WorldWideScience

Sample records for two-vibron bound states

  1. Two-vibron bound states in the β–Fermi–Pasta–Ulam model

    International Nuclear Information System (INIS)

    Hu Xinguang; Tang Yi

    2008-01-01

    This paper studies the two-vibron bound states in the β–Fermi–Pasta–Ulam model by means of the number conserving approximation combined with the number state method. The results indicate that on-site, adjacent-site and mixed two-vibron bound states may exist in the model. Specially, wave number has a significant effect on such bound states, which may be considered as the quantum effects of the localized states in quantum systems. (condensed matter: structure, thermal and mechanical properties)

  2. Selective two-photon excitation of a vibronic state by correlated photons.

    Science.gov (United States)

    Oka, Hisaki

    2011-03-28

    We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.

  3. Engineering an all-optical route to ultracold molecules in their vibronic ground state

    OpenAIRE

    Koch, Christiane P.; Moszynski, Robert

    2008-01-01

    We propose an improved photoassociation scheme to produce ultracold molecules in their vibronic ground state for the generic case where non-adiabatic effects facilitating transfer to deeply bound levels are absent. Formation of molecules is achieved by short laser pulses in a Raman-like pump-dump process where an additional near-infrared laser field couples the excited state to an auxiliary state. The coupling due to the additional field effectively changes the shape of the excited state pote...

  4. Two-phonon bound states in imperfect crystals

    International Nuclear Information System (INIS)

    Behera, S.N.; Samsur, Sk.

    1980-01-01

    The question of the occurrence of two-phonon bound states in imperfect crystals is investigated. It is shown that the anharmonicity mediated two-phonon bound state which is present in perfect crystals gets modified due to the presence of impurities. Moreover, the possibility of the occurrence of a purely impurity mediated two-phonon bound state is demonstrated. The bound state frequencies are calculated using the simple Einstein oscillator model for the host phonons. The two-phonon density of states for the imperfect crystal thus obtained has peaks at the combination and difference frequencies of two host phonons besides the peaks at the bound state frequencies. For a perfect crystal the theory predicts a single peak at the two-phonon bound state frequency in conformity with experimental observations and other theoretical calculations. Experimental data on the two-phonon infrared absorption and Raman scattering from mixed crystals of Gasub(1-c)Alsub(c)P and Gesub(1-c)Sisub(c) are analysed to provide evidence in support of impurity-mediated two-phonon bound states. The relevance of the zero frequency (difference spectrum) peak to the central peak, observed in structural phase transitions, is conjectured. (author)

  5. Multi-State Vibronic Interactions in Fluorinated Benzene Radical Cations.

    Science.gov (United States)

    Faraji, S.; Köppel, H.

    2009-06-01

    Conical intersections of potential energy surfaces have emerged as paradigms for signalling strong nonadiabatic coupling effects. An important class of systems where some of these effects have been analyzed in the literature, are the benzene and benzenoid cations, where the electronic structure, spectroscopy, and dynamics have received great attention in the literature. In the present work a brief overview is given over our theoretical treatments of multi-mode and multi-state vibronic interactions in the benzene radical cation and some of its fluorinated derivatives. The fluorobenzene derivatives are of systematic interest for at least two different reasons. (1) The reduction of symmetry by incomplete fluorination leads to a disappearance of the Jahn-Teller effect present in the parent cation. (2) A specific, more chemical effect of fluorination consists in the energetic increase of the lowest σ-type electronic states of the radical cations. The multi-mode multi-state vibronic interactions between the five lowest electronic states of the fluorobenzene radical cations are investigated theoretically, based on ab initio electronic structure data, and employing the well-established linear vibronic coupling model, augmented by quadratic coupling terms for the totally symmetric vibrational modes. Low-energy conical intersections, and strong vibronic couplings are found to prevail within the set of tilde{X}-tilde{A} and tilde{B}-tilde{C}-tilde{D} cationic states, while the interactions between these two sets of states are found to be weaker and depend on the particular isomer. This is attributed to the different location of the minima of the various conical intersections occurring in these systems. Wave-packet dynamical simulations for these coupled potential energy surfaces, utilizing the powerful multi-configuration time-dependent Hartree method are performed. Ultrafast internal conversion processes and the analysis of the MATI and photo-electron spectra shed new light

  6. Binding energies of two deltas bound states

    International Nuclear Information System (INIS)

    Sato, Hiroshi; Saito, Koichi.

