyrosine at 262 mg/L. On this basis, enhanced expression of the key enzymes associated with the shikimate pathway and the MH4 biosynthetic pathway resulted in the elevation of tyrosine production up to 401 mg/L in shake flasks. This work demonstrated a novel approach to tyrosine production and verified the possibility to alleviate feedback inhibition by creating a phenylalanine sink.

  8. Characterization of the hypertonically induced tyrosine phosphorylation of erythrocyte band 3.

    Science.gov (United States)

    Minetti, G; Seppi, C; Ciana, A; Balduini, C; Low, P S; Brovelli, A

    1998-01-01

    Human erythrocyte band 3 becomes rapidly phosphorylated on tyrosine residues after exposure of erythrocytes to hypertonic conditions. The driving force for this phosphorylation reaction seems to be a decrease in cell volume, because (1) changes in band 3 phosphotyrosine content accurately track repeated changes in erythrocyte volume through several cycles of swelling and shrinking; (2) the level of band 3 phosphorylation is independent of the osmolyte employed but strongly sensitive to the magnitude of cell shrinkage; and (3) exposure of erythrocytes to hypertonic buffers under conditions in which intracellular osmolarity increases but volume does not change (nystatin-treated cells) does not promote an increase in tyrosine phosphorylation. We hypothesize that shrinkage-induced tyrosine phosphorylation results either from an excluded-volume effect, stemming from an increase in intracellular crowding, or from changes in membrane curvature that accompany the decrease in cell volume. Although the net phosphorylation state of band 3 is shown to be due to a delicate balance between a constitutively active tyrosine phosphatase and constitutively active tyrosine kinase, the increase in phosphorylation during cell shrinkage was demonstrated to derive specifically from an activation of the latter. Further, a peculiar inhibition pattern of the volume-sensitive erythrocyte tyrosine kinase that matched that of p72syk, a tyrosine kinase already known to associate with band 3 in vivo, suggested the involvement of this kinase in the volume-dependent response. PMID:9761728

  9. Mediatized Humanitarianism

    DEFF Research Database (Denmark)

    Vestergaard, Anne

    2014-01-01

    The article investigates the implications of mediatization for the legitimation strategies of humanitarian organizations. Based on a (full population) corpus of ~400 pages of brochure material from 1970 to 2007, the micro-textual processes involved in humanitarian organizations' efforts to legiti......The article investigates the implications of mediatization for the legitimation strategies of humanitarian organizations. Based on a (full population) corpus of ~400 pages of brochure material from 1970 to 2007, the micro-textual processes involved in humanitarian organizations' efforts...... legitimation by accountancy, legitimation by institutionalization, and legitimation by compensation. The analysis relates these changes to a problem of trust associated with mediatization through processes of mediation....

  10. Tyrosine Phosphorylation Pattern in Sperm Proteins Isolated from Normospermic and Teratospermic Men

    Science.gov (United States)

    Jabbari, Sepideh; Sadeghi, Mohammad Reza; Akhondi, Mohammad Mahdi; Ebrahim Habibi, Azadeh; Amirjanati, Naser; Lakpour, Niknam; Asgharpour, Lima; Ardekani, Ali M.

    2009-01-01

    Introduction In mammalian system, spermatozoa are not able to fertilize the oocyte immediately upon ejaculation, thus they undergo a series of biochemical and molecular changes which is termed capacitation. During sperm capacitation, signal transduction pathways are activated which lead to protein tyrosine phosphorylation. Tyrosine phosphorylated proteins have an important role in sperm capacitation such as hyperactive motility, interaction with zona pellucida and acrosome reaction. Evaluation of tyrosine phosphorylation pattern is important for further understanding of molecular mechanisms of fertilization and the etiology of sperm dysfunctions and abnormalities such as teratospermia. The goal of this study is to characterize tyrosine phosphorylation pattern in sperm proteins isolated from normospermic and teratospermic infertile men attending Avicenna Infertility Clinic in Tehran. Materials and Methods Semen samples were collected and the spermatozoa were isolated using Percoll gradient centrifugation. Then the spermatozoa were incubated up to 6h at 37°C with 5% CO2 in 3% Bovine Serum Albumin-supplemented Ham's F-10 for capacitation to take place. The total proteins from spermatozoa were extracted and were subjected to SDS-PAGE before and after capacitation. To evaluate protein tyrosine phosphorylation pattern, western blotting with specific antibody against phosphorylated tyrosines was performed. Results The results upon western blotting showed: 1) at least six protein bands were detected before capacitation in the spermatozoa from normospermic samples. However, comparable levels of tyrosine phosphorylation was not observed in the spermatozoa from teratospermic samples. 2) The intensity of protein tyrosine phosphorylation appears to have been increased during capacitation in the normospermic relative to the teratospermic group. Conclusion For the first time, these findings demonstrate and suggest that the differences in the types of proteins and diminished

  11. Rates and energetics of tyrosine ring flips in yeast iso-2-cytochrome c

    International Nuclear Information System (INIS)

    Nall, B.T.; Zuniga, E.H.

    1990-01-01

    Isotope-edited nuclear magnetic resonance spectroscopy is used to monitor ring flip motion of the five tyrosine side chains in the oxidized and reduced forms of yeast iso-2-cytochrome c. With specifically labeled protein purified from yeast grown on media containing [3,5- 13 C]tyrosine, isotope-edited one-dimensional proton spectra have been collected over a 5-55 degree C temperature range. The spectra allow selective observation of the 10 3,5 tyrosine ring proton resonances and, using a two-site exchange model, allow estimation of the temperature dependence of ring flip rates from motion-induced changes in proton line shapes. For the reduced protein, tyrosines II and IV are in fast exchange throughout the temperature range investigated, or lack resolvable differences in static chemical shifts for the 3,5 ring protons. Tyrosines I, III, and V are in sloe exchange at low temperatures and in fast exchange at high temperatures. Spectral simulations give flip rates for individual tyrosines in a range of one flip per second at low temperatures to thousands of flips per second at high temperatures. Eyring plots show that two of the tyrosines (I and III) have essentially the same activation parameters. Tentative sequence-specific assignments for the tyrosines in reduced iso-2 are suggested by comparison to horse cytochrome c. For oxidized iso-2, five resonances are observed at high temperatures, suggesting flip rates for all five tyrosines sufficient to average static chemical shift differences. At lower temperatures, there is evidence of intermediate and slow flipping for some of the rings

  12. Defective TCR stimulation in anergized type 2 T helper cells correlates with abrogated p56(lck) and ZAP-70 tyrosine kinase activities.

    Science.gov (United States)

    Faith, A; Akdis, C A; Akdis, M; Simon, H U; Blaser, K

    1997-07-01

    Development of IgE-mediated allergic conditions is dependent on the secretion of a Th2 cytokine pattern, including IL-4, IL-5, and IL-13. The induction of anergy would be one mechanism to abrogate cytokine secretion by Th2 cells, which may be pivotal to the allergic response. We demonstrate here that incubation of cloned human CD4+ phospholipase A2 (PLA)-specific Th2 cells with antigenic peptide, in the absence of professional APC, results in a state of nonresponsiveness. The anergic T cells failed to proliferate or secrete IL-4 in response to optimal stimulation with PLA and autologous, professional APC. Secretion of IL-5 and IL-13, however, was only partially inhibited. The anergic state of the Th2 cells was not associated with CD3 or CD28 down-regulation. However, anergy did appear to be closely related to alterations in signaling pathways, mediated through the TCR, of the cells. In contrast to untreated Th2 cells, anergized Th2 cells failed to respond to anti-CD3 mAb with either increased tyrosine kinase activity or increased levels of tyrosine phosphorylation of p56(lck) or ZAP70. A strong and sustained intracellular calcium flux, observed in untreated Th2 cells in response to anti-CD3 mAb, was absent in anergic Th2 cells. Furthermore, the induction of anergy seems to represent an active process, associated with increased levels of basal tyrosine kinase activity, cytokine production, and CD25 up-regulation in anergic Th2 cells. Together, our results indicate that anergy in Th2 cells is associated with defective transmembrane signaling through the TCR.

  13. Elicitor-induced tyrosine decarboxylase in berberine-synthesizing suspension cultures of Thalictrum rugosum.

    Science.gov (United States)

    Gügler, K; Funk, C; Brodelius, P

    1988-01-04

    Tyrosine decarboxylase (EC 4.1.1.25) was induced in suspension cultures of Thalictrum rugosum by treatment with a yeast glucan elicitor. Maximum induction was observed at a carbohydrate concentration of 0.4 mg/g fresh weight of cells and maximum enzyme activity was reached 20 h after addition of elicitor. The enzyme was inducible in late exponential and early stationary growth phases. A good correlation between induced tyrosine decarboxylase activity and berberine biosynthesis has been established. It is suggested that tyrosine decarboxylase may be a key enzyme between primary and secondary metabolisms in the biosynthesis of norlaudanosoline-derived alkaloids.

  14. Calcium/phospholipid-dependent protein kinase (protein kinase C) phosphorylates and activates tyrosine hydroxylase.

    OpenAIRE

    Albert, K A; Helmer-Matyjek, E; Nairn, A C; Müller, T H; Haycock, J W; Greene, L A; Goldstein, M; Greengard, P

    1984-01-01

    Protein kinase C, purified to homogeneity, was found to phosphorylate and activate tyrosine hydroxylase that had been partially purified from pheochromocytoma PC 12 cells. These actions of protein kinase C required the presence of calcium and phospholipid. This phosphorylation of tyrosine hydroxylase reduced the Km for the cofactor 6-methyltetrahydropterine from 0.45 mM to 0.11 mM, increased the Ki for dopamine from 4.2 microM to 47.5 microM, and produced no change in the Km for tyrosine. Lit...

  15. The use of the tyrosine phosphatase antagonist orthovanadate in the study of a cell proliferation inhibitor

    Science.gov (United States)

    Enebo, D. J.; Hanek, G.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Incubation of murine fibroblasts with orthovanadate, a global tyrosine phosphatase inhibitor, was shown to confer a "pseudo-transformed" phenotype with regard to cell morphology and growth characteristics. This alteration was manifested by both an increasing refractile appearance of the cells, consistent with many transformed cell lines, as well as an increase in maximum cell density was attained. Despite the abrogation of cellular tyrosine phosphatase activity, orthovanadate-treated cells remained sensitive to the biological activity of a naturally occurring sialoglycopeptide (SGP) cell surface proliferation inhibitor. The results indicated that tyrosine phosphatase activity, inhibited by orthovanadate, was not involved in the signal transduction pathway of the SGP.

  16. Processes for the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity. More particularly, the present invention pertains to polypeptides having tyrosine ammonia lyase activity and high...... substrate specificity towards tyrosine, which makes them particularly suitable in the production of p-coumaric acid and other hydroxycinnamic acids. The present invention thus provides processes for the production of p-coumaric acid and other hydroxycinnamic acids employing these polypeptides as well...

  17. [Dasatinib. A novel tyrosine kinase inhibitor for the treatment of chronic myeloid leukaemia

    DEFF Research Database (Denmark)

    Dufva, I.H.; Stentoft, J.; Hasselbalch, H.C.

    2008-01-01

    Chronic myeloid leukaemia is characterized by an abnormal tyrosin kinase in the cytoplasm of the clonal cells. The enzyme is derived from a fusion gene on the Philadelphia-chromosome, evolved by a translocation between chromosomes 9 and 22. Understanding the biology of the tyrosin kinase led to t...... to targeted therapy, inhibiting the ATP-binding site by a small molecule--imatinib (Glivec). A novel 2nd generation tyrosin kinase inhibitor--dasatinib (Sprycel)--is now available in cases of insufficient response or intolerance to imatinib Udgivelsesdato: 2008/1/28...

  18. Differential evolutionary wiring of the tyrosine kinase Btk.

    Directory of Open Access Journals (Sweden)

    Hossain M Nawaz

    Full Text Available BACKGROUND: A central question within biology is how intracellular signaling pathways are maintained throughout evolution. Btk29A is considered to be the fly-homolog of the mammalian Bruton's tyrosine kinase (Btk, which is a non-receptor tyrosine-kinase of the Tec-family. In mammalian cells, there is a single transcript splice-form and the corresponding Btk-protein plays an important role for B-lymphocyte development with alterations within the human BTK gene causing the immunodeficiency disease X-linked agammaglobulinemia in man and a related disorder in mice. In contrast, the Drosophila Btk29A locus encodes two splice-variants, where the type 2-form is the more related to the mammalian Btk gene product displaying more than 80% homology. In Drosophila, Btk29A displays a dynamic pattern of expression through the embryonic to adult stages. Complete loss-of-function of both splice-forms is lethal, whereas selective absence of the type 2-form reduces the adult lifespan of the fly and causes developmental abnormalities in male genitalia. METHODOLOGY/PRINCIPAL FINDINGS: Out of 7004-7979 transcripts expressed in the four sample groups, 5587 (70-79% were found in all four tissues and strains. Here, we investigated the role of Btk29A type 2 on a transcriptomic level in larval CNS and adult heads. We used samples either selectively defective in Btk29A type 2 (Btk29A(ficP or revertant flies with restored Btk29A type 2-function (Btk29A(fic Exc1-16. The whole transcriptomic profile for the different sample groups revealed Gene Ontology patterns reflecting lifespan abnormalities in adult head neuronal tissue, but not in larvae. CONCLUSIONS: In the Btk29A type 2-deficient strains there was no significant overlap between transcriptomic alterations in adult heads and larvae neuronal tissue, respectively. Moreover, there was no significant overlap of the transcriptomic changes between flies and mammals, suggesting that the evolutionary conservation is confined

  19. Complex Mediation

    DEFF Research Database (Denmark)

    Bødker, Susanne; Andersen, Peter Bøgh

    2005-01-01

    This article has its starting point in a large number of empirical findings regarding computer-mediated work. These empirical findings have challenged our understanding of the role of mediation in such work; on the one hand as an aspect of communication and cooperation at work and on the other hand...... as an aspect of human engagement with instruments of work. On the basis of previous work in activity-theoretical and semiotic human—computer interaction, we propose a model to encompass both of these aspects. In a dialogue with our empirical findings we move on to propose a number of types of mediation...... that have helped to enrich our understanding of mediated work and the design of computer mediation for such work....

  20. Src binds cortactin through an SH2 domain cystine-mediated linkage

    Science.gov (United States)

    Evans, Jason V.; Ammer, Amanda G.; Jett, John E.; Bolcato, Chris A.; Breaux, Jason C.; Martin, Karen H.; Culp, Mark V.; Gannett, Peter M.; Weed, Scott A.

    2012-01-01

    Summary Tyrosine-kinase-based signal transduction mediated by modular protein domains is critical for cellular function. The Src homology (SH)2 domain is an important conductor of intracellular signaling that binds to phosphorylated tyrosines on acceptor proteins, producing molecular complexes responsible for signal relay. Cortactin is a cytoskeletal protein and tyrosine kinase substrate that regulates actin-based motility through interactions with SH2-domain-containing proteins. The Src kinase SH2 domain mediates cortactin binding and tyrosine phosphorylation, but how Src interacts with cortactin is unknown. Here we demonstrate that Src binds cortactin through cystine bonding between Src C185 in the SH2 domain within the phosphotyrosine binding pocket and cortactin C112/246 in the cortactin repeats domain, independent of tyrosine phosphorylation. Interaction studies show that the presence of reducing agents ablates Src-cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 domain binding to cortactin. Tandem MS/MS sequencing demonstrates cystine bond formation between Src C185 and cortactin C112/246. Mutational studies indicate that an intact cystine binding interface is required for Src-mediated cortactin phosphorylation, cell migration, and pre-invadopodia formation. Our results identify a novel phosphotyrosine-independent binding mode between the Src SH2 domain and cortactin. Besides Src, one quarter of all SH2 domains contain cysteines at or near the analogous Src C185 position. This provides a potential alternative mechanism to tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands that may be widespread in propagating signals regulating diverse cellular functions. PMID:23097045

  1. A Loss-of-Function Screen for Phosphatases that Regulate Neurite Outgrowth Identifies PTPN12 as a Negative Regulator of TrkB Tyrosine Phosphorylation

    DEFF Research Database (Denmark)

    Ambjørn, Malene; Dubreuil, Véronique; Miozzo, Federico

    2013-01-01

    Alterations in function of the neurotrophin BDNF are associated with neurodegeneration, cognitive decline, and psychiatric disorders. BDNF promotes axonal outgrowth and branching, regulates dendritic tree morphology and is important for axonal regeneration after injury, responses that largely...... that phosphatases belong to multiple independently evolved families, which are rarely studied together. We undertook a loss-of-function RNA-interference-based screen of virtually all known (254) human phosphatases to understand their function in BDNF/TrkB-mediated neurite outgrowth in differentiated SH-SY5Y cells....... This approach identified phosphatases from diverse families, which either positively or negatively modulate BDNF-TrkB-mediated neurite outgrowth, and most of which have little or no previously established function related to NT signaling. "Classical" protein tyrosine phosphatases (PTPs) accounted for 13...

  2. Protein-tyrosine Phosphatase and Kinase Specificity in Regulation of SRC and Breast Tumor Kinase* ♦

    Science.gov (United States)

    Fan, Gaofeng; Aleem, Saadat; Yang, Ming; Miller, W. Todd; Tonks, Nicholas K.

    2015-01-01

    Despite significant evidence to the contrary, the view that phosphatases are “nonspecific” still pervades the field. Systems biology approaches to defining how signal transduction pathways are integrated at the level of whole organisms also often downplay the contribution of phosphatases, defining them as “erasers” that serve merely to restore the system to its basal state. Here, we present a study that counteracts the idea of “nonspecific phosphatases.” We have characterized two structurally similar and functionally related kinases, BRK and SRC, which are regulated by combinations of activating autophosphorylation and inhibitory C-terminal sites of tyrosine phosphorylation. We demonstrated specificity at the level of the kinases in that SRMS phosphorylated the C terminus of BRK, but not SRC; in contrast, CSK is the kinase responsible for C-terminal phosphorylation of SRC, but not BRK. For the phosphatases, we observed that RNAi-mediated suppression of PTP1B resulted in opposing effects on the activity of BRK and SRC and have defined the mechanisms underlying this specificity. PTP1B inhibited BRK by directly dephosphorylating the Tyr-342 autophosphorylation site. In contrast, PTP1B potentiated SRC activity, but not by dephosphorylating SRC itself directly; instead, PTP1B regulated the interaction between CBP/PAG and CSK. SRC associated with, and phosphorylated, the transmembrane protein CBP/PAG at Tyr-317, resulting in CSK recruitment. We identified PAG as a substrate of PTP1B, and dephosphorylation abolished recruitment of the inhibitory kinase CSK. Overall, these findings illustrate how the combinatorial effects of PTKs and PTPs may be integrated to regulate signaling, with both classes of enzymes displaying exquisite specificity. PMID:25897081

  3. Crk Tyrosine Phosphorylation Regulates PDGF-BB-inducible Src Activation and Breast Tumorigenicity and Metastasis.

    Science.gov (United States)

    Kumar, Sushil; Lu, Bin; Davra, Viralkumar; Hornbeck, Peter; Machida, Kazuya; Birge, Raymond B

    2018-01-01

    The activity of Src family kinases (Src being the prototypical member) is tightly regulated by differential phosphorylation on Tyr416 (positive) and Tyr527 (negative), a duet that reciprocally regulates kinase activity. The latter negative regulation of Src on Tyr527 is mediated by C-terminal Src kinase (CSK) that phosphorylates Tyr527 and maintains Src in a clamped negative regulated state by promoting an intramolecular association. Here it is demonstrated that the SH2- and SH3-domain containing adaptor protein CrkII, by virtue of its phosphorylation on Tyr239, regulates the Csk/Src signaling axis to control Src activation. Once phosphorylated, the motif (PIpYARVIQ) forms a consensus sequence for the SH2 domain of CSK to form a pTyr239-CSK complex. Functionally, when expressed in Crk -/- MEFs or in Crk +/+ HS683 cells, Crk Y239F delayed PDGF-BB-inducible Src Tyr416 phosphorylation. Moreover, expression of Crk Y239F in HS683 cells delayed Src kinase activation and suppressed the cell-invasive and -transforming phenotypes. Finally, through loss-of-function and epistasis experiments using CRISPR-Cas9-engineered 4T1 murine breast cancer cells, Crk Tyr239 is implicated in breast cancer tumor growth and metastasis in orthotopic immunocompetent 4T1 mice model of breast adenocarcinoma. These findings delineate a novel role for Crk Tyr239 phosphorylation in the regulation of Src kinases, as well as a potential molecular explanation for a long-standing question as to how Crk regulates the activation of Src kinases. Implications: These findings provide new perspectives on the versatility of Crk in cancer by demonstrating how Crk mechanistically drives, through a tyrosine phosphorylation-dependent manner, tumor growth, and metastasis. Mol Cancer Res; 16(1); 173-83. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. Protein tyrosine phosphatase non-receptor type 22 modulates NOD2-induced cytokine release and autophagy.

    Directory of Open Access Journals (Sweden)

    Marianne R Spalinger

    Full Text Available BACKGROUND: Variations within the gene locus encoding protein tyrosine phosphatase non-receptor type 22 (PTPN22 are associated with the risk to develop inflammatory bowel disease (IBD. PTPN22 is involved in the regulation of T- and B-cell receptor signaling, but although it is highly expressed in innate immune cells, its function in other signaling pathways is less clear. Here, we study whether loss of PTPN22 controls muramyl-dipeptide (MDP-induced signaling and effects in immune cells. MATERIAL & METHODS: Stable knockdown of PTPN22 was induced in THP-1 cells by shRNA transduction prior to stimulation with the NOD2 ligand MDP. Cells were analyzed for signaling protein activation and mRNA expression by Western blot and quantitative PCR; cytokine secretion was assessed by ELISA, autophagosome induction by Western blot and immunofluorescence staining. Bone marrow derived dendritic cells (BMDC were obtained from PTPN22 knockout mice or wild-type animals. RESULTS: MDP-treatment induced PTPN22 expression and activity in human and mouse cells. Knockdown of PTPN22 enhanced MDP-induced activation of mitogen-activated protein kinase (MAPK-isoforms p38 and c-Jun N-terminal kinase as well as canonical NF-κB signaling molecules in THP-1 cells and BMDC derived from PTPN22 knockout mice. Loss of PTPN22 enhanced mRNA levels and secretion of interleukin (IL-6, IL-8 and TNF in THP-1 cells and PTPN22 knockout BMDC. Additionally, loss of PTPN22 resulted in increased, MDP-mediated autophagy in human and mouse cells. CONCLUSIONS: Our data demonstrate that PTPN22 controls NOD2 signaling, and loss of PTPN22 renders monocytes more reactive towards bacterial products, what might explain the association of PTPN22 variants with IBD pathogenesis.

  5. BAZ1B is dispensable for H2AX phosphorylation on Tyrosine 142 during spermatogenesis

    Directory of Open Access Journals (Sweden)

    Tyler J. Broering

    2015-07-01

    Full Text Available Meiosis is precisely regulated by the factors involved in DNA damage response in somatic cells. Among them, phosphorylation of H2AX on Serine 139 (γH2AX is an essential signal for the silencing of unsynapsed sex chromosomes during male meiosis. However, it remains unknown how adjacent H2AX phosphorylation on Tyrosine 142 (pTyr142 is regulated in meiosis. Here we investigate the meiotic functions of BAZ1B (WSTF, the only known Tyr142 kinase in somatic cells, using mice possessing a conditional deletion of BAZ1B. Although BAZ1B deletion causes ectopic γH2AX signals on synapsed autosomes during the early pachytene stage, BAZ1B is dispensable for fertility and critical events during spermatogenesis. BAZ1B deletion does not alter events on unsynapsed axes and pericentric heterochromatin formation. Furthermore, BAZ1B is dispensable for localization of the ATP-dependent chromatin remodeling protein SMARCA5 (SNF2h during spermatogenesis despite the complex formation between BAZ1B and SMARCA5, known as the WICH complex, in somatic cells. Notably, pTyr142 is regulated independently of BAZ1B and is dephosphorylated on the sex chromosomes during meiosis in contrast with the presence of adjacent γH2AX. Dephosphorylation of pTyr142 is regulated by MDC1, a binding partner of γH2AX. These results reveal the distinct regulation of two adjacent phosphorylation sites of H2AX during meiosis, and suggest that another kinase mediates Tyr142 phosphorylation.

  6. COUP-TFI controls activity-dependent tyrosine hydroxylase expression in adult dopaminergic olfactory bulb interneurons.

    Science.gov (United States)

    Bovetti, Serena; Bonzano, Sara; Garzotto, Donatella; Giannelli, Serena Gea; Iannielli, Angelo; Armentano, Maria; Studer, Michèle; De Marchis, Silvia

    2013-12-01

    COUP-TFI is an orphan nuclear receptor acting as a strong transcriptional regulator in different aspects of forebrain embryonic development. In this study, we investigated COUP-TFI expression and function in the mouse olfactory bulb (OB), a highly plastic telencephalic region in which continuous integration of newly generated inhibitory interneurons occurs throughout life. OB interneurons belong to different populations that originate from distinct progenitor lineages. Here, we show that COUP-TFI is highly expressed in tyrosine hydroxylase (TH)-positive dopaminergic interneurons in the adult OB glomerular layer (GL). We found that odour deprivation, which is known to downregulate TH expression in the OB, also downregulates COUP-TFI in dopaminergic cells, indicating a possible correlation between TH- and COUP-TFI-activity-dependent action. Moreover, we demonstrate that conditional inactivation of COUP-TFI in the EMX1 lineage results in a significant reduction of both TH and ZIF268 expression in the GL. Finally, lentiviral vector-mediated COUP-TFI deletion in adult-generated interneurons confirmed that COUP-TFI acts cell-autonomously in the control of TH and ZIF268 expression. These data indicate that COUP-TFI regulates TH expression in OB cells through an activity-dependent mechanism involving ZIF268 induction and strongly argue for a maintenance rather than establishment function of COUP-TFI in dopaminergic commitment. Our study reveals a previously unknown role for COUP-TFI in the adult brain as a key regulator in the control of sensory-dependent plasticity in olfactory dopaminergic neurons.

  7. Effect of tyrosine hydroxylase overexpression in lymphocytes on the differentiation and function of T helper cells.

    Science.gov (United States)

    Huang, Hui-Wei; Zuo, Cong; Chen, Xiao; Peng, Yu-Ping; Qiu, Yi-Hua

    2016-08-01

    The aim of the present study was to examine the effect of the overexpression of tyrosine hydroxylase (TH), a rate-limiting enzyme for the synthesis of catecholamines (CAs), in lymphocytes on the differentiation and function of T helper (Th) cells. A recombinant TH overexpression plasmid (pEGFP-N1-TH) was constructed and transfected into mesenteric lymphocytes using nucleofection technology. These cells were stimulated with concanavalin A (Con A) for 48 h and then examined for TH expression and CA content, as well as for the percentage of Th1 and Th2 cells, cytokine concentrations and for the levels of signaling molecules. The lymphocytes overexpressing TH also expressed higher mRNA and protein levels of TH, and synthesized more CAs, including norepinephrine (NE), epinephrine (E) and dopamine (DA) than the mock-transfected control cells. TH gene overexpression in the lymphocytes reduced the percentage of interferon-γ (IFN-γ)-producing CD4+ cells and the ratio of CD4+IFN-γ+/CD4+IL-4+ cells, as well as the percentages of CD4+CD26+ and CD4+CD30+ cells and the ratio of CD4+CD26+/CD4+CD30+ cells. TH overexpression also reduced the secretion of IFN-γ and tumor necrosis factor (TNF) from lymphocytes. Moreover, NE inhibited the Con A-induced lymphocyte proliferation and decreased both cyclic adenosine monophosphate (cAMP) levels and p38 mitogen-activated protein kinase (MAPK) expression in the lymphocytes. Our findings thus indicate that TH gene overexpression promotes the polarization and differentiation of CD4+ cells towards Th2 cells, and this effect is mediated by the cAMP and p38 MAPK signaling pathways.

  8. Removal of Soluble Fms-Like Tyrosine Kinase-1 by Dextran Sulfate Apheresis in Preeclampsia.

    Science.gov (United States)

    Thadhani, Ravi; Hagmann, Henning; Schaarschmidt, Wiebke; Roth, Bernhard; Cingoez, Tuelay; Karumanchi, S Ananth; Wenger, Julia; Lucchesi, Kathryn J; Tamez, Hector; Lindner, Tom; Fridman, Alexander; Thome, Ulrich; Kribs, Angela; Danner, Marco; Hamacher, Stefanie; Mallmann, Peter; Stepan, Holger; Benzing, Thomas

    2016-03-01

    Preeclampsia is a devastating complication of pregnancy. Soluble Fms-like tyrosine kinase-1 (sFlt-1) is an antiangiogenic protein believed to mediate the signs and symptoms of preeclampsia. We conducted an open pilot study to evaluate the safety and potential efficacy of therapeutic apheresis with a plasma-specific dextran sulfate column to remove circulating sFlt-1 in 11 pregnant women (20-38 years of age) with very preterm preeclampsia (23-32 weeks of gestation, systolic BP ≥140 mmHg or diastolic BP ≥90 mmHg, new onset protein/creatinine ratio >0.30 g/g, and sFlt-1/placental growth factor ratio >85). We evaluated the extent of sFlt-1 removal, proteinuria reduction, pregnancy continuation, and neonatal and fetal safety of apheresis after one (n=6), two (n=4), or three (n=1) apheresis treatments. Mean sFlt-1 levels were reduced by 18% (range 7%-28%) with concomitant reductions of 44% in protein/creatinine ratios. Pregnancy continued for 8 days (range 2-11) and 15 days (range 11-21) in women treated once and multiple times, respectively, compared with 3 days (range 0-14) in untreated contemporaneous preeclampsia controls (n=22). Transient maternal BP reduction during apheresis was managed by withholding pre-apheresis antihypertensive therapy, saline prehydration, and reducing blood flow through the apheresis column. Compared with infants born prematurely to untreated women with and without preeclampsia (n=22 per group), no adverse effects of apheresis were observed. In conclusion, therapeutic apheresis reduced circulating sFlt-1 and proteinuria in women with very preterm preeclampsia and appeared to prolong pregnancy without major adverse maternal or fetal consequences. A controlled trial is warranted to confirm these findings. Copyright © 2016 by the American Society of Nephrology.

