WorldWideScience

Sample records for type iin supernovae

  1. A Spitzer Survey for Dust in Type IIn Supernovae

    Science.gov (United States)

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N.

    2011-01-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (greater than 100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (less than 10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This article presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days postdiscovery. The detection of late-time emission from ten targets (approximately 15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at approximately 1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable (LBV) progenitors.

  2. A SPITZER SURVEY FOR DUST IN TYPE IIn SUPERNOVAE

    International Nuclear Information System (INIS)

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N.

    2011-01-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (>100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (<10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This paper presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days post-discovery. The detection of late-time emission from 10 targets (∼15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at ∼1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable progenitors.

  3. Interacting Supernovae: Types IIn and Ibn

    Science.gov (United States)

    Smith, Nathan

    Supernovae that show evidence of strong shock interaction between their ejecta and pre-existing slower circumstellar material (CSM) constitute an interesting, diverse, and still poorly understood category of explosive transients. The chief reason they are extremely interesting is because they tell us that in a subset of stellar deaths, the progenitor star becomes wildly unstable in the years, decades, or centuries before explosion. This is something that has not been included in standard stellar evolution models but may significantly change the end product and yield of that evolution and complicates our attempts to map SNe to their progenitors. Another reason they are interesting is because CSM interaction is an efficient engine for making bright transients, allowing superluminous transients to arise from normal SN explosion energy, and transients of normal supernova luminosity to arise from sub-energetic explosions or low radioactivity yield. CSM interaction shrouds the fast ejecta in bright shock emission, obscuring our view of the underlying explosion, and the radiation hydrodynamics is challenging to model. The CSM interaction may also be highly nonspherical, perhaps linked to binary interaction in the progenitor system. In some cases, these complications make it difficult to tell the difference between a core-collapse and thermonuclear explosion or to discern between a nonterminal eruption, failed supernova, or weak supernova. Efforts to uncover the physical parameters of individual events and connections to progenitor stars make this a rapidly evolving topic that challenges paradigms of stellar evolution.

  4. EARLY ULTRAVIOLET OBSERVATIONS OF A TYPE IIn SUPERNOVA (2007pk)

    International Nuclear Information System (INIS)

    Pritchard, T. A.; Roming, P. W. A.; Brown, P. J.; Kuin, N. P. M.; Oates, S. R.; Bayless, Amanda J.; Holland, S. T.; Immler, S.; Milne, P.

    2012-01-01

    We present some of the earliest UV observations of a Type IIn supernova (SN)—SN 2007pk, where UV and optical observations using Swift's Ultra-Violet/Optical Telescope began 3 days after discovery or ∼5 days after shock breakout. The SN observations commence at approximately maximum light in the UV and u-band filters, suggesting that the UV light curve peaks begin very rapidly after the initial explosion, and subsequently exhibit a linear decay of 0.20, 0.21, 0.16 mag day –1 in the UVOT uvw2, uvm2, uvw1 (λ c = 1928, 2246, 2600 Å) filters. Meanwhile the b- and v-band light curves begin approximately seven days before v-band peak and exhibit a shallow rise followed by a subsequent decay. A series of optical/near-IR spectra taken with the Hobby-Eberly Telescope at days 3-26 after discovery show spectra similar to that of the peculiar Type IIn 1998S. The emission from 2007pk falls below detection ∼20 days after discovery in the UV and 50 days in the optical, showing no sign of the long duration emission seen in other Type IIn SNe. We examine the physical and spectral characteristics of 2007pk and compare its UV light curve and decay rate with other Type II SNe.

  5. An Analysis of the Peculiar Type IIn Supernova 1995N

    Science.gov (United States)

    Baird, M. D.; Garnavich, P. M.; Schlegel, E. M.; Challis, P. M.; Kirshner, R. P.

    1998-12-01

    SN 1995N is a peculiar type IIn supernova. Spectroscopic and photometric data for this analysis were gathered between May 10, 1995 (two days after discovery) and July 18, 1998. A total of twenty two photometric images and eight spectra were obtained at the FLWO and MMTO. The photometric data show a broad maximum at R=17.0 occurred in late October, 1995, followed by a very slow decline at a rate of 2.39 millimag-day(-1) for R and 1.37 millimag-day(-1) for V. The R decay rate corresponds to a half life of 315 days, which is much longer than that of (56) Co. The spectra show broad hydrogen (1500 km/s FWHM) and oxygen (10000 km/s FWZI) emission features along with many unresolved emission lines. Some of the more interesting narrow lines identified correspond to high ionization states for iron such as Fe VII and Fe X which indicate temperatures as high as 10(6) degrees K. These high ionization states, the X-ray detection by Lewin et al. (1996, IAUC 6445) and the slow photometric decay suggest that SN 1995N is powered by a shock propagating through a dense circumstellar environment. From the earliest observations the energy output appears dominated by the interaction and not by radioactivity, implying that the progenitor exploded well before the discovery of SN 1995N. The situation may be similar to SN 1987A, where the rise in emission from a circumstellar interaction is only now beginning and is expected to peak some 15 years after the supernova explosion.

  6. SN 2009kn - the twin of the Type IIn supernova 1994W

    DEFF Research Database (Denmark)

    Kankare, E.; Ergon, M.; Bufano, F.

    2012-01-01

    We present an optical and near-infrared photometric and spectroscopic study of supernova (SN) 2009kn spanning ~1.5 yr from the discovery. The optical spectra are dominated by the narrow (full width at half-maximum ~1000 km s^-1) Balmer lines distinctive of a Type IIn SN with P Cygni profiles. Con...

  7. SN 2008iy: An Unusual Type IIn Supernova with an Enduring 400 Day Rise Time

    OpenAIRE

    Miller, A. A.; Silverman, J. M.; Butler, N. R.; Bloom, J. S.; Chornock, R.; Filippenko, A. V.; Ganeshalingam, M.; Klein, C. R.; Li, W.; Nugent, P. E.; Smith, N.; Steele, T. N.

    2009-01-01

    We present spectroscopic and photometric observations of the Type IIn supernova (SN) 2008iy. SN 2008iy showed an unprecedentedly long rise time of ~400 days, making it the first SN to take significantly longer than 100 days to reach peak optical luminosity. The peak absolute magnitude of SN 2008iy was M_r ~ -19.1 mag, and the total radiated energy over the first ~700 days was ~2 x 10^50 erg. Spectroscopically, SN 2008iy is very similar to the Type IIn SN 1988Z at late times, and, like SN 1988...

  8. Point-source and diffuse high-energy neutrino emission from Type IIn supernovae

    Science.gov (United States)

    Petropoulou, M.; Coenders, S.; Vasilopoulos, G.; Kamble, A.; Sironi, L.

    2017-09-01

    Type IIn supernovae (SNe), a rare subclass of core collapse SNe, explode in dense circumstellar media that have been modified by the SNe progenitors at their last evolutionary stages. The interaction of the freely expanding SN ejecta with the circumstellar medium gives rise to a shock wave propagating in the dense SN environment, which may accelerate protons to multi-PeV energies. Inelastic proton-proton collisions between the shock-accelerated protons and those of the circumstellar medium lead to multimessenger signatures. Here, we evaluate the possible neutrino signal of Type IIn SNe and compare with IceCube observations. We employ a Monte Carlo method for the calculation of the diffuse neutrino emission from the SN IIn class to account for the spread in their properties. The cumulative neutrino emission is found to be ˜10 per cent of the observed IceCube neutrino flux above 60 TeV. Type IIn SNe would be the dominant component of the diffuse astrophysical flux, only if 4 per cent of all core collapse SNe were of this type and 20-30 per cent of the shock energy was channeled to accelerated protons. Lower values of the acceleration efficiency are accessible by the observation of a single Type IIn SN as a neutrino point source with IceCube using up-going muon neutrinos. Such an identification is possible in the first year following the SN shock breakout for sources within 20 Mpc.

  9. Multi-wavelength Observations of the Enduring Type IIn Supernovae 2005ip and 2006jd

    DEFF Research Database (Denmark)

    Stritzinger, Maximilian; Taddia, Francesco; Fransson, Claes

    2012-01-01

    We present an observational study of the Type IIn supernovae (SNe IIn) 2005ip and 2006jd. Broadband UV, optical, and near-IR photometry, and visual-wavelength spectroscopy of SN 2005ip complement and extend upon published observations to 6.5 years past discovery. Our observations of SN 2006jd...... extend from UV to mid-infrared wavelengths, and like SN 2005ip, are compared to reported X-ray measurements to understand the nature of the progenitor. Both objects display a number of similarities with the 1988Z-like subclass of SN IIn including (1) remarkably similar early- and late-phase optical...... spectra, (2) a variety of high-ionization coronal lines, (3) long-duration optical and near-IR emission, and (4) evidence of cold and warm dust components. However, diversity is apparent, including an unprecedented late-time r-band excess in SN 2006jd. The observed differences are attributed...

  10. Precursors prior to type IIn supernova explosions are common: Precursor rates, properties, and correlations

    Energy Technology Data Exchange (ETDEWEB)

    Ofek, Eran O.; Steinbok, Aviram; Arcavi, Iair; Gal-Yam, Avishay; Tal, David; Ben-Ami, Sagi; Yaron, Ofer [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Shaviv, Nir J. [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Kulkarni, Shrinivas R. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Nugent, Peter E. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Kasliwal, Mansi M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA/Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Laher, Russ; Surace, Jason [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States); Bloom, Joshua S.; Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Silverman, Jeffrey M. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2014-07-10

    There is a growing number of Type IIn supernovae (SNe) which present an outburst prior to their presumably final explosion. These precursors may affect the SN display, and are likely related to poorly charted phenomena in the final stages of stellar evolution. By coadding Palomar Transient Factory (PTF) images taken prior to the explosion, here we present a search for precursors in a sample of 16 Type IIn SNe. We find five SNe IIn that likely have at least one possible precursor event (PTF 10bjb, SN 2010mc, PTF 10weh, SN 2011ht, and PTF 12cxj), three of which are reported here for the first time. For each SN we calculate the control time. We find that precursor events among SNe IIn are common: at the one-sided 99% confidence level, >50% of SNe IIn have at least one pre-explosion outburst that is brighter than 3 × 10{sup 7} L{sub ☉} taking place up to 1/3 yr prior to the SN explosion. The average rate of such precursor events during the year prior to the SN explosion is likely ≳ 1 yr{sup –1}, and fainter precursors are possibly even more common. Ignoring the two weakest precursors in our sample, the precursors rate we find is still on the order of one per year. We also find possible correlations between the integrated luminosity of the precursor and the SN total radiated energy, peak luminosity, and rise time. These correlations are expected if the precursors are mass-ejection events, and the early-time light curve of these SNe is powered by interaction of the SN shock and ejecta with optically thick circumstellar material.

  11. Detection of a Type IIn Supernova in Optical Follow-up Observations of IceCube Neutrino Events

    OpenAIRE

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.

    2015-01-01

    The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In 2012 March, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN IIn) PTF12csy was found 0.degrees 2 away from the neutrino alert direction, with an error radius of 0...

  12. X-RAY AND RADIO EMISSION FROM TYPE IIn SUPERNOVA SN 2010jl

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Poonam [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune University Campus, Pune 411 007 (India); Chevalier, Roger A. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Chugai, Nikolai [Institute of Astronomy of Russian Academy of Sciences, Pyatnitskaya St. 48, 109017 Moscow (Russian Federation); Fransson, Claes [Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Soderberg, Alicia M., E-mail: poonam@ncra.tifr.res.in [Smithsonian Astrophysical Observatory, 60 Garden St., MS-20, Cambridge, MA 02138 (United States)

    2015-09-01

    We present all X-ray and radio observations of the Type IIn supernova SN 2010jl. The X-ray observations cover a period up to day 1500 with Chandra, XMM-Newton, NuSTAR, and Swift-X-ray Telescope (XRT). The Chandra observations after 2012 June, the XMM-Newton observation in 2013 November, and most of the Swift-XRT observations until 2014 December are presented for the first time. All the spectra can be fitted by an absorbed hot thermal model except for Chandra spectra on 2011 October and 2012 June when an additional component is needed. Although the origin of this component is uncertain, it is spatially coincident with the supernova and occurs when there are changes to the supernova spectrum in the energy range close to that of the extra component, indicating that the emission is related to the supernova. The X-ray light curve shows an initial plateau followed by a steep drop starting at day ∼300. We attribute the drop to a decrease in the circumstellar density. The column density to the X-ray emission drops rapidly with time, showing that the absorption is in the vicinity of the supernova. We also present Very Large Array radio observations of SN 2010jl. Radio emission was detected from SN 2010jl from day 570 onwards. The radio light curves and spectra suggest that the radio luminosity was close to its maximum at the first detection. The velocity of the shocked ejecta derived assuming synchrotron self-absorption is much less than that estimated from the optical and X-ray observations, suggesting that free–free absorption dominates.

  13. RADIO AND X-RAY OBSERVATIONS OF SN 2006jd: ANOTHER STRONGLY INTERACTING TYPE IIn SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Poonam [Department of Physics, Royal Military College of Canada, Kingston, ON K7K 7B4 (Canada); Chevalier, Roger A.; Irwin, Christopher M. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Chugai, Nikolai [Institute of Astronomy of Russian Academy of Sciences, Pyatnitskaya Street 48, 109017 Moscow (Russian Federation); Fransson, Claes [Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Soderberg, Alicia M. [Smithsonian Astrophysical Observatory, 60 Garden Street, MS-20, Cambridge, MA 02138 (United States); Chakraborti, Sayan [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400005 (India); Immler, Stefan, E-mail: Poonam.Chandra@rmc.ca [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-08-20

    We report four years of radio and X-ray monitoring of the Type IIn supernova SN 2006jd at radio wavelengths with the Very Large Array, Giant Metrewave Radio Telescope, and Expanded Very Large Array; at X-ray wavelengths with Chandra, XMM-Newton, and Swift-XRT. We assume that the radio and X-ray emitting particles are produced by shock interaction with a dense circumstellar medium. The radio emission shows an initial rise that can be attributed to free-free absorption by cool gas mixed into the nonthermal emitting region; external free-free absorption is disfavored because of the shape of the rising light curves and the low gas column density inferred along the line of sight to the emission region. The X-ray luminosity implies a preshock circumstellar density {approx}10{sup 6} cm{sup -3} at a radius r {approx} 2 Multiplication-Sign 10{sup 16} cm, but the column density inferred from the photoabsorption of X-rays along the line of sight suggests a significantly lower density. The implication may be an asymmetry in the interaction. The X-ray spectrum shows Fe line emission at 6.9 keV that is stronger than is expected for the conditions in the X-ray emitting gas. We suggest that cool gas mixed into the hot gas plays a role in the line emission. Our radio and X-ray data both suggest the density profile is flatter than r{sup -2} because of the slow evolution of the unabsorbed emission.

  14. Red Supergiants as Potential Type IIn Supernova Progenitors: Spatially Resolved 4.6 μm CO Emission Around VY CMa and Betelgeuse

    Science.gov (United States)

    Smith, Nathan; Hinkle, Kenneth H.; Ryde, Nils

    2009-03-01

    We present high-resolution 4.6 μm CO spectra of the circumstellar environments of two red supergiants (RSGs) that are potential supernova (SN) progenitors: Betelgeuse and VY Canis Majoris (VY CMa). Around Betelgeuse, 12CO emission within ±3'' (±12 km s-1) follows a mildly clumpy but otherwise spherical shell, smaller than its ~55'' shell in K I λ7699. In stark contrast, 4.6 μm CO emission around VY CMa is coincident with bright K I in its clumpy asymmetric reflection nebula, within ±5'' (±40 km s-1) of the star. Our CO data reveal redshifted features not seen in K I spectra of VY CMa, indicating a more isotropic distribution of gas punctuated by randomly distributed asymmetric clumps. The relative CO and K I distribution in Betelgeuse arises from ionization effects within a steady wind, whereas in VY CMa, K I is emitted from skins of CO cloudlets resulting from episodic mass ejections 500-1000 yr ago. In both cases, CO and K I trace potential pre-SN circumstellar matter: we conclude that an extreme RSG like VY CMa might produce a Type IIn event like SN 1988Z if it were to explode in its current state, but Betelgeuse will not. VY CMa demonstrates that luminous blue variables are not necessarily the only progenitors of SNe IIn, but it underscores the requirement that SNe IIn suffer enhanced episodic mass loss shortly before exploding. Based on observations obtained at the Gemini Observatory.

  15. Type Ia Supernova Cosmology

    Science.gov (United States)

    Leibundgut, B.; Sullivan, M.

    2018-03-01

    The primary agent for Type Ia supernova cosmology is the uniformity of their appearance. We present the current status, achievements and uncertainties. The Hubble constant and the expansion history of the universe are key measurements provided by Type Ia supernovae. They were also instrumental in showing time dilation, which is a direct observational signature of expansion. Connections to explosion physics are made in the context of potential improvements of the quality of Type Ia supernovae as distance indicators. The coming years will see large efforts to use Type Ia supernovae to characterise dark energy.

  16. THE 2012 RISE OF THE REMARKABLE TYPE IIn SN 2009ip

    International Nuclear Information System (INIS)

    Prieto, José L.; Brimacombe, J.; Drake, A. J.; Howerton, S.

    2013-01-01

    Recent observations by Mauerhan et al. have shown the unprecedented transition of the previously identified luminous blue variable (LBV) and supernova (SN) impostor SN 2009ip to a real Type IIn SN explosion. We present ∼100 optical R- and I-band photometric measurements of SN 2009ip obtained between UT 2012 September 23.6 and October 9.6, using 0.3-0.4 m aperture telescopes from the Coral Towers Observatory in Cairns, Australia. The light curves show well-defined phases, including very rapid brightening early on (0.5 mag in 6 hr observed during the night of September 24), a transition to a much slower rise between September 25 and September 28, and a plateau/peak around October 7. These changes are coincident with the reported spectroscopic changes that most likely mark the start of a strong interaction between the fast SN ejecta and a dense circumstellar medium formed during the LBV eruptions observed in recent years. In the 16-day observing period, SN 2009ip brightened by 3.7 mag from I = 17.4 mag on September 23.6 (M I ≅ –14.2) to I = 13.7 mag (M I ≅ –17.9) on October 9.6, radiating ∼3 × 10 49 erg in the optical wavelength range. As of 2012 October 9.6, SN 2009ip is more luminous than most Type IIP SN and comparable to other Type IIn SN.

  17. Type I supernova models

    International Nuclear Information System (INIS)

    Canal, Ramon; Labay, Javier; Isern, Jordi

    1987-01-01

    We briefly describe the characteristics of Type I supernova outbursts and we present the theoretical models so far advanced to explain them. We especially insist on models based on the thermonuclear explosion of a white dwarf in a close binary system, even regarding the recent division of Type I supernovae into the Ia and Ib subtypes. Together with models assuming explosive thermonuclear burning in a fluid interior, we consider in some detail those based on partially solid interiors. We finally discuss models that incorporate nonthermonuclear energy contributions, suggested in order to explain Type Ib outbursts. (Author)

  18. Positron Survival in Type II Supernovae

    Science.gov (United States)

    1989-05-01

    B: Computer Program and Flow Diagram 53 References 59 I. Introduction Since the discovery of Supernova 1987A (a Type II supernova) in February of 1987...the fewer number of decays depositing energy within the supernova. The rate of this cooling is unknown because it is uncertain whether a pulsar was

  19. Physics of type Ia supernovae

    International Nuclear Information System (INIS)

    Hoeflich, Peter

    2006-01-01

    The last decade has witnessed an explosive growth of high-quality data for thermonuclear explosions of a white dwarf star, the type Ia supernovae (SNe Ia). Advances in computational methods provide new insights into the physics of the phenomenon and a direct, quantitative link between observables and explosion physics. Both trends combined provided spectacular results, allowed to address, to identify specific problems and to narrow down the range of scenarios. Current topics include the relation between SNe Ia and their progenitors, the influence of the metallicities and accretion on the explosion, and details of the burning front. How can we understand the apparent homogeneity and probe for the diversity of SNe Ia? Here, we want give an overview of the current status of our understanding of supernovae physics in light of recent results

  20. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Takashi J., E-mail: takashi.moriya@ipmu.jp [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8583 (Japan)

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  1. HIGH-DENSITY CIRCUMSTELLAR INTERACTION IN THE LUMINOUS TYPE IIn SN 2010jl: THE FIRST 1100 DAYS

    International Nuclear Information System (INIS)

    Fransson, Claes; Ergon, Mattias; Sollerman, Jesper; Challis, Peter J.; Kirshner, Robert P.; Marion, G. H.; Milisavljevic, Dan; Friedman, Andrew S.; Chornock, Ryan; Czekala, Ian; Soderberg, Alicia; Chevalier, Roger A.; France, Kevin; Smith, Nathan; Bufano, Filomena; Kangas, Tuomas; Larsson, Josefin; Mattila, Seppo; Benetti, Stefano

    2014-01-01

    Hubble Space Telescope and ground-based observations of the Type IIn supernova (SN) 2010jl are analyzed, including photometry and spectroscopy in the ultraviolet, optical, and near-IR bands, 26-1128 days after first detection. At maximum, the bolometric luminosity was ∼3 × 10 43 erg s –1 and even at 850 days exceeds 10 42 erg s –1 . A near-IR excess, dominating after 400 days, probably originates in dust in the circumstellar medium (CSM). The total radiated energy is ≳ 6.5 × 10 50 erg, excluding the dust component. The spectral lines can be separated into one broad component that is due to electron scattering and one narrow with expansion velocity ∼100 km s –1 from the CSM. The broad component is initially symmetric around zero velocity but becomes blueshifted after ∼50 days, while remaining symmetric about a shifted centroid velocity. Dust absorption in the ejecta is unlikely to explain the line shifts, and we attribute the shift instead to acceleration by the SN radiation. From the optical lines and the X-ray and dust properties, there is strong evidence for large-scale asymmetries in the CSM. The ultraviolet lines indicate CNO processing in the progenitor, while the optical shows a number of narrow coronal lines excited by the X-rays. The bolometric light curve is consistent with a radiative shock in an r –2 CSM with a mass-loss rate of M-dot ∼0.1  M ⊙ yr −1 . The total mass lost is ≳ 3 M ☉ . These properties are consistent with the SN expanding into a CSM characteristic of a luminous blue variable progenitor with a bipolar geometry. The apparent absence of nuclear processing is attributed to a CSM that is still opaque to electron scattering

  2. HIGH-DENSITY CIRCUMSTELLAR INTERACTION IN THE LUMINOUS TYPE IIn SN 2010jl: THE FIRST 1100 DAYS

    Energy Technology Data Exchange (ETDEWEB)

    Fransson, Claes; Ergon, Mattias; Sollerman, Jesper [Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Challis, Peter J.; Kirshner, Robert P.; Marion, G. H.; Milisavljevic, Dan; Friedman, Andrew S.; Chornock, Ryan; Czekala, Ian; Soderberg, Alicia [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chevalier, Roger A. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); France, Kevin [CASA, University of Colorado, 593UCB Boulder, CO 80309-0593 (United States); Smith, Nathan [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Bufano, Filomena [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Kangas, Tuomas [Tuorla Observatory, University of Turku, Väisäläntie 20 FI-21500 Piikkiö (Finland); Larsson, Josefin [KTH, Department of Physics, and the Oskar Klein Centre, AlbaNova, SE-106 91 Stockholm (Sweden); Mattila, Seppo [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20 FI-21500 Piikkiö (Finland); Benetti, Stefano [INAF-Osservatorio Astronomico di Padova, Vicolo dellOsservatorio 5, I-35122 Padova (Italy)

    2014-12-20

    Hubble Space Telescope and ground-based observations of the Type IIn supernova (SN) 2010jl are analyzed, including photometry and spectroscopy in the ultraviolet, optical, and near-IR bands, 26-1128 days after first detection. At maximum, the bolometric luminosity was ∼3 × 10{sup 43} erg s{sup –1} and even at 850 days exceeds 10{sup 42} erg s{sup –1}. A near-IR excess, dominating after 400 days, probably originates in dust in the circumstellar medium (CSM). The total radiated energy is ≳ 6.5 × 10{sup 50} erg, excluding the dust component. The spectral lines can be separated into one broad component that is due to electron scattering and one narrow with expansion velocity ∼100 km s{sup –1} from the CSM. The broad component is initially symmetric around zero velocity but becomes blueshifted after ∼50 days, while remaining symmetric about a shifted centroid velocity. Dust absorption in the ejecta is unlikely to explain the line shifts, and we attribute the shift instead to acceleration by the SN radiation. From the optical lines and the X-ray and dust properties, there is strong evidence for large-scale asymmetries in the CSM. The ultraviolet lines indicate CNO processing in the progenitor, while the optical shows a number of narrow coronal lines excited by the X-rays. The bolometric light curve is consistent with a radiative shock in an r {sup –2} CSM with a mass-loss rate of M-dot ∼0.1  M{sub ⊙} yr{sup −1}. The total mass lost is ≳ 3 M {sub ☉}. These properties are consistent with the SN expanding into a CSM characteristic of a luminous blue variable progenitor with a bipolar geometry. The apparent absence of nuclear processing is attributed to a CSM that is still opaque to electron scattering.

  3. Low-z Type Ia Supernova Calibration

    Science.gov (United States)

    Hamuy, Mario

    The discovery of acceleration and dark energy in 1998 arguably constitutes one of the most revolutionary discoveries in astrophysics in recent years. This paradigm shift was possible thanks to one of the most traditional cosmological tests: the redshift-distance relation between galaxies. This discovery was based on a differential measurement of the expansion rate of the universe: the current one provided by nearby (low-z) type Ia supernovae and the one in the past measured from distant (high-z) supernovae. This paper focuses on the first part of this journey: the calibration of the type Ia supernova luminosities and the local expansion rate of the universe, which was made possible thanks to the introduction of digital CCD (charge-coupled device) digital photometry. The new technology permitted us in the early 1990s to convert supernovae as precise tools to measure extragalactic distances through two key surveys: (1) the "Tololo Supernova Program" which made possible the critical discovery of the "peak luminosity-decline rate" relation for type Ia supernovae, the key underlying idea today behind precise cosmology from supernovae, and (2) the Calán/Tololo project which provided the low - z type Ia supernova sample for the discovery of acceleration.

  4. Progenitor's Signatures in Type Ia Supernova Remnants

    NARCIS (Netherlands)

    Chiotellis, A.; Kosenko, D.; Schure, K.M.; Vink, J.

    2013-01-01

    The remnants of Type Ia supernovae (SNe Ia) can provide important clues about their progenitor histories. We discuss two well-observed supernova remnants (SNRs) that are believed to have resulted from SNe Ia, and use various tools to shed light on the possible progenitor histories. We find that

  5. Type II supernovae: How do they explode?

    International Nuclear Information System (INIS)

    Baron, E.

    1988-01-01

    I discuss what has been learned from the neutrino observations of Supernova 1987A. The neutrino detections confirmed our basic theoretical scenario that Type II supernovae involve the gravitational collapse of a massive star. The small number of events makes it difficult to infer details about the actual mechanism of collapse. I discuss the current theoretical situation on the mechanism of explosion

  6. TYPE Ia SUPERNOVA CARBON FOOTPRINTS

    International Nuclear Information System (INIS)

    Thomas, R. C.; Nugent, P.; Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Hsiao, E. Y.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Paech, K.; Chotard, N.; Copin, Y.; Gangler, E.

    2011-01-01

    We present convincing evidence of unburned carbon at photospheric velocities in new observations of five Type Ia supernovae (SNe Ia) obtained by the Nearby Supernova Factory. These SNe are identified by examining 346 spectra from 124 SNe obtained before +2.5 days relative to maximum. Detections are based on the presence of relatively strong C II λ6580 absorption 'notches' in multiple spectra of each SN, aided by automated fitting with the SYNAPPS code. Four of the five SNe in question are otherwise spectroscopically unremarkable, with ions and ejection velocities typical of SNe Ia, but spectra of the fifth exhibit high-velocity (v > 20, 000 km s –1 ) Si II and Ca II features. On the other hand, the light curve properties are preferentially grouped, strongly suggesting a connection between carbon-positivity and broadband light curve/color behavior: three of the five have relatively narrow light curves but also blue colors and a fourth may be a dust-reddened member of this family. Accounting for signal to noise and phase, we estimate that 22 +10 –6% of SNe Ia exhibit spectroscopic C II signatures as late as –5 days with respect to maximum. We place these new objects in the context of previously recognized carbon-positive SNe Ia and consider reasonable scenarios seeking to explain a physical connection between light curve properties and the presence of photospheric carbon. We also examine the detailed evolution of the detected carbon signatures and the surrounding wavelength regions to shed light on the distribution of carbon in the ejecta. Our ability to reconstruct the C II λ6580 feature in detail under the assumption of purely spherical symmetry casts doubt on a 'carbon blobs' hypothesis, but does not rule out all asymmetric models. A low volume filling factor for carbon, combined with line-of-sight effects, seems unlikely to explain the scarcity of detected carbon in SNe Ia by itself.

  7. Rates and progenitors of type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Wood-Vasey, William Michael [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  8. Rates and progenitors of type Ia supernovae

    International Nuclear Information System (INIS)

    Wood-Vasey, William Michael

    2004-01-01

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  9. Light echoes - Type II supernovae

    International Nuclear Information System (INIS)

    Schaefer, B.E.

    1987-01-01

    Type II supernovae (SNs) light curves show a remarkable range of shapes. Data have been collected for the 12 Type II SNs that have light curve information for more than four months past maximum. Contrary to previous reports, it is found that (1) the decay rate after 100 days past maximum varies by almost an order of magnitude and (2) the light curve shapes are not bimodally distributed, but actually form a continuum. In addition, it is found that the extinctions to the SNs are related to the light curve shapes. This implies that the absorbing dust is local to the SNs. The dust is likely to be part of a circumstellar shell emitted by the SN progenitor that Dwek (1983) has used to explain infrared echoes. The optical depth of the shell can get quite large. In such cases, it is found that the photons scattered and delayed by reflection off dust grains will dominate the light curve several months after peak brightness. This light echo offers a straightforward explanation of the diversity of Type II SN light curves. 22 references

  10. Supernova rates, galaxy emission, and Hubble type

    International Nuclear Information System (INIS)

    Van Den Bergh, S.

    1991-01-01

    Supernova discovery frequency is found to correlate with emission-line (H-alpha + forbidden N II line) equivalent width, except for the most active galaxies in which some supernovae might be hidden by dust. SNII occur preferentially in active galaxies with emission-line EW not less than 20 A, whereas SNIa favor less active galaxies with EW less than 20 A. The intrinsic frequency of supernovae is found to be an order of magnitude higher in Sc galaxies than it is in early type spirals. The relatively high frequency of SNIa in late-type galaxies suggests that not all such objects have old progenitors. 13 refs

  11. Radiative transfer in type I supernovae atmospheres

    International Nuclear Information System (INIS)

    Isern, J.; Lopez, R.; Simonneau, E.

    1987-01-01

    Type I Supernovae are thought to be the result of the thermonuclear explosion of a carbon oxygen white dwarf in a close binary system. As the only direct information concerning the physics and the triggering mechanism of supernova explosions comes from the spectrophotometry of the emitted radiation, it is worthwhile to put considerable effort on the understanding of the radiation transfer in the supernovae envelopes in order to set constraints on the theoretical models of such explosions. In this paper we analyze the role played by the layers curvature on the radiative transfer. (Author)

  12. Photometric properties of type II supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Barbon, R [Osservatorio Astrofisico, Asiago (Italy); Trieste Univ. (Italy). Instituto di Matematica); Ciatti, F; Rosino, L [Osservatorio Astrofisico, Asiago (Italy); Pavia Univ. (Italy))

    1979-02-01

    An analysis of the available photometric observations for type II supernovae is presented. The possibility of drawing average curves by the fitting method, as previously done for type I supernovae, is indicated. Two basic shapes have been put into evidence, the first one (2/3 of the objects) is characterized by the presence of a plateau at intermediate phase, the second one by an almost linear decline. Average curves have been also built for the intrinsic color indices. Peculiar cases are discussed, including the unusual objects of types III-IV. The mean absolute magnitude at maximum for type II supernovae has been determined about Msub(B) = -16.45 (sigma=0.78), as a calibration for their use as distance indicators. The distribution in different morphological types and luminosity classes of the parent galaxies is briefly discussed.

  13. The Carnegie Supernova Project: Intrinsic colors of type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Christopher R.; Persson, S. E.; Freedman, Wendy L.; Madore, Barry F. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Stritzinger, Maximilian; Contreras, Carlos [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Phillips, M. M.; Hsiao, E. Y.; Boldt, Luis; Campillay, Abdo; Castellón, Sergio; Morrell, Nidia; Salgado, Francisco [Carnegie Institution of Washington, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, 277-8583 Kashiwa (Japan); Suntzeff, Nicholas B. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, Department of Physics and Astronomy, College Station, TX 77843 (United States)

    2014-07-01

    We present an updated analysis of the intrinsic colors of Type Ia supernova (SNe Ia) using the latest data release of the Carnegie Supernova Project. We introduce a new light-curve parameter very similar to stretch that is better suited for fast-declining events, and find that these peculiar types can be seen as extensions to the population of 'normal' SNe Ia. With a larger number of objects, an updated fit to the Lira relation is presented along with evidence for a dependence on the late-time slope of the B – V light-curves with stretch and color. Using the full wavelength range from u to H band, we place constraints on the reddening law for the sample as a whole and also for individual events/hosts based solely on the observed colors. The photometric data continue to favor low values of R{sub V} , though with large variations from event to event, indicating an intrinsic distribution. We confirm the findings of other groups that there appears to be a correlation between the derived reddening law, R{sub V} , and the color excess, E(B – V), such that larger E(B – V) tends to favor lower R{sub V} . The intrinsic u-band colors show a relatively large scatter that cannot be explained by variations in R{sub V} or by the Goobar power-law for circumstellar dust, but rather is correlated with spectroscopic features of the supernova and is therefore likely due to metallicity effects.

  14. The Carnegie Supernova Project: Intrinsic colors of type Ia supernovae

    International Nuclear Information System (INIS)

    Burns, Christopher R.; Persson, S. E.; Freedman, Wendy L.; Madore, Barry F.; Stritzinger, Maximilian; Contreras, Carlos; Phillips, M. M.; Hsiao, E. Y.; Boldt, Luis; Campillay, Abdo; Castellón, Sergio; Morrell, Nidia; Salgado, Francisco; Folatelli, Gaston; Suntzeff, Nicholas B.

    2014-01-01

    We present an updated analysis of the intrinsic colors of Type Ia supernova (SNe Ia) using the latest data release of the Carnegie Supernova Project. We introduce a new light-curve parameter very similar to stretch that is better suited for fast-declining events, and find that these peculiar types can be seen as extensions to the population of 'normal' SNe Ia. With a larger number of objects, an updated fit to the Lira relation is presented along with evidence for a dependence on the late-time slope of the B – V light-curves with stretch and color. Using the full wavelength range from u to H band, we place constraints on the reddening law for the sample as a whole and also for individual events/hosts based solely on the observed colors. The photometric data continue to favor low values of R V , though with large variations from event to event, indicating an intrinsic distribution. We confirm the findings of other groups that there appears to be a correlation between the derived reddening law, R V , and the color excess, E(B – V), such that larger E(B – V) tends to favor lower R V . The intrinsic u-band colors show a relatively large scatter that cannot be explained by variations in R V or by the Goobar power-law for circumstellar dust, but rather is correlated with spectroscopic features of the supernova and is therefore likely due to metallicity effects.

  15. Abundance Tomography of Type Ia Supernovae

    International Nuclear Information System (INIS)

    Stehle, M.; Mazzali, P.A.; Hillebrandt, W.

    2005-01-01

    An analysis of early time spectra of Type Ia Supernovae is presented. A new method to derive a detailed abundance distribution of the SN ejecta through comparison with synthetic spectra, called 'Abundance Tomography' is introduced and applied to the normal SN Ia 2002bo. Conclusions regarding the explosion mechanism are drawn

  16. SEARCH FOR PRECURSOR ERUPTIONS AMONG TYPE IIB SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Strotjohann, Nora L.; Ofek, Eran O.; Gal-Yam, Avishay; Yaron, Ofer [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Kulkarni, Shrinivas R.; Cao, Yi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Shaviv, Nir J. [School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States); Fremling, Christoffer; Sollerman, Jesper [The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm (Sweden); Kasliwal, Mansi M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Nugent, Peter E. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Arcavi, Iair [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93111 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Laher, Russ; Surace, Jason [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States)

    2015-10-01

    The progenitor stars of several Type IIb supernovae (SNe) show indications of extended hydrogen envelopes. These envelopes might be the outcome of luminous energetic pre-explosion events, so-called precursor eruptions. We use the Palomar Transient Factory (PTF) pre-explosion observations of a sample of 27 nearby SNe IIb to look for such precursors during the final years prior to the SN explosion. No precursors are found when combining the observations in 15-day bins, and we calculate the absolute-magnitude-dependent upper limit on the precursor rate. At the 90% confidence level, SNe IIb have on average <0.86 precursors as bright as an absolute R-band magnitude of −14 in the final 3.5 years before the explosion and <0.56 events over the final year. In contrast, precursors among SNe IIn have a ≳5 times higher rate. The kinetic energy required to unbind a low-mass stellar envelope is comparable to the radiated energy of a few-weeks-long precursor that would be detectable for the closest SNe in our sample. Therefore, mass ejections, if they are common in such SNe, are radiatively inefficient or have durations longer than months. Indeed, when using 60-day bins, a faint precursor candidate is detected prior to SN 2012cs (∼2% false-alarm probability). We also report the detection of the progenitor of SN 2011dh that does not show detectable variability over the final two years before the explosion. The suggested progenitor of SN 2012P is still present, and hence is likely a compact star cluster or an unrelated object.

  17. Are crab-type supernova remnants (plerions) short-lived

    International Nuclear Information System (INIS)

    Weiler, K.W.; Panagia, N.

    1978-01-01

    Arguments are given for a possible picture of the origin, maintenance, and lifetimes of the so-called Crab-like supernova remnants. It is suggested that these objects imply the existence of at least two distinct types of supernova events. A possible connection of the remnant types with the optically defined supernovae of Type I and Type II is discussed. Accepting that a pulsar is formed in at least some supernova events, the proposal is made that a rapidly rotating, rapidly slowing pulsar is necessary to create and maintain a Crab-like supernova remnant. Finally, arguments are presented that such a supernova remnant will be relatively short lived with respect to the more common shell-type of supernova remnant, perhaps surviving only 10000-20000 yr before fading into the Galactic background. The name of plerion is proposed for these filled-center supernova remnants and observational possiblities for confirming their nature are suggested. (orig.) [de

  18. SPECTROSCOPY OF TYPE Ia SUPERNOVAE BY THE CARNEGIE SUPERNOVA PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, the University of Tokyo, 277-8583 Kashiwa (Japan); Morrell, Nidia; Phillips, Mark M.; Hsiao, Eric; Campillay, Abdo; Contreras, Carlos; Castellon, Sergio; Roth, Miguel [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Hamuy, Mario; Anderson, Joseph P. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Krzeminski, Wojtek [N. Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warszawa (Poland); Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Burns, Christopher R.; Freedman, Wendy L.; Madore, Barry F.; Murphy, David; Persson, S. E. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Prieto, Jose L. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Ln., Princeton, NJ 08544 (United States); Suntzeff, Nicholas B.; Krisciunas, Kevin, E-mail: gaston.folatelli@ipmu.jp [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); and others

    2013-08-10

    This is the first release of optical spectroscopic data of low-redshift Type Ia supernovae (SNe Ia) by the Carnegie Supernova Project including 604 previously unpublished spectra of 93 SNe Ia. The observations cover a range of phases from 12 days before to over 150 days after the time of B-band maximum light. With the addition of 228 near-maximum spectra from the literature, we study the diversity among SNe Ia in a quantitative manner. For that purpose, spectroscopic parameters are employed such as expansion velocities from spectral line blueshifts and pseudo-equivalent widths (pW). The values of those parameters at maximum light are obtained for 78 objects, thus providing a characterization of SNe Ia that may help to improve our understanding of the properties of the exploding systems and the thermonuclear flame propagation. Two objects, namely, SNe 2005M and 2006is, stand out from the sample by showing peculiar Si II and S II velocities but otherwise standard velocities for the rest of the ions. We further study the correlations between spectroscopic and photometric parameters such as light-curve decline rate and color. In agreement with previous studies, we find that the pW of Si II absorption features are very good indicators of light-curve decline rate. Furthermore, we demonstrate that parameters such as pW2 (Si II 4130) and pW6 (Si II 5972) provide precise calibrations of the peak B-band luminosity with dispersions of Almost-Equal-To 0.15 mag. In the search for a secondary parameter in the calibration of peak luminosity for SNe Ia, we find a Almost-Equal-To 2{sigma}-3{sigma} correlation between B-band Hubble residuals and the velocity at maximum light of S II and Si II lines.

  19. SPECTROSCOPY OF TYPE Ia SUPERNOVAE BY THE CARNEGIE SUPERNOVA PROJECT

    International Nuclear Information System (INIS)

    Folatelli, Gastón; Morrell, Nidia; Phillips, Mark M.; Hsiao, Eric; Campillay, Abdo; Contreras, Carlos; Castellón, Sergio; Roth, Miguel; Hamuy, Mario; Anderson, Joseph P.; Krzeminski, Wojtek; Stritzinger, Maximilian; Burns, Christopher R.; Freedman, Wendy L.; Madore, Barry F.; Murphy, David; Persson, S. E.; Prieto, José L.; Suntzeff, Nicholas B.; Krisciunas, Kevin

    2013-01-01

    This is the first release of optical spectroscopic data of low-redshift Type Ia supernovae (SNe Ia) by the Carnegie Supernova Project including 604 previously unpublished spectra of 93 SNe Ia. The observations cover a range of phases from 12 days before to over 150 days after the time of B-band maximum light. With the addition of 228 near-maximum spectra from the literature, we study the diversity among SNe Ia in a quantitative manner. For that purpose, spectroscopic parameters are employed such as expansion velocities from spectral line blueshifts and pseudo-equivalent widths (pW). The values of those parameters at maximum light are obtained for 78 objects, thus providing a characterization of SNe Ia that may help to improve our understanding of the properties of the exploding systems and the thermonuclear flame propagation. Two objects, namely, SNe 2005M and 2006is, stand out from the sample by showing peculiar Si II and S II velocities but otherwise standard velocities for the rest of the ions. We further study the correlations between spectroscopic and photometric parameters such as light-curve decline rate and color. In agreement with previous studies, we find that the pW of Si II absorption features are very good indicators of light-curve decline rate. Furthermore, we demonstrate that parameters such as pW2 (Si II 4130) and pW6 (Si II 5972) provide precise calibrations of the peak B-band luminosity with dispersions of ≈0.15 mag. In the search for a secondary parameter in the calibration of peak luminosity for SNe Ia, we find a ≈2σ-3σ correlation between B-band Hubble residuals and the velocity at maximum light of S II and Si II lines

  20. THE AGES OF TYPE Ia SUPERNOVA PROGENITORS

    International Nuclear Information System (INIS)

    Brandt, Timothy D.; Aubourg, Eric; Strauss, Michael A.; Tojeiro, Rita; Heavens, Alan; Jimenez, Raul

    2010-01-01

    Using light curves and host galaxy spectra of 101 Type Ia supernovae (SNe Ia) with redshift z ∼ 2.4 Gyr. We find that each channel contributes roughly half of the Type Ia rate in our reference sample. We also construct the average spectra of high-stretch and low-stretch SN Ia host galaxies, and find that the difference of these spectra looks like a main-sequence B star with nebular emission lines indicative of star formation. This supports our finding that there are two populations of SNe Ia, and indicates that the progenitors of high-stretch supernovae are at the least associated with very recent star formation in the last few tens of Myr. Our results provide valuable constraints for models of Type Ia progenitors and may help improve the calibration of SNe Ia as standard candles.

  1. Type Ia Supernovae: Energetics, Neutronization and Nucleosynthesis

    International Nuclear Information System (INIS)

    Truran, James W.; Calder, Alan C.; Townsley, Dean M.; Seitenzahl, Ivo R.; Peng, Fang; Vladimirova, Natalia; Lamb, Donald Q.; Brown, Edward F.

    2007-01-01

    The utility of Type Ia supernovae, not simply as probes of the distance scale but also as a means of constraining the properties of dark energy, demands a significant improvement in theoretical predictions of their properties in outburst. To this end, we have given substantial effort to quantifying the energetics and nucleosynthesis properties of deflagration fronts in the interiors of the putative carbon-oxygen white dwarf progenitors of Type Ia thermonuclear supernovae. We briefly review some essential features of our flame model and its properties in this paper and discuss its implications both for our multidimensional numerical simulations of SNe Ia and for nucleosynthesis (specifically 56Ni production) in SNe Ia and Galactic chemical evolution

  2. Genetic algorithms and supernovae type Ia analysis

    International Nuclear Information System (INIS)

    Bogdanos, Charalampos; Nesseris, Savvas

    2009-01-01

    We introduce genetic algorithms as a means to analyze supernovae type Ia data and extract model-independent constraints on the evolution of the Dark Energy equation of state w(z) ≡ P DE /ρ DE . Specifically, we will give a brief introduction to the genetic algorithms along with some simple examples to illustrate their advantages and finally we will apply them to the supernovae type Ia data. We find that genetic algorithms can lead to results in line with already established parametric and non-parametric reconstruction methods and could be used as a complementary way of treating SNIa data. As a non-parametric method, genetic algorithms provide a model-independent way to analyze data and can minimize bias due to premature choice of a dark energy model

  3. The interaction of Type Ia supernovae with their circumstellar medium

    NARCIS (Netherlands)

    Chiotellis, A.

    2013-01-01

    This thesis is focused on the study of a specific class of supernovae, named Type Ia (or thermonuclear) supernovae. In particular, we attempt to gain information about their origin through the study of the interaction of these supernovae with circumstellar structures that have been shaped by their

  4. What stars become peculiar type I supernovae?

    International Nuclear Information System (INIS)

    Uomoto, A.

    1986-01-01

    Hot hydrogen-deficient binaries such as Upsilon Sgr and KS Per are suggested as the stars most likely to become Type Ib supernovae. These systems satisfy the preexplosion constraints imposed by Type Ib observations by not having any hydrogen in their atmospheres (explaining their spectra), being truncated at the Roche lobe (explaining their light curves), and having large main-sequence masses (explaining their presence in extreme Population I locations). Although none of those known seems to be in danger of exploding, a system with a current primary mass of about solar masses may do so by core collapse. 36 references

  5. New approaches for modeling type Ia supernovae

    International Nuclear Information System (INIS)

    Zingale, Michael; Almgren, Ann S.; Bell, John B.; Day, Marcus S.; Rendleman, Charles A.; Woosley, Stan

    2007-01-01

    Type Ia supernovae (SNe Ia) are the largest thermonuclear explosions in the Universe. Their light output can be seen across great distances and has led to the discovery that the expansion rate of the Universe is accelerating. Despite the significance of SNe Ia, there are still a large number of uncertainties in current theoretical models. Computational modeling offers the promise to help answer the outstanding questions. However, even with today's supercomputers, such calculations are extremely challenging because of the wide range of length and timescales. In this paper, we discuss several new algorithms for simulations of SNe Ia and demonstrate some of their successes

  6. Sensitivity studies for supernovae type Ia

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thien Tam; Goebel, Kathrin; Reifarth, Rene [Goethe University Frankfurt am Main (Germany); Calder, Alan [SUNY - Department of Physics and Astronomy, New York (United States); Pignatari, Marco [Konkoly Observatory of the Hungarian Academy of Sciences (Hungary); Townsley, Dean [The University of Alabama (United States); Travaglio, Claudia [INAF - Astrophysical Observatory, Turin (Italy); Collaboration: NuGrid collaboration

    2016-07-01

    The NuGrid research platform provides a simulation framework to study the nucleosynthesis in multi-dimensional Supernovae Type Ia models. We use a large network of over 5,000 isotopes and more than 60,000 reactions. The nucleosynthesis is investigated in post-processing simulations with temperature and density profiles, initial abundance distributions and a set of reaction rates as input. The sensitivity of the isotopic abundances to α-, proton-, and neutron-capture reaction, their inverse reactions, as well as fusion reactions were investigated. First results have been achieved for different mass coordinates of the exploding star.

  7. Type Ia supernovae, standardizable candles, and gravity

    Science.gov (United States)

    Wright, Bill S.; Li, Baojiu

    2018-04-01

    Type Ia supernovae (SNe Ia) are generally accepted to act as standardizable candles, and their use in cosmology led to the first confirmation of the as yet unexplained accelerated cosmic expansion. Many of the theoretical models to explain the cosmic acceleration assume modifications to Einsteinian general relativity which accelerate the expansion, but the question of whether such modifications also affect the ability of SNe Ia to be standardizable candles has rarely been addressed. This paper is an attempt to answer this question. For this we adopt a semianalytical model to calculate SNe Ia light curves in non-standard gravity. We use this model to show that the average rescaled intrinsic peak luminosity—a quantity that is assumed to be constant with redshift in standard analyses of Type Ia supernova (SN Ia) cosmology data—depends on the strength of gravity in the supernova's local environment because the latter determines the Chandrasekhar mass—the mass of the SN Ia's white dwarf progenitor right before the explosion. This means that SNe Ia are no longer standardizable candles in scenarios where the strength of gravity evolves over time, and therefore the cosmology implied by the existing SN Ia data will be different when analysed in the context of such models. As an example, we show that the observational SN Ia cosmology data can be fitted with both a model where (ΩM,ΩΛ)=(0.62 ,0.38 ) and Newton's constant G varies as G (z )=G0(1 +z )-1/4 and the standard model where (ΩM,ΩΛ)=(0.3 ,0.7 ) and G is constant, when the Universe is assumed to be flat.

  8. Defining photometric peculiar type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    González-Gaitán, S.; Pignata, G.; Förster, F.; Gutiérrez, C. P.; Bufano, F.; Galbany, L.; Hamuy, M.; De Jaeger, T. [Millennium Institute of Astrophysics, Casilla 36-D, Santiago (Chile); Hsiao, E. Y.; Phillips, M. M. [Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena (Chile); Folatelli, G. [Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa 277-8583 (Kavli IPMU, WPI) (Japan); Anderson, J. P., E-mail: sgonzale@das.uchile.cl [European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Santiago (Chile)

    2014-11-10

    We present a new photometric identification technique for SN 1991bg-like type Ia supernovae (SNe Ia), i.e., objects with light curve characteristics such as later primary maxima and the absence of a secondary peak in redder filters. This method is capable of selecting this sub-group from the normal type Ia population. Furthermore, we find that recently identified peculiar sub-types such as SNe Iax and super-Chandrasekhar SNe Ia have photometric characteristics similar to 91bg-like SNe Ia, namely, the absence of secondary maxima and shoulders at longer wavelengths, and can also be classified with our technique. The similarity of these different SN Ia sub-groups perhaps suggests common physical conditions. This typing methodology permits the photometric identification of peculiar SNe Ia in large upcoming wide-field surveys either to study them further or to obtain a pure sample of normal SNe Ia for cosmological studies.

  9. Type I supernova models vs observations

    International Nuclear Information System (INIS)

    Weaver, T.A.; Axelrod, T.S.; Woosley, S.E.

    1980-01-01

    This paper explores tHe observational consequences of models for Type I supernovae based on the detonation (or deflagration) of the degenerate cores of white dwarfs or intermediate mass (approx. = 9 M/sub sun/) stars. Such nuclear burning can be initiated either at the center of the core or near its edge. The model examined in most detail is that of a 0.5M/sub sun/ C/O white dwarf which undergoes an edge-lit He/C/O detonation after accreting 0.62 M/sub sun/ of he at 10 -8 M/sub sun//yr. The light curve resulting from this model is found to be in excellent agreement with those observed for Type I supernovae, particularly those in the fast subclass. The physical processes involved in the detailed numerical calculations which lead to this conclusion are quantitatively elucidated by simple analytic models, and effects of uncertainties in the input physics are explored

  10. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    International Nuclear Information System (INIS)

    Janka, H.T.

    1996-01-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson's neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs

  11. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Janka, H T [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    1996-11-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson`s neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs.

  12. Type II supernovae modelisation: neutrinos transport simulation

    International Nuclear Information System (INIS)

    Mellor, P.

    1988-10-01

    A modelisation of neutrino transport in type II supernovae is presented. The first part is a description of hydrodynamics and radiative processes responsible of supernovae explosions. Macroscopic aspects of these are displayed in part two. Neutrino transport theory and usual numerical methods are also developed. A new technic of coherent scattering of neutrinos on nuclei or free nucleons is proposed in the frame work of the Lorentz bifluid approximation. This method deals with all numerical artifices (flux limiting schemes, closure relationship of Eddington moments) and allows a complete and consistent determination of the time-dependent neutrino distribution function for any value of the opacity, gradient of opacity and for all (relativistic) velocity fields of the diffusive medium. Part three is dedicated to microscopic phenomena (electronic capture, chimical composition, etc) which rule neutrinos emission-absorption mechanisms. The numerical treatments of those are presented, and some applications are useful for their parametrization. Finally, an extension of the method to inelastic scattering on light particules (electrons) is described in view to study neutrinos thermalization mechanism [fr

  13. Why type 2 supernovae do not explode in irregular galaxies

    International Nuclear Information System (INIS)

    Shklovskij, I.S.

    1984-01-01

    The conclusion is drawn that reason for an absence of type 2 supernovae explosions in irregular galaxies is their peculiar chemical composition. The observed lack of stellar wind from massive hot giants is due to relatively low heavy element abundance. For this reason evolving massive stars do not form an extended dense envelopes that is a necessary condition for the type 2 supernova phenomenon

  14. Theoretical models for Type I and Type II supernova

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1985-01-01

    Recent theoretical progress in understanding the origin and nature of Type I and Type II supernovae is discussed. New Type II presupernova models characterized by a variety of iron core masses at the time of collapse are presented and the sensitivity to the reaction rate 12 C(α,γ) 16 O explained. Stars heavier than about 20 M/sub solar/ must explode by a ''delayed'' mechanism not directly related to the hydrodynamical core bounce and a subset is likely to leave black hole remnants. The isotopic nucleosynthesis expected from these massive stellar explosions is in striking agreement with the sun. Type I supernovae result when an accreting white dwarf undergoes a thermonuclear explosion. The critical role of the velocity of the deflagration front in determining the light curve, spectrum, and, especially, isotopic nucleosynthesis in these models is explored. 76 refs., 8 figs

  15. DARK MATTER ADMIXED TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Leung, S.-C.; Chu, M.-C.; Lin, L.-M.

    2015-01-01

    We perform two-dimensional hydrodynamic simulations for the thermonuclear explosion of Chandrasekhar-mass white dwarfs with dark matter (DM) cores in Newtonian gravity. We include a 19-isotope nuclear reaction network and make use of the pure turbulent deflagration model as the explosion mechanism in our simulations. Our numerical results show that the general properties of the explosion depend quite sensitively on the mass of the DM core M DM : a larger M DM generally leads to a weaker explosion and a lower mass of synthesized iron-peaked elements. In particular, the total mass of produced can drop from about 0.3 to 0.03 M ⊙ as M DM increases from 0.01 to 0.03 M ⊙ . We have also constructed the bolometric light curves obtained from our simulations and found that our results match well with the observational data of sub-luminous Type Ia supernovae

  16. Light curve of type I supernovae

    International Nuclear Information System (INIS)

    Colgate, S.A.; Petschek, A.G.; Kriese, J.T.

    1980-01-01

    Calculations of the intermediate and late time luminosity of type I supernovae based on 100% efficiency for optical emission of energy deposited by the Ni 56 decay chain give good agreement with observations provided M/sub ej/ v -2 = (2.2 +- 0.5) x 10 17 M. s 2 cm -2 where M/sub ej/ is the ejected mass an v is the expansion velocity. Account must be taken of the escape of both gamma rays and positrons. These two escape processes as well as the early luminosity peak as calculated by Colgate and McKee are all consistent with the same value of M/sub ej//v 2

  17. An updated Type II supernova Hubble diagram

    Science.gov (United States)

    Gall, E. E. E.; Kotak, R.; Leibundgut, B.; Taubenberger, S.; Hillebrandt, W.; Kromer, M.; Burgett, W. S.; Chambers, K.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A.; Metcalfe, N.; Smith, K.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.

    2018-03-01

    We present photometry and spectroscopy of nine Type II-P/L supernovae (SNe) with redshifts in the 0.045 ≲ z ≲ 0.335 range, with a view to re-examining their utility as distance indicators. Specifically, we apply the expanding photosphere method (EPM) and the standardized candle method (SCM) to each target, and find that both methods yield distances that are in reasonable agreement with each other. The current record-holder for the highest-redshift spectroscopically confirmed supernova (SN) II-P is PS1-13bni (z = 0.335-0.012+0.009), and illustrates the promise of Type II SNe as cosmological tools. We updated existing EPM and SCM Hubble diagrams by adding our sample to those previously published. Within the context of Type II SN distance measuring techniques, we investigated two related questions. First, we explored the possibility of utilising spectral lines other than the traditionally used Fe IIλ5169 to infer the photospheric velocity of SN ejecta. Using local well-observed objects, we derive an epoch-dependent relation between the strong Balmer line and Fe IIλ5169 velocities that is applicable 30 to 40 days post-explosion. Motivated in part by the continuum of key observables such as rise time and decline rates exhibited from II-P to II-L SNe, we assessed the possibility of using Hubble-flow Type II-L SNe as distance indicators. These yield similar distances as the Type II-P SNe. Although these initial results are encouraging, a significantly larger sample of SNe II-L would be required to draw definitive conclusions. Tables A.1, A.3, A.5, A.7, A.9, A.11, A.13, A.15 and A.17 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A25

  18. Type Ia supernova rate studies from the SDSS-II Supernova Study

    Energy Technology Data Exchange (ETDEWEB)

    Dilday, Benjamin [Univ. of Chicago, IL (United States)

    2008-08-01

    The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SN Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.

  19. UBVRIz LIGHT CURVES OF 51 TYPE II SUPERNOVAE

    International Nuclear Information System (INIS)

    Galbany, Lluis; Hamuy, Mario; Jaeger, Thomas de; Moraga, Tania; González-Gaitán, Santiago; Gutiérrez, Claudia P.; Phillips, Mark M.; Morrell, Nidia I.; Thomas-Osip, Joanna; Suntzeff, Nicholas B.; Maza, José; González, Luis; Antezana, Roberto; Wishnjewski, Marina; Krisciunas, Kevin; Krzeminski, Wojtek; McCarthy, Patrick; Anderson, Joseph P.; Stritzinger, Maximilian; Folatelli, Gastón

    2016-01-01

    We present a compilation of UBVRIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986–2003: the Cerro Tololo Supernova Survey, the Calán/Tololo Supernova Program (C and T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) from maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being shorter (longer) for larger (smaller) s values

  20. UBVRIz LIGHT CURVES OF 51 TYPE II SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Galbany, Lluis; Hamuy, Mario; Jaeger, Thomas de; Moraga, Tania; González-Gaitán, Santiago; Gutiérrez, Claudia P. [Millennium Institute of Astrophysics, Universidad de Chile (Chile); Phillips, Mark M.; Morrell, Nidia I.; Thomas-Osip, Joanna [Carnegie Observatories, Las Campanas Observatory, Casilla 60, La Serena (Chile); Suntzeff, Nicholas B. [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Maza, José; González, Luis; Antezana, Roberto; Wishnjewski, Marina [Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago (Chile); Krisciunas, Kevin [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Krzeminski, Wojtek [N. Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warszawa (Poland); McCarthy, Patrick [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Anderson, Joseph P. [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago (Chile); Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University (Denmark); Folatelli, Gastón, E-mail: lgalbany@das.uchile.cl [Instituto de Astrofísica de La Plata (IALP, CONICET) (Argentina); and others

    2016-02-15

    We present a compilation of UBVRIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986–2003: the Cerro Tololo Supernova Survey, the Calán/Tololo Supernova Program (C and T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) from maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being shorter (longer) for larger (smaller) s values.

  1. Dark Matter Ignition of Type Ia Supernovae.

    Science.gov (United States)

    Bramante, Joseph

    2015-10-02

    Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10  Myr old pulsars at the center of the Milky Way.

  2. THE LOCAL HOSTS OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Neill, James D.; Martin, D. Christopher; Barlow, Tom A.; Foster, Karl; Friedman, Peter G.; Morrissey, Patrick; Wyder, Ted K.; Sullivan, Mark; Howell, D. Andrew; Conley, Alex; Seibert, Mark; Madore, Barry F.; Neff, Susan G.; Schiminovich, David; Bianchi, Luciana; Donas, Jose; Milliard, Bruno; Heckman, Timothy M.; Lee, Young-Wook; Rich, R. Michael

    2009-01-01

    We use multi-wavelength, matched aperture, integrated photometry from the Galaxy Evolution Explorer (GALEX), the Sloan Digital Sky Survey, and the RC3 to estimate the physical properties of 166 nearby galaxies hosting 168 well-observed Type Ia supernovae (SNe Ia). The ultraviolet (UV) imaging of local SN Ia hosts from GALEX allows a direct comparison with higher-redshift hosts measured at optical wavelengths that correspond to the rest-frame UV. Our data corroborate well-known features that have been seen in other SN Ia samples. Specifically, hosts with active star formation produce brighter and slower SNe Ia on average, and hosts with luminosity-weighted ages older than 1 Gyr produce on average more faint, fast, and fewer bright, slow SNe Ia than younger hosts. New results include that in our sample, the faintest and fastest SNe Ia occur only in galaxies exceeding a stellar mass threshold of ∼10 10 M sun , leading us to conclude that their progenitors must arise in populations that are older and/or more metal rich than the general SN Ia population. A low host extinction subsample hints at a residual trend in peak luminosity with host age, after correcting for light-curve shape, giving the appearance that older hosts produce less-extincted SNe Ia on average. This has implications for cosmological fitting of SNe Ia, and suggests that host age could be useful as a parameter in the fitting. Converting host mass to metallicity and computing 56 Ni mass from the supernova light curves, we find that our local sample is consistent with a model that predicts a shallow trend between stellar metallicity and the 56 Ni mass that powers the explosion, but we cannot rule out the absence of a trend. We measure a correlation between 56 Ni mass and host age in the local universe that is shallower and not as significant as that seen at higher redshifts. The details of the age- 56 Ni mass correlations at low and higher redshift imply a luminosity-weighted age threshold of ∼3 Gyr

  3. THE SPECTROSCOPIC DIVERSITY OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Blondin, S.; Matheson, T.; Kirshner, R. P.; Mandel, K. S.; Challis, P.; Berlind, P.; Calkins, M.; Garnavich, P. M.; Jha, S. W.; Modjaz, M.; Riess, A. G.; Schmidt, B. P.

    2012-01-01

    We present 2603 spectra of 462 nearby Type Ia supernovae (SNe Ia), including 2065 previously unpublished spectra, obtained during 1993-2008 through the Center for Astrophysics Supernova Program. There are on average eight spectra for each of the 313 SNe Ia with at least two spectra. Most of the spectra were obtained with the FAST spectrograph at the Fred Lawrence Whipple Observatory 1.5 m telescope and reduced in a consistent manner, making this data set well suited for studies of SN Ia spectroscopic diversity. Using additional data from the literature, we study the spectroscopic and photometric properties of SNe Ia as a function of spectroscopic class using the classification schemes of Branch et al. and Wang et al. The width-luminosity relation appears to be steeper for SNe Ia with broader lines, although the result is not statistically significant with the present sample. Based on the evolution of the characteristic Si II λ6355 line, we propose improved methods for measuring velocity gradients, revealing a larger range than previously suspected, from ∼0 to ∼400 km s −1 day −1 considering the instantaneous velocity decline rate at maximum light. We find a weaker and less significant correlation between Si II velocity and intrinsic B – V color at maximum light than reported by Foley et al., owing to a more comprehensive treatment of uncertainties and host galaxy dust. We study the extent of nuclear burning and the presence of unburnt carbon in the outermost layers of the ejecta and report new detections of C II λ6580 in 23 early-time SN Ia spectra. The frequency of C II detections is not higher in SNe Ia with bluer colors or narrower light curves, in conflict with the recent results of Thomas et al. Based on nebular spectra of 27 SNe Ia, we find no relation between the FWHM of the iron emission feature at ∼4700 Å and Δm 15 (B) after removing the two low-luminosity SN 1986G and SN 1991bg, suggesting that the peak luminosity is not strongly dependent

  4. EARLY EMISSION FROM TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Rabinak, Itay; Waxman, Eli; Livne, Eli

    2012-01-01

    A unique feature of deflagration-to-detonation (DDT) white dwarf explosion models of supernovae of type Ia is the presence of a strong shock wave propagating through the outer envelope. We consider the early emission expected in such models, which is produced by the expanding shock-heated outer part of the ejecta and precedes the emission driven by radioactive decay. We expand on earlier analyses by considering the modification of the pre-detonation density profile by the weak shocks generated during the deflagration phase, the time evolution of the opacity, and the deviation of the post-shock equation of state from that obtained for radiation pressure domination. A simple analytic model is presented and shown to provide an acceptable approximation to the results of one-dimensional numerical DDT simulations. Our analysis predicts a ∼10 3 s long UV/optical flash with a luminosity of ∼1 to ∼3 × 10 39 erg s –1 . Lower luminosity corresponds to faster (turbulent) deflagration velocity. The luminosity of the UV flash is predicted to be strongly suppressed at t > t drop ∼ 1 hr due to the deviation from pure radiation domination.

  5. Prompt mechanism of type II supernovae

    International Nuclear Information System (INIS)

    Burrows, A.; Lattimer, J.M.

    1985-01-01

    We report in this Letter on an extensive set of hydrodynamical simulations of the stellar collapse of the cores of massive stars. A new hydro technique and a series of state-of-the art equations of state were employed. The purpose of this project was to understand in detail core implosion and immediate postbounce behavior (first 25 ms) and to investigate the viability of the hydrodynamic mechanism for Type II supernovae. We find that the bounce-shock always stalls upon encountering the massive infalling outer core for the calculated cores of stars between 8 and 25 M/sub sun/ and the standard input physics. In particular, it is found that Nomoto's 8l8 m/sub sun/ star and Woosley, Weaver, and Taam's 10 M/sub sun/ star do not explode via the prompt mechanism. Our conclusions appear to depend not on the details of the progenitor structure calculated by others but rather on the generic nature of these structures

  6. TURBULENT OXYGEN FLAMES IN TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Aspden, A. J.; Bell, J. B.; Woosley, S. E.

    2011-01-01

    In previous studies, we examined turbulence-flame interactions in carbon-burning thermonuclear flames in Type Ia supernovae. In this study, we consider turbulence-flame interactions in the trailing oxygen flames. The two aims of the paper are to examine the response of the inductive oxygen flame to intense levels of turbulence, and to explore the possibility of transition to detonation in the oxygen flame. Scaling arguments analogous to the carbon flames are presented and then compared against three-dimensional simulations for a range of Damkoehler numbers (Da 16 ) at a fixed Karlovitz number. The simulations suggest that turbulence does not significantly affect the oxygen flame when Da 16 16 >1, turbulence enhances heat transfer and drives the propagation of a flame that is narrower than the corresponding inductive flame would be. Furthermore, burning under these conditions appears to occur as part of a combined carbon-oxygen turbulent flame with complex compound structure. The simulations do not appear to support the possibility of a transition to detonation in the oxygen flame, but do not preclude it either.

  7. A problem with the analysis of type Ia supernovae

    Directory of Open Access Journals (Sweden)

    Crawford David F.

    2017-12-01

    Full Text Available Type Ia supernovae have light curves that have widths and magnitudes that can be used for testing cosmologies and they provide one of the few direct measurements of time dilation. It is shown that the standard analysis that calibrates the light curve against a rest-frame average (such as SALT2 removes all the cosmological information from the calibrated light curves. Consequently type Ia supernovae calibrated with these methods cannot be used to investigate cosmology. The major evidence that supports the hypothesis of a static universe is that the measurements of the widths of the rawlight curves of type Ia supernovae do not show any time dilation. The intrinsicwavelength dependence shown by the SALT2 calibration templates is also consistent with no time dilation. Using a static cosmological model the peak absolute magnitudes of raw type Ia supernovae observations are also independent of redshift. These results support the hypothesis of a static universe.

  8. Progenitors of type Ia supernovae in elliptical galaxies

    International Nuclear Information System (INIS)

    Gilfanov, M.; Bogdan, A.

    2011-01-01

    Although there is a nearly universal agreement that type Ia supernovae are associated with the thermonuclear disruption of a CO white dwarf, the exact nature of their progenitors is still unknown. The single degenerate scenario envisages a white dwarf accreting matter from a non-degenerate companion in a binary system. Nuclear energy of the accreted matter is released in the form of electromagnetic radiation or gives rise to numerous classical nova explosions prior to the supernova event. We show that combined X-ray output of supernova progenitors and statistics of classical novae predicted in the single degenerate scenario are inconsistent with X-ray and optical observations of nearby early type galaxies and galaxy bulges. White dwarfs accreting from a donor star in a binary system and detonating at the Chandrasekhar mass limit can account for no more than ∼5% of type Ia supernovae observed in old stellar populations.

  9. Type Ia supernovae as speed sensors at intermediate redshifts

    International Nuclear Information System (INIS)

    Zhang Pengjie; Chen Xuelei

    2008-01-01

    Large scale peculiar velocity (LSPV) is a crucial probe of dark matter, dark energy, and gravity at cosmological scales. However, its application is severely limited by measurement obstacles. We show that fluctuations in type Ia supernovae fluxes induced by LSPV offer a promising approach to measure LSPV at intermediate redshifts. In the 3D Fourier space, gravitational lensing, the dominant systematical error, is well suppressed, localized, and can be further corrected effectively. Advances in supernova observations can further significantly reduce shot noise induced by supernova intrinsic fluctuations, which is the dominant statistical error. Robust mapping on the motion of the dark universe through type Ia supernovae is thus feasible to z∼0.5.

  10. Three-dimensional Modeling of Type Ia Supernova Explosions

    Science.gov (United States)

    Khokhlov, Alexei

    2001-06-01

    A deflagration explosion of a Type Ia Supernova (SNIa) is studied using three-dimensional, high-resolution, adaptive mesh refinement fluid dynamic calculations. Deflagration speed in an exploding Chandrasekhar-mass carbon-oxygen white dwarf (WD) grows exponentially, reaches approximately 30the speed of sound, and then declines due to a WD expansion. Outermost layers of the WD remain unburned. The explosion energy is comparable to that of a Type Ia supernova. The freezing of turbulent motions by expansion appears to be a crucial physical mechanism regulating the strength of a supernova explosion. In contrast to one-dimensional models, three-dimensional calculations predict the formation of Si-group elements and pockets of unburned CO in the middle and in central regions of a supernova ejecta. This, and the presence of unburned outer layer of carbon-oxygen may pose problems for SNIa spectra. Explosion sensitivity to initial conditions and its relation to a diversity of SNIa is discussed.

  11. SHOCK BREAKOUT FROM TYPE Ia SUPERNOVA

    International Nuclear Information System (INIS)

    Piro, Anthony L.; Chang, Philip; Weinberg, Nevin N.

    2010-01-01

    The mode of explosive burning in Type Ia supernovae (SNe Ia) remains an outstanding problem. It is generally thought to begin as a subsonic deflagration, but this may transition into a supersonic detonation (the delayed detonation transition, DDT). We argue that this transition leads to a breakout shock, which would provide the first unambiguous evidence that DDTs occur. Its main features are a hard X-ray flash (∼20 keV) lasting ∼10 -2 s with a total radiated energy of ∼10 40 erg, followed by a cooling tail. This creates a distinct feature in the visual light curve, which is separate from the nickel decay. This cooling tail has a maximum absolute visual magnitude of M V ∼ -9 to -10 at ∼1 day, which depends most sensitively on the white dwarf radius at the time of the DDT. As the thermal diffusion wave moves in, the composition of these surface layers may be imprinted as spectral features, which would help to discern between SN Ia progenitor models. Since this feature should accompany every SNe Ia, future deep surveys (e.g., m = 24) will see it out to a distance of ∼80 Mpc, giving a maximum rate of ∼60 yr -1 . Archival data sets can also be used to study the early rise dictated by the shock heating (at ∼20 days before maximum B-band light). A similar and slightly brighter event may also accompany core bounce during the accretion-induced collapse to a neutron star, but with a lower occurrence rate.

  12. Constraining Cosmic Evolution of Type Ia Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Ryan J.; Filippenko, Alexei V.; Aguilera, C.; Becker, A.C.; Blondin, S.; Challis, P.; Clocchiatti, A.; Covarrubias, R.; Davis, T.M.; Garnavich, P.M.; Jha, S.; Kirshner, R.P.; Krisciunas, K.; Leibundgut, B.; Li, W.; Matheson, T.; Miceli, A.; Miknaitis, G.; Pignata, G.; Rest, A.; Riess, A.G.; /UC, Berkeley, Astron. Dept. /Cerro-Tololo InterAmerican Obs. /Washington U., Seattle, Astron. Dept. /Harvard-Smithsonian Ctr. Astrophys. /Chile U., Catolica /Bohr Inst. /Notre Dame U. /KIPAC, Menlo Park /Texas A-M /European Southern Observ. /NOAO, Tucson /Fermilab /Chile U., Santiago /Harvard U., Phys. Dept. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Res. Sch. Astron. Astrophys., Weston Creek /Stockholm U. /Hawaii U. /Illinois U., Urbana, Astron. Dept.