  9. Screening of selected starter cultures for the presence of DNA sequences coding for tyrosine decarboxylase

    Directory of Open Access Journals (Sweden)

    Radka Burdychová

    2006-01-01

    Full Text Available Here, seven different starter cultures used in the production of fermented sausages were screened for the presence or absence of specific DNA sequences coding for tyrosine decarboxylase. PCR with the a set of specific primers TDC2/TDC5 (COTON et al., 2004 was used. The PCR analysis of DNA from two starter cultures confirmed the presence of DNA sequences for tyrosine decarboxylase. A detailed analysis of the starter cultures showed that DNA sequences for tyrosine decarboxylase are contained in genomic DNA of Lactobacillus curvatus and Lactobacillus sakei. These results show suitability of the described PCR method for the screening of starter cultures for the presence of the gene for tyrosine decarboxylase that is responsible for the production of the biogenic amine tyramine.

  10. Lattice modes of the chirally pure and racemic phases of tyrosine crystals

    Energy Technology Data Exchange (ETDEWEB)

    Belyanchikov, M. A. [Moscow Institute of Physics and Technology (Russian Federation); Gorelik, V. S., E-mail: gorelik@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Gorshunov, B. P. [Moscow Institute of Physics and Technology (Russian Federation); Pyatyshev, A. Yu., E-mail: jb-valensia@mail.ru [Bauman Moscow State Technical University (Russian Federation)

    2017-01-15

    High-Q librational modes have been found to be present in the infrared absorption and Raman spectra of chirally pure L-tyrosine. Such modes can serve as terahertz radiation detectors and generators in chirally pure biostructures.

  11. Administration of supplemental L-tyrosine with phenelzine: a clinical literature review

    Science.gov (United States)

    Hinz, Marty; Stein, Alvin; Cole, Ted; Ryan, Patricia

    2014-01-01

    The subject of this literature review is the alleged relationship between L-tyrosine, phenelzine, and hypertensive crisis. Phenelzine (Nardil®) prescribing information notes: “The potentiation of sympathomimetic substances and related compounds by MAO inhibitors may result in hypertensive crises (see WARNINGS). Therefore, patients being treated with NARDIL should not take […] L-tyrosine […]”. Interest in the scientific foundation of this claim was generated during routine patient care. A comprehensive literature search of Google Scholar and PubMed revealed no reported cases of hypertensive crisis associated with concomitant administration of L-tyrosine and phenelzine. Review of current US Food and Drug Administration nutritional guidelines relating to ongoing phenelzine studies reveals no mention and requires no consideration of L-tyrosine ingestion in combination with phenelzine. This paper is intended to provide an objective review of the science to then allow the reader to formulate the final opinion. PMID:25092999

  12. Conformational Structure of Tyrosine, Tyrosyl-Glycine, and Tyrosyl-Glycyl-Glycine by Double Resonance Spectroscopy

    Science.gov (United States)

    Abo-Riziq, Ali; Grace, Louis; Crews, Bridgit; Callahan, Michael P,; van Mourik, Tanja; de Vries, Mattanjah S,

    2011-01-01

    We investigated the variation in conformation for the amino acid tyrosine (Y), alone and in the small peptides tyrosine-glycine (YC) and tyrosine-glycine-glycine (YGG), in the gas phase by using UV-UV and IR-UV double resonance spectroscopy and density functional theory calculations. For tyrosine we found seven different conformations, for YG we found four different conformations, and for YGG we found three different conformations. As the peptides get larger, we observe fewer stable conformers, despite the increasing complexity and number of degrees of freedom. We find structural trends similar to those in phenylalanine-glycine glycine (FGG) and tryptophan-glycine-glycine (WGG)j however) the effect of dispersive forces in FGG for stabilizing a folded structure is replaced by that of hydrogen bonding in YGG.

  13. Immunoglobulins against Tyrosine Nitrated Epitopes in Coronary Artery Disease

    Science.gov (United States)

    Thomson, Leonor; Tenopoulou, Margarita; Lightfoot, Richard; Tsika, Epida; Parastatidis, Ioannis; Martinez, Marissa; Greco, Todd M.; Doulias, Paschalis-Thomas; Wu, Yuping; Tang, W. H. Wilson; Hazen, Stanley L.; Ischiropoulos, Harry

    2012-01-01

    Background Several lines of evidence support a pathophysiological role of immunity in atherosclerosis. Tyrosine nitrated proteins, a footprint of oxygen and nitrogen derived oxidants generated by cells of the immune system, are enriched in atheromatous lesions and in circulation of coronary artery disease (CAD) subjects. However, the consequences of possible immune reactions triggered by the presence of nitrated proteins in subjects with clinically documented atherosclerosis have not been explored. Methods and Results Specific immunoglobulins that recognize 3-nitrotyrosine epitopes were identified in human lesions, as well as in circulation of CAD subjects. The levels of circulating immunoglobulins against 3-nitrotyrosine epitopes were quantified in CAD patients (n=374) and subjects without CAD (non CAD controls, n=313). A ten-fold increase in the mean level of circulating immunoglobulins against protein-bound 3-nitrotyrosine was documented in the CAD subjects (3.75 ± 1.8 μg antibody Eq/mL plasma vs. 0.36 ± 0.8 μg antibody Eq/mL plasma), and was strongly associated with angiographic evidence of significant CAD. Conclusions The results of this cross sectional study suggest that post-translational modification of proteins via nitration within atherosclerotic plaque-laden arteries and in circulation serve as neoepitopes for elaboration of immunoglobulins, thereby providing an association between oxidant production and the activation of the immune system in CAD. PMID:23081989

  14. The 2010 patent landscape for spleen tyrosine kinase inhibitors.

    Science.gov (United States)

    Moretto, Alessandro F; Dehnhardt, Christoph; Kaila, Neelu; Papaioannou, Nikolaos; Thorarensen, Atli

    2012-05-01

    Discovery of small molecular inhibitors for treatment of rheumatoid arthritis is a major ongoing effort within the pharmaceutical industry. Spleen tyrosine kinase (SYK) is one of leading small molecular targets with regard to clinical development primarlly due to efforts by Rigel and Portola. In this review, we provide a comprehensive overview of the SYK patent landscape. The patent literature we evaluated relates to any organization that has filed applications that imply that SYK is the intended target. The interest in SYK was initiated in the early 2000's with many organizations, including several large pharmaceutical companies, and has been active for years. In general, the structural theme of most of the compounds in these applications is a traditional ATP competitive inhibitor with each organization having a different hinge binding element. In general, the attachment to the hinge is an aryl amine that is decorated with a solubilizing group. The other substituents are broadly variable across the numerous companies indicating that SYK has significant flexibility in its interactions in that portion of the kinase. This overview of the SYK patent literature and the learnings of the inhibitors' substitution patterns would be an important reference for anyone working in this area.

  15. Tyrosine aminotransferase from Leishmania infantum: A new drug target candidate

    Directory of Open Access Journals (Sweden)

    Miguel Angel Moreno

    2014-12-01

    Full Text Available Leishmania infantum is the etiological agent of zoonotic visceral leishmaniasis in the Mediterranean basin. The disease is fatal without treatment, which has been based on antimonial pentavalents for more than 60 years. Due to resistances, relapses and toxicity to current treatment, the development of new drugs is required. The structure of the L. infantum tyrosine aminotransferase (LiTAT has been recently solved showing important differences with the mammalian orthologue. The characterization of LiTAT is reported herein. This enzyme is cytoplasmic and is over-expressed in the more infective stages and nitric oxide resistant parasites. Unlike the mammalian TAT, LiTAT is able to use ketomethiobutyrate as co-substrate. The pharmacophore model of LiTAT with this specific co-substrate is described herein. This may allow the identification of new inhibitors present in the databases. All the data obtained support that LiTAT is a good target candidate for the development of new anti-leishmanial drugs.

  16. Tyrosine kinase expression in pulmonary metastases and paired primary tumors.

    Science.gov (United States)

    Muehling, Bernd M; Toelkes, Sara; Schelzig, Hubert; Barth, Thomas F E; Sunder-Plassmann, Ludger

    2010-02-01

    Tyrosine kinase inhibitors against the receptors of vascular endothelial growth factor (VEGFR), epidermal growth factor (EGFR) and the platelet derived growth factor (PDGFR) are increasingly used in the treatment of progressive cancers. However, the expression of these receptors especially in lung metastases has not been examined. Tissue specimen from 35 lung metastases of 33 patients with renal cell carcinoma (n=8), sarcoma (n=10), colorectal carcinoma (n=6), otolaryngologic carcinoma (OLC, n=4), testicular and endometrial cancer (n=1 each), malignant melanoma (n=1), adrenal cancer (n=2), malignant fibrous histiocytoma and malignant peripheral nerve sheath tumor (n=1 each) have been immunohistochemically tested for the expression of PDGFR alpha/beta, VEGFR and EGFR. None of the patients had been pretreated with angiogenic inhibitors prior to metastasectomy. PDGFRalpha was expressed in all metastases; 31% stained negative for PDGFRbeta, 86% negative for VEGFR and 45% negative for EGFR. Primary tumors revealed positive staining for PDGFRalpha in 88%, for PDGFRbeta in 59%, for VEGFR in 0% and for EGFR in 18%. Our investigation of a pilot character represents a 'biomarker-based' analysis of pulmonary metastases of different primary tumors; we conclude that an immediate 'tumor profiling' at initial diagnosis should be considered in order to guide tumor therapy individually.

  17. Metazoan-like signaling in a unicellular receptor tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Schultheiss Kira P

    2013-02-01

    Full Text Available Abstract Background Receptor tyrosine kinases (RTKs are crucial components of signal transduction systems in multicellular animals. Surprisingly, numerous RTKs have been identified in the genomes of unicellular choanoflagellates and other protists. Here, we report the first biochemical study of a unicellular RTK, namely RTKB2 from Monosiga brevicollis. Results We cloned, expressed, and purified the RTKB2 kinase, and showed that it is enzymatically active. The activity of RTKB2 is controlled by autophosphorylation, as in metazoan RTKs. RTKB2 possesses six copies of a unique domain (designated RM2 in its C-terminal tail. An isolated RM2 domain (or a synthetic peptide derived from the RM2 sequence served as a substrate for RTKB2 kinase. When phosphorylated, the RM2 domain bound to the Src homology 2 domain of MbSrc1 from M. brevicollis. NMR structural studies of the RM2 domain indicated that it is disordered in solution. Conclusions Our results are consistent with a model in which RTKB2 activation stimulates receptor autophosphorylation within the RM2 domains. This leads to recruitment of Src-like kinases (and potentially other M. brevicollis proteins and further phosphorylation, which may serve to increase or dampen downstream signals. Thus, crucial features of signal transduction circuitry were established prior to the evolution of metazoans from their unicellular ancestors.

  18. Identification of a variant form of tyrosine phosphatase LYP

    Directory of Open Access Journals (Sweden)

    Ho Wanting T

    2010-11-01

    Full Text Available Abstract Background Protein tyrosine phosphatases (PTPs are important cell signaling regulators with major pathological implications. LYP (also known as PTPN22 is an intracellular enzyme initially found to be predominately expressed in lymphocytes. Importantly, an allelic R620W variant of LYP is strongly associated with multiple autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and autoimmune thyroid disease. Results In this study, we isolated a novel isoform of LYP designated LYP3. LYP3 differs from LYP1, the known isoform of LYP, in that it lacks a 28 amino acid segment right after the R620W site embedded in a proline-rich protein-protein interaction motif. Genomic sequence analysis revealed that LYP3 resulted from alternative splicing of the LYP gene located on chromosome 1p 13.3-13.1. Reverse transcription PCR analyses of 48 human tissues demonstrated that both LYP1 and LYP3 are predominantly expressed in primary and secondary lymphoid tissues but the relative expression levels of the two isoforms varies in different human tissues and individuals. Conclusions We thus identified a new variant form of LYP and conducted a comprehensive analysis of LYP tissue expressions. Considering the pathogenesis of LYP R620W, we believe that the expression of LYP3 may have an important role in regulating activity and function of LYP and may be implicated in autoimmune diseases.

  19. The protein tyrosine kinase Tec regulates mast cell function.

    Science.gov (United States)

    Schmidt, Uwe; Abramova, Anastasia; Boucheron, Nicole; Eckelhart, Eva; Schebesta, Alexandra; Bilic, Ivan; Kneidinger, Michael; Unger, Bernd; Hammer, Martina; Sibilia, Maria; Valent, Peter; Ellmeier, Wilfried

    2009-11-01

    Mast cells play crucial roles in a variety of normal and pathophysiological processes and their activation has to be tightly controlled. Here, we demonstrate that the protein tyrosine kinase Tec is a crucial regulator of murine mast cell function. Tec was activated upon Fc epsilon RI stimulation of BM-derived mast cells (BMMC). The release of histamine in the absence of Tec was normal in vitro and in vivo; however, leukotriene C(4) levels were reduced in Tec(-) (/) (-) BMMC. Furthermore, the production of IL-4 was severely impaired, and GM-CSF, TNF-alpha and IL-13 levels were also diminished. Finally, a comparison of WT, Tec(-) (/) (-), Btk(-) (/) (-) and Tec(-) (/) (-)Btk(-) (/) (-) BMMC revealed a negative role for Btk in the regulation of IL-4 production, while for the efficient production of TNF-alpha, IL-13 and GM-CSF, both Tec and Btk were required. Our results demonstrate a crucial role for Tec in mast cells, which is partially different to the function of the well-characterized family member Btk.

  20. Raman spectra of iodine-derivatives of tyrosine and thyronine

    International Nuclear Information System (INIS)

    Loh, E.

    1974-01-01

    The Raman spectra of the iodine derivatives of tyrosine and thyronine in the form of compressed crystalline powders have been excited by 4880 A Argon laser on rotating samples at room temperature. The strong peaks in the low-frequency, -1 , region may be described by analogous vibrations of benzene as: I. the C-I out-of-plane bendings of E 1 sub(g) mode from 100 cm -1 to 180 cm -1 ; II. the C-I in-plane bendings of E 2 sub(g) and A 2 sub(g) mode from 190 cm -1 to 330 cm -1 and III. the C-I stretchings of E 2 sub(g) mode from 330 cm -1 to 400 cm -1 . In 3,3',5-triiodo-derivatives, the number of both the C-I in-plane bendings and C-I stretchings on the inner phenyl ring approximately doubles from thet of diiodo-derivatives. This doubling in number of peaks is presumably due to the modulation caused by the libration, which is associated with the C-I out-of-plane bending at position 3', of the outer phenyl ring

  1. Identification of tyrosine-phosphorylated proteins associated with metastasis and functional analysis of FER in human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Wang Yan

    2009-10-01

    Full Text Available Abstract Background- Aberrant activity of tyrosine-phosphorylated proteins is commonly associated with HCC metastasis. Cell signaling events driven by these proteins are implicated in numerous processes that alter cancer cell behavior. Exploring the activities and signaling pathways of these proteins in HCC metastasis may help in identifying new candidate molecules for HCC-targeted therapy. Methods- Hep3B (a nonmetastatic HCC cell line and MHCC97H (a highly metastatic HCC cell line were used in this study, and the tyrosine-phosphorylated proteins expressed in these cell lines were profiled by a phosphoproteomics technique based on LC-MS/MS. Protein-protein interaction and functional clustering analyses were performed to determine the activities of the identified proteins and the signaling pathways closely related to HCC metastasis. Results- In both cell lines, a total of 247 phosphotyrosine (pTyr proteins containing 281 pTyr sites were identified without any stimulation. The involvement of almost 30% of these in liver or liver cancer has not been reported previously. Biological process clustering analysis indicated that pTyr proteins involved in cell motility, migration, protein autophosphorylation, cell-cell communication, and antiapoptosis functions were overexpressed during metastasis. Pathway clustering analysis revealed that signaling pathways such as those involved in EGFR signaling, cytokine- and chemokine-mediated signal transduction, and the PI3K and JAK-STAT cascades were significantly activated during HCC metastasis. Moreover, noncanonical regulation of the JNK cascade might also provide new targets for HCC metastasis. After comparing the pTyr proteins that were differentially expressed during HCC cell metastasis, we selected FER, a nonreceptor tyrosine kinase, and validated its role in terms of both expression and function. The data confirmed that FER might play a critical role in the invasion and metastasis of HCC. Conclusion- The

  2. Role of focal adhesion tyrosine kinases in GPVI-dependent platelet activation and reactive oxygen species formation.

    Directory of Open Access Journals (Sweden)

    Naadiya Carrim

    Full Text Available We have previously shown the presence of a TRAF4/p47phox/Hic5/Pyk2 complex associated with the platelet collagen receptor, GPVI, consistent with a potential role of this complex in GPVI-dependent ROS formation. In other cell systems, NOX-dependent ROS formation is facilitated by Pyk2, which along with its closely related homologue FAK are known to be activated and phosphorylated downstream of ligand binding to GPVI.To evaluate the relative roles of Pyk2 and FAK in GPVI-dependent ROS formation and to determine their location within the GPVI signaling pathway.Human and mouse washed platelets (from WT or Pyk2 KO mice were pre-treated with pharmacological inhibitors targeting FAK or Pyk2 (PF-228 and Tyrphostin A9, respectively and stimulated with the GPVI-specific agonist, CRP. FAK, but not Pyk2, was found to be essential for GPVI-dependent ROS production and aggregation. Subsequent human platelet studies with PF-228 confirmed FAK is essential for GPVI-mediated phosphatidylserine exposure, α-granule secretion (P-selectin (CD62P surface expression and integrin αIIbβ3 activation. To determine the precise location of FAK within the GPVI pathway, we analyzed the effect of PF-228 inhibition in CRP-stimulated platelets in conjunction with immunoprecipitation and pulldown analysis to show that FAK is downstream of Lyn, Spleen tyrosine kinase (Syk, PI3-K and Bruton's tyrosine kinase (Btk and upstream of Rac1, PLCγ2, Ca2+ release, PKC, Hic-5, NOX1 and αIIbβ3 activation.Overall, these data suggest a novel role for FAK in GPVI-dependent ROS formation and platelet activation and elucidate a proximal signaling role for FAK within the GPVI pathway.

  3. ABL tyrosine kinase inhibition variable effects on the invasive properties of different triple negative breast cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Clément Chevalier

    Full Text Available The non-receptor tyrosine kinase ABL drives myeloid progenitor expansion in human chronic myeloid leukemia. ABL inhibition by the tyrosine kinase inhibitor nilotinib is a first-line treatment for this disease. Recently, ABL has also been implicated in the transforming properties of solid tumors, including triple negative (TN breast cancer. TN breast cancers are highly metastatic and several cell lines derived from these tumors display high invasive activity in vitro. This feature is associated with the activation of actin-rich membrane structures called invadopodia that promote extracellular matrix degradation. Here, we investigated nilotinib effect on the invasive and migratory properties of different TN breast cancer cell lines. Nilotinib decreased both matrix degradation and invasion in the TN breast cancer cell lines MDA-MB 231 and MDA-MB 468. However, and unexpectedly, nilotinib increased by two-fold the invasive properties of the TN breast cancer cell line BT-549 and of Src-transformed fibroblasts. Both display much higher levels of ABL kinase activity compared to MDA-MB 231. Similar effects were obtained by siRNA-mediated down-regulation of ABL expression, confirming ABL central role in this process. ABL anti-tumor effect in BT-549 cells and Src-transformed fibroblasts was not dependent on EGF secretion, as recently reported in neck and squamous carcinoma cells. Rather, we identified the TRIO-RAC1 axis as an important downstream element of ABL activity in these cancer cells. In conclusion, the observation that TN breast cancer cell lines respond differently to ABL inhibitors could have implications for future therapies.

  4. The full oncogenic activity of Ret/ptc2 depends on tyrosine 539, a docking site for phospholipase Cgamma.

    Science.gov (United States)

    Borrello, M G; Alberti, L; Arighi, E; Bongarzone, I; Battistini, C; Bardelli, A; Pasini, B; Piutti, C; Rizzetti, M G; Mondellini, P; Radice, M T; Pierotti, M A

    1996-01-01

    RET/PTC oncogenes, generated by chromosomal rearrangements in papillary thyroid carcinomas, are constitutively activated versions of proto-RET, a gene coding for a receptor-type tyrosine kinase (TK) whose ligand is still unknown. RET/PTCs encode fusion proteins in which proto-RET TK and C-terminal domains are fused to different donor genes. The respective Ret/ptc oncoproteins display constitutive TK activity and tyrosine phosphorylation. We found that Ret/ptcs associate with and phosphorylate the SH2-containing transducer phospholipase Cgamma (PLCgamma). Two putative PLCgamma docking sites, Tyr-505 and Tyr-539, have been identified on Ret/ptc2 by competition experiments using phosphorylated peptides modelled on Ret sequence. Transfection experiments and biochemical analysis using Tyr-->Phe mutants of Ret/ptc2 allowed us to rule out Tyr-505 and to identify Tyr-539 as a functional PLCgamma docking site in vivo. Moreover, kinetic measurements showed that Tyr-539 is able to mediate high-affinity interaction with PLCgamma. Mutation of Tyr-539 resulted in a drastically reduced oncogenic activity of Ret/ptc2 on NIH 3T3 cells (75 to 90% reduction) both in vitro and in vivo, which correlates with impaired ability of Ret/ptc2 to activate PLCgamma. In conclusion, this paper demonstrates that Tyr-539 of Ret/ptc2 (Tyr-761 on the proto-RET product) is an essential docking site for the full transforming potential of the oncogene. In addition, the present data identify PLCgamma as a downstream effector of Ret/ptcs and suggest that this transducing molecule could play a crucial role in neoplastic signalling triggered by Ret/ptc oncoproteins. PMID:8628282

  5. A Dual Role for the Nonreceptor Tyrosine Kinase Pyk2 during the Intracellular Trafficking of Human Papillomavirus 16.

    Science.gov (United States)

    Gottschalk, Elinor Y; Meneses, Patricio I

    2015-09-01

    The infectious process of human papillomaviruses (HPVs) has been studied considerably, and many cellular components required for viral entry and trafficking continue to be revealed. In this study, we investigated the role of the nonreceptor tyrosine kinase Pyk2 during HPV16 pseudovirion infection of human keratinocytes. We found that Pyk2 is necessary for infection and appears to be involved in the intracellular trafficking of the virus. Small interfering RNA-mediated reduction of Pyk2 resulted in a significant decrease in infection but did not prevent viral entry at the plasma membrane. Pyk2 depletion resulted in altered endolysosomal trafficking of HPV16 and accelerated unfolding of the viral capsid. Furthermore, we observed retention of the HPV16 pseudogenome in the trans-Golgi network (TGN) in Pyk2-depleted cells, suggesting that the kinase could be required for the viral DNA to exit the TGN. While Pyk2 has previously been shown to function during the entry of enveloped viruses at the plasma membrane, the kinase has not yet been implicated in the intracellular trafficking of a nonenveloped virus such as HPV. Additionally, these data enrich the current literature on Pyk2's function in human keratinocytes. In this study, we investigated the role of the nonreceptor tyrosine kinase Pyk2 during human papillomavirus (HPV) infection of human skin cells. Infections with high-risk types of HPV such as HPV16 are the leading cause of cervical cancer and a major cause of genital and oropharyngeal cancer. As a nonenveloped virus, HPV enters cells by interacting with cellular receptors and established cellular trafficking routes to ensure that the viral DNA reaches the nucleus for productive infection. This study identified Pyk2 as a cellular component required for the intracellular trafficking of HPV16 during infection. Understanding the infectious pathways of HPVs is critical for developing additional preventive therapies. Furthermore, this study advances our knowledge of

  6. An in silico high-throughput screen identifies potential selective inhibitors for the non-receptor tyrosine kinase Pyk2

    Directory of Open Access Journals (Sweden)

    Meirson T

    2017-05-01

    Full Text Available Tomer Meirson, Abraham O Samson, Hava Gil-Henn Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel Abstract: The non-receptor tyrosine kinase proline-rich tyrosine kinase 2 (Pyk2 is a critical mediator of signaling from cell surface growth factor and adhesion receptors to cell migration, proliferation, and survival. Emerging evidence indicates that signaling by Pyk2 regulates hematopoietic cell response, bone density, neuronal degeneration, angiogenesis, and cancer. These physiological and pathological roles of Pyk2 warrant it as a valuable therapeutic target for invasive cancers, osteoporosis, Alzheimer’s disease, and inflammatory cellular response. Despite its potential as a therapeutic target, no potent and selective inhibitor of Pyk2 is available at present. As a first step toward discovering specific potential inhibitors of Pyk2, we used an in silico high-throughput screening approach. A virtual library of six million lead-like compounds was docked against four different high-resolution Pyk2 kinase domain crystal structures and further selected for predicted potency and ligand efficiency. Ligand selectivity for Pyk2 over focal adhesion kinase (FAK was evaluated by comparative docking of ligands and measurement of binding free energy so as to obtain 40 potential candidates. Finally, the structural flexibility of a subset of the docking complexes was evaluated by molecular dynamics simulation, followed by intermolecular interaction analysis. These compounds may be considered as promising leads for further development of highly selective Pyk2 inhibitors. Keywords: virtual screen, efficiency metrics, MM-GBSA, molecular dynamics

  7. Dual functions of Bruton's tyrosine kinase and Tec kinase during Fcgamma receptor-induced signaling and phagocytosis.

    Science.gov (United States)

    Jongstra-Bilen, Jenny; Puig Cano, Adrianet; Hasija, Manvi; Xiao, Haiyan; Smith, C I Edvard; Cybulsky, Myron I

    2008-07-01

    Tec family nonreceptor tyrosine kinases are expressed by hematopoietic cells, activate phospholipase C (PLC)gamma, and regulate cytoskeletal rearrangement, yet their role in FcgammaR-induced signaling and phagocytosis remains unknown. We demonstrate in this study that Bruton's tyrosine kinase (Btk) and Tec, the only Tec kinases expressed by RAW 264.7 cells, are activated throughout phagocytosis. Activated Btk and Tec kinase accumulate at an early stage at the base of phagocytic cups and inhibition of their activity by the specific inhibitor LFM-A13 or expression by small interfering RNA significantly inhibited FcgammaR-induced phagocytosis. Similarly, a significant role for these kinases in phagocytosis was found in primary macrophages. FcgammaR-induced activation of Mac-1, which is required for optimal phagocytosis, was markedly inhibited and our findings suggest that the roles of kinases Btk and Tec in Mac-1 activation account for their functions in the early stages of phagocytosis. Initial activation of PLCgamma2, the predominant PLC isoform in RAW 264.7 cells, is dependent on Syk. In contrast, a late and prolonged activation of PLCgamma2 was dependent on Btk and Tec. We found accumulation of diacylglycerol (DAG), a PLCgamma product, in phagosome membranes, and activated Btk, but not Tec, colocalized with phagosomal DAG. Inhibition of Tec family kinase activity increased the level of DAG in phagosomes, suggesting a negative regulatory role for Btk. Tec, in contrast, clustered at sites near phagosome formation. In summary, we elucidated that Tec family kinases participate in at least two stages of FcgammaR-mediated phagocytosis: activation of Mac-1 during ingestion, and after phagosome formation, during which Btk and Tec potentially have distinct roles.

  8. MUC1 (CD227) interacts with lck tyrosine kinase in Jurkat lymphoma cells and normal T cells.

    Science.gov (United States)

    Mukherjee, P; Tinder, T L; Basu, G D; Gendler, S J

    2005-01-01

    MUC1 (CD227) is a large transmembrane epithelial mucin glycoprotein, which is aberrantly overexpressed in most adenocarcinomas and is a target for immune therapy for epithelial tumors. Recently, MUC1 has been detected in a variety of hematopoietic cell malignancies including T and B cell lymphomas and myelomas; however, its function in these cells is not clearly defined. Using the Jurkat T cell lymphoma cell line and normal human T cells, we demonstrate that MUC1 is not only expressed in these cells but is also phosphorylated upon T cell receptor (TCR) ligation and associates with the Src-related T cell tyrosine kinase, p56lck. Upon TCR-mediated activation of Jurkat cells, MUC1 is found in the low-density membrane fractions, where linker of T cell activation is contained. Abrogation of MUC1 expression in Jurkat cells by MUC1-specific small interfering RNA resulted in defects in TCR-mediated downstream signaling events associated with T cell activation. These include reduction in Ca2+ influx and extracellular signal-regulated kinase 1/2 phosphorylation, leading to a decrease in CD69 expression, proliferation, and interleukin-2 production. These results suggest a regulatory role of MUC1 in modulating proximal signal transduction events through its interaction with proteins of the activation complex.

  9. Complex Mediation

    DEFF Research Database (Denmark)

    Bødker, Susanne; Andersen, Peter Bøgh

    2005-01-01

    This article has its starting point in a large number of empirical findings regarding computer-mediated work. These empirical findings have challenged our understanding of the role of mediation in such work; on the one hand as an aspect of communication and cooperation at work and on the other hand...... as an aspect of human engagement with instruments of work. On the basis of previous work in activity-theoretical and semiotic human—computer interaction, we propose a model to encompass both of these aspects. In a dialogue with our empirical findings we move on to propose a number of types of mediation...