    2008-02-13

    We present the first large-scale effort of creating composite spectra of high-redshift type Ia supernovae (SNe Ia) and comparing them to low-redshift counterparts. Through the ESSENCE project, we have obtained 107 spectra of 88 high-redshift SNe Ia with excellent light-curve information. In addition, we have obtained 397 spectra of low-redshift SNe through a multiple-decade effort at Lick and Keck Observatories, and we have used 45 ultraviolet spectra obtained by HST/IUE. The low-redshift spectra act as a control sample when comparing to the ESSENCE spectra. In all instances, the ESSENCE and Lick composite spectra appear very similar. The addition of galaxy light to the Lick composite spectra allows a nearly perfect match of the overall spectral-energy distribution with the ESSENCE composite spectra, indicating that the high-redshift SNe are more contaminated with host-galaxy light than their low-redshift counterparts. This is caused by observing objects at all redshifts with similar slit widths, which corresponds to different projected distances. After correcting for the galaxy-light contamination, subtle differences in the spectra remain. We have estimated the systematic errors when using current spectral templates for K-corrections to be {approx}0.02 mag. The variance in the composite spectra give an estimate of the intrinsic variance in low-redshift maximum-light SN spectra of {approx}3% in the optical and growing toward the ultraviolet. The difference between the maximum-light low and high-redshift spectra constrain SN evolution between our samples to be < 10% in the rest-frame optical.

  13. Could there be a hole in type Ia supernovae?

    International Nuclear Information System (INIS)

    Kasen, Daniel; Nugent, Peter; Thomas, R.C.; Wang, Lifan

    2004-01-01

    In the favored progenitor scenario, Type Ia supernovae (SNe Ia) arise from a white dwarf accreting material from a non-degenerate companion star. Soon after the white dwarf explodes, the ejected supernova material engulfs the companion star; two-dimensional hydrodynamical simulations by Marietta et al. (2001) show that, in the interaction, the companion star carves out a conical hole of opening angle 30-40 degrees in the supernova ejecta. In this paper we use multi-dimensional Monte Carlo radiative transfer calculations to explore the observable consequences of an ejecta-hole asymmetry. We calculate the variation of the spectrum, luminosity, and polarization with viewing angle for the aspherical supernova near maximum light. We find that the supernova looks normal from almost all viewing angles except when one looks almost directly down the hole. In the latter case, one sees into the deeper, hotter layers of ejecta. The supernova is relatively brighter and has a peculiar spectrum characterized by more highly ionized species, weaker absorption features, and lower absorption velocities. The spectrum viewed down the hole is comparable to the class of SN 1991T-like supernovae. We consider how the ejecta-hole asymmetry may explain the current spectropolarimetric observations of SNe Ia, and suggest a few observational signatures of the geometry. Finally, we discuss the variety currently seen in observed SNe Ia and how an ejecta-hole asymmetry may fit in as one of several possible sources of diversity

  14. The 1974 Type I supernova in NGC 4414

    International Nuclear Information System (INIS)

    Patchett, B.; Wood, R.

    1976-01-01

    Spectra of Miss Burgat's supernova in NGC 4414 were taken with the Isaac Newton 2.5-m reflector during 1974 April and May. The spectra cover the period from just before maximum light to 20 days post-maximum, and show many features typical of Type I supernovae. In addition secondary features in the spectrum indicate the presence of thin shell or filamentary structure. A photographic light curve and direct plate are presented. (author)

  15. Polarisation Spectral Synthesis For Type Ia Supernova Explosion Models

    Science.gov (United States)

    Bulla, Mattia

    2017-02-01

    Despite their relevance across a broad range of astrophysical research topics, Type Ia supernova explosions are still poorly understood and answers to the questions of when, why and how these events are triggered remain unclear. In this respect, polarisation offers a unique opportunity to discriminate between the variety of possible scenarios. The observational evidence that Type Ia supernovae are associated with rather low polarisation signals (smaller than a few per cent) places strong constraints for models and calls for modest asphericities in the progenitor system and/or explosion mechanism.The goal of this thesis is to assess the validity of contemporary Type Ia supernova explosion models by testing whether their predicted polarisation signatures can account for the small signals usually observed. To this end, we have implemented and tested an innovative Monte Carlo scheme in the radiative transfer code artis. Compared to previous Monte Carlo approaches, this technique produces synthetic observables (light curves, flux and polarisation spectra) with a substantial reduction in the Monte Carlo noise and therefore in the required computing time. This improvement is particularly crucial for our study as we aim to extract very weak polarisation signals, comparable to those detected in Type Ia supernovae. We have also demonstrated the applicability of this method to other classes of supernovae via a preliminary study of the first spectropolarimetry observations of superluminous supernovae.Using this scheme, we have calculated synthetic spectropolarimetry for three multi-dimensional explosion models recently proposed as promising candidates to explain Type Ia supernovae. Our findings highlight the power of spectropolarimetry in testing and discriminating between different scenarios. While all the three models predict light curves and flux spectra that are similar to each others and reproduce those observed in Type Ia supernovae comparably well, polarisation does

  16. Supernovae

    International Nuclear Information System (INIS)

    Petschek, A.

    1990-01-01

    This book offers papers incorporating the latest results and understanding about supernovae, including SN1987A. There are several chapters reviewing all the radio through infrared, visible, and ultraviolet to X-rays and gamma-rays but also neutrinos. Other chapters deal with the classification of supernovae, depending on their spectra and light curves. Three chapters treat supernovae theory, including an idea of a fractal burning front and another on the behavior of neutron stars

  17. Photometry of High-Redshift Gravitationally Lensed Type Ia Supernovae

    Science.gov (United States)

    Haynie, Annastasia

    2018-01-01

    Out of more than 1100 well-identified Type Ia Supernovae, only roughly 10 of them are at z> 1.5. High redshift supernovae are hard to detect but this is made easier by taking advantage of the effects of gravitational lensing, which magnifies objects in the background field of massive galaxy clusters. Supernova Nebra (z= ~1.8), among others, was discovered during observations taken as part of the RELICS survey, which focused on fields of view that experience strong gravitational lensing effects. SN Nebra, which sits behind galaxy cluster Abell 1763, is magnified and therefore appears closer and easier to see than with HST alone. Studying high-redshift supernovae like SN Nebra is an important step towards creating cosmological models that accurately describe the behavior of dark energy in the early Universe. Recent efforts have been focused on improving photometry and the building and fitting of preliminary light curves.

  18. TYPE IIb SUPERNOVAE WITH COMPACT AND EXTENDED PROGENITORS

    International Nuclear Information System (INIS)

    Chevalier, Roger A.; Soderberg, Alicia M.

    2010-01-01

    The classic example of a Type IIb supernova is SN 1993J, which had a cool extended progenitor surrounded by a dense wind. There is evidence for another category of Type IIb supernova that has a more compact progenitor with a lower density, probably fast, wind. Distinguishing features of the compact category are weak optical emission from the shock heated envelope at early times, nonexistent or very weak H emission in the late nebular phase, rapidly evolving radio emission, rapid expansion of the radio shell, and expected nonthermal as opposed to thermal X-ray emission. Type IIb supernovae that have one or more of these features include SNe 1996cb, 2001ig, 2003bg, 2008ax, and 2008bo. All of these with sufficient radio data (the last four) show evidence for presupernova wind variability. We estimate a progenitor envelope radius ∼1 x 10 11 cm for SN 2008ax, a value consistent with a compact Wolf-Rayet progenitor. Supernovae in the SN 1993J extended category include SN 2001gd and probably the Cas A supernova. We suggest that the compact Type IIb events be designated Type cIIb and the extended ones Type eIIb. The H envelope mass dividing these categories is ∼0.1 M sun .

  19. No evidence for bulk velocity from type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Huterer, Dragan; Shafer, Daniel L. [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109 (United States); Schmidt, Fabian, E-mail: huterer@umich.edu, E-mail: dlshafer@umich.edu, E-mail: fabians@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany)

    2015-12-01

    We revisit the effect of peculiar velocities on low-redshift type Ia supernovae. Velocities introduce an additional guaranteed source of correlations between supernova magnitudes that should be considered in all analyses of nearby supernova samples but has largely been neglected in the past. Applying a likelihood analysis to the latest compilation of nearby supernovae, we find no evidence for the presence of these correlations, although, given the significant noise, the data is also consistent with the correlations predicted for the standard ΛCDM model. We then consider the dipolar component of the velocity correlations—the frequently studied ''bulk velocity''—and explicitly demonstrate that including the velocity correlations in the data covariance matrix is crucial for drawing correct and unambiguous conclusions about the bulk flow. In particular, current supernova data is consistent with no excess bulk flow on top of what is expected in ΛCDM and effectively captured by the covariance. We further clarify the nature of the apparent bulk flow that is inferred when the velocity covariance is ignored. We show that a significant fraction of this quantity is expected to be noise bias due to uncertainties in supernova magnitudes and not any physical peculiar motion.

  20. No evidence for bulk velocity from type Ia supernovae

    International Nuclear Information System (INIS)

    Huterer, Dragan; Shafer, Daniel L.; Schmidt, Fabian

    2015-01-01

    We revisit the effect of peculiar velocities on low-redshift type Ia supernovae. Velocities introduce an additional guaranteed source of correlations between supernova magnitudes that should be considered in all analyses of nearby supernova samples but has largely been neglected in the past. Applying a likelihood analysis to the latest compilation of nearby supernovae, we find no evidence for the presence of these correlations, although, given the significant noise, the data is also consistent with the correlations predicted for the standard ΛCDM model. We then consider the dipolar component of the velocity correlations—the frequently studied ''bulk velocity''—and explicitly demonstrate that including the velocity correlations in the data covariance matrix is crucial for drawing correct and unambiguous conclusions about the bulk flow. In particular, current supernova data is consistent with no excess bulk flow on top of what is expected in ΛCDM and effectively captured by the covariance. We further clarify the nature of the apparent bulk flow that is inferred when the velocity covariance is ignored. We show that a significant fraction of this quantity is expected to be noise bias due to uncertainties in supernova magnitudes and not any physical peculiar motion

  1. Type Ibn Supernovae Show Photometric Homogeneity and Spectral Diversity at Maximum Light

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinzadeh, Griffin; Arcavi, Iair; McCully, Curtis; Howell, D. Andrew [Las Cumbres Observatory, 6740 Cortona Dr Ste 102, Goleta, CA 93117-5575 (United States); Valenti, Stefano [Department of Physics, University of California, 1 Shields Ave, Davis, CA 95616-5270 (United States); Johansson, Joel [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Sollerman, Jesper; Fremling, Christoffer; Karamehmetoglu, Emir [Oskar Klein Centre, Department of Astronomy, Stockholm University, Albanova University Centre, SE-106 91 Stockholm (Sweden); Pastorello, Andrea; Benetti, Stefano; Elias-Rosa, Nancy [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Cao, Yi; Duggan, Gina; Horesh, Assaf [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Mail Code 249-17, Pasadena, CA 91125 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Clubb, Kelsey I.; Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Corsi, Alessandra [Department of Physics, Texas Tech University, Box 41051, Lubbock, TX 79409-1051 (United States); Fox, Ori D., E-mail: griffin@lco.global [Space Telescope Science Institute, 3700 San Martin Dr, Baltimore, MD 21218 (United States); and others

    2017-02-20

    Type Ibn supernovae (SNe) are a small yet intriguing class of explosions whose spectra are characterized by low-velocity helium emission lines with little to no evidence for hydrogen. The prevailing theory has been that these are the core-collapse explosions of very massive stars embedded in helium-rich circumstellar material (CSM). We report optical observations of six new SNe Ibn: PTF11rfh, PTF12ldy, iPTF14aki, iPTF15ul, SN 2015G, and iPTF15akq. This brings the sample size of such objects in the literature to 22. We also report new data, including a near-infrared spectrum, on the Type Ibn SN 2015U. In order to characterize the class as a whole, we analyze the photometric and spectroscopic properties of the full Type Ibn sample. We find that, despite the expectation that CSM interaction would generate a heterogeneous set of light curves, as seen in SNe IIn, most Type Ibn light curves are quite similar in shape, declining at rates around 0.1 mag day{sup −1} during the first month after maximum light, with a few significant exceptions. Early spectra of SNe Ibn come in at least two varieties, one that shows narrow P Cygni lines and another dominated by broader emission lines, both around maximum light, which may be an indication of differences in the state of the progenitor system at the time of explosion. Alternatively, the spectral diversity could arise from viewing-angle effects or merely from a lack of early spectroscopic coverage. Together, the relative light curve homogeneity and narrow spectral features suggest that the CSM consists of a spatially confined shell of helium surrounded by a less dense extended wind.

  2. Fate of accreting white dwarfs: Type I supernovae vs collapse

    International Nuclear Information System (INIS)

    Nomoto, Ken'ichi.

    1986-01-01

    The final fate of accreting C + O white dwarfs is either thermonuclear explosion or collapse, if the white dwarf mass grows to the Chandrasekhar mass. We discuss how the fate depends on the initial mass, age, composition of the white dwarf and the mass accretion rate. Relatively fast accretion leads to a carbon deflagration at low central density that gives rise to a Type Ia supernova. Slower accretion induces a helium detonation that could be observed as a Type Ib supernova. If the initial mass of the C + O white dwarf is larger than 1.2 Msub solar, a carbon deflagration starts at high central density and induces a collapse of the white dwarf to form a neutron star. We examine the critical condition for which a carbon deflagration leads to collapse, not explosion. For the case of explosion, we discuss to what extent the nucleosynthesis models are consistent with spectra of Type Ia and Ib supernovae. 61 refs., 18 figs

  3. The Low-luminosity Type IIP Supernova 2016bkv with Early-phase Circumstellar Interaction

    Science.gov (United States)

    Nakaoka, Tatsuya; Kawabata, Koji S.; Maeda, Keiichi; Tanaka, Masaomi; Yamanaka, Masayuki; Moriya, Takashi J.; Tominaga, Nozomu; Morokuma, Tomoki; Takaki, Katsutoshi; Kawabata, Miho; Kawahara, Naoki; Itoh, Ryosuke; Shiki, Kensei; Mori, Hiroki; Hirochi, Jun; Abe, Taisei; Uemura, Makoto; Yoshida, Michitoshi; Akitaya, Hiroshi; Moritani, Yuki; Ueno, Issei; Urano, Takeshi; Isogai, Mizuki; Hanayama, Hidekazu; Nagayama, Takahiro

    2018-06-01

    We present optical and near-infrared observations of a low-luminosity (LL) Type IIP supernova (SN) 2016bkv from the initial rising phase to the plateau phase. Our observations show that the end of the plateau is extended to ≳140 days since the explosion, indicating that this SN takes one of the longest times to finish the plateau phase among Type IIP SNe (SNe IIP), including LL SNe IIP. The line velocities of various ions at the middle of the plateau phase are as low as 1000–1500 km s‑1, which is the lowest even among LL SNe IIP. These measurements imply that the ejecta mass in SN 2016bkv is larger than that of the well-studied LL IIP SN 2003Z. In the early phase, SN 2016bkv shows a strong bump in the light curve. In addition, the optical spectra in this bump phase exhibit a blue continuum accompanied by a narrow Hα emission line. These features indicate an interaction between the SN ejecta and the circumstellar matter (CSM) as in SNe IIn. Assuming the ejecta–CSM interaction scenario, the mass loss rate is estimated to be ∼ 1.7× {10}-2 {M}ȯ yr‑1 within a few years before the SN explosion. This is comparable to or even larger than the largest mass loss rate observed for the Galactic red supergiants (∼ {10}-3 {M}ȯ yr‑1 for VY CMa). We suggest that the progenitor star of SN 2016bkv experienced a violent mass loss just before the SN explosion.

  4. Marginal evidence for cosmic acceleration from Type Ia supernovae

    Science.gov (United States)

    Nielsen, J. T.; Guffanti, A.; Sarkar, S.

    2016-10-01

    The ‘standard’ model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present — as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supernovae so we can perform rigorous statistical tests to check whether these ‘standardisable candles’ indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion.

  5. The Evolution of the Type Ia Supernova Luminosity Function

    NARCIS (Netherlands)

    Shen, K.J.; Toonen, S.; Graur, O.

    2017-01-01

    Type Ia supernovae (SNe Ia) exhibit a wide diversity of peak luminosities and light curve shapes: the faintest SNe Ia are 10 times less luminous and evolve more rapidly than the brightest SNe Ia. Their differing characteristics also extend to their stellar age distributions, with fainter SNe Ia

  6. Theoretical uncertainties of the Type Ia supernova rate

    NARCIS (Netherlands)

    Claeys, J.S.W.; Pols, O.R.; Izzard, R.G.; Vink, J.; Verbunt, F.W.M.

    2014-01-01

    It is thought that Type Ia supernovae (SNe Ia) are explosions of carbon-oxygen white dwarfs (CO WDs). Two main evolutionary channels are proposed for the WD to reach the critical density required for a thermonuclear explosion: the single degenerate (SD) scenario, in which a CO WD accretes from a

  7. Type I supernovae and angular anisotropy of the Hubble constant

    International Nuclear Information System (INIS)

    Le Denmat, Gerard; Vigier, J.-P.

    1975-01-01

    The observation of type I supernovae in distant galaxies yields an homogeneous sample of sources to evaluate their true distance. An examination of their distribution in the sky provides a significant confirmation of the angular anisotropy of the Hubble constant already observed by Rubin, Rubin and Ford [fr

  8. The Type Ia Supernova Rate in Radio and Infrared Galaxies from the CFHT Supernova Legacy Survey

    OpenAIRE

    Graham, M. L.; Pritchet, C. J.; Sullivan, M.; Howell, D. A.; Gwyn, S. D. J.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I. M.; Pain, R.

    2009-01-01

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, VLA 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ~1-5 times the rate in all early-type galaxies, and that any enhancement is always

  9. A statistically self-consistent type Ia supernova data analysis

    International Nuclear Information System (INIS)

    Lago, B.L.; Calvao, M.O.; Joras, S.E.; Reis, R.R.R.; Waga, I.; Giostri, R.

    2011-01-01

    Full text: The type Ia supernovae are one of the main cosmological probes nowadays and are used as standardized candles in distance measurements. The standardization processes, among which SALT2 and MLCS2k2 are the most used ones, are based on empirical relations and leave room for a residual dispersion in the light curves of the supernovae. This dispersion is introduced in the chi squared used to fit the parameters of the model in the expression for the variance of the data, as an attempt to quantify our ignorance in modeling the supernovae properly. The procedure used to assign a value to this dispersion is statistically inconsistent and excludes the possibility of comparing different cosmological models. In addition, the SALT2 light curve fitter introduces parameters on the model for the variance that are also used in the model for the data. In the chi squared statistics context the minimization of such a quantity yields, in the best case scenario, a bias. An iterative method has been developed in order to perform the minimization of this chi squared but it is not well grounded, although it is used by several groups. We propose an analysis of the type Ia supernovae data that is based on the likelihood itself and makes it possible to address both inconsistencies mentioned above in a straightforward way. (author)

  10. CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE II SUPERNOVAE: EVIDENCE FOR THREE DISTINCT PHOTOMETRIC SUBTYPES

    Energy Technology Data Exchange (ETDEWEB)

    Arcavi, Iair; Gal-Yam, Avishay; Yaron, Ofer [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Cenko, S. Bradley; Becker, Adam B. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Fox, Derek B. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Leonard, Douglas C. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Moon, Dae-Sik [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Sand, David J. [Las Cumbres Observatory Global Telescope Network, Santa Barbara, CA 93117 (United States); Soderberg, Alicia M. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Kiewe, Michael [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Scheps, Raphael [King' s College, University of Cambridge, Cambridge CB2 1ST (United Kingdom); Birenbaum, Gali [12 Amos St, Ramat Chen, Ramat Gan 52233 (Israel); Chamudot, Daniel [20 Chen St, Petach Tikvah 49520 (Israel); Zhou, Jonathan, E-mail: iair.arcavi@weizmann.ac.il [101 Dunster Street, Box 398, Cambridge, MA 02138 (United States)

    2012-09-10

    We present R-band light curves of Type II supernovae (SNe) from the Caltech Core-Collapse Project (CCCP). With the exception of interacting (Type IIn) SNe and rare events with long rise times, we find that most light curve shapes belong to one of three apparently distinct classes: plateau, slowly declining, and rapidly declining events. The last class is composed solely of Type IIb SNe which present similar light curve shapes to those of SNe Ib, suggesting, perhaps, similar progenitor channels. We do not find any intermediate light curves, implying that these subclasses are unlikely to reflect variance of continuous parameters, but rather might result from physically distinct progenitor systems, strengthening the suggestion of a binary origin for at least some stripped SNe. We find a large plateau luminosity range for SNe IIP, while the plateau lengths seem rather uniform at approximately 100 days. As analysis of additional CCCP data goes on and larger samples are collected, demographic studies of core-collapse SNe will likely continue to provide new constraints on progenitor scenarios.

  11. The Influence of Host Galaxies in Type Ia Supernova Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Syed A. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, Jiangshu (China); Mould, Jeremy [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne, VIC (Australia); Lidman, Chris; Zhang, Bonnie R. [Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Ruhlmann-Kleider, Vanina, E-mail: saushuvo@gmail.com [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette, Paris (France)

    2017-10-10

    We use a sample of 1338 spectroscopically confirmed and photometrically classified Type Ia supernovae (SNe Ia) sourced from Carnegie Supernova Project, Center for Astrophysics Supernova Survey, Sloan Digital Sky Survey-II, and SuperNova Legacy Survey SN samples to examine the relationships between SNe Ia and the galaxies that host them. Our results provide confirmation with improved statistical significance that SNe Ia, after standardization, are on average more luminous in massive hosts (significance >5 σ ), and decline more rapidly in massive hosts (significance >9 σ ) and in hosts with low specific star formation rates (significance >8 σ ). We study the variation of these relationships with redshift and detect no evolution. We split SNe Ia into pairs of subsets that are based on the properties of the hosts and fit cosmological models to each subset. Including both systematic and statistical uncertainties, we do not find any significant shift in the best-fit cosmological parameters between the subsets. Among different SN Ia subsets, we find that SNe Ia in hosts with high specific star formation rates have the least intrinsic scatter ( σ {sub int} = 0.08 ± 0.01) in luminosity after standardization.

  12. The VLT Measures the Shape of a Type Ia Supernova

    Science.gov (United States)

    2003-08-01

    First Polarimetric Detection of Explosion Asymmetry has Cosmological Implications Summary An international team of astronomers [2] has performed new and very detailed observations of a supernova in a distant galaxy with the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile). They show for the first time that a particular type of supernova, caused by the explosion of a "white dwarf", a dense star with a mass around that of the Sun, is asymmetric during the initial phases of expansion . The significance of this observation is much larger than may seem at a first glance . This particular kind of supernova, designated "Type Ia", plays a very important role in the current attempts to map the Universe. It has for long been assumed that Type Ia supernovae all have the same intrinsic brightness , earning them a nickname as "standard candles". If so, differences in the observed brightness between individual supernovae of this type simply reflect their different distances. This, and the fact that the peak brightness of these supernovae rivals that of their parent galaxy, has allowed to measure distances of even very remote galaxies . Some apparent discrepancies that were recently found have led to the discovery of cosmic acceleration . However, this first clearcut observation of explosion asymmetry in a Type Ia supernova means that the exact brightness of such an object will depend on the angle from which it is seen. Since this angle is unknown for any particular supernova, this obviously introduces an amount of uncertainty into this kind of basic distance measurements in the Universe which must be taken into account in the future. Fortunately, the VLT data also show that if you wait a little - which in observational terms makes it possible to look deeper into the expanding fireball - then it becomes more spherical. Distance determinations of supernovae that are performed at this later stage will therefore be more accurate. PR Photo 24a/03 : Spiral galaxy NGC

  13. Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning

    Energy Technology Data Exchange (ETDEWEB)

    Möller, A. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Ruhlmann-Kleider, V.; Leloup, C.; Neveu, J.; Palanque-Delabrouille, N.; Rich, J. [Irfu, SPP, CEA Saclay, F-91191 Gif sur Yvette Cedex (France); Carlberg, R. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H8 (Canada); Lidman, C. [Australian Astronomical Observatory, North Ryde, NSW 2113 (Australia); Pritchet, C., E-mail: anais.moller@anu.edu.au, E-mail: vanina.ruhlmann-kleider@cea.fr, E-mail: clement.leloup@cea.fr, E-mail: jneveu@lal.in2p3.fr, E-mail: nathalie.palanque-delabrouille@cea.fr, E-mail: james.rich@cea.fr, E-mail: raymond.carlberg@utoronto.ca, E-mail: chris.lidman@aao.gov.au, E-mail: pritchet@uvic.ca [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6 (Canada)

    2016-12-01

    In the era of large astronomical surveys, photometric classification of supernovae (SNe) has become an important research field due to limited spectroscopic resources for candidate follow-up and classification. In this work, we present a method to photometrically classify type Ia supernovae based on machine learning with redshifts that are derived from the SN light-curves. This method is implemented on real data from the SNLS deferred pipeline, a purely photometric pipeline that identifies SNe Ia at high-redshifts (0.2 < z < 1.1). Our method consists of two stages: feature extraction (obtaining the SN redshift from photometry and estimating light-curve shape parameters) and machine learning classification. We study the performance of different algorithms such as Random Forest and Boosted Decision Trees. We evaluate the performance using SN simulations and real data from the first 3 years of the Supernova Legacy Survey (SNLS), which contains large spectroscopically and photometrically classified type Ia samples. Using the Area Under the Curve (AUC) metric, where perfect classification is given by 1, we find that our best-performing classifier (Extreme Gradient Boosting Decision Tree) has an AUC of 0.98.We show that it is possible to obtain a large photometrically selected type Ia SN sample with an estimated contamination of less than 5%. When applied to data from the first three years of SNLS, we obtain 529 events. We investigate the differences between classifying simulated SNe, and real SN survey data. In particular, we find that applying a thorough set of selection cuts to the SN sample is essential for good classification. This work demonstrates for the first time the feasibility of machine learning classification in a high- z SN survey with application to real SN data.

  14. Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning

    International Nuclear Information System (INIS)

    Möller, A.; Ruhlmann-Kleider, V.; Leloup, C.; Neveu, J.; Palanque-Delabrouille, N.; Rich, J.; Carlberg, R.; Lidman, C.; Pritchet, C.

    2016-01-01

    In the era of large astronomical surveys, photometric classification of supernovae (SNe) has become an important research field due to limited spectroscopic resources for candidate follow-up and classification. In this work, we present a method to photometrically classify type Ia supernovae based on machine learning with redshifts that are derived from the SN light-curves. This method is implemented on real data from the SNLS deferred pipeline, a purely photometric pipeline that identifies SNe Ia at high-redshifts (0.2 < z < 1.1). Our method consists of two stages: feature extraction (obtaining the SN redshift from photometry and estimating light-curve shape parameters) and machine learning classification. We study the performance of different algorithms such as Random Forest and Boosted Decision Trees. We evaluate the performance using SN simulations and real data from the first 3 years of the Supernova Legacy Survey (SNLS), which contains large spectroscopically and photometrically classified type Ia samples. Using the Area Under the Curve (AUC) metric, where perfect classification is given by 1, we find that our best-performing classifier (Extreme Gradient Boosting Decision Tree) has an AUC of 0.98.We show that it is possible to obtain a large photometrically selected type Ia SN sample with an estimated contamination of less than 5%. When applied to data from the first three years of SNLS, we obtain 529 events. We investigate the differences between classifying simulated SNe, and real SN survey data. In particular, we find that applying a thorough set of selection cuts to the SN sample is essential for good classification. This work demonstrates for the first time the feasibility of machine learning classification in a high- z SN survey with application to real SN data.

  15. Learning from the scatter in type ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, Scott; /Fermilab /Chicago U., Astron. Astrophys. Ctr.; Vallinotto, Alberto; /Fermilab /Chicago U.

    2005-11-01

    Type Ia Supernovae are standard candles so their mean apparent magnitude has been exploited to learn about the redshift-distance relationship. Besides intrinsic scatter in this standard candle, additional scatter is caused by gravitational magnification by large scale structure. Here they probe the dependence of this dispersion on cosmological parameters and show that information about the amplitude of clustering, {sigma}{sub s}, is contained in the scatter. In principle, it will be possible to constrain {sigma}{sub s} to within 5% with observations of 2000 Type Ia Supernovae. They identify three sources of systematic error--evolution of intrinsic scatter, baryon contributions to lensing, and non-Gaussianity of lensing--which will make this measurement difficult.

  16. Do we really know Mup (i.e. the transition mass between Type Ia and core-collapse supernova progenitors)?

    International Nuclear Information System (INIS)

    Straniero, O; Piersanti, L; Cristallo, S

    2016-01-01

    M up is the minimum stellar mass that, after the core-helium burning, develops temperature and density conditions for the occurrence of a hydrostatic carbon burning. Stars whose mass is lower than this limit are the progenitors of C-O white dwarfs and, when belong to a close binary system, may give rise to explosive phenomena, such as novae or type Ia supernovae. Stars whose mass is only slightly larger than M up ignite C in a degenerate core and, in turn, experience a thermonuclear runaway. Their final fate may be a massive O-Ne WDs or, if the core mass approaches the Chandrasekhar limit, an e-capture SNe. More massive objects ignite C in non-degenerate conditions. These “massive “ stars are the progenitors of various kind of core-collapse supernovae (type IIp. IIL, IIN, Ib, Ic). It goes without saying that M up is a fundamental astrophysical parameter. From its knowledge depends our understanding of the SNe progenitors, of their rates, of the chemical evolution, of the WD luminosity functions and much more. A precise evaluation of M up relies on our knowledge of various input physics used in stellar modeling, such as the plasma neutrino rate, responsible of the cooling of the core, the equation of state of high density plasma, which affects the heating of the contracting core and its compressibility, and some key nuclear reaction rates, such as, in particular, the 12 C+ 12 C and the 12 C+α. In this paper we review the efforts made to determine this important parameter and we provide an up-to-date evaluation of the uncertainties due to the relevant nuclear physics inputs. (paper)

  17. Supernovae type Ia data favour coupled phantom energy

    OpenAIRE

    Majerotto, Elisabetta; Sapone, Domenico; Amendola, Luca

    2004-01-01

    We estimate the constraints that the recent high-redshift sample of supernovae type Ia put on a phenomenological interaction between dark energy and dark matter. The interaction can be interpreted as arising from the time variation of the mass of dark matter particles. We find that the coupling correlates with the equation of state: roughly speaking, a negative coupling (in our sign convention) implies phantom energy ($w_{\\phi}

  18. The physics of flames in Type Ia supernovae

    International Nuclear Information System (INIS)

    Zingale, M; Woosley, S E; Bell, J B; Day, M S; Rendleman, C A

    2005-01-01

    We extend a low Mach number hydrodynamics method developed for terrestrial combustion, to the study of thermonuclear flames in Type Ia supernovae. We discuss the differences between 2-D and 3-D Rayleigh-Taylor unstable flame simulations, and give detailed diagnostics on the turbulence, showing that the kinetic energy power spectrum obeys Bolgiano-Obukhov statistics in 2-D, but Kolmogorov statistics in 3-D. Preliminary results from 3-D reacting bubble calculations are shown, and their implications for ignition are discussed

  19. PULSATING REVERSE DETONATION MODELS OF TYPE Ia SUPERNOVAE. II. EXPLOSION

    International Nuclear Information System (INIS)

    Bravo, Eduardo; Garcia-Senz, Domingo; Cabezon, Ruben M.; DomInguez, Inmaculada

    2009-01-01

    Observational evidences point to a common explosion mechanism of Type Ia supernovae based on a delayed detonation of a white dwarf (WD). However, all attempts to find a convincing ignition mechanism based on a delayed detonation in a destabilized, expanding, white dwarf have been elusive so far. One of the possibilities that has been invoked is that an inefficient deflagration leads to pulsation of a Chandrasekhar-mass WD, followed by formation of an accretion shock that confines a carbon-oxygen rich core, while transforming the kinetic energy of the collapsing halo into thermal energy of the core, until an inward moving detonation is formed. This chain of events has been termed Pulsating Reverse Detonation (PRD). In this work, we present three-dimensional numerical simulations of PRD models from the time of detonation initiation up to homologous expansion. Different models characterized by the amount of mass burned during the deflagration phase, M defl , give explosions spanning a range of kinetic energies, K ∼ (1.0-1.2) x 10 51 erg, and 56 Ni masses, M( 56 Ni) ∼ 0.6-0.8 M sun , which are compatible with what is expected for typical Type Ia supernovae. Spectra and light curves of angle-averaged spherically symmetric versions of the PRD models are discussed. Type Ia supernova spectra pose the most stringent requirements on PRD models.

  20. A Precision Photometric Comparison between SDSS-II and CSP Type Ia Supernova Data

    DEFF Research Database (Denmark)

    Mosher, J.; Sako, M.; Corlies, L.

    2012-01-01

    Consistency between Carnegie Supernova Project (CSP) and SDSS-II Supernova Survey ugri measurements has been evaluated by comparing Sloan Digital Sky Survey (SDSS) and CSP photometry for nine spectroscopically confirmed Type Ia supernova observed contemporaneously by both programs. The CSP data...

  1. Constraints on holographic dark energy from type Ia supernova observations

    International Nuclear Information System (INIS)

    Zhang Xin; Wu Fengquan

    2005-01-01

    In this paper, we use the type Ia supernovae data to constrain the holographic dark energy model proposed by Li. We also apply a cosmic age test to this analysis. We consider in this paper a spatially flat Friedmann-Robertson-Walker universe with a matter component and a holographic dark energy component. The fit result shows that the case c m 0 =0.28, and h=0.65, which lead to the present equation of state of dark energy w 0 =-1.03 and the deceleration/acceleration transition redshift z T =0.63. Finally, an expected supernova/acceleration probe simulation using ΛCDM as a fiducial model is performed on this model, and the result shows that the holographic dark energy model takes on c<1 (c=0.92) even though the dark energy is indeed a cosmological constant

  2. The Highly Luminous Type Ibn Supernova ASASSN-14ms

    DEFF Research Database (Denmark)

    Vallely, P. J.; Prieto, J. L.; Stanek, K. Z.

    2018-01-01

    We present photometric and spectroscopic follow-up observations of the highly luminous Type Ibn supernova ASASSN-14ms, which was discovered on UT 2014-12-26.61 at $m_V \\sim 16.5$. With a peak absolute $V$-band magnitude brighter than $-20.5$, a peak bolometric luminosity of $1.7 \\times 10......^{44}$ ergs s$^{-1}$, and a total radiated energy of $2.1 \\times 10^{50}$ ergs, ASASSN-14ms is one of the most luminous Type Ibn supernovae yet discovered. In simple models, the most likely power source for this event is a combination of the radioactive decay of $^{56}$Ni and $^{56}$Co at late times...... and the interaction of supernova ejecta with the progenitor's circumstellar medium at early times, although we cannot rule out the possibility of a magnetar-powered light curve. The presence of a dense circumstellar medium is indicated by the intermediate-width He I features in the spectra. The faint ($m_g \\sim 21...

  3. Clues on Type Ia Supernovae Progenitors

    International Nuclear Information System (INIS)

    Piersanti, Luciano; Tornambe, Amedeo

    2005-01-01

    We show that in the framework of canonical stellar evolution it is hard, if not impossible, to determine the growth in mass of a CO White Dwarf, up to the Chandrasekhar limit by means of mass transfer from its companion in a binary system. This is the case either if matter is accreted from a normal companion with an H-rich envelope or if direct CO accretion occurs from a CO WD companion. At variance, we show that if the effects of rotation are taken into account in modeling the accretion process, a CO WD can increase its mass at the expenses of the degenerate CO companion up and beyond 1.4 M· , so that an explosive event of the type Ia class is naturally produced. This theoretical finding revives the Double Degenerate scenario for type Ia SNe progenitors. In such a case the internal spread in the observational properties of type Ia SNe may be interpreted as a consequence of different total masses; hence differences between SNe Ia in nearby elliptical galaxies and the majority of those in spirals should be expected and the current use of type Ia SNe as cosmological distance indicators should be justified

  4. Modeling Type II-P/II-L Supernovae Interacting with Recent Episodic Mass Ejections from Their Presupernova Stars with MESA and SNEC

    Science.gov (United States)

    Das, Sanskriti; Ray, Alak

    2017-12-01

    We show how dense, compact, discrete shells of circumstellar gas immediately outside of red supergiants affect the optical light curves of Type II-P/II-L supernovae (SNe), using the example of SN 2013ej. Earlier efforts in the literature had used an artificial circumstellar medium (CSM) stitched to the surface of an evolved star that had not gone through a phase of late-stage heavy mass loss, which, in essence, is the original source of the CSM. In contrast, we allow enhanced mass-loss rate from the modeled star during the 16O and 28Si burning stages and construct the CSM from the resulting mass-loss history in a self-consistent way. Once such evolved pre-SN stars are exploded, we find that the models with early interaction between the shock and the dense CSM reproduce light curves far better than those without that mass loss and, hence, having no nearby dense CSM. The required explosion energy for the progenitors with a dense CSM is reduced by almost a factor of two compared to those without the CSM. Our model, with a more realistic CSM profile and presupernova and explosion parameters, fits observed data much better throughout the rise, plateau, and radioactive tail phases as compared to previous studies. This points to an intermediate class of supernovae between Type II-P/II-L and Type II-n SNe with the characteristics of simultaneous UV and optical peak, slow decline after peak, and a longer plateau.

  5. THE CARNEGIE SUPERNOVA PROJECT: SECOND PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Stritzinger, Maximilian D.; Phillips, M. M.; Campillay, Abdo; Morrell, Nidia; Krzeminski, Wojtek; Roth, Miguel; Boldt, Luis N.; Burns, Chris; Freedman, Wendy L.; Madore, Barry F.; Persson, Sven E.; Contreras, Carlos; Gonzalez, Sergio; Folatelli, Gaston; Salgado, Francisco; DePoy, D. L.; Marshall, J. L.; Rheault, Jean-Philippe; Suntzeff, Nicholas B.; Hamuy, Mario

    2011-01-01

    The Carnegie Supernova Project (CSP) was a five-year observational survey conducted at Las Campanas Observatory that obtained, among other things, high-quality light curves of ∼100 low-redshift Type Ia supernovae (SNe Ia). Presented here is the second data release of nearby SN Ia photometry consisting of 50 objects, with a subset of 45 having near-infrared follow-up observations. Thirty-three objects have optical pre-maximum coverage with a subset of 15 beginning at least five days before maximum light. In the near-infrared, 27 objects have coverage beginning before the epoch of B-band maximum, with a subset of 13 beginning at least five days before maximum. In addition, we present results of a photometric calibration program to measure the CSP optical (uBgVri) bandpasses with an accuracy of ∼1%. Finally, we report the discovery of a second SN Ia, SN 2006ot, similar in its characteristics to the peculiar SN 2006bt.

  6. THE CARNEGIE SUPERNOVA PROJECT: FIRST PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Contreras, Carlos; Phillips, M. M.; Folatelli, Gaston; Stritzinger, Maximilian; Boldt, Luis; Gonzalez, Sergio; Krzeminski, Wojtek; Morrell, Nidia; Roth, Miguel; Salgado, Francisco; Hamuy, Mario; Maureira, MarIa Jose; Suntzeff, Nicholas B.; Persson, S. E.; Burns, Christopher R.; Freedman, W. L.; Madore, Barry F.; Murphy, David; Wyatt, Pamela; Li Weidong

    2010-01-01

    The Carnegie Supernova Project (CSP) is a five-year survey being carried out at the Las Campanas Observatory to obtain high-quality light curves of ∼100 low-redshift Type Ia supernovae (SNe Ia) in a well-defined photometric system. Here we present the first release of photometric data that contains the optical light curves of 35 SNe Ia, and near-infrared light curves for a subset of 25 events. The data comprise 5559 optical (ugriBV) and 1043 near-infrared (Y JHK s ) data points in the natural system of the Swope telescope. Twenty-eight SNe have pre-maximum data, and for 15 of these, the observations begin at least 5 days before B maximum. This is one of the most accurate data sets of low-redshift SNe Ia published to date. When completed, the CSP data set will constitute a fundamental reference for precise determinations of cosmological parameters, and serve as a rich resource for comparison with models of SNe Ia.

  7. HOST GALAXIES OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    International Nuclear Information System (INIS)

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E.

    2013-01-01

    We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory. Combining Galaxy Evolution Explorer (GALEX) UV data with optical and near-infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high-precision redshifts, gas-phase metallicities, and Hα-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from Sloan Digital Sky Survey (SDSS) for stellar masses log(M * /M ☉ ) > 8.5 where the relation is well defined. The star formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.

  8. Observational Evidence for High Neutronization in Supernova Remnants: Implications for Type Ia Supernova Progenitors

    International Nuclear Information System (INIS)

    Martínez-Rodríguez, Héctor; Badenes, Carles; Andrews, Brett; Yamaguchi, Hiroya; Bravo, Eduardo; Timmes, F. X.; Miles, Broxton J.; Townsley, Dean M.; Piro, Anthony L.; Mori, Hideyuki; Park, Sangwook

    2017-01-01

    The physical process whereby a carbon–oxygen white dwarf explodes as a Type Ia supernova (SN Ia) remains highly uncertain. The degree of neutronization in SN Ia ejecta holds clues to this process because it depends on the mass and the metallicity of the stellar progenitor, and on the thermodynamic history prior to the explosion. We report on a new method to determine ejecta neutronization using Ca and S lines in the X-ray spectra of Type Ia supernova remnants (SNRs). Applying this method to Suzaku data of Tycho, Kepler , 3C 397, and G337.2−0.7 in the Milky Way, and N103B in the Large Magellanic Cloud, we find that the neutronization of the ejecta in N103B is comparable to that of Tycho and Kepler , which suggests that progenitor metallicity is not the only source of neutronization in SNe Ia. We then use a grid of SN Ia explosion models to infer the metallicities of the stellar progenitors of our SNRs. The implied metallicities of 3C 397, G337.2−0.7, and N103B are major outliers compared to the local stellar metallicity distribution functions, indicating that progenitor metallicity can be ruled out as the origin of neutronization for these SNRs. Although the relationship between ejecta neutronization and equivalent progenitor metallicity is subject to uncertainties stemming from the 12 C + 16 O reaction rate, which affects the Ca/S mass ratio, our main results are not sensitive to these details.

  9. THE EFFECT OF HOST GALAXIES ON TYPE Ia SUPERNOVAE IN THE SDSS-II SUPERNOVA SURVEY

    International Nuclear Information System (INIS)

    Lampeitl, Hubert; Smith, Mathew; Nichol, Robert C.; Bassett, Bruce; Cinabro, David; Dilday, Benjamin; Jha, Saurabh W.; Foley, Ryan J.; Frieman, Joshua A.; Garnavich, Peter M.; Goobar, Ariel; Nordin, Jakob; Im, Myungshin; Marriner, John; Miquel, Ramon; Oestman, Linda; Riess, Adam G.; Sako, Masao; Schneider, Donald P.; Sollerman, Jesper

    2010-01-01

    We present an analysis of the host galaxy dependences of Type Ia Supernovae (SNe Ia) from the full three year sample of the SDSS-II Supernova Survey. We re-discover, to high significance, the strong correlation between host galaxy type and the width of the observed SN light curve, i.e., fainter, quickly declining SNe Ia favor passive host galaxies, while brighter, slowly declining Ia's favor star-forming galaxies. We also find evidence (at between 2σ and 3σ) that SNe Ia are ≅0.1 ± 0.04 mag brighter in passive host galaxies than in star-forming hosts, after the SN Ia light curves have been standardized using the light-curve shape and color variations. This difference in brightness is present in both the SALT2 and MCLS2k2 light-curve fitting methodologies. We see evidence for differences in the SN Ia color relationship between passive and star-forming host galaxies, e.g., for the MLCS2k2 technique, we see that SNe Ia in passive hosts favor a dust law of R V = 1.0 ± 0.2, while SNe Ia in star-forming hosts require R V = 1.8 +0.2 -0.4 . The significance of these trends depends on the range of SN colors considered. We demonstrate that these effects can be parameterized using the stellar mass of the host galaxy (with a confidence of >4σ) and including this extra parameter provides a better statistical fit to our data. Our results suggest that future cosmological analyses of SN Ia samples should include host galaxy information.

  10. Observational Evidence for High Neutronization in Supernova Remnants: Implications for Type Ia Supernova Progenitors

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Rodríguez, Héctor; Badenes, Carles; Andrews, Brett [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Yamaguchi, Hiroya [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Bravo, Eduardo [E.T.S. Arquitectura del Vallès, Universitat Politècnica de Catalunya, Carrer Pere Serra 1-15, E-08173 Sant Cugat del Vallès (Spain); Timmes, F. X. [The Joint Institute for Nuclear Astrophysics (United States); Miles, Broxton J.; Townsley, Dean M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL (United States); Piro, Anthony L. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Mori, Hideyuki [CRESST and X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 602, Greenbelt, MD 20771 (United States); Park, Sangwook, E-mail: hector.mr@pitt.edu [Department of Physics, University of Texas at Arlington, Box 19059, Arlington, TX 76019 (United States)

    2017-07-01

    The physical process whereby a carbon–oxygen white dwarf explodes as a Type Ia supernova (SN Ia) remains highly uncertain. The degree of neutronization in SN Ia ejecta holds clues to this process because it depends on the mass and the metallicity of the stellar progenitor, and on the thermodynamic history prior to the explosion. We report on a new method to determine ejecta neutronization using Ca and S lines in the X-ray spectra of Type Ia supernova remnants (SNRs). Applying this method to Suzaku data of Tycho, Kepler , 3C 397, and G337.2−0.7 in the Milky Way, and N103B in the Large Magellanic Cloud, we find that the neutronization of the ejecta in N103B is comparable to that of Tycho and Kepler , which suggests that progenitor metallicity is not the only source of neutronization in SNe Ia. We then use a grid of SN Ia explosion models to infer the metallicities of the stellar progenitors of our SNRs. The implied metallicities of 3C 397, G337.2−0.7, and N103B are major outliers compared to the local stellar metallicity distribution functions, indicating that progenitor metallicity can be ruled out as the origin of neutronization for these SNRs. Although the relationship between ejecta neutronization and equivalent progenitor metallicity is subject to uncertainties stemming from the {sup 12}C + {sup 16}O reaction rate, which affects the Ca/S mass ratio, our main results are not sensitive to these details.

  11. Predicted continuum spectra of type II supernovae - LTE results

    Science.gov (United States)

    Shaviv, G.; Wehrse, R.; Wagoner, R. V.

    1985-01-01

    The continuum spectral energy distribution of the flux emerging from type II supernovae is calculated from quasi-static radiative transfer through a power-law density gradient, assuming radiative equilibrium and LTE. It is found that the Balmer jump disappears at high effective temperatures and low densities, while the spectrum resembles that of a dilute blackbody but is flatter with a sharper cutoff at the short-wavelength end. A significant UV excess is found in all models calculated. The calculation should be considered exploratory because of significant effects which are anticipated to arise from departure from LTE.

  12. Tension in the recent Type Ia supernovae datasets

    International Nuclear Information System (INIS)

    Wei, Hao

    2010-01-01

    In the present work, we investigate the tension in the recent Type Ia supernovae (SNIa) datasets Constitution and Union. We show that they are in tension not only with the observations of the cosmic microwave background (CMB) anisotropy and the baryon acoustic oscillations (BAO), but also with other SNIa datasets such as Davis and SNLS. Then, we find the main sources responsible for the tension. Further, we make this more robust by employing the method of random truncation. Based on the results of this work, we suggest two truncated versions of the Union and Constitution datasets, namely the UnionT and ConstitutionT SNIa samples, whose behaviors are more regular.

  13. Models for Type Ia Supernovae and Related Astrophysical Transients

    Science.gov (United States)

    Röpke, Friedrich K.; Sim, Stuart A.

    2018-06-01

    We give an overview of recent efforts to model Type Ia supernovae and related astrophysical transients resulting from thermonuclear explosions in white dwarfs. In particular we point out the challenges resulting from the multi-physics multi-scale nature of the problem and discuss possible numerical approaches to meet them in hydrodynamical explosion simulations and radiative transfer modeling. We give examples of how these methods are applied to several explosion scenarios that have been proposed to explain distinct subsets or, in some cases, the majority of the observed events. In case we comment on some of the successes and shortcoming of these scenarios and highlight important outstanding issues.

  14. HOW TO FIND GRAVITATIONALLY LENSED TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Goldstein, Daniel A.; Nugent, Peter E.

    2017-01-01

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts ( z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H _0, w , and Ω_m via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts’ photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z -band search, more than an order of magnitude improvement over previous estimates. We also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R -band search—despite the fact that this survey will not resolve a single system.

  15. HOW TO FIND GRAVITATIONALLY LENSED TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Daniel A.; Nugent, Peter E. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2017-01-01

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts ( z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H {sub 0}, w , and Ω{sub m} via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts’ photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z -band search, more than an order of magnitude improvement over previous estimates. We also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R -band search—despite the fact that this survey will not resolve a single system.

  16. The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints

    Science.gov (United States)

    Guy, J.; Sullivan, M.; Conley, A.; Regnault, N.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Fouchez, D.; Hardin, D.; Hook, I. M.; Howell, D. A.; Pain, R.; Palanque-Delabrouille, N.; Perrett, K. M.; Pritchet, C. J.; Rich, J.; Ruhlmann-Kleider, V.; Balam, D.; Baumont, S.; Ellis, R. S.; Fabbro, S.; Fakhouri, H. K.; Fourmanoit, N.; González-Gaitán, S.; Graham, M. L.; Hsiao, E.; Kronborg, T.; Lidman, C.; Mourao, A. M.; Perlmutter, S.; Ripoche, P.; Suzuki, N.; Walker, E. S.

    2010-11-01

    Aims: We present photometric properties and distance measurements of 252 high redshift Type Ia supernovae (0.15 Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshifts. Methods: Systematic uncertainties arising from light curve modeling are studied, making use of two techniques to derive the peak magnitude, shape and colour of the supernovae, and taking advantage of a precise calibration of the SNLS fields. Results: A flat ΛCDM cosmological fit to 231 SNLS high redshift type Ia supernovae alone gives Ω_M = 0.211 ± 0.034(stat) ± 0.069(sys). The dominant systematic uncertainty comes from uncertainties in the photometric calibration. Systematic uncertainties from light curve fitters come next with a total contribution of ±0.026 on Ω_M. No clear evidence is found for a possible evolution of the slope (β) of the colour-luminosity relation with redshift. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. Based on observations obtained at the European Southern Observatory using the Very Large Telescope on the Cerro Paranal (ESO Large Programme 171.A-0486 & 176.A-0589). Based on observations (programs GS-2003B-Q-8, GN-2003B-Q-9, GS-2004A-Q-11, GN-2004A-Q-19, GS-2004B-Q-31, GN-2004B-Q-16, GS-2005A-Q-11, GN-2005A-Q-11, GS-2005B-Q-6, GN-2005B-Q-7, GN-2006A-Q-7, GN-2006B-Q-10) obtained at

  17. CIRCUMSTELLAR SHELLS IN ABSORPTION IN TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Borkowski, Kazimierz J.; Blondin, John M.; Reynolds, Stephen P.

    2009-01-01

    Progenitors of Type Ia supernovae (SNe) have been predicted to modify their ambient circumstellar (CSM) and interstellar environments through the action of their powerful winds. While there is X-ray and optical evidence for circumstellar interaction in several remnants of Type Ia SNe, widespread evidence for such interaction in Type Ia SNe themselves has been lacking. We consider prospects for the detection of CSM shells that have been predicted to be common around Type Ia SNe. Such shells are most easily detected in Na I absorption lines. Variable (declining) absorption is expected to occur soon after the explosion, primarily during the SN rise time, for shells located within ∼1-10 pc of a SN. The distance of the shell from the SN can be determined by measuring the timescale for line variability.

  18. Observed Type II supernova colours from the Carnegie Supernova Project-I

    Science.gov (United States)

    de Jaeger, T.; Anderson, J. P.; Galbany, L.; González-Gaitán, S.; Hamuy, M.; Phillips, M. M.; Stritzinger, M. D.; Contreras, C.; Folatelli, G.; Gutiérrez, C. P.; Hsiao, E. Y.; Morrell, N.; Suntzeff, N. B.; Dessart, L.; Filippenko, A. V.

    2018-06-01

    We present a study of observed Type II supernova (SN II) colours using optical/near-infrared photometric data from the Carnegie Supernovae Project-I. We analyse four colours (B - V, u - g, g - r, and g - Y) and find that SN II colour curves can be described by two linear regimes during the photospheric phase. The first (s1, colour) is steeper and has a median duration of ˜40 d. The second, shallower slope (s2, colour) lasts until the end of the `plateau' (˜80 d). The two slopes correlate in the sense that steeper initial colour curves also imply steeper colour curves at later phases. As suggested by recent studies, SNe II form a continuous population of objects from the colour point of view as well. We investigate correlations between the observed colours and a range of photometric and spectroscopic parameters including the absolute magnitude, the V-band light-curve slopes, and metal-line strengths. We find that less luminous SNe II appear redder, a trend that we argue is not driven by uncorrected host-galaxy reddening. While there is significant dispersion, we find evidence that redder SNe II (mainly at early epochs) display stronger metal-line equivalent widths. Host-galaxy reddening does not appear to be a dominant parameter, neither driving observed trends nor dominating the dispersion in observed colours. Intrinsic SN II colours are most probably dominated by photospheric temperature differences, with progenitor metallicity possibly playing a minor role. Such temperature differences could be related to differences in progenitor radius, together with the presence or absence of circumstellar material close to the progenitor stars.

  19. Search for surviving companions in type Ia supernova remnants

    International Nuclear Information System (INIS)

    Pan, Kuo-Chuan; Ricker, Paul M.; Taam, Ronald E.

    2014-01-01

    The nature of the progenitor systems of type Ia supernovae (SNe Ia) is still unclear. One way to distinguish between the single-degenerate scenario and double-degenerate scenario for their progenitors is to search for the surviving companions (SCs). Using a technique that couples the results from multi-dimensional hydrodynamics simulations with calculations of the structure and evolution of main-sequence- (MS-) and helium-rich SCs, the color and magnitude of MS- and helium-rich SCs are predicted as functions of time. The SC candidates in Galactic type Ia supernova remnants (Ia SNR) and nearby extragalactic Ia SNRs are discussed. We find that the maximum detectable distance of MS SCs (helium-rich SCs) is 0.6-4 Mpc (0.4-16 Mpc), if the apparent magnitude limit is 27 in the absence of extinction, suggesting that the Large and Small Magellanic Clouds and the Andromeda Galaxy are excellent environments in which to search for SCs. However, only five Ia SNRs have been searched for SCs, showing little support for the standard channels in the singe-degenerate scenario. To better understand the progenitors of SNe Ia, we encourage the search for SCs in other nearby Ia SNRs.

  20. Type Ia supernova Hubble residuals and host-galaxy properties

    International Nuclear Information System (INIS)

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Fleury, M.; Guy, J.; Baltay, C.; Buton, C.; Feindt, U.; Greskovic, P.; Kowalski, M.; Childress, M.; Chotard, N.; Copin, Y.; Gangler, E.

    2014-01-01

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at <<1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm 15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  1. 3D Simulations of Supernova Remnants from Type Ia Supernova Models

    Science.gov (United States)

    Johnson, Heather; Reynolds, S. P.; Frohlich, C.; Blondin, J. M.

    2014-01-01

    Type Ia supernovae (SNe) originate from thermonuclear explosions of white dwarfs. A great deal is still unknown about the explosion mechanisms, particularly the degree of asymmetry. However, Type Ia supernova remnants (SNRs) can bear the imprint of asymmetry long after the explosion. A SNR of interest is G1.9+0.3, the youngest Galactic SNR, which demonstrates an unusual spatial distribution of elements in the ejecta. While its X-ray spectrum is dominated by synchrotron emission, spectral lines of highly ionized Si, S, and Fe are seen in a few locations, with Fe near the edge of the remnant and with strongly varying Fe/Si ratios. An asymmetric explosion within the white dwarf progenitor may be necessary to explain these unusual features of G1.9+0.3, in particular the shocked Fe at large radii. We use the VH-1 hydrodynamics code to evolve initial Type Ia explosion models in 1, 2, and 3 dimensions at an age of 100 seconds provided by other researchers to study asymmetry, the ignition properties, and the nucleosynthesis resulting from these explosions. We follow the evolution of these models interacting with a uniform external medium to a few hundred years in age. We find the abundance and location of ejecta elements from our models to be inconsistent with the observations of G1.9+0.3; while our models show asymmetric element distributions, we find no tendency for iron-group elements to be found beyond intermediate-mass elements, or for significant iron to be reverse-shocked at all at the age of G1.9+0.3. We compare the amounts of shocked iron-group and intermediate-mass elements as a function of time in the different models. Some new kind of explosion asymmetry may be required to explain G1.9+0.3. This work was performed as part of NC State University's Undergraduate Research in Computational Astrophysics (URCA) program, an REU program supported by the National Science Foundation through award AST-1032736.

  2. Isotropy of low redshift type Ia supernovae: A Bayesian analysis

    Science.gov (United States)

    Andrade, U.; Bengaly, C. A. P.; Alcaniz, J. S.; Santos, B.

    2018-04-01

    The standard cosmology strongly relies upon the cosmological principle, which consists on the hypotheses of large scale isotropy and homogeneity of the Universe. Testing these assumptions is, therefore, crucial to determining if there are deviations from the standard cosmological paradigm. In this paper, we use the latest type Ia supernova compilations, namely JLA and Union2.1 to test the cosmological isotropy at low redshift ranges (z <0.1 ). This is performed through a Bayesian selection analysis, in which we compare the standard, isotropic model, with another one including a dipole correction due to peculiar velocities. The full covariance matrix of SN distance uncertainties are taken into account. We find that the JLA sample favors the standard model, whilst the Union2.1 results are inconclusive, yet the constraints from both compilations are in agreement with previous analyses. We conclude that there is no evidence for a dipole anisotropy from nearby supernova compilations, albeit this test should be greatly improved with the much-improved data sets from upcoming cosmological surveys.

  3. VELOCITY EVOLUTION AND THE INTRINSIC COLOR OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Sanders, Nathan E.; Kirshner, Robert P.

    2011-01-01

    To understand how best to use observations of Type Ia supernovae (SNe Ia) to obtain precise and accurate distances, we investigate the relations between spectra of SNe Ia and their intrinsic colors. Using a sample of 1630 optical spectra of 255 SNe, based primarily on data from the CfA Supernova Program, we examine how the velocity evolution and line strengths of Si II λ6355 and Ca II H and K are related to the B – V color at peak brightness. We find that the maximum-light velocity of Si II λ6355 and Ca II H and K and the maximum-light pseudo-equivalent width of Si II λ6355 are correlated with intrinsic color, with intrinsic color having a linear relation with the Si II λ6355 measurements. Ca II H and K does not have a linear relation with intrinsic color, but lower-velocity SNe tend to be intrinsically bluer. Combining the spectroscopic measurements does not improve intrinsic color inference. The intrinsic color scatter is larger for higher-velocity SNe Ia—even after removing a linear trend with velocity—indicating that lower-velocity SNe Ia are more 'standard crayons'. Employing information derived from SN Ia spectra has the potential to improve the measurements of extragalactic distances and the cosmological properties inferred from them.

  4. THEORETICAL CLUES TO THE ULTRAVIOLET DIVERSITY OF TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Peter J.; Wang, Lifan [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Baron, E. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks, Rm 100, Norman, OK 73019-2061 (United States); Milne, Peter [Steward Observatory, University of Arizona, Tucson, AZ 85719 (United States); Roming, Peter W. A., E-mail: pbrown@physics.tamu.edu [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States)

    2015-08-10

    The effect of metallicity on the observed light of Type Ia supernovae (SNe Ia) could lead to systematic errors as the absolute magnitudes of local and distant SNe Ia are compared to measure luminosity distances and determine cosmological parameters. The UV light may be especially sensitive to metallicity, though different modeling methods disagree as to the magnitude, wavelength dependence, and even the sign of the effect. The outer density structure, {sup 56}Ni, and to a lesser degree asphericity, also impact the UV. We compute synthetic photometry of various metallicity-dependent models and compare to UV/optical photometry from the Swift Ultra-Violet/Optical Telescope. We find that the scatter in the mid-UV to near-UV colors is larger than predicted by changes in metallicity alone and is not consistent with reddening. We demonstrate that a recently employed method to determine relative abundances using UV spectra can be done using UVOT photometry, but we warn that accurate results require an accurate model of the cause of the variations. The abundance of UV photometry now available should provide constraints on models that typically rely on UV spectroscopy for constraining metallicity, density, and other parameters. Nevertheless, UV spectroscopy for a variety of supernova explosions is still needed to guide the creation of accurate models. A better understanding of the influences affecting the UV is important for using SNe Ia as cosmological probes, as the UV light may test whether SNe Ia are significantly affected by evolutionary effects.

  5. Theoretical Clues to the Ultraviolet Diversity of Type Ia Supernovae

    Science.gov (United States)

    Brown, Peter J.; Baron, E.; Milne, Peter; Roming, Peter W. A.; Wang, Lifan

    2015-08-01

    The effect of metallicity on the observed light of Type Ia supernovae (SNe Ia) could lead to systematic errors as the absolute magnitudes of local and distant SNe Ia are compared to measure luminosity distances and determine cosmological parameters. The UV light may be especially sensitive to metallicity, though different modeling methods disagree as to the magnitude, wavelength dependence, and even the sign of the effect. The outer density structure, 56Ni, and to a lesser degree asphericity, also impact the UV. We compute synthetic photometry of various metallicity-dependent models and compare to UV/optical photometry from the Swift Ultra-Violet/Optical Telescope. We find that the scatter in the mid-UV to near-UV colors is larger than predicted by changes in metallicity alone and is not consistent with reddening. We demonstrate that a recently employed method to determine relative abundances using UV spectra can be done using UVOT photometry, but we warn that accurate results require an accurate model of the cause of the variations. The abundance of UV photometry now available should provide constraints on models that typically rely on UV spectroscopy for constraining metallicity, density, and other parameters. Nevertheless, UV spectroscopy for a variety of supernova explosions is still needed to guide the creation of accurate models. A better understanding of the influences affecting the UV is important for using SNe Ia as cosmological probes, as the UV light may test whether SNe Ia are significantly affected by evolutionary effects.

  6. THEORETICAL CLUES TO THE ULTRAVIOLET DIVERSITY OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Brown, Peter J.; Wang, Lifan; Baron, E.; Milne, Peter; Roming, Peter W. A.

    2015-01-01

    The effect of metallicity on the observed light of Type Ia supernovae (SNe Ia) could lead to systematic errors as the absolute magnitudes of local and distant SNe Ia are compared to measure luminosity distances and determine cosmological parameters. The UV light may be especially sensitive to metallicity, though different modeling methods disagree as to the magnitude, wavelength dependence, and even the sign of the effect. The outer density structure, 56 Ni, and to a lesser degree asphericity, also impact the UV. We compute synthetic photometry of various metallicity-dependent models and compare to UV/optical photometry from the Swift Ultra-Violet/Optical Telescope. We find that the scatter in the mid-UV to near-UV colors is larger than predicted by changes in metallicity alone and is not consistent with reddening. We demonstrate that a recently employed method to determine relative abundances using UV spectra can be done using UVOT photometry, but we warn that accurate results require an accurate model of the cause of the variations. The abundance of UV photometry now available should provide constraints on models that typically rely on UV spectroscopy for constraining metallicity, density, and other parameters. Nevertheless, UV spectroscopy for a variety of supernova explosions is still needed to guide the creation of accurate models. A better understanding of the influences affecting the UV is important for using SNe Ia as cosmological probes, as the UV light may test whether SNe Ia are significantly affected by evolutionary effects

  7. "Type Ia Supernovae: Tools for Studying Dark Energy" Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, Stan [Lick Observatory, San Jose, CA (United States); Kasen, Dan [Univ. of California, Berkeley, CA (United States)

    2017-05-10

    Final technical report for project "Type Ia Supernovae: Tools for the Study of Dark Energy" awarded jointly to scientists at the University of California, Santa Cruz and Berkeley, for computer modeling, theory and data analysis relevant to the use of Type Ia supernovae as standard candles for cosmology.

  8. EVOLUTION IN THE VOLUMETRIC TYPE Ia SUPERNOVA RATE FROM THE SUPERNOVA LEGACY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Perrett, K.; Gonzalez-Gaitan, S.; Carlberg, R. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Sullivan, M.; Hook, I. M. [Department of Physics (Astrophysics), University of Oxford, DWB, Keble Road, Oxford OX1 3RH (United Kingdom); Conley, A. [Center for Astrophysics and Space Astronomy, University of Colorado, 593 UCB, Boulder, CO 80309-0593 (United States); Fouchez, D. [CPPM, CNRS-IN2P3 and University Aix Marseille II, Case 907, 13288 Marseille cedex 9 (France); Ripoche, P. [Lawrence Berkeley National Laboratory, Mail Stop 50-232, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Neill, J. D. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125 (United States); Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N. [LPNHE, Universite Pierre et Marie Curie Paris 6, Universite Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, 75005 Paris (France); Balam, D. [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Basa, S. [Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, 38, rue Frederic Joliot-Curie, 13388 Marseille cedex 13 (France); Howell, D. A. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, CA 93117 (United States); Palanque-Delabrouille, N. [DSM/IRFU/SPP, CEA-Saclay, F-91191 Gif-sur-Yvette (France); Pritchet, C., E-mail: perrett@astro.utoronto.ca, E-mail: sullivan@astro.ox.ac.uk [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Stn CSC, Victoria, BC, V8W 3P6 (Canada); and others

    2012-08-15

    We present a measurement of the volumetric Type Ia supernova (SN Ia) rate (SNR{sub Ia}) as a function of redshift for the first four years of data from the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). This analysis includes 286 spectroscopically confirmed and more than 400 additional photometrically identified SNe Ia within the redshift range 0.1 {<=} z {<=} 1.1. The volumetric SNR{sub Ia} evolution is consistent with a rise to z {approx} 1.0 that follows a power law of the form (1+z){sup {alpha}}, with {alpha} = 2.11 {+-} 0.28. This evolutionary trend in the SNLS rates is slightly shallower than that of the cosmic star formation history (SFH) over the same redshift range. We combine the SNLS rate measurements with those from other surveys that complement the SNLS redshift range, and fit various simple SN Ia delay-time distribution (DTD) models to the combined data. A simple power-law model for the DTD (i.e., {proportional_to}t{sup -{beta}}) yields values from {beta} = 0.98 {+-} 0.05 to {beta} = 1.15 {+-} 0.08 depending on the parameterization of the cosmic SFH. A two-component model, where SNR{sub Ia} is dependent on stellar mass (M{sub stellar}) and star formation rate (SFR) as SNR{sub Ia}(z) = A Multiplication-Sign M{sub stellar}(z) + B Multiplication-Sign SFR(z), yields the coefficients A = (1.9 {+-} 0.1) Multiplication-Sign 10{sup -14} SNe yr{sup -1} M{sup -1}{sub Sun} and B = (3.3 {+-} 0.2) Multiplication-Sign 10{sup -4} SNe yr{sup -1} (M{sub Sun} yr{sup -1}){sup -1}. More general two-component models also fit the data well, but single Gaussian or exponential DTDs provide significantly poorer matches. Finally, we split the SNLS sample into two populations by the light-curve width (stretch), and show that the general behavior in the rates of faster-declining SNe Ia (0.8 {<=} s < 1.0) is similar, within our measurement errors, to that of the slower objects (1.0 {<=} s < 1.3) out to z {approx} 0.8.

  9. Host galaxies of type ia supernovae from the nearby supernova factory

    Science.gov (United States)

    Childress, Michael Joseph

    Type Ia Supernovae (SNe Ia) are excellent distance indicators, yet the full details of the underlying physical mechanism giving rise to these dramatic stellar deaths remain unclear. As large samples of cosmological SNe Ia continue to be collected, the scatter in brightnesses of these events is equally affected by systematic errors as statistical. Thus we need to understand the physics of SNe Ia better, and in particular we must know more about the progenitors of these SNe so that we can derive better estimates for their true intrinsic brightnesses. The host galaxies of SNe Ia provide important indirect clues as to the nature of SN Ia progenitors. In this Thesis we utilize the host galaxies of SNe Ia discovered by the Nearby Supernova Factory (SNfactory) to pursue several key investigations into the nature of SN Ia progenitors and their effects on SN Ia brightnesses. We first examine the host galaxy of SN 2007if, an important member of the subclass of SNe Ia whose extreme brightnesses indicate a progenitor that exceeded the canonical Chandrasekhar-mass value presumed for normal SNe Ia, and show that the host galaxy of this SN is composed of very young stars and has extremely low metallicity, providing important constraints on progenitor scenarios for this SN. We then utilize the full sample of SNfactory host galaxy masses (measured from photometry) and metallicities (derived from optical spectroscopy) to examine several global properties of SN Ia progenitors: (i) we show that SN Ia hosts show tight agreement with the normal galaxy mass-metallicity relation; (ii) comparing the observed distribution of SN Ia host galaxy masses to a theoretical model that couples galaxy physics to the SN Ia delay time distribution (DTD), we show the power of the SN Ia host mass distribution in constraining the SN Ia DTD; and (iii) we show that the lack of ultra-low metallicities in the SNfactory SN Ia host sample gives provisional support for the theorized low-metallicity inhibition of

  10. LATE-TIME LIGHT CURVES OF TYPE II SUPERNOVAE: PHYSICAL PROPERTIES OF SUPERNOVAE AND THEIR ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Masaaki; Meixner, Margaret; Panagia, Nino [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Fabbri, Joanna; Barlow, Michael J.; Wesson, Roger [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Clayton, Geoffrey C.; Andrews, Jennifer E. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Gallagher, Joseph S. [Department of Mathematics, Physics, and Computer Science, Raymond Walters College, 9555 Plain field Rd., Blue Ash, OH 45236 (United States); Sugerman, Ben E. K. [Department of Physics and Astronomy, Goucher College, 1021 Dulaney Valley Road, Baltimore, MD 21204 (United States); Ercolano, Barbara [Universitaets-Sternwarte Muenchen, Scheinerstr. 1, 81679 Muenchen (Germany); Welch, Douglas, E-mail: otsuka@stsci.edu, E-mail: otsuka@asiaa.sinica.edu.tw [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)

    2012-01-01

    We present BVRIJHK-band photometry of six core-collapse supernovae, SNe 1999bw, 2002hh, 2003gd, 2004et, 2005cs, and 2006bc, measured at late epochs (>2 yr) based on the Hubble Space Telescope (HST), and the Gemini North, and WIYN telescopes. We also show the JHK light curves of supernova impostor SN 2008S up to day 575 because it was serendipitously in our SN 2002hh field of view. Of our 43 HST observations in total, 36 observations are successful in detecting the light from the SNe alone and measuring magnitudes of all the targets. HST observations show a resolved scattered light echo around SN 2003gd at day 1520 and around SN 2002hh at day 1717. Our Gemini and WIYN observations detected SNe 2002hh and 2004et as well. Combining our data with previously published data, we show VRIJHK-band light curves and estimate decline magnitude rates at each band in four different phases. Our prior work on these light curves and other data indicate that dust is forming in our targets from days {approx}300 to 400, supporting SN dust formation theory. In this paper we focus on other physical properties derived from late-time light curves. We estimate {sup 56}Ni masses for our targets (0.5-14 Multiplication-Sign 10{sup -2} M{sub Sun }) from the bolometric light curve of each of days {approx}150-300 using SN 1987A as a standard (7.5 Multiplication-Sign 10{sup -2} M{sub Sun }). The flattening or sometimes increasing fluxes in the late-time light curves of SNe 2002hh, 2003gd, 2004et, and 2006bc indicate the presence of light echoes. We estimate the circumstellar hydrogen density of the material causing the light echo and find that SN 2002hh is surrounded by relatively dense materials (n(H) >400 cm{sup -3}) and SNe 2003gd and 2004et have densities more typical of the interstellar medium ({approx}1 cm{sup -3}). We analyze the sample as a whole in the context of physical properties derived in prior work. The {sup 56}Ni mass appears well correlated with progenitor mass with a slope of 0

  11. SN REFSDAL: CLASSIFICATION AS A LUMINOUS AND BLUE SN 1987A-LIKE TYPE II SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, P. L.; Filippenko, A. V.; Graham, M. L. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Brammer, G.; Strolger, L.-G.; Riess, A. G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Selsing, J.; Hjorth, J.; Christensen, L. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Foley, R. J. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, IL 61801 (United States); Rodney, S. A. [Department of Physics and Astronomy, University of South Carolina, 712 Main St., Columbia, SC 29208 (United States); Treu, T. [University of California, Los Angeles, CA 90095 (United States); Steidel, C. C.; Strom, A.; Zitrin, A. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Schmidt, K. B.; McCully, C. [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Bradač, M. [University of California, Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Jha, S. W. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Graur, O., E-mail: pkelly@astro.berkeley.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States); and others

    2016-11-10

    We have acquired Hubble Space Telescope (HST) and Very Large Telescope near-infrared spectra and images of supernova (SN) Refsdal after its discovery as an Einstein cross in fall 2014. The HST light curve of SN Refsdal has a shape consistent with the distinctive, slowly rising light curves of SN 1987A-like SNe, and we find strong evidence for a broad H α P-Cygni profile and Na I D absorption in the HST grism spectrum at the redshift ( z = 1.49) of the spiral host galaxy. SNe IIn, largely powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show broad and strong H α and Na I D absorption. From the grism spectrum, we measure an H α expansion velocity consistent with those of SN 1987A-like SNe at a similar phase. The luminosity, evolution, and Gaussian profile of the H α emission of the WFC3 and X-shooter spectra, separated by ∼2.5 months in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, photometry of SN Refsdal favors bluer B - V and V - R colors and one of the largest luminosities for the assumed range of potential magnifications. The evolution of the light curve at late times will provide additional evidence about the potential existence of any substantial circumstellar material. Using MOSFIRE and X-shooter spectra, we estimate a subsolar host-galaxy metallicity (8.3 ± 0.1 dex and <8.4 dex, respectively) near the explosion site.

  12. Type II Supernova Light Curves and Spectra from the CfA

    Science.gov (United States)

    Hicken, Malcolm; Friedman, Andrew S.; Blondin, Stephane; Challis, Peter; Berlind, Perry; Calkins, Mike; Esquerdo, Gil; Matheson, Thomas; Modjaz, Maryam; Rest, Armin; Kirshner, Robert P.