  10. l-Tyrosine Contained in Dietary Supplement by Chemiluminescence Reaction of an Iron-Phthalocyanine Complex

    Directory of Open Access Journals (Sweden)

    Takao Ohtomo

    2012-01-01

    Full Text Available The chemiluminescence (CL signal immediately appeared when a hydrogen peroxide solution was injected into an iron-phthalocyanine tetrasulfonic acid (Fe-PTS aqueous solution. Moreover, the CL intensity of Fe-PTS decreased by adding L-tyrosine. Based on these results, the determination of trace amounts of L-tyrosine was developed using the quenching-chemiluminescence. The calibration curve of L-tyrosine was obtained in the concentration range of 2.0×10−7 M to 2.0×10−5 M. Moreover, the relative standard deviation (RSD was 1.63 % (=5 for 2.0×10−6 M L-tyrosine, and its detection limits (3σ were 1.81×10−7 M. The spike and recovery experiments for L-tyrosine were performed using a soft drink. Furthermore, the determination of L-tyrosine was applied to supplements containing various kinds of amino acids. Each satisfactory relative recovery was obtained at 98 to 102%.

  11. Validation of o-tyrosine as a marker for detection and dosimetry of irradiated chicken meat

    International Nuclear Information System (INIS)

    Chuaqui-Offermanns, N.; McDougall, T.E.; Guerrero, A.M.

    1993-01-01

    The o-tyrosine has been proposed as a marker for postirradiation identification of food that contains protein. In this study, the validity of using o-tyrosine for this purpose has been tested and established. The validation process involved examination of background levels of o-tyrosine in unirradiated chicken, radiation dose yield, postirradiation storage, dose rate, radiation type, temperature during irradiation, and oxygen concentration during irradiation. The o-tyrosine is present in unirradiated chicken meat at variable levels. However, these background levels are low enough that o-tyrosine can serve to determine whether chicken has been irradiated or not at the commercially approved doses (3 kGy). The radiation dose response curve for the formation of o-tyrosine is linear. The apparent yields may vary with the analytical method used; however, it is independent of the dose rate, radiation type, atmosphere, and temperature (above freezing) during irradiation. It is also independent of the storage time and temperature after irradiation. It is concluded that this marker can be used to determine the absorbed dose in chicken meat irradiated with either gamma rays or electrons under normal or modified atmosphere

  12. Oxidation of protein tyrosine or methionine residues: From the amino acid to the peptide

    Energy Technology Data Exchange (ETDEWEB)

    Berges, J [Universite Pierre et Marie Curie, UMR 7616, Laboratoire de Chimie Theorique, 75005 Paris (France); Trouillas, P [EA 4021 Faculte de Pharmacie, 2 Rue du Dr. Marcland, 87025 Limoges Cedex (France); Houee-Levin, C, E-mail: jb@lct.jussieu.fr, E-mail: patrick.trouillas@unilim.fr, E-mail: chantal.houee@u-psud.fr [Universite Paris Sud, UMR 8000, Laboratoire de Chimie Physique, 91405 Orsay (France) (France)

    2011-01-01

    Methionine and tyrosine are competing targets of oxidizing free radicals in peptides or proteins. The first step is the addition of OH radicals either on the sulphur atom of methionine, followed by OH{sup -} elimination, or on the aromatic cycle of tyrosine. The next step can be stabilization of methionine radical cation by a two centre-three electron bond, or intramolecular electron transfer from tyrosine to the methionine radical cation. In this latter case a tyrosine radical is formed, which appears deprotonated. In a first step we have compared the stability of the OH radical adducts on Methionine or on Tyrosine. In agreement with experimental results, the thermodynamical data indicate that the OH adduct on Tyrosine and the radical cation are more stable than those on methionine. In a second step we have investigated the stabilization of the radical cations of Methionine by formation of intramolecular S:X two-center three-electron bond (X=S, N, O). Finally we have compared the spin densities on separated amino acids to that in a radical pentapeptide, methionine enkephalin. One observes a delocalisation of the orbital of the odd electron on the sulfur atom of Met and on the cycle of Tyr. The peptidic chain is also concerned.

  13. Verbascoside promotes the regeneration of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra

    Directory of Open Access Journals (Sweden)

    Jian-qing Liang

    2016-01-01

    Full Text Available Tyrosine hydroxylase is a key enzyme in dopamine biosynthesis. Change in tyrosine hydroxylase expression in the nigrostriatal system is closely related to the occurrence and development of Parkinson′s disease. Verbascoside, an extract from Radix Rehmanniae Praeparata has been shown to be clinically effective in treating Parkinson′s disease. However, the underlying mechanisms remain unclear. It is hypothesized that the effects of verbascoside on Parkinson′s disease are related to tyrosine hydroxylase expression change in the nigrostriatal system. Rat models of Parkinson′s disease were established and verbascoside (60 mg/kg was administered intraperitoneally once a day. After 6 weeks of verbascoside treatment, rat rotational behavior was alleviated; tyrosine hydroxylase mRNA and protein expression and the number of tyrosine hydroxylase-immunoreactive neurons in the rat right substantia nigra were significantly higher than the Parkinson′s model group. These findings suggest that the mechanism by which verbascoside treats Parkinson′s disease is related to the regeneration of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra.

  14. Tyrosine dephosphorylation regulates AMPAR internalisation in mGluR-LTD.

    Science.gov (United States)

    Gladding, Clare M; Collett, Valerie J; Jia, Zhengping; Bashir, Zafar I; Collingridge, Graham L; Molnár, Elek

    2009-02-01

    Long-term depression (LTD) can be induced at hippocampal CA1 synapses by activation of either NMDA receptors (NMDARs) or group I metabotropic glutamate receptors (mGluRs), using their selective agonists NMDA and (RS)-3,5-dihydroxyphenylglycine (DHPG), respectively. Recent studies revealed that DHPG-LTD is dependent on activation of postsynaptic protein tyrosine phosphatases (PTPs), which transiently dephosphorylate tyrosine residues in AMPA receptors (AMPARs). Here we show that while both endogenous GluR2 and GluR3 AMPAR subunits are tyrosine phosphorylated at basal activity, only GluR2 is dephosphorylated in DHPG-LTD. The tyrosine dephosphorylation of GluR2 does not occur in NMDA-LTD. Conversely, while NMDA-LTD is associated with the dephosphorylation of GluR1-serine-845, DHPG-LTD does not alter the phosphorylation of this site. The increased AMPAR endocytosis in DHPG-LTD is PTP-dependent and involves tyrosine dephosphorylation of cell surface AMPARs. Together, these results indicate that the subunit selective tyrosine dephosphorylation of surface GluR2 regulates AMPAR internalisation in DHPG-LTD but not in NMDA-LTD in the hippocampus.

  15. Structural basis for the regulation mechanism of the tyrosine kinase CapB from Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Vanesa Olivares-Illana

    2008-06-01

    Full Text Available Bacteria were thought to be devoid of tyrosine-phosphorylating enzymes. However, several tyrosine kinases without similarity to their eukaryotic counterparts have recently been identified in bacteria. They are involved in many physiological processes, but their accurate functions remain poorly understood due to slow progress in their structural characterization. They have been best characterized as copolymerases involved in the synthesis and export of extracellular polysaccharides. These compounds play critical roles in the virulence of pathogenic bacteria, and bacterial tyrosine kinases can thus be considered as potential therapeutic targets. Here, we present the crystal structures of the phosphorylated and unphosphorylated states of the tyrosine kinase CapB from the human pathogen Staphylococcus aureus together with the activator domain of its cognate transmembrane modulator CapA. This first high-resolution structure of a bacterial tyrosine kinase reveals a 230-kDa ring-shaped octamer that dissociates upon intermolecular autophosphorylation. These observations provide a molecular basis for the regulation mechanism of the bacterial tyrosine kinases and give insights into their copolymerase function.

  16. Mer Tyrosine Kinase Regulates Disseminated Prostate Cancer Cellular Dormancy.

    Science.gov (United States)

    Cackowski, Frank C; Eber, Matthew R; Rhee, James; Decker, Ann M; Yumoto, Kenji; Berry, Janice E; Lee, Eunsohl; Shiozawa, Yusuke; Jung, Younghun; Aguirre-Ghiso, Julio A; Taichman, Russell S

    2017-04-01

    Many prostate cancer (PCa) recurrences are thought to be due to reactivation of disseminated tumor cells (DTCs). We previously found a role of the TAM family of receptor tyrosine kinases TYRO3, AXL, and MERTK in PCa dormancy regulation. However, the mechanism and contributions of the individual TAM receptors is largely unknown. Knockdown of MERTK, but not AXL or TYRO3 by shRNA in PCa cells induced a decreased ratio of P-Erk1/2 to P-p38, increased expression of p27, NR2F1, SOX2, and NANOG, induced higher levels of histone H3K9me3 and H3K27me3, and induced a G1/G0 arrest, all of which are associated with dormancy. Similar effects were also observed with siRNA. Most importantly, knockdown of MERTK in PCa cells increased metastasis free survival in an intra-cardiac injection mouse xenograft model. MERTK knockdown also failed to inhibit PCa growth in vitro and subcutaneous growth in vivo, which suggests that MERTK has specificity for dormancy regulation or requires a signal from the PCa microenvironment. The effects of MERTK on the cell cycle and histone methylation were reversed by p38 inhibitor SB203580, which indicates the importance of MAP kinases for MERTK dormancy regulation. Overall, this study shows that MERTK stimulates PCa dormancy escape through a MAP kinase dependent mechanism, also involving p27, pluripotency transcription factors, and histone methylation. J. Cell. Biochem. 118: 891-902, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Tyrosine Hydroxylase Expression in Type II Cochlear Afferents in Mice.

    Science.gov (United States)

    Vyas, Pankhuri; Wu, Jingjing Sherry; Zimmerman, Amanda; Fuchs, Paul; Glowatzki, Elisabeth

    2017-02-01

    Acoustic information propagates from the ear to the brain via spiral ganglion neurons that innervate hair cells in the cochlea. These afferents include unmyelinated type II fibers that constitute 5 % of the total, the majority being myelinated type I neurons. Lack of specific genetic markers of type II afferents in the cochlea has been a roadblock in studying their functional role. Unexpectedly, type II afferents were visualized by reporter proteins induced by tyrosine hydroxylase (TH)-driven Cre recombinase. The present study was designed to determine whether TH-driven Cre recombinase (TH-2A-CreER) provides a selective and reliable tool for identification and genetic manipulation of type II rather than type I cochlear afferents. The "TH-2A-CreER neurons" radiated from the spiral lamina, crossed the tunnel of Corti, turned towards the base of the cochlea, and traveled beneath the rows of outer hair cells. Neither the processes nor the somata of TH-2A-CreER neurons were labeled by antibodies that specifically labeled type I afferents and medial efferents. TH-2A-CreER-positive processes partially co-labeled with antibodies to peripherin, a known marker of type II afferents. Individual TH-2A-CreER neurons gave off short branches contacting 7-25 outer hair cells (OHCs). Only a fraction of TH-2A-CreER boutons were associated with CtBP2-immunopositive ribbons. These results show that TH-2A-CreER provides a selective marker for type II versus type I afferents and can be used to describe the morphology and arborization pattern of type II cochlear afferents in the mouse cochlea.

  18. Tyrosine aminotransferase contributes to benzylisoquinoline alkaloid biosynthesis in opium poppy.

    Science.gov (United States)

    Lee, Eun-Jeong; Facchini, Peter J

    2011-11-01

    Tyrosine aminotransferase (TyrAT) catalyzes the transamination of L-Tyr and α-ketoglutarate, yielding 4-hydroxyphenylpyruvic acid and L-glutamate. The decarboxylation product of 4-hydroxyphenylpyruvic acid, 4-hydroxyphenylacetaldehyde, is a precursor to a large and diverse group of natural products known collectively as benzylisoquinoline alkaloids (BIAs). We have isolated and characterized a TyrAT cDNA from opium poppy (Papaver somniferum), which remains the only commercial source for several pharmaceutical BIAs, including codeine, morphine, and noscapine. TyrAT belongs to group I pyridoxal 5'-phosphate (PLP)-dependent enzymes wherein Schiff base formation occurs between PLP and a specific Lys residue. The amino acid sequence of TyrAT showed considerable homology to other putative plant TyrATs, although few of these have been functionally characterized. Purified, recombinant TyrAT displayed a molecular mass of approximately 46 kD and a substrate preference for L-Tyr and α-ketoglutarate, with apparent K(m) values of 1.82 and 0.35 mm, respectively. No specific requirement for PLP was detected in vitro. Liquid chromatography-tandem mass spectrometry confirmed the conversion of L-Tyr to 4-hydroxyphenylpyruvate. TyrAT gene transcripts were most abundant in roots and stems of mature opium poppy plants. Virus-induced gene silencing was used to evaluate the contribution of TyrAT to BIA metabolism in opium poppy. TyrAT transcript levels were reduced by at least 80% in silenced plants compared with controls and showed a moderate reduction in total alkaloid content. The modest correlation between transcript levels and BIA accumulation in opium poppy supports a role for TyrAT in the generation of alkaloid precursors, but it also suggests the occurrence of other sources for 4-hydroxyphenylacetaldehyde.

  19. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase.

    Science.gov (United States)

    Cieńska, Małgorzata; Labus, Karolina; Lewańczuk, Marcin; Koźlecki, Tomasz; Liesiene, Jolanta; Bryjak, Jolanta

    2016-01-01

    Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA) by immobilized tyrosinase in the presence of ascorbic acid (AH2), which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native) to 30% (immobilized enzyme). To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme) and 70% (immobilized). A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity.

  20. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase.

    Directory of Open Access Journals (Sweden)

    Małgorzata Cieńska

    Full Text Available Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA by immobilized tyrosinase in the presence of ascorbic acid (AH2, which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native to 30% (immobilized enzyme. To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme and 70% (immobilized. A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity.

  1. State-by-state investigation of destructive interference in resonance Raman spectra of neutral tyrosine and the tyrosinate anion with the simplified sum-over-states approach.

    Science.gov (United States)

    Cabalo, Jerry B; Saikin, Semion K; Emmons, Erik D; Rappoport, Dmitrij; Aspuru-Guzik, Alán

    2014-10-16

    UV resonance Raman scattering is uniquely sensitive to the molecular electronic structure as well as intermolecular interactions. To better understand the relationship between electronic structure and resonance Raman cross section, we carried out combined experimental and theoretical studies of neutral tyrosine and the tyrosinate anion. We studied the Raman cross sections of four vibrational modes as a function of excitation wavelength, and we analyzed them in terms of the contributions of the individual electronic states as well as of the Albrecht A and B terms. Our model, which is based on time-dependent density functional theory (TDDFT), reproduced the experimental resonance Raman spectra and Raman excitation profiles for both studied molecules with good agreement. We found that for the studied modes, the contributions of Albrecht's B terms in the Raman cross sections were important across the frequency range spanning the L(a,b) and B(a,b) electronic excitations in tyrosine and the tyrosinate anion. Furthermore, we demonstrated that interference with high-energy states had a significant impact and could not be neglected even when in resonance with a lower-energy state. The symmetry of the vibrational modes served as an indicator of the dominance of the A or B mechanisms. Excitation profiles calculated with a damping constant estimated from line widths of the electronic absorption bands had the best consistency with experimental results.

  2. Human glioblastoma ADF cells express tyrosinase, L-tyrosine hydroxylase and melanosomes and are sensitive to L-tyrosine and phenylthiourea.

    Science.gov (United States)

    Bonfigli, Antonella; Zarivi, Osvaldo; Colafarina, Sabrina; Cimini, Anna Maria; Ragnelli, Anna Maria; Aimola, Pierpaolo; Natali, Pier Giorgio; Cerù, Maria Paola; Amicarelli, Fernanda; Miranda, Michele

    2006-06-01

    Melanocytes and neuroblasts share the property of transforming L-tyrosine through two distinct metabolic pathways leading to melanogenesis and catecholamine synthesis, respectively. While tyrosinase (TYR) activity has been shown to be expressed by neuroblastoma it remains to be established as to whether also glioblastomas cells are endowed with this property. We have addressed this issue using the human continuous glioblastoma cell line ADF. We demonstrated that these cells possess tyrosinase as well as L-tyrosine hydroxylase (TH) activity and synthesize melanosomes. Because the two pathways are potentially cyto-genotoxic due to production of quinones, semiquinones, and reactive oxygen species (ROS), we have also investigated the expression of the peroxisomal proliferators activated receptor alpha (PPARalpha) and nuclear factor-kB (NFkB) transcription factor as well the effect of L-tyrosine concentration on cell survival. We report that L-tyrosine down-regulates PPARalpha expression in ADF cells but not neuroblastoma and that this aminoacid and phenylthiourea (PTU) induces apoptosis in glioblastoma and neuroblastoma. Copyright 2006 Wiley-Liss, Inc.

  3. Effects of LX4211, a dual sodium-dependent glucose cotransporters 1 and 2 inhibitor, on postprandial glucose, insulin, glucagon-like peptide 1, and peptide tyrosine tyrosine in a dose-timing study in healthy subjects.

    Science.gov (United States)

    Zambrowicz, Brian; Ogbaa, Ike; Frazier, Kenny; Banks, Phillip; Turnage, Anne; Freiman, Joel; Boehm, Kristi A; Ruff, Dennis; Powell, David; Sands, Arthur

    2013-08-01

    LX4211 is a first-in-class dual inhibitor of sodium-dependent glucose cotransporters 1 and 2 (SGLT1 and SGLT2). SGLT1 is the primary transporter for glucose absorption from the gastrointestinal tract, and SGLT2 is the primary transporter for glucose reabsorption in the kidney. SGLT1 inhibition reduces postprandial glucose (PPG) levels and increases the release of gastrointestinal peptides such as glucagon-like peptide 1 (GLP-1) and peptide tyrosine tyrosine (PYY), whereas SGLT2 inhibition results in increased urinary glucose excretion (UGE). This study evaluated how timing of dose relative to meals changes the pharmacodynamic (PD) effects of LX4211 treatment, including effects on UGE, fasting plasma glucose, PPG, insulin, total and active GLP-1, and PYY. The safety and tolerability of LX4211 in healthy subjects were also assessed. This was a randomized, double-blind, placebo-controlled, multiple-dose study to determine the PD effects of LX4211 dose timing relative to meals in 12 healthy subjects. Blood and urine were collected for the analysis of PD variables. Twelve healthy subjects 30 to 51 years of age were enrolled and treated. Treatment with LX4211 resulted in significant elevation of total and active GLP-1, and PYY while significantly decreasing PPG levels relative to placebo, likely by reducing SGLT1-mediated intestinal glucose absorption. Comparisons performed among the dosing schedules indicated that dosing immediately before breakfast maximized the PD effects of LX4211 on both SGLT1 and SGLT2 inhibition. The comparative results suggested distinct SGLT1 effects on GLP-1, PYY, glucose, and insulin, which were separate from SGLT2-mediated effects, indicating that SGLT1 inhibition with LX4211 may be clinically meaningful. All treatments were well tolerated with no evidence of diarrhea with LX4211 treatment. This clinical study indicates that dosing of LX4211 immediately before breakfast maximized the PD effects of both SGLT1 and SGLT 2 inhibition and provided

  4. Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia.

    Science.gov (United States)

    Boer, Judith M; Steeghs, Elisabeth M P; Marchante, João R M; Boeree, Aurélie; Beaudoin, James J; Beverloo, H Berna; Kuiper, Roland P; Escherich, Gabriele; van der Velden, Vincent H J; van der Schoot, C Ellen; de Groot-Kruseman, Hester A; Pieters, Rob; den Boer, Monique L

    2017-01-17

    Approximately 15% of pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL) is characterized by gene expression similar to that of BCR-ABL1-positive disease and unfavorable prognosis. This BCR-ABL1-like subtype shows a high frequency of B-cell development gene aberrations and tyrosine kinase-activating lesions. To evaluate the clinical significance of tyrosine kinase gene fusions in children with BCP-ALL, we studied the frequency of recently identified tyrosine kinase fusions, associated genetic features, and prognosis in a representative Dutch/German cohort. We identified 14 tyrosine kinase fusions among 77 BCR-ABL1-like cases (18%) and none among 76 non-BCR-ABL1-like B-other cases. Novel exon fusions were identified for RCSD1-ABL2 and TERF2-JAK2. JAK2 mutation was mutually exclusive with tyrosine kinase fusions and only occurred in cases with high CRLF2 expression. The non/late response rate and levels of minimal residual disease in the fusion-positive BCR-ABL1-like group were higher than in the non-BCR-ABL1-like B-others (pfusion-negative BCR-ABL1-like group. The 8-year cumulative incidence of relapse in the fusion-positive BCR-ABL1-like group (35%) was comparable with that in the fusion-negative BCR-ABL1-like group (35%), and worse than in the non-BCR-ABL1-like B-other group (17%, p=0.07). IKZF1 deletions, predominantly other than the dominant-negative isoform and full deletion, co-occurred with tyrosine kinase fusions. This study shows that tyrosine kinase fusion-positive cases are a high-risk subtype of BCP-ALL, which warrants further studies with specific kinase inhibitors to improve outcome.

  5. Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-Garcia, Estefania; Saceda, Miguel [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Grasso, Silvina; Rocamora-Reverte, Lourdes; Conde, Mariano; Gomez-Martinez, Angeles [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Garcia-Morales, Pilar [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Ferragut, Jose A. [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Martinez-Lacaci, Isabel, E-mail: imlacaci@umh.es [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad AECC de Investigacion Traslacional en Cancer, Hospital Universitario Virgen de la Arrixaca, 30120 Murcia (Spain)

    2011-06-10

    Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G{sub 1} arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G{sub 1} arrest. This G{sub 1} arrest was associated with up-regulation of p27{sup kip1}, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G{sub 1} arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 {Delta}EGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.

  6. Platelet-activating factor stimulation of tyrosine kinase and its relationship to phospholipase C in rabbit platelets: Studies with genistein and monoclonal antibody to phosphotyrosine

    International Nuclear Information System (INIS)

    Dhar, A.; Paul, A.K.; Shukla, S.D.

    1990-01-01

    Platelet-activating factor (PAF) is a proinflammatory lipid that has platelet-stimulating property. PAF receptor-coupled activation of phosphoinositide-specific phospholipase C (PLC) and phosphorylation of several proteins has already been established in our laboratory. To investigate further the molecular mechanism and relationship between activation of PLC and protein phosphorylation, we have used Genistein (a putative inhibitor of tyrosine-specific protein kinases), phosphotyrosine antibody, and phosphoamino acid analysis to probe the involvement of tyrosine kinase in this process. Washed rabbit platelets were loaded with myo-[2-3H]inositol and challenged with PAF (100 nM) after pretreatment with Genistein. PLC-mediated production of radioactive inositol monophosphate, inositol diphosphate, and inositol triphosphate was monitored. PAF alone caused stimulation of PLC activity [( 3H]inositol triphosphate production), whereas pretreatment with Genistein (0.5 mM) diminished PAF-stimulated PLC activity to basal level. Genistein also blocked PAF-stimulated platelet aggregation at this dose. In contrast to Genistein, staurosporine which inhibits protein kinase C, potentiated PAF-stimulated [3H]inositol triphosphate production. Genistein substantially inhibited the combined effects of staurosporine and PAF on inositol triphosphate production. Genistein also reduced PAF-induced phosphorylation of Mr 20,000 and 50,000 proteins. Phorbol 12-myristate 13-acetate-induced Mr 40,000 protein phosphorylation was also affected by Genistein. The above results suggested that Genistein inhibited tyrosine kinase at an early stage of signal transduction by inhibiting PLC. This, in turn, decreased the activation of protein kinase C and, therefore, caused a reduction in Mr 40,000 protein phosphorylation

  7. Mediatized play

    DEFF Research Database (Denmark)

    Johansen, Stine Liv

    Children’s play must nowadays be understood as a mediatized field in society and culture. Media – understood in a very broad sense - holds severe explanatory power in describing and understanding the practice of play, since play happens both with, through and inspired by media of different sorts....... In this presentation the case of ‘playing soccer’ will be outlined through its different mediated manifestations, including soccer games and programs on TV, computer games, magazines, books, YouTube videos and soccer trading cards....

  8. Mediating Business

    DEFF Research Database (Denmark)

    "Mediating Business" is a study of the expansion of business journalism. Building on evidence from Denmark, Finland, Norway and Sweden, "Mediating Business" is a comparative and multidisciplinary study of one of the major transformations of the mass media and the realm of business - nationally...... and globally. The book explores the history of key innovations and innovators in the business press. It analyzes changes in the discourse of business journalism associated with the growth in business news and the development of new ways of framing business issues and events. Finally, it examines...... the organizational implications of the increased media visibility of business and, in particular, the development of corporate governance and media relations....

  9. Protein tyrosine nitration in plants: Present knowledge, computational prediction and future perspectives.

    Science.gov (United States)

    Kolbert, Zsuzsanna; Feigl, Gábor; Bordé, Ádám; Molnár, Árpád; Erdei, László

    2017-04-01

    Nitric oxide (NO) and related molecules (reactive nitrogen species) regulate diverse physiological processes mainly through posttranslational modifications such as protein tyrosine nitration (PTN). PTN is a covalent and specific modification of tyrosine (Tyr) residues resulting in altered protein structure and function. In the last decade, great efforts have been made to reveal candidate proteins, target Tyr residues and functional consequences of nitration in plants. This review intends to evaluate the accumulated knowledge about the biochemical mechanism, the structural and functional consequences and the selectivity of plants' protein nitration and also about the decomposition or conversion of nitrated proteins. At the same time, this review emphasizes yet unanswered or uncertain questions such as the reversibility/irreversibility of tyrosine nitration, the involvement of proteasomes in the removal of nitrated proteins or the effect of nitration on Tyr phosphorylation. The different NO producing systems of algae and higher plants raise the possibility of diversely regulated protein nitration. Therefore studying PTN from an evolutionary point of view would enrich our present understanding with novel aspects. Plant proteomic research can be promoted by the application of computational prediction tools such as GPS-YNO 2 and iNitro-Tyr software. Using the reference Arabidopsis proteome, Authors performed in silico analysis of tyrosine nitration in order to characterize plant tyrosine nitroproteome. Nevertheless, based on the common results of the present prediction and previous experiments the most likely nitrated proteins were selected thus recommending candidates for detailed future research. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Src drives the Warburg effect and therapy resistance by inactivating pyruvate dehydrogenase through tyrosine-289 phosphorylation

    Science.gov (United States)

    Shenoy, Anitha K.; Lim, Sangbin; Zhang, Ying; Charles, Steve; Tarrash, Miriam; Fu, Xueqi; Kamarajugadda, Sushama; Trevino, Jose G.; Tan, Ming; Lu, Jianrong

    2016-01-01

    The Warburg effect, which reflects cancer cells' preference for aerobic glycolysis over glucose oxidation, contributes to tumor growth, progression and therapy resistance. The restraint on pyruvate flux into mitochondrial oxidative metabolism in cancer cells is in part attributed to the inhibition of pyruvate dehydrogenase (PDH) complex. Src is a prominent oncogenic non-receptor tyrosine kinase that promotes cancer cell proliferation, invasion, metastasis and resistance to conventional and targeted therapies. However, the potential role of Src in tumor metabolism remained unclear. Here we report that activation of Src attenuated PDH activity and generation of reactive oxygen species (ROS). Conversely, Src inhibitors activated PDH and increased cellular ROS levels. Src inactivated PDH through direct phosphorylation of tyrosine-289 of PDH E1α subunit (PDHA1). Indeed, Src was the main kinase responsible for PDHA1 tyrosine phosphorylation in cancer cells. Expression of a tyrosine-289 non-phosphorable PDHA1 mutant in Src-hyperactivated cancer cells restored PDH activity, increased mitochondrial respiration and oxidative stress, decreased experimental metastasis, and sensitized cancer cells to pro-oxidant treatment. The results suggest that Src contributes to the Warburg phenotype by inactivating PDH through tyrosine phosphorylation, and the metabolic effect of Src is essential for Src-driven malignancy and therapy resistance. Combination therapies consisting of both Src inhibitors and pro-oxidants may improve anticancer efficacy. PMID:26848621

  11. Elicitor-Induced l-Tyrosine Decarboxylase from Plant Cell Suspension Cultures : II. Partial Characterization.

    Science.gov (United States)

    Marques, I A; Brodelius, P E

    1988-09-01

    Properties of purified l-tyrosine decarboxylase (EC 4.1.1.25) from elicitor-induced cell suspension cultures of Eschscholtzia californica Cham. and Thalictrum rugosum Ait. are described. l-Tyrosine decarboxylase is a dimeric enzyme with a molecular weight of 112,600 +/- 600 daltons. The isoelectric point was estimated to be at pH 5.2 and pH 5.4 for the enzyme from E. californica and T. rugosum, respectively. The purified enzymes were stabilized in the presence of pyridoxal-5-phosphate. Optimum pH for the enzyme from both plants was found to be 8.4. Enzyme activity was dependent on exogeneously supplied pyridoxal-5-phosphate. The enzyme decarboxylated l-tyrosine and l-beta-3,4-dihydroxyphenylalanine but was inactive toward l-phenylalanine and l-tryptophan. Apparent K(m) values of Eschscholtzia- and Thalictrum-decarboxylase for l-tyrosine were 0.25 +/- 0.03 and 0.27 +/- 0.04 millimolar, respectively. Similar affinities were found for l-3,4-dihydroxyphenylalanine. Eschscholtzial-tyrosine decarboxylase was strongly inhibited by the phenylalanine analogue l-alpha-aminooxy-beta-phenylpropionate and largely unaffected by d,l-alpha-monofluoromethyl-3,4-dihydroxyphenylalanine and alpha-difluoromethyltyrosine.