    2017-11-01

    We present multiband photometry of 60 spectroscopically confirmed supernovae (SNe): 39 SNe II/IIP, 19 IIn, 1 IIb, and 1 that was originally classified as a IIn but later as a Ibn. Of these, 46 have only optical photometry, 6 have only near-infrared (NIR) photometry, and 8 have both optical and NIR. The median redshift of the sample is 0.016. We also present 195 optical spectra for 48 of the 60 SN. There are 26 optical and 2 NIR light curves of SNe II/IIP with redshifts z> 0.01, some of which may give rise to useful distances for cosmological applications. All photometry was obtained between 2000 and 2011 at the Fred Lawrence Whipple Observatory (FLWO), via the 1.2 m and 1.3 m PAIRITEL telescopes for the optical and NIR, respectively. Each SN was observed in a subset of the u\\prime {UBVRIr}\\prime I\\prime {{JHK}}s bands. There are a total of 2932 optical and 816 NIR light curve points. Optical spectra were obtained using the FLWO 1.5 m Tillinghast telescope with the FAST spectrograph and the MMT Telescope with the Blue Channel Spectrograph. Our photometry is in reasonable agreement with select samples from the literature: two-thirds of our star sequences have average V offsets within ±0.02 mag and roughly three-quarters of our light curves have average differences within ±0.04 mag. The data from this work and the literature will provide insight into SN II explosions, help with developing methods for photometric SN classification, and contribute to their use as cosmological distance indicators.

  13. A PRECISION PHOTOMETRIC COMPARISON BETWEEN SDSS-II AND CSP TYPE Ia SUPERNOVA DATA

    International Nuclear Information System (INIS)

    Mosher, J.; Sako, M.; Corlies, L.; Folatelli, G.; Frieman, J.; Kessler, R.; Holtzman, J.; Jha, S. W.; Marriner, J.; Phillips, M. M.; Morrell, N.; Stritzinger, M.; Schneider, D. P.

    2012-01-01

    Consistency between Carnegie Supernova Project (CSP) and SDSS-II Supernova Survey ugri measurements has been evaluated by comparing Sloan Digital Sky Survey (SDSS) and CSP photometry for nine spectroscopically confirmed Type Ia supernova observed contemporaneously by both programs. The CSP data were transformed into the SDSS photometric system. Sources of systematic uncertainty have been identified, quantified, and shown to be at or below the 0.023 mag level in all bands. When all photometry for a given band is combined, we find average magnitude differences of equal to or less than 0.011 mag in ugri, with rms scatter ranging from 0.043 to 0.077 mag. The u-band agreement is promising, with the caveat that only four of the nine supernovae are well observed in u and these four exhibit an 0.038 mag supernova-to-supernova scatter in this filter.

  14. Theory of Nova Outbursts and Type Ia Supernovae

    Directory of Open Access Journals (Sweden)

    M. Kato

    2015-02-01

    Full Text Available We briefly review the current theoretical understanding of the light curves of novae. These curves exhibit a homologous nature, dubbed the universal decline law, and when time-normalized, they almost follow a single curve independently of the white dwarf (WD mass or chemical composition of the envelope. The optical and near-infrared light curves of novae are reproduced mainly by free-free emission from their optically thick winds. We can estimate the WD mass from multiwavelength observations because the optical, UV, and soft X-ray light curves evolve differently and we can easily resolve the degeneracy of the optical light curves. Recurrent novae and classical novae are a testbed of type Ia supernova scenarios. In the orbital period versus secondary mass diagram, recurrent novae are located in different regions from classical novae and the positions of recurrent novae are consistent with the single degenerate scenario.

  15. Asymmetric Explosion of Type Ia Supernovae and Their Observational Signatures

    International Nuclear Information System (INIS)

    Maeda, Keiichi

    2010-01-01

    The nature of Type Ia supernova (SN Ia) explosions has not yet been clarified, despite their importance in astrophysics and cosmology. Recent theoretical investigations suggest that asymmetric distribution of initial thermonuclear sparks may be a key in the SN Ia explosion mechanism. In this paper, the first observational evidence of the asymmetry in SN Ia explosions is presented: We have found that late-time nebular spectra of various SNe Ia show a diversity in wavelengths of emission lines. This feature is inconsistent with any spherically symmetric explosion models, and indicates that the innermost region, a likely product of the deflagration wave propagation, shows an off-set with respect to the explosion center. The diversity in the emission-line wavelengths could naturally be explained by a combination of different viewing angles.

  16. Type Ia supernovae yielding distances with 3-4% precision

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Patrick L. [Univ. of California, Berkeley, CA (United States); Filippenko, Alexei V. [Univ. of California, Berkeley, CA (United States); Burke, David L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hicken, Malcolm [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Ganeshalingam, Mohan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zheng, Weikang [Univ. of California, Berkeley, CA (United States)

    2015-01-26

    The luminosities of Type Ia supernovae (SN), the thermonuclear explosions of white dwarf stars, vary systematically with their intrinsic color and light-curve decline rate. These relationships have been used to calibrate their luminosities to within ~0.14–0.20 mag from broadband optical light curves, yielding individual distances accurate to ~7–10%. Here we identify a subset of SN Ia that erupt in environments having high ultraviolet surface brightness and star-formation surface density. When we apply a steep model extinction law, these SN can be calibrated to within ~0.065–0.075 mag, corresponding to ~3–4% in distance — the best yet with SN Ia by a substantial margin. The small scatter suggests that variations in only one or two progenitor properties account for their light-curve-width/color/luminosity relation.

  17. Late-Time Spectral Observations of Type IIP Supernovae

    Science.gov (United States)

    Silverman, Jeffrey M.; Pickett, Stephanie; Wheeler, J. Craig; Filippenko, Alexei

    2016-01-01

    Type II-Plateau supernovae (SNe IIP) are H-rich explosions that come from red supergiant (RSG) progenitors. Despite the fact that they are the most common subtype of SN, little work has been done on late-time observations of SNe IIP owing to their relative faintness at these epochs. We analyze 91 late-time (older than about 100 days past explosion) optical spectra of 38 SNe IIP, making this the largest sample of SN IIP nebular spectra ever studied. Quantitative criteria from the spectra themselves are employed to determine if an observation is truly nebular, and thus should be included in the study. We measure the fluxes, shapes, and velocities of various emission lines and investigate their temporal evolution. These values are also compared to photometric data in order to search for correlations that may allow us to gain insight into the RSG progenitors of SNe IIP and learn more about the details of the explosion itself.

  18. EVOLVING TO TYPE Ia SUPERNOVAE WITH SHORT DELAY TIMES

    International Nuclear Information System (INIS)

    Wang Bo; Chen Xuefei; Han Zhanwen; Meng Xiangcun

    2009-01-01

    The single-degenerate model is currently a favorable progenitor model for Type Ia supernovae (SNe Ia). Recent investigations on the white dwarf (WD) + He star channel of the single-degenerate model imply that this channel is noteworthy for producing SNe Ia. In this paper, we studied SN Ia birthrates and delay times of this channel via a detailed binary population synthesis approach. We found that the Galactic SN Ia birthrate from the WD + He star channel is ∼0.3 x 10 -3 yr -1 according to our standard model, and that this channel can explain SNe Ia with short delay times (∼4.5 x 10 7 -1.4 x 10 8 yr). Meanwhile, these WD + He star systems may be related to the young supersoft X-ray sources prior to SN Ia explosions.

  19. Carbon and nitrogen in Type 2 supernova diamonds

    Science.gov (United States)

    Clayton, Donald D.; Eleid, Mounib; Brown, Lawrence E.

    1993-03-01

    Abundant diamonds found in meteorites seem either to have condensed within supernova interiors during their expansions and coolings or to have been present around those explosions. Either alternative allows implantation of Xe-HL prior to interstellar mixing. A puzzling feature is the near normalcy of the carbon isotopes, considering that the only C-rich matter, the He-burning shell, is pure C-12 in that region. That last fact has caused many to associate supernova carbon with C-12 carbon, so that its SUNOCONS have been anticipated as very C-12-rich. We show that this expectation is misleading because the C-13-rich regions of Type 2's have been largely overlooked in this thinking. We here follow the idea that the diamonds nucleated in the C-12-rich He shell, the only C-rich site for nucleation, but then attached C-13-rich carbon during turbulent encounters with overlying C-13-rich matter. That is, the initial diamonds continued to grow during the same collisional encounters that cause the Xe-HL implantation. Instead of interacting with the small carbon mass having 13/12 = 0.2 in the upper He zone, however, we have calculated the remnants of the initial H-burning core, which left behind C-13-rich matter as it receded during core hydrogen burning. Howard et al. described why the velocity mixing would be essential to understanding the implantation of both the Xe-H and Xe-L components. Velocity mixing is now known to occur from the X-ray and gamma-ray light curves of supernova 1987A. Using the stellar evolution code developed at Goettingen, we calculated at Clemson the evolution of a grid of massive stars up to the beginning of core He burning. We paid attention to all H-burning reactions throughout the star, to the treatment of both convection and semiconvection, and to the recession of the outer boundary of the convective H-burning core as the star expands toward a larger redder state. This program was to generate a careful map of the CNO isotope distribution as He

  20. Spectroscopic standardisation of Ia type supernovae within the frame of the Supernovae Legacy Survey

    International Nuclear Information System (INIS)

    Le Du, Jeremy

    2008-09-01

    This research thesis first proposes an overview of cosmology science since antiquity until modern times, of its fast development during the 20. century (discovery of galaxies, introduction of general relativity), of the standard cosmological model (Friedman-Lemaitre-Robertson-Walker metrics, equations of Friedman-Lemaitre, universe radius and curvature, universe evolution, energetic assessment), of the issue of black matter and black energy, and of cosmological probes (diffuse cosmological background, gravitational lenses). The second part presents supernovae: origin, explosion mechanisms, diversity, Ia supernovae). The third part presents the Supernovae Legacy Survey (SNLS): objectives and instruments of the SNLS program, detection strategy. The fourth part describes the spectroscopy of SNLS candidates to the VLT (Very Large Telescope): reduction of spectral data, subtraction of the host galaxy and identification of the supernova, assessment of method performance, flux and position errors, assessment of VLT observations. The fifth part discusses the variability of spectral characteristics of Ia supernovae: measurement of spectral indicators, study of SiII(4128A) line, study of the CaHandK region, equivalent depth as a new spectral indicator. The sixth part discusses cosmological implications of the SNLS, and the last part briefly reports and comments the measurement of spectroscopic indicators in the SNAP/JDEM experiment

  1. RADIOACTIVELY POWERED RISING LIGHT CURVES OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Piro, Anthony L.

    2012-01-01

    The rising luminosity of the recent, nearby supernova 2011fe shows a quadratic dependence with time during the first ≈0.5-4 days. In addition, studies of the composite light curves formed from stacking together many Type Ia supernovae (SNe Ia) have found similar power-law indices for the rise, but may also show some dispersion that may indicate diversity. I explore what range of power-law rises are possible due to the presence of radioactive material near the surface of the exploding white dwarf (WD). I summarize what constraints such a model places on the structure of the progenitor and the distribution and velocity of ejecta. My main conclusion is that for the inferred explosion time for SN 2011fe, its rise requires an increasing mass fraction X 56 ≈ (4-6) × 10 –2 of 56 Ni distributed between a depth of ≈10 –2 and 0.3 M ☉ below the WD's surface. Radioactive elements this shallow are not found in simulations of a single C/O detonation. Scenarios that may produce this material include helium-shell burning during a double-detonation ignition, a gravitationally confined detonation, and a subset of deflagration to detonation transition models. In general, the power-law rise can differ from quadratic depending on the details of the velocity, density, and radioactive deposition gradients in a given event. Therefore, comparisons of this work with observed bolometric rises of SNe Ia would place strong constraints on the properties of the shallow outer layers, providing important clues for identifying the elusive progenitors of SNe Ia.

  2. THE RISE TIME OF NORMAL AND SUBLUMINOUS TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Gaitan, S.; Perrett, K.; Carlberg, R. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. george Street, Toronto, ON M5S 3H4 (Canada); Conley, A. [Center for Astrophysics and Space Astronomy, University of Colorado, 593 UCB, Boulder, CO 80309-0593 (United States); Bianco, F. B.; Howell, D. A.; Graham, M. L. [Department of Physics, University of California, Santa Barbara, Broida Hall, Mail Code 9530, Santa Barbara, CA 93106-9530 (United States); Sullivan, M.; Hook, I. M. [Department of Physics (Astrophysics), University of Oxford, DWB, Keble Road, Oxford, OX1 3RH (United Kingdom); Astier, P.; Balland, C.; Fourmanoit, N.; Guy, J.; Hardin, D.; Pain, R. [LPNHE, Universite Pierre et Marie Curie Paris 6, Universite Paris Diderot Paris 7, CNRS-IN2P3, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Balam, D. [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Basa, S. [Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, 38, rue Frederic Joliot-Curie, 13388 Marseille cedex 13 (France); Fouchez, D. [CPPM, CNRS-IN2P3 and University Aix Marseille II, Case 907, 13288 Marseille cedex 9 (France); Lidman, C. [Australian Astronomical Observatory, P.O. Box 296, Epping, NSW 1710 (Australia); Palanque-Delabrouille, N., E-mail: gonzalez@astro.utoronto.ca [DSM/IRFU/SPP, CEA-Saclay, F-91191 Gif-sur-Yvette (France); and others

    2012-01-20

    We calculate the average stretch-corrected rise time of Type Ia supernovae (SNe Ia) in the Supernova Legacy Survey. We use the aggregate light curves of spectroscopic and photometrically identified SNe Ia to fit the rising part of the light curve with a simple quadratic model. We obtain a light curve shape corrected, i.e., stretch-corrected, fiducial rise time of 17.02{sup +0.18}{sub -0.28} (stat) days. The measured rise time differs from an earlier finding by the SNLS (Conley et al.) due to the use of different SN Ia templates. We compare it to nearby samples using the same methods and find no evolution in the early part of the light curve of SNe Ia up to z = 1. We search for variations among different populations, particularly subluminous objects, by dividing the sample in stretch. Bright and slow decliners (s > 1.0) have consistent stretch-corrected rise times compared to fainter and faster decliners (0.8 < s {<=} 1.0); they are shorter by 0.57{sup +0.47}{sub -0.50} (stat) days. Subluminous SNe Ia (here defined as objects with s {<=} 0.8), although less constrained, are also consistent, with a rise time of 18.03{sup +0.81}{sub -1.37} (stat) days. We study several systematic biases and find that the use of different fiducial templates may affect the average rise time but not the intrinsic differences between populations. Based on our results, we estimate that subluminous SNe Ia are powered by 0.05-0.35 M{sub Sun} of {sup 56}Ni synthesized in the explosion. Our conclusions are the same for the single-stretch and two-stretch parameterizations of the light curve.

  3. ANALYTIC APPROXIMATION OF CARBON CONDENSATION ISSUES IN TYPE II SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Donald D., E-mail: claydonald@gmail.com [Department of Physics and Astronomy, Clemson University, Clemson, SC (United States)

    2013-01-01

    I present analytic approximations for some issues related to condensation of graphite, TiC, and silicon carbide in oxygen-rich cores of supernovae of Type II. Increased understanding, which mathematical analysis can support, renders researchers more receptive to condensation in O-rich supernova gases. Taking SN 1987A as typical, my first analysis shows why the abundance of CO molecules reaches an early maximum in which free carbon remains more abundant than CO. This analysis clarifies why O-rich gas cannot oxidize C if {sup 56}Co radioactivity is as strong as in SN 1987A. My next analysis shows that the CO abundance could be regarded as being in chemical equilibrium if the CO molecule is given an effective binding energy rather than its laboratory dissociation energy. The effective binding energy makes the thermal dissociation rate of CO equal to its radioactive dissociation rate. This preserves possible relevance for the concept of chemical equilibrium. My next analysis shows that the observed abundances of CO and SiO molecules in SN 1987A rule out frequent suggestions that equilibrium condensation of SUNOCONs has occurred following atomic mixing of the He-burning shell with more central zones in such a way as to reproduce roughly the observed spectrum of isotopes in SUNOCONs while preserving C/O > 1. He atoms admixed along with the excess carbon would destroy CO and SiO molecules, leaving their observed abundances unexplained. The final analysis argues that a chemical quasiequilibrium among grains (but not gas) may exist approximately during condensation, so that its computational use is partially justified as a guide to which mineral phases would be stable against reactions with gas. I illustrate this point with quasiequilibrium calculations by Ebel and Grossman that have shown that graphite is stable even when O/C >1 if prominent molecules are justifiably excluded from the calculation of chemical equilibrium.

  4. SUPERNOVA 2003ie WAS LIKELY A FAINT TYPE IIP EVENT

    Energy Technology Data Exchange (ETDEWEB)

    Arcavi, Iair; Gal-Yam, Avishay [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Sergeev, Sergey G., E-mail: iair.arcavi@weizmann.ac.il [Crimean Astrophysical Observatory, P/O Nauchny, Crimea 98409 (Ukraine)

    2013-04-15

    We present new photometric observations of supernova (SN) 2003ie starting one month before discovery, obtained serendipitously while observing its host galaxy. With only a weak upper limit derived on the mass of its progenitor (<25 M{sub Sun }) from previous pre-explosion studies, this event could be a potential exception to the ''red supergiant (RSG) problem'' (the lack of high-mass RSGs exploding as Type IIP SNe). However, this is true only if SN2003ie was a Type IIP event, something which has never been determined. Using recently derived core-collapse SN light-curve templates, as well as by comparison to other known SNe, we find that SN2003ie was indeed a likely Type IIP event. However, with a plateau magnitude of {approx} - 15.5 mag, it is found to be a member of the faint Type IIP class. Previous members of this class have been shown to arise from relatively low-mass progenitors (<12 M{sub Sun }). It therefore seems unlikely that this SN had a massive RSG progenitor. The use of core-collapse SN light-curve templates is shown to be helpful in classifying SNe with sparse coverage. These templates are likely to become more robust as large homogeneous samples of core-collapse events are collected.

  5. The Carnegie Supernova Project. I. Third Photometry Data Release of Low-redshift Type Ia Supernovae and Other White Dwarf Explosions

    DEFF Research Database (Denmark)

    Krisciunas, Kevin; Contreras, Carlos; Burns, Christopher R.

    2017-01-01

    We present final natural-system optical (ugriBV) and near-infrared (YJH) photometry of 134 supernovae (SNe) with probable white dwarf progenitors that were observed in 2004-2009 as part of the first stage of the Carnegie Supernova Project (CSP-I). The sample consists of 123 Type. Ia SNe, 5 Type...

  6. SHOCK BREAKOUT IN TYPE II PLATEAU SUPERNOVAE: PROSPECTS FOR HIGH-REDSHIFT SUPERNOVA SURVEYS

    International Nuclear Information System (INIS)

    Tominaga, N.; Morokuma, T.; Blinnikov, S. I.; Nomoto, K.; Baklanov, P.; Sorokina, E. I.

    2011-01-01

    Shock breakout is the brightest radiative phenomenon in a supernova (SN) but is difficult to be observed owing to the short duration and X-ray/ultraviolet (UV)-peaked spectra. After the first observation from the rising phase reported in 2008, its observability at high redshift is attracting enormous attention. We perform multigroup radiation hydrodynamics calculations of explosions for evolutionary presupernova models with various main-sequence masses M MS , metallicities Z, and explosion energies E. We present multicolor light curves of shock breakouts in Type II plateau SNe, being the most frequent core-collapse SNe, and predict apparent multicolor light curves of shock breakout at various redshifts z. We derive the observable SN rate and reachable redshift as functions of filter x and limiting magnitude m x,lim by taking into account an initial mass function, cosmic star formation history, intergalactic absorption, and host galaxy extinction. We propose a realistic survey strategy optimized for shock breakout. For example, the g'-band observable SN rate for m g',lim = 27.5 mag is 3.3 SNe deg -2 day -1 and half of them are located at z ≥ 1.2. It is clear that the shock breakout is a beneficial clue for probing high-z core-collapse SNe. We also establish ways to identify shock breakout and constrain SN properties from the observations of shock breakout, brightness, timescale, and color. We emphasize that the multicolor observations in blue optical bands with ∼hour intervals, preferably over ≥2 continuous nights, are essential to efficiently detect, identify, and interpret shock breakout.

  7. The Type Ia Supernova Rate at z~0.5 from the Supernova Legacy Survey

    Science.gov (United States)

    Neill, J. D.; Sullivan, M.; Balam, D.; Pritchet, C. J.; Howell, D. A.; Perrett, K.; Astier, P.; Aubourg, E.; Basa, S.; Carlberg, R. G.; Conley, A.; Fabbro, S.; Fouchez, D.; Guy, J.; Hook, I.; Pain, R.; Palanque-Delabrouille, N.; Regnault, N.; Rich, J.; Taillet, R.; Aldering, G.; Antilogus, P.; Arsenijevic, V.; Balland, C.; Baumont, S.; Bronder, J.; Ellis, R. S.; Filiol, M.; Gonçalves, A. C.; Hardin, D.; Kowalski, M.; Lidman, C.; Lusset, V.; Mouchet, M.; Mourao, A.; Perlmutter, S.; Ripoche, P.; Schlegel, D.; Tao, C.

    2006-09-01

    We present a measurement of the distant Type Ia supernova (SN Ia) rate derived from the first 2 yr of the Canada-France-Hawaii Telescope Supernova Legacy Survey. We observed four 1deg×1deg fields with a typical temporal frequency of ~4 observer-frame days over time spans of 158-211 days per season for each field, with breaks during the full Moon. We used 8-10 m class telescopes for spectroscopic follow-up to confirm our candidates and determine their redshifts. Our starting sample consists of 73 spectroscopically verified SNe Ia in the redshift range 0.2=0.47)=[0.42+0.13-0.09(syst.)+/-0.06(stat.)×10-4 yr-1 Mpc3, assuming h=0.7, Ωm=0.3, and a flat cosmology. Using recently published galaxy luminosity functions derived in our redshift range, we derive a SN Ia rate per unit luminosity of rL(=0.47)=0.154+0.048-0.033(syst.)+0.039-0.031(stat.) SN units. Using our rate alone, we place an upper limit on the component of SN Ia production that tracks the cosmic star formation history of 1 SN Ia per 103 Msolar of stars formed. Our rate and other rates from surveys using spectroscopic sample confirmation display only a modest evolution out to z=0.55. Based on observations obtained with MegaPrime/MegaCam, a joint project of the Canada-France-Hawaii Telescope (CFHT) and CEA/DAPNIA, at CFHT, which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. This work is also based on observations obtained at the European Southern Observatory using the Very Large Telescope on the Cerro Paranal (ESO Large Program 171.A-0486), and on observations (programs GN-2004A-Q-19, GS-2004A-Q-11, GN-2003B-Q-9, and GS-2003B-Q-8) obtained at the Gemini

  8. SUPERNOVA PTF 09UJ: A POSSIBLE SHOCK BREAKOUT FROM A DENSE CIRCUMSTELLAR WIND

    International Nuclear Information System (INIS)

    Ofek, E. O.; Neill, J. D.; Kulkarni, S. R.; Forster, K.; Kasliwal, M. M.; Law, N.; Martin, C.; Quimby, R. M.; Rabinak, I.; Arcavi, I.; Waxman, E.; Gal-Yam, A.; Cenko, S. B.; Bloom, J. S.; Filippenko, A. V.; Poznanski, D.; Nugent, P. E.; Jacobsen, J.; Bildsten, L.; Howell, D. A.

    2010-01-01

    Type-IIn supernovae (SNe IIn), which are characterized by strong interaction of their ejecta with the surrounding circumstellar matter (CSM), provide a unique opportunity to study the mass-loss history of massive stars shortly before their explosive death. We present the discovery and follow-up observations of an SN IIn, PTF 09uj, detected by the Palomar Transient Factory (PTF). Serendipitous observations by Galaxy Evolution Explorer (GALEX) at ultraviolet (UV) wavelengths detected the rise of the SN light curve prior to the PTF discovery. The UV light curve of the SN rose fast, with a timescale of a few days, to a UV absolute AB magnitude of about -19.5. Modeling our observations, we suggest that the fast rise of the UV light curve is due to the breakout of the SN shock through the dense CSM (n ∼ 10 10 cm -3 ). Furthermore, we find that prior to the explosion the progenitor went through a phase of high mass-loss rate (∼0.1 M sun yr -1 ) that lasted for a few years. The decay rate of this SN was fast relative to that of other SNe IIn.

  9. Binary Paths to Type Ia Supernovae Explosions: the Highlights

    Science.gov (United States)

    Ferrario, Lilia

    2013-01-01

    This symposium was focused on the hunt for the progenitors of Type Ia supernovae (SNe Ia). Is there a main channel for the production of SNe Ia? If so, are these elusive progenitors single degenerate or double degenerate systems? Although most participants seemed to favor the single degenerate channel, there was no general agreement on the type of binary system at play. An observational puzzle that was highlighted was the apparent paucity of supersoft sources in our Galaxy and also in external galaxies. The single degenerate channel (and as it was pointed out, quite possibly also the double degenerate channel) requires the binary system to pass through a phase of steady nuclear burning. However, the observed number of supersoft sources falls short by a factor of up to 100 in explaining the estimated birth rates of SNe Ia. Thus, are these supersoft sources somehow hidden away and radiating at different wavelengths, or are we missing some important pieces of this puzzle that may lead to the elimination of a certain class of progenitor? Another unanswered question concerns the dependence of SNe Ia luminosities on the age of their host galaxy. Several hypotheses were put forward, but none was singled out as the most likely explanation. It is fair to say that at the end of the symposium the definitive answer to the vexed progenitor question remained well and truly wide open.

  10. Progenitors of low-luminosity Type II-Plateau supernovae

    Science.gov (United States)

    Lisakov, Sergey M.; Dessart, Luc; Hillier, D. John; Waldman, Roni; Livne, Eli

    2018-01-01

    The progenitors of low-luminosity Type II-Plateau supernovae (SNe II-P) are believed to be red supergiant (RSG) stars, but there is much disparity in the literature concerning their mass at core collapse and therefore on the main sequence. Here, we model the SN radiation arising from the low-energy explosion of RSG stars of 12, 25 and 27 M⊙ on the main sequence and formed through single star evolution. Despite the narrow range in ejecta kinetic energy (2.5-4.2 × 1050 erg) in our model set, the SN observables from our three models are significantly distinct, reflecting the differences in progenitor structure (e.g. surface radius, H-rich envelope mass and He-core mass). Our higher mass RSG stars give rise to Type II SNe that tend to have bluer colours at early times, a shorter photospheric phase, and a faster declining V-band light curve (LC) more typical of Type II-linear SNe, in conflict with the LC plateau observed for low-luminosity SNe II. The complete fallback of the CO core in the low-energy explosions of our high-mass RSG stars prevents the ejection of any 56Ni (nor any core O or Si), in contrast to low-luminosity SNe II-P, which eject at least 0.001 M⊙ of 56Ni. In contrast to observations, Type II SN models from higher mass RSGs tend to show an H α absorption that remains broad at late times (due to a larger velocity at the base of the H-rich envelope). In agreement with the analyses of pre-explosion photometry, we conclude that low-luminosity SNe II-P likely arise from low-mass rather than high-mass RSG stars.

  11. UNBURNED MATERIAL IN THE EJECTA OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Folatelli, Gastón; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken'ichi; Phillips, M. M.; Morrell, Nidia; Campillay, Abdo; González, Sergio; Roth, Miguel; Stritzinger, Maximilian; Burns, Christopher R.; Freedman, W. L.; Madore, Barry F; Persson, S. E.; Hamuy, Mario; Mazzali, Paolo; Boldt, Luis; Contreras, Carlos; Salgado, Francisco; Suntzeff, Nicholas B.

    2012-01-01

    The presence of unburned material in the ejecta of normal Type Ia supernovae (SNe Ia) is investigated using early-time spectroscopy obtained by the Carnegie Supernova Project. The tell-tale signature of pristine material from a C+O white dwarf progenitor star is the presence of carbon, as oxygen is also a product of carbon burning. The most prominent carbon lines in optical spectra of SNe Ia are expected to arise from C II. We find that at least 30% of the objects in the sample show an absorption at ≈6300 Å which is attributed to C II λ6580. An alternative identification of this absorption as Hα is considered to be unlikely. These findings imply a larger incidence of carbon in SNe Ia ejecta than previously noted. We show how observational biases and physical conditions may hide the presence of weak C II lines, and account for the scarcity of previous carbon detections in the literature. This relatively large frequency of carbon detections has crucial implications on our understanding of the explosive process. Furthermore, the identification of the 6300 Å absorptions as carbon would imply that unburned material is present at very low expansion velocities, merely ≈1000 km s –1 above the bulk of Si II. Based on spectral modeling, it is found that the detections are consistent with a mass of carbon of 10 –3 to 10 –2 M ☉ . The presence of this material so deep in the ejecta would imply substantial mixing, which may be related to asymmetries of the flame propagation. Another possible explanation for the carbon absorptions may be the existence of clumps of unburned material along the line of sight. However, the uniformity of the relation between C II and Si II velocities is not consistent with such small-scale asymmetries. The spectroscopic and photometric properties of SNe Ia with and without carbon signatures are compared. A trend toward bluer color and lower luminosity at maximum light is found for objects which show carbon.

  12. UNBURNED MATERIAL IN THE EJECTA OF TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Folatelli, Gaston; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken' ichi [Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Phillips, M. M.; Morrell, Nidia; Campillay, Abdo; Gonzalez, Sergio; Roth, Miguel [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Stritzinger, Maximilian [The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, 10691 Stockholm (Sweden); Burns, Christopher R.; Freedman, W. L.; Madore, Barry F; Persson, S. E. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Hamuy, Mario [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Mazzali, Paolo [Max-Planck Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany); Boldt, Luis [Argelander Institut fuer Astronomie, Universitaet Bonn, Auf dem Huegel 71, D-53111 Bonn (Germany); Contreras, Carlos [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Victoria 3122 (Australia); Salgado, Francisco [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Suntzeff, Nicholas B., E-mail: gaston.folatelli@ipmu.jp [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States)

    2012-01-20

    The presence of unburned material in the ejecta of normal Type Ia supernovae (SNe Ia) is investigated using early-time spectroscopy obtained by the Carnegie Supernova Project. The tell-tale signature of pristine material from a C+O white dwarf progenitor star is the presence of carbon, as oxygen is also a product of carbon burning. The most prominent carbon lines in optical spectra of SNe Ia are expected to arise from C II. We find that at least 30% of the objects in the sample show an absorption at Almost-Equal-To 6300 A which is attributed to C II {lambda}6580. An alternative identification of this absorption as H{alpha} is considered to be unlikely. These findings imply a larger incidence of carbon in SNe Ia ejecta than previously noted. We show how observational biases and physical conditions may hide the presence of weak C II lines, and account for the scarcity of previous carbon detections in the literature. This relatively large frequency of carbon detections has crucial implications on our understanding of the explosive process. Furthermore, the identification of the 6300 A absorptions as carbon would imply that unburned material is present at very low expansion velocities, merely Almost-Equal-To 1000 km s{sup -1} above the bulk of Si II. Based on spectral modeling, it is found that the detections are consistent with a mass of carbon of 10{sup -3} to 10{sup -2} M{sub Sun }. The presence of this material so deep in the ejecta would imply substantial mixing, which may be related to asymmetries of the flame propagation. Another possible explanation for the carbon absorptions may be the existence of clumps of unburned material along the line of sight. However, the uniformity of the relation between C II and Si II velocities is not consistent with such small-scale asymmetries. The spectroscopic and photometric properties of SNe Ia with and without carbon signatures are compared. A trend toward bluer color and lower luminosity at maximum light is found for

  13. Understanding type Ia supernovae through their U-band spectra

    Science.gov (United States)

    Nordin, J.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Barbary, K.; Bongard, S.; Boone, K.; Brinnel, V.; Buton, C.; Childress, M.; Chotard, N.; Copin, Y.; Dixon, S.; Fagrelius, P.; Feindt, U.; Fouchez, D.; Gangler, E.; Hayden, B.; Hillebrandt, W.; Kim, A.; Kowalski, M.; Kuesters, D.; Leget, P.-F.; Lombardo, S.; Lin, Q.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Rubin, D.; Saunders, C.; Smadja, G.; Sofiatti, C.; Suzuki, N.; Taubenberger, S.; Tao, C.; Thomas, R. C.; Nearby Supernova Factory

    2018-06-01

    Context. Observations of type Ia supernovae (SNe Ia) can be used to derive accurate cosmological distances through empirical standardization techniques. Despite this success neither the progenitors of SNe Ia nor the explosion process are fully understood. The U-band region has been less well observed for nearby SNe, due to technical challenges, but is the most readily accessible band for high-redshift SNe. Aims: Using spectrophotometry from the Nearby Supernova Factory, we study the origin and extent of U-band spectroscopic variations in SNe Ia and explore consequences for their standardization and the potential for providing new insights into the explosion process. Methods: We divide the U-band spectrum into four wavelength regions λ(uNi), λ(uTi), λ(uSi) and λ(uCa). Two of these span the Ca H&K λλ 3934, 3969 complex. We employ spectral synthesis using SYNAPPS to associate the two bluer regions with Ni/Co and Ti. Results: The flux of the uTi feature is an extremely sensitive temperature/luminosity indicator, standardizing the SN peak luminosity to 0.116 ± 0.011 mag root mean square (RMS). A traditional SALT2.4 fit on the same sample yields a 0.135 mag RMS. Standardization using uTi also reduces the difference in corrected magnitude between SNe originating from different host galaxy environments. Early U-band spectra can be used to probe the Ni+Co distribution in the ejecta, thus offering a rare window into the source of light curve power. The uCa flux further improves standardization, yielding a 0.086 ± 0.010 mag RMS without the need to include an additional intrinsic dispersion to reach χ2/dof 1. This reduction in RMS is partially driven by an improved standardization of Shallow Silicon and 91T-like SNe. All tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A71. Individual SN spectra shown are available at http://snfactory.lbl.gov/snf/data

  14. Galaxy clusters, type Ia supernovae and the fine structure constant

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, R.F.L. [Departamento de Física, Universidade Estadual da Paraíba, street Baraúnas, Campina Grande, PB, 58429-500 (Brazil); Busti, V.C. [Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP, CEP 05508-090 Brazil (Brazil); Colaço, L.R. [Departamento de Física, Universidade Federal de Campina Grande, street Aprígio Veloso, Campina Grande, PB, 58429-900 (Brazil); Alcaniz, J.S. [Observatório Nacional, Street José Cristino, Rio de Janeiro, RJ, 20921-400 (Brazil); Landau, S.J., E-mail: holanda@uepb.edu.br, E-mail: viniciusbusti@gmail.com, E-mail: colacolrc@gmail.com, E-mail: alcaniz@on.br, E-mail: slandau@df.uba.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Viamonte, Buenos Aires, 1053 Argentina (Argentina)

    2016-08-01

    As is well known, measurements of the Sunyaev-Zeldovich effect can be combined with observations of the X-ray surface brightness of galaxy clusters to estimate the angular diameter distance to these structures. In this paper, we show that this technique depends on the fine structure constant, α. Therefore, if α is a time-dependent quantity, e.g., α = α{sub 0}φ( z ), where φ is a function of redshift, we argue that current data do not provide the real angular diameter distance, D {sub A}( z ), to the cluster, but instead D {sub A}{sup data}( z ) = φ( z ){sup 2} D {sub A}( z ). We use this result to derive constraints on a possible variation of α for a class of dilaton runaway models considering a sample of 25 measurements of D {sub A}{sup data}( z ) in redshift range 0.023 < z < 0.784 and estimates of D {sub A}( z ) from current type Ia supernovae observations. We find no significant indication of variation of α with the present data.

  15. GAMMA RAYS FROM TYPE Ia SUPERNOVA SN 2014J

    International Nuclear Information System (INIS)

    Churazov, E.; Sunyaev, R.; Grebenev, S.; Isern, J.; Bikmaev, I.; Bravo, E.; Chugai, N.; Jean, P.; Knödlseder, J.; Lebrun, F.; Kuulkers, E.

    2015-01-01

    The whole set of INTEGRAL observations of Type Ia supernova SN 2014J, covering the period 19–162 days after the explosion, has been analyzed. For spectral fitting the data are split into early and late periods covering days 19–35 and 50–162, respectively, optimized for 56 Ni and 56 Co lines. As expected for the early period, much of the gamma-ray signal is confined to energies below ∼200 keV, while for the late period it is strongest above 400 keV. In particular, in the late period, 56 Co lines at 847 and 1248 keV are detected at 4.7σ and 4.3σ, respectively. The light curves in several representative energy bands are calculated for the entire period. The resulting spectra and light curves are compared with a subset of models. We confirm our previous finding that the gamma-ray data are broadly consistent with the expectations for canonical one-dimensional models, such as delayed detonation or deflagration models for a near-Chandrasekhar mass white dwarf. Late optical spectra (day 136 after the explosion) show rather symmetric Co and Fe line profiles, suggesting that, unless the viewing angle is special, the distribution of radioactive elements is symmetric in the ejecta

  16. Type Iax Supernovae: A New Class of Stellar Explosion

    DEFF Research Database (Denmark)

    Foley, Ryan J.; Challis, P. J.; Chornock, R.

    2013-01-01

    We describe observed properties of the Type Iax class of supernovae (SNe Iax), consisting of SNe observationally similar to its prototypical member, SN 2002cx. The class currently has 25 members, and we present optical photometry and/or optical spectroscopy for most of them. SNe Iax...... are spectroscopically similar to SNe Ia, but have lower maximum-light velocities (2000 lower peak magnitudes (-14.2 > M_V,peak > -18.9 mag), and most have hot photospheres. Relative to SNe Ia, SNe Iax have low luminosities for their light-curve shape. There is a correlation between......^+17_-13 SNe Iax for every 100 SNe Ia, and for every 1 M_sun of iron generated by SNe Ia at z = 0, SNe Iax generate 0.052^+0.017_-0.014 M_sun. Being the largest class of peculiar SNe, thousands of SNe Iax will be discovered by LSST. Future detailed observations of SNe Iax should further our understanding...

  17. NEUTRONIZATION DURING CARBON SIMMERING IN TYPE IA SUPERNOVA PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Rodríguez, Héctor; Badenes, Carles [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Piro, Anthony L. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Schwab, Josiah, E-mail: hector.mr@pitt.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2016-07-01

    When a Type Ia supernova (SN Ia) progenitor first ignites carbon in its core, it undergoes ∼10{sup 3}–10{sup 4} years of convective burning prior to the onset of thermonuclear runaway. This carbon simmering phase is important for setting the thermal profile and composition of the white dwarf. Using the MESA stellar evolution code, we follow this convective burning and examine the production of neutron-rich isotopes. The neutron content of the SN fuel has important consequences for the ensuing nucleosynthesis, and in particular, for the production of secondary Fe-peak nuclei like Mn and stable Ni. These elements have been observed in the X-ray spectra of SN remnants like Tycho, Kepler, and 3C 397, and their yields can provide valuable insights into the physics of SNe Ia and the properties of their progenitors. We find that weak reactions during simmering can at most generate a neutron excess of ≈ 3 × 10{sup −4}. This is ≈ 70% lower than that found in previous studies that do not take the full density and temperature profile of the simmering region into account. Our results imply that the progenitor metallicity is the main contributor to the neutron excess in SN Ia fuel for Z ≳ 1/3 Z {sub ⊙}. Alternatively, at lower metallicities, this neutron excess provides a floor that should be present in any centrally-ignited SN Ia scenario.

  18. Mass-accreting white dwarfs and type Ia supernovae

    Science.gov (United States)

    Wang, Bo

    2018-05-01

    Type Ia supernovae (SNe Ia) play a prominent role in understanding the evolution of the Universe. They are thought to be thermonuclear explosions of mass-accreting carbon-oxygen white dwarfs (CO WDs) in binaries, although the mass donors of the accreting WDs are still not well determined. In this article, I review recent studies on mass-accreting WDs, including H- and He-accreting WDs. I also review currently most studied progenitor models of SNe Ia, i.e., the single-degenerate model (including the WD+MS channel, the WD+RG channel and the WD+He star channel), the double-degenerate model (including the violent merger scenario) and the sub-Chandrasekhar mass model. Recent progress on these progenitor models is discussed, including the initial parameter space for producing SNe Ia, the binary evolutionary paths to SNe Ia, the progenitor candidates for SNe Ia, the possible surviving companion stars of SNe Ia, some observational constraints, etc. Some other potential progenitor models of SNe Ia are also summarized, including the hybrid CONe WD model, the core-degenerate model, the double WD collision model, the spin-up/spin-down model and the model of WDs near black holes. To date, it seems that two or more progenitor models are needed to explain the observed diversity among SNe Ia.

  19. THE ULTRAVIOLET BRIGHTEST TYPE Ia SUPERNOVA 2011de

    International Nuclear Information System (INIS)

    Brown, Peter J.

    2014-01-01

    We present and discuss the ultraviolet (UV)/optical photometric light curves and absolute magnitudes of the Type Ia supernova (SN Ia) 2011de from the Swift Ultraviolet/Optical Telescope. We find it to be the UV brightest SN Ia yet observed—more than a factor of 10 brighter than normal SNe Ia in the mid-ultraviolet. We find that the UV/optical brightness and broad light curve evolution can be modeled with additional flux from the shock of the ejecta hitting a relatively large red giant companion separated by 6 × 10 13 cm. However, the post-maximum behavior of other UV-bright SNe Ia can also be modeled in a similar manner, including objects with UV spectroscopy or pre-maximum photometry which is inconsistent with this model. This suggests that similar UV luminosities can be intrinsic or caused by other forms of shock interaction. The high velocities reported for SN 2011de make it distinct from the UV-bright ''super-Chandrasekhar'' SNe Ia and the NUV-blue group of normal SNe Ia. SN 2011de is an extreme example of the UV variations in SNe Ia

  20. LINKING TYPE Ia SUPERNOVA PROGENITORS AND THEIR RESULTING EXPLOSIONS

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Kirshner, Robert P.; Simon, Joshua D.; Burns, Christopher R.; Gal-Yam, Avishay; Hamuy, Mario; Morrell, Nidia I.; Phillips, Mark M.; Shields, Gregory A.; Sternberg, Assaf

    2012-01-01

    Comparing the ejecta velocities at maximum brightness and narrow circumstellar/interstellar Na D absorption line profiles of a sample of 23 Type Ia supernovae (SNe Ia), we determine that the properties of SN Ia progenitor systems and explosions are intimately connected. As demonstrated by Sternberg et al., half of all SNe Ia with detectable Na D absorption at the host-galaxy redshift in high-resolution spectroscopy have Na D line profiles with significant blueshifted absorption relative to the strongest absorption component, which indicates that a large fraction of SN Ia progenitor systems have strong outflows. In this study, we find that SNe Ia with blueshifted circumstellar/interstellar absorption systematically have higher ejecta velocities and redder colors at maximum brightness relative to the rest of the SN Ia population. This result is robust at a 98.9%-99.8% confidence level, providing the first link between the progenitor systems and properties of the explosion. This finding is further evidence that the outflow scenario is the correct interpretation of the blueshifted Na D absorption, adding additional confirmation that some SNe Ia are produced from a single-degenerate progenitor channel. An additional implication is that either SN Ia progenitor systems have highly asymmetric outflows that are also aligned with the SN explosion or SNe Ia come from a variety of progenitor systems where SNe Ia from systems with strong outflows tend to have more kinetic energy per unit mass than those from systems with weak or no outflows.

  1. Early light curves for Type Ia supernova explosion models

    Science.gov (United States)

    Noebauer, U. M.; Kromer, M.; Taubenberger, S.; Baklanov, P.; Blinnikov, S.; Sorokina, E.; Hillebrandt, W.

    2017-12-01

    Upcoming high-cadence transient survey programmes will produce a wealth of observational data for Type Ia supernovae. These data sets will contain numerous events detected very early in their evolution, shortly after explosion. Here, we present synthetic light curves, calculated with the radiation hydrodynamical approach STELLA for a number of different explosion models, specifically focusing on these first few days after explosion. We show that overall the early light curve evolution is similar for most of the investigated models. Characteristic imprints are induced by radioactive material located close to the surface. However, these are very similar to the signatures expected from ejecta-CSM or ejecta-companion interaction. Apart from the pure deflagration explosion models, none of our synthetic light curves exhibit the commonly assumed power-law rise. We demonstrate that this can lead to substantial errors in the determination of the time of explosion. In summary, we illustrate with our calculations that even with very early data an identification of specific explosion scenarios is challenging, if only photometric observations are available.

  2. VLBI OBSERVATIONS OF THE NEARBY TYPE IIb SUPERNOVA 2011dh

    International Nuclear Information System (INIS)

    Bietenholz, M. F.; Brunthaler, A.; Soderberg, A. M.; Zauderer, B.; Krauss, M.; Chomiuk, L.; Rupen, M. P.; Bartel, N.

    2012-01-01

    We report on phase-referenced very long baseline interferometry radio observations of the Type IIb supernova 2011dh, at times t = 83 days and 179 days after the explosion and at frequencies, respectively, of 22.2 and 8.4 GHz. We detected SN 2011dh at both epochs. At the first epoch only an upper limit on SN 2011dh's angular size was obtained, but at the second epoch, we determine the angular radius of SN 2011dh's radio emission to be 0.25 ± 0.08 mas by fitting a spherical shell model directly to the visibility measurements. At a distance of 8.4 Mpc, this angular radius corresponds to a time-averaged (since t = 0) expansion velocity of the forward shock of 21, 000 ± 7000 km s –1 . Our measured values of the radius of the emission region are in excellent agreement with those derived from fitting synchrotron self-absorbed models to the radio spectral energy distribution, providing strong confirmation for the latter method of estimating the radius. We find that SN 2011dh's radius evolves in a power-law fashion, with R∝t 0.92±0.10 .

  3. NEUTRONIZATION DURING CARBON SIMMERING IN TYPE IA SUPERNOVA PROGENITORS

    International Nuclear Information System (INIS)

    Martínez-Rodríguez, Héctor; Badenes, Carles; Piro, Anthony L.; Schwab, Josiah

    2016-01-01

    When a Type Ia supernova (SN Ia) progenitor first ignites carbon in its core, it undergoes ∼10 3 –10 4 years of convective burning prior to the onset of thermonuclear runaway. This carbon simmering phase is important for setting the thermal profile and composition of the white dwarf. Using the MESA stellar evolution code, we follow this convective burning and examine the production of neutron-rich isotopes. The neutron content of the SN fuel has important consequences for the ensuing nucleosynthesis, and in particular, for the production of secondary Fe-peak nuclei like Mn and stable Ni. These elements have been observed in the X-ray spectra of SN remnants like Tycho, Kepler, and 3C 397, and their yields can provide valuable insights into the physics of SNe Ia and the properties of their progenitors. We find that weak reactions during simmering can at most generate a neutron excess of ≈ 3 × 10 −4 . This is ≈ 70% lower than that found in previous studies that do not take the full density and temperature profile of the simmering region into account. Our results imply that the progenitor metallicity is the main contributor to the neutron excess in SN Ia fuel for Z ≳ 1/3 Z ⊙ . Alternatively, at lower metallicities, this neutron excess provides a floor that should be present in any centrally-ignited SN Ia scenario.

  4. IMPROVED DISTANCES TO TYPE Ia SUPERNOVAE WITH TWO SPECTROSCOPIC SUBCLASSES

    International Nuclear Information System (INIS)

    Wang, X.; Filippenko, A. V.; Ganeshalingam, M.; Li, W.; Silverman, J. M.; Chornock, R.; Foley, R. J.; Macomber, B.; Serduke, F. J. D.; Steele, T. N.; Wong, D. S.; Wang, L.; Gates, E. L.

    2009-01-01

    We study the observables of 158 relatively normal Type Ia supernovae (SNe Ia) by dividing them into two groups in terms of the expansion velocity inferred from the absorption minimum of the Si II λ6355 line in their spectra near B-band maximum brightness. One group ('Normal') consists of normal SNe Ia populating a narrow strip in the Si II velocity distribution, with an average expansion velocity (v) = 10, 600 ± 400 km s -1 near B maximum; the other group ('HV') consists of objects with higher velocities, v ∼> 11, 800 km s -1 . Compared with the Normal group, the HV one shows a narrower distribution in both the peak luminosity and the luminosity decline rate Δm 15 . In particular, their B-V colors at maximum brightness are found to be on average redder by ∼ 0.1 mag, suggesting that they either are associated with dusty environments or have intrinsically red B-V colors. The HV SNe Ia are also found to prefer a lower extinction ratio R V ∼ 1.6 (versus ∼ 2.4 for the Normal ones). Applying such an absorption-correction dichotomy to SNe Ia of these two groups remarkably reduces the dispersion in their peak luminosity from 0.178 mag to only 0.125 mag.

  5. Spectroscopic Determination of the Low Redshift Type Ia Supernova Rate from the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    Krughoff, K.Simon; Connolly, Andrew J.; Frieman, Joshua; SubbaRao, Mark; Kilper, Gary; Schneider, Donald P.

    2011-04-10

    Supernova rates are directly coupled to high mass stellar birth and evolution. As such, they are one of the few direct measures of the history of cosmic stellar evolution. In this paper we describe an probabilistic technique for identifying supernovae within spectroscopic samples of galaxies. We present a study of 52 type Ia supernovae ranging in age from -14 days to +40 days extracted from a parent sample of \\simeq 50,000 spectra from the SDSS DR5. We find a Supernova Rate (SNR) of 0.472^{+0.048}_{-0.039}(Systematic)^{+0.081}_{-0.071}(Statistical)SNu at a redshift of = 0.1. This value is higher than other values at low redshift at the 1{\\sigma}, but is consistent at the 3{\\sigma} level. The 52 supernova candidates used in this study comprise the third largest sample of supernovae used in a type Ia rate determination to date. In this paper we demonstrate the potential for the described approach for detecting supernovae in future spectroscopic surveys.

  6. Two populations of progenitors for Type Ia supernovae?

    Science.gov (United States)

    Mannucci, F.; Della Valle, M.; Panagia, N.

    2006-08-01

    We use recent observations of the evolution of the Type Ia supernova (SN Ia) rate with redshift, the dependence of the SN Ia rate on the colours of the parent galaxies, and the enhancement of the SN Ia rate in radio-loud early-type galaxies to derive on robust empirical grounds, the delay time distribution (DTD) between the formation of the progenitor star and its explosion as an SN. Our analysis finds: (i) delay times as long as 3-4 Gyr, derived from observations of SNe Ia at high redshift, cannot reproduce the dependence of the SN Ia rate on the colours and on the radio-luminosity of the parent galaxies, as observed in the local Universe; (ii) the comparison between observed SN rates and a grid of theoretical `single-population' DTDs shows that only a few of them are possibly consistent with observations. The most successful models are all predicting a peak of SN explosions soon after star formation and an extended tail in the DTD, and can reproduce the data but only at a modest statistical confidence level; (iii) present data are best matched by a bimodal DTD, in which about 50 per cent of SNe Ia (dubbed `prompt' SNe Ia) explode soon after their stellar birth, in a time of the order of 108 yr, while the remaining 50 per cent (`tardy' SNe Ia) have a much wider distribution, well described by an exponential function with a decay time of about 3 Gyr. The presence in the DTD of both a strong peak at early times and a prolonged exponential tail, coupled with the well-established bimodal distribution of the decay rate (Δm15) and the systematic difference observed in the expansion velocities of the ejecta of SNe Ia in ellipticals and spirals, suggests the existence of two classes of progenitors. We discuss the cosmological implications of this result and make simple predictions, which are testable with future instrumentation.

  7. Observation and interpretation of type IIb supernova explosions

    Science.gov (United States)

    Morales-Garoffolo, Antonia

    2016-03-01

    Core-collapse supernovae (CC-SNe) explosions represent the final demise of massive stars. Among the various types, there is a group of relatively infrequent CC-SNe termed type IIb, which appear to be hybrids between normal type II SNe (those characterised by H emission) and type Ib (those that lack H features in their spectra but exhibit prominent HeI lines). The nature of the stellar progenitors leading to type IIb SNe is currently unknown, although two channels are contemplated: single massive stars that have lost part of their outer envelope as a consequence of stellar winds, and massive stars that shed mass by Roche-Lobe overflow to a companion. The latter is in fact the favoured scenario for most of the objects observed up to now. In the majority of cases, when there are no direct progenitor detections, some hints about type IIb SN progenitors (e.g., initial mass) can be derived indirectly from the objects' light curves (LCs) and spectra. Motivated by the relatively few well-sampled observational datasets that exist up to date for type IIb SNe and the unknowns on their progenitors, we carried out extensive observations (mainly in the optical domain) for the young type IIb SNe 2011fu and 2013df. Both these SNe are particularly interesting because they show a first LC peak caused by shock breakout, followed by a secondary 56Ni-decay-powered maximum. The analysis of the data for SNe 2011fu and 2013df points to precursors that seem to have been stars with large radii (of the order of 100 RSun), with low mass hydrogen envelopes (tenths of MSun), and relatively low initial masses (12-18 MSun), which could have formed part of interacting binary systems. The nature of a third SN IIb candidate, OGLE-2013-SN-100, proved to be enigmatic. OGLE-2013-SN-100, shows a first peak in the LC, and other characteristics somewhat similar to those of type IIb SNe. However, after a deeper analysis, we conclude OGLE-2013-SN-100 is likely not a SN of type IIb. We provide an alternative

  8. THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET

    International Nuclear Information System (INIS)

    Brown, Peter J.; Roming, Peter W. A.; Ciardullo, Robin; Gronwall, Caryl; Hoversten, Erik A.; Pritchard, Tyler; Milne, Peter; Bufano, Filomena; Mazzali, Paolo; Elias-Rosa, Nancy; Filippenko, Alexei V.; Li Weidong; Foley, Ryan J.; Hicken, Malcolm; Kirshner, Robert P.; Gehrels, Neil; Holland, Stephen T.; Immler, Stefan; Phillips, Mark M.; Still, Martin

    2010-01-01

    We examine the absolute magnitudes and light-curve shapes of 14 nearby (redshift z = 0.004-0.027) Type Ia supernovae (SNe Ia) observed in the ultraviolet (UV) with the Swift Ultraviolet/Optical Telescope. Colors and absolute magnitudes are calculated using both a standard Milky Way extinction law and one for the Large Magellanic Cloud that has been modified by circumstellar scattering. We find very different behavior in the near-UV filters (uvw1 rc covering ∼2600-3300 A after removing optical light, and u ∼ 3000-4000 A) compared to a mid-UV filter (uvm2 ∼2000-2400 A). The uvw1 rc - b colors show a scatter of ∼0.3 mag while uvm2-b scatters by nearly 0.9 mag. Similarly, while the scatter in colors between neighboring filters is small in the optical and somewhat larger in the near-UV, the large scatter in the uvm2 - uvw1 colors implies significantly larger spectral variability below 2600 A. We find that in the near-UV the absolute magnitudes at peak brightness of normal SNe Ia in our sample are correlated with the optical decay rate with a scatter of 0.4 mag, comparable to that found for the optical in our sample. However, in the mid-UV the scatter is larger, ∼1 mag, possibly indicating differences in metallicity. We find no strong correlation between either the UV light-curve shapes or the UV colors and the UV absolute magnitudes. With larger samples, the UV luminosity might be useful as an additional constraint to help determine distance, extinction, and metallicity in order to improve the utility of SNe Ia as standardized candles.

  9. SINGLE-DEGENERATE TYPE Ia SUPERNOVAE ARE PREFERENTIALLY OVERLUMINOUS

    International Nuclear Information System (INIS)

    Fisher, Robert; Jumper, Kevin

    2015-01-01

    Recent observational and theoretical progress has favored merging and helium-accreting sub-Chandrasekhar mass white dwarfs (WDs) in the double-degenerate and the double-detonation channels, respectively, as the most promising progenitors of normal Type Ia supernovae (SNe Ia). Thus the fate of rapidly accreting Chandrasekhar mass WDs in the single-degenerate channel remains more mysterious then ever. In this paper, we clarify the nature of ignition in Chandrasekhar-mass single-degenerate SNe Ia by analytically deriving the existence of a characteristic length scale which establishes a transition from central ignitions to buoyancy-driven ignitions. Using this criterion, combined with data from three-dimensional simulations of convection and ignition, we demonstrate that the overwhelming majority of ignition events within Chandrasekhar-mass WDs in the single-degenerate channel are buoyancy-driven, and consequently lack a vigorous deflagration phase. We thus infer that single-degenerate SNe Ia are generally expected to lead to overluminous 1991T-like SNe Ia events. We establish that the rates predicted from both the population of supersoft X-ray sources (SSSs) and binary population synthesis models of the single-degenerate channel are broadly consistent with the observed rates of overluminous SNe Ia, and suggest that the population of SSSs are the dominant stellar progenitors of SNe 1991T-like events. We further demonstrate that the single-degenerate channel contribution to the normal and failed 2002cx-like rates is not likely to exceed 1% of the total SNe Ia rate. We conclude with a range of observational tests of overluminous SNe Ia which will either support or strongly constrain the single-degenerate scenario

  10. MEASURING EJECTA VELOCITY IMPROVES TYPE Ia SUPERNOVA DISTANCES

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Kasen, Daniel

    2011-01-01

    We use a sample of 121 spectroscopically normal Type Ia supernovae (SNe Ia) to show that their intrinsic color is correlated with their ejecta velocity, as measured from the blueshift of the Si II λ6355 feature near maximum brightness, v SiII . The SN Ia sample was originally used by Wang et al. to show that the relationship between color excess and peak magnitude, which in the absence of intrinsic color differences describes a reddening law, was different for two subsamples split by v SiII (defined as 'Normal' and 'High Velocity'). We verify this result, but find that the two subsamples have the same reddening law when extremely reddened events (E(B - V)>0.35 mag) are excluded. We also show that (1) the High-Velocity subsample is offset by ∼0.06 mag to the red from the Normal subsample in the (B max - V max )-M V plane, (2) the B max - V max cumulative distribution functions of the two subsamples have nearly identical shapes, but the High-Velocity subsample is offset by ∼0.07 mag to the red in B max - V max , and (3) the bluest High-Velocity SNe Ia are ∼0.10 mag redder than the bluest Normal SNe Ia. Together, this evidence indicates a difference in intrinsic color for the subsamples. Accounting for this intrinsic color difference reduces the scatter in Hubble residuals from 0.190 mag to 0.130 mag for SNe Ia with A V ∼ V found in large SN Ia samples. We explain the correlation between ejecta velocity and color as increased line blanketing in the High-Velocity SNe Ia, causing them to become redder. We discuss some implications of this result, and stress the importance of spectroscopy for future SN Ia cosmology surveys, with particular focus on the design of WFIRST.

  11. THE SUBLUMINOUS AND PECULIAR TYPE Ia SUPERNOVA PTF 09dav

    International Nuclear Information System (INIS)

    Sullivan, M.; Ofek, E. O.; Blake, S.; Podsiadlowski, P.; Kasliwal, M. M.; Cooke, J.; Quimby, R.; Kulkarni, S. R.; Nugent, P. E.; Thomas, R. C.; Poznanski, D.; Howell, D. A.; Arcavi, I.; Gal-Yam, A.; Hook, I. M.; Mazzali, P.; Bildsten, L.; Bloom, J. S.; Cenko, S. B.; Law, N.

    2011-01-01

    PTF 09dav is a peculiar subluminous Type Ia supernova (SN) discovered by the Palomar Transient Factory (PTF). Spectroscopically, it appears superficially similar to the class of subluminous SN1991bg-like SNe, but it has several unusual features which make it stand out from this population. Its peak luminosity is fainter than any previously discovered SN1991bg-like SN Ia (M B ∼ -15.5), but without the unusually red optical colors expected if the faint luminosity were due to extinction. The photospheric optical spectra have very unusual strong lines of Sc II and Mg I, with possible Sr II, together with stronger than average Ti II and low velocities of ∼6000 km s -1 . The host galaxy of PTF09dav is ambiguous. The SN lies either on the extreme outskirts (∼41 kpc) of a spiral galaxy or in an very faint (M R ≥ -12.8) dwarf galaxy, unlike other 1991bg-like SNe which are invariably associated with massive, old stellar populations. PTF 09dav is also an outlier on the light-curve-width-luminosity and color-luminosity relations derived for other subluminous SNe Ia. The inferred 56 Ni mass is small (0.019 ± 0.003 M sun ), as is the estimated ejecta mass of 0.36 M sun . Taken together, these properties make PTF 09dav a remarkable event. We discuss various physical models that could explain PTF 09dav. Helium shell detonation or deflagration on the surface of a CO white dwarf can explain some of the features of PTF 09dav, including the presence of Sc and the low photospheric velocities, but the observed Si and Mg are not predicted to be very abundant in these models. We conclude that no single model is currently capable of explaining all of the observed signatures of PTF 09dav.

  12. A Hubble Diagram of Distant Type IA Supernovae

    Science.gov (United States)

    Hamuy, M.; Phillips, M. M.; Suntzeff, N. B.; Aviles, R.; Maza, J.

    1993-12-01

    Due to their extreme luminosities at maximum light, type Ia supernovae (SNe Ia) have long been considered among the most attractive cosmological standard candles. Although nearly all work to date has been devoted to attempts to use these objects to determine the local rate of expansion of the universe (Ho), SNe Ia also provide one of the few direct techniques for measuring the deceleration parameter qo. However, in a recent study of nine well-observed events based largely on data obtained at CTIO, Phillips (1993, ApJ, 413, L105) found clear evidence for a significant intrinsic dispersion in SNe Ia absolute magnitudes amounting to ~ 0.8 mag in B, ~ 0.7 mag in V, and ~ 0.5 mag in I. Such a range in peak luminosity could introduce a subtantial Malmquist bias into searches for distant (z rate of the B light curve. Interestingly, the most luminous SNe in our sample all occurred in spiral galaxies, which is true for Phillips' sample of nearby SNe Ia as well. This is opposite to what one would expect if dust extinction were important. These findings are consistent with recent speculations that the progenitors of SNe Ia are white dwarfs covering a range of masses, and also suggest that the brightest events may be found in galaxies which are still actively forming stars. The implications for the use of SNe Ia to measure qo are briefly discussed. This research has been supported by Grant 92/0312 from Fondo Nacional de Ciencias y Tecnología (FONDECYT-Chile).

  13. Type II Supernova Spectral Diversity. II. Spectroscopic and Photometric Correlations

    Science.gov (United States)

    Gutiérrez, Claudia P.; Anderson, Joseph P.; Hamuy, Mario; González-Gaitan, Santiago; Galbany, Lluis; Dessart, Luc; Stritzinger, Maximilian D.; Phillips, Mark M.; Morrell, Nidia; Folatelli, Gastón

    2017-11-01

    We present an analysis of observed trends and correlations between a large range of spectral and photometric parameters of more than 100 type II supernovae (SNe II), during the photospheric phase. We define a common epoch for all SNe of 50 days post-explosion, where the majority of the sample is likely to be under similar physical conditions. Several correlation matrices are produced to search for interesting trends between more than 30 distinct light-curve and spectral properties that characterize the diversity of SNe II. Overall, SNe with higher expansion velocities are brighter, have more rapidly declining light curves, shorter plateau durations, and higher 56Ni masses. Using a larger sample than previous studies, we argue that “Pd”—the plateau duration from the transition of the initial to “plateau” decline rates to the end of the “plateau”—is a better indicator of the hydrogen envelope mass than the traditionally used optically thick phase duration (OPTd: explosion epoch to end of plateau). This argument is supported by the fact that Pd also correlates with s 3, the light-curve decline rate at late times: lower Pd values correlate with larger s 3 decline rates. Large s 3 decline rates are likely related to lower envelope masses, which enables gamma-ray escape. We also find a significant anticorrelation between Pd and s 2 (the plateau decline rate), confirming the long standing hypothesis that faster declining SNe II (SNe IIL) are the result of explosions with lower hydrogen envelope masses and therefore have shorter Pd values. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS- 2008B-Q-56). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programs 076.A-0156, 078.D-0048, 080.A-0516, and 082.A-0526).

  14. Super-luminous Type II supernovae powered by magnetars

    Science.gov (United States)

    Dessart, Luc; Audit, Edouard

    2018-05-01

    Magnetar power is believed to be at the origin of numerous super-luminous supernovae (SNe) of Type Ic, arising from compact, hydrogen-deficient, Wolf-Rayet type stars. Here, we investigate the properties that magnetar power would have on standard-energy SNe associated with 15-20 M⊙ supergiant stars, either red (RSG; extended) or blue (BSG; more compact). We have used a combination of Eulerian gray radiation-hydrodynamics and non-LTE steady-state radiative transfer to study their dynamical, photometric, and spectroscopic properties. Adopting magnetar fields of 1, 3.5, 7 × 1014 G and rotational energies of 0.4, 1, and 3 × 1051 erg, we produce bolometric light curves with a broad maximum covering 50-150 d and a magnitude of 1043-1044 erg s-1. The spectra at maximum light are analogous to those of standard SNe II-P but bluer. Although the magnetar energy is channelled in equal proportion between SN kinetic energy and SN luminosity, the latter may be boosted by a factor of 10-100 compared to a standard SN II. This influence breaks the observed relation between brightness and ejecta expansion rate of standard Type II SNe. Magnetar energy injection also delays recombination and may even cause re-ionization, with a reversal in photospheric temperature and velocity. Depositing the magnetar energy in a narrow mass shell at the ejecta base leads to the formation of a dense shell at a few 1000 km s-1, which causes a light-curve bump at the end of the photospheric phase. Depositing this energy over a broad range of mass in the inner ejecta, to mimic the effect of multi-dimensional fluid instabilities, prevents the formation of a dense shell and produces an earlier-rising and smoother light curve. The magnetar influence on the SN radiation is generally not visible prior to 20-30 d, during which one may discern a BSG from a RSG progenitor. We propose a magnetar model for the super-luminous Type II SN OGLE-SN14-073.

  15. Spectroscopic classification of AT 2017cfd as a young Type Ia supernova

    Science.gov (United States)

    Vinko, J.; Wheeler, J. C.

    2017-03-01

    We report the spectroscopic observation of AT 2017cfd, a transient discovered by the Lick Observatory Supernova Search (LOSS) on 2017-03-16. A spectrum (range 3700-9300 Angstroms), taken with the new "Low Resolution Spectrograph-2" (LRS2) on the 10m Hobby-Eberly Telescope at McDonald Observatory by Steve Odewahn on 2017-03-18.16 UT, is similar to that of a Type Ia supernova before maximum light.

  16. Offline analysis in SNLS: measurement of type-Ia supernovae explosion rate and cosmological parameters

    International Nuclear Information System (INIS)

    Lusset, Vincent

    2006-01-01

    The Supernova Legacy Survey is a second generation experiment for the measurement of cosmological parameters using type-la supernovae. Il follows the discovery of the acceleration of the expansion of the Universe, attributed to an unknown 'dark energy'. This thesis presents a type-la supernovae search using an offline analysis of SNLS data. It makes it possible to detect the supernovae that were missed online and to study possible selection biases. One of its principal characteristics is that it uses entirely automatic selection criteria. This type of automated offline analysis had never been carried out before for data reaching this redshift. This analysis enabled us to discover 73 additional SNIa candidates compared to those identified in the real time analysis on the same data, representing an increase of more than 50% of the number of supernovae. The final Hubble diagram contains 262 SNIa which gives us, for a flat ACDM model, the following values for the cosmological parameters: Ω_M = 0,31 ± 0,028 (stat) ± 0,036 (syst) et Ω_A = 0,69. This offline analysis of SNLS data opens new horizons, both by checking for possible biases in current measurements of cosmological parameters by supernovae experiments and by preparing the third generation experiments, on the ground or in space, which will detect thousands of SNIa. (author) [fr

  17. TYPE Iax SUPERNOVAE: A NEW CLASS OF STELLAR EXPLOSION

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Challis, P. J.; Chornock, R.; Marion, G. H.; Kirshner, R. P.; Ganeshalingam, M.; Li, W.; Silverman, J. M.; Filippenko, A. V.; Morrell, N. I.; Phillips, M. M.; Pignata, G.; Stritzinger, M. D.; Wang, X.; Anderson, J. P.; Hamuy, M.; Freedman, W. L.; Persson, S. E.; Jha, S. W.; McCully, C.

    2013-01-01

    We describe observed properties of the Type Iax class of supernovae (SNe Iax), consisting of SNe observationally similar to its prototypical member, SN 2002cx. The class currently has 25 members, and we present optical photometry and/or optical spectroscopy for most of them. SNe Iax are spectroscopically similar to SNe Ia, but have lower maximum-light velocities (2000 ∼ –1 ), typically lower peak magnitudes (–14.2 ≥ M V, p eak ∼> –18.9 mag), and most have hot photospheres. Relative to SNe Ia, SNe Iax have low luminosities for their light-curve shape. There is a correlation between luminosity and light-curve shape, similar to that of SNe Ia, but offset from that of SNe Ia and with larger scatter. Despite a host-galaxy morphology distribution that is highly skewed to late-type galaxies without any SNe Iax discovered in elliptical galaxies, there are several indications that the progenitor stars are white dwarfs (WDs): evidence of C/O burning in their maximum-light spectra, low (typically ∼0.5 M ☉ ) ejecta masses, strong Fe lines in their late-time spectra, a lack of X-ray detections, and deep limits on massive stars and star formation at the SN sites. However, two SNe Iax show strong He lines in their spectra. The progenitor system and explosion model that best fits all of the data is a binary system of a C/O WD that accretes matter from a He star and has a deflagration. At least some of the time, this explosion will not disrupt the WD. The small number of SNe in this class prohibit a detailed analysis of the homogeneity and heterogeneity of the entire class. We estimate that in a given volume there are 31 +17 -13 SNe Iax for every 100 SNe Ia, and for every 1 M ☉ of iron generated by SNe Ia at z = 0, SNe Iax generate ∼0.036 M ☉ . Being the largest class of peculiar SNe, thousands of SNe Iax will be discovered by LSST. Future detailed observations of SNe Iax should further our understanding of both their progenitor systems and explosions as well

  18. Pulsating Instability of Turbulent Thermonuclear Flames in Type Ia Supernovae

    Science.gov (United States)

    Poludnenko, Alexei Y.

    2014-01-01

    Presently, one of the main explosion scenarios of type Ia supernovae (SNIa), aimed at explaining both "normal" and subluminous events, is the thermonuclear incineration of a white-dwarf in a single-degenerate system. The underlying engine of such explosions is the turbulent thermonuclear flame. Modern, large-scale, multidimensional simulations of SNIa cannot resolve the internal flame structure, and instead must include a subgrid-scale prescription for the turbulent-flame properties. As a result, development of robust, parameter-free, large-scale models of SNIa crucially relies on the detailed understanding of the turbulent flame properties during each stage of the flame evolution. Due to the complexity of the flame dynamics, such understanding must be validated by the first-principles direct numerical simulations (DNS). In our previous work, we showed that sufficiently fast turbulent flames are inherently susceptible to the development of detonations, which may provide the mechanism for the deflagration-to-detonation transition (DDT) in the delayed-detonation model of SNIa. Here we extend this study by performing detailed analysis of the turbulent flame properties at turbulent intensities below the critical threshold for DDT. We carried out a suite of 3D DNS of turbulent flames for a broad range of turbulent intensities and system sizes using a simplified, single-step, Arrhenius-type reaction kinetics. Our results show that at the later stages of the explosion, as the turbulence intensity increases prior to the possible onset of DDT, the flame front will become violently unstable. We find that the burning rate exhibits periodic pulsations with the energy release rate varying by almost an order of magnitude. Furthermore, such flame pulsations can produce pressure waves and shocks as the flame speed approaches the critical Chapman-Jouguet deflagration speed. Finally, in contrast with the current theoretical understanding, such fast turbulent flames can propagate at

  19. Probing Late-Stage Stellar Evolution through Robotic Follow-Up of Nearby Supernovae

    Science.gov (United States)

    Hosseinzadeh, Griffin

    2018-01-01

    Many of the remaining uncertainties in stellar evolution can be addressed through immediate and long-term photometry and spectroscopy of supernovae. The early light curves of thermonuclear supernovae can contain information about the nature of the binary companion to the exploding white dwarf. Spectra of core-collapse supernovae can reveal material lost by massive stars in their final months to years. Thanks to a revolution in technology—robotic telescopes, high-speed internet, machine learning—we can now routinely discover supernovae within days of explosion and obtain well-sampled follow-up data for months and years. Here I present three major results from the Global Supernova Project at Las Cumbres Observatory that take advantage of these technological advances. (1) SN 2017cbv is a Type Ia supernova discovered within a day of explosion. Early photometry shows a bump in the U-band relative to previously observed Type Ia light curves, possibly indicating the presence of a nondegenerate binary companion. (2) SN 2016bkv is a low-luminosity Type IIP supernova also caught very young. Narrow emission lines in the earliest spectra indicate interaction between the ejecta and a dense shell of circumstellar material, previously observed only in the brightest Type IIP supernovae. (3) Type Ibn supernovae are a rare class that interact with hydrogen-free circumstellar material. An analysis of the largest-yet sample of this class has found that their light curves are much more homogeneous and faster-evolving than their hydrogen-rich counterparts, Type IIn supernovae, but that their maximum-light spectra are more diverse.

  20. A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Langer, Norbert; Fossati, Luca; Bock, Douglas C.-J.; Castro, Norberto; Georgiev, Iskren Y.; Greiner, Jochen; Johnston, Simon; Rau, Arne; Tauris, Thomas M.

    2017-06-01

    When a massive star in a binary system explodes as a supernova, its companion star may be polluted with heavy elements from the supernova ejecta. Such pollution has been detected in a handful of post-supernova binaries 1 , but none of them is associated with a supernova remnant. We report the discovery of a binary G star strongly polluted with calcium and other elements at the position of the candidate neutron star [GV2003] N within the young galactic supernova remnant RCW 86. Our discovery suggests that the progenitor of the supernova that produced RCW 86 could have been a moving star, which exploded near the edge of its wind bubble and lost most of its initial mass because of common-envelope evolution shortly before core collapse, and that the supernova explosion might belong to the class of calcium-rich supernovae — faint and fast transients 2,3 , the origin of which is strongly debated 4-6 .

  1. Supernova 2010as: the lowest-velocity member of a family of flat-velocity type IIb supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Folatelli, Gastón; Bersten, Melina C.; Nomoto, Ken' ichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Kuncarayakti, Hanindyo; Hamuy, Mario [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Olivares Estay, Felipe; Pignata, Giuliano [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Anderson, Joseph P. [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Holmbo, Simon; Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Morrell, Nidia; Contreras, Carlos; Phillips, Mark M. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Förster, Francisco [Center for Mathematical Modelling, Universidad de Chile, Avenida Blanco Encalada 2120 Piso 7, Santiago (Chile); Prieto, José Luis [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Valenti, Stefano [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Afonso, Paulo; Altenmüller, Konrad; Elliott, Jonny, E-mail: gaston.folatelli@ipmu.jp [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße 1, D-85740 Garching (Germany); and others

    2014-09-01

    We present extensive optical and near-infrared photometric and spectroscopic observations of the stripped-envelope supernova SN 2010as. Spectroscopic peculiarities such as initially weak helium features and low expansion velocities with a nearly flat evolution place this object in the small family of events previously identified as transitional Type Ib/c supernovae (SNe). There is ubiquitous evidence of hydrogen, albeit weak, in this family of SNe, indicating that they are in fact a peculiar kind of Type IIb SNe that we name 'flat-velocity' Type IIb. The flat-velocity evolution—which occurs at different levels between 6000 and 8000 km s{sup –1} for different SNe—suggests the presence of a dense shell in the ejecta. Despite the spectroscopic similarities, these objects show surprisingly diverse luminosities. We discuss the possible physical or geometrical unification picture for such diversity. Using archival Hubble Space Telescope images, we associate SN 2010as with a massive cluster and derive a progenitor age of ≈6 Myr, assuming a single star-formation burst, which is compatible with a Wolf-Rayet progenitor. Our hydrodynamical modeling, on the contrary, indicates that the pre-explosion mass was relatively low, ≈4 M {sub ☉}. The seeming contradiction between a young age and low pre-SN mass may be solved by a massive interacting binary progenitor.

  2. An exploration of heterogeneity in supernova type Ia samples

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Ujjaini [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata (India); Lasue, Jeremie, E-mail: ujjaini.alam@gmail.com, E-mail: jeremie.lasue@irap.omp.eu [IRAP, Université de Toulouse, CNRS, UPS, CNES, Toulouse (France)

    2017-06-01

    We examine three SNe Type Ia datasets: Union2.1, JLA and Panstarrs to check their consistency using cosmology blind statistical analyses as well as cosmological parameter fitting. We find that the Panstarrs dataset is the most stable of the three to changes in the data, although it does not, at the moment, go to high enough redshifts to tightly constrain the equation of state of dark energy, w . The Union2.1, drawn from several different sources, appears to be somewhat susceptible to changes within the dataset. The JLA reconstructs well for a smaller number of cosmological parameters. At higher degrees of freedom, the dependence of its errors on redshift can lead to varying results between subsets. Panstarrs is inconsistent with the other two datasets at about 2σ confidence level, and JLA and Union2.1 are about 1σ away from each other. For the Ω{sub 0} {sub m} − w cosmological reconstruction, with no additional data, the 1σ range of values in w for selected subsets of each dataset is two times larger for JLA and Union2.1 as compared to Panstarrs. The range in Ω{sub 0} {sub m} for the same subsets remains approximately similar for all three datasets. We find that although there are differences in the fitting and correction techniques used in the different samples, the most important criterion is the selection of the SNe, a slightly different SNe selection can lead to noticeably different results both in the purely statistical analysis and in cosmological reconstruction. We note that a single, high quality low redshift sample could help decrease the uncertainties in the result. We also note that lack of homogeneity in the magnitude errors may bias the results and should either be modeled, or its effect neutralized by using other, complementary datasets. A supernova sample with high quality data at both high and low redshifts, constructed from a few surveys to avoid heterogeneity in the sample, and with homogeneous errors, would result in a more robust

  3. RATES AND DELAY TIMES OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Ruiter, Ashley J.; Belczynski, Krzysztof; Fryer, Chris

    2009-01-01

    We analyze the evolution of binary stars to calculate synthetic rates and delay times of the most promising Type Ia Supernovae (SNe Ia) progenitors. We present and discuss evolutionary scenarios in which a white dwarf (WD) reaches the Chandrasekhar mass and potentially explodes in a SNe Ia. We consider Double Degenerate (DDS; merger of two WDs), Single Degenerate (SDS; WD accreting from H-rich companion), and AM Canum Venaticorum (AM CVn; WD accreting from He-rich companion) scenarios. The results are presented for two different star formation histories: burst (elliptical-like galaxies) and continuous (spiral-like galaxies). It is found that delay times for the DDS in our standard model (with common envelope efficiency α CE = 1) follow a power-law distribution. For the SDS we note a wide range of delay times, while AM CVn progenitors produce a short burst of SNe Ia at early times. The DDS median delay time falls between ∼0.5 and 1 Gyr; the SDS between ∼2 and 3 Gyr; and the AM CVn between ∼0.8 and 0.6 Gyr depending on the assumed α CE . For a Milky-Way-like (MW-like) galaxy, we estimate the rates of SNe Ia arising from different progenitors as: ∼10 -4 yr -1 for the SDS and AM CVn, and ∼10 -3 yr -1 for the DDS. We point out that only the rates for two merging carbon-oxygen WDs, the only systems found in the DDS, are consistent with the observed rates for typical MW-like spirals. We also note that DDS progenitors are the dominant population in elliptical galaxies. The fact that the delay time distribution for the DDS follows a power law implies more SNe Ia (per unit mass) in young rather than in aged populations. Our results do not exclude other scenarios, but strongly indicate that the DDS is the dominant channel generating SNe Ia in spiral galaxies, at least in the framework of our adopted evolutionary models. Since it is believed that WD mergers cannot produce a thermonuclear explosion given the current understanding of accreting WDs, either the

  4. Finding the first cosmic explosions. III. Pulsational pair-instability supernovae

    International Nuclear Information System (INIS)

    Whalen, Daniel J.; Smidt, Joseph; Even, Wesley; Fryer, Chris L.; Woosley, S. E.; Heger, Alexander; Stiavelli, Massimo

    2014-01-01

    Population III supernovae have been the focus of growing attention because of their potential to directly probe the properties of the first stars, particularly the most energetic events that can be seen at the edge of the observable universe. But until now pulsational pair-instability supernovae, in which explosive thermonuclear burning in massive stars fails to unbind them but can eject their outer layers into space, have been overlooked as cosmic beacons at the earliest redshifts. These shells can later collide and, like Type IIn supernovae, produce superluminous events in the UV at high redshifts that could be detected in the near infrared today. We present numerical simulations of a 110 M ☉ pulsational pair-instability explosion done with the Los Alamos radiation hydrodynamics code Radiation Adaptive Grid Eulerian. We find that collisions between consecutive pulsations are visible in the near infrared out to z ∼ 15-20 and can probe the earliest stellar populations at cosmic dawn.

  5. Hot Dust! Late-Time Infrared Emission From Supernovae

    Science.gov (United States)

    Fox, Ori; Skrutskie, M. F.; Chevalier, R. A.

    2010-01-01

    Supernovae light curves typically peak and fade in the course of several months. Some supernovae , however, exhibit late-time infrared emission that in some cases can last for several years. These supernovae tend to be of the Type IIn subclass, which is defined by narrow hydrogen and helium emission lines arising from a dense, pre-existing circumstellar medium excited by the supernova radiation. Such a late-time ``IR excess'' with respect to the optical blackbody counterpart typically indicates the presence of warm dust. The origin and heating mechanism of the dust is not, however, always well constrained. In this talk, I will explore several scenarios that explain the observed late-time emission. In particular, I will discuss the case of the Type IIn SN 2005ip, which has displayed an ``IR excess'' for over 3 years. The results allow us to interpret the progenitor system and better understand the late stages of stellar evolution. Much of the data used for this analysis were obtained with TripleSpec, a medium-resolution near-infrared spectrograph located at Apache Point Observatory, NM, and FanCam, a JHK imager located at Fan Mountain Observatory, just outside of Charlottesville, VA. These two instruments were designed, fabricated, built, and commissioned by our instrumentation group at the University of Virginia. I will also spend some time discussing these instruments. I would like to thank the following for financial support of this work throughout my graduate career: NASA GSRP, NSF AAG-0607737, Spitzer PID 50256, Achievement Reward for College Scientists (ARCS), and the Virginia Space Grant Consortium.

  6. Estimates for the ionization and mass of type I supernova envelopes, based on the radioactivity hypothesis

    International Nuclear Information System (INIS)

    Shklovskii, I.

    1981-01-01

    Analysis of spectroscopic evidence for supernova 1972e fully confirms the hypothesis that radioactive 56 Ni decay produces the exponential tail in type I light curves. Relativistic positrons formed through the β decay of 56 Co will interact with material in the envelope thrown off by the supernova outburst; hence the ionization of the envelope can be estimated. The chief supplier of free electrons to the envelope will evidently be helium, the most abundant element there; iron, on the other hand, will mainly be in the Fe II state. The envelope would then have a mass of roughly-equal0.6 M/sub sun/ and a kinetic energy of roughly-equal5 x 10 50 erg, in agreement with observation. Accordingly, neutron stars should develop in type I as well as type II outbursts. Only type I supernovae, however, will synthesize the iron in the universe

  7. TYPE II-P SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY AND THE STANDARDIZED CANDLE METHOD

    International Nuclear Information System (INIS)

    D'Andrea, Chris B.; Sako, Masao; Dilday, Benjamin; Jha, Saurabh; Frieman, Joshua A.; Kessler, Richard; Holtzman, Jon; Konishi, Kohki; Yasuda, Naoki; Schneider, D. P.; Sollerman, Jesper; Wheeler, J. Craig; Cinabro, David; Nichol, Robert C.; Lampeitl, Hubert; Smith, Mathew; Atlee, David W.; Bassett, Bruce; Castander, Francisco J.; Goobar, Ariel

    2010-01-01

    We apply the Standardized Candle Method (SCM) for Type II Plateau supernovae (SNe II-P), which relates the velocity of the ejecta of a SN to its luminosity during the plateau, to 15 SNe II-P discovered over the three season run of the Sloan Digital Sky Survey-II Supernova Survey. The redshifts of these SNe-0.027 0.01) as all of the current literature on the SCM combined. We find that the SDSS SNe have a very small intrinsic I-band dispersion (0.22 mag), which can be attributed to selection effects. When the SCM is applied to the combined SDSS-plus-literature set of SNe II-P, the dispersion increases to 0.29 mag, larger than the scatter for either set of SNe separately. We show that the standardization cannot be further improved by eliminating SNe with positive plateau decline rates, as proposed in Poznanski et al. We thoroughly examine all potential systematic effects and conclude that for the SCM to be useful for cosmology, the methods currently used to determine the Fe II velocity at day 50 must be improved, and spectral templates able to encompass the intrinsic variations of Type II-P SNe will be needed.

  8. A relativistic type Ibc supernova without a detected gamma-ray burst.

    Science.gov (United States)

    Soderberg, A M; Chakraborti, S; Pignata, G; Chevalier, R A; Chandra, P; Ray, A; Wieringa, M H; Copete, A; Chaplin, V; Connaughton, V; Barthelmy, S D; Bietenholz, M F; Chugai, N; Stritzinger, M D; Hamuy, M; Fransson, C; Fox, O; Levesque, E M; Grindlay, J E; Challis, P; Foley, R J; Kirshner, R P; Milne, P A; Torres, M A P

    2010-01-28

    Long duration gamma-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of type Ibc supernovae. They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of gamma-rays and a long-lived radio afterglow. Until now, central-engine-driven supernovae have been discovered exclusively through their gamma-ray emission, yet it is expected that a larger population goes undetected because of limited satellite sensitivity or beaming of the collimated emission away from our line of sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for type Ibc supernovae with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. A comparison with our radio survey of type Ibc supernovae reveals that the fraction harbouring central engines is low, about one per cent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Independently, a second mildly relativistic supernova has been reported.

  9. A relativistic type Ibc supernova without a detected γ-ray burst

    Science.gov (United States)

    Soderberg, A. M.; Chakraborti, S.; Pignata, G.; Chevalier, R. A.; Chandra, P.; Ray, A.; Wieringa, M. H.; Copete, A.; Chaplin, V.; Connaughton, V.; Barthelmy, S. D.; Bietenholz, M. F.; Chugai, N.; Stritzinger, M. D.; Hamuy, M.; Fransson, C.; Fox, O.; Levesque, E. M.; Grindlay, J. E.; Challis, P.; Foley, R. J.; Kirshner, R. P.; Milne, P. A.; Torres, M. A. P.

    2010-01-01

    Long duration γ-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of type Ibc supernovae. They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of γ-rays and a long-lived radio afterglow. Until now, central-engine-driven supernovae have been discovered exclusively through their γ-ray emission, yet it is expected that a larger population goes undetected because of limited satellite sensitivity or beaming of the collimated emission away from our line of sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for type Ibc supernovae with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. A comparison with our radio survey of type Ibc supernovae reveals that the fraction harbouring central engines is low, about one per cent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Independently, a second mildly relativistic supernova has been reported.

  10. Aspherical supernovae

    International Nuclear Information System (INIS)

    Kasen, Daniel Nathan

    2004-01-01

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally, we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3) And

  11. A hybrid type Ia supernova with an early flash triggered by helium-shell detonation.

    Science.gov (United States)

    Jiang, Ji-An; Doi, Mamoru; Maeda, Keiichi; Shigeyama, Toshikazu; Nomoto, Ken'ichi; Yasuda, Naoki; Jha, Saurabh W; Tanaka, Masaomi; Morokuma, Tomoki; Tominaga, Nozomu; Ivezić, Željko; Ruiz-Lapuente, Pilar; Stritzinger, Maximilian D; Mazzali, Paolo A; Ashall, Christopher; Mould, Jeremy; Baade, Dietrich; Suzuki, Nao; Connolly, Andrew J; Patat, Ferdinando; Wang, Lifan; Yoachim, Peter; Jones, David; Furusawa, Hisanori; Miyazaki, Satoshi

    2017-10-04

    Type Ia supernovae arise from the thermonuclear explosion of white-dwarf stars that have cores of carbon and oxygen. The uniformity of their light curves makes these supernovae powerful cosmological distance indicators, but there have long been debates about exactly how their explosion is triggered and what kind of companion stars are involved. For example, the recent detection of the early ultraviolet pulse of a peculiar, subluminous type Ia supernova has been claimed as evidence for an interaction between a red-giant or a main-sequence companion and ejecta from a white-dwarf explosion. Here we report observations of a prominent but red optical flash that appears about half a day after the explosion of a type Ia supernova. This supernova shows hybrid features of different supernova subclasses, namely a light curve that is typical of normal-brightness supernovae, but with strong titanium absorption, which is commonly seen in the spectra of subluminous ones. We argue that this early flash does not occur through previously suggested mechanisms such as the companion-ejecta interaction. Instead, our simulations show that it could occur through detonation of a thin helium shell either on a near-Chandrasekhar-mass white dwarf, or on a sub-Chandrasekhar-mass white dwarf merging with a less-massive white dwarf. Our finding provides evidence that one branch of previously proposed explosion models-the helium-ignition branch-does exist in nature, and that such a model may account for the explosions of white dwarfs in a mass range wider than previously supposed.

  12. An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate.

    Science.gov (United States)

    Gilfanov, Marat; Bogdán, Akos

    2010-02-18

    There is wide agreement that type Ia supernovae (used as standard candles for cosmology) are associated with the thermonuclear explosions of white dwarf stars. The nuclear runaway that leads to the explosion could start in a white dwarf gradually accumulating matter from a companion star until it reaches the Chandrasekhar limit, or could be triggered by the merger of two white dwarfs in a compact binary system. The X-ray signatures of these two possible paths are very different. Whereas no strong electromagnetic emission is expected in the merger scenario until shortly before the supernova, the white dwarf accreting material from the normal star becomes a source of copious X-rays for about 10(7) years before the explosion. This offers a means of determining which path dominates. Here we report that the observed X-ray flux from six nearby elliptical galaxies and galaxy bulges is a factor of approximately 30-50 less than predicted in the accretion scenario, based upon an estimate of the supernova rate from their K-band luminosities. We conclude that no more than about five per cent of type Ia supernovae in early-type galaxies can be produced by white dwarfs in accreting binary systems, unless their progenitors are much younger than the bulk of the stellar population in these galaxies, or explosions of sub-Chandrasekhar white dwarfs make a significant contribution to the supernova rate.

  13. The Peculiar SN 2005hk: Do Some Type Ia Supernovae Explode As Deflagrations?

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.M.; Li, W.; Frieman, J.A.; Blinnikov, S.I.; DePoy, D.; Prieto, J.L.; Milne, P.; Contreras, C.; Folatelli, Gaston; Morrell, N.; Hamuy, M.; Suntzeff, N.B.; Roth, M.; Gonzalez, S.; Krzeminski, W.; Filippenko, A.V.; Freedman, W.L.; Chornock, R.; Jha, S.; Madore, B.F.; Persson, S.E.; /Las Campanas Observ. /UC, Berkeley, Astron. Dept.

    2006-11-14

    We present extensive u{prime}g{prime}r{prime}i{prime} BV RIY JHK{sub s} photometry and optical spectroscopy of SN 2005hk. These data reveal that SN 2005hk was nearly identical in its observed properties to SN 2002cx, which has been called 'the most peculiar known type Ia supernova'. Both supernovae exhibited high ionization SN 1991T-like pre-maximum spectra, yet low peak luminosities like SN 1991bg. The spectra reveal that SN 2005hk, like SN 2002cx, exhibited expansion velocities that were roughly half those of typical type Ia supernovae. The R and I light curves of both supernovae were also peculiar in not displaying the secondary maximum observed for normal type Ia supernovae. Our Y JH photometry of SN 2005hk reveals the same peculiarity in the near-infrared. By combining our optical and near-infrared photometry of SN 2005hk with published ultraviolet light curves obtained with the Swift satellite, we are able to construct a bolometric light curve from {approx} 10 days before to {approx}60 days after B maximum. The shape and unusually low peak luminosity of this light curve, plus the low expansion velocities and absence of a secondary maximum at red and near-infrared wavelengths, are all in reasonable agreement with model calculations of a 3D deflagration which produces {approx} 0.25 M{sub {circle_dot}} of {sup 56}Ni.

  14. Bounds on the possible evolution of the gravitational constant from cosmological type-Ia supernovae

    International Nuclear Information System (INIS)

    Gaztanaga, E.; Garcia-Berro, E.; Isern, J.; Bravo, E.; Dominguez, I.

    2002-01-01

    Recent high-redshift type-Ia supernovae results can be used to set new bounds on a possible variation of the gravitational constant G. If the local value of G at the space-time location of distant supernovae is different, it would change both the kinetic energy release and the amount of 56 Ni synthesized in the supernova outburst. Both effects are related to a change in the Chandrasekhar mass M Ch ∝G -3/2 . In addition, the integrated variation of G with time would also affect the cosmic evolution and therefore the luminosity distance relation. We show that the later effect in the magnitudes of type-Ia supernovae is typically several times smaller than the change produced by the corresponding variation of the Chandrasekhar mass. We investigate in a consistent way how a varying G could modify the Hubble diagram of type-Ia supernovae and how these results can be used to set upper bounds to a hypothetical variation of G. We find G/G 0 (less-or-similar sign)1.1 and G/G(less-or-similar sign)10 -11 yr -1 at redshifts z≅0.5. These new bounds extend the currently available constraints on the evolution of G all the way from solar and stellar distances to typical scales of Gpc/Gyr, i.e., by more than 15 orders of magnitude in time and distance

  15. The Transition of a Type IIL Supernova into a Supernova Remnant: Late-time Observations of SN 2013by

    Energy Technology Data Exchange (ETDEWEB)

    Black, C. S.; Fesen, R. A. [6127 Wilder Lab, Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Milisavljevic, D.; Patnaude, D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Margutti, R. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Parker, S. [Parkdale Observatory, 225 Warren Road, RDl Oxford, Canterbury 7495 (New Zealand)

    2017-10-10

    We present early-time Swift and Chandra X-ray data along with late-time optical and near-infrared observations of SN 2013by, a Type IIL supernova (SN) that occurred in the nearby spiral galaxy ESO 138−G10 ( D ∼ 14.8 Mpc). Optical and NIR photometry and spectroscopy follow the late-time evolution of the SN from days +89 to +457 post maximum brightness. The optical spectra and X-ray light curves are consistent with the picture of an SN having prolonged interaction with circumstellar material (CSM) that accelerates the transition from SN to supernova remnant (SNR). Specifically, we find SN 2013by’s H α profile exhibits significant broadening (∼10,000 km s{sup −1}) on day +457, the likely consequence of high-velocity, H-rich material being excited by a reverse shock. A relatively flat X-ray light curve is observed that cannot be modeled using Inverse Compton scattering processes alone, but requires an additional energy source most likely originating from the SN-CSM interaction. In addition, we see the first overtone of CO emission near 2.3 μ m on day +152, signaling the formation of molecules and dust in the SN ejecta and is the first time CO has been detected in a Type IIL SN. We compare SN 2013by with Type IIP SNe, whose spectra show the rarely observed SN-to-SNR transition in varying degrees and conclude that Type IIL SNe may enter the remnant phase at earlier epochs than their Type IIP counterparts.

  16. Supernova VLBI

    Science.gov (United States)

    Bartel, N.

    2009-08-01

    We review VLBI observations of supernovae over the last quarter century and discuss the prospect of imaging future supernovae with space VLBI in the context of VSOP-2. From thousands of discovered supernovae, most of them at cosmological distances, ˜50 have been detected at radio wavelengths, most of them in relatively nearby galaxies. All of the radio supernovae are Type II or Ib/c, which originate from the explosion of massive progenitor stars. Of these, 12 were observed with VLBI and four of them, SN 1979C, SN 1986J, SN 1993J, and SN 1987A, could be imaged in detail, the former three with VLBI. In addition, supernovae or young supernova remnants were discovered at radio wavelengths in highly dust-obscured galaxies, such as M82, Arp 299, and Arp 220, and some of them could also be imaged in detail. Four of the supernovae so far observed were sufficiently bright to be detectable with VSOP-2. With VSOP-2 the expansion of supernovae can be monitored and investigated with unsurpassed angular resolution, starting as early as the time of the supernova's transition from its opaque to transparent stage. Such studies can reveal, in a movie, the aftermath of a supernova explosion shortly after shock break out.

  17. Characterizing the V-band light-curves of hydrogen-rich type II supernovae

    DEFF Research Database (Denmark)

    Anderson, Joseph P.; González-Gaitán, Santiago; Hamuy, Mario

    2014-01-01

    a dispersion of 0.56 mag, offering the prospect of using type II supernovae as purely photometric distance indicators. Our analysis suggests that the type II population spans a continuum from low-luminosity events which have flat light-curves during the "plateau" stage, through to the brightest events which...

  18. The discovery of the most distant known type Ia supernova at redshift 1.914

    DEFF Research Database (Denmark)

    Jones, Dennis; Rodney, S.A.; Riess, A.G.

    2013-01-01

    We present the discovery of a Type Ia supernova (SN) at redshift z = 1.914 from the CANDELS multi-cycle treasury program on the Hubble Space Telescope (HST). This SN was discovered in the infrared using the Wide-Field Camera 3, and it is the highest-redshift Type Ia SN yet observed. We classify t...

  19. Type IIP supernova light curves affected by the acceleration of red supergiant winds

    Science.gov (United States)

    Moriya, Takashi J.; Förster, Francisco; Yoon, Sung-Chul; Gräfener, Götz; Blinnikov, Sergei I.

    2018-05-01

    We introduce the first synthetic light-curve model set of Type IIP supernovae exploded within circumstellar media in which the acceleration of the red supergiant winds is taken into account. Because wind acceleration makes the wind velocities near the progenitors low, the density of the immediate vicinity of the red supergiant supernova progenitors can be higher than that extrapolated by using a constant terminal wind velocity. Therefore, even if the mass-loss rate of the progenitor is relatively low, it can have a dense circumstellar medium at the immediate stellar vicinity and the early light curves of Type IIP supernovae are significantly affected by it. We adopt a simple β velocity law to formulate the wind acceleration. We provide bolometric and multicolour light curves of Type IIP supernovae exploding within such accelerated winds from the combinations of three progenitors, 12-16 M⊙; five β, 1-5; seven mass-loss rates, 10-5-10-2 M⊙ yr-1; and four explosion energies, (0.5-2) × 1051 erg. All the light-curve models are available at https://goo.gl/o5phYb. When the circumstellar density is sufficiently high, our models do not show a classical shock breakout as a consequence of the interaction with the dense and optically thick circumstellar media. Instead, they show a delayed `wind breakout', substantially affecting early light curves of Type IIP supernovae. We find that the mass-loss rates of the progenitors need to be 10-3-10-2 M⊙ yr-1 to explain typical rise times of 5-10 d in Type IIP supernovae assuming a dense circumstellar radius of 1015 cm.

  20. Estimating dust distances to Type Ia supernovae from colour excess time evolution

    Science.gov (United States)

    Bulla, M.; Goobar, A.; Amanullah, R.; Feindt, U.; Ferretti, R.

    2018-01-01

    We present a new technique to infer dust locations towards reddened Type Ia supernovae and to help discriminate between an interstellar and a circumstellar origin for the observed extinction. Using Monte Carlo simulations, we show that the time evolution of the light-curve shape and especially of the colour excess E(B - V) places strong constraints on the distance between dust and the supernova. We apply our approach to two highly reddened Type Ia supernovae for which dust distance estimates are available in the literature: SN 2006X and SN 2014J. For the former, we obtain a time-variable E(B - V) and from this derive a distance of 27.5^{+9.0}_{-4.9} or 22.1^{+6.0}_{-3.8} pc depending on whether dust properties typical of the Large Magellanic Cloud (LMC) or the Milky Way (MW) are used. For the latter, instead, we obtain a constant E(B - V) consistent with dust at distances larger than ∼50 and 38 pc for LMC- and MW-type dust, respectively. Values thus extracted are in excellent agreement with previous estimates for the two supernovae. Our findings suggest that dust responsible for the extinction towards these supernovae is likely to be located within interstellar clouds. We also discuss how other properties of reddened Type Ia supernovae - such as their peculiar extinction and polarization behaviour and the detection of variable, blue-shifted sodium features in some of these events - might be compatible with dust and gas at interstellar-scale distances.

  1. A Type II Supernova Hubble diagram from the CSP-I, SDSS-II, and SNLS surveys

    OpenAIRE

    de Jaeger, T.; González-Gaitán, S.; Hamuy, M.; Galbany, L.; Anderson, J. P.; Phillips, M. M.; Stritzinger, M. D.; Carlberg, R. G.; Sullivan, M.; Gutiérrez, C. P.; Hook, I. M.; Howell, D. Andrew; Hsiao, E. Y.; Kuncarayakti, H.; Ruhlmann-Kleider, V.

    2016-01-01

    The coming era of large photometric wide-field surveys will increase the detection rate of supernovae by orders of magnitude. Such numbers will restrict spectroscopic follow-up in the vast majority of cases, and hence new methods based solely on photometric data must be developed. Here, we construct a complete Hubble diagram of Type II supernovae (SNe II) combining data from three different samples: the Carnegie Supernova Project-I, the Sloan Digital Sky Survey II SN, and th...

  2. Nearby Supernova Factory Observations of SN 2006D: On SporadicCarbon Signatures in Early Type Ia Supernova Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R.C.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey,S.; Baltay, C.; Baron, E.; Bauer, A.; Buton, C.; Bongard, S.; Copin, Y.; Gangler, E.; Gilles, S.; Kessler, R.; Loken, S.; Nugent, P.; Pain, R.; Parrent, J.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigaudier, G.; Runge, K.; Scalzo, R.; Smadja, G.; Wang, L.; Weaver, B.A.

    2006-10-12

    We present four spectra of the Type Ia supernova SN Ia 2006Dextending from -7 to +13 days with respect to B-band maximum. The spectrainclude the strongest signature of unburned material at photosphericvelocities observed in a SN Ia to date. The earliest spectrum exhibits CII absorption features below 14,000 km/s, including a distinctive C IIlambda 6580 absorption feature. The carbon signatures dissipate as the SNapproaches peak brightness. In addition to discussing implications ofphotospheric-velocity carbon for white dwarf explosion models, we outlinesome factors that may influence the frequency of its detection before andaround peak brightness. Two effects are explored in this regard,including depopulation of the C II optical levels by non-LTE effects, andline-of-sight effects resulting from a clumpy distribution of unburnedmaterial with low volume-filling factor.

  3. Related Progenitor Models for Long-duration Gamma-Ray Bursts and Type Ic Superluminous Supernovae

    Science.gov (United States)

    Aguilera-Dena, David R.; Langer, Norbert; Moriya, Takashi J.; Schootemeijer, Abel

    2018-05-01

    We model the late evolution and mass loss history of rapidly rotating Wolf–Rayet stars in the mass range 5 M ⊙…100 M ⊙). We find that quasi-chemically homogeneously evolving single stars computed with enhanced mixing retain very little or no helium and are compatible with Type Ic supernovae. The more efficient removal of core angular momentum and the expected smaller compact object mass in our lower-mass models lead to core spins in the range suggested for magnetar-driven superluminous supernovae. Our higher-mass models retain larger specific core angular momenta, expected for long-duration gamma-ray bursts in the collapsar scenario. Due to the absence of a significant He envelope, the rapidly increasing neutrino emission after core helium exhaustion leads to an accelerated contraction of the whole star, inducing a strong spin-up and centrifugally driven mass loss at rates of up to {10}-2 {M}ȯ {yr}}-1 in the last years to decades before core collapse. Because the angular momentum transport in our lower-mass models enhances the envelope spin-up, they show the largest relative amounts of centrifugally enforced mass loss, i.e., up to 25% of the expected ejecta mass. Our most massive models evolve into the pulsational pair-instability regime. We would thus expect signatures of interaction with a C/O-rich circumstellar medium for Type Ic superluminous supernovae with ejecta masses below ∼10 M ⊙ as well as for the most massive engine-driven explosions with ejecta masses above ∼30 M ⊙. Signs of such interaction should be observable at early epochs of the supernova explosion; they may be related to bumps observed in the light curves of superluminous supernovae, or to the massive circumstellar CO-shell proposed for Type Ic superluminous supernova Gaia16apd.

  4. Nearby Type Ia Supernova Follow-up at the Thacher Observatory

    Science.gov (United States)

    Swift, Jonathan; O'Neill, Katie; Kilpatrick, Charles; Foley, Ryan

    2018-06-01

    Type Ia supernovae (SN Ia) provide an effective way to study the expansion of the universe through analyses of their photometry and spectroscopy. The interpretation of high-redshift SN Ia is dependent on accurate characterization of nearby, low-redshift targets. To help build up samples of nearby SN Ia, the Thacher Observatory has begun a photometric follow-up program in 4 photometric bands. Here we present the observations and analysis of multi-band photometry for several recent supernovae as well as FLOYDS spectra from the Las Cumbres Observatory.

  5. Cosmological-model-parameter determination from satellite-acquired type Ia and IIP Supernova Data

    International Nuclear Information System (INIS)

    Podariu, Silviu; Nugent, Peter; Ratra, Bharat

    2000-01-01

    We examine the constraints that satellite-acquired Type Ia and IIP supernova apparent magnitude versus redshift data will place on cosmological model parameters in models with and without a constant or time-variable cosmological constant lambda. High-quality data which could be acquired in the near future will result in tight constraints on these parameters. For example, if all other parameters of a spatially-flat model with a constant lambda are known, the supernova data should constrain the non-relativistic matter density parameter omega to better than 1 (2, 0.5) at 1 sigma with neutral (worst case, best case) assumptions about data quality

  6. Spectroscopic Classification of SN 2017ghm as a Type Ia Supernova

    Science.gov (United States)

    Vinko, J.; Wheeler, J. C.; Wang, X.; Li, W.; Li, Z.; Xiang, D.; Rui, L.; Lin, H.; Xu, Z.; Li, B.; Zhao, H.; Wang, L.; Tan, H.; Zhang, J.

    2017-09-01

    An optical spectrum (range 360-680 nm) of SN 2017ghm (=PTSS-17uyml), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), was obtained with the new "Low Resolution Spectrograph-2" (LRS2) on the 10m Hobby-Eberly Telescope at McDonald Observatory by S. Rostopchin on 2017 Aug 31.17 UT. The spectrum is consistent with that of a heavily reddened Type Ia supernova (with Av > 2.3 mag) around maximum light.

  7. Methodological studies on the search for Gravitational Waves and Neutrinos from Type II Supernovae

    International Nuclear Information System (INIS)

    Casentini, Claudio

    2016-01-01

    Type II SNe, also called Core-collapse SuperNovae have a neutrino (v) emission, as confirmed by SN 1987A, and are also potential sources of gravitational waves. Neutrinos and gravitational waves from these sources reach Earth almost contemporaneously and without relevant interaction with stellar matter and interstellar medium. The upcoming advanced gravitational interferometers would be sensitive enough to detect gravitational waves signals from close galactic Core-collapse SuperNovae events. Nevertheless, significant uncertainties on theoretical models of emission remain. A joint search of coincident low energy neutrinos and gravitational waves events from these sources would bring valuable information from the inner core of the collapsing star and would enhance the detection of the so-called Silent SuperNovae. Recently a project for a joint search involving gravitational wave interferometers and neutrino detectors has started. We discuss the benefits of a joint search and the status of the search project. (paper)

  8. Properties of Deflagration Fronts and Models for Type IA Supernovae

    Science.gov (United States)

    Domínguez, I.; Höflich, P.

    2000-01-01

    Detailed models of the explosion of a white dwarf that include self-consistent calculations of the light curve and spectra provide a link between observational quantities and the underlying explosion model. These calculations assume spherical geometry and are based on parameterized descriptions of the burning front. Recently, the first multidimensional calculations for nuclear burning fronts have been performed. Although a fully consistent treatment of the burning fronts is beyond the current state of the art, these calculations provide a new and better understanding of the physics. Several new descriptions for flame propagation have been proposed by Khokhlov et al. and Niemeyer et al. Using various descriptions for the propagation of a nuclear deflagration front, we have studied the influence on the results of previous analyses of Type Ia supernovae, namely, the nucleosynthesis and structure of the expanding envelope. Our calculations are based on a set of delayed detonation models with parameters that give a good account of the optical and infrared light curves and of the spectral evolution. In this scenario, the burning front first propagates in a deflagration mode and subsequently turns into a detonation. The explosions and light curves are calculated using a one-dimensional Lagrangian radiation-hydro code including a detailed nuclear network. We find that the results of the explosion are rather insensitive to details of the description of the deflagration front, even if its speed and the time from the transition to detonation differ almost by a factor of 2. For a given white dwarf (WD) and a fixed transition density, the total production of elements changes by less than 10%, and the distribution in the velocity space changes by less than 7%. Qualitatively, this insensitivity of the final outcome of the explosion to the details of the flame propagation during the (slow) deflagration phase can be understood as follows: for plausible variations in the speed of

  9. Rotation of the accreting white dwarfs and diversity of type Ia supernovae

    International Nuclear Information System (INIS)

    Uenishi, Tatsuhiro; Nomoto, Kenichi; Hachisu, Izumi

    2003-01-01

    We consider rotation of progenitor white dwarfs for a possible source of the diversity of Type Ia supernovae (SNe Ia). Hydrostatic structure of rotating white dwarfs with different masses are calculated. Evolutionary sequences of white dwarfs are explored and the effect of 'supercritical' rotation in binary system is examined. Possible effects of rotation to cause diversity of SNe Ia are discussed

  10. Two transitional type Ia supernovae located in the Fornax cluster member NGC 1404

    DEFF Research Database (Denmark)

    Gall, C.; Stritzinger, M. D.; Ashall, C.

    2018-01-01

    We present an analysis of ultraviolet (UV) to near-infrared observations of the fast-declining Type Ia supernovae (SNe Ia) 2007on and 2011iv, hosted by the Fornax cluster member NGC 1404. The B-band light curves of SN 2007on and SN 2011iv are characterised by Delta m(15)(B) decline-rate values of...

  11. Spectroscopic Classification of ASASSN-15rm as a Type Ia Supernova

    Science.gov (United States)

    Zheng, W.; Halevi, G.; Shivvers, I.; Yuk, H.; Filippenko, A. V.

    2015-10-01

    We report that inspection of a CCD spectrum (range 350-1050 nm) of ASASSN-15rm (ATel #8192), obtained on Oct. 20.50 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory, shows that the object is a normal Type Ia supernova roughly 1 week past maximum brightness.

  12. Spectroscopic Classification of MASTER OT J110707.62-052244.0 as a Type Ia Supernova

    Science.gov (United States)

    Zheng, W.; Kim, M.; Shivvers, I.; Yuk, H.; Filippenko, A. V.

    2015-11-01

    We report that inspection of a CCD spectrum (range 350-1050 nm) of MASTER OT J110707.62-052244.0 (ATel #8236), obtained on Nov. 11.57 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory, shows that the object is a normal Type Ia supernova roughly 1 week past maximum brightness.

  13. Spectroscopic Classification of PSN J07051005+2102327: a Type Ia Supernova

    Science.gov (United States)

    Shivvers, I.; Yuk, H.; Filippenko, A. V.; U, V.

    2015-11-01

    We report that inspection of a low signal-to-noise ratio CCD spectrum (range 350-1050 nm) of PSN J07051005+2102327 (CBAT TOCP), obtained on Nov. 17.46 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory, shows that the object is a normal Type Ia supernova within a few days of maximum brightness.

  14. Supernova models

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1980-01-01

    Recent progress in understanding the observed properties of Type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the 56 Ni produced therein is reviewed. Within the context of this model for Type I explosions and the 1978 model for Type II explosions, the expected nucleosynthesis and gamma-line spectra from both kinds of supernovae are presented. Finally, a qualitatively new approach to the problem of massive star death and Type II supernovae based upon a combination of rotation and thermonuclear burning is discussed

  15. Type-Ia supernova rates to redshift 2.4 from clash: The cluster lensing and supernova survey with Hubble

    International Nuclear Information System (INIS)

    Graur, O.; Rodney, S. A.; Riess, A. G.; Medezinski, E.; Maoz, D.; Jha, S. W.; Holoien, T. W.-S.; McCully, C.; Patel, B.; Postman, M.; Dahlen, T.; Strolger, L.-G.; Coe, D.; Bradley, L.; Koekemoer, A.; Benítez, N.; Molino, A.; Jouvel, S.; Nonino, M.; Balestra, I.

    2014-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, ∼13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z > 1.2. We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range 1.8 < z < 2.4. The results are consistent with the rates measured by the HST/GOODS and Subaru Deep Field SN surveys. We model these results together with previous measurements at z < 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of −1.00 −0.06(0.10) +0.06(0.09) (statistical) −0.08 +0.12 (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at >99% significance level.

  16. Type-Ia Supernova Rates to Redshift 2.4 from Clash: The Cluster Lensing and Supernova Survey with Hubble

    Science.gov (United States)

    Graur, O.; Rodney, S. A.; Maoz, D.; Riess, A. G.; Jha, S. W.; Postman, M.; Dahlen, T.; Holoien, T. W.-S.; McCully, C.; Patel, B.; hide

    2014-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, approximately 13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z greater than 1.2.We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range z greater than 1.8 and less than 2.4. The results are consistent with the rates measured by the HST/ GOODS and Subaru Deep Field SN surveys.We model these results together with previous measurements at z less than 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of 1.00 (+0.06(0.09))/(-0.06(0.10)) (statistical) (+0.12/-0.08) (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at greater than 99% significance level.

  17. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star.

    Science.gov (United States)

    Howell, D Andrew; Sullivan, Mark; Nugent, Peter E; Ellis, Richard S; Conley, Alexander J; Le Borgne, Damien; Carlberg, Raymond G; Guy, Julien; Balam, David; Basa, Stephane; Fouchez, Dominique; Hook, Isobel M; Hsiao, Eric Y; Neill, James D; Pain, Reynald; Perrett, Kathryn M; Pritchet, Christopher J

    2006-09-21

    The accelerating expansion of the Universe, and the need for dark energy, were inferred from observations of type Ia supernovae. There is a consensus that type Ia supernovae are thermonuclear explosions that destroy carbon-oxygen white dwarf stars that have accreted matter from a companion star, although the nature of this companion remains uncertain. These supernovae are thought to be reliable distance indicators because they have a standard amount of fuel and a uniform trigger: they are predicted to explode when the mass of the white dwarf nears the Chandrasekhar mass of 1.4 solar masses (M(o)). Here we show that the high-redshift supernova SNLS-03D3bb has an exceptionally high luminosity and low kinetic energy that both imply a super-Chandrasekhar-mass progenitor. Super-Chandrasekhar-mass supernovae should occur preferentially in a young stellar population, so this may provide an explanation for the observed trend that overluminous type Ia supernovae occur only in 'young' environments. As this supernova does not obey the relations that allow type Ia supernovae to be calibrated as standard candles, and as no counterparts have been found at low redshift, future cosmology studies will have to consider possible contamination from such events.

  18. THE TYPE IIb SUPERNOVA 2011dh FROM A SUPERGIANT PROGENITOR

    International Nuclear Information System (INIS)

    Bersten, Melina C.; Nomoto, Ken'ichi; Folatelli, Gastón; Maeda, Keiichi; Benvenuto, Omar G.; Ergon, Mattias; Sollerman, Jesper; Benetti, Stefano; Ochner, Paolo; Tomasella, Lina; Botticella, Maria Teresa; Fraser, Morgan; Kotak, Rubina

    2012-01-01

    A set of hydrodynamical models based on stellar evolutionary progenitors is used to study the nature of SN 2011dh. Our modeling suggests that a large progenitor star—with R ∼ 200 R ☉ —is needed to reproduce the early light curve (LC) of SN 2011dh. This is consistent with the suggestion that the yellow super-giant star detected at the location of the supernova (SN) in deep pre-explosion images is the progenitor star. From the main peak of the bolometric LC and expansion velocities, we constrain the mass of the ejecta to be ≈2 M ☉ , the explosion energy to be E = (6-10) × 10 50 erg, and the 56 Ni mass to be approximately 0.06 M ☉ . The progenitor star was composed of a helium core of 3-4 M ☉ and a thin hydrogen-rich envelope of ≈0.1M ☉ with a main-sequence mass estimated to be in the range of 12-15 M ☉ . Our models rule out progenitors with helium-core masses larger than 8 M ☉ , which correspond to M ZAMS ∼> 25M ☉ . This suggests that a single star evolutionary scenario for SN 2011dh is unlikely.

  19. THE TYPE Ia SUPERNOVA RATE IN RADIO AND INFRARED GALAXIES FROM THE CANADA-FRANCE-HAWAII TELESCOPE SUPERNOVA LEGACY SURVEY

    International Nuclear Information System (INIS)

    Graham, M. L.; Pritchet, C. J.; Balam, D.; Fabbro, S.; Sullivan, M.; Hook, I. M.; Howell, D. A.; Gwyn, S. D. J.; Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N.; Basa, S.; Carlberg, R. G.; Perrett, K.; Conley, A.; Fouchez, D.; Rich, J.

    2010-01-01

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, Very Large Array 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ∼1-5 times the rate in all early-type galaxies, and that any enhancement is always ∼<2σ. Rates in these subsets are consistent with predictions of the two-component 'A+B' SN Ia rate model. Since infrared properties of radio SN Ia hosts indicate dust-obscured star formation, we incorporate infrared star formation rates into the 'A+B' model. We also show the properties of SNe Ia in radio and infrared galaxies suggest the hosts contain dust and support a continuum of delay time distributions (DTDs) for SNe Ia, although other DTDs cannot be ruled out based on our data.

  20. Spectroscopic Properties of Star-Forming Host Galaxies and Type Ia Supernova Hubble Residuals in a Nearly Unbiased Sample

    Energy Technology Data Exchange (ETDEWEB)

    D' Andrea, Chris B. [Univ. of Pennsylvania, Philadelphia, PA (United States); et al.

    2011-12-20

    We examine the correlation between supernova host galaxy properties and their residuals on the Hubble diagram. We use supernovae discovered during the Sloan Digital Sky Survey II - Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M_r < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star-formation rates from host galaxies with active star formation. From a final sample of ~ 40 emission-line galaxies, we find that light-curve corrected Type Ia supernovae are ~ 0.1 magnitudes brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (> 3{\\sigma}) correlation between the Hubble residuals of Type Ia supernovae and the specific star-formation rate of the host galaxy. We comment on the importance of supernova/host-galaxy correlations as a source of systematic bias in future deep supernova surveys.

  1. The cosmic transparency measured with Type Ia supernovae: implications for intergalactic dust

    Science.gov (United States)

    Goobar, Ariel; Dhawan, Suhail; Scolnic, Daniel

    2018-06-01

    Observations of high-redshift Type Ia supernovae (SNe Ia) are used to study the cosmic transparency at optical wavelengths. Assuming a flat Λ cold dark matter (ΛCDM) cosmological model based on baryon acoustic oscillations and cosmic microwave background measurements, redshift dependent deviations of SN Ia distances are used to constrain mechanisms that would dim light. The analysis is based on the most recent Pantheon SN compilation, for which there is a 0.03 ± 0.01 {({stat})} mag discrepancy in the distant supernova distance moduli relative to the ΛCDM model anchored by supernovae at z < 0.05. While there are known systematic uncertainties that combined could explain the observed offset, here we entertain the possibility that the discrepancy may instead be explained by scattering of supernova light in the intergalactic medium (IGM). We focus on two effects: Compton scattering by free electrons and extinction by dust in the IGM. We find that if the discrepancy is entirely due to dimming by dust, the measurements can be modelled with a cosmic dust density Ω _IGM^dust = 8 × 10^{-5} (1+z)^{-1}, corresponding to an average attenuation of 2 × 10-5 mag Mpc-1 in V band. Forthcoming SN Ia studies may provide a definitive measurement of the IGM dust properties, while still providing an unbiased estimate of cosmological parameters by introducing additional parameters in the global fits to the observations.

  2. The death of massive stars - I. Observational constraints on the progenitors of Type II-P supernovae

    Science.gov (United States)

    Smartt, S. J.; Eldridge, J. J.; Crockett, R. M.; Maund, J. R.

    2009-05-01

    We present the results of a 10.5-yr, volume-limited (28-Mpc) search for supernova (SN) progenitor stars. In doing so we compile all SNe discovered within this volume (132, of which 27 per cent are Type Ia) and determine the relative rates of each subtype from literature studies. The core-collapse SNe break down into 59 per cent II-P and 29 per cent Ib/c, with the remainder being IIb (5 per cent), IIn (4 per cent) and II-L (3 per cent). There have been 20 II-P SNe with high-quality optical or near-infrared pre-explosion images that allow a meaningful search for the progenitor stars. In five cases they are clearly red supergiants, one case is unconstrained, two fall on compact coeval star clusters and the other twelve have no progenitor detected. We review and update all the available data for the host galaxies and SN environments (distance, metallicity and extinction) and determine masses and upper mass estimates for these 20 progenitor stars using the STARS stellar evolutionary code and a single consistent homogeneous method. A maximum likelihood calculation suggests that the minimum stellar mass for a Type II-P to form is mmin = 8.5+1-1.5Msolar and the maximum mass for II-P progenitors is mmax = 16.5 +/- 1.5Msolar, assuming a Salpeter initial mass function holds for the progenitor population (in the range Γ = -1.35+0.3-0.7). The minimum mass is consistent with current estimates for the upper limit to white dwarf progenitor masses, but the maximum mass does not appear consistent with massive star populations in Local Group galaxies. Red supergiants in the Local Group have masses up to 25Msolar and the minimum mass to produce a Wolf-Rayet star in single star evolution (between solar and LMC metallicity) is similarly 25-30Msolar. The reason we have not detected any high-mass red supergiant progenitors above 17Msolar is unclear, but we estimate that it is statistically significant at 2.4σ confidence. Two simple reasons for this could be that we have systematically

  3. A Measurement of the Rate of Type Ia Supernovae in Galaxy Clusters from the SDSS-II Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Dilday, Benjamin; /Rutgers U., Piscataway /Chicago U. /KICP, Chicago; Bassett, Bruce; /Cape Town U., Dept. Math. /South African Astron. Observ.; Becker, Andrew; /Washington U., Seattle, Astron. Dept.; Bender, Ralf; /Munich, Tech. U. /Munich U. Observ.; Castander, Francisco; /Barcelona, IEEC; Cinabro, David; /Wayne State U.; Frieman, Joshua A.; /Chicago U. /Fermilab; Galbany, Lluis; /Barcelona, IFAE; Garnavich, Peter; /Notre Dame U.; Goobar, Ariel; /Stockholm U., OKC /Stockholm U.; Hopp, Ulrich; /Munich, Tech. U. /Munich U. Observ. /Tokyo U.

    2010-03-01

    We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z {le} 0.17 and 27 SN events in 492 maxBCG clusters at 0.1 {le} z {le} 0.3. We find values for the cluster SN Ia rate of (0.37{sub -0.12-0.01}{sup +0.17+0.01}) SNur h{sup 2} and (0.55{sub -0.11-0.01}{sup +0.13+0.02}) SNur h{sup 2} (SNux = 10{sup -12}L{sub x{circle_dot}}{sup -1} yr{sup -1}) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be (0.31{sub -0.12-0.01}{sup +0.18+0.01}) SNur h{sup 2} and (0.49{sub -0.11-0.01}{sup +0.15+0.02}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be (2.04{sub -1.11-0.04}{sup +1.99+0.07}) SNur h{sup 2} and (0.36{sub -0.30-0.01}{sup +0.84+0.01}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is 1.94{sub -0.91-0.015}{sup +1.31+0.043} and 3.02{sub -1.03-0.048}{sup +1.31+0.062}, for C4 and maxBCG clusters, respectively. The SN rate in galaxy clusters as a function of redshift, which probes the late time SN Ia delay distribution, shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find r{sub L} = [(0.49{sub -0.14}{sup +0.15}) + (0.91{sub -0.81}{sup +0.85}) x z] SNuB h{sup 2}. A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies. With an observation of at most 3 hostless, intra-cluster SNe Ia, we estimate the fraction of cluster SNe that are

  4. A MEASUREMENT OF THE RATE OF TYPE Ia SUPERNOVAE IN GALAXY CLUSTERS FROM THE SDSS-II SUPERNOVA SURVEY

    International Nuclear Information System (INIS)

    Dilday, Benjamin; Jha, Saurabh W.; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Hopp, Ulrich; Castander, Francisco; Cinabro, David; Frieman, Joshua A.; Galbany, LluIs; Miquel, Ramon; Garnavich, Peter; Goobar, Ariel; Ihara, Yutaka; Kessler, Richard; Lampeitl, Hubert; Nichol, Robert C.; Marriner, John; Molla, Mercedes

    2010-01-01

    We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z ≤ 0.17 and 27 SN events in 492 maxBCG clusters at 0.1 ≤ z ≤ 0.3. We find values for the cluster SN Ia rate of (0.37 +0.17+0.01 -0.12-0.01 ) SNur h 2 and (0.55 +0.13+0.02 -0.11-0.01 ) SNur h 2 (SNux = 10 -12 L -1 xsun yr -1 ) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be (0.31 +0.18+0.01 -0.12-0.01 ) SNur h 2 and (0.49 +0.15+0.02 -0.11-0.01 ) SNur h 2 in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be (2.04 +1.99+0.07 -1.11-0.04 ) SNur h 2 and (0.36 +0.84+0.01 -0.30-0.01 ) SNur h 2 in C4 and maxBCG clusters, respectively. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is 1.94 +1.31+0.043 -0.91-0.015 and 3.02 +1.31+0.062 -1.03-0.048 , for C4 and maxBCG clusters, respectively. The SN rate in galaxy clusters as a function of redshift, which probes the late time SN Ia delay distribution, shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find r L = [(0.49 +0.15 -0.14 )+(0.91 +0.85 -0.81 ) x z] SNuB h 2 . A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies. With an observation of at most three hostless, intra-cluster SNe Ia, we estimate the fraction of cluster SNe that are hostless to be (9.4 +8.3 -5.1 )%.

  5. Radio observations reveal a smooth circumstellar environment around the extraordinary type Ib supernova 2012au

    Energy Technology Data Exchange (ETDEWEB)

    Kamble, Atish; Soderberg, Alicia M.; Margutti, Raffaella; Milisavljevic, Dan; Chakraborti, Sayan; Dittmann, Jason; Drout, Maria; Sanders, Nathan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chomiuk, Laura [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Medvedev, Mikhail [The Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Chevalier, Roger [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Chugai, Nikolai [Institute of Astronomy, Russian Academy of Sciences, Pyatnitskaya 48, 109017 Moscow (Russian Federation); Fransson, Claes [Department of Astronomy, The Oskar Klein Centre, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden); Nakar, Ehud, E-mail: atish.vyas@gmail.com [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-12-10

    We present extensive radio and X-ray observations of SN 2012au, an energetic, radio-luminous supernova of Type Ib that exhibits multi-wavelength properties bridging subsets of hydrogen-poor superluminous supernovae, hypernovae, and normal core-collapse supernovae. The observations closely follow models of synchrotron emission from a shock-heated circumburst medium that has a wind density profile (ρ∝r {sup –2}). We infer a sub-relativistic velocity for the shock wave v ≈ 0.2 c and a radius of r ≈ 1.4 × 10{sup 16}cm at 25 days after the estimated date of explosion. For a wind velocity of 1000 km s{sup –1}, we determine the mass-loss rate of the progenitor to be M-dot =3.6×10{sup −6} M{sub ⊙} yr{sup −1}, consistent with the estimates from X-ray observations. We estimate the total internal energy of the radio-emitting material to be E ≈ 10{sup 47} erg, which is intermediate to SN 1998bw and SN 2002ap. The evolution of the radio light curve of SN 2012au is in agreement with its interaction with a smoothly distributed circumburst medium and the absence of stellar shells ejected from previous outbursts out to r ≈ 10{sup 17} cm from the supernova site. We conclude that the bright radio emission from SN 2012au was not dissimilar from other core-collapse supernovae despite its extraordinary optical properties, and that the evolution of the SN 2012au progenitor star was relatively quiet, marked with a steady mass loss, during the final years preceding explosion.

  6. TIME VARIATION OF AV AND RV FOR TYPE Ia SUPERNOVAE BEHIND INTERSTELLAR DUST

    Science.gov (United States)

    Huang, Xiaosheng; Biederman, M.; Herger, B.; Aldering, G. S.

    2014-01-01

    TIME VARIATION OF AV AND RV FOR TYPE Ia SUPERNOVAE BEHIND NON-UNIFORM INTERSTELLAR DUST ABSTRACT We investigate the time variation of the visual extinction, AV, and the total-to-selective extinction ratio, RV, resulting from interstellar dust in front of an expanding photospheric disk of a type Ia supernova (SN Ia). We simulate interstellar dust clouds according to a power law power spectrum and produce extinction maps that either follow a pseudo-Gaussian distribution or a lognormal distribution. The RV maps are produced through a correlation between AV and RV. With maps of AV and RV generated in each case (pseudo-Gaussian and lognormal), we then compute the effective AV and RV for a SN as its photospheric disk expands behind the dust screen. We find for a small percentage of SNe the AV and RV values can vary by a large factor from day to day in the first 40 days after explosion.

  7. The fate of accreting white dwarfs: type I supernovae vs. collapse

    International Nuclear Information System (INIS)

    Nomoto, Ken'ichi

    1986-01-01

    The fate of accreting white dwarfs is examined with respect to thermonuclear explosion or collapse. The paper was presented to the conference on ''The early universe and its evolution'', Erice, Italy 1986. Effects of accretion and the fate of white dwarfs, models for type 1a and 1b supernovae, collapse induced by carbon deflagration at high density, and fate of double white dwarfs, are all discussed. (U.K.)

  8. Spectroscopic classification of AT 2017byx as a Type Ia Supernova

    Science.gov (United States)

    Vinko, J.; Wheeler, J. C.; Sarneczky, K.; Szakats, R.; Szalai, T.; Szekely, P.; HETDEX Collaboration

    2017-05-01

    During the commissioning phase of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) survey we observed AT 2017byx (ATLAS17bla, PS17bve) at R.A.=14:17:48.36 Dec.=+52:41:54.6 with the Visible Integral-field Replicable Unit Spectrograph (VIRUS) at McDonald Observatory on 2017-04-28.2 UT. The spectrum (range between 3500 and 5500 Angstroms) indicates that AT 2017byx is a Type Ia supernova.

  9. Type II successful supernovae, the anatomy of shocks: neutrino emission and the adiabatic index

    International Nuclear Information System (INIS)

    Kahana, S.; Baron, E.; Cooperstein, J.

    1983-01-01

    Hydrodynamic calculations of stellar collapse in Type II Supernova are described using a variable stiffness and compressibility for the nuclear equation of state at high density. Initial models employing a relatively small mass core with low central entropy are necessary to achieve viable shocks; near success the models are sensitive to both neutrino emission and the high density equation of state. The treatment of neutrino production and transport is sketched and recent results reported

  10. MASTER OT J014638.27+041324.4 is a Young Type IIP Supernova

    Science.gov (United States)

    Zheng, W.; Kelly, P. L.; Clubb, K. I.; Filippenko, A. V.

    2013-12-01

    We report that a CCD spectrum (range 350-1000 nm) of MASTER OT J014638.27+041324.4 (Shurpakov et al., ATel #5630) was obtained on Dec 6.5 UT with the Shane 3-m reflector (+Kast spectrograph) at Lick Observatory. The spectrum shows a blue continuum and weak, broad hydrogen Balmer lines having P-Cyg profiles, indicating that the object is a young Type IIP supernova. Weak He I 587.6 nm is also present.

  11. Spectroscopic Classification of SN 2018nt as a Reddened Type Ia Supernova

    Science.gov (United States)

    Vinko, J.; Szeged, U.; Wheeler, J. C.

    2018-02-01

    An optical spectrum (range 360-700 nm) of SN 2018nt (K2 C16-0043), was obtained with the "Low Resolution Spectrograph-2" (LRS2) on the 10m Hobby-Eberly Telescope at McDonald Observatory by S. Odewahn on 2018 Feb 05.20 UT. The spectrum is consistent with that of a heavily reddened Type Ia supernova (with Av > 2 mag) about 3 weeks after maximum light.

  12. Circumstellar Interaction in Supernovae in Dense Environments—An Observational Perspective

    Science.gov (United States)

    Chandra, Poonam

    2018-02-01

    In a supernova explosion, the ejecta interacting with the surrounding circumstellar medium (CSM) give rise to variety of radiation. Since CSM is created from the mass loss from the progenitor, it carries footprints of the late time evolution of the star. This is one of the unique ways to get a handle on the nature of the progenitor system. Here, I will focus mainly on the supernovae (SNe) exploding in dense environments, a.k.a. Type IIn SNe. Radio and X-ray emission from this class of SNe have revealed important modifications in their radiation properties, due to the presence of high density CSM. Forward shock dominance in the X-ray emission, internal free-free absorption of the radio emission, episodic or non-steady mass loss rate, and asymmetry in the explosion seem to be common properties of this class of SNe.

  13. A Peculiar Subclass of Type Ia Supernovae a.k.a. Type Iax

    Science.gov (United States)

    Singh, Mridweeka; Misra, Kuntal; Sahu, Devendra Kumar; Dastidar, Raya; Gangopadhyay, Anjasha; Bose, Subhash; Srivastav, Shubham; Anapuma, Gadiyara Chakrapani; Chakradhari, Nand Kumar; Kumar, Brajesh; Kumar, Brijesh; Pandey, Shashi Bhushan

    2018-04-01

    We present optical photometric (upto ˜ 410 days since Bmax) and spectroscopic (upto ˜ 235 days since Bmax) observations of a type Iax supernova SN 2014dt located in M61. The broad band light curves follow a linear decline up to ˜ 100 days after which a significant flattening is seen in the late-time (beyond 150 days) light curves of SN 2014dt. SN 2014dt best matches the light curve evolution of SN 2005hk and reaches a peak magnitude of MB˜ -18.12±0.04 with ?m15˜ 1.35±0.06 mag. The earliest spectrum at ˜ 23 days is dominated by FeII and CoII lines with the absence of the Si II 6150 Å line. Using the peak bolometric luminosity we estimate a 56Ni mass of 0.14 M⊙ in the case of SN 2005hk and the striking similarity between SN 2014dt and SN 2005hk implies that a comparable amount of 56Ni would have been synthesized in the explosion of SN 2014dt. There are several explosion scenarios proposed for these peculiar events. Being one of the brightest and closest SN! , SN 2014dt is an ideal candidate for long term monitoring. Late phase observations are very essential to understand the progenitor system and the actual explosion scenario for these events.

  14. Hierarchical Models for Type Ia Supernova Light Curves in the Optical and Near Infrared

    Science.gov (United States)

    Mandel, Kaisey; Narayan, G.; Kirshner, R. P.

    2011-01-01

    I have constructed a comprehensive statistical model for Type Ia supernova optical and near infrared light curves. Since the near infrared light curves are excellent standard candles and are less sensitive to dust extinction and reddening, the combination of near infrared and optical data better constrains the host galaxy extinction and improves the precision of distance predictions to SN Ia. A hierarchical probabilistic model coherently accounts for multiple random and uncertain effects, including photometric error, intrinsic supernova light curve variations and correlations across phase and wavelength, dust extinction and reddening, peculiar velocity dispersion and distances. An improved BayeSN MCMC code is implemented for computing probabilistic inferences for individual supernovae and the SN Ia and host galaxy dust populations. I use this hierarchical model to analyze nearby Type Ia supernovae with optical and near infared data from the PAIRITEL, CfA3, and CSP samples and the literature. Using cross-validation to test the robustness of the model predictions, I find that the rms Hubble diagram scatter of predicted distance moduli is 0.11 mag for SN with optical and near infrared data versus 0.15 mag for SN with only optical data. Accounting for the dispersion expected from random peculiar velocities, the rms intrinsic prediction error is 0.08-0.10 mag for SN with both optical and near infrared light curves. I discuss results for the inferred intrinsic correlation structures of the optical-NIR SN Ia light curves and the host galaxy dust distribution captured by the hierarchical model. The continued observation and analysis of Type Ia SN in the optical and near infrared is important for improving their utility as precise and accurate cosmological distance indicators.

  15. Manganese in Dwarf Galaxies as a Probe of Type Ia Supernovae

    Science.gov (United States)

    De Los Reyes, Mithi; Kirby, Evan N.

    2018-06-01

    Despite the importance of thermonuclear or Type Ia supernovae (SNe) as standard candles in astrophysics, the physical mechanisms behind Type Ia SNe are still poorly constrained. Theoretically, the nucleosynthetic yields from Type Ia SNe can distinguish among different models of Type Ia explosions. For example, neutron-rich elements such as manganese (Mn) are sensitive probes of the physics of Type Ia SNe because their abundances are correlated to the density of the progenitor white dwarf. Since dwarf galaxies' chemical evolution is dominated by Type Ia SNe at late times, Type Ia nucleosynthetic yields can be indirectly inferred from stellar abundances in dwarf galaxies. However, previous measurements of Mn in dwarf galaxies are too incomplete to draw definitive conclusions on the Type Ia explosion mechanism. In this work, we therefore use medium-resolution stellar spectroscopy from Keck/DEIMOS to measure Mn abundances in red giants in several Milky Way satellite galaxies. We report average Type Ia Mn yields computed from these abundances, and we discuss the implications for Type Ia supernova physics.

  16. Near-infrared line identification in type Ia supernovae during the transitional phase

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Brian; Baron, E.; Wisniewski, John P.; Miller, Timothy R. [Homer L. Dodge Department of Physics and Astronomy, 440 West Brooks Street, Room 100, Norman, OK 73019 (United States); Parrent, Jerod T. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Thomas, R. C. [Computational Cosmology Center, Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 50B-4206, Berkeley, CA 94720 (United States); Marion, G. H. [University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States)

    2014-09-10

    We present near-infrared synthetic spectra of a delayed-detonation hydrodynamical model and compare them to observed spectra of four normal Type Ia supernovae ranging from day +56.5 to day +85. This is the epoch during which supernovae are believed to be undergoing the transition from the photospheric phase, where spectra are characterized by line scattering above an optically thick photosphere, to the nebular phase, where spectra consist of optically thin emission from forbidden lines. We find that most spectral features in the near-infrared can be accounted for by permitted lines of Fe II and Co II. In addition, we find that [Ni II] fits the emission feature near 1.98 μm, suggesting that a substantial mass of {sup 58}Ni exists near the center of the ejecta in these objects, arising from nuclear burning at high density.

  17. Type Ia Supernova Intrinsic Magnitude Dispersion and the Fitting of Cosmological Parameters

    Science.gov (United States)

    Kim, A. G.

    2011-02-01

    I present an analysis for fitting cosmological parameters from a Hubble diagram of a standard candle with unknown intrinsic magnitude dispersion. The dispersion is determined from the data, simultaneously with the cosmological parameters. This contrasts with the strategies used to date. The advantages of the presented analysis are that it is done in a single fit (it is not iterative), it provides a statistically founded and unbiased estimate of the intrinsic dispersion, and its cosmological-parameter uncertainties account for the intrinsic-dispersion uncertainty. Applied to Type Ia supernovae, my strategy provides a statistical measure to test for subtypes and assess the significance of any magnitude corrections applied to the calibrated candle. Parameter bias and differences between likelihood distributions produced by the presented and currently used fitters are negligibly small for existing and projected supernova data sets.

  18. Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms

    International Nuclear Information System (INIS)

    Nomoto, K.

    1982-01-01

    The evolution of carbon-oxygen white dwarfs accreting helium in binary systems has been investigated from the onset of accretion up to the point at which a thermonuclear explosion occurs as a plausible explosion model for a Type I supernova. Although the accreted material has been assumed to be helium, our results should also be applicable to the more general case of accretion of hydrogen-rich material, since hydrogen shell burning leads to the development of a helium zone. Several cases with different accretion rates of helium and different initial masses of the white dwarf have been studied. The relationship between the conditions in the binary system and the triggering mechanism for the supernova explosion is discussed, especially for the cases with relatively slow accretion rate. It is found that the growth of a helium zone on the carbon-oxygen core leads to a supernova explosion which is triggered either by the off-center helium detonation for slow and intermediate accretion rates, or by the carbon deflagration for slow and rapid accretion rates. Both helium detonation and carbon deflagration are possible for the case for the slow accretion since, in this case, the initial mass of the white dwarf is an important parameter for determining the mode of ignition. Finally, various modes of building up the helium zone on the white dwarf, namely, direct transfer of helium from the companion star and the various types and strength of the hydrogen shell flashes are discussed in some detail

  19. Investigating the Nature of Dark Energy using Type Ia Supernovae with WFIRST-AFTA Space Mission

    Science.gov (United States)

    Perlmutter, Saul

    Scientifically, the WFIRST supernova program is unique: it makes possible a dark energy measurement that no other space mission or ground-based project is addressing, a measurement that will set the standard in determining the expansion history of the universe continuously from low to high redshifts (0.1 Definition Team several participants in this proposal have developed a first version of a supernova program, described in the WFIRST SDT Report. While this program was judged to be a robust one, and the estimates of the sensitivity to the cosmological parameters were felt to be reliable, due to limitations of time the analysis was clearly limited in depth on a number of issues. The objective of this proposal is to further develop this program. Technically this is the WFIRST measurement that arguably requires the most advanced project development, since it requires near-real-time analysis and follow-up with WFIRST, and since it is using the IFU spectrograph in the WFI package, the IFU being the WFIRST instrument that does not yet have a completely consistent set of specifications in the design iteration of the SDT report. In this proposal for the WFIRST Scientific Investigation Team, focused primarily on the supernova dark energy measurements, we address these crucial technical needs by bringing the larger supernova community's expertise on the science elements together with a smaller focused team that can produce the specific deliverables. Thus the objectives of this 5 year proposal are the following: 1. Development of scientific performance requirements for the study of Dark Energy using Type Ia supernovae 2. Design an observing strategy using the Wide Field Instrument (WFI) and the Integral Field Spectrometer Unit (IFU) 3. Development of science data analysis techniques and data analysis software 4. Development of ground and space calibration requirements and estimating realistic correlated errors, both statistical and systematic 5. Development of simulations and

  20. Nebular phase observations of the Type-Ib supernova iPTF13bvn favour a binary progenitor

    Science.gov (United States)

    Kuncarayakti, H.; Maeda, K.; Bersten, M. C.; Folatelli, G.; Morrell, N.; Hsiao, E. Y.; González-Gaitán, S.; Anderson, J. P.; Hamuy, M.; de Jaeger, T.; Gutiérrez, C. P.; Kawabata, K. S.

    2015-07-01

    Aims: We present and analyse late-time observations of the Type-Ib supernova with possible pre-supernova progenitor detection, iPTF13bvn, which were done ~300 days after the explosion. We discuss them in the context of constraints on the supernova's progenitor. Previous studies have proposed two possible natures for the progenitor of the supernova, i.e. a massive Wolf-Rayet star or a lower-mass star in a close binary system. Methods: Our observations show that the supernova has entered the nebular phase, with the spectrum dominated by Mg I]λλ4571, [O I]λλ6300, 6364, and [Ca II]λλ7291, 7324 emission lines. We measured the emission line fluxes to estimate the core oxygen mass and compared the [O I]/[Ca II] line ratio with other supernovae. Results.The core oxygen mass of the supernova progenitor was estimated to be ≲0.7 M⊙, which implies initial progenitor mass that does not exceed ~15-17 M⊙.Since the derived mass is too low for a single star to become a Wolf-Rayet star, this result lends more support to the binary nature of the progenitor star of iPTF13bvn. The comparison of [O I]/[Ca II] line ratio with other supernovae also shows that iPTF13bvn appears to be in close association with the lower mass progenitors of stripped-envelope and Type-II supernovae. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU); Chilean Telescope Time Allocation Committee proposal CN2014A-91.

  1. SNaX: A Database of Supernova X-Ray Light Curves

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Mathias; Dwarkadas, Vikram V., E-mail: Mathias_Ross@msn.com, E-mail: vikram@oddjob.uchicago.edu [Astronomy and Astrophysics, University of Chicago, 5640 S Ellis Avenue, ERC 569, Chicago, IL 60637 (United States)

    2017-06-01

    We present the Supernova X-ray Database (SNaX), a compilation of the X-ray data from young supernovae (SNe). The database includes the X-ray fluxes and luminosities of young SNe, from days to years after outburst. The original goal and intent of this study was to present a database of Type IIn SNe (SNe IIn), which we have accomplished. Our ongoing goal is to expand the database to include all SNe for which published data are available. The database interface allows one to search for SNe using various criteria, plot all or selected data points, and download both the data and the plot. The plotting facility allows for significant customization. There is also a facility for the user to submit data that can be directly incorporated into the database. We include an option to fit the decay of any given SN light curve with a power-law. The database includes a conversion of most data points to a common 0.3–8 keV band so that SN light curves may be directly compared with each other. A mailing list has been set up to disseminate information about the database. We outline the structure and function of the database, describe its various features, and outline the plans for future expansion.

  2. SNaX: A Database of Supernova X-Ray Light Curves

    International Nuclear Information System (INIS)

    Ross, Mathias; Dwarkadas, Vikram V.

    2017-01-01

    We present the Supernova X-ray Database (SNaX), a compilation of the X-ray data from young supernovae (SNe). The database includes the X-ray fluxes and luminosities of young SNe, from days to years after outburst. The original goal and intent of this study was to present a database of Type IIn SNe (SNe IIn), which we have accomplished. Our ongoing goal is to expand the database to include all SNe for which published data are available. The database interface allows one to search for SNe using various criteria, plot all or selected data points, and download both the data and the plot. The plotting facility allows for significant customization. There is also a facility for the user to submit data that can be directly incorporated into the database. We include an option to fit the decay of any given SN light curve with a power-law. The database includes a conversion of most data points to a common 0.3–8 keV band so that SN light curves may be directly compared with each other. A mailing list has been set up to disseminate information about the database. We outline the structure and function of the database, describe its various features, and outline the plans for future expansion.

  3. Supernova neutrinos

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In the first part of his in-depth article on the 1987 supernova, David Schramm of the University of Chicago and the NASA/Fermilab Astrophysics Centre reviewed the background to supernovae, the composition of massive stars and the optical history of SN 1987A, and speculated on what the 1987 remnant might be. In such a Type II supernova, gravitational pressure crushes the atoms of the star's interior producing neutron matter, or even a black hole, and releasing an intense burst of neutrinos. 1987 was the first time that physicists were equipped (but not entirely ready!) to intercept these particles, and in the second part of his article, David Schramm covers the remarkable new insights from the science of supernova neutrino astronomy, born on 23 February 1987

  4. The cosmic transparency measured with Type Ia supernovae: implications for intergalactic dust

    Science.gov (United States)

    Goobar, Ariel; Dhawan, Suhail; Scolnic, Daniel

    2018-04-01

    Observations of high-redshift Type Ia supernovae (SNe Ia) are used to study the cosmic transparency at optical wavelengths. Assuming a flat ΛCDM cosmological model based on BAO and CMB results, redshift dependent deviations of SN Ia distances are used to constrain mechanisms that would dim light. The analysis is based on the most recent Pantheon SN compilation, for which there is a 0.03± 0.01 {(stat)} mag discrepancy in the distant supernova distance moduli relative to the ΛCDM model anchored by supernovae at z measurements can be modeled with a cosmic dust density Ω _IGM^dust = 8 \\cdot 10^{-5} (1+z)^{-1}, corresponding to an average attenuation of 2 . 10-5 mag Mpc-1 in V-band. Forthcoming SN Ia studies may provide a definitive measurement of the IGM dust properties, while still providing an unbiased estimate of cosmological parameters by introducing additional parameters in the global fits to the observations.