  12. Development of amperometric L-tyrosine sensor based on Fe-doped hydroxyapatite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kanchana, P.; Lavanya, N.; Sekar, C., E-mail: Sekar2025@gmail.com

    2014-02-01

    A novel biosensor based on Fe-doped hydroxyapatite (Fe-HA) nanoparticles and tyrosinase has been developed for the detection of L-tyrosine. Nanostructured Fe-HA was synthesized by a simple microwave irradiation method, and its phase formation, morphology and magnetic property were examined by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). Electrochemical performance of the nano Fe-HA/tyrosinase modified glassy carbon electrode (GCE) for detection of L-tyrosine was investigated by cyclic voltammetry (CV) and amperometric methods. The fabricated biosensor exhibited a linear response to L-tyrosine over a wide concentration range of 1.0 × 10{sup −7} to 1.0 × 10{sup −5} M with a detection limit of 245 nM at pH 7.0. In addition, the fabricated sensor showed an excellent selectivity, good reproducibility, long-term stability and anti-interference towards the determination of L-tyrosine. - Highlights: • A novel amperometric L-tyrosine biosensor has been fabricated using nanostructured Fe-HA. • The fabricated sensor exhibits a wide linear range, good stability and high reproducibility. • Fe-HA assists microenvironment and direct electron transfer between enzyme and electrode surface. • The nano Fe-HA and electrode fabrication procedure are simple and less expensive.

  13. Identification and analysis of a novel protein-tyrosine kinase from bovine thymus

    International Nuclear Information System (INIS)

    Zioncheck, T.F.; Harrison, M.L.; Geahlen, R.L.

    1986-01-01

    A cytosolic protein-tyrosine kinase has been identified and purified to near homogeneity from calf thymus by using the phosphorylation of the tyrosine-containing peptide angiotensin I as an assay. Specific peptide phosphorylating activity was enhanced by carrying out the assay at high ionic strength (2M NaCl). The inclusion of NaCl at this concentration acts to stimulate endogenous protein-tyrosine kinase activity while simultaneously inhibiting other endogenous kinases. The purification procedure involved extraction of the enzyme from calf-thymus and sequential chromatography on columns of DEAE-cellulose, heparin-agarose, casein-sepharose, butylagarose, and Sephadex G-75. Analysis of the most highly purified preparations by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single Coomassie blue-stained band of 41 KDa. This molecular weight was consistent with results obtained from gel filtration, indicating that the enzyme exists as a monomer. The enzyme has also been found to catalyze an autophosphorylation reaction. Incubation of the enzyme with Mn 2+ and [γ- 32 P]ATP led to its modification on a tyrosine residue. Phosphopeptide mapping experiments indicated that the 41 KDa kinase was distinct from p56, the major membrane-associated protein-tyrosine kinase in T lymphocytes

  14. Tyrosine 402 Phosphorylation of Pyk2 Is Involved in Ionomycin-Induced Neurotransmitter Release

    Science.gov (United States)

    Zhang, Zhao; Zhang, Yun; Mou, Zheng; Chu, Shifeng; Chen, Xiaoyu; He, Wenbin; Guo, Xiaofeng; Yuan, Yuhe; Takahashi, Masami; Chen, Naihong

    2014-01-01

    Protein tyrosine kinases, which are highly expressed in the central nervous system, are implicated in many neural processes. However, the relationship between protein tyrosine kinases and neurotransmitter release remains unknown. In this study, we found that ionomycin, a Ca2+ ionophore, concurrently induced asynchronous neurotransmitter release and phosphorylation of a non-receptor protein tyrosine kinase, proline-rich tyrosine kinase 2 (Pyk2), in clonal rat pheochromocytoma PC12 cells and cerebellar granule cells, whereas introduction of Pyk2 siRNA dramatically suppressed ionomycin-induced neurotransmitter release. Further study indicated that Tyr-402 (Y402) in Pyk2, instead of other tyrosine sites, underwent rapid phosphorylation after ionomycin induction in 1 min to 2 min. We demonstrated that the mutant of Pyk2 Y402 could abolish ionomycin-induced dopamine (DA) release by transfecting cells with recombinant Pyk2 and its mutants (Y402F, Y579F, Y580F, and Y881F). In addition, Src inhibition could prolong phosphorylation of Pyk2 Y402 and increase DA release. These findings suggested that Pyk2 was involved in ionomycin-induced neurotransmitter release through phosphorylation of Y402. PMID:24718602

  15. Tyrosine Kinase Expressed in Hepatocellular Carcinoma, TEC, Controls Pluripotency and Early Cell Fate Decisions of Human Pluripotent Stem Cells via Regulation of Fibroblast Growth Factor-2 Secretion.

    Science.gov (United States)

    Vanova, Tereza; Konecna, Zaneta; Zbonakova, Zuzana; La Venuta, Giuseppe; Zoufalova, Karolina; Jelinkova, Sarka; Varecha, Miroslav; Rotrekl, Vladimir; Krejci, Pavel; Nickel, Walter; Dvorak, Petr; Kunova Bosakova, Michaela

    2017-09-01

    Human pluripotent stem cells (hPSC) require signaling provided by fibroblast growth factor (FGF) receptors. This can be initiated by the recombinant FGF2 ligand supplied exogenously, but hPSC further support their niche by secretion of endogenous FGF2. In this study, we describe a role of tyrosine kinase expressed in hepatocellular carcinoma (TEC) kinase in this process. We show that TEC-mediated FGF2 secretion is essential for hPSC self-renewal, and its lack mediates specific differentiation. Following both short hairpin RNA- and small interfering RNA-mediated TEC knockdown, hPSC secretes less FGF2. This impairs hPSC proliferation that can be rescued by increasing amounts of recombinant FGF2. TEC downregulation further leads to a lower expression of the pluripotency markers, an improved priming towards neuroectodermal lineage, and a failure to develop cardiac mesoderm. Our data thus demonstrate that TEC is yet another regulator of FGF2-mediated hPSC pluripotency and differentiation. Stem Cells 2017;35:2050-2059. © 2017 AlphaMed Press.

  16. A phosphorylation site in Bruton's tyrosine kinase selectively regulates B cell calcium signaling efficiency by altering phospholipase C-γ activation

    Science.gov (United States)

    Guo, Shuling; Ferl, Gregory Z.; Deora, Rajendar; Riedinger, Mireille; Yin, Sheng; Kerwin, James L.; Loo, Joseph A.; Witte, Owen N.

    2004-01-01

    Loss of function of Bruton's tyrosine kinase (Btk) causes X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency in mice (xid). By using MS analysis and phosphopeptide-specific antibodies, we identified a tyrosine phosphorylation site (Y617) near the carboxyl terminus of the Btk domain from Btk expressed in 293T as well as DT-40 cells. Y617 is conserved in all Tec family kinases except murine Tec. Replacement of Y617 with a negatively charged glutamic acid (E) suppressed Btk-mediated phospholipase Cγ2 activation and calcium response in DT-40 cells, whereas Akt activation was not affected. The Btk Y617E mutant could partially restore conventional B cell development and proliferation in Btk–/Tec– mice but failed to rescue CD5+ B-1 cell development and the TI-II immune response to 2,4,6,-trinitrophenyl-Ficoll. These data suggest that Y617 phosphorylation or a negative charge at this site may down-regulate the function of Btk by selectively suppressing the B cell calcium signaling pathway. PMID:15375214

  17. Hypoxia-inducible factor-1α upregulates tyrosine hydroxylase and dopamine transporter by nuclear receptor ERRγ in SH-SY5Y cells.

    Science.gov (United States)

    Lim, Juhee; Kim, Hyo-In; Bang, Yeojin; Seol, Wongi; Choi, Hueng-Sik; Choi, Hyun Jin

    2015-04-15

    Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor relevant to the development of many mammalian organs including the brain. However, the molecular mechanisms by which signaling events mediate neuronal differentiation have not been fully elucidated. In the present study, we show for the first time that the orphan nuclear receptor estrogen-related receptor γ (ERRγ) is upregulated by HIF-1α and plays essential roles in HIF-1α-induced upregulation of dopaminergic marker molecules such as tyrosine hydroxylase and dopamine transporter. We found that deferoxamine upregulated HIF-1α and enhanced the dopaminergic phenotype and neurite outgrowth of SH-SY5Y cells. Deferoxamine activated transcription and protein expression of ERRγ, and deferoxamine-induced upregulation of tyrosine hydroxylase and dopamine transporter was attenuated by using the ERRγ inverse agonist or silencing ERRγ. Altogether, these results suggest that HIF-1α can positively regulate the dopaminergic phenotype through ERRγ. This study could provide new perspectives for understanding the mechanisms underlying the promotion of dopaminergic neuronal differentiation by hypoxia.

  18. Receptor-like protein-tyrosine phosphatase alpha specifically inhibits insulin-increased prolactin gene expression

    DEFF Research Database (Denmark)

    Jacob, K K; Sap, J; Stanley, F M

    1998-01-01

    A physiologically relevant response to insulin, stimulation of prolactin promoter activity in GH4 pituitary cells, was used as an assay to study the specificity of protein-tyrosine phosphatase function. Receptor-like protein-tyrosine phosphatase alpha (RPTPalpha) blocks the effect of insulin...... to increase prolactin gene expression but potentiates the effects of epidermal growth factor and cAMP on prolactin promoter activity. RPTPalpha was the only protein-tyrosine phosphatase tested that did this. Thus, the effect of RPTPalpha on prolactin-chloramphenicol acetyltransferase (CAT) promoter activity...... is specific by two criteria. A number of potential RPTPalpha targets were ruled out by finding (a) that they are not affected or (b) that they are not on the pathway to insulin-increased prolactin-CAT activity. The negative effect of RPTPalpha on insulin activation of the prolactin promoter is not due...

  19. Giant hub Src and Syk tyrosine kinase thermodynamic profiles recapitulate evolution

    Science.gov (United States)

    Phillips, J. C.

    2017-10-01

    Thermodynamic scaling theory, previously applied mainly to small proteins, here analyzes quantitative evolution of the titled functional network giant hub enzymes. The broad domain structure identified homologically is confirmed hydropathically using amino acid sequences only. The most surprising results concern the evolution of the tyrosine kinase globular surface roughness from avians to mammals, which is first order, compared to the evolution within mammals from rodents to humans, which is second order. The mystery of the unique amide terminal region of proto oncogene tyrosine protein kinase is resolved by the discovery there of a rare hydroneutral septad targeting cluster, which is paralleled by an equally rare octad catalytic cluster in tyrosine kinase in humans and a few other species (cat and dog). These results, which go far towards explaining why these proteins are among the largest giant hubs in protein interaction networks, use no adjustable parameters.

  20. New insights into biodrying mechanism associated with tryptophan and tyrosine degradations during sewage sludge biodrying.

    Science.gov (United States)

    Cai, Lu; Krafft, Thomas; Chen, Tong-Bin; Lv, Wen-Zhou; Gao, Ding; Zhang, Han-Yan

    2017-11-01

    Sewage sludge biodrying is a treatment that uses bio-heat generated from organic degradation to remove water from sewage sludge. Dewatering is still limited during biodrying, due to the presence of extracellular polymeric substances (EPS) in sludge. To study the biodrying mechanism associated with EPS compositions tryptophan and tyrosine degradations, this study investigated the microbial function in sludge biodrying material. This study conducted a taxonomic analysis of biodrying material; determined the most abundant genetic functions; analyzed the functional microorganisms involved in the degradations of tryptophan and tyrosine; and summarized the metabolic pathways. The results indicated efficient degradations of tryptophan and tyrosine were observed during the initial thermophilic phase; functional microorganisms were mainly from the phyla Firmicutes, Actinobacteria, and Proteobacteria, enriched with genes involved in amino acid transport and metabolism. These findings highlight the potentially important microorganisms and typical pathways that may help improve dewaterability during biodegradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Boar sperm storage capacity of BTS and Androhep Plus: viability, motility, capacitation, and tyrosine phosphorylation.

    Science.gov (United States)

    Dubé, Charlotte; Beaulieu, Martin; Reyes-Moreno, Carlos; Guillemette, Christine; Bailey, Janice L

    2004-09-01

    Androhep Plus, a long-term extender (up to 7 days) and Beltsville Thawing Solution (BTS), a short-term extender (up to 3 days), are commonly used for liquid storage of porcine semen. To test the hypothesis that modifications in sperm viability, motility, chlortetracycline (CTC) fluorescence patterns, and protein tyrosine phosphorylation occur during semen storage in extenders, we compared these end points at different periods of storage in either Androhep Plus or BTS. Sperm from five boars were assessed daily over 12 days of storage (n = 5 ejaculates from different boars). Viability was not different (P BTS (P BTS. A tyrosine-phosphorylated protein of Mr 21,000 appeared after 10 days in sperm incubated in BTS, and was identified as a phospholipid hydroperoxide glutathione peroxidase. Therefore, modifications in viability, motility, CTC fluorescence patterns, and sperm protein tyrosine phosphorylation were apparent during sperm storage in extenders; these may affect the fertilizing capacity of the semen.

  2. Protein-Tyrosine Kinase Signaling in the Biological Functions Associated with Sperm

    Directory of Open Access Journals (Sweden)

    Takashi W. Ijiri

    2012-01-01

    Full Text Available In sexual reproduction, two gamete cells (i.e., egg and sperm fuse (fertilization to create a newborn with a genetic identity distinct from those of the parents. In the course of these developmental processes, a variety of signal transduction events occur simultaneously in each of the two gametes, as well as in the fertilized egg/zygote/early embryo. In particular, a growing body of knowledge suggests that the tyrosine kinase Src and/or other protein-tyrosine kinases are important elements that facilitate successful implementation of the aforementioned processes in many animal species. In this paper, we summarize recent findings on the roles of protein-tyrosine phosphorylation in many sperm-related processes (from spermatogenesis to epididymal maturation, capacitation, acrosomal exocytosis, and fertilization.

  3. Induction of Tyrosine Phosphorylation of UV-Activated EGFR by the Beta-Human Papillomavirus Type 8 E6 Leads to Papillomatosis

    Directory of Open Access Journals (Sweden)

    Stefanie Taute

    2017-11-01

    Full Text Available Epidemiological evidence is accumulating that beta-human papillomaviruses (HPV synergize with UV-light in the development of precancerous actinic keratosis, and cutaneous squamous cell carcinomas (cSCC, one of the most common cancers in the Caucasian population. We previously demonstrated the tumorigenic activity of beta-HPV type 8 (HPV8 in the skin of transgenic mice and its cooperation with UV-light. Analysis of underlying mechanisms now showed that in keratinocytes expressing the HPV8E6 protein a transient increase of tyrosine phosphorylated epidermal growth factor receptor (EGFR in response to UV-irradiation occurred, while EGFR tyrosine phosphorylation, i.e., receptor tyrosine kinase (RTK-activity was hardly affected in empty vector control cells. FACS and immunofluorescences revealed that the EGFR was internalized into early endosomes in response to UV-exposure in both, HPV8E6 positive and in control cells, yet with a higher rate in the presence of HPV8E6. Moreover, only in HPV8E6 expressing keratinocytes the EGFR was further sorted into CD63+ intraluminal vesicles, indicative for trafficking to late endosomes. The latter requires the ubiquitination of the EGFR, and in correlation, we could show that only in HPV8E6 positive keratinocytes the EGFR was ubiquitinated upon UV-exposure. HPV8E6 and tyrosine phosphorylated EGFR directly interacted which was enhanced by UV-irradiation. The treatment of K14-HPV8E6 transgenic mice with Canertinib, an inhibitor of the RTK-activity of the EGFR, suppressed skin papilloma growth in response to UV-irradiation. This confirms the crucial role of the RTK-activity of the EGFR in HPV8E6 and UV-mediated papillomatosis in transgenic mice. Taken together, our results demonstrate that HPV8E6 alters the signaling of the UV-activated EGFR and this is a critical step in papilloma formation in response to UV-light in transgenic mice. Our results provide a molecular basis how a beta-HPV type may support early steps of

  4. Aging reveals a role for nigral tyrosine hydroxylase ser31 phosphorylation in locomotor activity generation.

    Directory of Open Access Journals (Sweden)

    Michael F Salvatore

    Full Text Available BACKGROUND: Tyrosine hydroxylase (TH regulates dopamine (DA bioavailability. Its product, L-DOPA, is an established treatment for Parkinson's disease (PD, suggesting that TH regulation influences locomotion. Site-specific phosphorylation of TH at ser31 and ser40 regulates activity. No direct evidence shows that ser40 phosphorylation is the dominating mechanism of regulating TH activity in vivo, and physiologically-relevant stimuli increase L-DOPA biosynthesis independent of ser40 phosphorylation. Significant loss of locomotor activity occurs in aging as in PD, despite less loss of striatal DA or TH in aging compared to the loss associated with symptomatic PD. However, in the substantia nigra (SN, there is equivalent loss of DA or TH in aging and at the onset of PD symptoms. Growth factors increase locomotor activity in both PD and aging models and increase DA bioavailability and ser31 TH phosphorylation in SN, suggesting that ser31 TH phosphorylation status in the SN, not striatum, regulates DA bioavailability necessary for locomotor activity. METHODOLOGY AND PRINCIPAL FINDINGS: We longitudinally characterized locomotor activity in young and older Brown-Norway Fischer 344 F(1 hybrid rats (18 months apart in age at two time periods, eight months apart. The aged group served as an intact and pharmacologically-naïve source of deficient locomotor activity. Following locomotor testing, we analyzed DA tissue content, TH protein, and TH phosphorylation in striatum, SN, nucleus accumbens, and VTA. Levels of TH protein combined with ser31 phosphorylation alone reflected inherent differences in DA levels among the four regions. Measures strictly pertaining to locomotor activity initiation significantly correlated to DA content only in the SN. Nigral TH protein and ser31 phosphorylation together significantly correlated to test subject's maximum movement number, horizontal activity, and duration. CONCLUSIONS/SIGNIFICANCE: Together, these results show ser

  5. Nurr1 represses tyrosine hydroxylase expression via SIRT1 in human neural stem cells.

    Science.gov (United States)

    Kim, Tae Eun; Seo, Ji-Seon; Seo, Ji Sun; Yang, Jae Won; Kim, Min Woong; Kausar, Rukhsana; Joe, Eunhye; Kim, Bo Yeon; Lee, Myung Ae

    2013-01-01

    Nurr1 is an orphan nuclear receptor best known for its essential role in the development and maintenance of midbrain dopaminergic (DA) neurons. During DA neurogenesis, Nurr1 directly targets human tyrosine hydroxylase (hTH). Here we investigated this targeting to identify the molecular mechanisms by which Nurr1 regulates DA neurogenesis. We previously cloned the hTH promoter and found three consensus elements for Nurr1 binding: NBRE-A, -B, and -C. In the present study, gel retardation and luciferase assays using hTH constructs showed that Nurr1 preferentially bound to NBRE-A, through which it mediated transcriptional activity. Furthermore, Nurr1 displayed dual-function transcriptional activities depending on the cell type. In DA-like SH-SY5Y cells, Nurr1 dose-dependently stimulated hTH-3174 promoter activity by 7- to 11-fold. However, in the human neural stem cell (hNSC) line HB1.F3, Nurr1 strongly repressed transcription from the same promoter. This repression was relieved by mutation of only the NBRE-A element and by nicotinamide [an inhibitor of class III histone deacetylases (HDACs), such as SIRT1], but not by trichostatin A (an inhibitor of class I and II HDACs). SIRT1 was strongly expressed in the nucleus of HB1.F3 cells, while it was localized in the cytoplasm in SH-SY5Y cells. ChIP assays of HB1.F3 cells showed that Nurr1 overexpression significantly increased the SIRT1 occupancy of the NBRE-A hTH promoter region, while low SIRT1 levels were observed in control cells. In contrast, no significant SIRT1 recruitment was observed in SH-SY5Y cells. These results indicate that differential SIRT1 localization may be involved in hTH gene regulation. Overall, our findings suggest that Nurr1 exists in dual transcriptional complexes, including co-repressor complexes that can be remodeled to become co-activators and can fine-tune hTH gene transcription during human DA neurogenesis.

  6. Typhonium flagelliforme decreases tyrosine kinase and Ki67 expression in mice

    Directory of Open Access Journals (Sweden)

    Chodidjah Chodidjah

    2015-12-01

    Full Text Available Background Worldwide, breast cancer is the most frequent cancer in women after lung cancer. Treatments include surgery, radiation, immunotherapy and chemotherapy, but are not effective. Tyrosine kinase and Ki67 protein are markers of proliferation. Typhonium flagelliforme ethanol extract (TFEE has been shown to inhibit proliferation of Michigan Cancer Foundation-7 (MCF7 cells in culture. The aim of the present study was to examine the effect of administration of TFEE on tyrosine kinase and Ki67 expression in mice. Methods This experimental study using post test randomized design with control group was conducted in 24 tumor-bearing CH3 mice. They were randomly divided into 4 groups, consisting of one control and 3 treatment groups (TI, T2, T3 treated daily for 30 days with 0.2 ml TFEE at dosages of 200, 400, and 800 mg/kgBW, respectively. On day 31 the tumor tissues were collected and their tyrosine kinase and Ki67 expression were levels assessed using ELISA and immunohistochemical staining, respectively. Tyrosine kinase and Ki67 expression levels were analyzed, respectively using Kruskal Wallis test and one-way Anova followed by Bonferroni post hoc test. Results Mean tyrosine kinase level was highest in the control group, followed by T3, T2 and T1 (p=0.019. Mean level of Ki 67 expression was highest in the control group, followed by T2, T3 and T1 (p=0.000. Conclussions Oral administration of TFEE at a dose of 200 mg/kgBW decreases tyrosine kinase levels and Ki 67 expression.

  7. The molecular basis for RET tyrosine-kinase inhibitors in thyroid cancer.

    Science.gov (United States)

    De Falco, Valentina; Carlomagno, Francesca; Li, Hong-Yu; Santoro, Massimo

    2017-06-01

    RET receptor tyrosine kinase acts as a mutated oncogenic driver in several human malignancies and it is over-expressed in other cancers. Small molecule compounds with RET tyrosine kinase inhibitory activity are being investigated for the targeted treatment of these malignancies. Multi-targeted compounds with RET inhibitory concentration in the nanomolar range have entered clinical practice. This review summarizes mechanisms of RET oncogenic activity and properties of new compounds that, at the preclinical stage, have demonstrated promising anti-RET activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Mast cells express tyrosine hydroxylase and store dopamine in a serglycin-dependent manner.

    Science.gov (United States)

    Rönnberg, Elin; Calounova, Gabriela; Pejler, Gunnar

    2012-01-01

    Here we show that mast cells contain dopamine and that mast cell activation causes dopamine depletion, indicating its presence within secretory granules. Dopamine storage increased during mast cell maturation from bone marrow precursors, and was dependent on the presence of serglycin. Moreover, the expression of tyrosine hydroxylase, the key enzyme in dopamine biosynthesis, was induced during mast cell maturation; histidine decarboxylase and tryptophan hydroxylase 1 were also induced. Mast cell activation caused a robust induction of histidine decarboxylase, but no stimulation of tyrosine hydroxylase or tryptophan hydroxylase 1 expression. The present study points toward a possible role of dopamine in mast cell function.

  9. Tyrosine kinase inhibition: A therapeutic target for the management of chronic-phase chronic myeloid leukemia

    Science.gov (United States)

    Jabbour, Elias J; Cortes, Jorge E; Kantarjian, Hagop M

    2014-01-01

    Chronic myeloid leukemia (CML) is a hematologic neoplasm with a progressive, ultimately terminal, disease course. In most cases, CML arises owing to the aberrant formation of a chimeric gene for a constitutively active tyrosine kinase. Inhibition of the signaling activity of this kinase has proved to be a highly successful treatment target transforming the prognosis of patients with CML. New tyrosine kinase inhibitors (TKIs) continue to improve the management of CML, offering alternative options for those resistant to or intolerant of standard TKIs. Here we review the pathobiology of CML and explore emerging strategies to optimize the management of chronic-phase CML, particularly first-line treatment. PMID:24236822

  10. Activation of the TASK-2 channel after cell swelling is dependent on tyrosine phosphorylation

    DEFF Research Database (Denmark)

    Kirkegaard, Signe Skyum; Lambert, Ian Henry; Gammeltoft, Steen

    2010-01-01

    , it is demonstrated that mpV(pic) increased the volume-sensitive part of the K(+) efflux 1.3 times. To exclude K(+) efflux via a KCl cotransporter, cellular Cl(-) was substituted with NO(3)(-). Also under these conditions K(+) efflux was completely blocked by genistein. Thus tyrosine kinases seem to be involved...... together with Western blotting and antibodies against phosphotyrosines revealed a cell swelling-induced, time-dependent tyrosine phosphorylation of the channel. Even though we found an inhibiting effect of PP2 on RVD, neither Src nor the focal adhesion kinase (FAK) seem to be involved. Inhibitors...

  11. Lack of miR-133a Decreases Contractility of Diabetic Hearts: A Role for Novel Cross Talk Between Tyrosine Aminotransferase and Tyrosine Hydroxylase.

    Science.gov (United States)

    Nandi, Shyam Sundar; Zheng, Hong; Sharma, Neeru M; Shahshahan, Hamid R; Patel, Kaushik P; Mishra, Paras K

    2016-10-01

    MicroRNAs (miRNAs) have a fundamental role in diabetic heart failure. The cardioprotective miRNA-133a (miR-133a) is downregulated, and contractility is decreased in diabetic hearts. Norepinephrine (NE) is a key catecholamine that stimulates contractility by activating β-adrenergic receptors (β-AR). NE is synthesized from tyrosine by the rate-limiting enzyme, tyrosine hydroxylase (TH), and tyrosine is catabolized by tyrosine aminotransferase (TAT). However, the cross talk/link between TAT and TH in the heart is unclear. To determine whether miR-133a plays a role in the cross talk between TH and TAT and regulates contractility by influencing NE biosynthesis and/or β-AR levels in diabetic hearts, Sprague-Dawley rats and miR-133a transgenic (miR-133aTg) mice were injected with streptozotocin to induce diabetes. The diabetic rats were then treated with miR-133a mimic or scrambled miRNA. Our results revealed that miR-133a mimic treatment improved the contractility of the diabetic rat's heart concomitant with upregulation of TH, cardiac NE, β-AR, and downregulation of TAT and plasma levels of NE. In miR-133aTg mice, cardiac-specific miR-133a overexpression prevented upregulation of TAT and suppression of TH in the heart after streptozotocin was administered. Moreover, miR-133a overexpression in CATH.a neuronal cells suppressed TAT with concomitant upregulation of TH, whereas knockdown and overexpression of TAT demonstrated that TAT inhibited TH. Luciferase reporter assay confirmed that miR-133a targets TAT. In conclusion, miR-133a controls the contractility of diabetic hearts by targeting TAT, regulating NE biosynthesis, and consequently, β-AR and cardiac function. © 2016 by the American Diabetes Association.

  12. The Protein Tyrosine Phosphatase Shp2 Regulates Oligodendrocyte Differentiation and Early Myelination and Contributes to Timely Remyelination.

    Science.gov (United States)

    Ahrendsen, Jared T; Harlow, Danielle E; Finseth, Lisbet T; Bourne, Jennifer N; Hickey, Sean P; Gould, Elizabeth A; Culp, Cecilia M; Macklin, Wendy B

    2018-01-24

    Shp2 is a nonreceptor protein tyrosine phosphatase that has been shown to influence neurogenesis, oligodendrogenesis, and oligodendrocyte differentiation. Furthermore, Shp2 is a known regulator of the Akt/mammalian target of rapamycin and ERK signaling pathways in multiple cellular contexts, including oligodendrocytes. Its role during later postnatal CNS development or in response to demyelination injury has not been examined. Based on the current studies, we hypothesize that Shp2 is a negative regulator of CNS myelination. Using transgenic mouse technology, we show that Shp2 is involved in oligodendrocyte differentiation and early myelination, but is not necessary for myelin maintenance. We also show that Shp2 regulates the timely differentiation of oligodendrocytes following lysolecithin-induced demyelination, although apparently normal remyelination occurs at a delayed time point. These data suggest that Shp2 is a relevant therapeutic target in demyelinating diseases such as multiple sclerosis. SIGNIFICANCE STATEMENT In the present study, we show that the protein phosphatase Shp2 is an important mediator of oligodendrocyte differentiation and myelination, both during developmental myelination as well as during myelin regeneration. We provide important insight into the signaling mechanisms regulating myelination and propose that Shp2 acts as a transient brake to the developmental myelination process. Furthermore, we show that Shp2 regulates oligodendrocyte differentiation following demyelination and therefore has important therapeutic implications in diseases such as multiple sclerosis. Copyright © 2018 the authors 0270-6474/18/380787-16$15.00/0.

  13. Crystal Structure of the Frizzled-Like Cysteine-Rich Domain of the Receptor Tyrosine Kinase MuSK

    Energy Technology Data Exchange (ETDEWEB)

    Stiegler, A.; Burden, S; Hubbard, S

    2009-01-01

    Muscle-specific kinase (MuSK) is an essential receptor tyrosine kinase for the establishment and maintenance of the neuromuscular junction (NMJ). Activation of MuSK by agrin, a neuronally derived heparan-sulfate proteoglycan, and LRP4 (low-density lipoprotein receptor-related protein-4), the agrin receptor, leads to clustering of acetylcholine receptors on the postsynaptic side of the NMJ. The ectodomain of MuSK comprises three immunoglobulin-like domains and a cysteine-rich domain (Fz-CRD) related to those in Frizzled proteins, the receptors for Wnts. Here, we report the crystal structure of the MuSK Fz-CRD at 2.1 {angstrom} resolution. The structure reveals a five-disulfide-bridged domain similar to CRDs of Frizzled proteins but with a divergent C-terminal region. An asymmetric dimer present in the crystal structure implicates surface hydrophobic residues that may function in homotypic or heterotypic interactions to mediate co-clustering of MuSK, rapsyn, and acetylcholine receptors at the NMJ.