  5. A GRB and Broad-lined Type Ic Supernova from a Single Central Engine

    Science.gov (United States)

    Barnes, Jennifer; Duffell, Paul C.; Liu, Yuqian; Modjaz, Maryam; Bianco, Federica B.; Kasen, Daniel; MacFadyen, Andrew I.

    2018-06-01

    Unusually high velocities (≳0.1c) and correspondingly high kinetic energies have been observed in a subset of Type Ic supernovae (so-called “broad-lined Ic” supernovae; SNe Ic-BL), prompting a search for a central engine model capable of generating such energetic explosions. A clue to the explosion mechanism may lie in the fact that all supernovae that accompany long-duration gamma-ray bursts (GRBs) belong to the SN Ic-BL class. Using a combination of two-dimensional relativistic hydrodynamics and radiation transport calculations, we demonstrate that the central engine responsible for long GRBs can also trigger an SN Ic-BL. We find that a reasonable GRB engine injected into a stripped Wolf–Rayet progenitor produces a relativistic jet with energy ∼1051 erg, as well as an SN whose synthetic light curves and spectra are fully consistent with observed SNe Ic-BL during the photospheric phase. As a result of the jet’s asymmetric energy injection, the SN spectra and light curves depend on viewing angle. The impact of viewing angle on the spectrum is particularly pronounced at early times, while the viewing-angle dependence for the light curves (∼10% variation in bolometric luminosity) persists throughout the photospheric phase.

  6. Numerical models of protoneutron stars and type-II supernovae - recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Janka, H T [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    1996-11-01

    The results of recent multi-dimensional simulations of type-II supernovae are reviewed. They show that convective instabilities in the collapsed stellar core might play an important role already during the first second after the formation of the supernovae shock. Convectively unstable situations occur below and near the neutrinosphere as well as in the neutrino-heated region between the nascent neutron star and the supernova shock after the latter has stalled at a radiums of typically 100-200 km. While convective overturn in the layer of neutrino energy deposition clearly helps the explosion to develop and potentially provides an explanation of strong mantle and envelope mixing, asphericities, and non-uniform {sup 56}Ni distribution observed in supernova SN 1987A, its presence and importance depends on the strength of the neutrino heating and thus on the size of the neutrino fluxes from the neutrino star. Convection in the hot-bubble region can only be developed if the growth timescale of the instabilities and the heating timescale are both shorter than the accretion timescale of the matter advected through the stagnant shock. For too small neutrino luminosities this requirement is not fulfilled and convective activity cannot develop, leading to very weak explosions or even fizzling models, just as in the one-dimensional situations. Convectively enhanced neutrino luminosities from the protoneutron star can therefore provide an essential condition for the explosion of the star. Very recent two-dimensional, self-consistent, general relativistic simulations of the cooling of a newly-formed neutron star demonstrate and confirm the possibility that Ledoux convection, driven by negative lepton number and entropy gradients, may encompass the whole protoneutron star within less than one second and can lead to an increase of the neutrino fluxes by up to a factor of two. (author) 9 figs., refs.

  7. Calibrating the Type Ia Supernova Distance Scale Using Surface Brightness Fluctuations

    Science.gov (United States)

    Potter, Cicely; Jensen, Joseph B.; Blakeslee, John; Milne, Peter; Garnavich, Peter M.; Brown, Peter

    2018-06-01

    We have observed 20 supernova host galaxies with HST WFC3/IR in the F110W filter, and prepared the data for Surface Brightness Fluctuation (SBF) distance measurements. The purpose of this study is to determine if there are any discrepancies between the SBF distance scale and the type-Ia SN distance scale, for which local calibrators are scarce. We have now measured SBF magnitudes to all early-type galaxies that have hosted SN Ia within 80 Mpc for which SBF measurements are possible. SBF is the only distance measurement technique with statistical uncertainties comparable to SN Ia that can be applied to galaxies out to 80 Mpc.

  8. EVIDENCE FOR A CORRELATION BETWEEN THE Si II λ4000 WIDTH AND TYPE Ia SUPERNOVA COLOR

    International Nuclear Information System (INIS)

    Nordin, J.; Oestman, L.; Goobar, A.; Balland, C.; Lampeitl, H.; Nichol, R. C.; Sako, M.; Schneider, D. P.; Smith, M.; Sollerman, J.; Wheeler, J. C.

    2011-01-01

    We study the pseudo-equivalent width of the Si II λ4000 feature of Type Ia supernovae (SNe Ia) in the redshift range 0.0024 ≤ z ≤ 0.634. We find that this spectral indicator correlates with the light curve color excess (SALT2c) as well as previously defined spectroscopic subclasses (Branch types) and the evolution of the Si II λ6150 velocity, i.e., the so-called velocity gradient. Based on our study of 55 objects from different surveys, we find indications that the Si II λ4000 spectral indicator could provide important information to improve cosmological distance measurements with SNe Ia.

  9. Magnetohydrodynamical Effects on Nuclear Deflagration Fronts in Type Ia Supernovae

    Science.gov (United States)

    Hristov, Boyan; Collins, David C.; Hoeflich, Peter; Weatherford, Charles A.; Diamond, Tiara R.

    2018-05-01

    This article presents a study of the effects of magnetic fields on non-distributed nuclear burning fronts as a possible solution to a fundamental problem for the thermonuclear explosion of a Chandrasekhar mass ({M}Ch}) white dwarf (WD), the currently favored scenario for the majority of Type Ia SNe. All existing 3D hydrodynamical simulations predict strong global mixing of the burning products due to Rayleigh–Taylor (RT) instabilities, which contradicts observations. As a first step toward studying the flame physics, we present a set of computational magnet-hydrodynamic models in rectangular flux tubes, resembling a small inner region of a WD. We consider initial magnetic fields up to {10}12 {{G}} of various orientations. We find an increasing suppression of RT instabilities starting at about {10}9 {{G}}. The front speed tends to decrease with increasing magnitude up to about {10}11 {{G}}. For even higher fields new small-scale, finger-like structures develop, which increase the burning speed by a factor of 3 to 4 above the field-free RT-dominated regime. We suggest that the new instability may provide sufficiently accelerated energy production during the distributed burning regime to go over the Chapman–Jougey limit and trigger a detonation. Finally, we discuss the possible origins of high magnetic fields during the final stage of the progenitor evolution or the explosion.

  10. Masses of supernova progenitors

    International Nuclear Information System (INIS)

    Tinsley, B.M.

    1977-01-01

    The possible nature and masses of supernovae progenitors, and the bearing of empirical results on some unsolved theoretical problems concerning the origin of supernovae, are discussed. The author concentrates on two main questions: what is the lower mass limit for stars to die explosively and what stars initiate type I supernovae. The evidence considered includes local supernova rates, empirical estimates of msub(w) (the upper mass limit for death as a white dwarf), the distributions of supernovae among stellar populations in galaxies and the colors of supernova producing galaxies. (B.D.)

  11. The Carnegie Supernova Project. I. Third Photometry Data Release of Low-redshift Type Ia Supernovae and Other White Dwarf Explosions

    Science.gov (United States)

    Krisciunas, Kevin; Contreras, Carlos; Burns, Christopher R.; Phillips, M. M.; Stritzinger, Maximilian D.; Morrell, Nidia; Hamuy, Mario; Anais, Jorge; Boldt, Luis; Busta, Luis; Campillay, Abdo; Castellón, Sergio; Folatelli, Gastón; Freedman, Wendy L.; González, Consuelo; Hsiao, Eric Y.; Krzeminski, Wojtek; Persson, Sven Eric; Roth, Miguel; Salgado, Francisco; Serón, Jacqueline; Suntzeff, Nicholas B.; Torres, Simón; Filippenko, Alexei V.; Li, Weidong; Madore, Barry F.; DePoy, D. L.; Marshall, Jennifer L.; Rheault, Jean-Philippe; Villanueva, Steven

    2017-11-01

    We present final natural-system optical (ugriBV) and near-infrared (YJH) photometry of 134 supernovae (SNe) with probable white dwarf progenitors that were observed in 2004-2009 as part of the first stage of the Carnegie Supernova Project (CSP-I). The sample consists of 123 Type Ia SNe, 5 Type Iax SNe, 2 super-Chandrasekhar SN candidates, 2 Type Ia SNe interacting with circumstellar matter, and 2 SN 2006bt-like events. The redshifts of the objects range from z=0.0037 to 0.0835; the median redshift is 0.0241. For 120 (90%) of these SNe, near-infrared photometry was obtained. Average optical extinction coefficients and color terms are derived and demonstrated to be stable during the five CSP-I observing campaigns. Measurements of the CSP-I near-infrared bandpasses are also described, and near-infrared color terms are estimated through synthetic photometry of stellar atmosphere models. Optical and near-infrared magnitudes of local sequences of tertiary standard stars for each supernova are given, and a new calibration of Y-band magnitudes of the Persson et al. standards in the CSP-I natural system is presented.

  12. On the O/Fe versus Fe/H relationship and the progenitors of type I supernovae

    International Nuclear Information System (INIS)

    Abia, C.; Canal, R.; Isern, J.

    1991-01-01

    The new observational O/Fe versus Fe/H abundance relationship for halo stars is studied in terms of several models of chemical evolution for the solar neighborhood. Nucleosynthesis products from type I (both Ia and Ib) and Type II SNs are taken into account. The behavior of the O/Fe ratio for halo and disk stars is well reproduced by assuming (1) a lower iron production in SN II than in previous theoretical prescriptions, (2) the coalescence by gravitational wave radiation of two CO white dwarfs as the scenario for type Ia supernovae, and (3) stars in the Wolf-Rayet stage as progenitors of type Ib supernovae. Nevertheless, the best agreement with the observations is obtained by adopting an IMF favoring massive star formation only at very early epochs in the life of the Galaxy. Model predictions from other plausible scenarios for the origin of type I supernovae are also discussed. 41 refs

  13. Infrared and Optical Spectroscopy of Type Ia Supernovae in the Nebular Phase

    OpenAIRE

    Bowers, E. J. C.; Meikle, W. P. S.; Geballe, T. R.; Walton, N. A.; Pinto, P. A.; Dhillon, V. S.; Howell, S. B.; Harrop-Allin, M. K.

    1997-01-01

    We present near-infrared (NIR) spectra for Type Ia supernovae at epochs of 13 to 338 days after maximum blue light. Some contemporary optical spectra are also shown. All the NIR spectra exhibit considerable structure throughout the J-, H- and K-bands. In particular they exhibit a flux `deficit' in the J-band which persists as late as 175 days. This is responsible for the well-known red J-H colour. To identify the emission features and test the $^{56}$Ni hypothesis for the explosion and subseq...

  14. On type Ia supernovae and the formation of single low-mass white dwarfs

    OpenAIRE

    Justham, Stephen; Wolf, Christian; Podsiadlowski, Philipp; Han, Zhanwen

    2008-01-01

    There is still considerable debate over the progenitors of type Ia supernovae (SNe Ia). Likewise, it is not agreed how single white dwarfs with masses less than ~0.5 Msun can be formed in the field, even though they are known to exist. We consider whether single low-mass white dwarfs (LMWDs) could have been formed in binary systems where their companions have exploded as a SN Ia. In this model, the observed single LMWDs are the remnants of giant-branch donor stars whose envelopes have been st...

  15. The nebular spectra of the transitional Type Ia Supernovae 2007on and 2011iv

    DEFF Research Database (Denmark)

    Mazzali, P. A.; Ashall, C.; Pian, E.

    2018-01-01

    The nebular-epoch spectrum of the rapidly declining, 'transitional' Type Ia supernova (SN) 2007on showed double emission peaks, which have been interpreted as indicating that the SN was the result of the direct collision of two white dwarfs. The spectrum can be reproduced using two distinct...... be expected for the bolometric luminosity of the SN. This is the case for both SNe 2007on and 2011iv, also a transitional SN Ia that exploded in the same elliptical galaxy, NGC1404. Although SN 2011iv does not show double-peaked emission line profiles, the width of its emission lines is such that a two...

  16. A tomographic test of cosmological principle using the JLA compilation of type Ia supernovae

    Science.gov (United States)

    Chang, Zhe; Lin, Hai-Nan; Sang, Yu; Wang, Sai

    2018-05-01

    We test the cosmological principle by fitting a dipolar modulation of distance modulus and searching for an evolution of this modulation with respect to cosmological redshift. Based on a redshift tomographic method, we divide the Joint Light-curve Analysis compilation of supernovae of type Ia into different redshift bins, and employ a Markov-Chain Monte-Carlo method to infer the anisotropic amplitude and direction in each redshift bin. However, we do not find any significant deviations from the cosmological principle, and the anisotropic amplitude is stringently constrained to be less than a few thousandths at 95% confidence level.

  17. On the use of Type I supernovae to determine the Hubble constant

    International Nuclear Information System (INIS)

    Branch, D.

    1979-01-01

    The derivation of the value of H 0 from composite photometric and spectroscopic data on Type I supernovae is improved in two ways. The formal result and its internal rms error become H 0 = 56 +- 15 km s -1 Mpc -1 . Comparison of temperatures inferred both from B-V colours and from fitting blackbody curves to flux distributions indicates that the observed B-V colours should be corrected to allow for the presence of lines. The correction would reduce the value obtained for H 0 . Several additional possibilities of systematic error are discussed. (author)

  18. THE MASSIVE PROGENITOR OF THE TYPE II-LINEAR SUPERNOVA 2009kr

    International Nuclear Information System (INIS)

    Elias-Rosa, Nancy; Van Dyk, Schuyler D.; Li Weidong; Miller, Adam A.; Silverman, Jeffrey M.; Ganeshalingam, Mohan; Filippenko, Alexei V.; Steele, Thea N.; Bloom, Joshua S.; Griffith, Christopher V.; Kleiser, Io K. W.; Boden, Andrew F.; Kasliwal, Mansi M.; Vinko, Jozsef; Cuillandre, Jean-Charles; Foley, Ryan J.

    2010-01-01

    We present early-time photometric and spectroscopic observations of supernova (SN) 2009kr in NGC 1832. We find that its properties to date support its classification as Type II-linear (SN II-L), a relatively rare subclass of core-collapse supernovae (SNe). We have also identified a candidate for the SN progenitor star through comparison of pre-explosion, archival images taken with WFPC2 on board the Hubble Space Telescope with SN images obtained using adaptive optics plus NIRC2 on the 10 m Keck-II telescope. Although the host galaxy's substantial distance (∼26 Mpc) results in large uncertainties in the relative astrometry, we find that if this candidate is indeed the progenitor, it is a highly luminous (M 0 V = -7.8 mag) yellow supergiant with initial mass ∼18-24 M sun . This would be the first time that an SN II-L progenitor has been directly identified. Its mass may be a bridge between the upper initial mass limit for the more common Type II-plateau SNe and the inferred initial mass estimate for one Type II-narrow SN.

  19. PTF 12gzk—A rapidly declining, high-velocity type Ic radio supernova

    Energy Technology Data Exchange (ETDEWEB)

    Horesh, Assaf; Kulkarni, Shrinivas R. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Corsi, Alessandra [Department of Physics, The George Washington University, 725 21st Street, NW, Washington, DC 20052 (United States); Frail, Dale A. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Cenko, S. Bradley [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Ben-Ami, Sagi; Gal-Yam, Avishay; Yaron, Ofer; Arcavi, Iair; Ofek, Eran O. [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Kasliwal, Mansi M. [Carnegie Institution for Science, Department of Terrestrial Magnetism, 5241 Broad Branch Road, Washington, DC 20008 (United States)

    2013-11-20

    Only a few cases of Type Ic supernovae (SNe) with high-velocity ejecta (≥0.2 c) have been discovered and studied. Here, we present our analysis of radio and X-ray observations of the Type Ic SN PTF 12gzk. The radio emission declined less than 10 days after explosion, suggesting SN ejecta expanding at high velocity (∼0.3 c). The radio data also indicate that the density of the circumstellar material (CSM) around the supernova is lower by a factor of ∼10 than the CSM around normal Type Ic SNe. PTF 12gzk may therefore be an intermediate event between a 'normal' SN Ic and a gamma-ray-burst-SN-like event. Our observations of this rapidly declining radio SN at a distance of 58 Mpc demonstrates the potential to detect many additional radio SNe, given the new capabilities of the Very Large Array (improved sensitivity and dynamic scheduling), which are currently missed, leading to a biased view of radio SNe Ic. Early optical discovery followed by rapid radio observations would provide a full description of the ejecta velocity distribution and CSM densities around stripped massive star explosions as well as strong clues about the nature of their progenitor stars.

  20. PTF 12gzk—A rapidly declining, high-velocity type Ic radio supernova

    International Nuclear Information System (INIS)

    Horesh, Assaf; Kulkarni, Shrinivas R.; Corsi, Alessandra; Frail, Dale A.; Cenko, S. Bradley; Ben-Ami, Sagi; Gal-Yam, Avishay; Yaron, Ofer; Arcavi, Iair; Ofek, Eran O.; Kasliwal, Mansi M.

    2013-01-01

    Only a few cases of Type Ic supernovae (SNe) with high-velocity ejecta (≥0.2 c) have been discovered and studied. Here, we present our analysis of radio and X-ray observations of the Type Ic SN PTF 12gzk. The radio emission declined less than 10 days after explosion, suggesting SN ejecta expanding at high velocity (∼0.3 c). The radio data also indicate that the density of the circumstellar material (CSM) around the supernova is lower by a factor of ∼10 than the CSM around normal Type Ic SNe. PTF 12gzk may therefore be an intermediate event between a 'normal' SN Ic and a gamma-ray-burst-SN-like event. Our observations of this rapidly declining radio SN at a distance of 58 Mpc demonstrates the potential to detect many additional radio SNe, given the new capabilities of the Very Large Array (improved sensitivity and dynamic scheduling), which are currently missed, leading to a biased view of radio SNe Ic. Early optical discovery followed by rapid radio observations would provide a full description of the ejecta velocity distribution and CSM densities around stripped massive star explosions as well as strong clues about the nature of their progenitor stars.

  1. On the Possibility of Fast Radio Bursts from Inside Supernovae: The Case of SN 1986J

    Science.gov (United States)

    Bietenholz, Michael F.; Bartel, Norbert

    2017-12-01

    We discuss the possibility of obtaining fast radio bursts (FRBs) from the interior of supernovae, in particular SN 1986J. Young neutron stars are involved in many of the possible scenarios for the origin of FRBs, and it has been suggested that the high dispersion measures observed in FRBs might be produced by the ionized material in the ejecta of associated supernovae. Using VLA and VLBI measurements of the Type IIn SN 1986J, which has a central compact component not seen in other supernovae, we can directly observe for the first time radio signals, which originate in the interior of a young (∼30 year old) supernova. We show that at an age of 30 years, any FRB signal at ∼1 GHz would still be largely absorbed by the ejecta. By the time the ejecta have expanded so that a 1 GHz signal would be visible, the internal dispersion measure due to the SN ejecta would be below the values typically seen for FRBs. The high dispersion measures seen for the FRBs detected so far could of course be due to propagation through the intergalactic medium provided that the FRBs are at distances much larger than that of SN 1986J, which is 10 Mpc. We conclude that if FRBs originate in Type II SNe/SNRs, they would likely not become visible until 60 ∼ 200 years after the SN explosion.

  2. Supernova 1604, Kepler’s Supernova, and Its Remnant

    NARCIS (Netherlands)

    Vink, J.; Alsabti, A.W.; Murdin, P.

    2016-01-01

    Supernova 1604 is the last galactic supernova for which historical records exist. Johannes Kepler’s name is attached to it, as he published a detailed account of the observations made by himself and European colleagues. Supernova 1604 was very likely a type Ia supernova, which exploded 350–750 pc

  3. SN 2016coi/ASASSN-16fp: An example of residual helium in a type Ic supernova?

    Science.gov (United States)

    Prentice, S. J.; Ashall, C.; Mazzali, P. A.; Zhang, J.-J.; James, P. A.; Wang, X.-F.; Vinkó, J.; Percival, S.; Short, L.; Piascik, A.; Huang, F.; Mo, J.; Rui, L.-M.; Wang, J.-G.; Xiang, D.-F.; Xin, Y.-X.; Yi, W.-M.; Yu, X.-G.; Zhai, Q.; Zhang, T.-M.; Hosseinzadeh, G.; Howell, D. A.; McCully, C.; Valenti, S.; Cseh, B.; Hanyecz, O.; Kriskovics, L.; Pál, A.; Sárneczky, K.; Sódor, Á.; Szakáts, R.; Székely, P.; Varga-Verebélyi, E.; Vida, K.; Bradac, M.; Reichart, D. E.; Sand, D.; Tartaglia, L.

    2018-05-01

    The optical observations of Ic-4 supernova (SN) 2016coi/ASASSN-16fp, from ˜2 to ˜450 days after explosion, are presented along with analysis of its physical properties. The SN shows the broad lines associated with SNe Ic-3/4 but with a key difference. The early spectra display a strong absorption feature at ˜5400 Åwhich is not seen in other SNe Ic-3/4 at this epoch. This feature has been attributed to HeIin the literature. Spectral modelling of the SN in the early photospheric phase suggests the presence of residual He in a C/O dominated shell. However, the behaviour of the HeIlines is unusual when compared with He-rich SNe, showing relatively low velocities and weakening rather than strengthening over time. The SN is found to rise to peak ˜16 d after core-collapse reaching a bolometric luminosity of Lp ˜ 3 × 1042 erg s-1. Spectral models, including the nebular epoch, show that the SN ejected 2.5 - 4 M⊙of material, with ˜1.5 M⊙below 5000 km s-1, and with a kinetic energy of (4.5 - 7) × 1051 erg. The explosion synthesised ˜0.14 M⊙of 56Ni. There are significant uncertainties in E(B - V)host and the distance however, which will affect Lp and MNi. SN 2016coi exploded in a host similar to the Large Magellanic Cloud (LMC) and away from star-forming regions. The properties of the SN and the host-galaxy suggest that the progenitor had MZAMS of 23 - 28 M⊙and was stripped almost entirely down to its C/O core at explosion.

  4. Late time optical spectra from the /sup 56/Ni model for Type I supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Axelrod, T.S.

    1980-07-01

    The hypothesis that the optical luminosity of Type I supernovae results from the radioactive decay of /sup 56/Ni synthesized and ejected by the explosion has been investigated by numerical simulation of the optical spectrum resulting from a homologously expanding shell composed initially of pure /sup 56/Ni core. This model, which neglects the effects of material external to the /sup 56/Ni core, is expected to provide a reasonable representation of the supernova at late times when the star is nearly transparent to optical photons. The numerical simulation determines the temperature, ionization state, and non-LTE level populations which result from energy deposition by the radioactive decay products of /sup 56/Ni and /sup 56/Co. The optical spectrum includes the effects of both allowed and forbidden lines. The optical spectra resulting from the simulation are found to be sensitive to the mass and ejection velocity of the /sup 56/Ni shell. A range of these parameters has been found which results in good agreement with the observed spectra of SN1972e over a considerable range of time. In particular, evidence for the expected decaying abundance of /sup 56/Co has been found in the spectra of SN1972e. These results are used to assess the validity of the /sup 56/Ni model and set limits on the mass and explosion mechanism of the Type I progenitor. The possibilities for improvement of the numerical model are discussed and future atomic data requirements defined.

  5. Highly reddened Type Ia supernova SN 2004ab: another case of anomalous extinction

    Science.gov (United States)

    Chakradhari, N. K.; Sahu, D. K.; Anupama, G. C.; Prabhu, T. P.

    2018-02-01

    We present optical photometric and spectroscopic data for supernova SN 2004ab, a highly reddened normal Type Ia supernova. The total reddening is estimated as E(B - V) = 1.70 ± 0.05 mag. The intrinsic decline-rate parameter Δm15(B)true is 1.27 ± 0.05, and the B-band absolute magnitude at maximum MB^{max} is -19.31 ± 0.25 mag. The host galaxy NGC 5054 is found to exhibit anomalous extinction with a very low value of RV = 1.41 ± 0.06 in the direction of SN 2004ab. The peak bolometric luminosity is derived as log L_bol^max = 43.10 ± 0.07 erg s-1. The photospheric velocity measured from the absorption minimum of the Si II λ6355 line shows a velocity gradient of \\dot{v} = 90 km s-1 d-1, indicating that SN 2004ab is a member of the high velocity gradient (HVG) subgroup. The ratio of the strengths of the Si II λ5972 and λ6355 absorption lines, R(Si II), is estimated as 0.37, while their pseudo-equivalent widths suggest that SN 2004ab belongs to the broad line (BL) type subgroup.

  6. Late time optical spectra from the 56Ni model for Type I supernovae

    International Nuclear Information System (INIS)

    Axelrod, T.S.

    1980-07-01

    The hypothesis that the optical luminosity of Type I supernovae results from the radioactive decay of 56 Ni synthesized and ejected by the explosion has been investigated by numerical simulation of the optical spectrum resulting from a homologously expanding shell composed initially of pure 56 Ni core. This model, which neglects the effects of material external to the 56 Ni core, is expected to provide a reasonable representation of the supernova at late times when the star is nearly transparent to optical photons. The numerical simulation determines the temperature, ionization state, and non-LTE level populations which result from energy deposition by the radioactive decay products of 56 Ni and 56 Co. The optical spectrum includes the effects of both allowed and forbidden lines. The optical spectra resulting from the simulation are found to be sensitive to the mass and ejection velocity of the 56 Ni shell. A range of these parameters has been found which results in good agreement with the observed spectra of SN1972e over a considerable range of time. In particular, evidence for the expected decaying abundance of 56 Co has been found in the spectra of SN1972e. These results are used to assess the validity of the 56 Ni model and set limits on the mass and explosion mechanism of the Type I progenitor. The possibilities for improvement of the numerical model are discussed and future atomic data requirements defined

  7. Timescale stretch parameterization of Type Ia supernova B-band light curves

    International Nuclear Information System (INIS)

    Goldhaber, G.; Groom, D.E.; Kim, A.; Aldering, G.; Astier, P.; Conley, A.; Deustua, S.E.; Ellis, R.; Fabbro, S.; Fruchter, A.S.; Goobar, A.; Hook, I.; Irwin, M.; Kim, M.; Knop, R.A.; Lidman, C.; McMahon, R.; Nugent, P.E.; Pain, R.; Panagia, N.; Pennypacker, C.R.; Perlmutter, S.; Ruiz-Lapuente, P.; Schaefer, B.; Walton, N.A.; York, T.

    2001-01-01

    R-band intensity measurements along the light curve of Type Ia supernovae discovered by the Cosmology Project (SCP) are fitted in brightness to templates allowing a free parameter the time-axis width factor w identically equal to s times (1+z). The data points are then individually aligned in the time-axis, normalized and K-corrected back to the rest frame, after which the nearly 1300 normalized intensity measurements are found to lie on a well-determined common rest-frame B-band curve which we call the ''composite curve.'' The same procedure is applied to 18 low-redshift Calan/Tololo SNe with Z < 0.11; these nearly 300 B-band photometry points are found to lie on the composite curve equally well. The SCP search technique produces several measurements before maximum light for each supernova. We demonstrate that the linear stretch factor, s, which parameterizes the light-curve timescale appears independent of z, and applies equally well to the declining and rising parts of the light curve. In fact, the B band template that best fits this composite curve fits the individual supernova photometry data when stretched by a factor s with chi 2/DoF ∼ 1, thus as well as any parameterization can, given the current data sets. The measurement of the data of explosion, however, is model dependent and not tightly constrained by the current data. We also demonstrate the 1 + z light-cure time-axis broadening expected from cosmological expansion. This argues strongly against alternative explanations, such as tired light, for the redshift of distant objects

  8. Fermi and Swift as supernova alarms: Alert, localization, and diagnosis of future Galactic Type Ia explosions

    Science.gov (United States)

    Wang, Xilu; Fields, Brian D.; Lien, Amy Y.

    2017-01-01

    A Galactic SNIa event could go entirely unnoticed due to the large optical and near-IR extinction in the Milky Way plane, low radio and X-ray luminosities, and a weak neutrino signal. But the recent SN2014J confirms that Type Ia supernovae emit nuclear γ- ray lines, from the 56Ni → 56Co → 56Fe radioactive decay. The energy released in these decays powers the SNIa UVOIR light curve at times after ~1 week, leading to an exponential decline. Importantly for Swift and Fermi, these decays are accompanied by γ-ray line emission, with distinct series of lines for both the 56Ni and 56Co decays, spanning 158 keV to 2.6 MeV. These lines are squarely within the Fermi/GBM energy range, and the 56Ni 158 keV line is detectable by Swift/BAT. The Galaxy is optically thin to γ-rays, so the supernova line flux will suffer negligible extinction. Both GBM and BAT have continuous and nearly all-sky coverage. Thus GBM and BAT are ideal Galactic SNIa monitors and early warning systems. We will illustrate expected GBM and BAT light curves and spectra, based on our model for SNIa γ-ray emission and transfer. We show that the supernova signal emerges as distinct from the GBM background within days after the explosion in the SN2014J shell model. Therefore, if a Galactic SNIa were to explode, there are two possibilities of confirming and sounding the alert: 1) Swift/BAT discovers the SNIa first and localizes it within arcminutes; 2) Fermi/GBM finds the SNIa first and localizes it to within ~1 degree, using the Earth occultation technique, followed up by BAT to localize it within arcminutes. After the alert of either BAT or GBM, Swift localizes it to take spectra in optical, UV, soft and hard X-rays simultaneously with both XRT and UVOT instruments.

  9. TYPE Ia SUPERNOVA LIGHT CURVE INFERENCE: HIERARCHICAL MODELS IN THE OPTICAL AND NEAR-INFRARED

    International Nuclear Information System (INIS)

    Mandel, Kaisey S.; Narayan, Gautham; Kirshner, Robert P.

    2011-01-01

    We have constructed a comprehensive statistical model for Type Ia supernova (SN Ia) light curves spanning optical through near-infrared (NIR) data. A hierarchical framework coherently models multiple random and uncertain effects, including intrinsic supernova (SN) light curve covariances, dust extinction and reddening, and distances. An improved BAYESN Markov Chain Monte Carlo code computes probabilistic inferences for the hierarchical model by sampling the global probability density of parameters describing individual SNe and the population. We have applied this hierarchical model to optical and NIR data of 127 SNe Ia from PAIRITEL, CfA3, Carnegie Supernova Project, and the literature. We find an apparent population correlation between the host galaxy extinction A V and the ratio of total-to-selective dust absorption R V . For SNe with low dust extinction, A V ∼ V ∼ 2.5-2.9, while at high extinctions, A V ∼> 1, low values of R V < 2 are favored. The NIR luminosities are excellent standard candles and are less sensitive to dust extinction. They exhibit low correlation with optical peak luminosities, and thus provide independent information on distances. The combination of NIR and optical data constrains the dust extinction and improves the predictive precision of individual SN Ia distances by about 60%. Using cross-validation, we estimate an rms distance modulus prediction error of 0.11 mag for SNe with optical and NIR data versus 0.15 mag for SNe with optical data alone. Continued study of SNe Ia in the NIR is important for improving their utility as precise and accurate cosmological distance indicators.

  10. TYPE Ia SUPERNOVA COLORS AND EJECTA VELOCITIES: HIERARCHICAL BAYESIAN REGRESSION WITH NON-GAUSSIAN DISTRIBUTIONS

    International Nuclear Information System (INIS)

    Mandel, Kaisey S.; Kirshner, Robert P.; Foley, Ryan J.

    2014-01-01

    We investigate the statistical dependence of the peak intrinsic colors of Type Ia supernovae (SNe Ia) on their expansion velocities at maximum light, measured from the Si II λ6355 spectral feature. We construct a new hierarchical Bayesian regression model, accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust, and implement a Gibbs sampler and deviance information criteria to estimate the correlation. The method is applied to the apparent colors from BVRI light curves and Si II velocity data for 79 nearby SNe Ia. The apparent color distributions of high-velocity (HV) and normal velocity (NV) supernovae exhibit significant discrepancies for B – V and B – R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B band, rather than dust reddening. The mean intrinsic B – V and B – R color differences between HV and NV groups are 0.06 ± 0.02 and 0.09 ± 0.02 mag, respectively. A linear model finds significant slopes of –0.021 ± 0.006 and –0.030 ± 0.009 mag (10 3 km s –1 ) –1 for intrinsic B – V and B – R colors versus velocity, respectively. Because the ejecta velocity distribution is skewed toward high velocities, these effects imply non-Gaussian intrinsic color distributions with skewness up to +0.3. Accounting for the intrinsic-color-velocity correlation results in corrections to A V extinction estimates as large as –0.12 mag for HV SNe Ia and +0.06 mag for NV events. Velocity measurements from SN Ia spectra have the potential to diminish systematic errors from the confounding of intrinsic colors and dust reddening affecting supernova distances

  11. Measurements of the Rate of Type Ia Supernovae at Redshift z < ~0.3 from the SDSS-II Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Dilday, Benjamin; /Rutgers U., Piscataway /Chicago U. /KICP, Chicago; Smith, Mathew; /Cape Town U., Dept. Math. /Portsmouth U.; Bassett, Bruce; /Cape Town U., Dept. Math. /South African Astron. Observ.; Becker, Andrew; /Washington U., Seattle, Astron. Dept.; Bender, Ralf; /Munich, Tech. U. /Munich U. Observ.; Castander, Francisco; /Barcelona, IEEC; Cinabro, David; /Wayne State U.; Filippenko, Alexei V.; /UC, Berkeley; Frieman, Joshua A.; /Chicago U. /Fermilab; Galbany, Lluis; /Barcelona, IFAE; Garnavich, Peter M.; /Notre Dame U. /Stockholm U., OKC /Stockholm U.

    2010-01-01

    We present a measurement of the volumetric Type Ia supernova (SN Ia) rate based on data from the Sloan Digital Sky Survey II (SDSS-II) Supernova Survey. The adopted sample of supernovae (SNe) includes 516 SNe Ia at redshift z {approx}< 0.3, of which 270 (52%) are spectroscopically identified as SNe Ia. The remaining 246 SNe Ia were identified through their light curves; 113 of these objects have spectroscopic redshifts from spectra of their host galaxy, and 133 have photometric redshifts estimated from the SN light curves. Based on consideration of 87 spectroscopically confirmed non-Ia SNe discovered by the SDSS-II SN Survey, we estimate that 2.04{sub -0.95}{sup +1.61}% of the photometric SNe Ia may be misidentified. The sample of SNe Ia used in this measurement represents an order of magnitude increase in the statistics for SN Ia rate measurements in the redshift range covered by the SDSS-II Supernova Survey. If we assume a SN Ia rate that is constant at low redshift (z < 0.15), then the SN observations can be used to infer a value of the SN rate of r{sub V} = (2.69{sub -0.30-0.01}{sup +0.34+0.21}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} at a mean redshift of {approx} 0.12, based on 79 SNe Ia of which 72 are spectroscopically confirmed. However, the large sample of SNe Ia included in this study allows us to place constraints on the redshift dependence of the SN Ia rate based on the SDSS-II Supernova Survey data alone. Fitting a power-law model of the SN rate evolution, r{sub V} (z) = A{sub p} x ((1+z)/(1+z{sub 0})){sup {nu}}, over the redshift range 0.0 < z < 0.3 with z{sub 0} = 0.21, results in A{sub p} = (3.43{sub -0.15}{sup +0.15}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} and {nu} = 2.04{sub -0.89}{sup +0.90}.

  12. Double white dwarfs as progenitors of R coronae borealis stars and type I supernovae

    International Nuclear Information System (INIS)

    Webbink, R.F.

    1984-01-01

    Close double white dwarfs should arise from the second phase of mass exchagne in close binaries which first encountered mass exchange while the more massive star was crossing the Hertzprung gap. Tidal mass transfer in these double degenerate systems is explored. The sequence of double white dwarf divides naturally into three segments. (1) Low-mass helium/helium pairs are unstable to dynamical time-scale mass transfer and probably coalesce to form helium-burning sdO stars. (2) In helium/carbon-oxygen pairs, mass transfer occurs on the time scale for gravitational radiation losses (approx.10 -4 M/sub sun/ yr -1 ); the accreted helium is quickly ignited, and the accretor expands to dimensions characteristic of R CrB stars, engulfing its companion star. (3) Carbon-oxygen/carbon-oxygen pairs are again unstable to dynamical time-scale mass transfer and, since their total masses exceed the Chandrasekhar limit, are destined to become supernovae. Inactive lifetimes in these latter systems between creation and interaction can exceed 10 10 years. Birthrates of R CrB stars and Type I supernovae by evolution of double white dwarfs are in reasonable agreement with observational estimates

  13. Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor

    International Nuclear Information System (INIS)

    Hosseinzadeh, Griffin; Howell, D. Andrew; McCully, Curtis; Arcavi, Iair; Sand, David J.; Tartaglia, Leonardo; Valenti, Stefano; Bostroem, K. Azalee; Brown, Peter; Kasen, Daniel; Hsiao, Eric Y.; Davis, Scott; Shahbandeh, Melissa; Stritzinger, Maximilian D.

    2017-01-01

    We present very early, high-cadence photometric observations of the nearby Type Ia SN 2017cbv. The light curve is unique in that it has a blue bump during the first five days of observations in the U , B , and g bands, which is clearly resolved given our photometric cadence of 5.7 hr during that time span. We model the light curve as the combination of early shocking of the supernova ejecta against a nondegenerate companion star plus a standard SN Ia component. Our best-fit model suggests the presence of a subgiant star 56 R _☉ from the exploding white dwarf, although this number is highly model-dependent. While this model matches the optical light curve well, it overpredicts the observed flux in the ultraviolet bands. This may indicate that the shock is not a blackbody, perhaps because of line blanketing in the UV. Alternatively, it could point to another physical explanation for the optical blue bump, such as interaction with circumstellar material or an unusual nickel distribution. Early optical spectra of SN 2017cbv show strong carbon (C ii λ 6580) absorption up through day −13 with respect to maximum light, suggesting that the progenitor system contains a significant amount of unburned material. These early results on SN 2017cbv illustrate the power of early discovery and intense follow-up of nearby supernovae to resolve standing questions about the progenitor systems and explosion mechanisms of SNe Ia.

  14. Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinzadeh, Griffin; Howell, D. Andrew; McCully, Curtis; Arcavi, Iair [Las Cumbres Observatory, 6740 Cortona Drive, Suite 102, Goleta, CA 93117-5575 (United States); Sand, David J.; Tartaglia, Leonardo [Department of Astronomy/Steward Observatory, 933 North Cherry Avenue, Room N204, Tucson, AZ 85721-0065 (United States); Valenti, Stefano; Bostroem, K. Azalee [Department of Physics, University of California, 1 Shields Avenue, Davis, CA 95616-5270 (United States); Brown, Peter [Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843-4242 (United States); Kasen, Daniel [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8169 (United States); Hsiao, Eric Y.; Davis, Scott; Shahbandeh, Melissa [Department of Physics, Florida State University, 77 Chieftain Way, Tallahassee, FL 32306-4350 (United States); Stritzinger, Maximilian D., E-mail: griffin@lco.global [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark)

    2017-08-20

    We present very early, high-cadence photometric observations of the nearby Type Ia SN 2017cbv. The light curve is unique in that it has a blue bump during the first five days of observations in the U , B , and g bands, which is clearly resolved given our photometric cadence of 5.7 hr during that time span. We model the light curve as the combination of early shocking of the supernova ejecta against a nondegenerate companion star plus a standard SN Ia component. Our best-fit model suggests the presence of a subgiant star 56 R {sub ☉} from the exploding white dwarf, although this number is highly model-dependent. While this model matches the optical light curve well, it overpredicts the observed flux in the ultraviolet bands. This may indicate that the shock is not a blackbody, perhaps because of line blanketing in the UV. Alternatively, it could point to another physical explanation for the optical blue bump, such as interaction with circumstellar material or an unusual nickel distribution. Early optical spectra of SN 2017cbv show strong carbon (C ii λ 6580) absorption up through day −13 with respect to maximum light, suggesting that the progenitor system contains a significant amount of unburned material. These early results on SN 2017cbv illustrate the power of early discovery and intense follow-up of nearby supernovae to resolve standing questions about the progenitor systems and explosion mechanisms of SNe Ia.

  15. Elemental gas-phase abundances of intermediate redshift type Ia supernova star-forming host galaxies

    Science.gov (United States)

    Moreno-Raya, M. E.; Galbany, L.; López-Sánchez, Á. R.; Mollá, M.; González-Gaitán, S.; Vílchez, J. M.; Carnero, A.

    2018-05-01

    The maximum luminosity of type Ia supernovae (SNe Ia) depends on the oxygen abundance of the regions of the host galaxies, where they explode. This metallicity dependence reduces the dispersion in the Hubble diagram (HD) when included with the traditional two-parameter calibration of SN Ia light-curve parameters and absolute magnitude. In this work, we use empirical calibrations to carefully estimate the oxygen abundance of galaxies hosting SNe Ia from the SDSS-II/SN (Sloan Digital Sky Survey-II Supernova) survey at intermediate redshift by measuring their emission-line intensities. We also derive electronic temperature with the direct method for a small fraction of objects for consistency. We find a trend of decreasing oxygen abundance with increasing redshift for the most massive galaxies. Moreover, we study the dependence of the HD residuals (HR) with galaxy oxygen abundance obtaining a correlation in line with those found in other works. In particular, the HR versus oxygen abundance shows a slope of -0.186 ± 0.123 mag dex-1 (1.52σ) in good agreement with theoretical expectations. This implies smaller distance modulii after corrections for SNe Ia in metal-rich galaxies. Based on our previous results on local SNe Ia, we propose this dependence to be due to the lower luminosity of the SNe Ia produced in more metal-rich environments.

  16. The Physics of Type Ia Supernova Light Curves. I. Analytic Results and Time Dependence

    International Nuclear Information System (INIS)

    Pinto, Philip A.; Eastman, Ronald G.

    2000-01-01

    We develop an analytic solution of the radiation transport problem for Type Ia supernovae (SNe Ia) and show that it reproduces bolometric light curves produced by more detailed calculations under the assumption of a constant-extinction coefficient. This model is used to derive the thermal conditions in the interior of SNe Ia and to study the sensitivity of light curves to various properties of the underlying supernova explosions. Although the model is limited by simplifying assumptions, it is adequate for demonstrating that the relationship between SNe Ia maximum-light luminosity and rate of decline is most easily explained if SNe Ia span a range in mass. The analytic model is also used to examine the size of various terms in the transport equation under conditions appropriate to maximum light. For instance, the Eulerian and advective time derivatives are each shown to be of the same order of magnitude as other order v/c terms in the transport equation. We conclude that a fully time-dependent solution to the transport problem is needed in order to compute SNe Ia light curves and spectra accurate enough to distinguish subtle differences of various explosion models. (c) 2000 The American Astronomical Society

  17. Photometric type Ia supernova candidates from the three-year SDSS-II SN survey data

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Masao; /Pennsylvania U.; Bassett, Bruce; /South African Astron. Observ. /Cape Town U., Dept. Math.; Connolly, Brian; /Pennsylvania U.; Dilday, Benjamin; /Las Cumbres Observ. /UC, Santa Barbara /Rutgers U., Piscataway; Cambell, Heather; /Portsmouth U., ICG; Frieman, Joshua A.; /Chicago U. /Chicago U., KICP /Fermilab; Gladney, Larry; /Pennsylvania U.; Kessler, Richard; /Chicago U. /Chicago U., KICP; Lampeitl, Hubert; /Portsmouth U., ICG; Marriner, John; /Fermilab; Miquel, Ramon; /Barcelona, IFAE /ICREA, Barcelona /Portsmouth U., ICG

    2011-07-01

    We analyze the three-year Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey data and identify a sample of 1070 photometric Type Ia supernova (SN Ia) candidates based on their multiband light curve data. This sample consists of SN candidates with no spectroscopic confirmation, with a subset of 210 candidates having spectroscopic redshifts of their host galaxies measured while the remaining 860 candidates are purely photometric in their identification. We describe a method for estimating the efficiency and purity of photometric SN Ia classification when spectroscopic confirmation of only a limited sample is available, and demonstrate that SN Ia candidates from SDSS-II can be identified photometrically with {approx}91% efficiency and with a contamination of {approx}6%. Although this is the largest uniform sample of SN candidates to date for studying photometric identification, we find that a larger spectroscopic sample of contaminating sources is required to obtain a better characterization of the background events. A Hubble diagram using SN candidates with no spectroscopic confirmation, but with host galaxy spectroscopic redshifts, yields a distance modulus dispersion that is only {approx}20%-40% larger than that of the spectroscopically confirmed SN Ia sample alone with no significant bias. A Hubble diagram with purely photometric classification and redshift-distance measurements, however, exhibits biases that require further investigation for precision cosmology.

  18. ON THE RATES OF TYPE Ia SUPERNOVAE IN DWARF AND GIANT HOSTS WITH ROTSE-IIIb

    International Nuclear Information System (INIS)

    Quimby, Robert M.; Yuan Fang; Akerlof, Carl; Wheeler, J. Craig; Warren, Michael S.

    2012-01-01

    We present a sample of 23 spectroscopically confirmed Type Ia supernovae (SNe Ia) that were discovered in the background of galaxy clusters targeted by ROTSE-IIIb and use up to 18 of these to determine the local (z-bar 0.05) volumetric rate. Since our survey is flux limited and thus biased against fainter objects, the pseudo-absolute magnitude distribution (pAMD) of SNe Ia in a given volume is an important concern, especially the relative frequency of high- to low-luminosity SNe Ia. We find that the pAMD derived from the volume-limited Lick Observatory Supernova Search (LOSS) sample is incompatible with the distribution of SNe Ia in a volume-limited (z B > –16) galaxies, whereas only 1 out of 79 nearby SDSS-II SNe Ia have such faint hosts. It is possible that previous works have undercounted either low-luminosity SNe Ia, SNe Ia in low-luminosity hosts, or peculiar SNe Ia (sometimes explicitly), and the total SNe Ia rate may be higher than the canonical value.

  19. PHOTOMETRIC TYPE Ia SUPERNOVA CANDIDATES FROM THE THREE-YEAR SDSS-II SN SURVEY DATA

    International Nuclear Information System (INIS)

    Sako, Masao; Connolly, Brian; Gladney, Larry; Bassett, Bruce; Dilday, Benjamin; Cambell, Heather; Lampeitl, Hubert; Nichol, Robert C.; Frieman, Joshua A.; Kessler, Richard; Marriner, John; Miquel, Ramon; Schneider, Donald P.; Smith, Mathew; Sollerman, Jesper

    2011-01-01

    We analyze the three-year Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey data and identify a sample of 1070 photometric Type Ia supernova (SN Ia) candidates based on their multiband light curve data. This sample consists of SN candidates with no spectroscopic confirmation, with a subset of 210 candidates having spectroscopic redshifts of their host galaxies measured while the remaining 860 candidates are purely photometric in their identification. We describe a method for estimating the efficiency and purity of photometric SN Ia classification when spectroscopic confirmation of only a limited sample is available, and demonstrate that SN Ia candidates from SDSS-II can be identified photometrically with ∼91% efficiency and with a contamination of ∼6%. Although this is the largest uniform sample of SN candidates to date for studying photometric identification, we find that a larger spectroscopic sample of contaminating sources is required to obtain a better characterization of the background events. A Hubble diagram using SN candidates with no spectroscopic confirmation, but with host galaxy spectroscopic redshifts, yields a distance modulus dispersion that is only ∼20%-40% larger than that of the spectroscopically confirmed SN Ia sample alone with no significant bias. A Hubble diagram with purely photometric classification and redshift-distance measurements, however, exhibits biases that require further investigation for precision cosmology.

  20. TIDALLY ENHANCED STELLAR WIND: A WAY TO MAKE THE SYMBIOTIC CHANNEL TO TYPE Ia SUPERNOVA VIABLE

    International Nuclear Information System (INIS)

    Chen, X.; Han, Z.; Tout, C. A.

    2011-01-01

    In the symbiotic (or WD+RG) channel of the single-degenerate scenario for type Ia supernovae (SNe Ia), the explosions occur a relatively long time after star formation. The birthrate from this channel would be too low to account for all observed SNe Ia were it not for some mechanism to enhance the rate of accretion on to the white dwarf. A tidally enhanced stellar wind, of the type which has been postulated to explain many phenomena related to giant star evolution in binary systems, can do this. Compared to mass stripping, this model extends the space of SNe Ia progenitors to longer orbital periods and hence increases the birthrate to about 0.0069 yr -1 for the symbiotic channel. Two symbiotic stars, T CrB and RS Oph, considered to be the most likely progenitors of SNe Ia through the symbiotic channel, are well inside the period-companion mass space predicted by our models.

  1. Handbook of supernovae

    CERN Document Server

    Murdin, Paul

    2017-01-01

    This reference work gathers all of the latest research in the supernova field areas to create a definitive source book on supernovae, their remnants and related topics. It includes each distinct subdiscipline, including stellar types, progenitors, stellar evolution, nucleosynthesis of elements, supernova types, neutron stars and pulsars, black holes, swept up interstellar matter, cosmic rays, neutrinos from supernovae, supernova observations in different wavelengths, interstellar molecules and dust. While there is a great deal of primary and specialist literature on supernovae, with a great many scientific groups around the world focusing on the phenomenon and related subdisciplines, nothing else presents an overall survey. This handbook closes that gap at last. As a comprehensive and balanced collection that presents the current state of knowledge in the broad field of supernovae, this is to be used as a basis for further work and study by graduate students, astronomers and astrophysicists working in close/r...

  2. SHADOWS OF OUR FORMER COMPANIONS: HOW THE SINGLE-DEGENERATE BINARY TYPE IA SUPERNOVA SCENARIO AFFECTS REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Gray, William J.; Raskin, Cody; Owen, J. Michael [Lawrence Livermore National Laboratory, P.O. Box 808, L-038, Livermore, CA 94550 (United States)

    2016-12-10

    Here we present three-dimensional high-resolution simulations of Type Ia supernova in the presence of a non-degenerate companion. We find that the presence of a nearby companion leaves a long-lived hole in the supernova ejecta. In particular, we aim to study the long-term evolution of this hole as the supernova ejecta interacts with the surrounding interstellar medium (ISM). Using estimates for the X-ray emission, we find that the hole generated by the companion remains for many centuries after the interaction between the ejecta and the ISM. We also show that the hole is discernible over a wide range of viewing angles and companion masses.

  3. SHADOWS OF OUR FORMER COMPANIONS: HOW THE SINGLE-DEGENERATE BINARY TYPE IA SUPERNOVA SCENARIO AFFECTS REMNANTS

    International Nuclear Information System (INIS)

    Gray, William J.; Raskin, Cody; Owen, J. Michael

    2016-01-01

    Here we present three-dimensional high-resolution simulations of Type Ia supernova in the presence of a non-degenerate companion. We find that the presence of a nearby companion leaves a long-lived hole in the supernova ejecta. In particular, we aim to study the long-term evolution of this hole as the supernova ejecta interacts with the surrounding interstellar medium (ISM). Using estimates for the X-ray emission, we find that the hole generated by the companion remains for many centuries after the interaction between the ejecta and the ISM. We also show that the hole is discernible over a wide range of viewing angles and companion masses.

  4. Detailed spectral and morphological analysis of the shell type supernova remnant RCW 86

    Science.gov (United States)

    H.E.S.S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balzer, A.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lorentz, M.; Lu, C.-C.; Lui, R.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Valerius, K.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Weidinger, M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Żywucka, N.

    2018-04-01

    Aim. We aim for an understanding of the morphological and spectral properties of the supernova remnant RCW 86 and for insights into the production mechanism leading to the RCW 86 very high-energy γ-ray emission. Methods: We analyzed High Energy Spectroscopic System (H.E.S.S.) data that had increased sensitivity compared to the observations presented in the RCW 86 H.E.S.S. discovery publication. Studies of the morphological correlation between the 0.5-1 keV X-ray band, the 2-5 keV X-ray band, radio, and γ-ray emissions have been performed as well as broadband modeling of the spectral energy distribution with two different emission models. Results: We present the first conclusive evidence that the TeV γ-ray emission region is shell-like based on our morphological studies. The comparison with 2-5 keV X-ray data reveals a correlation with the 0.4-50 TeV γ-ray emission. The spectrum of RCW 86 is best described by a power law with an exponential cutoff at Ecut = (3.5 ± 1.2stat) TeV and a spectral index of Γ ≈ 1.6 ± 0.2. A static leptonic one-zone model adequately describes the measured spectral energy distribution of RCW 86, with the resultant total kinetic energy of the electrons above 1 GeV being equivalent to 0.1% of the initial kinetic energy of a Type Ia supernova explosion (1051 erg). When using a hadronic model, a magnetic field of B ≈ 100 μG is needed to represent the measured data. Although this is comparable to formerly published estimates, a standard E-2 spectrum for the proton distribution cannot describe the γ-ray data. Instead, a spectral index of Γp ≈ 1.7 would be required, which implies that ˜7 × 1049/ncm-3 has been transferred into high-energy protons with the effective density ncm-3 = n/1 cm-3. This is about 10% of the kinetic energy of a typical Type Ia supernova under the assumption of a density of 1 cm-3.

  5. Constraining the Type Ia Supernova Progenitor: The Search for Hydrogen in Nebular Spectra

    Science.gov (United States)

    Leonard, Douglas C.

    2007-12-01

    Despite intense scrutiny, the progenitor system(s) that gives rise to Type Ia supernovae remains unknown. The favored theory invokes a carbon-oxygen white dwarf accreting hydrogen-rich material from a close companion until a thermonuclear runaway ensues that incinerates the white dwarf. However, simulations resulting from this single-degenerate, binary channel demand the presence of low-velocity Hα emission in spectra taken during the late nebular phase, since a portion of the companion's envelope becomes entrained in the ejecta. This hydrogen has never been detected, but has only rarely been sought. Here we present results from a campaign to obtain deep, nebular-phase spectroscopy of nearby Type Ia supernovae, and include multiepoch observations of two events: SN 2005am (slightly subluminous) and SN 2005cf (normally bright). No Hα emission is detected in the spectra of either object. An upper limit of 0.01 Msolar of solar abundance material in the ejecta is established from the models of Mattila et al., which, when coupled with the mass-stripping simulations of Marietta et al. and Meng et al., effectively rules out progenitor systems for these supernovae with secondaries close enough to the white dwarf to be experiencing Roche lobe overflow at the time of explosion. Alternative explanations for the absence of Hα emission, along with suggestions for future investigations necessary to confidently exclude them as possibilities, are critically evaluated. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Additional observations were obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a

  6. Helium flashes on accreting white dwarfs: consequences for type 1 supernova and nova abundances

    International Nuclear Information System (INIS)

    Hillebrandt, W.; Ziegert, W.; Thielemann, F.K.

    1986-01-01

    Helium flashes on an accreting 1 Solar mass carbon-oxygen white dwarf are investigated. It is demonstrated that the outer layers of a white dwarf growing towards the Chandrasekhar limit will be significantly enriched in elements like Mg, Al, Si and S provided the mass accretion rate is of the order of a few times 10 -8 to 10 -7 Solar mass per year. Since these stars are believed to explode as type I supernovae the abundances being ejected will depend also upon the accretion history of the white dwarfs. In addition this matter will have a rather non-solar isotopic composition. Finally, our results may help to explain abundances of heavy elements observed in certain novae if the white dwarf in those binary systems has gone through a high accretion rate phase once in the past before becoming a normal cataclysmic variable

  7. Gauging the cosmic acceleration with recent type Ia supernovae data sets

    Science.gov (United States)

    Velten, Hermano; Gomes, Syrios; Busti, Vinicius C.

    2018-04-01

    We revisit a model-independent estimator for cosmic acceleration based on type Ia supernovae distance measurements. This approach does not rely on any specific theory for gravity, energy content, nor parametrization for the scale factor or deceleration parameter and is based on falsifying the null hypothesis that the Universe never expanded in an accelerated way. By generating mock catalogs of known cosmologies, we test the robustness of this estimator, establishing its limits of applicability. We detail the pros and cons of such an approach. For example, we find that there are specific counterexamples in which the estimator wrongly provides evidence against acceleration in accelerating cosmologies. The dependence of the estimator on the H0 value is also discussed. Finally, we update the evidence for acceleration using the recent UNION2.1 and Joint Light-Curve Analysis samples. Contrary to recent claims, available data strongly favor an accelerated expansion of the Universe in complete agreement with the standard Λ CDM model.

  8. Testing cosmic transparency with the latest baryon acoustic oscillations and type Ia supernovae data

    International Nuclear Information System (INIS)

    Chen Jun; Yu Hong-Wei; Li Zheng-Xiang; Wu Pu-Xun

    2013-01-01

    Observations show that Type Ia supernovae (SNe Ia) are dimmer than expected from a matter dominated Universe. It has been suggested that this observed phenomenon can also be explained using light absorption instead of dark energy. However, there is a serious degeneracy between the cosmic absorption parameter and the present matter density parameter Ω m when one tries to place constraints on the cosmic opacity using SNe Ia data. We combine the latest baryon acoustic oscillation (BAO) and Union2 SNe Ia data in order to break this degeneracy. Assuming a flat ΛCDM model, we find that, although an opaque Universe is favored by SNe Ia+BAO since the best fit value of the cosmic absorption parameter is larger than zero, Ω m = 1 is ruled out at the 99.7% confidence level. Thus, cosmic opacity is not sufficient to account for the present observations and dark energy or modified gravity is still required.

  9. A newly-recognized galactic supernova remnant with shell-type and filled-center features

    International Nuclear Information System (INIS)

    Barnes, D.J.; Turtle, A.J.

    1988-01-01

    While the number of galactic supernova remnants (SNRs) now known is fairly large (>150), the subset among these that are known to resemble the Crab Nebula is still distressingly small, about 15 or so. Thus any object that can be unambiguously included in this exclusive club forms a valuable addition to knowledge of this class. The authors report observations of a newly recognized nonthermal galactic object, G18.94-1.06, having all the hallmarks of the classical shell-type SNRs, while also appearing to have a filled-centre component located inside the shell. Among the known Crab-like remnants, about one third show this dual nature. This diagnosis of G18.94-1.06 is supported mainly by the variations in spectral index across the source, as seen between the two observation frequencies, 408 MHz and 5.0 GHz

  10. THE PROGENITORS OF TYPE Ia SUPERNOVAE. I. ARE THEY SUPERSOFT SOURCES?

    International Nuclear Information System (INIS)

    Di Stefano, R.

    2010-01-01

    In a canonical model, the progenitors of Type Ia supernovae (SNe Ia) are accreting, nuclear-burning white dwarfs (NBWDs), which explode when the white dwarf reaches the Chandrasekhar mass, M C . Such massive NBWDs are hot (kT ∼ 100 eV), luminous (L ∼ 10 38 erg s -1 ), and are potentially observable as luminous supersoft X-ray sources (SSSs). During the past several years, surveys for soft X-ray sources in external galaxies have been conducted. This paper shows that the results falsify the hypothesis that a large fraction of progenitors are NBWDs which are presently observable as SSSs. The data also place limits on sub-M C models. While SN Ia progenitors may pass through one or more phases of SSS activity, these phases are far shorter than the time needed to accrete most of the matter that brings them close to M C .

  11. Stochastic gravitational wave background from the single-degenerate channel of type Ia supernovae

    International Nuclear Information System (INIS)

    Falta, David; Fisher, Robert

    2011-01-01

    We demonstrate that the integrated gravitational wave signal of type Ia supernovae (SNe Ia) in the single-degenerate channel out to cosmological distances gives rise to a continuous background to spaceborne gravitational wave detectors, including the Big Bang Observer and Deci-Hertz Interferometer Gravitational wave Observatory planned missions. This gravitational wave background from SNe Ia acts as a noise background in the frequency range 0.1-10 Hz, which heretofore was thought to be relatively free from astrophysical sources apart from neutron-star and white-dwarf binaries, and therefore a key window in which to study primordial gravitational waves generated by inflation. While inflationary energy scales of > or approx. 10 16 GeV yield inflationary gravitational wave backgrounds in excess of our range of predicted backgrounds, for lower energy scales of ∼10 15 GeV, the inflationary gravitational wave background becomes comparable to the noise background from SNe Ia.

  12. CONSTRAINING THE SPIN-DOWN TIMESCALE OF THE WHITE DWARF PROGENITORS OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Meng, Xiangcun; Podsiadlowski, Philipp

    2013-01-01

    Justham and Di Stefano et al. proposed that the white dwarf progenitor of a Type Ia supernova (SN Ia) may have to spin down before it can explode. As the white dwarf spin-down timescale is not well known theoretically, here we try to constrain it empirically (within the framework of this spin-down model) for progenitor systems that contain a giant donor and for which circumbinary material has been detected after the explosion: we obtain an upper limit of a few 10 7 yr. Based on the study of Di Stefano and Kilic, this means that it is too early to rule out the existence of a surviving companion in SNR 0509–67.5

  13. The WD+He star binaries as the progenitors of type Ia supernovae

    Directory of Open Access Journals (Sweden)

    Wang Bo

    2017-12-01

    Full Text Available Employing the MESA stellar evolution code, we computed He accretion onto carbon-oxygen white dwarfs (CO WDs.We found two possible outcomes for models in which the WD steadily grows in mass towards the Chandrasekhar limit. For relatively low He-accretion rates carbon ignition occurs in the center, leading to a type Ia supernova (SN Ia explosion, whereas for relatively high accretion rates carbon is ignited off-center, probably leading to collapse. Thus the parameter space producing SNe Ia is reduced compared to what was assumed in earlier papers, in which the possibility of off-center ignition was ignored. We then applied these results in binary population synthesis modelling, finding a modest reduction in the expected birthrate of SNe Ia resulting from the WD+He star channel.

  14. Type Ia Supernovae Progenitor Problem and the Variation of Fundamental Constants

    Directory of Open Access Journals (Sweden)

    Rybicki M.

    2016-01-01

    Full Text Available Cosmological observations strongly suggest our universe is the interior of an expanding black hole. If the constant mass of the universe is assumed then from the equation for Schwarzschild radius: r S = 2 Gmc it follows that proportionality constant Gc depends linearly on the universe’s radius R u , identified with r S , i.e. Gc Because the Chandrasekhar limit M Ch relates to the speed of light and to the Newton’s constant as M Ch ( c = G 3 = 2 so expansion involves gradual decrease of M Ch . In result, a single white dwarf can alone become the Type Ia supernova progenitor, which provides a complementary solution to single-degenerate and double-degenerate models for SNe Ia. Both alternative scenarios: G R u and c R are analyzed in regard of their consistence with observations, and their consequences to cosmology.

  15. HUBBLE RESIDUALS OF NEARBY TYPE Ia SUPERNOVAE ARE CORRELATED WITH HOST GALAXY MASSES

    International Nuclear Information System (INIS)

    Kelly, Patrick L.; Burke, David L.; Hicken, Malcolm; Mandel, Kaisey S.; Kirshner, Robert P.

    2010-01-01

    From Sloan Digital Sky Survey u'g'r'i'z' imaging, we estimate the stellar masses of the host galaxies of 70 low-redshift Type Ia supernovae (SNe Ia, 0.015 10.8 M sun in a cosmology fit yields 1 + w = 0.22 +0.152 -0.108 , while a combination where the 30 nearby SNe instead have host masses greater than 10 10.8 M sun yields 1 + w = -0.03 +0.217 -0.143 . Progenitor metallicity, stellar population age, and dust extinction correlate with galaxy mass and may be responsible for these systematic effects. Host galaxy measurements will yield improved distances to SNe Ia.

  16. The early detection and follow-up of the highly obscured Type II supernova 2016ija/DLT16am

    DEFF Research Database (Denmark)

    Tartaglia, L.; Sand, D. J.; Valenti, S.

    2018-01-01

    We present our analysis of the Type II supernova DLT16am (SN~2016ija). The object was discovered during the ongoing $\\rm{D}`edge-on nearby ($D=20.0\\pm1.9\\,\\rm{Mpc}$) galaxy NGC~1532. The subsequent prompt and high-cadenced spectroscopic and photometric follow-up revealed a highly extincted...

  17. Type Ia Supernova Light Curve Inference: Hierarchical Models for Nearby SN Ia in the Optical and Near Infrared

    Science.gov (United States)

    Mandel, Kaisey; Kirshner, R. P.; Narayan, G.; Wood-Vasey, W. M.; Friedman, A. S.; Hicken, M.

    2010-01-01

    I have constructed a comprehensive statistical model for Type Ia supernova light curves spanning optical through near infrared data simultaneously. The near infrared light curves are found to be excellent standard candles (sigma(MH) = 0.11 +/- 0.03 mag) that are less vulnerable to systematic error from dust extinction, a major confounding factor for cosmological studies. A hierarchical statistical framework incorporates coherently multiple sources of randomness and uncertainty, including photometric error, intrinsic supernova light curve variations and correlations, dust extinction and reddening, peculiar velocity dispersion and distances, for probabilistic inference with Type Ia SN light curves. Inferences are drawn from the full probability density over individual supernovae and the SN Ia and dust populations, conditioned on a dataset of SN Ia light curves and redshifts. To compute probabilistic inferences with hierarchical models, I have developed BayeSN, a Markov Chain Monte Carlo algorithm based on Gibbs sampling. This code explores and samples the global probability density of parameters describing individual supernovae and the population. I have applied this hierarchical model to optical and near infrared data of over 100 nearby Type Ia SN from PAIRITEL, the CfA3 sample, and the literature. Using this statistical model, I find that SN with optical and NIR data have a smaller residual scatter in the Hubble diagram than SN with only optical data. The continued study of Type Ia SN in the near infrared will be important for improving their utility as precise and accurate cosmological distance indicators.

  18. Analysis of recent type Ia supernova data based on evolving dark energy models

    International Nuclear Information System (INIS)

    Park, Jaehong; Park, Chan-Gyung; Hwang, Jai-chan

    2011-01-01

    We study characters of recent type Ia supernova data using evolving dark energy models with changing equation-of-state parameter w. We consider a sudden-jump approximation of w for some chosen redshift spans with double transitions and constrain these models based on the Markov chain Monte Carlo method using the type Ia supernova data (Constitution, Union, Union2), together with the baryon acoustic oscillation A parameter and the cosmic microwave background shift parameter in a flat background. In the double-transition model, the Constitution data shows deviation outside 1σ from the Λ cold dark matter (ΛCDM) model at low (z < or approx. 0.2) and middle (0.2 < or approx. z < or approx. 0.4) redshift bins, whereas no such deviations are noticeable in the Union and Union2 data. By analyzing the Union members in the Constitution set, however, we show that the same difference is actually due to different calibration of the same Union sample in the Constitution set and is not due to new data added in the Constitution set. All detected deviations are within 2σ from the ΛCDM world model. From the ΛCDM mock data analysis, we quantify biases in the dark energy equation-of-state parameters induced by insufficient data with inhomogeneous distribution of data points in the redshift space and distance modulus errors. We demonstrate that the location of the peak in the distribution of arithmetic means (computed from the Markov chain Monte Carlo chain for each mock data) behaves as an unbiased estimator for the average bias, which is valid even for nonsymmetric likelihood distributions.

  19. Ticking Stellar Time Bomb Identified - Astronomers find prime suspect for a Type Ia supernova

    Science.gov (United States)

    2009-11-01

    Using ESO's Very Large Telescope and its ability to obtain images as sharp as if taken from space, astronomers have made the first time-lapse movie of a rather unusual shell ejected by a "vampire star", which in November 2000 underwent an outburst after gulping down part of its companion's matter. This enabled astronomers to determine the distance and intrinsic brightness of the outbursting object. It appears that this double star system is a prime candidate to be one of the long-sought progenitors of the exploding stars known as Type Ia supernovae, critical for studies of dark energy. "One of the major problems in modern astrophysics is the fact that we still do not know exactly what kinds of stellar system explode as a Type Ia supernova," says Patrick Woudt, from the University of Cape Town and lead author of the paper reporting the results. "As these supernovae play a crucial role in showing that the Universe's expansion is currently accelerating, pushed by a mysterious dark energy, it is rather embarrassing." The astronomers studied the object known as V445 in the constellation of Puppis ("the Stern") in great detail. V445 Puppis is the first, and so far only, nova showing no evidence at all for hydrogen. It provides the first evidence for an outburst on the surface of a white dwarf [1] dominated by helium. "This is critical, as we know that Type Ia supernovae lack hydrogen," says co-author Danny Steeghs, from the University of Warwick, UK, "and the companion star in V445 Pup fits this nicely by also lacking hydrogen, instead dumping mainly helium gas onto the white dwarf." In November 2000, this system underwent a nova outburst, becoming 250 times brighter than before and ejecting a large quantity of matter into space. The team of astronomers used the NACO adaptive optics instrument [2] on ESO's Very Large Telescope (VLT) to obtain very sharp images of V445 Puppis over a time span of two years. The images show a bipolar shell, initially with a very narrow

  20. Peculiar Supernovae

    Science.gov (United States)

    Milisavljevic, Dan; Margutti, Raffaella

    2018-06-01

    What makes a supernova truly "peculiar?" In this review we attempt to address this question by tracing the history of the use of "peculiar" as a descriptor of non-standard supernovae back to the original binary spectroscopic classification of Type I vs. Type II proposed by Minkowski (Publ. Astron. Soc. Pac., 53:224, 1941). A handful of noteworthy examples are highlighted to illustrate a general theme: classes of supernovae that were once thought to be peculiar are later seen as logical branches of standard events. This is not always the case, however, and we discuss ASASSN-15lh as an example of a transient with an origin that remains contentious. We remark on how late-time observations at all wavelengths (radio-through-X-ray) that probe 1) the kinematic and chemical properties of the supernova ejecta and 2) the progenitor star system's mass loss in the terminal phases preceding the explosion, have often been critical in understanding the nature of seemingly unusual events.

  1. Supernova models

    International Nuclear Information System (INIS)

    Woosley, S.E.; California, University, Livermore, CA); Weaver, T.A.

    1981-01-01

    Recent progress in understanding the observed properties of type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the Ni-56 produced therein is reviewed. The expected nucleosynthesis and gamma-line spectra for this model of type I explosions and a model for type II explosions are presented. Finally, a qualitatively new approach to the problem of massive star death and type II supernovae based upon a combination of rotation and thermonuclear burning is discussed. While the theoretical results of existing models are predicated upon the assumption of a successful core bounce calculation and the neglect of such two-dimensional effects as rotation and magnetic fields the new model suggests an entirely different scenario in which a considerable portion of the energy carried by an equatorially ejected blob is deposited in the red giant envelope overlying the mantle of the star

  2. The curious case of SN 2011dn: A very peculiar type Ia supernova?

    Science.gov (United States)

    Rachubo, Alisa

    Type Ia supernovae (SNe Ia) are excellent cosmological distance indicators due to the uniformity in their light curves, which led to the major discovery of the accelerated expansion of the universe. However, SNe Ia are not so uniform as one may expect, as there are many peculiar SNe Ia that exhibit differences in their photometric and spectroscopic behavior from normal SNe Ia. One of the goals of supernova cosmology today is to produce a cleaner sample of SNe Ia without these peculiar SNe Ia. Here we consider SN 2011dn, a peculiar SN Ia candidate. In 2011, Salvo, et al. carried out a preliminary analysis of a subset of the data prescribed here, and identified spectral and photometric peculiarities in this object's evolution that warranted further analysis. Here, we present a complete re-reduction and reanalysis of B, V,R, and I photometry of SN 2011dn obtained at Mount Laguna Observatory, spanning from 7 days before maximum light in B to 88 days past maximum light. In addition, we also consider total flux spectra from 9 days before maximum light to 4 days after maximum light, along with ultraviolet (UV) photometry obtained with the Swift telescope. From SN 2011dn's optical spectra, we find that SN 2011dn most closely resembles a SN 1991T-like type Ia supernova ('91T-like SN Ia). Such SNe Ia are typically more luminous than normal SNe Ia, and possess broader (i.e., they decline less rapidly than normal from maximum light) light curves. Their Deltam15(B) (drop in B magnitude 15 days after maximum light) are typically significantly less than the canonical value of 1.1, and can be as low as 0.8. In the earlier preliminary analysis, Salvo et al. measured a surprisingly high Deltam15(B) value for SN 2011dn, of ˜ 1.1. Since SN 2011dn was embedded in UGC 11501 (its host galaxy), however, it is possible that some of the light from the host galaxy was included in the photometric aperture, resulting in inaccurate photometric measurements. Here, in order to better isolate the

  3. Light and Color Curve Properties of Type Ia Supernovae: Theory Versus Observations

    Energy Technology Data Exchange (ETDEWEB)

    Hoeflich, P.; Hsiao, E. Y. [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Ashall, C. [Astrophysics Research Institute, Liverpool John Moore University, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Burns, C. R. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Diamond, T. R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Phillips, M. M. [Carnegie Observatories, Las Campanas Observatory, Casilla 601 La Serena (Chile); Sand, D. [Physics and Astronomy Department, Texas Tech University, Box 41051, Lubbock, TX 79409-1051 (United States); Stritzinger, M. D. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000, Aarhus (Denmark); Suntzeff, N.; Krisciunas, K.; Wang, L. [The G.P. and C. Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Contreras, C.; Morrell, N., E-mail: phoeflich77@gmail.com [Departamento de Física, Universidad Técnica Federico Santa Maria, Ava España 1680, Casilla 110-V, Valparaiso (Chile)

    2017-09-01

    We study the optical light curve (LC) relations of Type Ia supernovae (SNe Ia) for their use in cosmology using high-quality photometry published by the Carnegie Supernova Project (CSP-I). We revisit the classical luminosity decline rate (Δ m {sub 15}) relation and the Lira relation, as well as investigate the time evolution of the ( B − V ) color and B ( B − V ), which serves as the basis of the color–stretch relation and Color–MAgnitude Intercept Calibrations (CMAGIC). Our analysis is based on explosion and radiation transport simulations for spherically symmetric delayed-detonation models (DDT) producing normal-bright and subluminous SNe Ia. Empirical LC relations can be understood as having the same physical underpinnings, i.e., opacities, ionization balances in the photosphere, and radioactive energy deposition changing with time from below to above the photosphere. Some three to four weeks past maximum, the photosphere recedes to {sup 56}Ni-rich layers of similar density structure, leading to a similar color evolution. An important secondary parameter is the central density ρ {sub c} of the WD because at higher densities, more electron-capture elements are produced at the expense of {sup 56}Ni production. This results in a Δ m {sub 15} spread of 0.1 mag in normal-bright and 0.7 mag in subluminous SNe Ia and ≈0.2 mag in the Lira relation. We show why color–magnitude diagrams emphasize the transition between physical regimes and enable the construction of templates that depend mostly on Δ m {sub 15} with little dispersion in both the CSP-I sample and our DDT models. This allows intrinsic SN Ia variations to be separated from the interstellar reddening characterized by E ( B − V ) and R {sub B}. Invoking different scenarios causes a wide spread in empirical relations, which may suggest one dominant scenario.

  4. THE EARLIEST NEAR-INFRARED TIME-SERIES SPECTROSCOPY OF A TYPE Ia SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, E. Y.; Phillips, M. M.; Morrell, N.; Contreras, C.; Roth, M. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Marion, G. H.; Kirshner, R. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Burns, C. R.; Freedman, W. L.; Persson, S. E. [Carnegie Observatories, 813 Santa Barbara St, Pasadena, CA 91101 (United States); Winge, C. [Gemini South Observatory, c/o AURA Inc., Casilla 603, La Serena (Chile); Kromer, M.; Gall, E. E. E. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching bei Muenchen (Germany); Gerardy, C. L.; Hoeflich, P. [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Im, M.; Jeon, Y. [CEOU/Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of); Nugent, P. E. [Computational Cosmology Center, Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 50B-4206, Berkeley, CA 94611 (United States); Pignata, G. [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Stanishev, V., E-mail: hsiao@lco.cl [CENTRA - Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal); and others

    2013-04-01

    We present ten medium-resolution, high signal-to-noise ratio near-infrared (NIR) spectra of SN 2011fe from SpeX on the NASA Infrared Telescope Facility (IRTF) and Gemini Near-Infrared Spectrograph (GNIRS) on Gemini North, obtained as part of the Carnegie Supernova Project. This data set constitutes the earliest time-series NIR spectroscopy of a Type Ia supernova (SN Ia), with the first spectrum obtained at 2.58 days past the explosion and covering -14.6 to +17.3 days relative to B-band maximum. C I {lambda}1.0693 {mu}m is detected in SN 2011fe with increasing strength up to maximum light. The delay in the onset of the NIR C I line demonstrates its potential to be an effective tracer of unprocessed material. For the first time in a SN Ia, the early rapid decline of the Mg II {lambda}1.0927 {mu}m velocity was observed, and the subsequent velocity is remarkably constant. The Mg II velocity during this constant phase locates the inner edge of carbon burning and probes the conditions under which the transition from deflagration to detonation occurs. We show that the Mg II velocity does not correlate with the optical light-curve decline rate {Delta}m{sub 15}(B). The prominent break at {approx}1.5 {mu}m is the main source of concern for NIR k-correction calculations. We demonstrate here that the feature has a uniform time evolution among SNe Ia, with the flux ratio across the break strongly correlated with {Delta}m{sub 15}(B). The predictability of the strength and the onset of this feature suggests that the associated k-correction uncertainties can be minimized with improved spectral templates.

  5. CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA

    International Nuclear Information System (INIS)

    Hicken, Malcolm; Challis, Peter; Kirshner, Robert P.; Bakos, Gaspar; Berlind, Perry; Brown, Warren R.; Caldwell, Nelson; Calkins, Mike; Cho, Richard; Contreras, Maria; Jha, Saurabh; Matheson, Tom; Modjaz, Maryam; Rest, Armin; Michael Wood-Vasey, W.; Barton, Elizabeth J.; Bragg, Ann; Briceno, Cesar; Ciupik, Larry; Dendy, Kristi-Concannon

    2009-01-01

    We present multiband photometry of 185 type-Ia supernovae (SNe Ia), with over 11,500 observations. These were acquired between 2001 and 2008 at the F. L. Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics (CfA). This sample contains the largest number of homogeneously observed and reduced nearby SNe Ia (z ∼< 0.08) published to date. It more than doubles the nearby sample, bringing SN Ia cosmology to the point where systematic uncertainties dominate. Our natural system photometry has a precision of ∼<0.02 mag in BVRIr'i' and ∼<0.04 mag in U for points brighter than 17.5 mag. We also estimate a systematic uncertainty of 0.03 mag in our SN Ia standard system BVRIr'i' photometry and 0.07 mag for U. Comparisons of our standard system photometry with published SN Ia light curves and comparison stars, where available for the same SN, reveal agreement at the level of a few hundredths mag in most cases. We find that 1991bg-like SNe Ia are sufficiently distinct from other SNe Ia in their color and light-curve-shape/luminosity relation that they should be treated separately in light-curve/distance fitter training samples. The CfA3 sample will contribute to the development of better light-curve/distance fitters, particularly in the few dozen cases where near-infrared photometry has been obtained and, together, can help disentangle host-galaxy reddening from intrinsic supernova color, reducing the systematic uncertainty in SN Ia distances due to dust.

  6. ON THE PROGENITORS OF SUPER-CHANDRASEKHAR MASS TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Chen Wencong; Li Xiangdong

    2009-01-01

    Type Ia supernovae (SNe Ia) can be used as the standard candle to determine the cosmological distances because they are thought to have a uniform fuel amount. Recent observations of several overluminous SNe Ia suggest that the white dwarf masses at supernova explosion may significantly exceed the canonical Chandrasekhar mass limit. These massive white dwarfs may be supported by rapid differential rotation. Based on a single-degenerate model and the assumption that the white dwarf would differentially rotate when the accretion rate M-dot>3 x 10 -7 M-odot yr -1 , we have calculated the evolutions of close binaries consisting of a white dwarf and a normal companion. To include the effect of rotation, we introduce an effective mass M eff for white dwarfs. For the donor stars with two different metallicities Z = 0.02 and 0.001, we present the distribution of the initial donor star masses and the orbital periods of the progenitors of super-Chandrasekhar mass SNe Ia. The calculation results indicate that, for an initial massive white dwarf of 1.2 M sun , a considerable fraction of SNe Ia may result from super-Chandrasekhar mass white dwarfs, but very massive (> 1.7 M sun ) white dwarfs are difficult to form, and none of them could be found in old populations. However, super-Chandrasekhar mass SNe Ia are very rare when the initial mass of white dwarfs is 1.0 M sun . Additionally, SNe Ia in low metallicity environment are more likely to be homogeneous.

  7. TYPE Ia SUPERNOVA LIGHT-CURVE INFERENCE: HIERARCHICAL BAYESIAN ANALYSIS IN THE NEAR-INFRARED

    International Nuclear Information System (INIS)

    Mandel, Kaisey S.; Friedman, Andrew S.; Kirshner, Robert P.; Wood-Vasey, W. Michael

    2009-01-01

    We present a comprehensive statistical analysis of the properties of Type Ia supernova (SN Ia) light curves in the near-infrared using recent data from Peters Automated InfraRed Imaging TELescope and the literature. We construct a hierarchical Bayesian framework, incorporating several uncertainties including photometric error, peculiar velocities, dust extinction, and intrinsic variations, for principled and coherent statistical inference. SN Ia light-curve inferences are drawn from the global posterior probability of parameters describing both individual supernovae and the population conditioned on the entire SN Ia NIR data set. The logical structure of the hierarchical model is represented by a directed acyclic graph. Fully Bayesian analysis of the model and data is enabled by an efficient Markov Chain Monte Carlo algorithm exploiting the conditional probabilistic structure using Gibbs sampling. We apply this framework to the JHK s SN Ia light-curve data. A new light-curve model captures the observed J-band light-curve shape variations. The marginal intrinsic variances in peak absolute magnitudes are σ(M J ) = 0.17 ± 0.03, σ(M H ) = 0.11 ± 0.03, and σ(M Ks ) = 0.19 ± 0.04. We describe the first quantitative evidence for correlations between the NIR absolute magnitudes and J-band light-curve shapes, and demonstrate their utility for distance estimation. The average residual in the Hubble diagram for the training set SNe at cz > 2000kms -1 is 0.10 mag. The new application of bootstrap cross-validation to SN Ia light-curve inference tests the sensitivity of the statistical model fit to the finite sample and estimates the prediction error at 0.15 mag. These results demonstrate that SN Ia NIR light curves are as effective as corrected optical light curves, and, because they are less vulnerable to dust absorption, they have great potential as precise and accurate cosmological distance indicators.

  8. LOWER BOUNDS ON PHOTOMETRIC REDSHIFT ERRORS FROM TYPE Ia SUPERNOVA TEMPLATES

    International Nuclear Information System (INIS)

    Asztalos, S.; Nikolaev, S.; De Vries, W.; Olivier, S.; Cook, K.; Wang, L.

    2010-01-01

    Cosmology with Type Ia supernova heretofore has required extensive spectroscopic follow-up to establish an accurate redshift. Though this resource-intensive approach is tolerable at the present discovery rate, the next generation of ground-based all-sky survey instruments will render it unsustainable. Photometry-based redshift determination may be a viable alternative, though the technique introduces non-negligible errors that ultimately degrade the ability to discriminate between competing cosmologies. We present a strictly template-based photometric redshift estimator and compute redshift reconstruction errors in the presence of statistical errors. Under highly degraded photometric conditions corresponding to a statistical error σ of 0.5, the residual redshift error is found to be 0.236 when assuming a nightly observing cadence and a single Large Synoptic Science Telescope (LSST) u-band filter. Utilizing all six LSST bandpass filters reduces the residual redshift error to 9.1 x 10 -3 . Assuming a more optimistic statistical error σ of 0.05, we derive residual redshift errors of 4.2 x 10 -4 , 5.2 x 10 -4 , 9.2 x 10 -4 , and 1.8 x 10 -3 for observations occuring nightly, every 5th, 20th and 45th night, respectively, in each of the six LSST bandpass filters. Adopting an observing cadence in which photometry is acquired with all six filters every 5th night and a realistic supernova distribution, binned redshift errors are combined with photometric errors with a σ of 0.17 and systematic errors with a σ∼ 0.003 to derive joint errors (σ w , σ w ' ) of (0.012, 0.066), respectively, in (w,w') with 68% confidence using Fisher matrix formalism. Though highly idealized in the present context, the methodology is nonetheless quite relevant for the next generation of ground-based all-sky surveys.

  9. The Host Galaxies of Type Ia Supernovae Discovered by the Palomar Transient Factory

    Science.gov (United States)

    Pan, Y.-C.; Sullivan, M.; McGuire, K.; Hook, I. M.; Nugent, P. E.; Howell, D. A.; Arcavi, I.; Botyanszki, J.; Cenko, Stephen Bradley; DeRose, J.

    2013-01-01

    We present spectroscopic observations of the host galaxies of 82 low-redshift type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory (PTF). We determine star-formation rates, gas-phase stellar metallicities, and stellar masses and ages of these objects. As expected, strong correlations between the SN Ia light-curve width (stretch) and the host age mass metallicity are found: fainter, faster-declining events tend to be hosted by older massive metal-rich galaxies. There is some evidence that redder SNe Ia explode in higher metallicity galaxies, but we found no relation between the SN colour and host galaxy extinction based on the Balmer decrement, suggesting that the colour variation of these SNe does not primarily arise from this source. SNe Ia in higher-mass metallicity galaxies also appear brighter after stretch colour corrections than their counterparts in lower mass hosts, and the stronger correlation is with gas-phase metallicity suggesting this may be the more important variable. We also compared the host stellar mass distribution to that in galaxy targeted SN surveys and the high-redshift untargeted Supernova Legacy Survey (SNLS). SNLS has many more low mass galaxies, while the targeted searches have fewer. This can be explained by an evolution in the galaxy stellar mass function, coupled with a SN delay-time distribution proportional to t1. Finally, we found no significant difference in the mass--metallicity relation of our SN Ia hosts compared to field galaxies, suggesting any metallicity effect on the SN Ia rate is small.

  10. SHOCK BREAKOUT AND EARLY LIGHT CURVES OF TYPE II-P SUPERNOVAE OBSERVED WITH KEPLER

    International Nuclear Information System (INIS)

    Garnavich, P. M.; Tucker, B. E.; Rest, A.; Shaya, E. J.; Olling, R. P.; Kasen, D; Villar, A.

    2016-01-01

    We discovered two transient events in the Kepler field with light curves that strongly suggest they are type II-P supernovae (SNe II-P). Using the fast cadence of the Kepler observations we precisely estimate the rise time to maximum for KSN2011a and KSN2011d as 10.5 ± 0.4 and 13.3 ± 0.4 rest-frame days, respectively. Based on fits to idealized analytic models, we find the progenitor radius of KSN2011a (280 ± 20 R ⊙ ) to be significantly smaller than that for KSN2011d (490 ± 20 R ⊙ ), but both have similar explosion energies of 2.0 ± 0.3 × 10 51 erg. The rising light curve of KSN2011d is an excellent match to that predicted by simple models of exploding red supergiants (RSG). However, the early rise of KSN2011a is faster than the models predict, possibly due to the supernova shock wave moving into pre-existing wind or mass-loss from the RSG. A mass-loss rate of 10 −4 M ⊙ yr −1 from the RSG can explain the fast rise without impacting the optical flux at maximum light or the shape of the post-maximum light curve. No shock breakout emission is seen in KSN2011a, but this is likely due to the circumstellar interaction suspected in the fast rising light curve. The early light curve of KSN2011d does show excess emission consistent with model predictions of a shock breakout. This is the first optical detection of a shock breakout from a SNe II-P

  11. A New Approach for Obtaining Cosmological Constraints from Type Ia Supernovae using Approximate Bayesian Computation

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Elise; Wolf, Rachel; Sako, Masao

    2016-11-09

    Cosmological parameter estimation techniques that robustly account for systematic measurement uncertainties will be crucial for the next generation of cosmological surveys. We present a new analysis method, superABC, for obtaining cosmological constraints from Type Ia supernova (SN Ia) light curves using Approximate Bayesian Computation (ABC) without any likelihood assumptions. The ABC method works by using a forward model simulation of the data where systematic uncertainties can be simulated and marginalized over. A key feature of the method presented here is the use of two distinct metrics, the `Tripp' and `Light Curve' metrics, which allow us to compare the simulated data to the observed data set. The Tripp metric takes as input the parameters of models fit to each light curve with the SALT-II method, whereas the Light Curve metric uses the measured fluxes directly without model fitting. We apply the superABC sampler to a simulated data set of $\\sim$1000 SNe corresponding to the first season of the Dark Energy Survey Supernova Program. Varying $\\Omega_m, w_0, \\alpha$ and $\\beta$ and a magnitude offset parameter, with no systematics we obtain $\\Delta(w_0) = w_0^{\\rm true} - w_0^{\\rm best \\, fit} = -0.036\\pm0.109$ (a $\\sim11$% 1$\\sigma$ uncertainty) using the Tripp metric and $\\Delta(w_0) = -0.055\\pm0.068$ (a $\\sim7$% 1$\\sigma$ uncertainty) using the Light Curve metric. Including 1% calibration uncertainties in four passbands, adding 4 more parameters, we obtain $\\Delta(w_0) = -0.062\\pm0.132$ (a $\\sim14$% 1$\\sigma$ uncertainty) using the Tripp metric. Overall we find a $17$% increase in the uncertainty on $w_0$ with systematics compared to without. We contrast this with a MCMC approach where systematic effects are approximately included. We find that the MCMC method slightly underestimates the impact of calibration uncertainties for this simulated data set.

  12. Light and Color Curve Properties of Type Ia Supernovae: Theory Versus Observations

    International Nuclear Information System (INIS)

    Hoeflich, P.; Hsiao, E. Y.; Ashall, C.; Burns, C. R.; Diamond, T. R.; Phillips, M. M.; Sand, D.; Stritzinger, M. D.; Suntzeff, N.; Krisciunas, K.; Wang, L.; Contreras, C.; Morrell, N.

    2017-01-01

    We study the optical light curve (LC) relations of Type Ia supernovae (SNe Ia) for their use in cosmology using high-quality photometry published by the Carnegie Supernova Project (CSP-I). We revisit the classical luminosity decline rate (Δ m 15 ) relation and the Lira relation, as well as investigate the time evolution of the ( B − V ) color and B ( B − V ), which serves as the basis of the color–stretch relation and Color–MAgnitude Intercept Calibrations (CMAGIC). Our analysis is based on explosion and radiation transport simulations for spherically symmetric delayed-detonation models (DDT) producing normal-bright and subluminous SNe Ia. Empirical LC relations can be understood as having the same physical underpinnings, i.e., opacities, ionization balances in the photosphere, and radioactive energy deposition changing with time from below to above the photosphere. Some three to four weeks past maximum, the photosphere recedes to 56 Ni-rich layers of similar density structure, leading to a similar color evolution. An important secondary parameter is the central density ρ c of the WD because at higher densities, more electron-capture elements are produced at the expense of 56 Ni production. This results in a Δ m 15 spread of 0.1 mag in normal-bright and 0.7 mag in subluminous SNe Ia and ≈0.2 mag in the Lira relation. We show why color–magnitude diagrams emphasize the transition between physical regimes and enable the construction of templates that depend mostly on Δ m 15 with little dispersion in both the CSP-I sample and our DDT models. This allows intrinsic SN Ia variations to be separated from the interstellar reddening characterized by E ( B − V ) and R B . Invoking different scenarios causes a wide spread in empirical relations, which may suggest one dominant scenario.

  13. No Evidence of Circumstellar Gas Surrounding Type Ia Supernova SN 2017cbv

    Science.gov (United States)

    Ferretti, Raphael; Amanullah, Rahman; Bulla, Mattia; Goobar, Ariel; Johansson, Joel; Lundqvist, Peter

    2017-12-01

    Nearby type Ia supernovae (SNe Ia), such as SN 2017cbv, are useful events to address the question of what the elusive progenitor systems of the explosions are. Hosseinzadeh et al. suggested that the early blue excess of the light curve of SN 2017cbv could be due to the supernova ejecta interacting with a non-degenerate companion star. Some SN Ia progenitor models suggest the existence of circumstellar (CS) environments in which strong outflows create low-density cavities of different radii. Matter deposited at the edges of the cavities should be at distances at which photoionization due to early ultraviolet (UV) radiation of SNe Ia causes detectable changes to the observable Na I D and Ca II H&K absorption lines. To study possible narrow absorption lines from such material, we obtained a time series of high-resolution spectra of SN 2017cbv at phases between ‑14.8 and +83 days with respect to B-band maximum, covering the time at which photoionization is predicted to occur. Both narrow Na I D and Ca II H&K are detected in all spectra, with no measurable changes between the epochs. We use photoionization models to rule out the presence of Na I and Ca II gas clouds along the line of sight of SN 2017cbv between ∼8 × 1016–2 × 1019 cm and ∼1015–1017 cm, respectively. Assuming typical abundances, the mass of a homogeneous spherical CS gas shell with radius R must be limited to {M}{{H} {{I}}}{CSM}R/{10}17[{cm}])}2 {M}ȯ . The bounds point to progenitor models that deposit little gas in their CS environment.

  14. SDSS-II SUPERNOVA SURVEY: AN ANALYSIS OF THE LARGEST SAMPLE OF TYPE IA SUPERNOVAE AND CORRELATIONS WITH HOST-GALAXY SPECTRAL PROPERTIES

    International Nuclear Information System (INIS)

    Wolf, Rachel C.; Gupta, Ravi R.; Sako, Masao; Fischer, John A.; March, Marisa C.; Fischer, Johanna-Laina; D’Andrea, Chris B.; Smith, Mathew; Kessler, Rick; Scolnic, Daniel M.; Jha, Saurabh W.; Campbell, Heather; Nichol, Robert C.; Olmstead, Matthew D.; Richmond, Michael; Schneider, Donald P.

    2016-01-01

    Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HRs). Our sample consists of 345 photometrically classified or spectroscopically confirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric host-galaxy properties from the SDSS-SNS data release such as host stellar mass and star formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6 σ significance of a nonzero linear slope. We also recover correlations between HR and host-galaxy gas-phase metallicity and specific star formation rate as they are reported in the literature. With our large data set, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically confirmed and photometrically classified SNe Ia and comment on the significance of similar combined data sets for future surveys.

  15. LUMINOSITY FUNCTIONS OF TYPE Ia SUPERNOVAE AND THEIR HOST GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Yasuda, Naoki; Fukugita, Masataka

    2010-01-01

    The sample of 137 low-redshift type Ia supernovae (SNe Ia) with 0.05 ≤ z ≤ 0.3 obtained from the Sloan Digital Sky Survey (SDSS)-II supernova survey for the southern equatorial stripe of 300 deg 2 is used to derive the luminosity functions (LFs) of SNe Ia and of their host galaxies in the g, r, i passbands. We show that the LF of SNe Ia host galaxies matches well with that of galaxies in the general field, suggesting that the occurrence of SNe Ia does not favor a particular type of galaxy but is predominantly proportional to the luminosity of galaxies. The evidence is weak that the SNe rate varies with the color of host galaxies. The only evidence that points to possible correlation between the SN rate and star formation activity is that the SN rate in late-type galaxies is higher than that in early-type galaxies by 31% ± 35%. In our low-redshift sample, the component of type Ia SN rate that is proportional to star formation activity is not evident in the integrated SN rate, while our observation is compatible with the current two-component models. The sample contains eight SNe Ia whose host galaxies were not identified, but it is shown that their occurrence is consistent with them occurring in low-luminous galaxies beyond the survey. The LF of SNe Ia is approximately Gaussian with the full width at half-maximum being a factor of σ = 0.24 mag or 1.67 in luminosity. The Gaussian distribution becomes tighter if the ratio of extinction to reddening, R V , is lower than the characteristic value for the Milky Way and if luminosity is corrected for the light-curve shape. The average color excess is ∼0.07 mag, which is significantly smaller than reddening expected for field galaxies. This color excess does not vary with the distance of the SNe from the center of the host galaxy to 15 kpc. This suggests that the major part of the color excess appears to be either intrinsic or reddening that arises in the immediate environment of SNe, rather than interstellar

  16. Very-high-energy gamma-ray observations of the Type Ia Supernova SN 2014J with the MAGIC telescopes

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Arcaro, C.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.

    2017-06-01

    Context. In this work we present data from observations with the MAGIC telescopes of SN 2014J detected on January 21 2014, the closest Type Ia supernova since Imaging Air Cherenkov Telescopes started to operate. Aims: We aim to probe the possibility of very-high-energy (VHE; E ≥ 100 GeV) gamma rays produced in the early stages of Type Ia supernova explosions. Methods: We performed follow-up observations after this supernova (SN) explosion for five days, between January 27 and February 2 2014. We searched for gamma-ray signals in the energy range between 100 GeV and several TeV from the location of SN 2014J using data from a total of 5.5 h of observations. Prospects for observing gamma rays of hadronic origin from SN 2014J in the near future are also being addressed. Results: No significant excess was detected from the direction of SN 2014J. Upper limits at 95% confidence level on the integral flux, assuming a power-law spectrum, dF/dE ∝ E- Γ, with a spectral index of Γ = 2.6, for energies higher than 300 GeV and 700 GeV, are established at 1.3 × 10-12 and 4.1 × 10-13 photons cm-2 s-1, respectively. Conclusions: For the first time, upper limits on the VHE emission of a Type Ia supernova are established. The energy fraction isotropically emitted into TeV gamma rays during the first 10 days after the supernova explosion for energies greater than 300 GeV is limited to 10-6 of the total available energy budget ( 1051 erg). Within the assumed theoretical scenario, the MAGIC upper limits on the VHE emission suggest that SN 2014J will not be detectable in the future by any current or planned generation of Imaging Atmospheric Cherenkov Telescopes.

  17. THE CARNEGIE SUPERNOVA PROJECT: ANALYSIS OF THE FIRST SAMPLE OF LOW-REDSHIFT TYPE-Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Folatelli, Gaston; Phillips, M. M.; Contreras, Carlos; Stritzinger, Maximilian; Boldt, Luis; Gonzalez, Sergio; Krzeminski, Wojtek; Morrell, Nidia; Roth, Miguel; Salgado, Francisco; Burns, Christopher R.; Freedman, W. L.; Persson, S. E.; Madore, Barry F.; Murphy, David; Hamuy, Mario; Suntzeff, Nicholas B.; Krisciunas, Kevin; Wyatt, Pamela; Li Weidong

    2010-01-01

    An analysis of the first set of low-redshift (z s ) light curves in a well-understood photometric system. Methods are described for deriving light-curve parameters, and for building template light curves which are used to fit SN Ia data in the ugriBVYJH bands. The intrinsic colors at maximum light are calibrated using a subsample of supernovae (SNe) assumed to have suffered little or no reddening, enabling color excesses to be estimated for the full sample. The optical-NIR color excesses allow the properties of the reddening law in the host galaxies to be studied. A low average value of the total-to-selective absorption coefficient, R V ∼ 1.7, is derived when using the entire sample of SNe. However, when the two highly reddened SNe (SN 2005A and SN 2006X) in the sample are excluded, a value R V ∼ 3.2 is obtained, similar to the standard value for the Galaxy. The red colors of these two events are well matched by a model where multiple scattering of photons by circumstellar dust steepens the effective extinction law. The absolute peak magnitudes of the SNe are studied in all bands using a two-parameter linear fit to the decline rates and the colors at maximum light, or alternatively, the color excesses. In both cases, similar results are obtained with dispersions in absolute magnitudes of 0.12-0.16 mag, depending on the specific filter-color combination. In contrast to the results obtained from the comparison of the color excesses, these fits of absolute magnitude give R V ∼ 1-2 when the dispersion is minimized, even when the two highly reddened SNe are excluded. This discrepancy suggests that, beyond the 'normal' interstellar reddening produced in the host galaxies, there is an intrinsic dispersion in the colors of SNe Ia which is correlated with luminosity but independent of the decline rate. Finally, a Hubble diagram for the best-observed subsample of SNe is produced by combining the results of the fits of absolute magnitude versus decline rate and color

  18. Imprints of explosion conditions on late-time spectra of type Ia supernovae

    Science.gov (United States)

    Diamond, Tiara R.

    Type Ia supernovae (SNe Ia) play a vital role in the discrimination of different cosmological models. These events have been shown to be standardizable based on properties of their light curves during the early-time photospheric phase. However, the distribution of types of progenitor system, the explosion trigger, and the physics of the explosion are still an active topic of discussion. The details of the progenitors and explosion may provide insight into the variation seen in Type Ia supernova light curves and spectra, and therefore, allow for additional methods of standardization among the group. Late-time near-infrared spectral observations for SNe Ia show numerous strong emission features of forbidden line transitions of cobalt and iron, tracing the central distribution of iron-group burning products. As the spectrum ages, the cobalt features fade as expected from the decay of 56Co to 56Fe. This work will show that the strong and isolated [Fe II] emission line at 1.644 mum provides a unique tool to analyze near-infrared spectra of SNe Ia. Several new methods of analysis will be demonstrated to determine some of the initial conditions of the system. The initial central density, rhoc, and the extent of mixing in the central regions of the explosion have signatures in the line profiles of late-time spectra. An embedded magnetic field, B, of the white dwarf can be determined using the evolution of the lines profiles. Currently magnetic field effects are not included in the hydrodynamics and radiation transport of simulations of SNe Ia. Normalization of spectra to the 1.644 mum line allows separation of features produced by stable versus unstable isotopes of iron group elements. Implications for potential progenitor systems, explosion mechanisms, and the origins and morphology of magnetic fields in SNe Ia, in addition to limitations of the method, are discussed. Observations of the late-time near-infrared emission spectrum at multiple epochs allow for the first ever

  19. The Massive Progenitor of the Type II-linear Supernova 2009kr

    Science.gov (United States)

    Elias-Rosa, Nancy; Van Dyk, Schuyler D.; Li, Weidong; Miller, Adam A.; Silverman, Jeffrey M.; Ganeshalingam, Mohan; Boden, Andrew F.; Kasliwal, Mansi M.; Vinkó, József; Cuillandre, Jean-Charles; Filippenko, Alexei V.; Steele, Thea N.; Bloom, Joshua S.; Griffith, Christopher V.; Kleiser, Io K. W.; Foley, Ryan J.

    2010-05-01

    We present early-time photometric and spectroscopic observations of supernova (SN) 2009kr in NGC 1832. We find that its properties to date support its classification as Type II-linear (SN II-L), a relatively rare subclass of core-collapse supernovae (SNe). We have also identified a candidate for the SN progenitor star through comparison of pre-explosion, archival images taken with WFPC2 on board the Hubble Space Telescope with SN images obtained using adaptive optics plus NIRC2 on the 10 m Keck-II telescope. Although the host galaxy's substantial distance (~26 Mpc) results in large uncertainties in the relative astrometry, we find that if this candidate is indeed the progenitor, it is a highly luminous (M 0 V = -7.8 mag) yellow supergiant with initial mass ~18-24 M sun. This would be the first time that an SN II-L progenitor has been directly identified. Its mass may be a bridge between the upper initial mass limit for the more common Type II-plateau SNe and the inferred initial mass estimate for one Type II-narrow SN. Based in part on observations made with the NASA/ESA Hubble Space Telescope (HST), obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 05-26555; the 6.5 m Magellan Clay Telescope located at Las Campanas Observatory, Chile; various telescopes at Lick Observatory; the 1.3 m PAIRITEL on Mt. Hopkins; the SMARTS Consortium 1.3 m telescope located at Cerro Tololo Inter-American Observatory (CTIO), Chile; the 3.6 m Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii; and the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, with

  20. Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Filippenko, Alexei Vladimir [Univ. of California, Berkeley, CA (United States)

    2014-05-09

    Type Ia supernovae (SNe Ia; exploding white-dwarf stars) were the key to the Nobel-worthy 1998 discovery and subsequent verification that the expansion of the Universe is accelerating, driven by the effects of dark energy. Understanding the nature of this mysterious, yet dominant, component of the Universe is at the forefront of research in cosmology and fundamental physics. SNe Ia will continue to play a leading role in this enterprise, providing precise cosmological distances that improve constraints on the nature of dark energy. However, for this effort to succeed, we need to more thoroughly understand relatively nearby SNe Ia, because our conclusions come only from comparisons between them and distant (high-redshift) SNe Ia. Thus, detailed studies of relatively nearby SNe Ia are the focus of this research program. Many interesting results were obtained during the course of this project; these were published in 32 refereed research papers that acknowledged the grant. A major accomplishment was the publication of supernova (SN) rates derived from about a decade of operation of the Lick Observatory Supernova Search (LOSS) with the 0.76-meter Katzman Automatic Imaging Telescope (KAIT). We have determined the most accurate rates for SNe of different types in large, nearby galaxies in the present-day Universe, and these can be compared with SN rates far away (and hence long ago in the past) to set constraints on the types of stars that explode. Another major accomplishment was the publication of the light curves (brightness vs. time) of 165 SNe Ia, along with optical spectroscopy of many of these SNe as well as other SNe Ia, providing an extensive, homogeneous database for detailed studies. We have conducted intensive investigations of a number of individual SNe Ia, including quite unusual examples that allow us to probe the entire range of SN explosions and provide unique insights into these objects and the stars before they explode. My team's studies have also

  1. Measurement of the evolution of type Ia supernovae explosion rate as a function of redshift in the SuperNovae Legacy Survey

    International Nuclear Information System (INIS)

    Ripoche, Pascal

    2007-01-01

    This research thesis reports works performed within the frame of the SuperNovae Legacy Survey (SNLS) which is one of the second-generation experiment exploiting Ia supernovae as cosmological source, and allows 8 billions or years of universe expansion to be observed by means of the Canada France Hawaii Telescope and a systematic detection of supernovae. The first part addresses cosmology and supernovae, and notably shows how Ia supernovae can used as cosmological probe to constraint cosmological parameters. Other methods of measurement of these parameters are briefly explained. The SNLS experiment is then presented: description of the experiment and of the supernovae detection chain, image processing. The author then presents a detailed simulation which has been developed to simulate Ia supernovae on the experiment images. He also presents associated tools and tests. This simulation is then used to study the efficiencies and weaknesses of supernovae detection by the SNLS. The measurement of the Ia supernovae explosion rate is then measured with respect to cosmic evolution [fr

  2. THE YELLOW SUPERGIANT PROGENITOR OF THE TYPE II SUPERNOVA 2011dh IN M51

    International Nuclear Information System (INIS)

    Maund, J. R.; Fraser, M.; Smartt, S. J.; Kotak, R.; Magill, L.; Ergon, M.; Sollerman, J.; Pastorello, A.; Benetti, S.; Botticella, M.-T.; Valenti, S.; Bufano, F.; Danziger, I. J.; Stephens, A. W.

    2011-01-01

    We present the detection of the putative progenitor of the Type IIb SN 2011dh in archival pre-explosion Hubble Space Telescope images. Using post-explosion Adaptive Optics imaging with Gemini NIRI+ALTAIR, the position of the supernova (SN) in the pre-explosion images was determined to within 23 mas. The progenitor candidate is consistent with an F8 supergiant star (logL/L sun = 4.92 ± 0.20 and T eff = 6000 ± 280 K). Through comparison with stellar evolution tracks, this corresponds to a single star at the end of core C-burning with an initial mass of M ZAMS = 13 ± 3 M sun . The possibility of the progenitor source being a cluster is rejected, on the basis of: (1) the source not being spatially extended, (2) the absence of excess Hα emission, and (3) the poor fit to synthetic cluster spectral energy distributions (SEDs). It is unclear if a binary companion is contributing to the observed SED, although given the excellent correspondence of the observed photometry to a single star SED we suggest that the companion does not contribute significantly. Early photometric and spectroscopic observations show fast evolution similar to the transitional Type IIb SN 2008ax and suggest that a large amount of the progenitor's hydrogen envelope was removed before explosion. Late-time observations will reveal if the yellow supergiant or the putative companion star were responsible for this SN explosion.

  3. ON THE LIRA LAW AND THE NATURE OF EXTINCTION TOWARD TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Francisco; Gonzalez-Gaitan, Santiago [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study (TODIAS), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Morrell, Nidia [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile)

    2013-07-20

    We have studied the relation between the color evolution of Type Ia supernovae (SNe Ia) from maximum light to the Lira law regime and the presence of narrow absorption features. Based on a nearby sample of 89 SNe Ia, we have found that the rate of change of B - V colors at late phases (between 35 and 80 days after maximum) varies significantly among different SNe Ia. At maximum light, faster Lira law B - V decliners have significantly higher equivalent widths of blended Na I D1 and D2 narrow absorption lines, redder colors, and lower R{sub V} reddening laws. We do not find faster Lira law B - V decliners to have a strong preference for younger galaxy environments, where higher interstellar material (ISM) column densities would be expected. We interpret these results as evidence for the presence of circumstellar material. The differences in colors and reddening laws found at maximum light are also present 55 days afterward, but unlike the colors at maximum they show a significant variation among different host galaxy morphological types. This suggests that the effect of ISM on the colors is more apparent at late times. Finally, we discuss how the transversal expansion of the ejecta in an inhomogeneous ISM could mimic some of these findings.

  4. Absolute Distances to Nearby Type Ia Supernovae via Light Curve Fitting Methods

    Science.gov (United States)

    Vinkó, J.; Ordasi, A.; Szalai, T.; Sárneczky, K.; Bányai, E.; Bíró, I. B.; Borkovits, T.; Hegedüs, T.; Hodosán, G.; Kelemen, J.; Klagyivik, P.; Kriskovics, L.; Kun, E.; Marion, G. H.; Marschalkó, G.; Molnár, L.; Nagy, A. P.; Pál, A.; Silverman, J. M.; Szakáts, R.; Szegedi-Elek, E.; Székely, P.; Szing, A.; Vida, K.; Wheeler, J. C.

    2018-06-01

    We present a comparative study of absolute distances to a sample of very nearby, bright Type Ia supernovae (SNe) derived from high cadence, high signal-to-noise, multi-band photometric data. Our sample consists of four SNe: 2012cg, 2012ht, 2013dy and 2014J. We present new homogeneous, high-cadence photometric data in Johnson–Cousins BVRI and Sloan g‧r‧i‧z‧ bands taken from two sites (Piszkesteto and Baja, Hungary), and the light curves are analyzed with publicly available light curve fitters (MLCS2k2, SNooPy2 and SALT2.4). When comparing the best-fit parameters provided by the different codes, it is found that the distance moduli of moderately reddened SNe Ia agree within ≲0.2 mag, and the agreement is even better (≲0.1 mag) for the highest signal-to-noise BVRI data. For the highly reddened SN 2014J the dispersion of the inferred distance moduli is slightly higher. These SN-based distances are in good agreement with the Cepheid distances to their host galaxies. We conclude that the current state-of-the-art light curve fitters for Type Ia SNe can provide consistent absolute distance moduli having less than ∼0.1–0.2 mag uncertainty for nearby SNe. Still, there is room for future improvements to reach the desired ∼0.05 mag accuracy in the absolute distance modulus.

  5. Low luminosity Type II supernovae - II. Pointing towards moderate mass precursors

    Czech Academy of Sciences Publication Activity Database

    Spiro, S.; Pastorello, A.; Pumo, M. L.; Zampieri, L.; Turatto, M.; Smartt, S. J.; Benetti, S.; Cappellaro, E.; Kawka, Adela; Vennes, Stephane

    2014-01-01

    Roč. 439, č. 3 (2014), s. 2873-2892 ISSN 0035-8711 Institutional support: RVO:67985815 Keywords : supernovae: general Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics Impact factor: 5.107, year: 2014

  6. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na I absorption

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M. M.; Morrell, Nidia; Hsiao, E. Y.; Campillay, Abdo; Contreras, Carlos [Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena (Chile); Simon, Joshua D.; Burns, Christopher R.; Persson, Sven E.; Thompson, I. B.; Freedman, Wendy L. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Cox, Nick L. J. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D bus 2401, 3001 Leuven (Belgium); Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Karakas, Amanda I. [Research School of Astronomy and Astrophysics, The Australian National University, Weston, ACT 2611 (Australia); Patat, F. [European Southern Observatory (ESO), Karl Schwarschild Strasse 2, D-85748, Garching bei München (Germany); Sternberg, A. [Max Planck Institute for Astrophysics, Karl Schwarzschild Strasse 1, D-85741 Garching bei München (Germany); Williams, R. E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gal-Yam, A. [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Leonard, D. C. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Folatelli, Gastón, E-mail: mmp@lco.cl [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa 277-8583 (Japan); and others

    2013-12-10

    High-dispersion observations of the Na I D λλ5890, 5896 and K I λλ7665, 7699 interstellar lines, and the diffuse interstellar band at 5780 Å in the spectra of 32 Type Ia supernovae are used as an independent means of probing dust extinction. We show that the dust extinction of the objects where the diffuse interstellar band at 5780 Å is detected is consistent with the visual extinction derived from the supernova colors. This strongly suggests that the dust producing the extinction is predominantly located in the interstellar medium of the host galaxies and not in circumstellar material associated with the progenitor system. One quarter of the supernovae display anomalously large Na I column densities in comparison to the amount of dust extinction derived from their colors. Remarkably, all of the cases of unusually strong Na I D absorption correspond to 'Blueshifted' profiles in the classification scheme of Sternberg et al. This coincidence suggests that outflowing circumstellar gas is responsible for at least some of the cases of anomalously large Na I column densities. Two supernovae with unusually strong Na I D absorption showed essentially normal K I column densities for the dust extinction implied by their colors, but this does not appear to be a universal characteristic. Overall, we find the most accurate predictor of individual supernova extinction to be the equivalent width of the diffuse interstellar band at 5780 Å, and provide an empirical relation for its use. Finally, we identify ways of producing significant enhancements of the Na abundance of circumstellar material in both the single-degenerate and double-degenerate scenarios for the progenitor system.

  7. Influence of Axisymmetrically Deformed Explosions in Type II Supernovae on the Reproduction of the Solar System Abundances

    Science.gov (United States)

    Nagataki, Shigehiro

    1999-01-01

    We have tried to reproduce the solar system abundances using the nucleosynthesis products of Type Ia and Type II supernovae. In particular, we examined the effects of axisymmetrically deformed explosions in Type II supernovae. 44Ca and 47,48Ti are enhanced considerably in axisymmetrically deformed explosion models because of the active alpha-rich freezeout. The enhancement of nuclei around A=45 is a welcome result since it solves the problem of the nuclei shortage. Moreover, 59Co, 63,65Cu, and 66Zn are enhanced enough to reproduce the solar system abundances. The enhancement of Cu and Zn means the possibility that these nuclei, which have been said to be produced by the slow process, can be synthesized fairly well during the explosive nucleosynthesis. To discuss their origin quantitatively, the position of the mass cut is a very important parameter that is very difficult to determine numerically at present. We also stress that an axisymmetrically deformed explosion of Type II supernovae of the degree that is considered in this analysis is not excluded by the results of calculations of explosive nucleosynthesis, that is, the nucleosynthesis products are not extremely disturbed and the solar system abundances can be reproduced fairly well by the axisymmetrically deformed explosion models. This conclusion will be good for the theory of core collapse including the rotation of an iron core, magnetic field, and axisymmetrically modified neutrino radiation from a rotating protoneutron star, which possibly can cause an axisymmetrically deformed explosion.

  8. A SPECTROSCOPICALLY NORMAL TYPE Ic SUPERNOVA FROM A VERY MASSIVE PROGENITOR

    International Nuclear Information System (INIS)

    Valenti, Stefano; Pastorello, Andrea; Benetti, Stefano; Cappellaro, Enrico; Tomasella, Lina; Turatto, Massimo; Taubenberger, Stefan; Aramyan, Levon; Botticella, Maria Teresa; Fraser, Morgan; Smartt, Stephen J.; Magill, Lindsay; Kotak, Rubina; Wright, Darryl E.; Elias-Rosa, Nancy; Ergon, Mattias; Sollerman, Jesper; Magnier, Eugene; Price, Paul A.

    2012-01-01

    We present observations of the Type Ic supernova (SN Ic) 2011bm spanning a period of about one year. The data establish that SN 2011bm is a spectroscopically normal SN Ic with moderately low ejecta velocities and with a very slow spectroscopic and photometric evolution (more than twice as slow as SN 1998bw). The Pan-STARRS1 retrospective detection shows that the rise time from explosion to peak was ∼40 days in the R band. Through an analysis of the light curve and the spectral sequence, we estimate a kinetic energy of ∼7-17 foe and a total ejected mass of ∼7-17 M ☉ , 5-10 M ☉ of which is oxygen and 0.6-0.7 M ☉ is 56 Ni. The physical parameters obtained for SN 2011bm suggest that its progenitor was a massive star of initial mass 30-50 M ☉ . The profile of the forbidden oxygen lines in the nebular spectra shows no evidence of a bi-polar geometry in the ejected material.

  9. THE OXYGEN FEATURES IN TYPE Ia SUPERNOVAE AND IMPLICATIONS FOR THE NATURE OF THERMONUCLEAR EXPLOSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xulin; Wang, Xiaofeng; Sai, Hanna; Huang, Fang; Rui, Liming [Physics Department and Tsinghua Center for Astrophysics, Tsinghua University, Beijing, 100084 (China); Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Wang, Lifan [Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Zhang, Jujia [Yunnan Observatories, Chinese Academy of Sciences, Kunming, 650216 (China); Zhang, Tianmeng, E-mail: wang_xf@mail.tsinghua.edu.cn, E-mail: zhaoxl11@mails.tsinghua.edu.cn, E-mail: keiichi.maeda@kusastro.kyoto-u.ac.jp [National Astronomical Observatory of China, Chinese Academy of Sciences, Beijing, 100012 (China)

    2016-08-01

    The absorption feature O i λ 7773 is an important spectral indicator for type Ia supernovae (SNe Ia) that can be used to trace the unburned material in outer layers of the exploding white dwarf (WD). In this work, we use a large sample of SNe Ia to examine this absorption at early phases (i.e., 13 day ≲ t ≲ 7 day) and make comparisons with the absorption features of Si ii λ 6355 and the Ca ii near-infrared triplet. We show that for a subgroup of spectroscopically normal SNe with normal photospheric velocities (i.e., v {sub si} ≲ 12,500 km s{sup 1} at optical maximum), the line strength of the high velocity feature (HVF) of O i is inversely correlated with that of Si ii (or Ca ii), and this feature also shows a negative correlation with the luminosity of SNe Ia. This finding, together with other features we find for the O i HVF, reveal that for this subgroup of SNe Ia, explosive oxygen burning occurs in the outermost layer of the SN. Differences in the oxygen burning could lead to the observed diversity, which is in remarkable agreement with the popular delayed-detonation model of Chandrasekhar mass WDs.

  10. EVIDENCE FOR A COMPACT WOLF-RAYET PROGENITOR FOR THE TYPE Ic SUPERNOVA PTF 10vgv

    Energy Technology Data Exchange (ETDEWEB)

    Corsi, A. [LIGO laboratory, California Institute of Technology, MS 100-36, Pasadena, CA 91125 (United States); Ofek, E. O.; Gal-Yam, A.; Arcavi, I.; Ben-Ami, S.; Rabinak, I. [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Frail, D. A. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Poznanski, D. [School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Mazzali, P. A. [INAF-Osservatorio Astronomico, vicolo dellOsservatorio, 5, I-35122 Padova (Italy); Kulkarni, S. R.; Kasliwal, M. M.; Horesh, A. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Cenko, S. B.; Filippenko, A. V.; Kleiser, I. K. W.; Silverman, J. M. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Fox, D. B.; Howell, J. L. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Nakar, E. [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Sari, R., E-mail: corsi@caltech.edu [Racah Institute for Physics, Hebrew University, Jerusalem 91904 (Israel); and others

    2012-03-15

    We present the discovery of PTF 10vgv, a Type Ic supernova (SN) detected by the Palomar Transient Factory, using the Palomar 48 inch telescope (P48). R-band observations of the PTF 10vgv field with P48 probe the SN emission from its very early phases (about two weeks before R-band maximum) and set limits on its flux in the week prior to the discovery. Our sensitive upper limits and early detections constrain the post-shock-breakout luminosity of this event. Via comparison to numerical (analytical) models, we derive an upper-limit of R {approx}< 4.5 R{sub Sun} (R {approx}< 1 R{sub Sun }) on the radius of the progenitor star, a direct indication in favor of a compact Wolf-Rayet star. Applying a similar analysis to the historical observations of SN 1994I yields R {approx}< 1/4 R{sub Sun} for the progenitor radius of this SN.

  11. FLAMES IN TYPE Ia SUPERNOVA: DEFLAGRATION-DETONATION TRANSITION IN THE OXYGEN-BURNING FLAME

    International Nuclear Information System (INIS)

    Woosley, S. E.; Kerstein, A. R.; Aspden, A. J.

    2011-01-01

    The flame in a Type Ia supernova is a conglomerate structure that, depending on density, may involve separate regions of carbon, oxygen, and silicon burning, all propagating in a self-similar, subsonic front. The separation between these three burning regions increases as the density declines until eventually, below about 2 x 10 7 g cm -3 , only carbon burning remains active, the other two burning phases having 'frozen out' on stellar scales. Between 2 and 3 x 10 7 g cm -3 , however, there remains an energetic oxygen-burning region that trails the carbon burning by an amount that is sensitive to the turbulence intensity. As the carbon flame makes a transition to the distributed regime (Karlovitz number ∼> 10), the characteristic separation between the carbon- and oxygen-burning regions increases dramatically, from a fraction of a meter to many kilometers. The oxygen-rich mixture between the two flames is created at a nearly constant temperature, and turbulence helps to maintain islands of well-mixed isothermal fuel as the temperature increases. The delayed burning of these regions can be supersonic and could initiate a detonation.

  12. Direct numerical simulations of type Ia supernovae flames II: The Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.

    2004-01-01

    A Type Ia supernova explosion likely begins as a nuclear runaway near the center of a carbon-oxygen white dwarf. The outward propagating flame is unstable to the Landau-Darrieus, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities, which serve to accelerate it to a large fraction of the speed of sound. We investigate the Rayleigh-Taylor unstable flame at the transition from the flamelet regime to the distributed-burning regime, around densities of 10e7 gm/cc, through detailed, fully resolved simulations. A low Mach number, adaptive mesh hydrodynamics code is used to achieve the necessary resolution and long time scales. As the density is varied, we see a fundamental change in the character of the burning--at the low end of the density range the Rayleigh-Taylor instability dominates the burning, whereas at the high end the burning suppresses the instability. In all cases, significant acceleration of the flame is observed, limited only by the size of the domain we are able to study. We discuss the implications of these results on the potential for a deflagration to detonation transition

  13. Contributions of type II and Ib/c supernovae to Galactic chemical evolution

    International Nuclear Information System (INIS)

    Sahijpal Sandeep

    2014-01-01

    Type II and Ib/c supernovae (SNe II and Ib/c) have made major stellar nucleosynthetic contributions to the inventories of stable nuclides during chemical evolution of the Galaxy. A case study is performed here with the help of recently developed numerical simulations of Galactic chemical evolution in the solar neighborhood to understand the contributions of SNe II and Ib/c by comparing the stellar nucleosynthetic yields obtained by two leading groups in this field. These stellar nucleosynthetic yields differ in terms of their treatment of stellar evolution and nucleosynthesis. The formulation describing Galactic chemical evolution is developed with the recently revised solar metallicity of ∼0.014. Furthermore, the recent nucleosynthetic yields of stellar models based on the revised solar metallicity are also used. The analysis suggests that it could be difficult to explain, in a self-consistent manner, the various features associated with the elemental evolutionary trends over Galactic timescales by any single adopted stellar nucleosynthetic model that incorporates SNe II and Ib/c

  14. THE ABSENCE OF EX-COMPANIONS IN TYPE Ia SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Di Stefano, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kilic, Mukremin, E-mail: rd@cfa.harvard.edu, E-mail: kilic@ou.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States)

    2012-11-01

    Type Ia supernovae (SNe Ia) play important roles in our study of the expansion and acceleration of the universe, but because we do not know the exact nature or natures of the progenitors, there is a systematic uncertainty that must be resolved if SNe Ia are to become more precise cosmic probes. No progenitor system has ever been identified either in the pre- or post-explosion images of a Ia event. There have been recent claims for and against the detection of ex-companion stars in several SNe Ia remnants. These studies, however, usually ignore the angular momentum gain of the progenitor white dwarf (WD), which leads to a spin-up phase and a subsequent spin-down phase before explosion. For spin-down timescales greater than 10{sup 5} years, the donor star could be too dim to detect by the time of explosion. Here we revisit the current limits on ex-companion stars to SNR 0509-67.5, a 400-year-old remnant in the Large Magellanic Cloud. If the effects of possible angular momentum gain on the WD are included, a wide range of single-degenerate progenitor models are allowed for this remnant. We demonstrate that the current absence of evidence for ex-companion stars in this remnant, as well as other SNe Ia remnants, does not necessarily provide the evidence of absence for ex-companions. We discuss potential ways to identify such ex-companion stars through deep imaging observations.

  15. THE ABSENCE OF EX-COMPANIONS IN TYPE Ia SUPERNOVA REMNANTS

    International Nuclear Information System (INIS)

    Di Stefano, R.; Kilic, Mukremin

    2012-01-01

    Type Ia supernovae (SNe Ia) play important roles in our study of the expansion and acceleration of the universe, but because we do not know the exact nature or natures of the progenitors, there is a systematic uncertainty that must be resolved if SNe Ia are to become more precise cosmic probes. No progenitor system has ever been identified either in the pre- or post-explosion images of a Ia event. There have been recent claims for and against the detection of ex-companion stars in several SNe Ia remnants. These studies, however, usually ignore the angular momentum gain of the progenitor white dwarf (WD), which leads to a spin-up phase and a subsequent spin-down phase before explosion. For spin-down timescales greater than 10 5 years, the donor star could be too dim to detect by the time of explosion. Here we revisit the current limits on ex-companion stars to SNR 0509-67.5, a 400-year-old remnant in the Large Magellanic Cloud. If the effects of possible angular momentum gain on the WD are included, a wide range of single-degenerate progenitor models are allowed for this remnant. We demonstrate that the current absence of evidence for ex-companion stars in this remnant, as well as other SNe Ia remnants, does not necessarily provide the evidence of absence for ex-companions. We discuss potential ways to identify such ex-companion stars through deep imaging observations.

  16. Color dispersion and Milky-Way-like reddening among type Ia supernovae

    International Nuclear Information System (INIS)

    Scolnic, Daniel M.; Riess, Adam G.; Rodney, Steven A.; Brout, Dillon J.; Jones, David O.; Foley, Ryan J.; Rest, Armin

    2014-01-01

    Past analyses of Type Ia supernovae have identified an irreducible scatter of 5%-10% in distance, widely attributed to an intrinsic dispersion in luminosity. Another equally valid source of this scatter is intrinsic dispersion in color. Misidentification of the true source of this scatter can bias both the retrieved color-luminosity relation and cosmological parameter measurements. The size of this bias depends on the magnitude of the intrinsic color dispersion relative to the distribution of colors that correlate with distance. We produce a realistic simulation of a misattribution of intrinsic scatter and find a negative bias in the recovered color-luminosity relation, β, of Δβ ≈ –1.0 (∼33%) and a positive bias in the equation of state parameter, w, of Δw ≈ +0.04 (∼4%). We re-analyze current published datasets with the assumption that the distance scatter is predominantly the result of color. Unlike previous analyses, we find that the data are consistent with a Milky-Way-like reddening law (R V = 3.1) and that a Milky-Way dust model better predicts the asymmetric color-luminosity trends than the conventional luminosity scatter hypothesis. We also determine that accounting for color variation reduces the correlation between various host galaxy properties and Hubble residuals by ∼20%.

  17. HIGH-RESOLUTION SIMULATIONS OF CONVECTION PRECEDING IGNITION IN TYPE Ia SUPERNOVAE USING ADAPTIVE MESH REFINEMENT

    International Nuclear Information System (INIS)

    Nonaka, A.; Aspden, A. J.; Almgren, A. S.; Bell, J. B.; Zingale, M.; Woosley, S. E.

    2012-01-01

    We extend our previous three-dimensional, full-star simulations of the final hours of convection preceding ignition in Type Ia supernovae to higher resolution using the adaptive mesh refinement capability of our low Mach number code, MAESTRO. We report the statistics of the ignition of the first flame at an effective 4.34 km resolution and general flow field properties at an effective 2.17 km resolution. We find that off-center ignition is likely, with radius of 50 km most favored and a likely range of 40-75 km. This is consistent with our previous coarser (8.68 km resolution) simulations, implying that we have achieved sufficient resolution in our determination of likely ignition radii. The dynamics of the last few hot spots preceding ignition suggest that a multiple ignition scenario is not likely. With improved resolution, we can more clearly see the general flow pattern in the convective region, characterized by a strong outward plume with a lower speed recirculation. We show that the convective core is turbulent with a Kolmogorov spectrum and has a lower turbulent intensity and larger integral length scale than previously thought (on the order of 16 km s –1 and 200 km, respectively), and we discuss the potential consequences for the first flames.

  18. EXPLORING THE POTENTIAL DIVERSITY OF EARLY TYPE IA SUPERNOVA LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Piro, Anthony L. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Morozova, Viktoriya S., E-mail: piro@obs.carnegiescience.edu [Theoretical Astrophysics, California Institute of Technology, 1200 E California Boulevard, M/C 350-17, Pasadena, CA 91125 (United States)

    2016-07-20

    During the first several days after explosion, Type Ia supernova light curves probe the outer layers of the exploding star, and therefore provide important clues for identifying their progenitors. We investigate how both the shallow {sup 56}Ni distribution and the presence of circumstellar material shape these early light curves. This is performed using a series of numerical experiments with parameterized properties for systematic exploration. Although not all of the considered models may be realized in nature (and indeed there are arguments why some of them should not occur), the spirit of this work is to provide a broader exploration of the diversity of possibilities. We find that shallower {sup 56}Ni leads to steeper, bluer light curves. Differences in the shape of the rise can introduce errors in estimating the explosion time, and thus impact efforts to infer upper limits on the progenitor or companion radius from a lack of observed shock cooling emission. Circumstellar material can lead to significant luminosity during the first few days, but its presence can be difficult to identify depending on the degree of nickel mixing. In some cases, the hot emission of circumstellar material may even lead to a signature similar to an interaction with a companion, and thus in the future additional diagnostics should be gathered for properly assessing early light curves.

  19. The evolution of temperature and bolometric luminosity in Type II supernovae

    Science.gov (United States)

    Faran, T.; Nakar, E.; Poznanski, D.

    2018-01-01

    In this work, we present a uniform analysis of the temperature evolution and bolometric luminosity of a sample of 29 Type II supernovae (SNe), by fitting a blackbody model to their multiband photometry. Our sample includes only SNe with high quality multiband data and relatively well-sampled time coverage. Most of the SNe in our sample were detected less than a week after explosion so their light curves cover the evolution both before and after recombination starts playing a role. We use this sample to study the signature of hydrogen recombination, which is expected to appear once the observed temperature drops to ≈7000 K. Theory predicts that before recombination starts affecting the light curve, both the luminosity and the temperature should drop relatively fast, following a power law in time. Once the recombination front reaches inner parts of the outflow, it sets the observed temperature to be nearly constant, and slows the decline of the luminosity (or even leads to a re-brightening). We compare our data to analytic studies and find strong evidence for the signature of recombination. We also find that the onset of the optical plateau in a given filter, is effectively the time at which the blackbody peak reaches the central wavelength of the filter, as it cools, and it does not correspond to the time at which recombination starts affecting the emission.

  20. THE OXYGEN FEATURES IN TYPE Ia SUPERNOVAE AND IMPLICATIONS FOR THE NATURE OF THERMONUCLEAR EXPLOSIONS

    International Nuclear Information System (INIS)

    Zhao, Xulin; Wang, Xiaofeng; Sai, Hanna; Huang, Fang; Rui, Liming; Maeda, Keiichi; Wang, Lifan; Zhang, Jujia; Zhang, Tianmeng

    2016-01-01

    The absorption feature O i λ 7773 is an important spectral indicator for type Ia supernovae (SNe Ia) that can be used to trace the unburned material in outer layers of the exploding white dwarf (WD). In this work, we use a large sample of SNe Ia to examine this absorption at early phases (i.e., 13 day ≲ t ≲ 7 day) and make comparisons with the absorption features of Si ii λ 6355 and the Ca ii near-infrared triplet. We show that for a subgroup of spectroscopically normal SNe with normal photospheric velocities (i.e., v si ≲ 12,500 km s 1 at optical maximum), the line strength of the high velocity feature (HVF) of O i is inversely correlated with that of Si ii (or Ca ii), and this feature also shows a negative correlation with the luminosity of SNe Ia. This finding, together with other features we find for the O i HVF, reveal that for this subgroup of SNe Ia, explosive oxygen burning occurs in the outermost layer of the SN. Differences in the oxygen burning could lead to the observed diversity, which is in remarkable agreement with the popular delayed-detonation model of Chandrasekhar mass WDs.

  1. Swift UVOT Grism Observations of Nearby Type Ia Supernovae - I. Observations and Data Reduction

    Science.gov (United States)

    Pan, Y.-C.; Foley, R. J.; Filippenko, A. V.; Kuin, N. P. M.

    2018-05-01

    Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) are useful tools for understanding progenitor systems and explosion physics. In particular, UV spectra of SNe Ia, which probe the outermost layers, are strongly affected by the progenitor metallicity. In this work, we present 120 Neil Gehrels Swift Observatory UV spectra of 39 nearby SNe Ia. This sample is the largest UV (λ Ia to date, doubling the number of UV spectra and tripling the number of SNe with UV spectra. The sample spans nearly the full range of SN Ia light-curve shapes (Δm15(B) ≈ 0.6-1.8 mag). The fast turnaround of Swift allows us to obtain UV spectra at very early times, with 13 out of 39 SNe having their first spectra observed ≳ 1 week before peak brightness and the earliest epoch being 16.5 days before peak brightness. The slitless design of the Swift UV grism complicates the data reduction, which requires separating SN light from underlying host-galaxy light and occasional overlapping stellar light. We present a new data-reduction procedure to mitigate these issues, producing spectra that are significantly improved over those of standard methods. For a subset of the spectra we have nearly simultaneous Hubble Space Telescope UV spectra; the Swift spectra are consistent with these comparison data.

  2. The Impact of Microlensing on the Standardisation of Strongly Lensed Type Ia Supernovae

    Science.gov (United States)

    Foxley-Marrable, Max; Collett, Thomas E.; Vernardos, Georgios; Goldstein, Daniel A.; Bacon, David

    2018-05-01

    We investigate the effect of microlensing on the standardisation of strongly lensed Type Ia supernovae (GLSNe Ia). We present predictions for the amount of scatter induced by microlensing across a range of plausible strong lens macromodels. We find that lensed images in regions of low convergence, shear and stellar density are standardisable, where the microlensing scatter is ≲ 0.15 magnitudes, comparable to the intrinsic dispersion of for a typical SN Ia. These standardisable configurations correspond to asymmetric lenses with an image located far outside the Einstein radius of the lens. Symmetric and small Einstein radius lenses (≲ 0.5 arcsec) are not standardisable. We apply our model to the recently discovered GLSN Ia iPTF16geu and find that the large discrepancy between the observed flux and the macromodel predictions from More et al. (2017) cannot be explained by microlensing alone. Using the mock GLSNe Ia catalogue of Goldstein et al. (2017), we predict that ˜ 22% of GLSNe Ia discovered by LSST will be standardisable, with a median Einstein radius of 0.9 arcseconds and a median time-delay of 41 days. By breaking the mass-sheet degeneracy the full LSST GLSNe Ia sample will be able to detect systematics in H0 at the 0.5% level.

  3. WD+RG systems as the progenitors of type Ia supernovae

    International Nuclear Information System (INIS)

    Wang Bo; Han Zhanwen

    2010-01-01

    Type Ia supernovae (SNe Ia) play an important role in the study of cosmic evolution, especially in cosmology. There are several progenitor models for SNe Ia proposed in the past years. By considering the effect of accretion disk instability on the evolution of white dwarf (WD) binaries, we performed detailed binary evolution calculations for the WD + red-giant (RG) channel of SNe Ia, in which a carbon-oxygen WD accretes material from a RG star to increase its mass to the Chandrasekhar mass limit. According to these calculations, we mapped out the initial and final parameters for SNe Ia in the orbital period-secondary mass (log P i - M i 2 ) plane for various WD masses for this channel. We discussed the influence of the variation of the duty cycle value on the regions for producing SNe Ia. Similar to previous studies, this work also indicates that the long-period dwarf novae offer possible ways for producing SNe Ia. Meanwhile, we find that the surviving companion stars from this channel have a low mass after the SN explosion, which may provide a means for the formation of the population of single low-mass WDs ( o-dot ).

  4. Double-detonation model of type Ia supernovae with a variable helium layer ignition mass

    International Nuclear Information System (INIS)

    Zhou Wei-Hong; Zhao Gang; Wang Bo

    2014-01-01

    Although Type Ia supernovae (SNe Ia) play an important role in the study of cosmology, their progenitors are still poorly understood. Thermonuclear explosions from the helium double-detonation sub-Chandrasekhar mass model have been considered as an alternative method for producing SNe Ia. By adopting the assumption that a double detonation occurs when a He layer with a critical ignition mass accumulates on the surface of a carbon—oxygen white dwarf (CO WD), we perform detailed binary evolution calculations for the He double-detonation model, in which a He layer from a He star accumulates on a CO WD. According to these calculations, we obtain the initial parameter spaces for SNe Ia in the orbital period and secondary mass plane for various initial WD masses. We implement these results into a detailed binary population synthesis approach to calculate SN Ia birthrates and delay times. From this model, the SN Ia birthrate in our Galaxy is ∼0.4 − 1.6 × 10 −3 yr −1 . This indicates that the double-detonation model only produces part of the SNe Ia. The delay times from this model are ∼ 70 – 710 Myr, which contribute to the young population of SNe Ia in the observations. We found that the CO WD + sdB star system CD–30 11223 could produce an SN Ia via the double-detonation model in its future evolution. (research papers)

  5. THE IMPACT OF METALLICITY ON THE RATE OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Kistler, Matthew D.; Stanek, K. Z.; Kochanek, Christopher S.; Thompson, Todd A.; Prieto, José L.

    2013-01-01

    The metallicity of a star strongly affects both its evolution and the properties of the stellar remnant that results from its demise. It is generally accepted that stars with initial masses below ∼8 M ☉ leave behind white dwarfs and that some sub-population of these lead to Type Ia supernovae (SNe Ia). However, it is often tacitly assumed that metallicity has no effect on the rate of SNe Ia. We propose that a consequence of the effects of metallicity is to significantly increase the SN Ia rate in lower-metallicity galaxies, in contrast to previous expectations. This is because lower-metallicity stars leave behind higher-mass white dwarfs, which should be easier to bring to explosion. We first model SN Ia rates in relation to galaxy masses and ages alone, finding that the elevation in the rate of SNe Ia in lower-mass galaxies measured by Lick Observatory SN Search is readily explained. However, we then see that models incorporating this effect of metallicity agree just as well. Using the same parameters to estimate the cosmic SN Ia rate, we again find good agreement with data up to z ≈ 2. We suggest that this degeneracy warrants more detailed examination of host galaxy metallicities. We discuss additional implications, including for hosts of high-z SNe Ia, the SN Ia delay time distribution, super-Chandrasekhar SNe, and cosmology.

  6. THE IMPACT OF METALLICITY ON THE RATE OF TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, Matthew D. [California Institute of Technology, Mail Code 350-17, Pasadena, CA 91125 (United States); Stanek, K. Z.; Kochanek, Christopher S.; Thompson, Todd A. [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Prieto, Jose L. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2013-06-20

    The metallicity of a star strongly affects both its evolution and the properties of the stellar remnant that results from its demise. It is generally accepted that stars with initial masses below {approx}8 M{sub Sun} leave behind white dwarfs and that some sub-population of these lead to Type Ia supernovae (SNe Ia). However, it is often tacitly assumed that metallicity has no effect on the rate of SNe Ia. We propose that a consequence of the effects of metallicity is to significantly increase the SN Ia rate in lower-metallicity galaxies, in contrast to previous expectations. This is because lower-metallicity stars leave behind higher-mass white dwarfs, which should be easier to bring to explosion. We first model SN Ia rates in relation to galaxy masses and ages alone, finding that the elevation in the rate of SNe Ia in lower-mass galaxies measured by Lick Observatory SN Search is readily explained. However, we then see that models incorporating this effect of metallicity agree just as well. Using the same parameters to estimate the cosmic SN Ia rate, we again find good agreement with data up to z Almost-Equal-To 2. We suggest that this degeneracy warrants more detailed examination of host galaxy metallicities. We discuss additional implications, including for hosts of high-z SNe Ia, the SN Ia delay time distribution, super-Chandrasekhar SNe, and cosmology.

  7. EVIDENCE FOR ASYMMETRIC DISTRIBUTION OF CIRCUMSTELLAR MATERIAL AROUND TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Francisco; Gonzalez-Gaitan, Santiago; Anderson, Joseph; Marchi, Sebastian; Gutierrez, Claudia; Hamuy, Mario; Cartier, Regis [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Pignata, Giuliano [Departamento Ciencias Fisicas, Universidad Andres Bello, Av. Republica 252, Santiago (Chile)

    2012-08-01

    We study the properties of low-velocity material in the line of sight toward nearby Type Ia supernovae (SNe Ia) that have measured late phase nebular velocity shifts (v{sub neb}), thought to be an environment-independent observable. We have found that the distribution of equivalent widths of narrow blended Na I D1 and D2 and Ca II H and K absorption lines differs significantly between those SNe Ia with negative and positive v{sub neb}, with generally stronger absorption for SNe Ia with v{sub neb} {>=} 0. A similar result had been found previously for the distribution of colors of SNe Ia, which was interpreted as a dependence of the temperature of the ejecta with viewing angle. Our work suggests that (1) a significant part of these differences in color should be attributed to extinction, (2) this extinction is caused by an asymmetric distribution of circumstellar material (CSM), and (3) the CSM absorption is generally stronger on the side of the ejecta opposite to where the ignition occurs. Since it is difficult to explain (3) via any known physical processes that occur before explosion, we argue that the asymmetry of the CSM is originated after explosion by a stronger ionizing flux on the side of the ejecta where ignition occurs, probably due to a stronger shock breakout and/or more exposed radioactive material on one side of the ejecta. This result has important implications for both progenitor and explosion models.

  8. Cosmological parameter uncertainties from SALT-II type Ia supernova light curve models

    International Nuclear Information System (INIS)

    Mosher, J.; Sako, M.; Guy, J.; Astier, P.; Betoule, M.; El-Hage, P.; Pain, R.; Regnault, N.; Kessler, R.; Frieman, J. A.; Marriner, J.; Biswas, R.; Kuhlmann, S.; Schneider, D. P.

    2014-01-01

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ∼120 low-redshift (z < 0.1) SNe Ia, ∼255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ∼290 SNLS SNe Ia (z ≤ 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w input – w recovered ) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty; the average bias on w is –0.014 ± 0.007.

  9. EVLA OBSERVATIONS CONSTRAIN THE ENVIRONMENT AND PROGENITOR SYSTEM OF Type Ia SUPERNOVA 2011fe

    International Nuclear Information System (INIS)

    Chomiuk, Laura; Soderberg, Alicia M.; Moe, Maxwell; Margutti, Raffaella; Fong, Wen-fai; Dittmann, Jason A.; Chevalier, Roger A.; Rupen, Michael P.; Badenes, Carles; Fransson, Claes

    2012-01-01

    We report unique Expanded Very Large Array observations of SN 2011fe representing the most sensitive radio study of a Type Ia supernova to date. Our data place direct constraints on the density of the surrounding medium at radii ∼10 15 -10 16 cm, implying an upper limit on the mass loss rate from the progenitor system of M-dot -10 M ☉ yr -1 (assuming a wind speed of 100 km s –1 ) or expansion into a uniform medium with density n CSM ∼ –3 . Drawing from the observed properties of non-conservative mass transfer among accreting white dwarfs, we use these limits on the density of the immediate environs to exclude a phase space of possible progenitor systems for SN 2011fe. We rule out a symbiotic progenitor system and also a system characterized by high accretion rate onto the white dwarf that is expected to give rise to optically thick accretion winds. Assuming that a small fraction, 1%, of the mass accreted is lost from the progenitor system, we also eliminate much of the potential progenitor parameter space for white dwarfs hosting recurrent novae or undergoing stable nuclear burning. Therefore, we rule out much of the parameter space associated with popular single degenerate progenitor models for SN 2011fe, leaving a limited phase space largely inhabited by some double degenerate systems, as well as exotic single degenerates with a sufficient time delay between mass accretion and SN explosion.

  10. Nucleosynthesis Modes in the High-Entropy-Wind Scenario of Type II Supernovae

    International Nuclear Information System (INIS)

    Farouqi, K.; Kratz, K.-L.; Cowan, J. J.; Mashonkina, L. I.; Pfeiffer, B.; Sneden, C.; Thielemann, F.-K.; Truran, J. W.

    2008-01-01

    In an attempt to constrain the astrophysical conditions for the nucleosynthesis of the classical r-process elements beyond Fe, we have performed large-scale dynamical network calculations within the model of an adiabatically expanding high- entropy wind (HEW) of type II supernovae (SN II). A superposition of several entropy-components (S) with model-inherent weightings results in an excellent reproduction of the overall Solar System (SS) isotopic r-process residuals (N r,· ), as well as the more recent observations of elemental abundances of metal-poor, r-process rich halo stars in the early Galaxy. For the heavy r-process elements beyond Sn, our HEW model predicts a robust abundance pattern up to the Th, U r-chronometer region. For the lighter neutron-capture region, an S-dependent superposition of (i) a normal α-component directly producing stable nuclei, including s-only isotopes, and (ii) a component from a neutron-rich α-freezeout followed by the rapid recapture of β-delayed neutrons (βdnrpar; emitted from the far-unstable seed nuclei is indicated. In agreement with several recent halo-star observations in the 60< A<110 region, our HEW model confirms a Z-dependent non-correlation, respectively partial correlation with the heavier ''main'' r-process elements

  11. The crossing statistic: dealing with unknown errors in the dispersion of Type Ia supernovae

    International Nuclear Information System (INIS)

    Shafieloo, Arman; Clifton, Timothy; Ferreira, Pedro

    2011-01-01

    We propose a new statistic that has been designed to be used in situations where the intrinsic dispersion of a data set is not well known: The Crossing Statistic. This statistic is in general less sensitive than χ 2 to the intrinsic dispersion of the data, and hence allows us to make progress in distinguishing between different models using goodness of fit to the data even when the errors involved are poorly understood. The proposed statistic makes use of the shape and trends of a model's predictions in a quantifiable manner. It is applicable to a variety of circumstances, although we consider it to be especially well suited to the task of distinguishing between different cosmological models using type Ia supernovae. We show that this statistic can easily distinguish between different models in cases where the χ 2 statistic fails. We also show that the last mode of the Crossing Statistic is identical to χ 2 , so that it can be considered as a generalization of χ 2

  12. TYPE Ia SUPERNOVAE: CAN CORIOLIS FORCE BREAK THE SYMMETRY OF THE GRAVITATIONAL CONFINED DETONATION EXPLOSION MECHANISM?