  14. Conserved Molecular Mechanism of TyrA Dehydrogenase Substrate Specificity Underlying Alternative Tyrosine Biosynthetic Pathways in Plants and Microbes

    Directory of Open Access Journals (Sweden)

    Craig A. Schenck

    2017-11-01

    Full Text Available L-Tyrosine (Tyr is an aromatic amino acid synthesized de novo in plants and microbes. In animals, Tyr must be obtained through their diet or synthesized from L-phenylalanine. In addition to protein synthesis, Tyr serves as the precursor of neurotransmitters (e.g., dopamine and epinephrine in animals and of numerous plant natural products, which serve essential functions in both plants and humans (e.g., vitamin E and morphine. Tyr is synthesized via two alternative routes mediated by a TyrA family enzyme, prephenate, or arogenate dehydrogenase (PDH/TyrAp or ADH/TyrAa, typically found in microbes and plants, respectively. Although ADH activity is also found in some bacteria, the origin of arogenate-specific TyrAa enzymes is unknown. We recently identified an acidic Asp222 residue that confers ADH activity in plant TyrAs. In this study, structure-guided phylogenetic analyses identified bacterial homologs, closely-related to plant TyrAs, that also have an acidic 222 residue and ADH activity. A more distant archaeon TyrA that preferred PDH activity had a non-acidic Gln, whose substitution to Glu introduced ADH activity. These results indicate that the conserved molecular mechanism operated during the evolution of arogenate-specific TyrAa in both plants and microbes.

  15. Phosphodiesterase 2 negatively regulates adenosine-induced transcription of the tyrosine hydroxylase gene in PC12 rat pheochromocytoma cells.

    Science.gov (United States)

    Makuch, Edyta; Kuropatwa, Marianna; Kurowska, Ewa; Ciekot, Jaroslaw; Klopotowska, Dagmara; Matuszyk, Janusz

    2014-07-05

    Adenosine induces expression of the tyrosine hydroxylase (TH) gene in PC12 cells. However, it is suggested that atrial natriuretic peptide (ANP) inhibits expression of this gene. Using real-time PCR and luciferase reporter assays we found that ANP significantly decreases the adenosine-induced transcription of the TH gene. Results of measurements of cyclic nucleotide concentrations indicated that ANP-induced accumulation of cGMP inhibits the adenosine-induced increase in cAMP level. Using selective phosphodiesterase 2 (PDE2) inhibitors and a synthetic cGMP analog activating PDE2, we found that PDE2 is involved in coupling the ANP-triggered signal to the cAMP metabolism. We have established that ANP-induced elevated levels of cGMP as well as cGMP analog stimulate hydrolytic activity of PDE2, leading to inhibition of adenosine-induced transcription of the TH gene. We conclude that ANP mediates negative regulation of TH gene expression via stimulation of PDE2-dependent cAMP breakdown in PC12 cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. PAH- and PCB-induced Alterations of Protein Tyrosine Kinase and Cytokine Gene Transcription in Harbor Seal (Phoca Vitulina PBMC

    Directory of Open Access Journals (Sweden)

    Jennifer C. C. Neale

    2005-01-01

    Full Text Available Mechanisms underlying in vitro immunomodulatory effects of polycyclic aromatic hydrocarbons (PAHs and polychlorinated biphenyls (PCBs were investigated in harbor seal peripheral leukocytes, via real-time PCR. We examined the relative genetic expression of the protein tyrosine kinases (PTKs Fyn and Itk, which play a critical role in T cell activation, and IL-2, a cytokine of central importance in initiating adaptive immune responses. IL-1, the macrophage-derived pro-inflammatory cytokine of innate immunity, was also included as a measure of macrophage function. Harbor seal PBMC were exposed to the prototypic immunotoxic PAH benzo[a]pyrene (BaP, 3,3',4,4',5,5'-hexachlorobiphenyl (CB-169, a model immunotoxic PCB, or DMSO (vehicle control. Exposure of Con A-stimulated harbor seal PBMC to both BaP and CB-169 produced significantly altered expression in all four targets relative to vehicle controls. The PTKs Fyn and Itk were both up-regulated following exposure to BaP and CB-169. In contrast, transcripts for IL-2 and IL-1 were decreased relative to controls by both treatments. Our findings are consistent with those of previous researchers working with human and rodent systems and support a hypothesis of contaminant-altered lymphocyte function mediated (at least in part by disruption of T cell receptor (TCR signaling and cytokine production.

  17. Circuit-specific intracortical hyperconnectivity in mice with deletion of the autism-associated Met receptor tyrosine kinase.

    Science.gov (United States)

    Qiu, Shenfeng; Anderson, Charles T; Levitt, Pat; Shepherd, Gordon M G

    2011-04-13

    Local hyperconnectivity in the neocortex is a hypothesized pathophysiological state in autism spectrum disorder (ASD). MET, a receptor tyrosine kinase that regulates dendrite and spine morphogenesis, has been established as a risk gene for ASD. Here, we analyzed the synaptic circuit organization of identified pyramidal neurons in the anterior frontal cortex of mice with a dorsal pallium-derived, conditional knock-out (cKO) of Met. Synaptic mapping by glutamate uncaging identified layer 2/3 as the main source of local excitatory input to layer 5 projection neurons in controls. In both cKO and heterozygotes, this pathway was stronger by a factor of approximately 2. This increase was both sublayer and projection-class specific, restricted to corticostriatal neurons in upper layer 5B and not neighboring corticopontine neurons. Paired recordings in cKO slices demonstrated increased unitary connectivity. We propose that excitatory hyperconnectivity in specific neocortical microcircuits constitutes a physiological basis for Met-mediated ASD risk.

  18. Contribution of tumor endothelial cells to drug resistance: anti-angiogenic tyrosine kinase inhibitors act as p-glycoprotein antagonists.

    Science.gov (United States)

    Bani, MariaRosa; Decio, Alessandra; Giavazzi, Raffaella; Ghilardi, Carmen

    2017-05-01

    Tumor endothelial cells (TEC) differ from the normal counterpart, in both gene expression and functionality. TEC may acquire drug resistance, a characteristic that is maintained in vitro. There is evidence that TEC are more resistant to chemotherapeutic drugs, substrates of ATP-binding cassette (ABC) transporters. TEC express p-glycoprotein (encoded by ABCB1), while no difference in other ABC transporters was revealed compared to normal endothelia. A class of tyrosine kinase inhibitors (TKI), used as angiostatic compounds, interferes with the ATPase activity of p-glycoprotein, thus impairing its functionality. The exposure of ovarian adenocarcinoma TEC to the TKIs sunitinib or sorafenib was found to abrogate resistance (proliferation and motility) to doxorubicin and paclitaxel in vitro, increasing intracellular drug accumulation. A similar effect has been reported by the p-glycoprotein inhibitor verapamil. No beneficial effect was observed in combination with cytotoxic drugs that are not p-glycoprotein substrates. The current paper reviews the mechanisms of TEC chemoresistance and shows the role of p-glycoprotein in mediating such resistance. Inhibition of p-glycoprotein by anti-angiogenic TKI might contribute to the beneficial effect of these small molecules, when combined with chemotherapy, in counteracting acquired drug resistance.

  19. The protein tyrosine kinase Tec regulates a CD44highCD62L- Th17 subset.

    Science.gov (United States)

    Boucheron, Nicole; Sharif, Omar; Schebesta, Alexandra; Croxford, Andrew; Raberger, Julia; Schmidt, Uwe; Vigl, Benjamin; Bauer, Jan; Bankoti, Rashmi; Lassmann, Hans; Epstein, Michelle M; Knapp, Sylvia; Waisman, Ari; Ellmeier, Wilfried

    2010-11-01

    The generation of Th17 cells has to be tightly controlled during an immune response. In this study, we report an increase in a CD44(high)CD62L(-) Th17 subset in mice deficient for the protein tyrosine kinase Tec. CD44(high)CD62L(-) Tec(-/-) CD4(+) T cells produced enhanced IL-17 upon activation, showed increased expression levels of IL-23R and RORγt, and IL-23-mediated expansion of Tec(-/-) CD4(+) T cells led to an increased production of IL-17. Tec(-/-) mice immunized with heat-killed Streptococcus pneumoniae displayed increased IL-17 expression levels in the lung postinfection with S. pneumoniae, and this correlated with enhanced pneumococcal clearance and reduced lung inflammation compared with Tec(+/+) mice. Moreover, naive Tec(-/-) OT-II CD4(+) T cells produced higher levels of IL-17 when cultured with OVA peptide-loaded bone marrow-derived dendritic cells that have been previously activated with heat-killed S. pneumoniae. Taken together, our data indicated a critical role for Tec in T cell-intrinsic signaling pathways that regulate the in vivo generation of CD44(high)CD62L(-) effector/memory Th17 populations.

  20. Postsynaptic density protein 95-regulated NR2B tyrosine phosphorylation and interactions of Fyn with NR2B in levodopa-induced dyskinesia rat models

    Directory of Open Access Journals (Sweden)

    Ba M

    2014-12-01

    Full Text Available Maowen Ba,1,* Min Kong,2,* Guozhao Ma3 1Department of Neurology, Yuhuangding Hospital, Yantai City, Shandong, People’s Republic of China; 2Department of Neurology, Yantaishan Hospital, Yantai City, Shandong, People’s Republic of China; 3Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong, People’s Republic of China *These authors contributed equally to this work Context: Abnormality in interactions between N-methyl-d-aspartate (NMDA receptor and its signaling molecules occurs in the lesioned striatum in Parkinson’s disease (PD and levodopa-induced dyskinesia (LID. It was reported that Fyn-mediated NR2B tyrosine phosphorylation, can enhance NMDA receptor function. Postsynaptic density protein 95 (PSD-95, one of the synapse-associated proteins, regulates interactions between receptor and downstream-signaling molecules. In light of the relationship between PSD-95, NR2B, and Fyn kinases, does PSD-95 contribute to the overactivity of NMDA receptor function induced by dopaminergic treatment? To further prove the possibility, the effects of regulating the PSD-95 expression on the augmented NR2B tyrosine phosphorylation and on the interactions of Fyn and NR2B in LID rat models were evaluated.Methods: In the present study, parkinsonian rat models were established by injecting 6-hydroxydopamine. Subsequently, valid PD rats were treated with levodopa (50 mg/kg/day with benserazide 12.5 mg/kg/day, twice daily intraperitoneally for 22 days to create LID rat models. Then, the effect of pretreatment with an intrastriatal injection of the PSD-95mRNA antisense oligonucleotides (PSD-95 ASO on the rotational response to levodopa challenge was assessed. The effects of pretreatment with an intrastriatal injection of PSD-95 ASO on the augmented NR2B tyrosine phosphorylation and interactions of Fyn with NR2B in the LID rat models were detected by immunoblotting and immunoprecipitation. Results: Levodopa

  1. The Syk protein tyrosine kinase can function independently of CD45 or Lck in T cell antigen receptor signaling

    NARCIS (Netherlands)

    Chu, D. H.; Spits, H.; Peyron, J. F.; Rowley, R. B.; Bolen, J. B.; Weiss, A.

    1996-01-01

    The protein tyrosine phosphatase CD45 is a critical component of the T cell antigen receptor (TCR) signaling pathway, acting as a positive regulator of Src family protein tyrosine kinases (PTKs) such as Lck. Most CD45-deficient human and murine T cell lines are unable to signal through their TCRs.

  2. Cloning of a novel phosphotyrosine binding domain containing molecule, Odin, involved in signaling by receptor tyrosine kinases

    DEFF Research Database (Denmark)

    Pandey, A.; Blagoev, B.; Kratchmarova, I.

    2002-01-01

    We have used a proteomic approach using mass spectrometry to identify signaling molecules involved in receptor tyrosine kinase signaling pathways. Using affinity purification by anti-phosphotyrosine antibodies to enrich for tyrosine phosphorylated proteins, we have identified a novel signaling mo...

  3. Biodegradation of the allelopathic chemical m-tyrosine by Bacillus aquimaris SSC5 involves the homogentisate central pathway.

    Science.gov (United States)

    Khan, Fazlurrahman; Kumari, Munesh; Cameotra, Swaranjit Singh

    2013-01-01

    m-Tyrosine is an amino acid analogue, exuded from the roots of fescue grasses, which acts as a potent allelopathic and a broad spectrum herbicidal chemical. Although the production and toxic effects of m-tyrosine are known, its microbial degradation has not been documented yet. A soil microcosm study showed efficient degradation of m-tyrosine by the inhabitant microorganisms. A bacterial strain designated SSC5, that was able to utilize m-tyrosine as the sole source of carbon, nitrogen, and energy, was isolated from the soil microcosm and was characterized as Bacillus aquimaris. Analytical methods such as HPLC, GC-MS, and (1)H-NMR performed on the resting cell samples identified the formation of 3-hydroxyphenylpyruvate (3-OH-PPA), 3-hydroxyphenylacetate (3-OH-PhAc), and homogentisate (HMG) as major intermediates in the m-tyrosine degradation pathway. Enzymatic assays carried out on cell-free lysates of m-tyrosine-induced cells confirmed transamination reaction as the first step of m-tyrosine degradation. The intermediate 3-OH-PhAc thus obtained was further funneled into the HMG central pathway as revealed by a hydroxylase enzyme assay. Subsequent degradation of HMG occurred by ring cleavage catalyzed by the enzyme homogentisate 1, 2-dioxygenase. This study has significant implications in terms of understanding the environmental fate of m-tyrosine as well as regulation of its phytotoxic effect by soil microorganisms.

  4. Requirement of tyrosine residues 333 and 338 of the growth hormone (GH) receptor for selected GH-stimulated function

    DEFF Research Database (Denmark)

    Lobie, P E; Allevato, G; Norstedt, G

    1995-01-01

    We have examined the involvement of tyrosine residues 333 and 338 of the growth hormone (GH) receptor in the cellular response to GH. Stable Chinese hamster ovary (CHO) cell clones expressing a receptor with tyrosine residues at position 333 and 338 of the receptor substituted for phenylalanine (...

  5. DMPD: Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12472665 Macrophage-stimulating protein and RON receptor tyrosine kinase: potential...:545-53. (.png) (.svg) (.html) (.csml) Show Macrophage-stimulating protein and RON receptor tyrosine kinase:... potentialregulators of macrophage inflammatory activities. PubmedID 12472665 Title Macrophage-stimu

  6. Tyrosine Phosphorylation of the UDP-Glucose Dehydrogenase of Escherichia coli Is at the Crossroads of Colanic Acid Synthesis and Polymyxin Resistance

    DEFF Research Database (Denmark)

    Lacour, S.; Bechet, E.; Cozzone, A.J.

    2008-01-01

    to participate in the regulation of the amount of the exopolysaccharide colanic acid, whereas Etk-mediated Ugd phosphorylation appeared to participate in the resistance of E. coli to the antibiotic polymyxin. Conclusions/Significance: Ugd phosphorylation seems to be at the junction between two distinct...... shown to phosphorylate the UDP-glucose dehydrogenase Ugd in vitro. Not only is Ugd involved in the biosynthesis of extracellular polysaccharides, but also in the production of UDP-4-amino-4-deoxy-L-arabinose, a compound that renders E. coli resistant to cationic antimicrobial peptides. Methodology....../Principal Findings: Here, we studied the role of Ugd phosphorylation. We first confirmed in vivo the phosphorylation of Ugd by Wzc and we demonstrated that Ugd is also phosphorylated by Etk, the other BY-kinase identified in E. coli. Tyrosine 71 (Tyr71) was characterized as the Ugd site phosphorylated by both Wzc...

  7. Clinical factors related to the efficacy of tyrosine kinase inhibitor therapy in radioactive iodine refractory recurrent differentiated thyroid cancer patients.

    Science.gov (United States)

    Sugino, Kiminori; Nagahama, Mitsuji; Kitagawa, Wataru; Ohkuwa, Keiko; Uruno, Takashi; Matsuzu, Kenichi; Suzuki, Akifumi; Masaki, Chie; Akaishi, Junko; Hames, Kiyomi Y; Tomoda, Chisato; Ogimi, Yuna; Ito, Koichi

    2018-03-28

    New insights in thyroid cancer biology propelled the development of targeted therapies as salvage treatment for radioiodine-refractory differentiated thyroid cancer (RR-DTC), and the tyrosine kinase inhibitor (TKI) lenvatinib has recently become available as a new line of therapy for RR-DTC. The aim of this study is to investigate clinical factors related to the efficacy of TKI therapy in recurrent RR-DTC patients and identify the optimal timing for the start of TKI therapy. The subjects consisted of 29 patients with progressive RR-DTC, 9 males and 20 females, median age 66 years. A univariate analysis was conducted in relation to progression free survival (PFS) and overall survival (OS) by the Kaplan-Meier method for the following variables: age, sex, histology of the primary tumor, thyroglobulin doubling time before the start of lenvatinib therapy, site of the target lesions, presence of a tumor-mediated symptom at the start of lenvatinib therapy, and baseline tumor size of the target lesions. Median duration of lenvatinib therapy was 14.7 months and median drug intensity was 9.5 mg. At the time of the data cut-off for the analysis, 9 patients (31.0%) have died of their disease (DOD), and a PR (partial response), SD (stable disease), and PD (progressive disease) were observed in 20 patients (69%), 6 patients (20.7%), 3 patients (10.3%), respectively. Univariate analyses showed that the presence of a symptom was the only factor significantly related to poorer PFS and OS. Clinical benefit of TKI therapy will be possibly limited when the therapy starts after tumor-mediated symptoms appear.

  8. EphA4 receptor tyrosine kinase is a modulator of onset and disease severity of experimental autoimmune encephalomyelitis (EAE.

    Directory of Open Access Journals (Sweden)

    Kathryn M Munro

    Full Text Available The EphA4 receptor tyrosine kinase is a major regulator of axonal growth and astrocyte reactivity and is a possible inflammatory mediator. Given that multiple sclerosis (MS is primarily an inflammatory demyelinating disease and in mouse models of MS, such as experimental autoimmune encephalomyelitis (EAE, axonal degeneration and reactive gliosis are prominent clinical features, we hypothesised that endogenous EphA4 could play a role in modulating EAE. EAE was induced in EphA4 knockout and wildtype mice using MOG peptide immunisation and clinical severity and histological features of the disease were then compared in lumbar spinal cord sections. EphA4 knockout mice exhibited a markedly less severe clinical course than wildtype mice, with a lower maximum disease grade and a slightly later onset of clinical symptoms. Numbers of infiltrating T cells and macrophages, the number and size of the lesions, and the extent of astrocytic gliosis were similar in both genotypes; however, EphA4 knockout mice appeared to have decreased axonal pathology. Blocking of EphA4 in wildtype mice by administration of soluble EphA4 (EphA4-Fc as a decoy receptor following induction of EAE produced a delay in onset of clinical symptoms; however, most mice had clinical symptoms of similar severity by 22 days, indicating that EphA4 blocking treatment slowed early EAE disease evolution. Again there were no apparent differences in histopathology. To determine whether the role of EphA4 in modulating EAE was CNS mediated or due to an altered immune response, MOG primed T cells from wildtype and EphA4 knockout mice were passively transferred into naive recipient mice and both were shown to induce disease of equivalent severity. These results are consistent with a non-inflammatory, CNS specific, deleterious effect of EphA4 during neuroinflammation that results in axonal pathology.

  9. Preclinical and clinical evaluation of O-[11C]methyl-L-tyrosine for tumor imaging by positron emission tomography

    International Nuclear Information System (INIS)

    Ishiwata, Kiichi; Tsukada, Hideo; Kubota, Kazuo; Nariai, Tadashi; Harada, Norihiro; Kawamura, Kazunori; Kimura, Yuichi; Oda, Keiichi; Iwata, Ren; Ishii, Kenji

    2005-01-01

    We performed preclinical and clinical studies of O-[ 11 C]methyl-L-tyrosine, a potential tracer for imaging amino acid transport of tumors by positron emission tomography (PET). Examinations of the radiation-absorbed dose by O-[ 11 C]methyl-L-tyrosine and the acute toxicity and mutagenicity of O-methyl-L-tyrosine showed suitability of the tracer for clinical use. The whole-body imaging of monkeys and healthy humans by PET showed low uptake of O-[ 11 C]methyl-L-tyrosine in all normal organs except for the urinary track and bladder, suggesting that the O-[ 11 C]methyl-L-tyrosine PET has the potential for tumor imaging in the whole-body. Finally, the brain tumor imaging was preliminarily demonstrated

  10. The role of low-molecular-weight protein tyrosine phosphatase (LMW-PTP ACP1) in oncogenesis.

    Science.gov (United States)

    Alho, Irina; Costa, Luís; Bicho, Manuel; Coelho, Constança

    2013-08-01

    Protein tyrosine phosphorylation is a crucial cellular event that is involved in the most important processes of cellular metabolism. Low-molecular-weight protein tyrosine phosphatase (LMW-PTP) is a tyrosine phosphatase that presents two active distinct isoforms and is regulated through cysteine oxidation and tyrosine phosphorylation. This enzyme has been linked to tumorigenesis, but its role is considered controversial: it may be considered oncogenic or anti-oncogenic depending on its interaction with different substrates. Furthermore, recent studies have demonstrated that LMW-PTP is involved in epithelial cell migration, a characteristic of tumor cells. This fact strengthens the importance of this enzyme in the oncogenic process and opens new avenues for future research. The study of LMW-PTP and its pathways may enhance therapeutic strategies that target tyrosine phosphorylation and its substrates. In this review, we try to clarify the importance of this protein in carcinogenesis through the analysis of LMW-PTP interaction with different substrates.

  11. Pharmacokinetics of 3-[{sup 125}I]iodo-{alpha}-methyl-L-tyrosine, a tumor imaging agent, after probenecid loading in mice implanted with colon cancer DLD-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Syuichi [Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Division of Health Science, Graduate School of Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 9200-942 (Japan); Shikano, Naoto [Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan)], E-mail: sikano@ipu.ac.jp; Kotani, Takashi; Ogura, Masato [Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Nishii, Ryuichi [Research Institute, Shiga Medical Center, 5-4-30 Moriyama, Moriyama-City, Shiga 524-8524 (Japan); Yoshimoto, Mitsuyoshi [Division of Health Science, Graduate School of Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 9200-942 (Japan); Yamaguchi, Naoto [Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Iwamura, Yukio [Center for Humanities and Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Kubota, Nobuo; Ishikawa, Nobuyoshi [Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Kawai, Keiichi [Division of Health Science, Graduate School of Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 9200-942 (Japan)

    2007-11-15

    Introduction: In order to improve tumor imaging, changes in the pharmacokinetics of 3-[{sup 123}I]iodo-{alpha}-methyl-L-tyrosine ([{sup 123}I]IMT), an artificial amino acid that exhibits high tumor accumulation, after probenecid (PBC) loading was studied in mice implanted with colon cancer DLD-1 cells using {sup 125}I-labeled IMT ([{sup 125}I]IMT). Methods: DLD-1-implanted KSN-slc nude male mice received 740 kBq of [{sup 125}I]IMT via the tail vein at 5 min after 50 mg/kg body weight PBC loading, and autoradiography was performed at 5, 15 and 30 min after injection. Male ddY mice then received 670 kBq of [{sup 125}I]IMT and 50 mg/kg 2-amino-bicyclo[2,2,1]heptane-2-carboxylic acid (BCH) or p-aminohippurate (PAH) via the tail vein, and kidney autoradiography was performed at 5 min after injection. In vitro inhibition study was then performed based on the accumulation mechanisms of [{sup 125}I]IMT in DLD-1, using 1 mM L-tyrosine, BCH, {alpha}-(methylamino)-isobutyric acid, N-benzoyl-{beta}-alanine, PBC, PAH, 2,4-dinitrophenol and sodium azide. Both Na{sup +}-dependent and Na{sup +}-independent uptake were investigated. Results: Higher tumor accumulation in PBC-loaded DLD-1-implanted mice was seen when compared to control mice. PAH and BCH, respectively, reduced renal accumulation in the tubule segment-2 (S2)-like and S1-like regions. We confirmed that [{sup 125}I]IMT transport is predominantly mediated by L-type amino acid transporter-1 in DLD-1 cells. Conclusions: [{sup 125}I]IMT uptake is mediated by organic anion and amino acid transporters in the kidney. Organic anion transporter inhibitors may yield better tumor images with good tumor/normal tissue radioactivity ratios if adequate administration plans are developed.

  12. The human cytomegalovirus UL11 protein interacts with the receptor tyrosine phosphatase CD45, resulting in functional paralysis of T cells.

    Directory of Open Access Journals (Sweden)

    Ildar Gabaev

    2011-12-01

    Full Text Available Human cytomegalovirus (CMV exerts diverse and complex effects on the immune system, not all of which have been attributed to viral genes. Acute CMV infection results in transient restrictions in T cell proliferative ability, which can impair the control of the virus and increase the risk of secondary infections in patients with weakened or immature immune systems. In a search for new immunomodulatory proteins, we investigated the UL11 protein, a member of the CMV RL11 family. This protein family is defined by the RL11 domain, which has homology to immunoglobulin domains and adenoviral immunomodulatory proteins. We show that pUL11 is expressed on the cell surface and induces intercellular interactions with leukocytes. This was demonstrated to be due to the interaction of pUL11 with the receptor tyrosine phosphatase CD45, identified by mass spectrometry analysis of pUL11-associated proteins. CD45 expression is sufficient to mediate the interaction with pUL11 and is required for pUL11 binding to T cells, indicating that pUL11 is a specific CD45 ligand. CD45 has a pivotal function regulating T cell signaling thresholds; in its absence, the Src family kinase Lck is inactive and signaling through the T cell receptor (TCR is therefore shut off. In the presence of pUL11, several CD45-mediated functions were inhibited. The induction of tyrosine phosphorylation of multiple signaling proteins upon TCR stimulation was reduced and T cell proliferation was impaired. We therefore conclude that pUL11 has immunosuppressive properties, and that disruption of T cell function via inhibition of CD45 is a previously unknown immunomodulatory strategy of CMV.

  13. Angiotensin II inhibits insulin-stimulated GLUT4 translocation and Akt activation through tyrosine nitration-dependent mechanisms.

    Directory of Open Access Journals (Sweden)

    Alfredo Csibi

    Full Text Available Angiotensin II (Ang II plays a major role in the pathogenesis of insulin resistance and diabetes by inhibiting insulin's metabolic and potentiating its trophic effects. Whereas the precise mechanisms involved remain ill-defined, they appear to be associated with and dependent upon increased oxidative stress. We found Ang II to block insulin-dependent GLUT4 translocation in L6 myotubes in an NO- and O(2(*--dependent fashion suggesting the involvement of peroxynitrite. This hypothesis was confirmed by the ability of Ang II to induce tyrosine nitration of the MAP kinases ERK1/2 and of protein kinase B/Akt (Akt. Tyrosine nitration of ERK1/2 was required for their phosphorylation on Thr and Tyr and their subsequent activation, whereas it completely inhibited Akt phosphorylation on Ser(473 and Thr(308 as well as its activity. The inhibitory effect of nitration on Akt activity was confirmed by the ability of SIN-1 to completely block GSK3alpha phosphorylation in vitro. Inhibition of nitric oxide synthase and NAD(PHoxidase and scavenging of free radicals with myricetin restored insulin-stimulated Akt phosphorylation and GLUT4 translocation in the presence of Ang II. Similar restoration was obtained by inhibiting the ERK activating kinase MEK, indicating that these kinases regulate Akt activation. We found a conserved nitration site of ERK1/2 to be located in their kinase domain on Tyr(156/139, close to their active site Asp(166/149, in agreement with a permissive function of nitration for their activation. Taken together, our data show that Ang II inhibits insulin-mediated GLUT4 translocation in this skeletal muscle model through at least two pathways: first through the transient activation of ERK1/2 which inhibit IRS-1/2 and second through a direct inhibitory nitration of Akt. These observations indicate that not only oxidative but also nitrative stress play a key role in the pathogenesis of insulin resistance. They underline the role of protein

  14. The Effect of Neighboring Methionine Residue on Tyrosine Nitration & Oxidation in Peptides Treated with MPO, H2O2, & NO2- or Peroxynitrite and Bicarbonate: Role of Intramolecular Electron-Transfer Mechanism?

    Science.gov (United States)

    Zhang, Hao; Zielonka, Jacek; Sikora, Adam; Joseph, Joy; Xu, Yingkai; Kalyanaraman, B.

    2009-01-01

    Recent reports suggest that intramolecular electron-transfer reactions can profoundly affect the site and specificity of tyrosyl nitration and oxidation in peptides and proteins. Here we investigated the effects of methionine on tyrosyl nitration and oxidation induced by myeloperoxidase (MPO), H2O2 and NO2- and peroxynitrite (ONOO-) or ONOO- and bicarbonate (HCO3-) in model peptides, tyrosylmethionine (YM), tyrosylphenylalanine (YF) and tyrosine. Nitration and oxidation products of these peptides were analysed by HPLC with UV/Vis and fluorescence detection, and mass spectrometry; radical intermediates were identified by electron paramagnetic resonance (EPR)-spin-trapping. We have previously shown (Zhang et al., J. Biol. Chem. (2005) 280, 40684-40698) that oxidation and nitration of tyrosyl residue was inhibited in tyrosylcysteine(YC)-type peptides as compared to free tyrosine. Here we show that methionine, another sulfur-containing amino acid, does not inhibit nitration and oxidation of a neighboring tyrosine residue in the presence of ONOO- (or ONOOCO2-) or MPO/H2O2/NO2- system. Nitration of tyrosyl residue in YM was actually stimulated under the conditions of in situ generation of ONOO- (formed by reaction of superoxide with nitric oxide during SIN-1 decomposition), as compared to YF, YC and tyrosine. The dramatic variations in tyrosyl nitration profiles caused by methionine and cysteine residues have been attributed to differences in the direction of intramolecular electron transfer mechanism in these peptides. Further confirmation of HPLC data analysis was obtained by steady-state radiolysis and photolysis experiments. Potential implications of the intramolecular electron-transfer mechanism in mediating selective nitration of protein tyrosyl groups are discussed. PMID:19056332

  15. In vitro characterization of the Bacillus subtilis protein tyrosine phosphatase YwqE

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Musumeci, Lucia; Tautz, Lutz

    2005-01-01

    Both gram-negative and gram-positive bacteria possess protein tyrosine phosphatases (PTPs) with a catalytic Cys residue. In addition, many gram-positive bacteria have acquired a new family of PTPs, whose first characterized member was CpsB from Streptococcus pneumoniae. Bacillus subtilis contains...