    Energy Technology Data Exchange (ETDEWEB)

    García-Senz, D. [Departament de Física, UPC, Comte d’Urgell 187, E-08036 Barcelona (Spain); Cabezón, R. M.; Thielemann, F. K. [Departement Physik, Universität Basel. Klingelbergstrasse, 82, 4056 Basel (Switzerland); Domínguez, I., E-mail: domingo.garcia@upc.edu, E-mail: ruben.cabezon@unibas.ch [Departamento de Física, Teórica y del Cosmos, Universidad de Granada, E-18071 Granada (Spain)

    2016-03-10

    Currently the number of models aimed at explaining the phenomena of type Ia supernovae is high and distinguishing between them is a must. In this work we explore the influence of rotation on the evolution of the nuclear flame that drives the explosion in the so-called gravitational confined detonation models. Assuming that the flame starts in a pointlike region slightly above the center of the white dwarf (WD) and adding a moderate amount of angular velocity to the star we follow the evolution of the deflagration using a smoothed particle hydrodynamics code. We find that the results are very dependent on the angle between the rotational axis and the line connecting the initial bubble of burned material with the center of the WD at the moment of ignition. The impact of rotation is larger for angles close to 90° because the Coriolis force on a floating element of fluid is maximum and its principal effect is to break the symmetry of the deflagration. Such symmetry breaking weakens the convergence of the nuclear flame at the antipodes of the initial ignition volume, changing the environmental conditions around the convergence region with respect to non-rotating models. These changes seem to disfavor the emergence of a detonation in the compressed volume at the antipodes and may compromise the viability of the so-called gravitational confined detonation mechanism.

  13. The cooling time of white dwarfs produced from type Ia supernovae

    International Nuclear Information System (INIS)

    Meng Xiangcun; Yang Wuming; Li Zhongmu

    2010-01-01

    Type Ia supernovae (SNe Ia) play a key role in measuring cosmological parameters, in which the Phillips relation is adopted. However, the origin of the relation is still unclear. Several parameters are suggested, e.g. the relative content of carbon to oxygen (C/O) and the central density of the white dwarf (WD) at ignition. These parameters are mainly determined by the WD's initial mass and its cooling time, respectively. Using the progenitor model developed by Meng and Yang, we present the distributions of the initial WD mass and the cooling time. We do not find any correlation between these parameters. However, we notice that as the range of the WD's mass decreases, its average value increases with the cooling time. These results could provide a constraint when simulating the SN Ia explosion, i.e. the WDs with a high C/O ratio usually have a lower central density at ignition, while those having the highest central density at ignition generally have a lower C/O ratio. The cooling time is mainly determined by the evolutionary age of secondaries, and the scatter of the cooling time decreases with the evolutionary age. Our results may indicate that WDs with a long cooling time have more uniform properties than those with a short cooling time, which may be helpful to explain why SNe Ia in elliptical galaxies have a more uniform maximum luminosity than those in spiral galaxies. (research papers)

  14. Cosmological Parameter Uncertainties from SALT-II Type Ia Supernova Light Curve Models

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J. [Pennsylvania U.; Guy, J. [LBL, Berkeley; Kessler, R. [Chicago U., KICP; Astier, P. [Paris U., VI-VII; Marriner, J. [Fermilab; Betoule, M. [Paris U., VI-VII; Sako, M. [Pennsylvania U.; El-Hage, P. [Paris U., VI-VII; Biswas, R. [Argonne; Pain, R. [Paris U., VI-VII; Kuhlmann, S. [Argonne; Regnault, N. [Paris U., VI-VII; Frieman, J. A. [Fermilab; Schneider, D. P. [Penn State U.

    2014-08-29

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ~120 low-redshift (z < 0.1) SNe Ia, ~255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ~290 SNLS SNe Ia (z ≤ 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w (input) – w (recovered)) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty, the average bias on w is –0.014 ± 0.007.

  15. Progressive Red Shifts in the Late-Time Spectra of Type Ia Supernovae

    Science.gov (United States)

    Black, Christine; Fesen, Robert; Parrent, Jerod

    2017-01-01

    We examine the evolution of late-time, optical nebular features of Type Ia supernovae (SNe Ia) using a sample consisting of 160 spectra of 27 normal SNe Ia taken from the literature as well as unpublished spectra of SN 2008Q and ASASSN-14lp. Particular attention is given to nebular features between 4000-6000 Ang in terms of temporal changes in width and central wavelength. Analysis of the prominent late-time 4700 Ang feature shows a progressive central wavelength shift from ˜4600 Ang to longer wavelengths out to at least day +300 for our entire sample. We find no evidence for the feature’s red-ward shift slowing or halting at an [Fe III] blend centroid ˜4700 Ang as has been proposed. Two weaker adjacent features at around 4850 and 5000 Ang exhibit similar red shifts to that of the 4700 Ang feature. We conclude that the ubiquitous red shift of these common late-time SN Ia spectral features is not mainly due to a decrease in line velocities of forbidden Fe emissions, but the result of decreasing line velocities and opacity of permitted Fe absorption lines.

  16. A metric space for Type Ia supernova spectra: a new method to assess explosion scenarios

    Science.gov (United States)

    Sasdelli, Michele; Hillebrandt, W.; Kromer, M.; Ishida, E. E. O.; Röpke, F. K.; Sim, S. A.; Pakmor, R.; Seitenzahl, I. R.; Fink, M.

    2017-04-01

    Over the past years, Type Ia supernovae (SNe Ia) have become a major tool to determine the expansion history of the Universe, and considerable attention has been given to, both, observations and models of these events. However, until now, their progenitors are not known. The observed diversity of light curves and spectra seems to point at different progenitor channels and explosion mechanisms. Here, we present a new way to compare model predictions with observations in a systematic way. Our method is based on the construction of a metric space for SN Ia spectra by means of linear principal component analysis, taking care of missing and/or noisy data, and making use of partial least-squares regression to find correlations between spectral properties and photometric data. We investigate realizations of the three major classes of explosion models that are presently discussed: delayed-detonation Chandrasekhar-mass explosions, sub-Chandrasekhar-mass detonations and double-degenerate mergers, and compare them with data. We show that in the principal component space, all scenarios have observed counterparts, supporting the idea that different progenitors are likely. However, all classes of models face problems in reproducing the observed correlations between spectral properties and light curves and colours. Possible reasons are briefly discussed.

  17. A common central engine for long gamma-ray bursts and Type Ib/c supernovae

    Science.gov (United States)

    Sobacchi, E.; Granot, J.; Bromberg, O.; Sormani, M. C.

    2017-11-01

    Long-duration, spectrally soft gamma-ray bursts (GRBs) are associated with Type Ic core collapse (CC) supernovae (SNe), and thus arise from the death of massive stars. In the collapsar model, the jet launched by the central engine must bore its way out of the progenitor star before it can produce a GRB. Most of these jets do not break out, and are instead 'choked' inside the star, as the central engine activity time, te, is not long enough. Modelling the long-soft GRB duration distribution assuming a power-law distribution for their central engine activity times, ∝ t_e^{-α } for te > tb, we find a steep distribution (α ∼ 4) and a typical GRB jet breakout time of tb ∼ 60s in the star's frame. The latter suggests the presence of a low-density, extended envelope surrounding the progenitor star, similar to that previously inferred for low-luminosity GRBs. Extrapolating the range of validity of this power law below what is directly observable, to te < tb, by only a factor of ∼4-5 produces enough events to account for all Type Ib/c SNe. Such extrapolation is necessary to avoid fine-tuning the distribution of central engine activity times with the breakout time, which are presumably unrelated. We speculate that central engines launching relativistic jets may operate in all Type Ib/c SNe. In this case, the existence of a common central engine would imply that (i) the jet may significantly contribute to the energy of the SN; (ii) various observational signatures, like the asphericity of the explosion, could be directly related to jet's interaction with the star.

  18. PRE-DISCOVERY AND FOLLOW-UP OBSERVATIONS OF THE NEARBY SN 2009nr: IMPLICATIONS FOR PROMPT TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Khan, Rubab; Stanek, K. Z.; Beacom, J. F.; Szczygiel, D. M.; Mogren, K.; Eastman, J. D.; Martini, P.; Stoll, R.; Prieto, J. L.; Pojmanski, G.; Pilecki, B.

    2011-01-01

    We present photometric and spectroscopic observations of the Type Ia supernova SN 2009nr in UGC 8255 (z = 0.0122). Following the discovery announcement at what turned out to be 10 days after peak, we detected it at V ≅15.7 mag in data collected by the All-Sky Automated Survey (ASAS) North telescope 2 weeks prior to the peak, and then followed it up with telescopes ranging in aperture from 10 cm to 6.5 m. Using early photometric data available only from ASAS, we find that the supernova is similar to the overluminous Type Ia SN 1991T, with a peak at M V ≅ -19.6 mag, and a slow decline rate of Δm 15 (B) ≅ 0.95 mag. The early post-maximum spectra closely resemble those of SN 1991T, while the late-time spectra are more similar to those of normal Type Ia supernovae (SNe Ia). Interestingly, SN 2009nr has a projected distance of 13.0 kpc (∼4.3 disk scale lengths) from the nucleus of the small star-forming host galaxy UGC 8255. This indicates that the progenitor of SN 2009nr is not associated with a young stellar population, calling into question the conventional association of luminous SNe Ia with the 'prompt' component directly correlated with current star formation. The pre-discovery observation of SN 2009nr using ASAS demonstrates the science utility of high-cadence all sky surveys conducted using small telescopes for the discovery of nearby (d ∼< 50 Mpc) supernovae.

  19. Nurseries of Supernovae

    DEFF Research Database (Denmark)

    Frederiksen, Teddy

    Type Ia supernovae (SNe) have long been the gold standard for precision cosmology and after several decades of intense research the supernova (SN) community was in 2011 honored by giving the Nobel Prize in physics for the discovery of Dark Energy to the leaders of the two big SN collaborations: S...

  20. WHITE DWARF/M DWARF BINARIES AS SINGLE DEGENERATE PROGENITORS OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Wheeler, J. Craig

    2012-01-01

    Limits on the companions of white dwarfs in the single-degenerate scenario for the origin of Type Ia supernovae (SNe Ia) have gotten increasingly tight, yet igniting a nearly Chandrasekhar mass C/O white dwarf from a condition of near hydrostatic equilibrium provides compelling agreement with observed spectral evolution. The only type of non-degenerate stars that survive the tight limits, M V ∼> 8.4 on the SN Ia in SNR 0509-67.5 and M V ∼> 9.5 in the remnant of SN 1572, are M dwarfs. While M dwarfs are observed in cataclysmic variables, they have special properties that have not been considered in most work on the progenitors of SNe Ia: they have small but finite magnetic fields and they flare frequently. These properties are explored in the context of SN Ia progenitors. White dwarf/M dwarf pairs may be sufficiently plentiful to provide, in principle, an adequate rate of explosions even with slow orbital evolution due to magnetic braking or gravitational radiation. Even modest magnetic fields on the white dwarf and M dwarf will yield adequate torques to lock the two stars together, resulting in a slowly rotating white dwarf, with the magnetic poles pointing at one another in the orbital plane. The mass loss will be channeled by a 'magnetic bottle' connecting the two stars, landing on a concentrated polar area on the white dwarf. This enhances the effective rate of accretion compared to spherical accretion. Luminosity from accretion and hydrogen burning on the surface of the white dwarf may induce self-excited mass transfer. The combined effects of self-excited mass loss, polar accretion, and magnetic inhibition of mixing of accretion layers give possible means to beat the 'nova limit' and grow the white dwarf to the Chandrasekhar mass even at rather moderate mass accretion rates.

  1. Optical observations of the type Ic supernova 2007gr in NGC 1058

    International Nuclear Information System (INIS)

    Chen, Juncheng; Wang, Xiaofeng; Li, Junzheng; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Filippenko, Alexei V.; Li, Weidong; Chornock, Ryan; Steele, Thea

    2014-01-01

    We present extensive optical observations of the normal Type Ic supernova (SN) 2007gr, spanning from about one week before maximum light to more than one year thereafter. The optical light and color curves of SN 2007gr are very similar to those of the broad-lined Type Ic SN 2002ap, but the spectra show remarkable differences. The optical spectra of SN 2007gr are characterized by unusually narrow lines, prominent carbon lines, and slow evolution of the line velocity after maximum light. The earliest spectrum (taken at t = –8 days) shows a possible signature of helium (He I λ5876 at a velocity of ∼19,000 km s –1 ). Moreover, the larger intensity ratio of the [O I] λ6300 and λ6364 lines inferred from the early nebular spectra implies a lower opacity of the ejecta shortly after the explosion. These results indicate that SN 2007gr perhaps underwent a less energetic explosion of a smaller-mass Wolf-Rayet star (∼8-9 M ☉ ) in a binary system, as favored by an analysis of the progenitor environment through pre-explosion and post-explosion Hubble Space Telescope images. In the nebular spectra, asymmetric double-peaked profiles can be seen in the [O I] λ6300 and Mg I] λ4571 lines. We suggest that the two peaks are contributed by the blueshifted and rest-frame components. The similarity in velocity structure and the different evolution of the strength of the two components favor an aspherical explosion with the ejecta distributed in a torus or disk-like geometry, but inside the ejecta the O and Mg have different distributions.

  2. THE PROGENITORS OF TYPE Ia SUPERNOVAE. II. ARE THEY DOUBLE-DEGENERATE BINARIES? THE SYMBIOTIC CHANNEL

    International Nuclear Information System (INIS)

    Di Stefano, R.

    2010-01-01

    In order for a white dwarf (WD) to achieve the Chandrasekhar mass, M C , and explode as a Type Ia supernova (SNIa), it must interact with another star, either accreting matter from or merging with it. The failure to identify the class or classes of binaries which produce SNeIa is the long-standing 'progenitor problem'. Its solution is required if we are to utilize the full potential of SNeIa to elucidate basic cosmological and physical principles. In single-degenerate models, a WD accretes and burns matter at high rates. Nuclear-burning white dwarfs (NBWDs) with mass close to M C are hot and luminous, potentially detectable as supersoft X-ray sources (SSSs). In previous work, we showed that >90%-99% of the required number of progenitors do not appear as SSSs during most of the crucial phase of mass increase. The obvious implication might be that double-degenerate binaries form the main class of progenitors. We show in this paper, however, that many binaries that later become double degenerates must pass through a long-lived NBWD phase during which they are potentially detectable as SSSs. The paucity of SSSs is therefore not a strong argument in favor of double-degenerate models. Those NBWDs that are the progenitors of double-degenerate binaries are likely to appear as symbiotic binaries for intervals >10 6 years. In fact, symbiotic pre-double-degenerates should be common, whether or not the WDs eventually produce SNeIa. The key to solving the Type Ia progenitor problem lies in understanding the appearance of NBWDs. Most of them do not appear as SSSs most of the time. We therefore consider the evolution of NBWDs to address the question of what their appearance may be and how we can hope to detect them.

  3. SN 2006bt: A PERPLEXING, TROUBLESOME, AND POSSIBLY MISLEADING TYPE Ia SUPERNOVA

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Narayan, Gautham; Challis, Peter J.; Kirshner, Robert P.; Filippenko, Alexei V.; Silverman, Jeffrey M.; Steele, Thea N.

    2010-01-01

    SN 2006bt displays characteristics unlike those of any other known Type Ia supernova (SN Ia). We present optical light curves and spectra of SN 2006bt which demonstrate the peculiar nature of this object. SN 2006bt has broad, slowly declining light curves indicative of a hot, high-luminosity SN, but lacks a prominent second maximum in the i band as do low-luminosity SNe Ia. Its spectra are similar to those of low-luminosity SNe Ia, containing features that are only present in cool SN photospheres. Light-curve fitting methods suggest that SN 2006bt is reddened by a significant amount of dust; however, it occurred in the outskirts of its early-type host galaxy and has no strong Na D absorption in any of its spectra, suggesting a negligible amount of host-galaxy dust absorption. C II is possibly detected in our pre-maximum spectra, but at a much lower velocity than other elements. The progenitor was likely very old, being a member of the halo population of a galaxy that shows no signs of recent star formation. SNe Ia have been very successfully modeled as a one-parameter family, and this is fundamental to their use as cosmological distance indicators. SN 2006bt is a challenge to that picture, yet its relatively normal light curves allowed SN 2006bt to be included in cosmological analyses. We generate mock SN Ia data sets which indicate that contamination by similar objects will both increase the scatter of a SN Ia Hubble diagram and systematically bias measurements of cosmological parameters. However, spectra and rest-frame i-band light curves should provide a definitive way to identify and eliminate such objects.

  4. Optical observations of the type Ic supernova 2007gr in NGC 1058

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Juncheng; Wang, Xiaofeng; Li, Junzheng [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing 100084 (China); Ganeshalingam, Mohan; Silverman, Jeffrey M.; Filippenko, Alexei V.; Li, Weidong; Chornock, Ryan; Steele, Thea, E-mail: cjc09@mails.tsinghua.edu.cn, E-mail: wang_xf@mail.tsinghua.edu.cn [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2014-08-01

    We present extensive optical observations of the normal Type Ic supernova (SN) 2007gr, spanning from about one week before maximum light to more than one year thereafter. The optical light and color curves of SN 2007gr are very similar to those of the broad-lined Type Ic SN 2002ap, but the spectra show remarkable differences. The optical spectra of SN 2007gr are characterized by unusually narrow lines, prominent carbon lines, and slow evolution of the line velocity after maximum light. The earliest spectrum (taken at t = –8 days) shows a possible signature of helium (He I λ5876 at a velocity of ∼19,000 km s{sup –1}). Moreover, the larger intensity ratio of the [O I] λ6300 and λ6364 lines inferred from the early nebular spectra implies a lower opacity of the ejecta shortly after the explosion. These results indicate that SN 2007gr perhaps underwent a less energetic explosion of a smaller-mass Wolf-Rayet star (∼8-9 M{sub ☉}) in a binary system, as favored by an analysis of the progenitor environment through pre-explosion and post-explosion Hubble Space Telescope images. In the nebular spectra, asymmetric double-peaked profiles can be seen in the [O I] λ6300 and Mg I] λ4571 lines. We suggest that the two peaks are contributed by the blueshifted and rest-frame components. The similarity in velocity structure and the different evolution of the strength of the two components favor an aspherical explosion with the ejecta distributed in a torus or disk-like geometry, but inside the ejecta the O and Mg have different distributions.

  5. The Type IIb Supernova 2013df and its Cool Supergiant Progenitor

    Science.gov (United States)

    VanDyk, Schuyler D.; Zeng, Weikang; Fox, Ori D.; Cenko, S. Bradley; Clubb, Kelsey I.; Filippenko, Alexei; Foley, Ryan J.; Miller, Adam A.; Smith, Nathan; Kelly, Patrick L.; hide

    2014-01-01

    We have obtained early-time photometry and spectroscopy of supernova (SN) 2013df in NGC 4414. The SN is clearly of Type II b, with notable similarities to SN 1993J. From its luminosity at secondary maximum light, it appears that less Ni-56 (is approximately less than 0.06M) was synthesized in the SN 2013df explosion than was the case for the SNe II b 1993J, 2008ax, and 2011dh. Based on a comparison of the light curves, the SN 2013df progenitor must have been more extended in radius prior to explosion than the progenitor of SN 1993J. The total extinction for SN 2013dfis estimated to be A(sub V) = 0.30 mag. The metallicity at the SN location is likely to be solar. We have conducted Hubble Space Telescope(HST) Target of Opportunity observations of the SN with the Wide Field Camera 3, and from a precise comparison of these new observations to archival HST observations of the host galaxy obtained 14 yr prior to explosion, we have identified the progenitor of SN 2013df to be a yellow supergiant, somewhat hotter than a red supergiant progenitor for a normal Type II-Plateau SN. From its observed spectral energy distribution, assuming that the light is dominated by one star, the progenitor had effective temperature T(sub eff) = 4250+/-100 K and a bolometric luminosity L(sub bol) =10(exp 4.94+/-0.06) Solar Luminosity. This leads to an effective radius Reff = 545+/-65 Solar Radius. The star likely had an initial mass in the range of 13-17Solar Mass; however, if it was a member of an interacting binary system, detailed modeling of the system is required to estimate this mass more accurately. The progenitor star of SN 2013df appears to have been relatively similar to the progenitor of SN 1993J.

  6. The type IIb supernova 2013df and its cool supergiant progenitor

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyk, Schuyler D. [Spitzer Science Center/Caltech, Mail Code 220-6, Pasadena, CA 91125 (United States); Zheng, WeiKang; Fox, Ori D.; Clubb, Kelsey I.; Filippenko, Alexei V.; Kelly, Patrick L. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Miller, Adam A. [Jet Propulsion Laboratory, MS 169-506, Pasadena, CA 91109 (United States); Smith, Nathan [Steward Observatory, University of Arizona, Tucson, AZ 85720 (United States); Lee, William H. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70-264, Cd. Universitaria, México DF 04510 (Mexico); Ben-Ami, Sagi; Gal-Yam, Avishay, E-mail: vandyk@ipac.caltech.edu [Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel)

    2014-02-01

    We have obtained early-time photometry and spectroscopy of supernova (SN) 2013df in NGC 4414. The SN is clearly of Type IIb, with notable similarities to SN 1993J. From its luminosity at secondary maximum light, it appears that less {sup 56}Ni (≲ 0.06 M {sub ☉}) was synthesized in the SN 2013df explosion than was the case for the SNe IIb 1993J, 2008ax, and 2011dh. Based on a comparison of the light curves, the SN 2013df progenitor must have been more extended in radius prior to explosion than the progenitor of SN 1993J. The total extinction for SN 2013df is estimated to be A{sub V} = 0.30 mag. The metallicity at the SN location is likely to be solar. We have conducted Hubble Space Telescope (HST) Target of Opportunity observations of the SN with the Wide Field Camera 3, and from a precise comparison of these new observations to archival HST observations of the host galaxy obtained 14 yr prior to explosion, we have identified the progenitor of SN 2013df to be a yellow supergiant, somewhat hotter than a red supergiant progenitor for a normal Type II-Plateau SN. From its observed spectral energy distribution, assuming that the light is dominated by one star, the progenitor had effective temperature T {sub eff} = 4250 ± 100 K and a bolometric luminosity L {sub bol} = 10{sup 4.94±0.06} L {sub ☉}. This leads to an effective radius R {sub eff} = 545 ± 65 R {sub ☉}. The star likely had an initial mass in the range of 13-17 M {sub ☉}; however, if it was a member of an interacting binary system, detailed modeling of the system is required to estimate this mass more accurately. The progenitor star of SN 2013df appears to have been relatively similar to the progenitor of SN 1993J.

  7. SN 2009bb: A PECULIAR BROAD-LINED TYPE Ic SUPERNOVA ,

    International Nuclear Information System (INIS)

    Pignata, Giuliano; Stritzinger, Maximilian; Phillips, M. M.; Morrell, Nidia; Boldt, Luis; Campillay, Abdo; Contreras, Carlos; Gonzalez, Sergio; Krzeminski, Wojtek; Roth, Miguel; Salgado, Francisco; Soderberg, Alicia; Mazzali, Paolo; Anderson, J. P.; Folatelli, Gaston; Foerster, Francisco; Hamuy, Mario; Maza, Jose; Levesque, Emily M.; Rest, Armin

    2011-01-01

    Ultraviolet, optical, and near-infrared photometry and optical spectroscopy of the broad-lined Type Ic supernova (SN) 2009bb are presented, following the flux evolution from -10 to +285 days past B-band maximum. Thanks to the very early discovery, it is possible to place tight constraints on the SN explosion epoch. The expansion velocities measured from near maximum spectra are found to be only slightly smaller than those measured from spectra of the prototype broad-lined SN 1998bw associated with GRB 980425. Fitting an analytical model to the pseudobolometric light curve of SN 2009bb suggests that 4.1 ± 1.9 M sun of material was ejected with 0.22 ± 0.06 M sun of it being 56 Ni. The resulting kinetic energy is 1.8 ± 0.7 x 10 52 erg. This, together with an absolute peak magnitude of M B = -18.36 ± 0.44, places SN 2009bb on the energetic and luminous end of the broad-lined Type Ic (SN Ic) sequence. Detection of helium in the early time optical spectra accompanied with strong radio emission and high metallicity of its environment makes SN 2009bb a peculiar object. Similar to the case for gamma-ray bursts (GRBs), we find that the bulk explosion parameters of SN 2009bb cannot account for the copious energy coupled to relativistic ejecta, and conclude that another energy reservoir (a central engine) is required to power the radio emission. Nevertheless, the analysis of the SN 2009bb nebular spectrum suggests that the failed GRB detection is not imputable to a large angle between the line-of-sight and the GRB beamed radiation. Therefore, if a GRB was produced during the SN 2009bb explosion, it was below the threshold of the current generation of γ-ray instruments.

  8. [O I] λλ6300, 6364 IN THE NEBULAR SPECTRUM OF A SUBLUMINOUS TYPE Ia SUPERNOVA

    International Nuclear Information System (INIS)

    Taubenberger, S.; Kromer, M.; Hillebrandt, W.; Pakmor, R.; Pignata, G.; Maeda, K.; Hachinger, S.; Leibundgut, B.

    2013-01-01

    In this Letter, a late-phase spectrum of SN 2010lp, a subluminous Type Ia supernova (SN Ia), is presented and analyzed. As in 1991bg-like SNe Ia at comparable epochs, the spectrum is characterized by relatively broad [Fe II] and [Ca II] emission lines. However, instead of narrow [Fe III] and [Co III] lines that dominate the emission from the innermost regions of 1991bg-like supernovae (SNe), SN 2010lp shows [O I] λλ6300, 6364 emission, usually associated with core-collapse SNe and never previously observed in a subluminous thermonuclear explosion. The [O I] feature has a complex profile with two strong, narrow emission peaks. This suggests that oxygen is distributed in a non-spherical region close to the center of the ejecta, severely challenging most thermonuclear explosion models discussed in the literature. We conclude that, given these constraints, violent mergers are presently the most promising scenario to explain SN 2010lp

  9. The many sides of RCW 86: a Type Ia supernova remnant evolving in its progenitor's wind bubble

    Science.gov (United States)

    Broersen, Sjors; Chiotellis, Alexandros; Vink, Jacco; Bamba, Aya

    2014-07-01

    We present the results of a detailed investigation of the Galactic supernova remnant RCW 86 using the XMM-Newton X-ray telescope. RCW 86 is the probable remnant of SN 185 A.D., a supernova that likely exploded inside a wind-blown cavity. We use the XMM-Newton Reflection Grating Spectrometer to derive precise temperatures and ionization ages of the plasma, which are an indication of the interaction history of the remnant with the presumed cavity. We find that the spectra are well fitted by two non-equilibrium ionization models, which enables us to constrain the properties of the ejecta and interstellar matter plasma. Furthermore, we performed a principal component analysis on EPIC MOS and pn data to find regions with particular spectral properties. We present evidence that the shocked ejecta, emitting Fe K and Si line emission, are confined to a shell of approximately 2 pc width with an oblate spheroidal morphology. Using detailed hydrodynamical simulations, we show that general dynamical and emission properties at different portions of the remnant can be well reproduced by a Type Ia supernova that exploded in a non-spherically symmetric wind-blown cavity. We also show that this cavity can be created using general wind properties for a single degenerate system. Our data and simulations provide further evidence that RCW 86 is indeed the remnant of SN 185, and is the likely result of a Type Ia explosion of single degenerate origin.

  10. TYPE Ia SNe ALONG REDSHIFT: THE R(Si II) RATIO AND THE EXPANSION VELOCITIES IN INTERMEDIATE-z SUPERNOVAE

    International Nuclear Information System (INIS)

    Altavilla, G.; Ruiz-Lapuente, P.; Balastegui, A.; Mendez, J.; Espana-Bonet, C.; Irwin, M.; Ellis, R. S.; McMahon, R. M.; Walton, N. A.; Folatelli, G.; Goobar, A.; Nobili, S.; Stanishev, V.; Hillebrandt, W.

    2009-01-01

    We present a study of intermediate-z Type Ia supernovae (SNe Ia) using empirical physical diagrams which permit the investigation of those SNe explosions. This information can be very useful to reduce systematic uncertainties of the Hubble diagram of SNe Ia up to high z. The study of the expansion velocities and the measurement of the ratio R(Si II) allow subtyping of SNe Ia as done in nearby samples. The evolution of this ratio as seen in the diagram R(Si II)-(t) together with R(Si II) max versus (B - V) 0 indicates consistency of the properties at intermediate-z compared with the nearby SNe Ia. At intermediate-z, expansion velocities of Ca II and Si II are found similar to those of the nearby sample. This is found in a sample of six SNe Ia in the range 0.033 ≤z≤ 0.329 discovered within the International Time Programme of SNe Ia for Cosmology and Physics in the spring run of 2002. 7 The program run under Omega and Lambda from Supernovae and the Physics of Supernova Explosions within the International Time Programme at the telescopes of the European Northern Observatory (ENO) at La Palma (Canary Islands, Spain). Two SNe Ia at intermediate-z were of the cool FAINT type, one being an SN1986G-like object highly reddened. The R(Si II) ratio as well as subclassification of the SNe Ia beyond templates help to place SNe Ia in their sequence of brightness and to distinguish between reddened and intrinsically red supernovae. This test can be done with very high z SNe Ia and it will help to reduce systematic uncertainties due to extinction by dust. It should allow to map the high-z sample into the nearby one.

  11. Data compression of measurements of peculiar velocities of supernovae type Ia

    International Nuclear Information System (INIS)

    Irsic, Vid; Slosar, Anze

    2011-01-01

    We study the compression of information present in the correlated perturbations to the luminosity distance in the low-redshift (z 2 P(k), where f is the logarithmic rate of growth of linear perturbations and P(k) is their power spectrum. We develop an optimal quadratic estimator and show that it recovers all information for ΛCDM models for surveys of N∼10,000 or more supernovae. We explicitly demonstrate robustness with respect to the assumed fiducial model and the number of power spectrum bins. Using mock catalogues of supernovae Ia we estimate that future low-redshift surveys will be able to probe σ 8 to 6% accuracy with 10 000 supernovae Ia.

  12. X-RAY AND GAMMA-RAY FLASHES FROM TYPE Ia SUPERNOVAE?

    International Nuclear Information System (INIS)

    Hoeflich, Peter; Schaefer, Bradley E.

    2009-01-01

    We investigate two potential mechanisms that will produce X-ray and γ-ray flashes from Type Ia supernovae (SN-Ia). The first mechanism is the breakout of the thermonuclear burning front as it reaches the surface of the white dwarf (WD). The second mechanism is the interaction of the rapidly expanding envelope with material within an accretion disk in the progenitor system. Our study is based on the delayed detonation scenario because this can account for the majority of light curves, spectra, and statistical properties of 'Branch-normal' SN-Ia. Based on detailed radiation-hydro calculations which include nuclear networks, we find that both mechanisms produce brief flashes of high-energy radiation with peak luminosities of 10 48 -10 50 erg s -1 . The breakout from the WD surface produces flashes with a rapid exponential decay by 3-4 orders of magnitude on timescales of a few tenths of a second and with most of the radiation in the X-ray and soft γ-ray range. The shocks produced in gases in and around the binary will produce flashes with a characteristic duration of a few seconds with most of the radiation coming out as X-rays and γ-rays. In both mechanisms, we expect a fast rise and slow decline and, after the peak, an evolution from hard to softer radiation due to adiabatic expansion. In many cases, flashes from both mechanisms will be superposed. The X- and γ-ray visibility of an SN-Ia will depend strongly on self-absorption within the progenitor system, specifically on the properties of the accretion disk and its orientation toward the observer. Such X-ray and γ-ray flashes could be detected as triggered events by gamma-ray burst (GRB) detectors on satellites, with events in current GRB catalogs. We have searched through the GRB catalogs (for the BATSE, HETE, and Swift experiments) for GRBs that occur at the extrapolated time of explosion and in the correct direction for known Type Ia supernovae with radial velocity of less than 3000 km s -1 . For the Burst

  13. RADIO EMISSION FROM SN 1994I IN NGC 5194 (M 51): THE BEST-STUDIED TYPE Ib/c RADIO SUPERNOVA

    International Nuclear Information System (INIS)

    Weiler, Kurt W.; Panagia, Nino; Stockdale, Christopher; Rupen, Michael; Sramek, Richard A.; Williams, Christopher L.

    2011-01-01

    We present the results of detailed monitoring of the radio emission from the Type Ic supernova SN 1994I from three days after optical discovery on 1994 March 31 until eight years later at age 2927 days on 2002 April 5. The data were mainly obtained using the Very Large Array at the five wavelengths of λλ1.3, 2.0, 3.6, 6.2, and 21 cm and from the Cambridge 5 km Ryle Telescope at λ2.0 cm. Two additional measurements were obtained at millimeter wavelengths. This data set represents the most complete, multifrequency radio observations ever obtained for a Type Ib/c supernova. The radio emission evolves regularly in both time and frequency and is well described by established supernova emission/absorption models. It is the first radio supernova with sufficient data to show that it is clearly dominated by the effects of synchrotron self-absorption at early times.

  14. SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL

    International Nuclear Information System (INIS)

    Inserra, C.; Smartt, S. J.; Jerkstrand, A.; Fraser, M.; Wright, D.; Smith, K.; Chen, T.-W.; Kotak, R.; Nicholl, M.; Valenti, S.; Pastorello, A.; Benetti, S.; Bresolin, F.; Kudritzki, R. P.; Burgett, W. S.; Chambers, K. C.; Flewelling, H.; Botticella, M. T.; Ergon, M.; Fynbo, J. P. U.

    2013-01-01

    We report extensive observational data for five of the lowest redshift Super-Luminous Type Ic Supernovae (SL-SNe Ic) discovered to date, namely, PTF10hgi, SN2011ke, PTF11rks, SN2011kf, and SN2012il. Photometric imaging of the transients at +50 to +230 days after peak combined with host galaxy subtraction reveals a luminous tail phase for four of these SL-SNe. A high-resolution, optical, and near-infrared spectrum from xshooter provides detection of a broad He I λ10830 emission line in the spectrum (+50 days) of SN2012il, revealing that at least some SL-SNe Ic are not completely helium-free. At first sight, the tail luminosity decline rates that we measure are consistent with the radioactive decay of 56 Co, and would require 1-4 M ☉ of 56 Ni to produce the luminosity. These 56 Ni masses cannot be made consistent with the short diffusion times at peak, and indeed are insufficient to power the peak luminosity. We instead favor energy deposition by newborn magnetars as the power source for these objects. A semi-analytical diffusion model with energy input from the spin-down of a magnetar reproduces the extensive light curve data well. The model predictions of ejecta velocities and temperatures which are required are in reasonable agreement with those determined from our observations. We derive magnetar energies of 0.4 ∼ 51 erg) ∼ ej (M ☉ ) ∼< 8.6. The sample of five SL-SNe Ic presented here, combined with SN 2010gx—the best sampled SL-SNe Ic so far—points toward an explosion driven by a magnetar as a viable explanation for all SL-SNe Ic.

  15. Type-Ia Supernova Rates and the Progenitor Problem: A Review

    Science.gov (United States)

    Maoz, D.; Mannucci, F.

    2012-01-01

    The identity of the progenitor systems of type-Ia supernovae (SNe Ia) is a major unsolved problem in astrophysics. SN Ia rates are providing some striking clues. We review the basics of SN rate measurement, preach about some sins of SN rate measurement and analysis, and illustrate one of these sins with an analogy about Martian scientists. We review the recent progress in measuring SN Ia rates in various environments and redshifts, and their use to reconstruct the SN Ia delay-time distribution (DTD) - the SN rate versus time that would follow a hypothetical brief burst of star formation. A good number of DTD measurements, using a variety of methods, appear to be converging. At delays 1measurements show a similar, ~t-1, power-law shape. The DTD peaks at the shortest delays probed. This result supports the idea of a double-degenerate progenitor origin for SNe Ia. Single-degenerate progenitors may still play a role in producing short-delay SNe Ia, or perhaps all SNe Ia, if the red-giant donor channel is more efficient than is found by most theoretical models. The DTD normalization enjoys fairly good agreement (though perhaps some tension), among the various measurements, with a Hubble time-integrated DTD value of about 2+/-1 SNe Ia per 1000Msolar (stellar mass formed with a low-mass turnover initial mass function). The local WD binary population suggests that the WD merger rate can explain the Galactic SN Ia rate, but only if sub-Chandra mergers lead to SN Ia events. We point to some future directions that should lead to progress in the field, including measurement of the bivariate (delay and stretch) SN Ia response function.

  16. On the rates of type Ia supernovae originating from white dwarf collisions in quadruple star systems

    Science.gov (United States)

    Hamers, Adrian S.

    2018-04-01

    We consider the evolution of stellar hierarchical quadruple systems in the 2+2 (two binaries orbiting each other's barycentre) and 3+1 (triple orbited by a fourth star) configurations. In our simulations, we take into account the effects of secular dynamical evolution, stellar evolution, tidal evolution and encounters with passing stars. We focus on type Ia supernovae (SNe Ia) driven by collisions of carbon-oxygen (CO) white dwarfs (WDs). Such collisions can arise from several channels: (1) collisions due to extremely high eccentricities induced by secular evolution, (2) collisions following a dynamical instability of the system, and (3) collisions driven by semisecular evolution. The systems considered here have initially wide inner orbits, with initial semilatus recti larger than 12 {au}, implying no interaction if the orbits were isolated. However, taking into account dynamical evolution, we find that ≈0.4 (≈0.6) of 2+2 (3+1) systems interact. In particular, Roche Lobe overflow can be triggered possibly in highly eccentric orbits, dynamical instability can ensue due to mass-loss-driven orbital expansion or secular evolution, or a semisecular regime can be entered. We compute the delay-time distributions (DTDs) of collision-induced SNe Ia, and find that they are flatter compared to the observed DTD. Moreover, our combined SNe Ia rates are (3.7± 0.7) × 10^{-6} M_⊙^{-1} and (1.3± 0.2) × 10^{-6} M_⊙^{-1} for 2+2 and 3+1 systems, respectively, three orders of magnitude lower compared to the observed rate, of order 10^{-3} M_⊙^{-1}. The low rates can be ascribed to interactions before the stars evolve to CO WDs. However, our results are lower limits given that we considered a subset of quadruple systems.

  17. Evidence for a Sub-Chandrasekhar-mass Type Ia Supernova in the Ursa Minor Dwarf Galaxy

    Science.gov (United States)

    McWilliam, Andrew; Piro, Anthony L.; Badenes, Carles; Bravo, Eduardo

    2018-04-01

    A long-standing problem is identifying the elusive progenitors of Type Ia supernovae (SNe Ia), which can roughly be split into Chandraksekhar and sub-Chandrasekhar-mass events. An important difference between these two cases is the nucleosynthetic yield, which is altered by the increased neutron excess in Chandrasekhar progenitors due to their pre-explosion simmering and high central density. Based on these arguments, we show that the chemical composition of the most metal-rich star in the Ursa Minor dwarf galaxy, COS 171, is dominated by nucleosynthesis from a low-metallicity, low-mass, sub-Chandrasekhar-mass SN Ia. Key diagnostic abundance ratios include Mn/Fe and Ni/Fe, which could not have been produced by a Chandrasekhar-mass SN Ia. Large deficiencies of Ni/Fe, Cu/Fe and Zn/Fe also suggest the absence of alpha-rich freeze-out nucleosynthesis, favoring low-mass white dwarf progenitors of SNe Ia, near 0.95 M ⊙, from comparisons to numerical detonation models. We also compare Mn/Fe and Ni/Fe ratios to the recent yields predicted by Shen et al., finding consistent results. To explain the [Fe/H] at ‑1.35 dex for COS 171 would require dilution of the SN Ia ejecta with ∼104 M ⊙ of material, which is expected for an SN remnant expanding into a warm interstellar medium with n ∼ 1 cm‑3. In the future, finding more stars with the unique chemical signatures we highlight here will be important for constraining the rate and environments of sub-Chandrasekhar SNe Ia.

  18. Nonlinear decline-rate dependence and intrinsic variation of typeIa supernova luminosities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lifan; Strovink, Mark; Conley, Alexander; Goldhaber,Gerson; Kowalski, Marek; Perlmutter, Saul; Siegrist, James

    2005-12-14

    Published B and V fluxes from nearby Type Ia supernova are fitted to light-curve templates with 4-6 adjustable parameters. Separately, B magnitudes from the same sample are fitted to a linear dependence on B-V color within a post-maximum time window prescribed by the CMAGIC method. These fits yield two independent SN magnitude estimates B{sub max} and B{sub BV}. Their difference varies systematically with decline rate {Delta}m{sub 15} in a form that is compatible with a bilinear but not a linear dependence; a nonlinear form likely describes the decline-rate dependence of B{sub max} itself. A Hubble fit to the average of B{sub max} and B{sub BV} requires a systematic correction for observed B-V color that can be described by a linear coefficient R = 2.59 {+-} 0.24, well below the coefficient R{sub B} {approx} 4.1 commonly used to characterize the effects of Milky Way dust. At 99.9% confidence the data reject a simple model in which no color correction is required for SNe that are clustered at the blue end of their observed color distribution. After systematic corrections are performed, B{sub max} and B{sub BV} exhibit mutual rms intrinsic variation equal to 0.074 {+-} 0.019 mag, of which at least an equal share likely belongs to B{sub BV}. SN magnitudes measured using maximum-luminosity or cmagic methods show comparable rms deviations of order {approx}0.14 mag from the Hubble line. The same fit also establishes a 95% confidence upper limit of 486 km s{sup -1} on the rms peculiar velocity of nearby SNe relative to the Hubble flow.

  19. THE DETONATION MECHANISM OF THE PULSATIONALLY ASSISTED GRAVITATIONALLY CONFINED DETONATION MODEL OF Type Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, G. C. IV; Graziani, C.; Weide, K.; Norris, J.; Hudson, R.; Lamb, D. Q. [Flash Center for Computational Science, University of Chicago, Chicago, IL 60637 (United States); Fisher, R. T. [Department of Physics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02740 (United States); Townsley, D. M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Meakin, C. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Reid, L. B. [NTEC Environmental Technology, Subiaco WA 6008 (Australia)

    2012-11-01

    We describe the detonation mechanism composing the 'pulsationally assisted' gravitationally confined detonation (GCD) model of Type Ia supernovae. This model is analogous to the previous GCD model reported in Jordan et al.; however, the chosen initial conditions produce a substantively different detonation mechanism, resulting from a larger energy release during the deflagration phase. The resulting final kinetic energy and {sup 56}Ni yields conform better to observational values than is the case for the 'classical' GCD models. In the present class of models, the ignition of a deflagration phase leads to a rising, burning plume of ash. The ash breaks out of the surface of the white dwarf, flows laterally around the star, and converges on the collision region at the antipodal point from where it broke out. The amount of energy released during the deflagration phase is enough to cause the star to rapidly expand, so that when the ash reaches the antipodal point, the surface density is too low to initiate a detonation. Instead, as the ash flows into the collision region (while mixing with surface fuel), the star reaches its maximally expanded state and then contracts. The stellar contraction acts to increase the density of the star, including the density in the collision region. This both raises the temperature and density of the fuel-ash mixture in the collision region and ultimately leads to thermodynamic conditions that are necessary for the Zel'dovich gradient mechanism to produce a detonation. We demonstrate feasibility of this scenario with three three-dimensional (3D), full star simulations of this model using the FLASH code. We characterized the simulations by the energy released during the deflagration phase, which ranged from 38% to 78% of the white dwarf's binding energy. We show that the necessary conditions for detonation are achieved in all three of the models.

  20. COMPARISON OF DIVERSITY OF TYPE IIB SUPERNOVAE WITH ASYMMETRY IN CASSIOPEIA A USING LIGHT ECHOES

    Energy Technology Data Exchange (ETDEWEB)

    Finn, Kieran; Bianco, Federica B.; Modjaz, Maryam; Liu, Yu-Qian [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States); Rest, Armin [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-10-20

    We compare the diversity of spectral line velocities in a large sample of type IIb supernovae (SNe IIb) with the expected asphericity in the explosion, as measured from the light echoes (LEs) of Cassiopeia A (Cas A), which was a historical galactic SN IIb. We revisit the results of Rest et al., who used LEs to observe Cas A from multiple lines of sight and hence determine its asphericity, as seen in the velocity of three spectral lines (He i λ 5876, H α , and the Ca ii near-infrared (NIR) triplet). We confirm and improve on this measurement by reproducing the effect of the LEs in the spectra of several extragalactic SNe IIb found in the literature as well as mean SN IIb spectra recently created by Liu et al. and comparing these to the observed light echo spectra of Cas A, including their associated uncertainties. In order to quantify the accuracy of this comparison, we smooth the light echo spectra of Cas A using Gaussian processes and use a Monte Carlo method to measure the absorption velocities of these three features in the spectra. We then test the hypothesis that the diversity of ejecta velocities seen in SNe IIb can be explained by asphericity. We do this by comparing the range of velocities seen in the different LEs, and hence different lines of sight, of Cas A to that seen in the population of SNe IIb. We conclude that these two ranges are of the same order and thus asphericity could be enough to explain the diversity in the expansion velocity alone.

  1. Reddened, Redshifted, or Intrinsically Red? Understanding Near-ultraviolet Colors of Type Ia Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Peter J.; Landez, Nancy J. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Milne, Peter A. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Stritzinger, Maximilian D., E-mail: pbrown@physics.tamu.edu [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark)

    2017-02-20

    The intrinsic colors of Type Ia supernovae (SNe Ia) are important to understanding their use as cosmological standard candles. Understanding the effects of reddening and redshift on the observed colors are complicated and dependent on the intrinsic spectrum, the filter curves, and the wavelength dependence of reddening. We present ultraviolet and optical data of a growing sample of SNe Ia observed with the Ultraviolet/Optical Telescope on the Swift spacecraft and use this sample to re-examine the near-UV (NUV) colors of SNe Ia. We find that a small amount of reddening ( E ( B − V ) = 0.2 mag) could account for the difference between groups designated as NUV-blue and NUV-red, and a moderate amount of reddening ( E ( B − V ) = 0.5 mag) could account for the whole NUV-optical differences. The reddening scenario, however, is inconsistent with the mid-UV colors and color evolution. The effect of redshift alone only accounts for part of the variation. Using a spectral template of SN2011fe, we can forward model the effects of redshift and reddening and directly compare those with the observed colors. We find that some SNe are consistent with reddened versions of SN2011fe, but most SNe Ia are much redder in the uvw 1 − v color than SN2011fe reddened to the same b − v color. The absolute magnitudes show that two out of five NUV-blue SNe Ia are blue because their near-UV luminosity is high, and the other three are optically fainter. We also show that SN 2011fe is not a “normal” SN Ia in the UV, but has colors placing it at the blue extreme of our sample.

  2. The initial masses of the red supergiant progenitors to Type II supernovae

    Science.gov (United States)

    Davies, Ben; Beasor, Emma R.

    2018-02-01

    There are a growing number of nearby supernovae (SNe) for which the progenitor star is detected in archival pre-explosion imaging. From these images it is possible to measure the progenitor's brightness a few years before explosion, and ultimately estimate its initial mass. Previous work has shown that II-P and II-L SNe have red supergiant (RSG) progenitors, and that the range of initial masses for these progenitors seems to be limited to ≲ 17 M⊙. This is in contrast with the cut-off of 25-30 M⊙ predicted by evolutionary models, a result that is termed the `red supergiant problem'. Here we investigate one particular source of systematic error present in converting pre-explosion photometry into an initial mass, which of the bolometric correction (BC) used to convert a single-band flux into a bolometric luminosity. We show, using star clusters, that RSGs evolve to later spectral types as they approach SN, which in turn causes the BC to become larger. Failure to account for this results in a systematic underestimate of a star's luminosity, and hence its initial mass. Using our empirically motivated BCs we reappraise the II-P and II-L SNe that have their progenitors detected in pre-explosion imaging. Fitting an initial mass function to these updated masses results in an increased upper mass cut-off of Mhi = 19.0^{+2.5}_{-1.3} M⊙, with a 95 per cent upper confidence limit of <27 M⊙. Accounting for finite sample size effects and systematic uncertainties in the mass-luminosity relationship raises the cut-off to Mhi = 25 M⊙ (<33 M⊙, 95 per cent confidence). We therefore conclude that there is currently no strong evidence for `missing' high-mass progenitors to core-collapse SNe.

  3. Properties and Alignment of Interstellar Dust Grains toward Type Ia Supernovae with Anomalous Polarization Curves

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem, E-mail: thiemhoang@kasi.re.kr [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Institute of Theoretical Physics, Goethe Universität Frankfurt, D-60438 Frankfurt am Main (Germany)

    2017-02-10

    Recent photometric and polarimetric observations of Type Ia supernovae (SNe Ia) show unusually low total-to-selective extinction ratios ( R {sub V} < 2) and wavelengths of maximum polarization ( λ{sub max} < 0.4 μ m) for several SNe Ia, which indicates peculiar properties of interstellar (IS) dust in the SN-hosted galaxies and/or the presence of circumstellar (CS) dust. In this paper, we use an inversion technique to infer the best-fit grain size distribution and the alignment function of interstellar grains along the lines of sight toward four SNe Ia with anomalous extinction and polarization data (SN 1986G, SN 2006X, SN 2008fp, and SN 2014J). We find that to reproduce low values of R{sub V}, a significant enhancement in the mass of small grains of radius a < 0.1 μ m is required. For SN 2014J, a simultaneous fit to its observed extinction and polarization is unsuccessful if all the data are attributed to IS dust (model 1), but a good fit is obtained when accounting for the contribution of CS dust (model 2). For SN 2008fp, our best-fit results for model 1 show that in order to reproduce an extreme value of λ{sub max} ∼ 0.15 μ m, small silicate grains must be aligned as efficiently as big grains. For this case, we suggest that strong radiation from the SN can induce efficient alignment of small grains in a nearby intervening molecular cloud via the radiative torque (RAT) mechanism. The resulting time dependence polarization from this RAT alignment model can be tested by observing at ultraviolet wavelengths.

  4. Measuring the Progenitor Masses and Dense Circumstellar Material of Type II Supernovae

    Science.gov (United States)

    Morozova, Viktoriya; Piro, Anthony L.; Valenti, Stefano

    2018-05-01

    Recent modeling of hydrogen-rich Type II supernova (SN II) light curves suggests the presence of dense circumstellar material (CSM) surrounding the exploding progenitor stars. This has important implications for the activity and structure of massive stars near the end of their lives. Since previous work focused on just a few events, here we expand to a larger sample of 20 well-observed SNe II. For each event we are able to constrain the progenitor zero-age main-sequence (ZAMS) mass, explosion energy, and the mass and radial extent of the dense CSM. We then study the distribution of each of these properties across the full sample of SNe. The inferred ZAMS masses are found to be largely consistent with a Salpeter distribution with minimum and maximum masses of 10.4 and 22.9 M ⊙, respectively. We also compare the individual ZAMS masses we measure with specific SNe II that have pre-explosion imaging to check their consistency. Our masses are generally comparable to or higher than the pre-explosion imaging masses, potentially helping ease the red supergiant problem. The explosion energies vary from (0.1–1.3) × 1051 erg, and for ∼70% of the SNe we obtain CSM masses in the range between 0.18 and 0.83 M ⊙. We see a potential correlation between the CSM mass and explosion energy, which suggests that pre-explosion activity has a strong impact on the structure of the star. This may be important to take into account in future studies of the ability of the neutrino mechanism to explode stars. We also see a possible correlation between the CSM radial extent and ZAMS mass, which could be related to the time with respect to explosion when the CSM is first generated.

  5. EVOLUTION OF HIGH-ENERGY PARTICLE DISTRIBUTION IN MATURE SHELL-TYPE SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Houdun; Xin, Yuliang; Liu, Siming; Zhang, Shuinai [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Jokipii, J. R. [University of Arizona, Tucson, Arizona, 85721 (United States); Zhang, Li, E-mail: zhd@pmo.ac.cn, E-mail: liusm@pmo.ac.cn [Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming, 650091 (China)

    2017-01-10

    Multi-wavelength observations of mature supernova remnants (SNRs), especially with recent advances in γ -ray astronomy, make it possible to constrain energy distribution of energetic particles within these remnants. In consideration of the SNR origin of Galactic cosmic rays and physics related to particle acceleration and radiative processes, we use a simple one-zone model to fit the nonthermal emission spectra of three shell-type SNRs located within 2° on the sky: RX J1713.7−3946, CTB 37B, and CTB 37A. Although radio images of these three sources all show a shell (or half-shell) structure, their radio, X-ray, and γ -ray spectra are quite different, offering an ideal case to explore evolution of energetic particle distribution in SNRs. Our spectral fitting shows that (1) the particle distribution becomes harder with aging of these SNRs, implying a continuous acceleration process, and the particle distributions of CTB 37A and CTB 37B in the GeV range are harder than the hardest distribution that can be produced at a shock via the linear diffusive shock particle acceleration process, so spatial transport may play a role; (2) the energy loss timescale of electrons at the high-energy cutoff due to synchrotron radiation appears to be always a bit (within a factor of a few) shorter than the age of the corresponding remnant, which also requires continuous particle acceleration; (3) double power-law distributions are needed to fit the spectra of CTB 37B and CTB 37A, which may be attributed to shock interaction with molecular clouds.

  6. Non-Local Thermodynamic Equilibrium Spectrum Synthesis of Type IA Supernovae

    Science.gov (United States)

    Nugent, Peter Edward

    1997-09-01

    Type Ia supernovae (SNe Ia) are valuable distance indicators for cosmology and the elements they eject are are important for nucleosynthesis. They appear to be thermonuclear disruptions of carbon-oxygen white dwarfs that accrete from companion stars until they approach the Chandrasekbar mass, and there is a suspicion that the propagation of the nuclear burning front involves a transition from a deflagration to a detonation. Detailed modeling of the atmospheres and spectra of SNe Ia is needed to advance our understanding of SNe Ia. Comparison of synthetic and observed spectra provides information on the temperature, density, velocity, and composition of the ejected matter and thus constrain hydrodynamical models. In addition, the expanding photosphere method yields distances to individual events that are independent of distances based on the decay of 56Ni in SNe Ia and of Cepheid variable stars in the parent galaxies. This thesis is broken down into 4 major sections, each highlighting a different way with which to use spectrum synthesis to analyze SNe Ia. Chapters 2 and 3 look at normal SNe Ia and their potential use as distance indicators using SEAM. Chapter 4 examines spectral correlations with luminosity in SNe Ia and provides a plausible explanation for these correlations via spectrum synthesis. In Chapter 5 the spectra of various hydrodynamical models are calculated in an effort to answer the question of which current progenitor/explosion model is the most plausible for a SN Ia. Finally, we look at the importance of NLTE calculations and line identifications in Chapter 6. Also included are two appendices which contain more technical information concerning γ-ray deposition and the thermalization parameter.

  7. EVIDENCE FOR TYPE Ia SUPERNOVA DIVERSITY FROM ULTRAVIOLET OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaofeng [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing 100084 (China); Wang Lifan [Physics and Astronomy Department, Texas A and M University, College Station, TX 77843 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Baron, Eddie [Department of Physics, University of Oklahoma, Norman, OK 73019 (United States); Kromer, Markus [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany); Jack, Dennis [Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg (Germany); Zhang Tianmeng [National Astronomical Observatory of China, Chinese Academy of Sciences, Beijing 100012 (China); Aldering, Greg [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Antilogus, Pierre [Laboratoire de Physique Nucleaire des Hautes Energies, Paris (France); Arnett, W. David [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Baade, Dietrich [European Southern Observatory, 85748 Garching (Germany); Barris, Brian J. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Benetti, Stefano; Cappellaro, Enrico [Osservatorio Astronomico di Padova, 35122 Padova (Italy); Bouchet, Patrice [CEA/DSM/DAPNIA/Service d' Astrophysique, 91191 Gif-sur-Yvette Cedex (France); Burrows, Adam S. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Canal, Ramon [Department d' Astronomia i Meterorologia, Universidad de Barcelona, Barcelona 8007 (Spain); Carlberg, Raymond G. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3J3 (Canada); Di Carlo, Elisa [INAF, Osservatorio Astronomico di Teramo, 64100 Teramo (Italy); Challis, Peter J., E-mail: wang_xf@mail.tsinghua.edu.cn [Harvard/Smithsonian Center Astrophysics, Cambridge, MA 02138 (United States); and others

    2012-04-20

    We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope. This data set provides unique spectral time series down to 2000 A. Significant diversity is seen in the near-maximum-light spectra ({approx}2000-3500 A) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Telescope observations, provide further evidence of increased dispersion in the UV emission with respect to the optical. The peak luminosities measured in the uvw1/F250W filter are found to correlate with the B-band light-curve shape parameter {Delta}m{sub 15}(B), but with much larger scatter relative to the correlation in the broadband B band (e.g., {approx}0.4 mag versus {approx}0.2 mag for those with 0.8 mag < {Delta}m{sub 15}(B) < 1.7 mag). SN 2004dt is found as an outlier of this correlation (at > 3{sigma}), being brighter than normal SNe Ia such as SN 2005cf by {approx}0.9 mag and {approx}2.0 mag in the uvw1/F250W and uvm2/F220W filters, respectively. We show that different progenitor metallicity or line-expansion velocities alone cannot explain such a large discrepancy. Viewing-angle effects, such as due to an asymmetric explosion, may have a significant influence on the flux emitted in the UV region. Detailed modeling is needed to disentangle and quantify the above effects.

  8. HIGH-VELOCITY LINE FORMING REGIONS IN THE TYPE Ia SUPERNOVA 2009ig

    International Nuclear Information System (INIS)

    Marion, G. H.; Foley, Ryan J.; Challis, Peter; Kirshner, Robert P.; Vinko, Jozsef; Wheeler, J. Craig; Silverman, Jeffrey M.; Hsiao, Eric Y.; Brown, Peter J.; Filippenko, Alexei V.; Garnavich, Peter; Landsman, Wayne B.; Parrent, Jerod T.; Pritchard, Tyler A.; Roming, Peter W. A.; Wang, Xiaofeng

    2013-01-01

    We report measurements and analysis of high-velocity (HVF) (>20,000 km s –1 ) and photospheric absorption features in a series of spectra of the Type Ia supernova (SN) 2009ig obtained between –14 days and +13 days with respect to the time of maximum B-band luminosity (B-max). We identify lines of Si II, Si III, S II, Ca II, and Fe II that produce both HVF and photospheric-velocity (PVF) absorption features. SN 2009ig is unusual for the large number of lines with detectable HVF in the spectra, but the light-curve parameters correspond to a slightly overluminous but unexceptional SN Ia (M B = –19.46 mag and Δm 15 (B) = 0.90 mag). Similarly, the Si II λ6355 velocity at the time of B-max is greater than 'normal' for an SN Ia, but it is not extreme (v Si = 13,400 km s –1 ). The –14 days and –13 days spectra clearly resolve HVF from Si II λ6355 as separate absorptions from a detached line forming region. At these very early phases, detached HVF are prevalent in all lines. From –12 days to –6 days, HVF and PVF are detected simultaneously, and the two line forming regions maintain a constant separation of about 8000 km s –1 . After –6 days all absorption features are PVF. The observations of SN 2009ig provide a complete picture of the transition from HVF to PVF. Most SNe Ia show evidence for HVF from multiple lines in spectra obtained before –10 days, and we compare the spectra of SN 2009ig to observations of other SNe. We show that each of the unusual line profiles for Si II λ6355 found in early-time spectra of SNe Ia correlate to a specific phase in a common development sequence from HVF to PVF

  9. PTF11kx: A Type Ia Supernova with Hydrogen Emission Persisting after 3.5 Years

    Energy Technology Data Exchange (ETDEWEB)

    Graham, M. L. [Department of Astronomy, University of Washington, Box 351580, U.W., Seattle, WA 98195-1580 (United States); Harris, C. E.; Nugent, P. E.; Kasen, D.; Filippenko, A. V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Fox, O. D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Silverman, J. M. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2017-07-10

    The optical transient PTF11kx exhibited both the characteristic spectral features of Type Ia supernovae (SNe Ia) and the signature of ejecta interacting with circumstellar material (CSM) containing hydrogen, indicating the presence of a nondegenerate companion. We present an optical spectrum at 1342 days after peak from Keck Observatory, in which the broad component of H α emission persists with a similar profile as in early-time observations. We also present Spitzer IRAC detections obtained 1237 and 1818 days after peak, and an upper limit from Hubble Space Telescope ultraviolet imaging at 2133 days. We interpret our late-time observations in the context of published results—and reinterpret the early-time observations—in order to constrain the CSM’s physical parameters and to compare to theoretical predictions for recurrent-nova systems. We find that the CSM’s radial extent may be several times the distance between the star and the CSM’s inner edge, and that the CSM column density may be two orders of magnitude lower than previous estimates. We show that the H α luminosity decline is similar to other SNe with CSM interaction and demonstrate how our infrared photometry is evidence for newly formed, collisionally heated dust. We create a model for PTF11kx’s late-time CSM interaction and find that X-ray reprocessing by photoionization and recombination cannot reproduce the observed H α luminosity, suggesting that the X-rays are thermalized and that H α radiates from collisional excitation. Finally, we discuss the implications of our results regarding the progenitor scenario and the geometric properties of the CSM for the PTF11kx system.

  10. OBSERVATIONS OF TYPE Ia SUPERNOVA 2014J WITH FLITECAM ON SOFIA

    Energy Technology Data Exchange (ETDEWEB)

    Vacca, William D.; Hamilton, Ryan T.; Savage, Maureen; Shenoy, Sachindev; Becklin, E. E.; Helton, L. A. [SOFIA-USRA, NASA Ames Research Center, Mail Stop N232-12, Moffet Field, CA 94035-1000 (United States); McLean, Ian S.; Logsdon, Sarah E. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1562 (United States); Marion, G. H. [University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Ashok, N. M.; Banerjee, D. P. K. [Physical Research Laboratory, Ahmedabad 380009 (India); Evans, A. [Astrophysics Group, Keele University, Keele, Staffordshire, ST5 5BG (United Kingdom); Fox, O. D. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Garnavich, P. [University of Notre Dame, 225 Nieuwland Science Ctr, Notre Dame, IN 46556-5670 (United States); Gehrz, R. D. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455-0149 (United States); Greenhouse, M. [NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Kirshner, R. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Shenoy, D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street, S. E., Minneapolis, MN 55455 (United States); Smith, Nathan [Steward Observatory, 933 N. Cherry Avenue, Tucson, AZ 85719 (United States); Spyromilio, J., E-mail: wvacca@sofia.usra.edu [European Southern Observatory, Karl-Schwarzschild-Strasse 2, Garching, D-85748 (Germany); and others

    2015-05-01

    We present medium-resolution near-infrared (NIR) spectra, covering 1.1–3.4 μm, of the normal Type Ia supernova (SN Ia) SN 2014J in M82 obtained with the FLITECAM instrument on board Stratospheric Observatory for Infrared Astronomy (SOFIA) between 17 and 26 days after maximum B light. Our 2.8–3.4 μm spectra may be the first ∼3 μm spectra of an SN Ia ever published. The spectra spanning the 1.5–2.7 μm range are characterized by a strong emission feature at ∼1.77 μm with a FWHM of ∼11,000–13,000 km s{sup −1}. We compare the observed FLITECAM spectra to the recent non-LTE delayed detonation models of Dessart et al. and find that the models agree with the spectra remarkably well in the 1.5–2.7 μm wavelength range. Based on this comparison we identify the ∼1.77 μm emission peak as a blend of permitted lines of Co ii. Other features seen in the 2.0–2.5 μm spectra are also identified as emission from permitted transitions of Co ii. However, the models are not as successful at reproducing the spectra in the 1.1–1.4 μm range or between 2.8 and 3.4 μm. These observations demonstrate the promise of SOFIA, which allows access to wavelength regions inaccessible from the ground, and serve to draw attention to the usefulness of the regions between the standard ground-based NIR passbands for constraining SN models.

  11. OBSERVATIONS OF TYPE Ia SUPERNOVA 2014J WITH FLITECAM ON SOFIA

    International Nuclear Information System (INIS)

    Vacca, William D.; Hamilton, Ryan T.; Savage, Maureen; Shenoy, Sachindev; Becklin, E. E.; Helton, L. A.; McLean, Ian S.; Logsdon, Sarah E.; Marion, G. H.; Ashok, N. M.; Banerjee, D. P. K.; Evans, A.; Fox, O. D.; Garnavich, P.; Gehrz, R. D.; Greenhouse, M.; Kirshner, R. P.; Shenoy, D.; Smith, Nathan; Spyromilio, J.

    2015-01-01

    We present medium-resolution near-infrared (NIR) spectra, covering 1.1–3.4 μm, of the normal Type Ia supernova (SN Ia) SN 2014J in M82 obtained with the FLITECAM instrument on board Stratospheric Observatory for Infrared Astronomy (SOFIA) between 17 and 26 days after maximum B light. Our 2.8–3.4 μm spectra may be the first ∼3 μm spectra of an SN Ia ever published. The spectra spanning the 1.5–2.7 μm range are characterized by a strong emission feature at ∼1.77 μm with a FWHM of ∼11,000–13,000 km s −1 . We compare the observed FLITECAM spectra to the recent non-LTE delayed detonation models of Dessart et al. and find that the models agree with the spectra remarkably well in the 1.5–2.7 μm wavelength range. Based on this comparison we identify the ∼1.77 μm emission peak as a blend of permitted lines of Co ii. Other features seen in the 2.0–2.5 μm spectra are also identified as emission from permitted transitions of Co ii. However, the models are not as successful at reproducing the spectra in the 1.1–1.4 μm range or between 2.8 and 3.4 μm. These observations demonstrate the promise of SOFIA, which allows access to wavelength regions inaccessible from the ground, and serve to draw attention to the usefulness of the regions between the standard ground-based NIR passbands for constraining SN models

  12. The double-degenerate model for the progenitors of Type Ia supernovae

    Science.gov (United States)

    Liu, D.; Wang, B.; Han, Z.

    2018-02-01

    The double-degenerate (DD) model, involving the merging of massive double carbon-oxygen white dwarfs (CO WDs) driven by gravitational wave radiation, is one of the classical pathways for the formation of Type Ia supernovae (SNe Ia). Recently, it has been proposed that the WD+He subgiant channel has a significant contribution to the production of massive double WDs, in which the primary WD accumulates mass by accreting He-rich matter from an He subgiant. We evolved about 1800 CO WD+He star systems and obtained a large and dense grid for producing SNe Ia through the DD model. We then performed a series of binary population synthesis simulations for the DD model, in which the WD+He subgiant channel is calculated by interpolations in the SN Ia production grid. According to our standard model, the Galactic birth rate of SNe Ia is about 2.4 × 10- 3 yr- 1 for the WD+He subgiant channel of the DD model; the total birth rate is about 3.7 × 10- 3 yr- 1 for all channels, reproducing that of observations. Previous theoretical models still have deficit with the observed SNe Ia with delay times 8 Gyr. After considering the WD+He subgiant channel, we found that the delay time distributions are comparable with the observed results. Additionally, some recent studies proposed that the violent WD mergers are more likely to produce SNe Ia based on the DD model. We estimated that the violent mergers through the DD model may contribute to at most 16 per cent of all SNe Ia.

  13. REVEALING TYPE Ia SUPERNOVA PHYSICS WITH COSMIC RATES AND NUCLEAR GAMMA RAYS

    International Nuclear Information System (INIS)

    Horiuchi, Shunsaku; Beacom, John F.

    2010-01-01

    Type Ia supernovae (SNe Ia) remain mysterious despite their central importance in cosmology and their rapidly increasing discovery rate. The progenitors of SNe Ia can be probed by the delay time between progenitor birth and explosion as SNe Ia. The explosions and progenitors of SNe Ia can be probed by MeV nuclear gamma rays emitted in the decays of radioactive nickel and cobalt into iron. We compare the cosmic star formation and SN Ia rates, finding that their different redshift evolution requires a large fraction of SNe Ia to have large delay times. A delay-time distribution of the form t -α with α = 1.0 ± 0.3 provides a good fit, implying that 50% of SNe Ia explode more than ∼1 Gyr after progenitor birth. The extrapolation of the cosmic SN Ia rate to z = 0 agrees with the rate we deduce from catalogs of local SNe Ia. We investigate prospects for gamma-ray telescopes to exploit the facts that escaping gamma rays directly reveal the power source of SNe Ia and uniquely provide tomography of the expanding ejecta. We find large improvements relative to earlier studies by Gehrels et al. in 1987 and Timmes and Woosley in 1997 due to larger and more certain SN Ia rates and advances in gamma-ray detectors. The proposed Advanced Compton Telescope, with a narrow-line sensitivity ∼60 times better than that of current satellites, would, on an annual basis, detect up to ∼100 SNe Ia (3σ) and provide revolutionary model discrimination for SNe Ia within 20 Mpc, with gamma-ray light curves measured with ∼10σ significance daily for ∼100 days. Even more modest improvements in detector sensitivity would open a new and invaluable astronomy with frequent SN Ia gamma-ray detections.

  14. STUDY OF THE DETONATION PHASE IN THE GRAVITATIONALLY CONFINED DETONATION MODEL OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Meakin, Casey A.; Townsley, Dean; Jordan, George C.; Truran, James; Lamb, Don; Seitenzahl, Ivo

    2009-01-01

    We study the gravitationally confined detonation (GCD) model of Type Ia supernovae (SNe Ia) through the detonation phase and into homologous expansion. In the GCD model, a detonation is triggered by the surface flow due to single-point, off-center flame ignition in carbon-oxygen white dwarfs (WDs). The simulations are unique in terms of the degree to which nonidealized physics is used to treat the reactive flow, including weak reaction rates and a time-dependent treatment of material in nuclear statistical equilibrium (NSE). Careful attention is paid to accurately calculating the final composition of material which is burned to NSE and frozen out in the rapid expansion following the passage of a detonation wave over the high-density core of the WD; and an efficient method for nucleosynthesis postprocessing is developed which obviates the need for costly network calculations along tracer particle thermodynamic trajectories. Observational diagnostics are presented for the explosion models, including abundance stratifications and integrated yields. We find that for all of the ignition conditions studied here a self-regulating process comprised of neutronization and stellar expansion results in final 56 Ni masses of ∼1.1 M sun . But, more energetic models result in larger total NSE and stable Fe-peak yields. The total yield of intermediate mass elements is ∼0.1 M sun and the explosion energies are all around 1.5 x 10 51 erg. The explosion models are briefly compared to the inferred properties of recent SN Ia observations. The potential for surface detonation models to produce lower-luminosity (lower 56 Ni mass) SNe is discussed.

  15. TESTING THE DISTANCE-DUALITY RELATION WITH GALAXY CLUSTERS AND TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Holanda, R. F. L.; Lima, J. A. S.; Ribeiro, M. B.

    2010-01-01

    In this Letter, we propose a new and model-independent cosmological test for the distance-duality (DD) relation, η = D L (z)(1 + z) -2 /D A (z) = 1, where D L and D A are, respectively, the luminosity and angular diameter distances. For D L we consider two sub-samples of Type Ia supernovae (SNe Ia) taken from Constitution data whereas D A distances are provided by two samples of galaxy clusters compiled by De Filippis et al. and Bonamente et al. by combining Sunyaev-Zeldovich effect and X-ray surface brightness. The SNe Ia redshifts of each sub-sample were carefully chosen to coincide with the ones of the associated galaxy cluster sample (Δz A (z) ape D L (z), we have tested the DD relation by assuming that η is a function of the redshift parameterized by two different expressions: η(z) = 1 + η 0 z and η(z) = 1 + η 0 z/(1 + z), where η 0 is a constant parameter quantifying a possible departure from the strict validity of the reciprocity relation (η 0 = 0). In the best scenario (linear parameterization), we obtain η 0 = -0.28 +0.44 -0.44 (2σ, statistical + systematic errors) for the De Filippis et al. sample (elliptical geometry), a result only marginally compatible with the DD relation. However, for the Bonamente et al. sample (spherical geometry) the constraint is η 0 = -0.42 +0.34 -0.34 (3σ, statistical + systematic errors), which is clearly incompatible with the duality-distance relation.

  16. Supernovae and neutrinos

    International Nuclear Information System (INIS)

    Totsuka, Y.

    1991-01-01

    On February 25, 1987, a sheet of telefax came to us from S. A. Bludman, saying Supernova went off in Large Magellanic Clouds. Can you see it? This is what we have been waiting 350 years for exclamation point In few hours, more information arrived. But it was still too early to definitely identify the supernova as type I or type II. This paper reports that the type I supernova is an explosion of a complete star due to uncontrolled nuclear fusion, while the type II supernova is triggered by gravitational collapse of the Fe core of a massive star (≥8 solar mass). It is this type II supernova that would leave a neutron star or a black hole after the liberation of an enormous amount of energy (3 x 10 53 erg) in the form of neutrinos. Therefore only the type II supernova is a relevant place to look for neutrino signals. It was also frustrating that the time when the stellar collapse actually took place was not definitely determined, because it was believed that the supernova brightened up about a day after the collapse and there was an ambiguity in a time lag of the optical observation. There was a possibility that it had happened well before February 24

  17. SN 2013fs and SN 2013fr: exploring the circumstellar-material diversity in Type II supernovae

    Science.gov (United States)

    Bullivant, Christopher; Smith, Nathan; Williams, G. Grant; Mauerhan, Jon C.; Andrews, Jennifer E.; Fong, Wen-Fai; Bilinski, Christopher; Kilpatrick, Charles D.; Milne, Peter A.; Fox, Ori D.; Cenko, S. Bradley; Filippenko, Alexei V.; Zheng, WeiKang; Kelly, Patrick L.; Clubb, Kelsey I.

    2018-05-01

    We present photometry and spectroscopy of SN 2013fs and SN 2013fr in the first ˜100 d post-explosion. Both objects showed transient, relatively narrow H α emission lines characteristic of SNe IIn, but later resembled normal SNe II-P or SNe II-L, indicative of fleeting interaction with circumstellar material (CSM). SN 2013fs was discovered within 8 h of explosion; one of the earliest SNe discovered thus far. Its light curve exhibits a plateau, with spectra revealing strong CSM interaction at early times. It is a less luminous version of the transitional SN IIn PTF11iqb, further demonstrating a continuum of CSM interaction intensity between SNe II-P and SNe IIn. It requires dense CSM within 6.5 × 1014 cm of the progenitor, from a phase of advanced pre-SN mass loss beginning shortly before explosion. Spectropolarimetry of SN 2013fs shows little continuum polarization (˜0.5 per cent, consistent with zero), but noticeable line polarization during the plateau phase. SN 2013fr morphed from an SN IIn at early times to an SN II-L. After the first epoch, its narrow lines probably arose from host-galaxy emission, but the bright, narrow H α emission at early times may be intrinsic to the SN. As for SN 2013fs, this would point to a short-lived phase of strong CSM interaction if proven to be intrinsic, suggesting a continuum between SNe IIn and SNe II-L. It is a low-velocity SN II-L like SN 2009kr, but more luminous. SN 2013fr also developed an infrared excess at later times, due to warm CSM dust that requires a more sustained phase of strong pre-SN mass loss.

  18. INTERACTION BETWEEN THE BROAD-LINED TYPE Ic SUPERNOVA 2012ap AND CARRIERS OF DIFFUSE INTERSTELLAR BANDS

    International Nuclear Information System (INIS)

    Milisavljevic, Dan; Margutti, Raffaella; Crabtree, Kyle N.; Soderberg, Alicia M.; Sanders, Nathan E.; Drout, Maria R.; Kamble, Atish; Chakraborti, Sayan; Kirshner, Robert P.; Foster, Jonathan B.; Fesen, Robert A.; Parrent, Jerod T.; Pickering, Timothy E.; Cenko, S. Bradley; Silverman, Jeffrey M.; Marion, G. H. Howie; Vinko, Jozsef; Filippenko, Alexei V.; Mazzali, Paolo; Maeda, Keiichi

    2014-01-01

    Diffuse interstellar bands (DIBs) are absorption features observed in optical and near-infrared spectra that are thought to be associated with carbon-rich polyatomic molecules in interstellar gas. However, because the central wavelengths of these bands do not correspond to electronic transitions of any known atomic or molecular species, their nature has remained uncertain since their discovery almost a century ago. Here we report on unusually strong DIBs in optical spectra of the broad-lined Type Ic supernova SN 2012ap that exhibit changes in equivalent width over short (≲ 30 days) timescales. The 4428 Å and 6283 Å DIB features get weaker with time, whereas the 5780 Å feature shows a marginal increase. These nonuniform changes suggest that the supernova is interacting with a nearby source of DIBs and that the DIB carriers possess high ionization potentials, such as small cations or charged fullerenes. We conclude that moderate-resolution spectra of supernovae with DIB absorptions obtained within weeks of outburst could reveal unique information about the mass-loss environment of their progenitor systems and provide new constraints on the properties of DIB carriers

  19. LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY

    Energy Technology Data Exchange (ETDEWEB)

    Weyant, Anja; Wood-Vasey, W. Michael [Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT PACC), Physics and Astronomy Department, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Schafer, Chad, E-mail: anw19@pitt.edu [Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States)

    2013-02-20

    Cosmological inference becomes increasingly difficult when complex data-generating processes cannot be modeled by simple probability distributions. With the ever-increasing size of data sets in cosmology, there is an increasing burden placed on adequate modeling; systematic errors in the model will dominate where previously these were swamped by statistical errors. For example, Gaussian distributions are an insufficient representation for errors in quantities like photometric redshifts. Likewise, it can be difficult to quantify analytically the distribution of errors that are introduced in complex fitting codes. Without a simple form for these distributions, it becomes difficult to accurately construct a likelihood function for the data as a function of parameters of interest. Approximate Bayesian computation (ABC) provides a means of probing the posterior distribution when direct calculation of a sufficiently accurate likelihood is intractable. ABC allows one to bypass direct calculation of the likelihood but instead relies upon the ability to simulate the forward process that generated the data. These simulations can naturally incorporate priors placed on nuisance parameters, and hence these can be marginalized in a natural way. We present and discuss ABC methods in the context of supernova cosmology using data from the SDSS-II Supernova Survey. Assuming a flat cosmology and constant dark energy equation of state, we demonstrate that ABC can recover an accurate posterior distribution. Finally, we show that ABC can still produce an accurate posterior distribution when we contaminate the sample with Type IIP supernovae.

  20. LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY

    International Nuclear Information System (INIS)

    Weyant, Anja; Wood-Vasey, W. Michael; Schafer, Chad

    2013-01-01

    Cosmological inference becomes increasingly difficult when complex data-generating processes cannot be modeled by simple probability distributions. With the ever-increasing size of data sets in cosmology, there is an increasing burden placed on adequate modeling; systematic errors in the model will dominate where previously these were swamped by statistical errors. For example, Gaussian distributions are an insufficient representation for errors in quantities like photometric redshifts. Likewise, it can be difficult to quantify analytically the distribution of errors that are introduced in complex fitting codes. Without a simple form for these distributions, it becomes difficult to accurately construct a likelihood function for the data as a function of parameters of interest. Approximate Bayesian computation (ABC) provides a means of probing the posterior distribution when direct calculation of a sufficiently accurate likelihood is intractable. ABC allows one to bypass direct calculation of the likelihood but instead relies upon the ability to simulate the forward process that generated the data. These simulations can naturally incorporate priors placed on nuisance parameters, and hence these can be marginalized in a natural way. We present and discuss ABC methods in the context of supernova cosmology using data from the SDSS-II Supernova Survey. Assuming a flat cosmology and constant dark energy equation of state, we demonstrate that ABC can recover an accurate posterior distribution. Finally, we show that ABC can still produce an accurate posterior distribution when we contaminate the sample with Type IIP supernovae.

  1. A Definitive Measurement of Time Dilation in the Spectral Evolution of the Moderate-Redshift Type Ia Supernova 1997ex

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Filippenko, Alexei V.; Leonard, Douglas C.; Riess, Adam G.; Nugent, Peter; Perlmutter, Saul

    2005-01-01

    We have obtained high-quality Keck optical spectra at three epochs of the Type Ia supernova 1997ex, whose redshift z is 0.361. The elapsed calendar time between the first two spectra was 24.88 days, and that between the first and third spectra was 30.95 days. In an expanding universe where 1+z represents the factor by which space has expanded between the emission and detection of light, the amount of aging in the supernova rest frame should be a factor of 1/(1+z) smaller than the observed-frame aging; thus, we expect SN 1997ex to have aged 18.28 and 22.74 days between the first epoch and the second and third epochs, respectively. The quantitative method for determining the spectral-feature age of an SN Ia reveals that the corresponding elapsed times in the supernova rest frame were 16.97+/-2.75 and 18.01+/-3.14 days, respectively. This result is inconsistent with no time dilation with a significance level of 99.0 percent, providing evidence against ''tired light'' and other hypotheses in which no time dilation is expected. Moreover, the observed timescale of spectral evolution is inconsistent with that expected in the ''variable mass theory''. The result is within ∼1 of the aging expected from a universe in which redshift is produced by cosmic expansion

  2. THE VERY YOUNG TYPE Ia SUPERNOVA 2013dy: DISCOVERY, AND STRONG CARBON ABSORPTION IN EARLY-TIME SPECTRA

    International Nuclear Information System (INIS)

    Zheng, WeiKang; Filippenko, Alexei V.; Nugent, Peter E.; Graham, Melissa; Kelly, Patrick L.; Fox, Ori D.; Shivvers, Isaac; Clubb, Kelsey I.; Li, Weidong; Silverman, Jeffrey M.; Howie Marion, G.; Kasen, Daniel; Wang, Xiaofeng; Valenti, Stefano; Howell, D. Andrew; Ciabattari, Fabrizio; Cenko, S. Bradley; Balam, Dave; Hsiao, Eric; Sand, David

    2013-01-01

    The Type Ia supernova (SN Ia) 2013dy in NGC 7250 (d ≈ 13.7 Mpc) was discovered by the Lick Observatory Supernova Search. Combined with a prediscovery detection by the Italian Supernova Search Project, we are able to constrain the first-light time of SN 2013dy to be only 0.10 ± 0.05 days (2.4 ± 1.2 hr) before the first detection. This makes SN 2013dy the earliest known detection of an SN Ia. We infer an upper limit on the radius of the progenitor star of R 0 ≲ 0.25 R ☉ , consistent with that of a white dwarf. The light curve exhibits a broken power law with exponents of 0.88 and then 1.80. A spectrum taken 1.63 days after first light reveals a C II absorption line comparable in strength to Si II. This is the strongest C II feature ever detected in a normal SN Ia, suggesting that the progenitor star had significant unburned material. The C II line in SN 2013dy weakens rapidly and is undetected in a spectrum 7 days later, indicating that C II is detectable for only a very short time in some SNe Ia. SN 2013dy reached a B-band maximum of M B = –18.72 ± 0.03 mag ∼17.7 days after first light

  3. THE VERY YOUNG TYPE Ia SUPERNOVA 2013dy: DISCOVERY, AND STRONG CARBON ABSORPTION IN EARLY-TIME SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, WeiKang; Filippenko, Alexei V.; Nugent, Peter E.; Graham, Melissa; Kelly, Patrick L.; Fox, Ori D.; Shivvers, Isaac; Clubb, Kelsey I.; Li, Weidong [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Silverman, Jeffrey M.; Howie Marion, G. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Kasen, Daniel [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Wang, Xiaofeng [Department of Physics, Tsinghua University, Beijing 100084 (China); Valenti, Stefano; Howell, D. Andrew [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Ciabattari, Fabrizio [Monte Agliale Observatory, Borgo a Mozzano, Lucca, I-55023 Italy (Italy); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Balam, Dave [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Hsiao, Eric [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Sand, David, E-mail: zwk@astro.berkeley.edu [Physics Department, Texas Tech University, Lubbock, TX 79409 (United States); and others

    2013-11-20

    The Type Ia supernova (SN Ia) 2013dy in NGC 7250 (d ≈ 13.7 Mpc) was discovered by the Lick Observatory Supernova Search. Combined with a prediscovery detection by the Italian Supernova Search Project, we are able to constrain the first-light time of SN 2013dy to be only 0.10 ± 0.05 days (2.4 ± 1.2 hr) before the first detection. This makes SN 2013dy the earliest known detection of an SN Ia. We infer an upper limit on the radius of the progenitor star of R {sub 0} ≲ 0.25 R {sub ☉}, consistent with that of a white dwarf. The light curve exhibits a broken power law with exponents of 0.88 and then 1.80. A spectrum taken 1.63 days after first light reveals a C II absorption line comparable in strength to Si II. This is the strongest C II feature ever detected in a normal SN Ia, suggesting that the progenitor star had significant unburned material. The C II line in SN 2013dy weakens rapidly and is undetected in a spectrum 7 days later, indicating that C II is detectable for only a very short time in some SNe Ia. SN 2013dy reached a B-band maximum of M{sub B} = –18.72 ± 0.03 mag ∼17.7 days after first light.

  4. INTERACTION BETWEEN THE BROAD-LINED TYPE Ic SUPERNOVA 2012ap AND CARRIERS OF DIFFUSE INTERSTELLAR BANDS

    Energy Technology Data Exchange (ETDEWEB)

    Milisavljevic, Dan; Margutti, Raffaella; Crabtree, Kyle N.; Soderberg, Alicia M.; Sanders, Nathan E.; Drout, Maria R.; Kamble, Atish; Chakraborti, Sayan; Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Foster, Jonathan B. [Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06520 (United States); Fesen, Robert A.; Parrent, Jerod T. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Lab, Hanover, NH 03755 (United States); Pickering, Timothy E. [Southern African Large Telescope, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Silverman, Jeffrey M.; Marion, G. H. Howie; Vinko, Jozsef [University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Mazzali, Paolo [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5RF (United Kingdom); Maeda, Keiichi, E-mail: dmilisav@cfa.harvard.edu [Department of Astronomy, Kyoto University Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); and others

    2014-02-10

    Diffuse interstellar bands (DIBs) are absorption features observed in optical and near-infrared spectra that are thought to be associated with carbon-rich polyatomic molecules in interstellar gas. However, because the central wavelengths of these bands do not correspond to electronic transitions of any known atomic or molecular species, their nature has remained uncertain since their discovery almost a century ago. Here we report on unusually strong DIBs in optical spectra of the broad-lined Type Ic supernova SN 2012ap that exhibit changes in equivalent width over short (≲ 30 days) timescales. The 4428 Å and 6283 Å DIB features get weaker with time, whereas the 5780 Å feature shows a marginal increase. These nonuniform changes suggest that the supernova is interacting with a nearby source of DIBs and that the DIB carriers possess high ionization potentials, such as small cations or charged fullerenes. We conclude that moderate-resolution spectra of supernovae with DIB absorptions obtained within weeks of outburst could reveal unique information about the mass-loss environment of their progenitor systems and provide new constraints on the properties of DIB carriers.

  5. A Type II Supernova Hubble Diagram from the CSP-I, SDSS-II, and SNLS Surveys

    Science.gov (United States)

    de Jaeger, T.; González-Gaitán, S.; Hamuy, M.; Galbany, L.; Anderson, J. P.; Phillips, M. M.; Stritzinger, M. D.; Carlberg, R. G.; Sullivan, M.; Gutiérrez, C. P.; Hook, I. M.; Howell, D. Andrew; Hsiao, E. Y.; Kuncarayakti, H.; Ruhlmann-Kleider, V.; Folatelli, G.; Pritchet, C.; Basa, S.

    2017-02-01

    The coming era of large photometric wide-field surveys will increase the detection rate of supernovae by orders of magnitude. Such numbers will restrict spectroscopic follow-up in the vast majority of cases, and hence new methods based solely on photometric data must be developed. Here, we construct a complete Hubble diagram of Type II supernovae (SNe II) combining data from three different samples: the Carnegie Supernova Project-I, the Sloan Digital Sky Survey II SN, and the Supernova Legacy Survey. Applying the Photometric Color Method (PCM) to 73 SNe II with a redshift range of 0.01-0.5 and with no spectral information, we derive an intrinsic dispersion of 0.35 mag. A comparison with the Standard Candle Method (SCM) using 61 SNe II is also performed and an intrinsic dispersion in the Hubble diagram of 0.27 mag, I.e., 13% in distance uncertainties, is derived. Due to the lack of good statistics at higher redshifts for both methods, only weak constraints on the cosmological parameters are obtained. However, assuming a flat universe and using the PCM, we derive the universe’s matter density: {{{Ω }}}m={0.32}-0.21+0.30 providing a new independent evidence for dark energy at the level of two sigma. This paper includes data gathered with the 6.5 m Magellan Telescopes, with the du Pont and Swope telescopes located at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program N-2005A-Q-11, GN-2005B-Q-7, GN-2006A-Q-7, GS-2005A-Q-11, GS-2005B-Q-6, and GS-2008B-Q-56). Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (ESO Programmes 076.A-0156,078.D-0048, 080.A-0516, and 082.A-0526).

  6. MULTI-WAVELENGTH OBSERVATIONS OF SUPERNOVA 2011ei: TIME-DEPENDENT CLASSIFICATION OF TYPE IIb AND Ib SUPERNOVAE AND IMPLICATIONS FOR THEIR PROGENITORS

    International Nuclear Information System (INIS)

    Milisavljevic, Dan; Margutti, Raffaella; Soderberg, Alicia M.; Chomiuk, Laura; Sanders, Nathan E.; Pignata, Giuliano; Bufano, Filomena; Fesen, Robert A.; Parrent, Jerod T.; Parker, Stuart; Mazzali, Paolo; Pian, Elena; Pickering, Timothy; Buckley, David A. H.; Crawford, Steven M.; Gulbis, Amanda A. S.; Hettlage, Christian; Hooper, Eric; Nordsieck, Kenneth H.; O'Donoghue, Darragh

    2013-01-01

    We present X-ray, UV/optical, and radio observations of the stripped-envelope, core-collapse supernova (SN) 2011ei, one of the least luminous SNe IIb or Ib observed to date. Our observations begin with a discovery within ∼1 day of explosion and span several months afterward. Early optical spectra exhibit broad, Type II-like hydrogen Balmer profiles that subside rapidly and are replaced by Type Ib-like He-rich features on a timescale of one week. High-cadence monitoring of this transition suggests absorption attributable to a high-velocity (∼> 12, 000 km s –1 ) H-rich shell, which is likely present in many Type Ib events. Radio observations imply a shock velocity of v ≈ 0.13 c and a progenitor star average mass-loss rate of M-dot ∼1.4×10 -5 M sun yr -1 (assuming wind velocity v w = 10 3 km s –1 ). This is consistent with independent constraints from deep X-ray observations with Swift-XRT and Chandra. Overall, the multi-wavelength properties of SN 2011ei are consistent with the explosion of a lower-mass (3-4 M ☉ ), compact (R * ∼ 11 cm), He-core star. The star retained a thin hydrogen envelope at the time of explosion, and was embedded in an inhomogeneous circumstellar wind suggestive of modest episodic mass loss. We conclude that SN 2011ei's rapid spectral metamorphosis is indicative of time-dependent classifications that bias estimates of the relative explosion rates for Type IIb and Ib objects, and that important information about a progenitor star's evolutionary state and mass loss immediately prior to SN explosion can be inferred from timely multi-wavelength observations.

  7. MULTI-WAVELENGTH OBSERVATIONS OF SUPERNOVA 2011ei: TIME-DEPENDENT CLASSIFICATION OF TYPE IIb AND Ib SUPERNOVAE AND IMPLICATIONS FOR THEIR PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Milisavljevic, Dan; Margutti, Raffaella; Soderberg, Alicia M.; Chomiuk, Laura; Sanders, Nathan E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Pignata, Giuliano; Bufano, Filomena [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Fesen, Robert A.; Parrent, Jerod T. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Lab, Hanover, NH 03755 (United States); Parker, Stuart [Parkdale Observatory, 225 Warren Road, RDl Oxford, Canterbury 7495 (New Zealand); Mazzali, Paolo [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching (Germany); Pian, Elena [Kavli Institute for Theoretical Physics, Kohn Hall, University of California at Santa Barbara, Santa Barbara, CA 93106-4030 (United States); Pickering, Timothy; Buckley, David A. H.; Crawford, Steven M.; Gulbis, Amanda A. S.; Hettlage, Christian [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Hooper, Eric; Nordsieck, Kenneth H. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); O' Donoghue, Darragh, E-mail: dmilisav@cfa.harvard.edu [Southern African Large Telescope, P.O. Box 9, Observatory 7935, Cape Town (South Africa); and others

    2013-04-10

    We present X-ray, UV/optical, and radio observations of the stripped-envelope, core-collapse supernova (SN) 2011ei, one of the least luminous SNe IIb or Ib observed to date. Our observations begin with a discovery within {approx}1 day of explosion and span several months afterward. Early optical spectra exhibit broad, Type II-like hydrogen Balmer profiles that subside rapidly and are replaced by Type Ib-like He-rich features on a timescale of one week. High-cadence monitoring of this transition suggests absorption attributable to a high-velocity ({approx}> 12, 000 km s{sup -1}) H-rich shell, which is likely present in many Type Ib events. Radio observations imply a shock velocity of v Almost-Equal-To 0.13 c and a progenitor star average mass-loss rate of M-dot {approx}1.4 Multiplication-Sign 10{sup -5} M{sub sun} yr{sup -1} (assuming wind velocity v{sub w} = 10{sup 3} km s{sup -1}). This is consistent with independent constraints from deep X-ray observations with Swift-XRT and Chandra. Overall, the multi-wavelength properties of SN 2011ei are consistent with the explosion of a lower-mass (3-4 M{sub Sun }), compact (R{sub *} {approx}< 1 Multiplication-Sign 10{sup 11} cm), He-core star. The star retained a thin hydrogen envelope at the time of explosion, and was embedded in an inhomogeneous circumstellar wind suggestive of modest episodic mass loss. We conclude that SN 2011ei's rapid spectral metamorphosis is indicative of time-dependent classifications that bias estimates of the relative explosion rates for Type IIb and Ib objects, and that important information about a progenitor star's evolutionary state and mass loss immediately prior to SN explosion can be inferred from timely multi-wavelength observations.

  8. THE FIRST SYSTEMATIC STUDY OF TYPE Ibc SUPERNOVA MULTI-BAND LIGHT CURVES

    International Nuclear Information System (INIS)

    Drout, Maria R.; Soderberg, Alicia M.; Gal-Yam, Avishay; Arcavi, Iair; Green, Yoav; Cenko, S. Bradley; Fox, Derek B.; Leonard, Douglas C.; Sand, David J.; Moon, Dae-Sik

    2011-01-01

    We present detailed optical photometry for 25 Type Ibc supernovae (SNe Ibc) within d ≈ 150 Mpc obtained with the robotic Palomar 60 inch telescope in 2004-2007. This study represents the first uniform, systematic, and statistical sample of multi-band SNe Ibc light curves available to date. We correct the light curves for host galaxy extinction using a new technique based on the photometric color evolution, namely, we show that the (V – R) color of extinction-corrected SNe Ibc at Δt ≈ 10 days after V-band maximum is tightly distributed, ((V – R) V10 ) = 0.26 ± 0.06 mag. Using this technique, we find that SNe Ibc typically suffer from significant host galaxy extinction, (E(B – V)) ≈ 0.4 mag. A comparison of the extinction-corrected light curves for helium-rich (Type Ib) and helium-poor (Type Ic) SNe reveals that they are statistically indistinguishable, both in luminosity and decline rate. We report peak absolute magnitudes of (M R ) = –17.9 ± 0.9 mag and (M R ) = –18.3 ± 0.6 mag for SNe Ib and Ic, respectively. Focusing on the broad-lined (BL) SNe Ic, we find that they are more luminous than the normal SNe Ibc sample, (M R ) = –19.0 ± 1.1 mag, with a probability of only 1.6% that they are drawn from the same population of explosions. By comparing the peak absolute magnitudes of SNe Ic-BL with those inferred for local engine-driven explosions (GRB-SN 1998bw, XRF-SN 2006aj, and SN 2009bb) we find a 25% probability that relativistic SNe are drawn from the overall SNe Ic-BL population. Finally, we fit analytic models to the light curves to derive typical 56 Ni masses of M Ni ≈ 0.2 and 0.5 M ☉ for SNe Ibc and SNe Ic-BL, respectively. With reasonable assumptions for the photospheric velocities, we further extract kinetic energy and ejecta mass values of M ej ≈ 2 M ☉ and E K ≈ 10 51 erg for SNe Ibc, while for SNe Ic-BL we find higher values, M ej ≈ 5 M ☉ and E K ≈ 10 52 erg. We discuss the implications for the progenitors of SNe Ibc

  9. Spectroscopic classification of PTSS-18ecg (SN 2018bhb) as a type Ia supernova around maximum

    Science.gov (United States)

    Zhang, Jujia; Ding, Xu; Wang, Xiaofeng; Li, Wenxiong; Li, Bin; Xu, Zhijian; Tan, Hanjie; Zhao, Haibin; Wang, Lifan; Li, Zhitong

    2018-05-01

    We obtained an optical spectrum (range 350-890 nm) of PTSS-18ecg (SN 2018bhb), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT 2018 May 10.7 with the Li-Jiang 2.4 m telescope (LJT+YFOSC) at Li-Jiang Observatory of Yunnan Observatories.

  10. Supernova hydrodynamics

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1981-01-01

    The explosion of a star supernova occurs at the end of its evolution when the nuclear fuel in its core is almost, or completely, consumed. The star may explode due to a small residual thermonuclear detonation, type I SN or it may collapse, type I and type II SN leaving a neutron star remnant. The type I progenitor should be thought to be an old accreting white dwarf, 1.4 M/sub theta/, with a close companion star. A type II SN is thought to be a massive young star 6 to 10 M/sub theta/. The mechanism of explosion is still a challenge to our ability to model the most extreme conditions of matter and hydrodynamics that occur presently and excessively in the universe. 39 references

  11. THE DISTANCE TO NGC 1316 (FORNAX A) FROM OBSERVATIONS OF FOUR TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Stritzinger, Maximilian; Phillips, Mark M.; Boldt, Luis; Campillay, Abdo; Krzeminski, Wojtek; Morrell, Nidia; Salgado, Francisco; Roth, Miguel; Burns, Christopher R.; Persson, Sven E.; Freedman, Wendy L.; Madore, Barry F.; Folatelli, Gaston; Hamuy, Mario; Krisciunas, Kevin; Suntzeff, Nicholas B.; Kattner, ShiAnne; Contreras, Carlos

    2010-01-01

    The giant elliptical galaxy NGC 1316 (Fornax A) is a well-studied member of the Fornax Cluster and a prolific producer of Type Ia supernovae (SNe Ia), having hosted four observed events since 1980. Here, we present detailed optical- and near-infrared light curves of the spectroscopically normal SN 2006dd. These data are used, along with previously published photometry of the normal SN 1980N and SN 1981D, and the fast-declining, low-luminosity SN 2006mr, to compute independent estimates of the host reddening for each SN, and the distance to NGC 1316. From the three normal SNe, we find a distance of 17.8 ± 0.3 (random) ± 0.3 (systematic) Mpc for H o = 72. Distance moduli derived from the 'EBV' and Tripp methods give the values that are mutually consistent with 4%-8%. Moreover, the weighted means of the distance moduli for these three SNe for three methods agree to within 3%. This consistency is encouraging and supports the premise that Type Ia SNe are reliable distance indicators at the 5% precision level or better. On the other hand, the two methods used to estimate the distance of the fast-declining SN 2006mr both yield a distance to NGC 1316 which is 25%-30% larger. This disparity casts doubt on the suitability of fast-declining events for estimating extragalactic distances. Modest-to-negligible host galaxy reddening values are derived for all four SNe. Nevertheless, two of them (SN 2006dd and SN 2006mr) show strong Na I D interstellar lines in the host galaxy system. The strength of this absorption is completely inconsistent with the small reddening values derived from the SN light curves if the gas in NGC 1316 is typical of that found in the interstellar medium of the Milky Way. In addition, the equivalent width of the Na lines in SN 2006dd appears to have weakened significantly some 100-150 days after explosion.

  12. EVALUATING SYSTEMATIC DEPENDENCIES OF TYPE Ia SUPERNOVAE: THE INFLUENCE OF PROGENITOR 22Ne CONTENT ON DYNAMICS

    International Nuclear Information System (INIS)

    Townsley, Dean M.; Jackson, Aaron P.; Calder, Alan C.; Chamulak, David A.; Brown, Edward F.; Timmes, F. X.

    2009-01-01

    We present a theoretical framework for formal study of systematic effects in supernovae Type Ia (SNe Ia) that utilizes two-dimensional simulations to implement a form of the deflagration-detonation transition (DDT) explosion scenario. The framework is developed from a randomized initial condition that leads to a sample of simulated SNe Ia whose 56 Ni masses have a similar average and range to those observed, and have many other modestly realistic features such as the velocity extent of intermediate-mass elements. The intended purpose is to enable statistically well defined studies of both physical and theoretical parameters of the SNe Ia explosion simulation. We present here a thorough description of the outcome of the SNe Ia explosions produced by our current simulations. A first application of this framework is utilized to study the dependence of the SNe Ia on the 22 Ne content, which is known to be directly influenced by the progenitor stellar population's metallicity. Our study is very specifically tailored to measure how the 22 Ne content influences the competition between the rise of plumes of burned material and the expansion of the star before these plumes reach DDT conditions. This influence arises from the dependence of the energy release, progenitor structure, and laminar flame speed on 22 Ne content. For this study, we explore these three effects for a fixed carbon content and DDT density. By setting the density at which nucleosynthesis takes place during the detonation phase of the explosion, the competition between plume rise and stellar expansion controls the amount of material in nuclear statistical equilibrium (NSE) and therefore 56 Ni produced. Of particular interest is how this influence of 22 Ne content compares to the direct modification of the 56 Ni mass via the inherent neutron excess as discussed by Timmes et al. Although the outcome following from any particular ignition condition can change dramatically with 22 Ne content, with a sample of

  13. Single Degenerate Models for Type Ia Supernovae: Progenitor's Evolution and Nucleosynthesis Yields

    Science.gov (United States)

    Nomoto, Ken'ichi; Leung, Shing-Chi

    2018-06-01

    We review how the single degenerate models for Type Ia supernovae (SNe Ia) works. In the binary star system of a white dwarf (WD) and its non-degenerate companion star, the WD accretes either hydrogen-rich matter or helium and undergoes hydrogen and helium shell-burning. We summarize how the stability and non-linear behavior of such shell-burning depend on the accretion rate and the WD mass and how the WD blows strong wind. We identify the following evolutionary routes for the accreting WD to trigger a thermonuclear explosion. Typically, the accretion rate is quite high in the early stage and gradually decreases as a result of mass transfer. With decreasing rate, the WD evolves as follows: (1) At a rapid accretion phase, the WD increase its mass by stable H burning and blows a strong wind to keep its moderate radius. The wind is strong enough to strip a part of the companion star's envelope to control the accretion rate and forms circumstellar matter (CSM). If the WD explodes within CSM, it is observed as an "SN Ia-CSM". (X-rays emitted by the WD are absorbed by CSM.) (2) If the WD continues to accrete at a lower rate, the wind stops and an SN Ia is triggered under steady-stable H shell-burning, which is observed as a super-soft X-ray source: "SN Ia-SSXS". (3) If the accretion continues at a still lower rate, H shell-burning becomes unstable and many flashes recur. The WD undergoes recurrent nova (RN) whose mass ejection is smaller than the accreted matter. Then the WD evolves to an "SN Ia-RN". (4) If the companion is a He star (or a He WD), the accretion of He can trigger He and C double detonations at the sub-Chandrasekhar mass or the WD grows to the Chandrasekhar mass while producing a He-wind: "SN Ia-He CSM". (5) If the accreting WD rotates quite rapidly, the WD mass can exceed the Chandrasekhar mass of the spherical WD, which delays the trigger of an SN Ia. After angular momentum is lost from the WD, the (super-Chandra) WD contracts to become a delayed SN Ia

  14. IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES

    International Nuclear Information System (INIS)

    Hicken, Malcolm; Challis, Peter; Kirshner, Robert P.; Wood-Vasey, W. Michael; Blondin, Stephane; Jha, Saurabh; Kelly, Patrick L.; Rest, Armin

    2009-01-01

    We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski et al. to form the Constitution set and, combined with a BAO prior, produces 1 + w = 0.013 +0.066 -0.068 (0.11 syst), consistent with the cosmological constant. The CfA3 addition makes the cosmologically useful sample of nearby SN Ia between 2.6 and 2.9 times larger than before, reducing the statistical uncertainty to the point where systematics play the largest role. We use four light-curve fitters to test for systematic differences: SALT, SALT2, MLCS2k2 (R V = 3.1), and MLCS2k2 (R V = 1.7). SALT produces high-redshift Hubble residuals with systematic trends versus color and larger scatter than MLCS2k2. MLCS2k2 overestimates the intrinsic luminosity of SN Ia with 0.7 V = 3.1 overestimates host-galaxy extinction while R V ∼ 1.7 does not. Our investigation is consistent with no Hubble bubble. We also find that, after light-curve correction, SN Ia in Scd/Sd/Irr hosts are intrinsically fainter than those in E/S0 hosts by 2σ, suggesting that they may come from different populations. We also find that SN Ia in Scd/Sd/Irr hosts have low scatter (0.1 mag) and reddening. Current systematic errors can be reduced by improving SN Ia photometric accuracy, by including the CfA3 sample to retrain light-curve fitters, by combining optical SN Ia photometry with near-infrared photometry to understand host-galaxy extinction, and by determining if different environments give rise to different intrinsic SN Ia luminosity after correction for light-curve shape and color.

  15. A CATALOG OF NEAR-INFRARED SPECTRA FROM TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Marion, G. H.; Wheeler, J. C.; Robinson, E. L.; Hoeflich, P.; Gerardy, C. L.; Vacca, W. D.

    2009-01-01

    We present 41 near-infrared (NIR, 0.7-2.5 μm) spectra from normal Type Ia supernovae (SNe Ia) obtained at epochs ranging from 14 days before to 75 days with respect to the maximum light date in the V band. All data were obtained at the Infrared Telescope Facility using the SpeX instrument. We identify many spectral features, measure the Doppler velocities, and discuss the chemical distribution of explosion products in SNe Ia. We describe procedures for smoothing data, fitting continua, and measuring absorption features to ensure consistency for measurement and analysis. This sample provides the first opportunity to examine and compare a large number of SNe Ia in this wavelength region. NIR data are a rich source of information about explosion products whose signatures are blended or obscured in other spectral regions and NIR observations probe a greater radial depth than optical wavelengths. We analyze similarities and differences in the spectra and we show that the progressive development of spectral features for normal SNe Ia in the NIR is consistent with time. We confirm the presence of O I, Mg II, Ca II, Si II, Fe II, and Co II in these SNe. Possible identifications are made for S I, Si III, Mn II, and Fe III. There is no evidence in these data for H I, He I, C I, or C II. As the explosion products expand and cool, progressively deeper layers are revealed. Thus, a time sequence of spectra examines the chemical structure and provides direct evidence of the physical properties of SNe Ia from the outer layers to deep inside the SN. Measured Doppler velocities indicate that burning products in SNe Ia are distributed in distinct layers with no large-scale mixing. Carbon is not detected in these data, in agreement with previous results with NIR data establishing very low limits on carbon abundance in SNe Ia. Carbon burning products, O and Mg, are plentiful in the outer layers suggesting that the entire progenitor is burned in the explosion. The data provide a

  16. UTILIZING TYPE Ia SUPERNOVAE IN A LARGE, FAST, IMAGING SURVEY TO CONSTRAIN DARK ENERGY

    International Nuclear Information System (INIS)

    Zentner, Andrew R.; Bhattacharya, Suman

    2009-01-01

    We study the utility of a large sample of Type Ia supernovae (SNe Ia) that might be observed in an imaging survey that rapidly scans a large fraction of the sky for constraining dark energy. We consider both the information contained in the traditional luminosity distance test as well as the spread in Ia SN fluxes at fixed redshift induced by gravitational lensing. As would be required from an imaging survey, we include a treatment of photometric redshift uncertainties in our analysis. Our primary result is that the information contained in the mean distance moduli of SNe Ia and the dispersion of SN Ia distance moduli complement each other, breaking a degeneracy between the present dark energy equation of state and its time variation without the need for a high-redshift (z ∼> 0.8) SN sample. Including lensing information also allows for some internal calibration of photometric redshifts. To address photometric redshift uncertainties, we present dark energy constraints as a function of the size of an external set of spectroscopically observed SNe that may be used for redshift calibration, N spec . Depending upon the details of potentially available, external SN data sets, we find that an imaging survey can constrain the dark energy equation of state at the epoch where it is best constrained w p , with a 1σ error of σ(w p ) ∼ 0.03-0.09. In addition, the marginal improvement in the error σ(w p ) from an increase in the spectroscopic calibration sample drops once N spec ∼ a few x 10 3 . This result is important because it is of the order of the size of calibration samples likely to be compiled in the coming decade and because, for samples of this size, the spectroscopic and imaging surveys individually place comparable constraints on the dark energy equation of state. In all cases, it is best to calibrate photometric redshifts with a set of spectroscopically observed SNe with relatively more objects at high redshift (z ∼> 0.5) than the parent sample of

  17. Using Line Profiles to Test the Fraternity of Type Ia Supernovae at High and Low Redshifts

    Science.gov (United States)

    Blondin, Stéphane; Dessart, Luc; Leibundgut, Bruno; Branch, David; Höflich, Peter; Tonry, John L.; Matheson, Thomas; Foley, Ryan J.; Chornock, Ryan; Filippenko, Alexei V.; Sollerman, Jesper; Spyromilio, Jason; Kirshner, Robert P.; Wood-Vasey, W. Michael; Clocchiatti, Alejandro; Aguilera, Claudio; Barris, Brian; Becker, Andrew C.; Challis, Peter; Covarrubias, Ricardo; Davis, Tamara M.; Garnavich, Peter; Hicken, Malcolm; Jha, Saurabh; Krisciunas, Kevin; Li, Weidong; Miceli, Anthony; Miknaitis, Gajus; Pignata, Giuliano; Prieto, Jose Luis; Rest, Armin; Riess, Adam G.; Salvo, Maria Elena; Schmidt, Brian P.; Smith, R. Chris; Stubbs, Christopher W.; Suntzeff, Nicholas B.

    2006-03-01

    Using archival data of low-redshift (z1.7] SNe Ia, which are also subluminous. In addition, we give the first direct evidence in two high-z SN Ia spectra of a double-absorption feature in Ca II λ3945, an event also observed, although infrequently, in low-redshift SN Ia spectra (6 out of 22 SNe Ia in our local sample). Moreover, echoing the recent studies of Dessart & Hillier in the context of Type II supernovae (SNe II), we see similar P Cygni line profiles in our large sample of SN Ia spectra. First, the magnitude of the velocity location at maximum profile absorption may underestimate that at the continuum photosphere, as observed, for example, in the optically thinner line S II λ5640. Second, we report for the first time the unambiguous and systematic intrinsic blueshift of peak emission of optical P Cygni line profiles in SN Ia spectra, by as much as 8000 km s-1. All the high-z SNe Ia analyzed in this paper were discovered and followed up by the ESSENCE collaboration and are now publicly available. Based in part on observations obtained at the Cerro Tololo Inter-American Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the National Science Foundation (NSF); the European Southern Observatory, Chile (ESO program 170.A-0519) the Gemini Observatory, which is operated by AURA under a cooperative agreement with the NSF on behalf of the Gemini partnership (the NSF [United States], the Particle Physics and Astronomy Research Council [United Kingdom], the National Research Council [Canada], CONICYT [Chile], the Australian Research Council [Australia], CNPq [Brazil], and CONICET [Argentina]) (programs GN-2002B-Q-14, GN-2003B-Q-11, and GS-2003B-Q-11) the Magellan Telescopes at Las Campanas Observatory; the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona; and the F. L. Whipple Observatory, which is operated by the Smithsonian

  18. SN 2017dio: A Type-Ic Supernova Exploding in a Hydrogen-rich Circumstellar Medium

    Science.gov (United States)

    Kuncarayakti, Hanindyo; Maeda, Keiichi; Ashall, Christopher J.; Prentice, Simon J.; Mattila, Seppo; Kankare, Erkki; Fransson, Claes; Lundqvist, Peter; Pastorello, Andrea; Leloudas, Giorgos; Anderson, Joseph P.; Benetti, Stefano; Bersten, Melina C.; Cappellaro, Enrico; Cartier, Régis; Denneau, Larry; Della Valle, Massimo; Elias-Rosa, Nancy; Folatelli, Gastón; Fraser, Morgan; Galbany, Lluís; Gall, Christa; Gal-Yam, Avishay; Gutiérrez, Claudia P.; Hamanowicz, Aleksandra; Heinze, Ari; Inserra, Cosimo; Kangas, Tuomas; Mazzali, Paolo; Melandri, Andrea; Pignata, Giuliano; Rest, Armin; Reynolds, Thomas; Roy, Rupak; Smartt, Stephen J.; Smith, Ken W.; Sollerman, Jesper; Somero, Auni; Stalder, Brian; Stritzinger, Maximilian; Taddia, Francesco; Tomasella, Lina; Tonry, John; Weiland, Henry; Young, David R.

    2018-02-01

    SN 2017dio shows both spectral characteristics of a type-Ic supernova (SN) and signs of a hydrogen-rich circumstellar medium (CSM). Prominent, narrow emission lines of H and He are superposed on the continuum. Subsequent evolution revealed that the SN ejecta are interacting with the CSM. The initial SN Ic identification was confirmed by removing the CSM interaction component from the spectrum and comparing with known SNe Ic and, reversely, adding a CSM interaction component to the spectra of known SNe Ic and comparing them to SN 2017dio. Excellent agreement was obtained with both procedures, reinforcing the SN Ic classification. The light curve constrains the pre-interaction SN Ic peak absolute magnitude to be around {M}g=-17.6 mag. No evidence of significant extinction is found, ruling out a brighter luminosity required by an SN Ia classification. These pieces of evidence support the view that SN 2017dio is an SN Ic, and therefore the first firm case of an SN Ic with signatures of hydrogen-rich CSM in the early spectrum. The CSM is unlikely to have been shaped by steady-state stellar winds. The mass loss of the progenitor star must have been intense, \\dot{M}∼ 0.02{({ε }{{H}α }/0.01)}-1 ({v}{wind}/500 km s‑1) ({v}{shock}/10,000 km s‑1)‑3 M ⊙ yr‑1, peaking at a few decades before the SN. Such a high mass-loss rate might have been experienced by the progenitor through eruptions or binary stripping. Based on observations made with the NOT, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. This work is based (in part) on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile as part of PESSTO, (the Public ESO Spectroscopic Survey for Transient Objects Survey) ESO program 188.D-3003, 191.D-0935, 197.D-1075. Based on observations made with the Liverpool Telescope operated on the

  19. PSN J11290437+1714095 is a Type Ia supernova (91T-like) near maximum light

    Science.gov (United States)

    Childress, M.; Owen, C.; Scalzo, R.; Yuan, F.; Schmidt, B.; Tucker, B.

    2013-12-01

    We report spectroscopic classification of PSN J11290437+1714095 with the Wide Field Spectrograph (WiFeS - Dopita et al., 2007, ApSS, 310, 255) on the ANU 2.3m telescope at Siding Spring Observatory, NSW Australia, using the B3000/R3000 gratings (3500-9800 A, 1 A resolution). PSN J11290437+1714095 was discovered by TAROT on 2013 Dec 11.09 at mag 15.9 in UGC 6483. A 20 minute spectrum of the SN on 2013 Dec 12.72 shows this to be a Type Ia supernova of the SN 1991T subclass near maximum light.

  20. Physics of supernovae

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1985-01-01

    Presupernova models of massive stars are presented and their explosion by ''delayed neutrino transport'' examined. A new form of long duration Type II supernova model is also explored based upon repeated encounter with the electron-positron pair instability in stars heavier than about 60 Msub solar. Carbon deflagration in white dwarfs is discussed as the probable explanation of Type I supernovae and special attention is paid to the physical processes whereby a nuclear flame propagates through degenerate carbon. 89 refs., 12 figs

  1. Critical study of type II supernovae: equations of state and general relativity

    International Nuclear Information System (INIS)

    Kahana, S.

    1986-01-01

    The relevance of relativistic gravitation and of the properties of nuclear matter at high density to supernova explosions is examined in detail. The existing empirical knowledge on the nuclear equation of state at densities greater than saturation, extracted from analysis of heavy ion collisions and from the breathing mode in heavy nuclei, is also considered. Particulars of the prompt explosions recently obtained theoretically by Baron, Cooperstein, and Kahana are presented. 40 refs., 9 figs., 3 tabs

  2. Critical study of type II supernovae: equations of state and general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Kahana, S.

    1986-01-01

    The relevance of relativistic gravitation and of the properties of nuclear matter at high density to supernova explosions is examined in detail. The existing empirical knowledge on the nuclear equation of state at densities greater than saturation, extracted from analysis of heavy ion collisions and from the breathing mode in heavy nuclei, is also considered. Particulars of the prompt explosions recently obtained theoretically by Baron, Cooperstein, and Kahana are presented. 40 refs., 9 figs., 3 tabs.

  3. INTEGRAL FIELD SPECTROSCOPY OF SUPERNOVA EXPLOSION SITES: CONSTRAINING THE MASS AND METALLICITY OF THE PROGENITORS. I. TYPE Ib AND Ic SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Kuncarayakti, Hanindyo; Maeda, Keiichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Doi, Mamoru; Morokuma, Tomoki; Hashiba, Yasuhito [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Aldering, Greg [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Arimoto, Nobuo [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Pereira, Rui [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, 4 Rue Enrico Fermi, F-69622 Villeurbanne Cedex (France); Usuda, Tomonori, E-mail: hanindyo.kuncarayakti@ipmu.jp [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States)

    2013-08-01

    Integral field spectroscopy of 11 Type Ib/Ic supernova (SN Ib/Ic) explosion sites in nearby galaxies has been obtained using UH88/SNIFS and Gemini-N/GMOS. The use of integral field spectroscopy enables us to obtain both spatial and spectral information about the explosion site, enabling the identification of the parent stellar population of the SN progenitor star. The spectrum of the parent population provides metallicity determination via strong-line method and age estimation obtained via comparison with simple stellar population models. We adopt this information as the metallicity and age of the SN progenitor, under the assumption that it was coeval with the parent stellar population. The age of the star corresponds to its lifetime, which in turn gives the estimate of its initial mass. With this method we were able to determine both the metallicity and initial (zero-age main sequence) mass of the progenitor stars of SNe Ib and Ic. We found that on average SN Ic explosion sites are more metal-rich and younger than SN Ib sites. The initial mass of the progenitors derived from parent stellar population age suggests that SN Ic has more massive progenitors than SN Ib. In addition, we also found indication that some of our SN progenitors are less massive than {approx}25 M{sub Sun }, indicating that they may have been stars in a close binary system that have lost their outer envelope via binary interactions to produce SNe Ib/Ic, instead of single Wolf-Rayet stars. These findings support the current suggestions that both binary and single progenitor channels are in effect in producing SNe Ib/Ic. This work also demonstrates the power of integral field spectroscopy in investigating SN environments and active star-forming regions.

  4. A MISMATCH IN THE ULTRAVIOLET SPECTRA BETWEEN LOW-REDSHIFT AND INTERMEDIATE-REDSHIFT TYPE Ia SUPERNOVAE AS A POSSIBLE SYSTEMATIC UNCERTAINTY FOR SUPERNOVA COSMOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Kessler, Richard; Frieman, Joshua A. [Kavli Institute for Cosmological Physics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bassett, Bruce; Smith, Mathew [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701 (South Africa); Garnavich, Peter M. [Department of Physics, University of Notre Dame, 225 Nieuwland Science, Notre Dame, IN 46556-5670 (United States); Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Konishi, Kohki [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Lampeitl, Hubert [Institute of Cosmology and Gravitation, University of Portsmouth, Mercantile House, Hampshire Terrace, Portsmouth PO1 2EG (United Kingdom); Riess, Adam G. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Sollerman, Jesper, E-mail: rfoley@cfa.harvard.edu [Oskar Klein Centre, Department of Astronomy, Stockholm University, 106 91 Stockholm (Sweden)

    2012-05-15

    We present Keck high-quality rest-frame ultraviolet (UV) through optical spectra of 21 Type Ia supernovae (SNe Ia) in the redshift range 0.11 {<=} z {<=} 0.37 and a mean redshift of 0.22 that were discovered during the Sloan Digital Sky Survey-II (SDSS-II) SN Survey. Using the broadband photometry of the SDSS survey, we are able to reconstruct the SN host-galaxy spectral energy distributions (SEDs), allowing for a correction for the host-galaxy contamination in the SN Ia spectra. Comparison of composite spectra constructed from a subsample of 17 high-quality spectra to those created from a low-redshift sample with otherwise similar properties shows that the Keck/SDSS SNe Ia have, on average, extremely similar rest-frame optical spectra but show a UV flux excess. This observation is confirmed by comparing synthesized broadband colors of the individual spectra, showing a difference in mean colors at the 2.4{sigma}-4.4{sigma} level for various UV colors. We further see a slight difference in the UV spectral shape between SNe with low-mass and high-mass host galaxies. Additionally, we detect a relationship between the flux ratio at 2770 and 2900 A and peak luminosity that differs from that observed at low redshift. We find that changing the UV SED of an SN Ia within the observed dispersion can change the inferred distance moduli by {approx}0.1 mag. This effect only occurs when the data probe the rest-frame UV. We suggest that this discrepancy could be due to differences in the host-galaxy population of the two SN samples or to small-sample statistics.

  5. SN 2016jhj at redshift 0.34: extending the Type II supernova Hubble diagram using the standard candle method

    Science.gov (United States)

    de Jaeger, T.; Galbany, L.; Filippenko, A. V.; González-Gaitán, S.; Yasuda, N.; Maeda, K.; Tanaka, M.; Morokuma, T.; Moriya, T. J.; Tominaga, N.; Nomoto, K.; Komiyama, Y.; Anderson, J. P.; Brink, T. G.; Carlberg, R. G.; Folatelli, G.; Hamuy, M.; Pignata, G.; Zheng, W.

    2017-12-01

    Although Type Ia supernova cosmology has now reached a mature state, it is important to develop as many independent methods as possible to understand the true nature of dark energy. Recent studies have shown that Type II supernovae (SNe II) offer such a path and could be used as alternative distance indicators. However, the majority of these studies were unable to extend the Hubble diagram above redshift z = 0.3 because of observational limitations. Here, we show that we are now ready to move beyond low redshifts and attempt high-redshift (z ≳ 0.3) SN II cosmology as a result of new-generation deep surveys such as the Subaru/Hyper Suprime-Cam survey. Applying the 'standard candle method' to SN 2016jhj (z = 0.3398 ± 0.0002; discovered by HSC) together with a low-redshift sample, we are able to construct the highest-redshift SN II Hubble diagram to date with an observed dispersion of 0.27 mag (i.e. 12-13 per cent in distance). This work demonstrates the bright future of SN II cosmology in the coming era of large, wide-field surveys like that of the Large Synoptic Survey Telescope.

  6. Supernova explosions

    CERN Document Server

    Branch, David

    2017-01-01

    Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book’s emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpreta tions of such data, and an overview of t...

  7. Characterization of Type Ia Supernova Light Curves Using Principal Component Analysis of Sparse Functional Data

    Science.gov (United States)

    He, Shiyuan; Wang, Lifan; Huang, Jianhua Z.

    2018-04-01

    With growing data from ongoing and future supernova surveys, it is possible to empirically quantify the shapes of SNIa light curves in more detail, and to quantitatively relate the shape parameters with the intrinsic properties of SNIa. Building such relationships is critical in controlling systematic errors associated with supernova cosmology. Based on a collection of well-observed SNIa samples accumulated in the past years, we construct an empirical SNIa light curve model using a statistical method called the functional principal component analysis (FPCA) for sparse and irregularly sampled functional data. Using this method, the entire light curve of an SNIa is represented by a linear combination of principal component functions, and the SNIa is represented by a few numbers called “principal component scores.” These scores are used to establish relations between light curve shapes and physical quantities such as intrinsic color, interstellar dust reddening, spectral line strength, and spectral classes. These relations allow for descriptions of some critical physical quantities based purely on light curve shape parameters. Our study shows that some important spectral feature information is being encoded in the broad band light curves; for instance, we find that the light curve shapes are correlated with the velocity and velocity gradient of the Si II λ6355 line. This is important for supernova surveys (e.g., LSST and WFIRST). Moreover, the FPCA light curve model is used to construct the entire light curve shape, which in turn is used in a functional linear form to adjust intrinsic luminosity when fitting distance models.

  8. Spectroscopic classification of SN 2018brz as a type Ia supernova before maximum

    Science.gov (United States)

    Galbany, Lluis; Lopez-Sanchez, Angel R.; Ascasibar, Yago; Fiegert, Kristin

    2018-05-01

    We report the spectroscopic classification of SN 2018brz (RA=08:33:22.27, DEC=-76:37:39.8) in an anonymous host galaxy. The candidate was discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN: Shappee et al. 2014) on UT 2018-05-15 at 16.5 mag. Observations were performed on the 4m Anglo-Australian Telescope at Siding Spring Observatory on 2018 May 19 9:15 UT, using Koala+AAOmega and Grisms 580V+1000R (3500-6000A and 6300-7300A).

  9. The Cardassian expansion revisited: constraints from updated Hubble parameter measurements and type Ia supernova data

    Science.gov (United States)

    Magaña, Juan; Amante, Mario H.; Garcia-Aspeitia, Miguel A.; Motta, V.

    2018-05-01

    Motivated by an updated compilation of observational Hubble data (OHD) that consist of 51 points in the redshift range of 0.07 Ia supernova (SN Ia) using the compressed and full joint-light-analysis (JLA) samples (Betoule et al.). We also perform a joint analysis using the combination OHD plus compressed JLA. Our results show that the OC and MPC models are in agreement with the standard cosmology and naturally introduce a cosmological-constant-like extra term in the canonical Friedmann equation with the capability of accelerating the Universe without dark energy.

  10. New prospects for detecting high-energy neutrinos from nearby supernovae

    Science.gov (United States)

    Murase, Kohta

    2018-04-01

    Neutrinos from supernovae (SNe) are crucial probes of explosive phenomena at the deaths of massive stars and neutrino physics. High-energy neutrinos are produced through hadronic processes by cosmic rays, which are accelerated during interaction between the supernova (SN) ejecta and circumstellar material (CSM). Recent observations of extragalactic SNe have revealed that a dense CSM is commonly expelled by the progenitor star. We provide new quantitative predictions of time-dependent high-energy neutrino emission from diverse types of SNe. We show that IceCube and KM3Net can detect ˜103 events from a SN II-P (and ˜3 ×105 events from a SN IIn) at a distance of 10 kpc. The new model also enables us to critically optimize the time window for dedicated searches for nearby SNe. A successful detection will give us a multienergy neutrino view of SN physics and new opportunities to study neutrino properties, as well as clues to the cosmic-ray origin. GeV-TeV neutrinos may also be seen by KM3Net, Hyper-Kamiokande, and PINGU.

  11. Smoking supernovae

    OpenAIRE

    Gomez, Haley Louise; Eales, Stephen Anthony; Dunne, L.

    2007-01-01

    The question ‘Are supernovae important sources of dust?’ is a contentious one. Observations with the Infrared Astronomical Satellite (IRAS) and the Infrared Space Observatory (ISO) only detected very small amounts of hot dust in supernova remnants. Here, we review observations of two young Galactic remnants with the Submillimetre Common User Bolometer Array (SCUBA), which imply that large quantities of dust are produced by supernovae. The association of dust with the Cassiopeia A remnant is i...

  12. EARLY RADIO AND X-RAY OBSERVATIONS OF THE YOUNGEST NEARBY TYPE Ia SUPERNOVA PTF 11kly (SN 2011fe)

    International Nuclear Information System (INIS)

    Horesh, Assaf; Kulkarni, S. R.; Carpenter, John; Kasliwal, Mansi M.; Ofek, Eran O.; Fox, Derek B.; Quimby, Robert; Gal-Yam, Avishay; Cenko, S. Bradley; De Bruyn, A. G.; Kamble, Atish; Wijers, Ralph A. M. J.; Van der Horst, Alexander J.; Kouveliotou, Chryssa; Podsiadlowski, Philipp; Sullivan, Mark; Maguire, Kate; Howell, D. Andrew; Nugent, Peter E.; Gehrels, Neil

    2012-01-01

    On 2011 August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby Type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of M-dot ∼ -8 (w/100 km s -1 ) M sun yr -1 from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main-sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations, we would have to wait for a long time (a decade or longer) in order to more meaningfully probe the circumstellar matter of SNe Ia.

  13. Constraints on the progenitor system of the type Ia supernova 2014J from pre-explosion Hubble space telescope imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cenko, S. Bradley [NASA/Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Prato, Lisa [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Schaefer, Gail, E-mail: pkelly@astro.berkeley.edu [The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States)

    2014-07-20

    We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d ≈ 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T ≲ 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of R{sub V} and A{sub V} values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T < 3000 K) companion stars than was possible in the case of SN Ia 2011fe.

  14. Constraints on the progenitor system of the type Ia supernova 2014J from pre-explosion Hubble space telescope imaging

    International Nuclear Information System (INIS)

    Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E.; Cenko, S. Bradley; Prato, Lisa; Schaefer, Gail

    2014-01-01

    We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d ≈ 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T ≲ 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of R V and A V values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T < 3000 K) companion stars than was possible in the case of SN Ia 2011fe.

  15. A TYPE Ia SUPERNOVA AT REDSHIFT 1.55 IN HUBBLE SPACE TELESCOPE INFRARED OBSERVATIONS FROM CANDELS

    International Nuclear Information System (INIS)

    Rodney, Steven A.; Riess, Adam G.; Jones, David O.; Dahlen, Tomas; Ferguson, Henry C.; Casertano, Stefano; Grogin, Norman A.; Strolger, Louis-Gregory; Hjorth, Jens; Frederiksen, Teddy F.; Weiner, Benjamin J.; Mobasher, Bahram; Challis, Peter; Kirshner, Robert P.; Faber, S. M.; Filippenko, Alexei V.; Garnavich, Peter; Hayden, Brian; Graur, Or; Jha, Saurabh W.

    2012-01-01

    We report the discovery of a Type Ia supernova (SN Ia) at redshift z = 1.55 with the infrared detector of the Wide Field Camera 3 (WFC3-IR) on the Hubble Space Telescope (HST). This object was discovered in CANDELS imaging data of the Hubble Ultra Deep Field and followed as part of the CANDELS+CLASH Supernova project, comprising the SN search components from those two HST multi-cycle treasury programs. This is the highest redshift SN Ia with direct spectroscopic evidence for classification. It is also the first SN Ia at z > 1 found and followed in the infrared, providing a full light curve in rest-frame optical bands. The classification and redshift are securely defined from a combination of multi-band and multi-epoch photometry of the SN, ground-based spectroscopy of the host galaxy, and WFC3-IR grism spectroscopy of both the SN and host. This object is the first of a projected sample at z > 1.5 that will be discovered by the CANDELS and CLASH programs. The full CANDELS+CLASH SN Ia sample will enable unique tests for evolutionary effects that could arise due to differences in SN Ia progenitor systems as a function of redshift. This high-z sample will also allow measurement of the SN Ia rate out to z ≈ 2, providing a complementary constraint on SN Ia progenitor models.

  16. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-masswhite dwarf star

    Energy Technology Data Exchange (ETDEWEB)

    Howell, D.Andrew; Sullivan, Mark; Nugent, Peter E.; Ellis,Richard S.; Conley, Alexander J.; Le Borgne, Damien; Carlberg, RaymondG.; Guy, Julien; Balam, David; Basa, Stephane; Fouchez, Dominique; Hook,Isobel M.; Hsiao, Eric Y.; Neill, James D.; Pain, Reynald; Perrett,Kathryn M.; Pritchet, Christopher J.

    2006-02-01

    The acceleration of the expansion of the universe, and theneed for Dark Energy, were inferred from the observations of Type Iasupernovae (SNe Ia) 1;2. There is consensus that SNeIa are thermonuclearexplosions that destroy carbon-oxygen white dwarf stars that accretematter from a companion star3, although the nature of this companionremains uncertain. SNe Ia are thought to be reliable distance indicatorsbecause they have a standard amount of fuel and a uniform trigger theyare predicted to explode when the mass of the white dwarf nears theChandrasekhar mass 4 - 1.4 solar masses. Here we show that the highredshift supernova SNLS-03D3bb has an exceptionally high luminosity andlow kinetic energy that both imply a super-Chandrasekhar mass progenitor.Super-Chandrasekhar mass SNeIa shouldpreferentially occur in a youngstellar population, so this may provide an explanation for the observedtrend that overluminous SNe Ia only occur in young environments5;6. Sincethis supernova does not obey the relations that allow them to becalibrated as standard candles, and since no counterparts have been foundat low redshift, future cosmology studies will have to considercontamination from such events.

  17. AGAINST THE WIND: RADIO LIGHT CURVES OF TYPE IA SUPERNOVAE INTERACTING WITH LOW-DENSITY CIRCUMSTELLAR SHELLS

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Chelsea E.; Nugent, Peter E.; Kasen, Daniel N., E-mail: chelseaharris@berkeley.edu [Astronomy Department, University of California Berkeley, Berkeley, CA (United States)

    2016-06-01

    For decades a wide variety of observations spanning the radio through optical and on to the X-ray have attempted to uncover signs of type Ia supernovae (SNe Ia) interacting with a circumstellar medium (CSM). The goal of these studies is to constrain the nature of the hypothesized SN Ia mass-donor companion. A continuous CSM is typically assumed when interpreting observations of interaction. However, while such models have been successfully applied to core-collapse SNe, the assumption of continuity may not be accurate for SNe Ia, because shells of CSM could be formed by pre-supernova eruptions (novae). In this work, we model the interaction of SNe with a spherical, low-density, finite-extent CSM and create a suite of synthetic radio synchrotron light curves. We find that CSM shells produce sharply peaked light curves. We also identify a fiducial set of models that obey a common evolution and can be used to generate radio light curves for an interaction with an arbitrary shell. The relations obeyed by the fiducial models can be used to deduce CSM properties from radio observations; we demonstrate this by applying them to the nondetections of SN 2011fe and SN 2014J. Finally, we explore a multiple shell CSM configuration and describe its more complicated dynamics and the resultant radio light curves.

  18. The dark energy survey Y1 supernova search: Survey strategy compared to forecasts and the photometric type Is SN volumetric rate

    Science.gov (United States)

    Fischer, John Arthur

    For 70 years, the physics community operated under the assumption that the expansion of the Universe must be slowing due to gravitational attraction. Then, in 1998, two teams of scientists used Type Ia supernovae to discover that cosmic expansion was actually acceler- ating due to a mysterious "dark energy." As a result, Type Ia supernovae have become the most cosmologically important transient events in the last 20 years, with a large amount of effort going into their discovery as well as understanding their progenitor systems. One such probe for understanding Type Ia supernovae is to use rate measurements to de- termine the time delay between star formation and supernova explosion. For the last 30 years, the discovery of individual Type Ia supernova events has been accelerating. How- ever, those discoveries were happening in time-domain surveys that probed only a portion of the redshift range where expansion was impacted by dark energy. The Dark Energy Survey (DES) is the first project in the "next generation" of time-domain surveys that will discovery thousands of Type Ia supernovae out to a redshift of 1.2 (where dark energy be- comes subdominant) and DES will have better systematic uncertainties over that redshift range than any survey to date. In order to gauge the discovery effectiveness of this survey, we will use the first season's 469 photometrically typed supernovee and compare it with simulations in order to update the full survey Type Ia projections from 3500 to 2250. We will then use 165 of the 469 supernovae out to a redshift of 0.6 to measure the supernovae rate both as a function of comoving volume and of the star formation rate as it evolves with redshift. We find the most statistically significant prompt fraction of any survey to date (with a 3.9? prompt fraction detection). We will also reinforce the already existing tension in the measurement of the delayed fraction between high (z > 1.2) and low red- shift rate measurements, where we find no

  19. A HUBBLE DIAGRAM FROM TYPE II SUPERNOVAE BASED SOLELY ON PHOTOMETRY: THE PHOTOMETRIC COLOR METHOD

    International Nuclear Information System (INIS)

    De Jaeger, T.; González-Gaitán, S.; Galbany, L.; Hamuy, M.; Gutiérrez, C. P.; Kuncarayakti, H.; Anderson, J. P.; Phillips, M. M.; Campillay, A.; Castellón, S.; Hsiao, E. Y.; Morrell, N.; Stritzinger, M. D.; Contreras, C.; Bolt, L.; Burns, C. R.; Folatelli, G.; Freedman, W. L.; Krisciunas, K.; Krzeminski, W.

    2015-01-01

    We present a Hubble diagram of SNe II using corrected magnitudes derived only from photometry, with no input of spectral information. We use a data set from the Carnegie Supernovae Project I for which optical and near-infrared light curves were obtained. The apparent magnitude is corrected by two observables, one corresponding to the slope of the plateau in the V band and the second a color term. We obtain a dispersion of 0.44 mag using a combination of the (V − i) color and the r band and we are able to reduce the dispersion to 0.39 mag using our golden sample. A comparison of our photometric color method (PCM) with the standardized candle method (SCM) is also performed. The dispersion obtained for the SCM (which uses both photometric and spectroscopic information) is 0.29 mag, which compares with 0.43 mag from the PCM for the same SN sample. The construction of a photometric Hubble diagram is of high importance in the coming era of large photometric wide-field surveys, which will increase the detection rate of supernovae by orders of magnitude. Such numbers will prohibit spectroscopic follow up in the vast majority of cases, and hence methods must be deployed which can proceed using solely photometric data

  20. A HUBBLE DIAGRAM FROM TYPE II SUPERNOVAE BASED SOLELY ON PHOTOMETRY: THE PHOTOMETRIC COLOR METHOD

    Energy Technology Data Exchange (ETDEWEB)

    De Jaeger, T.; González-Gaitán, S.; Galbany, L.; Hamuy, M.; Gutiérrez, C. P.; Kuncarayakti, H. [Millennium Institute of Astrophysics, Santiago (Chile); Anderson, J. P. [European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Santiago (Chile); Phillips, M. M.; Campillay, A.; Castellón, S.; Hsiao, E. Y.; Morrell, N. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Stritzinger, M. D.; Contreras, C. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Bolt, L. [Argelander Institut für Astronomie, Universität Bonn, Auf dem Hgel 71, D-53111 Bonn (Germany); Burns, C. R. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Folatelli, G. [Instituto de Astrofísica de La Plata, CONICET, Paseo del Bosque S/N, B1900FWA, La Plata (Argentina); Freedman, W. L. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Krisciunas, K. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Krzeminski, W., E-mail: dthomas@das.uchile.cl [N. Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warszawa (Poland); and others

    2015-12-20

    We present a Hubble diagram of SNe II using corrected magnitudes derived only from photometry, with no input of spectral information. We use a data set from the Carnegie Supernovae Project I for which optical and near-infrared light curves were obtained. The apparent magnitude is corrected by two observables, one corresponding to the slope of the plateau in the V band and the second a color term. We obtain a dispersion of 0.44 mag using a combination of the (V − i) color and the r band and we are able to reduce the dispersion to 0.39 mag using our golden sample. A comparison of our photometric color method (PCM) with the standardized candle method (SCM) is also performed. The dispersion obtained for the SCM (which uses both photometric and spectroscopic information) is 0.29 mag, which compares with 0.43 mag from the PCM for the same SN sample. The construction of a photometric Hubble diagram is of high importance in the coming era of large photometric wide-field surveys, which will increase the detection rate of supernovae by orders of magnitude. Such numbers will prohibit spectroscopic follow up in the vast majority of cases, and hence methods must be deployed which can proceed using solely photometric data.

  1. A spectroscopic look at the gravitationally lensed Type Ia supernova 2016geu at z = 0.409

    DEFF Research Database (Denmark)

    Cano, Z.; Selsing, J.; Hjorth, J.

    2018-01-01

    The spectacular success of Type Ia supernovae (SNe Ia) in SN-cosmology is based on the assumption that their photometric and spectroscopic properties are invariant with redshift. However, this fundamental assumption needs to be tested with observations of high-z SNe Ia. To date, the majority of SNe...... Ia observed at moderate to large redshifts (0.4 le z le 1.0) are faint, and the resultant analyses are based on observations with modest signal-to-noise ratios that impart a degree of ambiguity in their determined properties. In rare cases, however, the Universe offers a helping hand: To date a few...... SNe Ia have been observed that have had their luminosities magnified by intervening galaxies and galaxy clusters acting as gravitational lenses. In this paper, we present long-slit spectroscopy of the lensed SN Ia 2016geu, which occurred at a redshift of z = 0.409, and was magnified by a factor of ap...

  2. On the Time Variation of Dust Extinction and Gas Absorption for Type Ia Supernovae Observed through a Nonuniform Interstellar Medium

    Science.gov (United States)

    Huang, X.; Aldering, G.; Biederman, M.; Herger, B.

    2017-11-01

    For Type Ia supernovae (SNe Ia) observed through a nonuniform interstellar medium (ISM) in its host galaxy, we investigate whether the nonuniformity can cause observable time variations in dust extinction and in gas absorption due to the expansion of the SN photosphere with time. We show that, owing to the steep spectral index of the ISM density power spectrum, sizable density fluctuation amplitudes at the length scale of typical ISM structures (≳ 10 {pc}) will translate to much smaller fluctuations on the scales of an SN photosphere. Therefore, the typical amplitude of time variation due to a nonuniform ISM, of absorption equivalent widths, and of extinction, would be small. As a result, we conclude that nonuniform ISM density should not impact cosmology measurements based on SNe Ia. We apply our predictions based on the ISM density power-law power spectrum to the observations of two highly reddened SNe Ia, SN 2012cu and SN 2014J.

  3. A likely candidate of type Ia supernova progenitors: the X-ray pulsating companion of the hot subdwarf HD 49798

    International Nuclear Information System (INIS)

    Wang Bo; Han Zhanwen

    2010-01-01

    HD 49798 is a hydrogen depleted subdwarf O6 star and has an X-ray pulsating companion (RX J0648.0-4418). The X-ray pulsating companion is a massive white dwarf. Employing Eggleton's stellar evolution code with the optically thick wind assumption, we find that the hot subdwarf HD 49798 and its X-ray pulsating companion could produce a type Ia supernova (SN Ia) in future evolution. This implies that the binary system is a likely candidate of an SN Ia progenitor. We also discuss the possibilities of some other WD + He star systems (e.g. V445 Pup and KPD 1930+2752) for producing SNe Ia. (research papers)

  4. The kinematics and chemical stratification of the type Ia supernova remnant 0519-69.0 : an XMM-Newton and Chandra study

    NARCIS (Netherlands)

    Kosenko, D.; Helder, E.A.; Vink, J.

    2010-01-01

    We present a detailed analysis of the XMM-Newton and Chandra X-ray data of the young type Ia supernova remnant SNR 0519-69.0, which is situated in the Large Magellanic Cloud. We used data from both the Chandra ACIS and XMM-Newton EPIC MOS instruments, and high resolution X-ray spectra obtained with

  5. Type Ia Supernova Rate Measurements to Redshift 2.5 from Candles: Searching for Prompt Explosions in the Early Universe

    Science.gov (United States)

    Rodney, Steven A.; Riess, Adam G.; Strogler, Louis-Gregory; Dahlen, Tomas; Graur, Or; Casertano, Stefano; Dickinson, Mark E.; Ferguson, Henry C.; Garnavich, Peter; Cenko, Stephen Bradley

    2014-01-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope(HST) that surveyed a total area of approx. 0.25 deg(sup 2) with approx.900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z approx. 2.5. We classify approx. 24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z = 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only approx. 3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation (500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction isfP0.530.09stat0.100.10sys0.26, consistent with a delay time distribution that follows a simplet1power law for all timest40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20 of all SN Ia explosions though further analysis and larger samples will be needed to examine that suggestion.

  6. supernovae: Photometric classification of supernovae

    Science.gov (United States)

    Charnock, Tom; Moss, Adam

    2017-05-01

    Supernovae classifies supernovae using their light curves directly as inputs to a deep recurrent neural network, which learns information from the sequence of observations. Observational time and filter fluxes are used as inputs; since the inputs are agnostic, additional data such as host galaxy information can also be included.

  7. A blinded determination of H0 from low-redshift Type Ia supernovae, calibrated by Cepheid variables

    Science.gov (United States)

    Zhang, Bonnie R.; Childress, Michael J.; Davis, Tamara M.; Karpenka, Natallia V.; Lidman, Chris; Schmidt, Brian P.; Smith, Mathew

    2017-10-01

    Presently, a >3σ tension exists between values of the Hubble constant H0 derived from analysis of fluctuations in the cosmic microwave background by Planck, and local measurements of the expansion using calibrators of Type Ia supernovae (SNe Ia). We perform a blinded re-analysis of Riess et al. (2011) to measure H0 from low-redshift SNe Ia, calibrated by Cepheid variables and geometric distances including to NGC 4258. This paper is a demonstration of techniques to be applied to the Riess et al. (2016) data. Our end-to-end analysis starts from available Harvard -Smithsonian Center for Astrophysics (CfA3) and Lick Observatory Supernova Search (LOSS) photometries, providing an independent validation of Riess et al. (2011). We obscure the value of H0 throughout our analysis and the first stage of the referee process, because calibration of SNe Ia requires a series of often subtle choices, and the potential for results to be affected by human bias is significant. Our analysis departs from that of Riess et al. (2011) by incorporating the covariance matrix method adopted in Supernova Legacy Survey and Joint Lightcurve Analysis to quantify SN Ia systematics, and by including a simultaneous fit of all SN Ia and Cepheid data. We find H_0 = 72.5 ± 3.1 ({stat}) ± 0.77 ({sys}) km s-1 Mpc-1with a three-galaxy (NGC 4258+LMC+MW) anchor. The relative uncertainties are 4.3 per cent statistical, 1.1 per cent systematic, and 4.4 per cent total, larger than in Riess et al. (2011) (3.3 per cent total) and the Efstathiou (2014) re-analysis (3.4 per cent total). Our error budget for H0 is dominated by statistical errors due to the small size of the SN sample, whilst the systematic contribution is dominated by variation in the Cepheid fits, and for the SNe Ia, uncertainties in the host galaxy mass dependence and Malmquist bias.

  8. Search for type Ia supernovae within the EROS2 collaboration. Photometric study of nearby SNIa and measurement of H_0

    International Nuclear Information System (INIS)

    Regnault, Nicolas

    2000-01-01

    Type Ia supernovae (SNIa) are powerful distance indicators. The comparison of nearby (z ∼ 0:1) and distant (z ∼ 1) SNIa apparent magnitudes leads to the determination of the large scale geometry of the universe. Cosmological parameters such as the Hubble constant H_0, the matter density Ω_m and the cosmological constant Ω_Λ can thus be determined. The EROS2 experiment devotes about 10% of its observing time to the detection of nearby SNIa. In the spring of 1999, EROS2 participated in a worldwide search conducted by the Supernova Cosmology Project. This campaign resulted in the discovery of 50 supernovae. Among these, 20 turned out to be SNIa discovered within 10 days from maximum. The thesis work is divided into 3 parts. First, we present a quick overview of the standard cosmological model and the main techniques used for measuring the cosmological parameters (SNIa, rich clusters properties, and anisotropies of the cosmological background radiation). We then describe the physics and observational properties of SNIa. In particular, we show that the peak absolute luminosity of these objects is uniform (within 30%), and correlates with other observables. Using these correlations, we can construct a corrected peak luminosity, which exhibits a lower dispersion (∼10%). The second part is devoted to the description of the EROS2 setup, and our SNe search techniques. In the last part, we present the analysis of the spring 1999 SNIa's photometric follow-up data. We describe the photometry software developed for this analysis as well as the complex intercalibration process of the follow-up images taken with 10 different telescopes. In the last chapter, we show how the peak luminosity and the decline rate of each SN can be reconstructed. Using these quantities, we study the correlations between the peak luminosity the decline