  16. Efficient expression of tyrosine-sulfated proteins in E. coli using an expanded genetic code.

    Science.gov (United States)

    Liu, Chang C; Cellitti, Susan E; Geierstanger, Bernhard H; Schultz, Peter G

    2009-01-01

    Tyrosine sulfation is an important post-translational modification that occurs in higher eukaryotes and is involved in cell-cell communication, viral entry and adhesion. We describe a protocol for the heterologous expression of selectively tyrosine-sulfated proteins in Escherichia coli through the use of an expanded genetic code that co-translationally inserts sulfotyrosine in response to the amber nonsense codon, TAG. The components required for this process, an orthogonal aminoacyl-tRNA synthetase specific for sulfotyrosine and its cognate orthogonal tRNA that recognizes the amber codon, are encoded on the plasmid pSUPAR6-L3-3SY, and their use, along with a simple chemical synthesis of sulfotyrosine, are outlined in this protocol. Specifically, the gene for a protein of interest is mutated such that the codon corresponding to the desired location of tyrosine sulfate is TAG. Co-transformation of an expression vector containing this gene and pSUPAR6-L3-3SY into an appropriate E. coli strain allows the overexpression of the site-specifically sulfated protein with high efficiency and fidelity. The resulting protein contains tyrosine sulfate at any location specified by a TAG codon, making this method significantly simpler and more versatile than competing methods such as in vitro enzymatic sulfation, chemical sulfation and peptide synthesis. Once the proper expression vectors are cloned, our protocol should allow the production of the desired sulfated proteins in <1 week.

  17. Greater Sensitivity of Blood Pressure Than Renal Toxicity to Tyrosine Kinase Receptor Inhibition With Sunitinib

    DEFF Research Database (Denmark)

    Lankhorst, Stephanie; Baelde, Hans J; Kappers, Mariëtte H W

    2015-01-01

    Hypertension and renal injury are off-target effects of sunitinib, a tyrosine kinase receptor inhibitor used for the treatment of various tumor types. Importantly, these untoward effects are accompanied by activation of the endothelin system. Here, we set up a study to explore the dose dependency...

  18. Multiple forms of the human tyrosine phosphatase RPTP alpha. Isozymes and differences in glycosylation

    DEFF Research Database (Denmark)

    Daum, G; Regenass, S; Sap, J

    1994-01-01

    Among all the receptor-linked protein-tyrosine-phosphatase RPTP alpha clones described from mammalian tissues, one differed in that it encoded a 9-amino-acid insert 3 residues upstream from the transmembrane segment (Kaplan, R., Morse, B., Huebner, K., Croce, C., Howk, R. Ravera, M., Ricca, G...

  19. No Tryptophan, Tyrosine and Phenylalanine Abnormalities in Children with Attention-Deficit/Hyperactivity Disorder

    NARCIS (Netherlands)

    Bergwerff, C.E.; Luman, M.; Blom, H.J.; Oosterlaan, J.

    2016-01-01

    Background The aim of the current study was to explore the role of aromatic amino acids (AAAs) in blood in relation to attention-deficit/hyperactivity disorder (ADHD). Given their impact on the synthesis of serotonin and dopamine, decreased concentrations of the AAAs tryptophan, tyrosine and

  20. Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, Greg P.; Rajapaksa, Ranjani; Liu, Raymond; Sharpe, Orr; Kuo, Chiung-Chi; Wald Krauss, Sharon; Sagi, Yael; Davis, R. Eric; Staudt, Louis M.; Sharman, Jeff P.; Robinson, William H.; Levy, Shoshana

    2009-06-09

    CD81 is a tetraspanin family member involved in diverse cellular interactions in the immune and nervous systems and in cell fusion events. However, the mechanism of action of CD81 and of other tetraspanins has not been defined. We reasoned that identifying signaling molecules downstream of CD81 would provide mechanistic clues. We engaged CD81 on the surface of Blymphocytes and identified the induced tyrosine-phosphorylated proteins by mass spectrometry. This analysis showed that the most prominent tyrosine phosphorylated protein was ezrin, an actin binding protein and a member of the ezrin-radixin-moesin family. We also found that CD81 engagement induces spleen tyrosine kinase (Syk) and that Syk was involved in tyrosine phosphorylation of ezrin. Ezrin colocalized with CD81 and F-actin upon stimulation and this association was disrupted when Syk activation was blocked. Taken together, these studies suggest a model in which CD81 interfaces between the plasma membrane and the cytoskeleton by activating Syk, mobilizing ezrin, and recruiting F-actin to facilitate cytoskeletal reorganization and cell signaling. This may be a mechanism explaining the pleiotropic effects induced in response to stimulating cells by anti-CD81 antibodies or by the hepatitis C virus, which uses this molecule as its key receptor.

  1. Syndecan-2 is a novel ligand for the protein tyrosine phosphatase receptor CD148

    DEFF Research Database (Denmark)

    Whiteford, James R; Xian, Xiaojie; Chaussade, Claire

    2011-01-01

    Syndecan-2 is a heparan sulfate proteoglycan that has a cell adhesion regulatory domain contained within its extracellular core protein. Cell adhesion to the syndecan-2 extracellular domain (S2ED) is ß1 integrin dependent; however, syndecan-2 is not an integrin ligand. Here the protein tyrosine p...

  2. Mild impairment of motor nerve repair in mice lacking PTP-BL tyrosine phosphatase activity.

    NARCIS (Netherlands)

    Wansink, D.G.; Peters, W.J.M; Schaafsma, I.; Sutmuller, R.P.M.; Oerlemans, F.T.J.J.; Adema, G.J.; Wieringa, B.; Zee, C.E.E.M. van der; Hendriks, W.J.A.J.

    2004-01-01

    Mouse PTP-BL is a large, nontransmembrane protein tyrosine phosphatase of unclear physiological function that consists of a KIND domain, a FERM domain, five PDZ domains, and a COOH-terminal catalytic PTP domain. PTP-BL and its human ortholog PTP-BAS have been proposed to play a role in the

  3. Expression of protein-tyrosine phosphatases in the major insulin target tissues

    DEFF Research Database (Denmark)

    Norris, K; Norris, F; Kono, D H

    1997-01-01

    Protein-tyrosine phosphatases (PTPs) are key regulators of the insulin receptor signal transduction pathway. We have performed a detailed analysis of PTP expression in the major human insulin target tissues or cells (liver, adipose tissue, skeletal muscle and endothelial cells). To obtain a repre...

  4. Overall survival after immunotherapy, tyrosine kinase inhibitors and surgery in treatment of metastatic renal cell cancer

    DEFF Research Database (Denmark)

    de Lichtenberg, Trine Honnens; Hermann, Gregers G.; Rorth, Mikael

    2014-01-01

    Abstract Objective. The aim of this study was to evaluate overall survival (OS) after treatment of metastatic renal cell carcinoma (mRCC) following the introduction of tyrosine kinase inhibitors (TKIs) and mammalian target of rapamycin (mTOR) inhibitors. Material and methods. One-hundred and forty...

  5. Brain tumors : L-[1-C-11]tyrosine PET for visualization and quantification of protein synthesis rate

    NARCIS (Netherlands)

    Pruim, J; Willemsen, A T; Molenaar, W M; Waarde, A van; Paans, A M; Heesters, M A; Go, K G; Visser, Gerben; Franssen, E J; Vaalburg, W

    1995-01-01

    PURPOSE: Positron emission tomography (PET) with the amino acid tracer L-[1-C-11]-tyrosine was evaluated in 27 patients with primary and recurrent brain tumors. MATERIALS AND METHODS: Patients underwent either static (n = 14) or dynamic PET (n = 13), with quantification of protein synthesis rate

  6. Tyrosine hydroxylase polymorphism (C-824T) and hypertension: a population-based study

    DEFF Research Database (Denmark)

    Nielsen, Søren J; Jeppesen, Jørgen Lykke; Torp-Pedersen, Christian

    2010-01-01

    Sympathetic nervous system (SNS) overactivity is present in a large proportion of the hypertensive population and precedes the development of established hypertension. Variations in the proximal promoter of the tyrosine hydroxylase (TH) gene have been shown to influence biochemical and physiologi...

  7. Detection of oral dysplasia in animals with fluorine-18-FDG and carbon-11-tyrosine

    NARCIS (Netherlands)

    Braams, JW; Witjes, MJH; Nooren, CAAM; Nikkels, PGJ; Vaalburg, W; Vermey, A; Roodenburg, JLN

    The uptake of F-18-fluorodeoxyglucose (FDG) and L-[1-C-11]tyrosine (TYR) was investigated in male Wistar albino rats with chemically induced dysplasia and oral squamous cell carcinoma (SCC) to correlate the uptake values with the grade of dysplasia, Methods: The palates of 54 rats was painted three

  8. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction

    NARCIS (Netherlands)

    Green, J.; Nusse, R.; van Amerongen, R.

    2014-01-01

    Receptor tyrosine kinases of the Ryk and Ror families were initially classified as orphan receptors because their ligands were unknown. They are now known to contain functional extracellular Wnt-binding domains and are implicated in Wnt-signal transduction in multiple species. Although their

  9. Detection of tyrosine hydroxylase in dopaminergic neuron cell using gold nanoparticles-based barcode DNA.

    Science.gov (United States)

    An, Jeung Hee; Oh, Byung-Keun; Choi, Jeong Woo

    2013-04-01

    Tyrosine hydroxylase, the rate-limiting enzyme of catecholamine biosysthesis, is predominantly expressed in several cell groups within the brain, including the dopaminergic neurons of the substantia nigra and ventral tegmental area. We evaluated the efficacy of this protein-detection method in detecting tyrosine hydroxylase in normal and oxidative stress damaged dopaminergic cells. In this study, a coupling of DNA barcode and bead-based immnunoassay for detecting tyrosine hydroxylaser with PCR-like sensitivity is reported. The method relies on magnetic nanoparticles with antibodies and nanoparticles that are encoded with DNA and antibodies that can sandwich the target protein captured by the nanoparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated to remove the conjugated barcode DNA. The DNA barcodes were identified by PCR analysis. The concentration of tyrosine hydroxylase in dopaminergic cell can be easily and rapidly detected using bio-barcode assay. The bio-barcode assay is a rapid and high-throughput screening tool to detect of neurotransmitter such as dopamine.

  10. A comparison of tyrosine against placebo, phentermine, caffeine, and D-amphetamine during sleep deprivation.

    Science.gov (United States)

    Waters, William F; Magill, Richard A; Bray, George A; Volaufova, Julia; Smith, Steven R; Lieberman, Harris R; Rood, Jennifer; Hurry, Mark; Anderson, Tai; Ryan, Donna H

    2003-08-01

    Sleep deprivation can impair alertness and cognitive and motor performance. We hypothesized that the amino acid tyrosine might reduce deleterious effects of sleep deprivation. Seventy-six healthy males, age 18-35 years, participated in a four-day protocol that included a habituation night, a baseline night, a 40.5 h period without sleep, and a recovery night. Tyrosine 150 mg/kg, caffeine 300 mg/70 kg, phentermine 37.5 mg, D-amphetamine 20 mg and placebo were administered in a double-blind, randomized fashion to compare their effects on the time it took to fall asleep, on endocrine responses during sleep deprivation, and on sleep quantity, quality and architecture as measured by polysomnography during recovery sleep. When given after 36 h without sleep, tyrosine had no significant effect on any parameter of sleep. D-amphetamine produced marked decrease in sleep drive but caused deleterious effects on many aspects of recovery sleep. Still, D-amphetamine was associated with increased alertness on the first recovery day. Phentermine and caffeine both decreased sleep drive during sleep deprivation, but phentermine impaired rapid-eye-movement (REM) recovery sleep. Tyrosine (when compared to placebo) had no effect on any sleep related measure, but it did stimulate prolactin release.

  11. Fragment-based lead discovery of small molecule inhibitors for the EPHA4 receptor tyrosine kinase

    NARCIS (Netherlands)

    van Linden, O.P.J.; Farenc, C; Zoutman, W.H.; Hameetman, L; Wijtmans, M.; Leurs, R.; Tensen, C.P.; Siegal, G.; de Esch, I.J.P.

    2011-01-01

    The in silico identification, optimization and crystallographic characterization of a 6,7,8,9-tetrahydro-3H-pyrazolo[3,4-c]isoquinolin-1-amine scaffold as an inhibitor for the EPHA4 receptor tyrosine kinase is described. A database containing commercially available compounds was subjected to an in

  12. Carbon-11 labelled tyrosine to study tumor metabolism by positron emission tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Bolster, J.M.; Vaalburg, W.; Paans, A.M.J.; Dijk, T.H. van; Elsinga, P.H.; Zijlstra, J.B.; Piers, D.A.; Mulder, N.H.; Woldring, M.G.; Wynberg, H.

    1986-10-01

    To measure the rate of protein synthesis in human neoplasms by positron emission tomography, we prepared no carrier added DL-(1-/sup 11/C)-tyrosine by /sup 11/C-carboxylation of the appropriate ..cap alpha..-lithioisocyanide followed by hydrolysis of the isocyanide function and removal of the protecting methoxy group. The purification, resolution and solvent switch to saline was performed by high performance liquid chromatography (HPLC). DL-(1-/sup 11/C)-Tyrosine in 0.1 N NaH/sub 2/PO/sub 4/ buffer was prepared with a radiochemical yield of 8%-16% (EOS, 35 min). The enantiometric separation and solvent switch to saline were achieved in 5 min and 10 min respectively. Consequently l-(1-/sup 11/C)-tyrosine in physiological saline was obtained in 2%-4% radiochemical yield. Tumor accumulation in rats with the experimental WALKER 256 carcinosarcoma was observed for both the L- and D-isomer. Using positron emission tomography a tumor/muscle ratio of two was observed for the L-isomer 15 min after injection. The corresponding figure for the D-isomer was 2.5. The first clinical results with DL-(1-/sup 11/C)-tyrosine show accumulation of radioactivity in meningioma, a primary breast carcinoma and in liver metastases of a colonic carcinoma.

  13. Expression patterns of Src-family tyrosine kinases during Xenopus laevis development

    Czech Academy of Sciences Publication Activity Database

    Ferjentsik, Zoltán; Šindelka, Radek; Jonák, Jiří

    2009-01-01

    Roč. 53, č. 1 (2009), s. 163-168 ISSN 0214-6282 R&D Projects: GA ČR GA301/02/0408 Institutional research plan: CEZ:AV0Z50520514 Keywords : Xenopus laevis * Src-tyrosine kinases * embryonic development Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.161, year: 2009

  14. Lipedema – lack of evidence for the involvement of tyrosine kinases.

    Science.gov (United States)

    Schneble, N; Wetzker, R; Wollina, U

    2016-01-01

    Lipedema is a chronic disorder characterized by abnormal distribution of subcutaneous adipose tissue on the proximal extremities, pain and capillary fragility. Its etiology is unknown but in analogy to central obesity, chronic low-level inflammation in adipose tissue has been suggested. There seems to be an increased propagation of pre-adipocytes into mature adipocytes contributing to the massive enlargement of subcutaneous adipose tissue. We investigated whether tyrosine kinases might be involved. Proteins from adipose tissue harvested during microcannular tumescent liposuction in lipedema and in lipomas were subjected to 10% polyacrylamide-gel, transferred to a polyvinylidenfluorid membrane and immunoblotted with indicated P-Tyr-100 antibody followed by enhanced chemiluminescence reaction. A survey of all blots did not reveal tyrosine-phosphorylated proteins with a molecular weight >100 kD in lipedema tissue and controls. These investigations suggest absence of activated growth factor receptors. Some signals indicating unspecific tyrosine-phosphorylation of smaller proteins were detected in tissue of both lipedema patients and controls. The present data suggest that there is no enduring activation of tyrosine kinase pathways of adipogenesis in lipedema as in lipoma controls.

  15. PTP-S2, a nuclear tyrosine phosphatase, is phosphorylated and ...

    Indian Academy of Sciences (India)

    PTP-S2 is a tyrosine specific protein phosphatase that binds to DNA and is localized to the nucleus in association with chromatin. It plays a role in the regulation of cell proliferation. Here we show that the subcellular distribution of this protein changes during cell division. While PTP-S2 was localized exclusively to the ...

  16. Emerging issues in receptor protein tyrosine phosphatase function: lifting fog or simply shifting?

    DEFF Research Database (Denmark)

    Petrone, A; Sap, J

    2000-01-01

    Transmembrane (receptor) tyrosine phosphatases are intimately involved in responses to cell-cell and cell-matrix contact. Several important issues regarding the targets and regulation of this protein family are now emerging. For example, these phosphatases exhibit complex interactions with signal...

  17. Tyrosine Kinase Ligand-Receptor Pair Prediction by Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Masayuki Yarimizu

    2015-01-01

    Full Text Available Receptor tyrosine kinases are essential proteins involved in cellular differentiation and proliferation in vivo and are heavily involved in allergic diseases, diabetes, and onset/proliferation of cancerous cells. Identifying the interacting partner of this protein, a growth factor ligand, will provide a deeper understanding of cellular proliferation/differentiation and other cell processes. In this study, we developed a method for predicting tyrosine kinase ligand-receptor pairs from their amino acid sequences. We collected tyrosine kinase ligand-receptor pairs from the Database of Interacting Proteins (DIP and UniProtKB, filtered them by removing sequence redundancy, and used them as a dataset for machine learning and assessment of predictive performance. Our prediction method is based on support vector machines (SVMs, and we evaluated several input features suitable for tyrosine kinase for machine learning and compared and analyzed the results. Using sequence pattern information and domain information extracted from sequences as input features, we obtained 0.996 of the area under the receiver operating characteristic curve. This accuracy is higher than that obtained from general protein-protein interaction pair predictions.

  18. Essential domain of receptor tyrosine phosphatase beta (RPTPbeta) for interaction with Helicobacter pylori vacuolating cytotoxin

    DEFF Research Database (Denmark)

    Yahiro, Kinnosuke; Wada, Akihiro; Yamasaki, Eiki

    2004-01-01

    Helicobacter pylori produces a potent exotoxin, VacA, which causes progressive vacuolation as well as gastric injury. Although VacA was able to interact with two receptor-like protein tyrosine phosphatases, RPTPbeta and RPTPalpha, RPTPbeta was found to be responsible for gastric damage caused...

  19. phenylalanine and l-tyrosine as chiral micellar media for the cat

    African Journals Online (AJOL)

    ABSTRACT. The effect of a range of O-alkyl ester hydrochloride surfactants derived from L-phenylalanine and. L-tyrosine as catalysts on the Diels-Alder reaction between cyclopentadiene and methyl acrylate was studied. Both chain lengths (C8-C14) and head groups of the surfactants were found to influence the yield and ...

  20. Ultrafast Spectroscopic and AB Initio Computational Investigations on Solvation Dynamics of Neutral and Deprotonated Tyrosine.

    Science.gov (United States)

    Fujiwara, Takashige; Zgierski, Marek Z.

    2015-06-01

    We have studied one of the aromatic amino acids, tyrosine, regarding its photophysical properties in various solvent conditions by using a femtosecond fluorescence up-conversion technique and high-level TDDFT and CC2 computations. In this talk, profound details not only on ultrafast solvation dynamics on a neutral tyrosine in various solvents, but also on the excited-state dynamics for a single- (or doubly-) deprotonated tyrosine under various pH solutions will be presented. In high basicity, a tyrosine shows different absorption/emission spectra, and a total spectrum consists of a combination of these individual spectra that depend on the pH of the solution. The time scale of acid--base equilibrium is essential in solvation dynamics; whereas the protonation is simply controlled by diffusion, the de-protonation is considered to be slow process such that acid--base equilibrium may not be reached in the short-lived excited state after photo-excitation. Experimental and computational approaches taken and insights obtained in this concerted work will be described.

  1. Response to Comment on "Positive Selection of Tyrosine Loss in Metazoan Evolution"

    DEFF Research Database (Denmark)

    Tan, Chris Soon Heng; Schoof, Erwin; Creixell, Pau

    2011-01-01

    Su et al. claim guanine-cytosine (GC) content variation can largely explain the observed tyrosine frequency variation, independent of adaptive evolution of cell-signaling complexity. We found that GC content variation, in the absence of selection for amino acid changes, can only maximally account...

  2. Domains of the growth hormone receptor required for association and activation of JAK2 tyrosine kinase

    DEFF Research Database (Denmark)

    VanderKuur, J A; Wang, X; Zhang, L

    1994-01-01

    Growth hormone (GH) has recently been shown to activate the GH receptor (GHR)-associated tyrosine kinase JAK2. In the present study, regions of the GHR required for JAK2 association with GHR were identified. GH-dependent JAK2 association with GHR was detected in Chinese hamster ovary (CHO) cells...

  3. Efficacy of HER2-targeted therapy in metastatic breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors

    DEFF Research Database (Denmark)

    Nielsen, Dorte L; Kümler, Iben; Palshof, Jesper Andreas

    2013-01-01

    Therapies targeting the human epidermal growth factor receptor (HER) 2 are effective in metastatic breast cancer (MBC). We review the efficacy of HER2-directed therapies, focussing on monoclonal antibodies and tyrosine kinase inhibitors targeting HER2 that have been tested in phase II-III studies...

  4. The CD45 protein tyrosine phosphatase is required for the completion of the activation program leading to lymphokine production in the Jurkat human T cell line

    NARCIS (Netherlands)

    Peyron, J. F.; Verma, S.; de Waal Malefyt, R.; Sancho, J.; Terhorst, C.; Spits, H.

    1991-01-01

    Stimulation of the T cell antigen receptor, TCR-CD3, induces tyrosine phosphorylation of specific cellular proteins through activation of a tyrosine kinase. The possible regulatory role of the CD45 protein tyrosine phosphatase in this process was explored by studying the functional properties of

  5. Importance of the content and localization of tyrosine residues for thyroxine formation within the N-terminal part of human thyroglobulin

    NARCIS (Netherlands)

    den Hartog, M. T.; Sijmons, C. C.; Bakker, O.; Ris-Stalpers, C.; de Vijlder, J. J.

    1995-01-01

    Thyroxine (T4) is formed by coupling of iodinated tyrosine residues within thyroglobulin (TG). In mature TG, some iodinated tyrosine residues are involved preferentially in T4 formation. In order to investigate the specific role of various tyrosine residues in T4 formation, N-terminal TG fragments

  6. Analysis of tyrosine phosphorylation and phosphotyrosine-binding proteins in germinating seeds from Scots pine.

    Science.gov (United States)

    Kovaleva, Valentina; Cramer, Rainer; Krynytskyy, Hryhoriy; Gout, Ivan; Gout, Roman

    2013-06-01

    Protein tyrosine phosphorylation in angiosperms has been implicated in various physiological processes, including seed development and germination. In conifers, the role of tyrosine phosphorylation and the mechanisms of its regulation are yet to be investigated. In this study, we examined the profile of protein tyrosine phosphorylation in Scots pine seeds at different stages of germination. We detected extensive protein tyrosine phosphorylation in extracts from Scots pine (Pinus sylvestris L.) dormant seeds. In addition, the pattern of tyrosine phosphorylation was found to change significantly during seed germination, especially at earlier stages of post-imbibition which coincides with the initiation of cell division, and during the period of intensive elongation of hypocotyls. To better understand the molecular mechanisms of phosphotyrosine signaling, we employed affinity purification and mass spectrometry for the identification of pTyr-binding proteins from the extracts of Scots pine seedlings. Using this approach, we purified two proteins of 10 and 43 kDa, which interacted specifically with pTyr-Sepharose and were identified by mass spectrometry as P. sylvestris defensin 1 (PsDef1) and aldose 1-epimerase (EC:5.1.3.3), respectively. Additionally, we demonstrated that both endogenous and recombinant PsDef1 specifically interact with pTyr-Sepharose, but not Tyr-beads. As the affinity purification approach did not reveal the presence of proteins with known pTyr binding domains (SH2, PTB and C2), we suggest that plants may have evolved a different mode of pTyr recognition, which yet remains to be uncovered. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. Tyrosine kinase inhibitor therapy can cure chronic myeloid leukemia without hitting leukemic stem cells

    Science.gov (United States)

    Lenaerts, Tom; Pacheco, Jorge M.; Traulsen, Arne; Dingli, David

    2010-01-01

    Background Tyrosine kinase inhibitors, such as imatinib, are not considered curative for chronic myeloid leukemia – regardless of the significant reduction of disease burden during treatment – since they do not affect the leukemic stem cells. However, the stochastic nature of hematopoiesis and recent clinical observations suggest that this view must be revisited. Design and Methods We studied the natural history of a large cohort of virtual patients with chronic myeloid leukemia under tyrosine kinase inhibitor therapy using a computational model of hematopoiesis and chronic myeloid leukemia that takes into account stochastic dynamics within the hematopoietic stem and early progenitor cell pool. Results We found that in the overwhelming majority of patients the leukemic stem cell population undergoes extinction before disease diagnosis. Hence leukemic progenitors, susceptible to tyrosine kinase inhibitor attack, are the natural target for chronic myeloid leukemia treatment. Response dynamics predicted by the model closely match data from clinical trials. We further predicted that early diagnosis together with administration of tyrosine kinase inhibitor opens the path to eradication of chronic myeloid leukemia, leading to the wash out of the aberrant progenitor cells, ameliorating the patient’s condition while lowering the risk of blast transformation and drug resistance. Conclusions Tyrosine kinase inhibitor therapy can cure chronic myeloid leukemia, although it may have to be prolonged. The depth of response increases with time in the vast majority of patients. These results illustrate the importance of stochastic effects on the dynamics of acquired hematopoietic stem cell disorders and have direct relevance for other hematopoietic stem cell-derived diseases. PMID:20007137

  8. Ethyl p-methoxycinnamate from Kaempferia galanga inhibits angiogenesis through tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Juni Ekowati

    2015-04-01

    Full Text Available Background Many tumors express on their receptor tyrosine kinases vascular endothelial growth factor activity associated with angiogenesis. Inhibition of angiogenesis through reduction of tyrosine kinase activity is a promising strategy for cancer therapy. The present study aimed to determine the mechanism and potency of ethyl p-methoxycinnamate (EPMC isolated from Kaempferia galanga as angiogenesis inhibitor. Methods A laboratory experimental study was conducted using chorio-allantoic membranes (CAMs of nine-day old chicken eggs induced by 60ng basic fibroblast growth factor (bFGF. Ethyl p-methoxycinnamate (EPMC potency was determined at dosages of 30, 60, 90 and 120 mg and compared with celecoxib 60 mg as reference drug and one negative bFGF-induced control group. Neovascularization and endothelial cell count in CAM blood vessels were evaluated. To predict the antiangiogenic mechanism of EPMC, a docking study was performed with the Molegro Virtual Docker program on tyrosine kinase as receptor (PDB 1XKK. Results Angiogenesis stimulation by bFGF was prevented significantly (p<0.05 by EPMC at dosages of 30, 60, 90 and 120 mg and this activity was dose dependent. Molecular docking showed interaction between EPMC functional groups and tyrosine kinase amino acids at Met766, Met793, Thr854, Thr790, Gln791 and Ala743. There was an association between EPMC antiangiogenic activity and docking study results. Conclusions Ethyl p-methoxycinnamate is a potential new angiogenesis inhibitor through interaction with tyrosine kinase. EPMC could be a promising therapeutic agent for treatment of angiogenesis-related diseases.

  9. BCR-ABL1 tyrosine kinase inhibitors for the treatment of chronic myeloid leukemia.

    Science.gov (United States)

    Cuellar, Sandra; Vozniak, Michael; Rhodes, Jill; Forcello, Nicholas; Olszta, Daniel

    2017-01-01

    The management of chronic myeloid leukemia with BCR-ABL1 tyrosine kinase inhibitors has evolved chronic myeloid leukemia into a chronic, manageable disease. A patient-centered approach is important for the appropriate management of chronic myeloid leukemia and optimization of long-term treatment outcomes. The pharmacist plays a key role in treatment selection, monitoring drug-drug interactions, identification and management of adverse events, and educating patients on adherence. The combination of tyrosine kinase inhibitors with unique safety profiles and individual patients with unique medical histories can make managing treatment difficult. This review will provide up-to-date information regarding tyrosine kinase inhibitor-based treatment of patients with chronic myeloid leukemia. Management strategies for adverse events and considerations for drug-drug interactions will not only vary among patients but also across tyrosine kinase inhibitors. Drug-drug interactions can be mild to severe. In instances where co-administration of concomitant medications cannot be avoided, it is critical to understand how drug levels are impacted and how subsequent dose modifications ensure therapeutic drug levels are maintained. An important component of patient-centered management of chronic myeloid leukemia also includes educating patients on the significance of early and regular monitoring of therapeutic milestones, emphasizing the importance of adhering to treatment in achieving these targets, and appropriately modifying treatment if these clinical goals are not being met. Overall, staying apprised of current research, utilizing the close pharmacist-patient relationship, and having regular interactions with patients, will help achieve successful long-term treatment of chronic myeloid leukemia in the age of BCR-ABL1 tyrosine kinase inhibitors.

  10. Phosphatidylinositol 3'-kinase and tyrosine-phosphatase activation positively modulate Convulxin-induced platelet activation. Comparison with collagen.

    Science.gov (United States)

    Lagrue, A H; Francischetti, I M; Guimarães, J A; Jandrot-Perrus, M

    1999-04-01

    In this report we have studied the role of phosphatidylinositol 3'-kinase (PI3-K) and tyrosine phosphatase activation on platelet activation by Convulxin (Cvx). Wortmannin, a specific PI3-K inhibitor, and phenylarsine oxide (PAO), a sulfhydryl reagent that inhibits tyrosine phosphatase (PTPase), block Cvx-induced platelet aggregation, granule secretion, inositol phosphate production, and increase in [Ca2+]i. However, PAO does not inhibit Cvx-induced tyrosine phosphorylation of platelet proteins, including Syk and PLCgamma2, but blocked collagen-induced platelet aggregation as well as tyrosine phosphorylation of PLCgamma2. In contrast, Cvx-induced PLCgamma2 tyrosyl phosphorylation was partially inhibited by wortmannin. We conclude that (i) although Cvx and collagen activate platelets by a similar mechanism, different regulatory processes are specific to each agonist; (ii) mechanisms other than tyrosine phosphorylation regulate PLCgamma2 activity; and (iii) besides protein tyrosine kinases, PI3-K (and PTPase) positively modulate platelet activation by both Cvx and collagen, and this enzyme is required for effective transmission of GPVI-Fc receptor gamma chain signal to result in full activation and tyrosine phosphorylation of PLCgamma2 in Cvx-stimulated platelets.

  11. Chiral recognition of tyrosine enantiomers based on decreased resonance scattering signals with silver nanoparticles as optical sensor.

    Science.gov (United States)

    Tan, Xuanping; Li, Qin; Shen, Yizhong; Wu, Huan; Zhao, Yanmei; Yang, Jidong

    2015-03-01

    A novel chiral sensing platform, employing silver nanoparticles capped with N-acetyl-L-cysteine (NALC-Ag NPs), was utilized for the discrimination of L-tyrosine and D-tyrosine. This nanosensor, which could be used as an optical sensing unit and chiral probe, was characterized by transmission electron microscopy (TEM) and resonance Rayleigh scattering (RRS) spectroscopy. After the proposed sensing platform interacted with L-tyrosine and D-tyrosine, a decreased resonance scattering signal was only obtained from L-tyrosine. This phenomenon offered a useful assay for the selectivity and determination of L-tyrosine with the RRS method. The linear range and detection limit of L-tyrosine were 0.2838-20.0 µg⋅mL(-1) and 0.0860 µg⋅mL(-1) , respectively. In addition, experimental factors such as acidity, interaction time, and the concentration of enantiomers were investigated with regard to the effect on enantioselective interaction. © 2014 Wiley Periodicals, Inc.

  12. RPTPα-mediated activation of Src

    NARCIS (Netherlands)

    Vacaru, A.M.

    2010-01-01

    One of the main signal transduction mechanisms in all eukaryotic organisms is tyrosine phosphorylation. The cellular levels of tyrosine phosphorylation are tightly controlled by the activity of two classes of enzymes with opposing activities: the protein-tyrosine kinases (PTKs) and the

  13. Interferon-alpha signalling in bovine adrenal chromaffin cells: involvement of signal-transducer and activator of transcription 1 and 2, extracellular signal-regulated protein kinases 1/2 and serine 31 phosphorylation of tyrosine hydroxylase.

    Science.gov (United States)

    Douglas, S A; Bunn, S J

    2009-03-01

    Adrenal medullary chromaffin cells are an integral part of the neuroendocrine system, playing an important role in the physiological adaptation to stress. In response to a wide variety of stimuli, including acetylcholine released from the splanchnic nerve, hormones such as angiotensin II or paracrine signals such as prostaglandins, chromaffin cells synthesise and secrete catecholamines and a number of biologically active peptides. This adrenal medullary output mediates a complex and diverse stress response. We report that chromaffin cells also respond both acutely and chronically to interferon (IFN)-alpha, thus providing a mechanism of interaction between the immune system and the stress response. Incubation of isolated bovine chromaffin cells maintained in culture, with IFN-alpha resulted in a rapid, transient activation of the extracellular signal-regulated protein kinase (ERK)1/2, which was maximal after 5 min. IFN-alpha mediated activation of ERK1/2 appeared to be responsible for the increased phosphorylation of tyrosine hydroxylase, the rate-limiting enzyme in catecholamine synthesis. This tyrosine hydroxylase phosphorylation was exclusively on serine 31, with no change in the phosphorylation of serine 19 or 40. This increase in the serine 31 phosphorylation of tyrosine hydroxylase was prevented by inhibition of protein kinase C or ERK1/2 activation. Incubation with IFN-alpha also resulted in a time- and concentration-dependent phosphorylation and nuclear translocation of signal transducer and activator of transcription proteins (STAT)1 and 2. This response was maximal after approximately 60 min. Prolonged treatment with IFN-alpha (12-48 h) resulted in increased expression of STAT1 and, to a lesser extent, STAT2. Thus, these findings demonstrate that adrenal medullary chromaffin cells are responsive to IFN-alpha and provide a possible cellular mechanism by which this immune-derived signal can potentially influence and integrate with the stress response.

  14. Rhizobiales-like Phosphatase 2 from Arabidopsis thaliana Is a Novel Phospho-tyrosine-specific Phospho-protein Phosphatase (PPP) Family Protein Phosphatase.

    Science.gov (United States)

    Uhrig, R Glen; Labandera, Anne-Marie; Muhammad, Jamshed; Samuel, Marcus; Moorhead, Greg B

    2016-03-11

    Cellular signaling through protein tyrosine phosphorylation is well established in mammalian cells. Although lacking the classic tyrosine kinases present in humans, plants have a tyrosine phospho-proteome that rivals human cells. Here we report a novel plant tyrosine phosphatase from Arabidopsis thaliana (AtRLPH2) that, surprisingly, has the sequence hallmarks of a phospho-serine/threonine phosphatase belonging to the PPP family. Rhizobiales/Rhodobacterales/Rhodospirillaceae-like phosphatases (RLPHs) are conserved in plants and several other eukaryotes, but not in animals. We demonstrate that AtRLPH2 is localized to the plant cell cytosol, is resistant to the classic serine/threonine phosphatase inhibitors okadaic acid and microcystin, but is inhibited by the tyrosine phosphatase inhibitor orthovanadate and is particularly sensitive to inhibition by the adenylates, ATP and ADP. AtRLPH2 displays remarkable selectivity toward tyrosine-phosphorylated peptides versus serine/threonine phospho-peptides and readily dephosphorylates a classic tyrosine phosphatase protein substrate, suggesting that in vivo it is a tyrosine phosphatase. To date, only one other tyrosine phosphatase is known in plants; thus AtRLPH2 represents one of the missing pieces in the plant tyrosine phosphatase repertoire and supports the concept of protein tyrosine phosphorylation as a key regulatory event in plants. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Borrelia-induced cytokine production is mediated by spleen tyrosine kinase (Syk) but is Dectin-1 and Dectin-2 independent

    NARCIS (Netherlands)

    Oosting, M.; Buffen, K.; Cheng, S.C.; Verschueren, I.C.; Koentgen, F.; Veerdonk, F.L. van de; Netea, M.G.; Joosten, L.A.B.

    2015-01-01

    Although it is known that Borrelia species express sugar-like structures on their outer surface, not much is known about the role of these structures in immune recognition by host cells. Fungi, like Candida albicans, are mainly recognized by C-type lectin receptors, in specific Dectin-1 and

  16. c-Abl Mediated Tyrosine Phosphorylation of Aha1 Activates Its Co-chaperone Function in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Diana M. Dunn

    2015-08-01

    Full Text Available The ability of Heat Shock Protein 90 (Hsp90 to hydrolyze ATP is essential for its chaperone function. The co-chaperone Aha1 stimulates Hsp90 ATPase activity, tailoring the chaperone function to specific “client” proteins. The intracellular signaling mechanisms directly regulating Aha1 association with Hsp90 remain unknown. Here, we show that c-Abl kinase phosphorylates Y223 in human Aha1 (hAha1, promoting its interaction with Hsp90. This, consequently, results in an increased Hsp90 ATPase activity, enhances Hsp90 interaction with kinase clients, and compromises the chaperoning of non-kinase clients such as glucocorticoid receptor and CFTR. Suggesting a regulatory paradigm, we also find that Y223 phosphorylation leads to ubiquitination and degradation of hAha1 in the proteasome. Finally, pharmacologic inhibition of c-Abl prevents hAha1 interaction with Hsp90, thereby hypersensitizing cancer cells to Hsp90 inhibitors both in vitro and ex vivo.

  17. Dynactin binding to tyrosinated microtubules promotes centrosome centration in C. elegans by enhancing dynein-mediated organelle transport

    OpenAIRE

    Barbosa, Daniel J.; Duro, Joana; Prevo, Bram; Cheerambathur, Dhanya K.; Carvalho, Ana X.; Gassmann, Reto

    2017-01-01

    Author summary Animal cells rely on molecular motor proteins to distribute intracellular components and organize their cytoplasmic content. The motor cytoplasmic dynein 1 (dynein) uses microtubule filaments as tracks to transport cargo from the cell periphery to the cell center, where the microtubule minus ends are embedded at the centrosome. Conversely, when dynein is anchored at the cell cortex or on organelles in the cytoplasm, the motor can pull on microtubules to position centrosomes wit...

  18. Receptor Protein Tyrosine Phosphatase α-Mediated Enhancement of Rheumatoid Synovial Fibroblast Signaling and Promotion of Arthritis in Mice

    NARCIS (Netherlands)

    Stanford, Stephanie M; Svensson, Mattias N D; Sacchetti, Cristiano; Pilo, Caila A; Wu, Dennis J; Kiosses, William B; Hellvard, Annelie; Bergum, Brith; Muench, German R Aleman; Elly, Christian; Liu, Yun-Cai; den Hertog, Jeroen; Elson, Ari; Sap, Jan; Mydel, Piotr; Boyle, David L; Corr, Maripat; Firestein, Gary S; Bottini, Nunzio

    OBJECTIVE: During rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLS) critically promote disease pathogenesis by aggressively invading the extracellular matrix of the joint. The focal adhesion kinase (FAK) signaling pathway is emerging as a contributor to the anomalous behavior of RA FLS.

  19. Identification and Targeting of Upstream Tyrosine Kinases Mediating PI3 Kinase Activation in PTEN Deficient Prostate Cancer

    Science.gov (United States)

    2011-06-01

    277 27. Pacold,M. E., Suire, S., Perisic, O., Lara - Gonzalez , S., Davis, C. T.,Walker, E. H., Hawkins, P. T., Stephens, L., Eccleston, J. F., and...Peskett, E., Sancho, S., Smith, A. J., Withers, D. J., and Vanhaesebroeck, B. (2006) Nature 441, 366–370 36. Knight, Z. A., Gonzalez , B., Feldman, M. E

  20. Classification of binding site conformations of protein tyrosine phosphatase 1B.

    Science.gov (United States)

    Tanchuk, Vsevolod Yu; Tanin, Volodymyr O; Vovk, Andriy I

    2012-07-01

    Hundred and two binding sites from 91 Protein Data Bank files for protein tyrosine phosphatase 1B with different ligands have been compared. It was found that they can be divided into five clusters. Additional clusters were formed by the unliganded and oxidized enzyme. The centroids of the clusters can be used as starting points for further studies of enzyme-inhibitor interaction by computer simulations. A special software tool has been created for the investigation of protein tyrosine phosphatase 1B and other enzymes. It performs multiple comparisons of selected parts of Protein Data Bank files, as well as further clustering, and determines mobility of separate residues. © 2012 John Wiley & Sons A/S.

  1. Alteration of radiation response by two tyrosine kinase inhibitors: STI571 (Glivec) and BIBW 2992

    International Nuclear Information System (INIS)

    Huguet, F.

    2010-01-01

    Concurrent chemo-radiation is one of the main weapon in the treatment of cancer. The targeted therapies may act on the mechanisms of tumor resistance to radiation and are therefore very promising in combination with radiotherapy. The STI571 (imatinib or Gleevec) inhibits specifically the Bcr-Abl tyrosine kinase. It leads to radiosensitization in K562 chronic myeloid leukemia cell line by alterations of the cell cycle. The BIBW2992 is a selective inhibitor of EGFR and HER2. The BIBW 2992 shows cytotoxic and radiosensitizing effects on pancreatic adenocarcinoma cells BxPC3 and Capan-2, regardless of KRAS status. The mechanism underlying this radiosensitization is not unequivocal, involving both changes in the cell cycle and induction of mitotic death. Our results show that the combination of an inhibitor of tyrosine kinase with ionizing radiation may lead to a radiosensitization in vitro with mechanisms depending on the type of cell line. (author)

  2. Tyrosine administration enhances dopamine synthesis and release in light-activated rat retina

    Science.gov (United States)

    Gibson, C. J.; Watkins, C. J.; Wurtman, R. J.

    1983-01-01

    Exposure of dark-adapted albino rats to light (350 lux) significantly elevated retinal levels of the dopamine metabolite dihydroxyphenyl acetic acid during the next hour; their return to a dark environment caused dihydroxyphenyl acetic acid levels to fall. Retinal dopamine levels were increased slightly by light exposure, suggesting that the increase in dihydroxyphenyl acetic acid reflected accelerated dopamine synthesis. Administration of tyrosine (100 mg/kg, i.p.) further elevated retinal dihydroxyphenyl acetic acid among light-exposed animals, but failed to affect dopamine release among animals in the dark. These observations show that a physiological stimulus - light exposure - can cause catecholaminergic neurons to become tyrosine-dependent; they also suggest that food consumption may affect neurotransmitter release within the retina.

  3. How tyrosine kinase inhibitors impair metabolism and endocrine system function: a systematic updated review.

    Science.gov (United States)

    Breccia, Massimo; Molica, Matteo; Alimena, Giuliana

    2014-12-01

    Tyrosine kinase inhibitors (TKIs) advent has deeply changed the outcome of chronic myeloid leukemia (CML) patients, with improved rates of response and overall survival. However, for this success some patients paid the price of a number of peculiar side effects, the so-called off-target side effects, specific for each one TKI. These effects are due to non-selective inhibition of other tyrosine kinase receptors, such as PDGFR, c-KIT, Src, VEGF. Consequences of this inhibition, some metabolic changes during the treatment with TKIs are reported. Aim of present review is to report metabolic changes and potential mechanisms involved in the pathogenesis related to imatinib, second (nilotinib and dasatinib) and third generation (bosutinib and ponatinib) TKIs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Tyrosine kinase/phosphatase inhibitors decrease dengue virus production in HepG2 cells.

    Science.gov (United States)

    Limjindaporn, Thawornchai; Panaampon, Jutatip; Malakar, Shilu; Noisakran, Sansanee; Yenchitsomanus, Pa-Thai

    2017-01-29

    Dengue virus is the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. High rates of dengue virus replication and virion production are related to disease severity. To identify anti-DENV compounds, we performed cell-based ELISA testing to detect the level of DENV E protein expression. Among a total of 83 inhibitors, eight were identified as inhibitors with antiviral activity. Epidermal growth factor receptor inhibitor II (EGFR/ErbB-2/ErbB-4 inhibitor II) and protein tyrosine phosphatase inhibitor IV (PTP inhibitor IV) significantly inhibited dengue virus production and demonstrated low toxicity in hepatocyte cell lines. Our results suggest the efficacy of tyrosine kinase/phosphatase inhibitors in decreasing dengue virus production in HepG2 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Tyrosine binding and promiscuity in the arginine repressor from the pathogenic bacterium Corynebacterium pseudotuberculosis.

    Science.gov (United States)

    Mariutti, Ricardo Barros; Ullah, Anwar; Araujo, Gabriela Campos; Murakami, Mario Tyago; Arni, Raghuvir Krishnaswamy

    2016-07-08

    The arginine repressor (ArgR) regulates arginine biosynthesis in a number of microorganisms and consists of two domains interlinked by a short peptide; the N-terminal domain is involved in DNA binding and the C-terminal domain binds arginine and forms a hexamer made-up of a dimer of trimers. The crystal structure of the C-terminal domain of ArgR from the pathogenic Corynebacterium pseudotuberculosis determined at 1.9 Å resolution contains a tightly bound tyrosine at the arginine-binding site indicating hitherto unobserved promiscuity. Structural analysis of the binding pocket displays clear molecular adaptations to accommodate tyrosine binding suggesting the possible existence of an alternative regulatory process in this pathogenic bacterium. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Tyrosine 110 in the measles virus phosphoprotein is required to block STAT1 phosphorylation

    International Nuclear Information System (INIS)

    Devaux, Patricia; Messling, Veronika von; Songsungthong, Warangkhana; Springfeld, Christoph; Cattaneo, Roberto

    2007-01-01

    The measles virus (MV) P gene encodes three proteins: P, an essential polymerase cofactor, and C and V, which have multiple functions including immune evasion. We show here that the MV P protein also contributes to immune evasion, and that tyrosine 110 is required to block nuclear translocation of the signal transducer and activator of transcription factors (STAT) after interferon type I treatment. In particular, MV P inhibits STAT1 phosphorylation. This is shown not only by transient expression but also by reverse genetic analyses based on a new functional infectious cDNA derived from a MV vaccine vial (Moraten strain). Our study also identifies a conserved sequence around P protein tyrosine 110 as a candidate interaction site with a cellular protein

  7. Overexpression of MERTK Receptor Tyrosine Kinase in Epithelial Cancer Cells Drives Efferocytosis in a Gain-of-Function Capacity*

    Science.gov (United States)

    Nguyen, Khanh-Quynh N.; Tsou, Wen-I; Calarese, Daniel A.; Kimani, Stanley G.; Singh, Sukhwinder; Hsieh, Shelly; Liu, Yongzhang; Lu, Bin; Wu, Yi; Garforth, Scott J.; Almo, Steve C.; Kotenko, Sergei V.; Birge, Raymond B.

    2014-01-01

    MERTK, a member of the TAM (TYRO3, AXL, and MERTK) receptor tyrosine kinases, has complex and diverse roles in cell biology. On the one hand, knock-out of MERTK results in age-dependent autoimmunity characterized by failure of apoptotic cell clearance, while on the other, MERTK overexpression in cancer drives classical oncogene pathways leading to cell transformation. To better understand the interplay between cell transformation and efferocytosis, we stably expressed MERTK in human MCF10A cells, a non-tumorigenic breast epithelial cell line devoid of endogenous MERTK. While stable expression of MERTK in MCF10A resulted in enhanced motility and AKT-mediated chemoprotection, MERTK-10A cells did not form stable colonies in soft agar, or enhance proliferation compared with parental MCF10A cells. Concomitant to chemoresistance, MERTK also stimulated efferocytosis in a gain-of-function capacity. However, unlike AXL, MERTK activation was highly dependent on apoptotic cells, suggesting MERTK may preferentially interface with phosphatidylserine. Consistent with this idea, knockdown of MERTK in breast cancer cells MDA-MB 231 reduced efferocytosis, while transient or stable expression of MERTK stimulated apoptotic cell clearance in all cell lines tested. Moreover, human breast cancer cells with higher endogenous MERTK showed higher levels of efferocytosis that could be blocked by soluble TAM receptors. Finally, through MERTK, apoptotic cells induced PD-L1 expression, an immune checkpoint blockade, suggesting that cancer cells may adopt MERTK-driven efferocytosis as an immune suppression mechanism for their advantage. These data collectively identify MERTK as a significant link between cancer progression and efferocytosis, and a potentially unrealized tumor-promoting event when MERTK is overexpressed in epithelial cells. PMID:25074939

  8. Integration of Receptor Tyrosine Kinases Determines Sensitivity to PI3Kα-selective Inhibitors in Breast Cancer.

    Science.gov (United States)

    Xu, Yi-Chao; Wang, Xiang; Chen, Yi; Chen, Si-Meng; Yang, Xin-Ying; Sun, Yi-Ming; Geng, Mei-Yu; Ding, Jian; Meng, Ling-Hua

    2017-01-01

    PI3Kα-selective inhibitor BYL719 is currently in phase II/III clinical trial for the treatment of breast cancer, but highly variable response has been observed among patients. We sought to discover predictive biomarker for the efficacy of BYL719 by dissecting the proliferative signaling pathway mediated by PI3K in breast cancer. BYL719 concurrently inhibited the phosphorylation of AKT and ERK in PIK3CA -mutated human breast cancer cells. PI3K-regulated ERK phosphorylation was independent of canonical PDK1/AKT/mTOR pathway, while it was associated with RAF/MEK. Hyper-activation of EGFR or RAS abrogated inhibition of ERK phosphorylation by BYL719. Furthermore, hyper-activation of receptor tyrosine kinases (RTKs) including EGFR, c-MET, FGFR and HER3 but not IGF-1R restored ERK phosphorylation and cell viability suppressed by BYL719, suggesting the discriminative functions of RTKs in cell signaling and proliferation. By profiling 22 breast cancer cell lines, we found that BYL719 was more potent in cell lines where phosphorylation of both AKT and ERK was attenuated than those where only AKT phosphorylation was inhibited. The potency of BYL719 was further found to be significantly correlated with the expression profile of RTKs in breast cancer cells. Specifically, overexpression of EGFR, c-MET and/or FGFR1 forecasted resistance, while overexpression of IGF-1R and/or HER2 predicted sensitivity to BYL719 in breast cancer cells. Similar correlation between BYL719 efficacy and expression profile of RTKs was found in patient-derived xenograft models of breast cancer. Thus, inhibition of ERK phosphorylation by PI3Kα inhibitor BYL719 contributes to its antitumor efficacy and is determined by the converged signaling from RTKs. The expression profile of RTKs in breast cancer tissue could be potentially developed as a predictive biomarker for the efficacy of PI3Kα inhibitors.

  9. Low molecular weight protein tyrosine phosphatase isoforms regulate breast cancer cells migration through a RhoA dependent mechanism.

    Science.gov (United States)

    Alho, Irina; Costa, Luis; Bicho, Manuel; Coelho, Constança

    2013-01-01

    Low molecular weight protein tyrosine phosphatase (LMW-PTP) has been associated with cell proliferation control through dephosphorylation and inactivation of growth factor receptors such as PDGF-R and EphA2, and with cellular adhesion and migration through p190RhoGap and RhoA. We aim to clarify the role of two main LMW-PTP isoforms in breast cancer tumorigenesis. We used a siRNA-mediated loss-of-function in MDA-MB-435 breast cancer cell line to study the role of the two main LMW-PTP isoforms, fast and slow, in breast cancer tumorigenesis and migration. Our results show that the siRNAs directed against total LMW-PTP and LMW-PTP slow isoform enhanced cell motility in an invasive breast cancer cell line, MDA-MB-435, with no changes in the proliferation and invasive potential of cells. The total LMW-PTP knockdown caused a more pronounced increase of cell migration. Suppression of total LMW-PTP decreased RhoA activation and suppression of the LMW-PTP slow isoform caused a small but significant increase in RhoA activation. We propose that the increase or decrease in RhoA activation induces changes in stress fibers formation and consequently alter the adhesive and migratory potential of cells. These findings suggest that the two main isoforms of LMW-PTP may act differentially, with the fast isoform having a more prominent role in tumor cell migration. In addition, our results highlight functional specificity among LMW-PTP isoforms, suggesting hitherto unknown roles for these proteins in breast cancer biology. Novel therapeutic approaches targeting LMW-PTP, considering the expression of these two isoforms and not LMW-PTP as a whole, should be investigated.

  10. Cell-Surface Receptors Transactivation Mediated by G Protein-Coupled Receptors

    Science.gov (United States)

    Cattaneo, Fabio; Guerra, Germano; Parisi, Melania; De Marinis, Marta; Tafuri, Domenico; Cinelli, Mariapia; Ammendola, Rosario

    2014-01-01

    G protein-coupled receptors (GPCRs) are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK) occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS) are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC) isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors. Herein, we

  11. Synchrotron ultraviolet microspectroscopy on rat cortical bone: involvement of tyrosine and tryptophan in the osteocyte and its environment.

    Directory of Open Access Journals (Sweden)

    Stéphane Pallu

    Full Text Available Alcohol induced osteoporosis is characterized by a bone mass decrease and microarchitecture alterations. Having observed an excess in osteocyte apoptosis, we aimed to assess the bone tissue biochemistry, particularly in the osteocyte and its environment. For this purpose, we used a model of alcohol induced osteoporosis in rats. Bone sections of cortical bone were investigated using synchrotron UV-microspectrofluorescence at subcellular resolution. We show that bone present three fluorescence peaks at 305, 333 and 385 nm, respectively corresponding to tyrosine, tryptophan and collagen. We have determined that tyrosine/collagen and tryptophan/collagen ratios were higher in the strong alcohol consumption group. Tryptophan is related to the serotonin metabolism involved in bone formation, while tyrosine is involved in the activity of tyrosine kinases and phosphatases in osteocytes. Our experiment represents the first combined synchrotron UV microspectroscopy analysis of bone tissue with a quantitative biochemical characterization in the osteocyte and surrounding matrix performed separately.

  12. Is tyrosine kinase activation involved in basophil histamine release in asthma due to western red cedar?

    Science.gov (United States)

    Frew, A; Chan, H; Salari, H; Chan-Yeung, M

    1998-02-01

    Occupational asthma due to western red cedar is associated with histamine release from basophils and mast cells on exposure to plicatic acid (PA), but the mechanisms underlying this response remain unclear. Specific kinase inhibitors were used to study the role of tyrosine and serine/threonine kinases in PA-induced histamine release from human basophils. Pretreatment with the tyrosine kinase inhibitor methyl 2,5-dihydroxy-cinnamate (MDHC) attenuated histamine release from basophils triggered by anti-IgE (29.8% inhibition; n = 15; P < 0.01) or grass pollen (48% inhibition; n = 6; P < 0.01). Inhibition was concentration-dependent and could be reversed by washing the cells in buffer, while the inactive stereoisomer of MDHC did not affect histamine release. In contrast, the protein kinase C inhibitor staurosporine did not affect histamine release by either anti-IgE or grass pollen. Pretreatment with MDHC partially inhibited PA-induced histamine release from basophils of 6/9 patients with red cedar asthma (25.4% vs 33.8%; P = NS). Staurosporine gave a similar level of inhibition of PA-induced histamine release (25.3% vs 33.8%; P = NS). Thus, signal transduction of the human basophil Fc epsilon RI appears to depend upon tyrosine kinase activation, but not on protein kinase C (serine/threonine kinase) activation. The lack of specific effect on plicatic acid-induced histamine release in basophils obtained from patients with occupational asthma due to western red cedar suggests that tyrosine kinases are not as important in this disease as in atopic asthma, and is consistent with the view that histamine release in red cedar asthma is largely IgE-independent.

  13. Exploring the Hypersensitivity of PTEN Deleted Prostate Cancer Stem Cells to WEE1 Tyrosine Kinase Inhibitors

    Science.gov (United States)

    2015-12-01

    damage before entry into mitosis . Figure 2: WEE1 and AKT signaling in isogenic PTEN-deficient and proficient prostate cancer cells. A. C42B...AWARD NUMBER: W81XWH-14-1-0251 TITLE: Exploring the Hypersensitivity of PTEN Deleted Prostate Cancer Stem Cells to WEE1 Tyrosine Kinase...Inhibitors PRINCIPAL INVESTIGATOR: Dr. KIRAN MAHAJAN CONTRACTING ORGANIZATION: H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612

  14. Analyte-induced photoreduction method for visual and colorimetric detection of tyrosine

    Energy Technology Data Exchange (ETDEWEB)

    Satheeshkumar, Elumalai; Yang, Jyisy, E-mail: jyisy@dragon.nchu.edu.tw

    2015-06-16

    Highlights: • New detection scheme for detection of tyrosine is developed. • Photoactivity of tyrosine is used to form color nanoparticles selectively. • Detection step is simple and effective allowing rapid screening. • Highly sensitive and selective in detection of tyrosine. - Abstract: A new method based on photochemical formation of silver nanoparticles (AgNPs) was developed for detection of tyrosine (Tyr). To selectively detect Tyr and to simplify the detection procedure, the photoactivity of Tyr was utilized to trigger the photochemical reduction in production of AgNPs. The drastic change of solution color caused by the surface plasmon resonance (SPR) absorption band of the formed AgNPs was used to extract the quantitative information of Tyr. This developed method is simple in detection, while both the sensitivity and selectivity are significant improved. Meanwhile, the solution color was changed from colorless to dark yellow after the formation of AgNPs, which allows a much higher sensitivity in visual identification when compared with the SPR band shifting technique commonly, used in conventional colorimetric methods. To optimize the detection system and to understand the mechanism in this proposed method, parameters such as irradiation time, intensity of light source, and the concentration of Tyr were systematically examined. Results indicated that these factors mainly affected the reaction rate of photoreduction. The morphologies of the formed AgNPs were similar, but with small differences in particle sizes. In the examination of selectivity, sixteen other amino acids were examined. Results indicated that only amino acids of tryptophan, cysteine and histidine are photoactive and possess potential interferences in analysis of Tyr. Quantitative studies indicated that a linear response up to 10 μM with a detection limit of 100 nM could be obtained. For visually detection, color change could be observed with a concentration as low as 500 nM of Tyr.

  15. Laminin increases both levels and activity of tyrosine hydroxylase in calf adrenal chromaffin cells

    OpenAIRE

    1986-01-01

    We have investigated the effects of substrate-bound laminin on levels of enzymes of the catecholamine biosynthetic pathway in primary cultures of calf adrenal chromaffin cells. Laminin increases the levels of the enzymes tyrosine hydroxylase, dopamine-beta-hydroxylase, and phenylethanolamine-N-methyl-transferase. This effect is selective, in that levels of other enzymes (lactate dehydrogenase, aromatic amino acid decarboxylase, and acetylcholinesterase) are not increased. The effect of lamini...

  16. Long-Term Behavioral Recovery in Parkinsonian Rats by an HSV Vector Expressing Tyrosine Hydroxylase

    OpenAIRE

    During, Matthew J.; Naegele, Janice R.; O’Malley, Karen L.; Geller, Alfred I.

    1994-01-01

    One therapeutic approach to treating Parkinson’s disease is to convert endogenous striatal cells into levo-3,4-dihydroxyphenylalanine (l-dopa)–producing cells. A defective herpes simplex virus type 1 vector expressing human tyrosine hydroxylase was delivered into the partially denervated striatum of 6-hydroxydopamine–lesioned rats, used as a model of Parkinson’s disease. Efficient behavioral and biochemical recovery was maintained for 1 year after gene transfer. Biochemical recovery included ...

  17. NMR backbone assignments of the tyrosine kinase domain of human fibroblast growth factor receptor 1.

    Science.gov (United States)

    Vajpai, Navratna; Schott, Anne-Kathrin; Vogtherr, Martin; Breeze, Alexander L

    2014-04-01

    Members of the fibroblast growth factor receptor tyrosine kinase family (FGFR1-4) play an important role in many signalling cascades. Although tightly regulated, aberrant activity of these enzymes may lead to, or become features of, disease pathologies including cancer. FGFR isoforms have been the subject of drug discovery programmes, with a number of kinase-domain inhibitors in pre-clinical and clinical development. Here, we present the first (83% complete) backbone resonance assignments of apo-FGFR1 kinase.

  18. Emerging issues in receptor protein tyrosine phosphatase function: lifting fog or simply shifting?

    DEFF Research Database (Denmark)

    Petrone, A; Sap, J

    2000-01-01

    Transmembrane (receptor) tyrosine phosphatases are intimately involved in responses to cell-cell and cell-matrix contact. Several important issues regarding the targets and regulation of this protein family are now emerging. For example, these phosphatases exhibit complex interactions...... with signaling pathways involving SRC family kinases, which result from their ability to control phosphorylation of both activating and inhibitory sites in these kinases and possibly also their substrates. Similarly, integrin signaling illustrates how phosphorylation of a single protein, or the activity...

  19. TNK2 Tyrosine Kinase as a Novel Therapeutic Target in Triple-Negative Breast Cancer

    Science.gov (United States)

    2017-10-01

    Award Number: W81XWH-15-1-0311 TITLE: TNK2 Tyrosine Kinase as a Novel Therapeutic Target in Triple- Negative Breast Cancer PRINCIPAL...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Triple-negative breast cancers (TNBCs) represent only 10%-15% of all breast cancers ; however... cancers (TNBC) represent 10-15% of all breast cancers . While significant advances have been made for targeted therapy of ER and HER2-positive breast

  20. Electron Transfer Studies of Ruthenium(II) Complexes with Biologically Important Phenolic Acids and Tyrosine.

    Science.gov (United States)

    Rajeswari, Angusamy; Ramdass, Arumugam; Muthu Mareeswaran, Paulpandian; Rajagopal, Seenivasan

    2016-03-01

    The ruthenium(II) complexes having 2,2'-bipyridine and phenanthroline derivatives are synthesized and characterized. The photophysical properties of these complexes at pH 12.5 are studied. The electron transfer reaction of biologically important phenolic acids and tyrosine are studied using absorption, emission and transient absorption spectral techniques. Semiclassical theory is applied to calculate the rate of electron transfer between ruthenium(II) complexes and biologically important phenolic acids.

  1. Managing chronic myeloid leukemia patients intolerant to tyrosine kinase inhibitor therapy

    OpenAIRE

    DeAngelo, D J

    2012-01-01

    The outcomes for patients with chronic myeloid leukemia have improved dramatically with the development and availability of BCR–ABL1 tyrosine kinase inhibitors (TKIs) over the past decade. TKI therapy has a superior safety profile compared with the previous standard of care, interferon-α, and most adverse events (AEs) observed with front-line and second-line TKI treatment are managed with supportive care. However, some patients are intolerant to TKI therapy and experience AEs that cannot be m...

  2. Ligand binding affinity at the insulin receptor isoform A (IR-A and subsequent IR-A tyrosine phosphorylation kinetics are important determinants of mitogenic biological outcomes.

    Directory of Open Access Journals (Sweden)

    Harinda eRajapaksha

    2015-07-01

    Full Text Available The insulin receptor (IR is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A arises from alternative splicing of exon 11 and has different ligand binding and signalling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival and migration by activating some unique signalling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signalling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signalling (MAPK and Akt and receptor internalisation rates (related to mitogenic signalling. We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic ([His4, Tyr15, Thr49, Ile51] IGF-I, qIGF-I or metabolic (S597 peptide biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signalling through the IR-A. The 3-fold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316 and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and the kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I.

  3. Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli.

    Science.gov (United States)

    Santos, Christine Nicole S; Xiao, Wenhai; Stephanopoulos, Gregory

    2012-08-21

    Although microbial metabolic engineering has traditionally relied on rational and knowledge-driven techniques, significant improvements in strain performance can be further obtained through the use of combinatorial approaches exploiting phenotypic diversification and screening. Here, we demonstrate the combined use of global transcriptional machinery engineering and a high-throughput L-tyrosine screen towards improving L-tyrosine production in Escherichia coli. This methodology succeeded in generating three strains from two separate mutagenesis libraries (rpoA and rpoD) exhibiting up to a 114% increase in L-tyrosine titer over a rationally engineered parental strain with an already high capacity for production. Subsequent strain characterization through transcriptional analysis and whole genome sequencing allowed complete phenotype reconstruction from well-defined mutations and point to important roles for both the acid stress resistance pathway and the stringent response of E. coli in imparting this phenotype. As such, this study presents one of the first examples in which cell-wide measurements have helped to elucidate the genetic and biochemical underpinnings of an engineered cellular property, leading to the total restoration of metabolite overproduction from specific chromosomal mutations.

  4. The intensity of tyrosine nitration is associated with selenite and selenate toxicity in Brassica juncea L.

    Science.gov (United States)

    Molnár, Árpád; Feigl, Gábor; Trifán, Vanda; Ördög, Attila; Szőllősi, Réka; Erdei, László; Kolbert, Zsuzsanna

    2018-01-01

    Selenium phytotoxicity involves processes like reactive nitrogen species overproduction and nitrosative protein modifications. This study evaluates the toxicity of two selenium forms (selenite and selenate at 0µM, 20µM, 50µM and 100µM concentrations) and its correlation with protein tyrosine nitration in the organs of hydroponically grown Indian mustard (Brassica juncea L.). Selenate treatment resulted in large selenium accumulation in both Brassica organs, while selenite showed slight root-to-shoot translocation resulting in a much lower selenium accumulation in the shoot. Shoot and root growth inhibition and cell viability loss revealed that Brassica tolerates selenate better than selenite. Results also show that relative high amounts of selenium are able to accumulate in Brassica leaves without obvious visible symptoms such as chlorosis or necrosis. The more severe phytotoxicity of selenite was accompanied by more intense protein tyrosine nitration as well as alterations in nitration pattern suggesting a correlation between the degree of Se forms-induced toxicities and nitroproteome size, composition in Brassica organs. These results imply the possibility of considering protein tyrosine nitration as novel biomarker of selenium phytotoxicity, which could help the evaluation of asymptomatic selenium stress of plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Irreversible AE1 tyrosine phosphorylation leads to membrane vesiculation in G6PD deficient red cells.

    Directory of Open Access Journals (Sweden)

    Antonella Pantaleo

    Full Text Available BACKGROUND: While G6PD deficiency is one of the major causes of acute hemolytic anemia, the membrane changes leading to red cell lysis have not been extensively studied. New findings concerning the mechanisms of G6PD deficient red cell destruction may facilitate our understanding of the large individual variations in susceptibility to pro-oxidant compounds and aid the prediction of the hemolytic activity of new drugs. METHODOLOGY/PRINCIPAL FINDINGS: Our results show that treatment of G6PD deficient red cells with diamide (0.25 mM or divicine (0.5 mM causes: (1 an increase in the oxidation and tyrosine phosphorylation of AE1; (2 progressive recruitment of phosphorylated AE1 in large membrane complexes which also contain hemichromes; (3 parallel red cell lysis and a massive release of vesicles containing hemichromes. We have observed that inhibition of AE1 phosphorylation by Syk kinase inhibitors prevented its clustering and the membrane vesiculation while increases in AE1 phosphorylation by tyrosine phosphatase inhibitors increased both red cell lysis and vesiculation rates. In control RBCs we observed only transient AE1 phosphorylation. CONCLUSIONS/SIGNIFICANCE: Collectively, our findings indicate that persistent tyrosine phosphorylation produces extensive membrane destabilization leading to the loss of vesicles which contain hemichromes. The proposed mechanism of hemolysis may be applied to other hemolytic diseases characterized by the accumulation of hemoglobin denaturation products.

  6. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  7. Use of deuterated tyrosine and phenylalanine in the study of catecholamine and aromatic acid metabolism

    International Nuclear Information System (INIS)

    Curtius, H.C.; Redweik, U.; Steinmann, B.; Leimbacher, W.; Wegmann, H.

    1975-01-01

    Deuterated tyrosine and phenylalanine have been used for the study of their respective metabolism in patients with phenylketonuria (PKU) and in healthy persons. Urinary excretion of dopamine and its metabolites was studied by GC-MS after oral administration of deuterated L-tyrosine in 2 patients with PKU and in normal controls at low and high plasma phenylalanine levels. From these studies it seemed that the in vivo tyrosine 3-hydroxylase activity and thus the formation of L-dopa depend on the phenylalanine concentration in plasma and also in tissues. After loading 3 mentally retarded patients with 3,5-[ 2 H 2 ]-4-hydroxyphenylalanine, we found, among others, excretion of deuterated m-hydroxyphenyl-hydracrylic acid, p-hydroxymandelic acid, p-hydroxybenzoic acid, p-hydroxyhippuric acid, benzoic acid and hippuric acid. An intramolecular rearrangement is postulated. Deuterated phenylalanine was used to investigate phenylalanine and dopa metabolism in PKU. In addition, one untreated person with PKU of normal intelligence and normal excretion of catecholamines at high plasma phenylalanine concentration was investigated in order to see whether there exists an alternative metabolic pathway from phenylalanine to dopa formation

  8. Tyrosine kinase inhibitors induced thyroid dysfunction: a review of its incidence, pathophysiology, clinical relevance, and treatment.

    Science.gov (United States)

    Ahmadieh, Hala; Salti, Ibrahim

    2013-01-01

    Tyrosine kinase inhibitors (TKI) belong to a new class of molecular multitargeted anticancer therapy which targets different growth factor receptors and hence attenuates cancer cell survival and growth. Since their introduction as adjunct treatment for renal cell carcinoma and gastrointestinal stromal tumors (GIST), a number of reports have demonstrated that TKI can induce thyroid dysfunction which was especially more common with sunitinib maleate. Many mechanisms with respect to this adverse effect of tyrosine kinase inhibitors have been proposed including their induction of thyroiditis, capillary regression in the thyroid gland, antithyroid peroxidase antibody production, and their ability to decrease iodine uptake by the thyroid gland. Of interest is the observation that TKI-induced thyroid dysfunction may actually be protective as it was shown to improve overall survival, and it was suggested that it may have a prognostic value. Followup on thyroid function tests while patients are maintained on tyrosine kinase inhibitor is strongly recommended. When thyroid dysfunction occurs, appropriate treatment should be individualized depending on patients symptoms and thyroid stimulating hormone level.

  9. Artificial Neural Network for the Prediction of Tyrosine-Based Sorting Signal Recognition by Adaptor Complexes

    Directory of Open Access Journals (Sweden)

    Debarati Mukherjee

    2012-01-01

    Full Text Available Sorting of transmembrane proteins to various intracellular compartments depends on specific signals present within their cytosolic domains. Among these sorting signals, the tyrosine-based motif (YXXØ is one of the best characterized and is recognized by μ-subunits of the four clathrin-associated adaptor complexes (AP-1 to AP-4. Despite their overlap in specificity, each μ-subunit has a distinct sequence preference dependent on the nature of the X-residues. Moreover, combinations of these residues exert cooperative or inhibitory effects towards interaction with the various APs. This complexity makes it impossible to predict a priori, the specificity of a given tyrosine-signal for a particular μ-subunit. Here, we describe the results obtained with a computational approach based on the Artificial Neural Network (ANN paradigm that addresses the issue of tyrosine-signal specificity, enabling the prediction of YXXØ-μ interactions with accuracies over 90%. Therefore, this approach constitutes a powerful tool to help predict mechanisms of intracellular protein sorting.

  10. XPS and NEXAFS study of tyrosine-terminated propanethiol assembled on gold

    CERN Document Server

    Petoral, R M

    2003-01-01

    Tyrosine-terminated propanethiol (TPT), tyrosine linked to 3-mercaptopropionic acid through an amide bond, is adsorbed to gold surfaces. The adsorbates are characterized by means of X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). XPS is used to investigate the chemical binding and electronic structure of the monolayer. Strong molecular binding of the tyrosine derivative on the gold surface through the sulfur atom is attained. Angle-dependent XPS results shows that TPT molecules are oriented with the sulfur atoms molecularly oriented close to the gold surface and that the phenol moiety is oriented away from the gold surface. Average orientation of the adsorbate on gold is deduced using the NEXAFS results. It shows that the main molecular axis is tilted approximately 38 deg. relative to the Au surface normal. The ring plane of the phenol moiety exhibits a preferential orientation with an average tilt angle of the normal of the ring plane from the surfa...

  11. L-tyrosine-based backbone-modified poly(amino acids).

    Science.gov (United States)

    Gupta, Anirban Sen; Lopina, Stephanie T

    2002-01-01

    Tyrosine-based pseudo-peptide polymers, first introduced in 1987 by Kohn and Langer, have been identified for potential biomaterial applications. These materials combine the desired polypeptide properties of biocompatibility, biodegradability, non-toxicity, and non-immunogenicity with good processing properties including solubility, thermal stability, and moldability which arise from alternating non-amide bonds along the polymer backbone. This paper focuses on the analysis of two such polymers based on the natural amino acid L-tyrosine. Starting from L-tyrosine and its deaminated analogue, 3-(4-para-hydroxy)-phenylpropionic acid, a diphenolic structure containing an amide linkage, was synthesized following standard procedures of peptide synthesis. This diphenolic structure was then used as a monomer to synthesize a polyiminocarbonate using a cyanogen bromide-initiated reaction and a polycarbonate using a triphosgene-initiated reaction. The polyiminocarbonate has iminocarbonate linkages and the polycarbonate has carbonate linkages alternating with amide linkages in the respective polymer backbone. Analytical studies were performed regarding the feasibility of the reaction procedures, the physical properties of the polymers, and their degradation processes, to gain insight into the potential biomaterial applications of these polymers. These results independently reaffirm the studies published by Kohn et al. working on similar polymeric systems.

  12. Manganese superoxide dismutase (MnSOD catalyzes NO-dependent tyrosine residue nitration

    Directory of Open Access Journals (Sweden)

    SRDJAN STOJANOVIC

    2005-04-01

    Full Text Available The peroxynitrite-induced nitration of manganese superoxide dismutase (MnSOD tyrosine residue, which causes enzyme inactivation, is well established. This led to suggestions that MnSOD nitration and inactivation in vivo, detected in various diseases associated with oxidative stress and overproduction of nitric monoxide (NO, conditions which favor peroxynitrite formation, is also caused by peroxynitrite. However, our previous in vitro study demonstrated that exposure of MnSOD to NO led to NO conversion into nitrosonium (NO+ and nitroxyl (NO– species, which caused enzyme modifications and inactivation. Here it is reported that MnSOD is tyrosine nitrated upon exposure to NO, as well as that MnSOD nitration contributes to inactivation of the enzyme. Collectively, these observations provide a compelling argument supporting the generation of nitrating species in MnSOD exposed to NO and shed a new light on MnSOD tyrosine nitration and inactivation in vivo. This may represent a novel mechanism by which MnSOD protects cell from deleterious effects associated with overproduction of NO. However, extensive MnSOD modification and inactivation associated with prolonged exposure to NO will amplify the toxic effects caused by increased cell superoxide and NO levels.

  13. The relation between plasma tyrosine concentration and fatigue in primary biliary cirrhosis and primary sclerosing cholangitis

    Directory of Open Access Journals (Sweden)

    Vrolijk Jan

    2005-03-01

    Full Text Available Abstract Background In primary biliary cirrhosis (PBC and primary sclerosing cholangitis (PSC fatigue is a major clinical problem. Abnormal amino acid (AA patterns have been implicated in the development of fatigue in several non-hepatological conditions but for PBC and PSC no data are available. This study aimed to identify abnormalities in AA patterns and to define their relation with fatigue. Methods Plasma concentrations of tyrosine, tryptophan, phenylalanine, valine, leucine and isoleucine were determined in plasma of patients with PBC (n = 45, PSC (n = 27, chronic hepatitis C (n = 22 and healthy controls (n = 73. Fatigue and quality of life were quantified using the Fisk fatigue severity scale, a visual analogue scale and the SF-36. Results Valine, isoleucine, leucine were significantly decreased in PBC and PSC. Tyrosine and phenylalanine were increased (p Conclusion In patients with PBC and PSC, marked abnormalities in plasma AA patterns occur. Normal tyrosine concentrations, compared to increased concentrations, may be associated with fatigue and diminished quality of life.

  14. Dialkoxyquinazolines: Screening Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors for Potential Tumor Imaging Probes

    International Nuclear Information System (INIS)

    VanBrocklin, Henry F.; Lim, John K.; Coffing, Stephanie L.; Hom, Darren L.; Negash, Kitaw; Ono, Michele Y.; Hanrahan, Stephen M.; Taylor, Scott E.; Vanderpoel, Jennifer L.; Slavik, Sarah M.; Morris, Andrew B.; Riese II, David J.

    2005-01-01

    The epidermal growth factor receptor (EGFR), a long-standing drug development target, is also a desirable target for imaging. Sixteen dialkoxyquinazoline analogs, suitable for labeling with positron-emitting isotopes, have been synthesized and evaluated in a battery of in vitro assays to ascertain their chemical and biological properties. These characteristics provided the basis for the adoption of a selection schema to identify lead molecules for labeling and in vivo evaluation. A newEGFR tyrosine kinase radiometric binding assay revealed that all of the compounds possessed suitable affinity (IC50 = 0.4 - 51 nM) for the EGFR tyrosine kinase. All of the analogs inhibited ligand-induced EGFR tyrosine phosphorylation (IC50 = 0.8 - 20 nM). The HPLC-estimated octanol/water partition coefficients ranged from 2.0-5.5. Four compounds,4-(2'-fluoroanilino)- and 4-(3'-fluoroanilino)-6,7-diethoxyquinazoline as well as 4-(3'-chloroanilino)- and4-(3'-bromoanilino)-6,7-dimethoxyquinazoline, possess the best combination of characteristics that warrant radioisotope labeling and further evaluation in tumor-bearing mice

  15. Structural stability of human protein tyrosine phosphatase ρ catalytic domain: effect of point mutations.

    Directory of Open Access Journals (Sweden)

    Alessandra Pasquo

    Full Text Available Protein tyrosine phosphatase ρ (PTPρ belongs to the classical receptor type IIB family of protein tyrosine phosphatase, the most frequently mutated tyrosine phosphatase in human cancer. There are evidences to suggest that PTPρ may act as a tumor suppressor gene and dysregulation of Tyr phosphorylation can be observed in diverse diseases, such as diabetes, immune deficiencies and cancer. PTPρ variants in the catalytic domain have been identified in cancer tissues. These natural variants are nonsynonymous single nucleotide polymorphisms, variations of a single nucleotide occurring in the coding region and leading to amino acid substitutions. In this study we investigated the effect of amino acid substitution on the structural stability and on the activity of the membrane-proximal catalytic domain of PTPρ. We expressed and purified as soluble recombinant proteins some of the mutants of the membrane-proximal catalytic domain of PTPρ identified in colorectal cancer and in the single nucleotide polymorphisms database. The mutants show a decreased thermal and thermodynamic stability and decreased activation energy relative to phosphatase activity, when compared to wild- type. All the variants show three-state equilibrium unfolding transitions similar to that of the wild- type, with the accumulation of a folding intermediate populated at ~4.0 M urea.

  16. NF-kappaB regulates the transcription of protein tyrosine kinase Tec.

    Science.gov (United States)

    Yu, Liang; Simonson, Oscar E; Mohamed, Abdalla J; Smith, C I Edvard

    2009-11-01

    The tyrosine kinase expressed in hepatocellular carcinoma (Tec) is a non-receptor protein tyrosine kinase (PTK) that is expressed in hematopoietic cells, such as B and T lymphocytes, myeloid lineage cells and neutrophils. Mutations in the human Btk gene cause X-linked agammaglobulinemia (XLA), but the corresponding mutation in mice results in a much milder defect. However, the combined inactivation of Btk and Tec genes in mice cause a severe phenotype resembling XLA. Tec is involved in the regulation of both B and T lymphocytes, fine-tuning of TCR/BCR signaling, and also activation of the nuclear factor of activated T cells. Previous work has shown that the transcription factors Sp1 and PU.1 can bind and regulate the Tec promoter. In this study, we demonstrate that NF-kappaB is an essential transcription factor for optimal expression of the Tec gene, and identify a unique functionally active NF-kappaB binding site in its promoter. The NF-kappaB subunit p65/RelA directly induced transcriptional activity of the Tec promoter. Moreover, we also found that proteasome inhibitors, including Bortezomib, repress Tec transcription through inactivation of the NF-kappaB signaling pathway. This study, together with our previous findings on the transcriptional regulation of Btk (Bruton's tyrosine kinase) by proteasome inhibitors, provides important insight into the molecular mechanism(s) underlying the role of NF-kappaB in Tec family kinase signaling and lymphocyte development.

  17. Tyrosine Kinase Inhibitors Induced Thyroid Dysfunction: A Review of Its Incidence, Pathophysiology, Clinical Relevance, and Treatment

    Directory of Open Access Journals (Sweden)

    Hala Ahmadieh

    2013-01-01

    Full Text Available Tyrosine kinase inhibitors (TKI belong to a new class of molecular multitargeted anticancer therapy which targets different growth factor receptors and hence attenuates cancer cell survival and growth. Since their introduction as adjunct treatment for renal cell carcinoma and gastrointestinal stromal tumors (GIST, a number of reports have demonstrated that TKI can induce thyroid dysfunction which was especially more common with sunitinib maleate. Many mechanisms with respect to this adverse effect of tyrosine kinase inhibitors have been proposed including their induction of thyroiditis, capillary regression in the thyroid gland, antithyroid peroxidase antibody production, and their ability to decrease iodine uptake by the thyroid gland. Of interest is the observation that TKI-induced thyroid dysfunction may actually be protective as it was shown to improve overall survival, and it was suggested that it may have a prognostic value. Followup on thyroid function tests while patients are maintained on tyrosine kinase inhibitor is strongly recommended. When thyroid dysfunction occurs, appropriate treatment should be individualized depending on patients symptoms and thyroid stimulating hormone level.

  18. ZNF198-FGFR1 Transforms Ba/F3 Cells to Growth Factor Independence and Results in High Level Tyrosine Phosphorylation of STATS 1 and 5

    Directory of Open Access Journals (Sweden)

    Damian Smedley

    1999-10-01

    Full Text Available The ZNF198-FGFR1 fusion gene arises as a result of the t(8;13(p11;g12 in the 8p11 myeloproliferative syndrome. To determine the transforming properties of this chimeric protein we transfected ZNF198-FGFR1 into the interleukin (IL-3 dependent cell line Ba/F3. Growth factor independent subclones were obtained in which ZNF198-FGFR1, STAT1, STAT5 were constitutively tyrosine phosphorylated, as determined by immunoprecipitation and Western blot analysis. To test the hypothesis that constitutive activation of ZNF198-FGFR1 tyrosine kinase activity is a result of selfassociation of the fusion protein, we in vitro transcribed and translated ZNF198-FGFR1 and a derivative construct, ZNF198-FGFR1ΔC-myc, in which the C-terminal FGFR1 epitope was replaced by a c-myc tag. As expected, an anti-FGFR1 antibody immunoprecipitated ZNF198-FGFR1 but not ZNF198-FGFR1ΔC-myc. However when both products were translated together, both were coimmunoprecipitated by anti-FGFR1 antisera. Similar results were obtained by using an anti-myc antibody and demonstrated a physical interaction between the two proteins. Analysis of COS-7 cells transfected with ZNF198-FGFR1 demonstrated that the fusion gene, in contrast to normal FGFR1, is located in the cytoplasm. We conclude that ZNF198-FGFRi is a cytoplasmic protein that self-associates and has constitutive transformation activity. These data suggest that ZNF198-FGFR1 plays a primary role in the pathogenesis of the t(8;13 myeloproliferative syndrome and is the first report to implicate STAT proteins in FGFR1-mediated signaling.

  19. The role of oestrogen receptor {alpha} in human thyroid cancer: contributions from coregulatory proteins and the tyrosine kinase receptor HER2.

    LENUS (Irish Health Repository)

    Kavanagh, Dara O

    2012-02-01

    Epidemiological, clinical, and molecular studies suggest a role for oestrogen in thyroid cancer. How oestrogen mediates its effects and the consequence of it on clinical outcome has not been fully elucidated. The participation of coregulatory proteins in modulating oestrogen receptor (ER) function and input of crosstalk with the tyrosine kinase receptor HER2 was investigated. Oestrogen induced cell proliferation in the follicular thyroid cancer (FTC)-133 cells, but not in the anaplastic 8305C cell line. Knockdown of the coactivator steroid receptor coactivator (SRC)-1 inhibited FTC-133 basal, but not oestrogen induced, cell proliferation. Oestrogen also increased protein expression of SRC-1 and the ER target gene cyclin D1 in the FTC-133 cell line. ERalpha, ERbeta, the coregulatory proteins SRC-1 and nuclear corepressor (NCoR), and the tyrosine kinase receptor HER2 were localised by immunohistochemistry and immnofluorescence in paraffin-embedded tissue from thyroid tumour patients (n=111). ERalpha was colocalised with both SRC-1 and NCoR to the nuclei of the tumour epithelial cells. Expression of ERalpha and NCoR was found predominantly in non-anaplastic tumours and was significantly associated with well-differentiated tumours and reduced incidence of disease recurrence. In non-anaplastic tumours, HER2 was significantly associated with SRC-1, and these proteins were associated with poorly differentiated tumours, capsular invasion and disease recurrence. Totally, 87% of anaplastic tumours were positive for SRC-1. Kaplan-Meier estimates of disease-free survival indicated that in thyroid cancer, SRC-1 strongly correlates with reduced disease-free survival (P<0.001), whereas NCoR predicted increased survival (P<0.001). These data suggest opposing roles for the coregulators SRC-1 and NCoR in thyroid tumour progression.

  20. Tyrosine kinase receptor c-ros-oncogene 1 inhibition alleviates aberrant bone formation of TWIST-1 haploinsufficient calvarial cells from Saethre-Chotzen syndrome patients.

    Science.gov (United States)

    Camp, Esther; Anderson, Peter J; Zannettino, Andrew C W; Glackin, Carlotta A; Gronthos, Stan

    2018-04-16

    Saethre-Chotzen syndrome (SCS), associated with TWIST-1 mutations, is characterized by premature fusion of cranial sutures. TWIST-1 haploinsufficiency, leads to alterations in suture mesenchyme cellular gene expression patterns, resulting in aberrant osteogenesis and craniosynostosis. We analyzed the expression of the TWIST-1 target, Tyrosine kinase receptor c-ros-oncogene 1 (C-ROS-1) in TWIST-1 haploinsufficient calvarial cells derived from SCS patients and calvaria of Twist-1 del/+ mutant mice and found it to be highly expressed when compared to TWIST-1 wild-type controls. Knock-down of C-ROS-1 expression in TWIST-1 haploinsufficient calvarial cells derived from SCS patients was associated with decreased capacity for osteogenic differentiation in vitro. Furthermore, treatment of human SCS calvarial cells with the tyrosine kinase chemical inhibitor, Crizotinib, resulted in reduced C-ROS-1 activity and the osteogenic potential of human SCS calvarial cells with minor effects on cell viability or proliferation. Cultured human SCS calvarial cells treated with Crizotinib exhibited a dose-dependent decrease in alkaline phosphatase activity and mineral deposition, with an associated decrease in expression levels of Runt-related transcription factor 2 and OSTEOPONTIN, with reduced PI3K/Akt signalling in vitro. Furthermore, Crizotinib treatment resulted in reduced BMP-2 mediated bone formation potential of whole Twist-1 del/+ mutant mouse calvaria organotypic cultures. Collectively, these results suggest that C-ROS-1 promotes osteogenic differentiation of TWIST-1 haploinsufficient calvarial osteogenic progenitor cells. Furthermore, the aberrant osteogenic potential of these cells is inhibited by the reduction of C-ROS-1. Therefore, targeting C-ROS-1 with a pharmacological agent, such as Crizotinib, may serve as a novel therapeutic strategy to alleviate craniosynostosis associated with aberrant TWIST-1 function. © 2018 Wiley Periodicals, Inc.