    1982-06-01

    Bound states of the two-deltas system are investigated by employing the realistic one boson exchange potential. It is found that there exist many bound states in each isospin channel and also found that the tensor interaction plays important role in producing these bound states. Relationship between these bound states and dibaryon resonances is discussed. (J.P.N.)

  7. Two Schemes for Generation of Entanglement for Vibronic Collective States of Multiple Trapped Ions

    International Nuclear Information System (INIS)

    Yang Wenxing; Li Jiahua; Zheng Anshou

    2007-01-01

    We propose two schemes to prepare entanglement for the vibronic collective states of multiple trapped ions. The first scheme aims to generating multipartite entanglement for vibrational modes of trapped ions, which only requires a single laser beam tuned to the ionic carrier frequency. Our scheme works in the mediated excitation regime, in which the corresponding Rabi frequency is equal to the trap frequency. Beyond their fundamental importance, these states may be of interest for experimental studies on decoherence since the present scheme operates in a fast way. The second scheme aims to preparing the continuous variable multimode maximally Greenberger-Horne-Zeilinger state. The distinct advantage is that the operation time is only limited by the available laser intensity, not by the inherent mechanisms such as off-resonant excitations. This makes it promising to obtain entanglement of multiple coherent and squeezing states with desired amplitudes in a reasonable time.

  8. Construction of Vibronic Diabatic Hamiltonian for Excited-State Electron and Energy Transfer Processes.

    Science.gov (United States)

    Xie, Yu; Jiang, Shengshi; Zheng, Jie; Lan, Zhenggang

    2017-12-21

    Photoinduced excited-state electron and energy transfer processes are crucial in biological photoharvesting systems and organic photovoltaic devices. We discuss the construction of a diabatic vibronic Hamiltonian for the proper treatment of these processes involving the projection approach acting on both electronic wave functions and vibrational modes. In the electronic part, the wave function projection approach is used to construct the diabatic Hamiltonian in which both local excited states and charge-transfer states are included on the same footing. For the vibrational degrees of freedom, the vibronic couplings in the diabatic Hamiltonian are obtained in the basis of the pseudonormal modes localized on each monomer site by applying delocalized-to-localized mode projection. This systematic approach allows us to construct the vibronic diabatic Hamiltonian in molecular aggregates.

  9. Two-nucleon bound states in quenched lattice QCD

    International Nuclear Information System (INIS)

    Yamazaki, T.; Kuramashi, Y.; Ukawa, A.

    2011-01-01

    We address the issue of bound state in the two-nucleon system in lattice QCD. Our study is made in the quenched approximation at the lattice spacing of a=0.128 fm with a heavy quark mass corresponding to m π =0.8 GeV. To distinguish a bound state from an attractive scattering state, we investigate the volume dependence of the energy difference between the ground state and the free two-nucleon state by changing the spatial extent of the lattice from 3.1 fm to 12.3 fm. A finite energy difference left in the infinite spatial volume limit leads us to the conclusion that the measured ground states for not only spin triplet but also singlet channels are bounded. Furthermore the existence of the bound state is confirmed by investigating the properties of the energy for the first excited state obtained by a 2x2 diagonalization method. The scattering lengths for both channels are evaluated by applying the finite volume formula derived by Luescher to the energy of the first excited states.

  10. Ab initio study of vibronic transitions between x2π and 12Σ+ electronic states of HCP+ ion

    Directory of Open Access Journals (Sweden)

    Stojanović Ljiljana

    2013-01-01

    Full Text Available The ground and low-lying excited doublet electronic states of the HCP+ ion were studied by means of multireference configuration interaction method. Vibronic energy levels of the X2Π state of Σ, Π, Δ, and Φ symmetry, up to the 2500 cm-1, have been calculated variationally, employing previously developed ab initio methods which take into account vibronic and spin-orbit interactions. Obtained vibronic wave functions were used to estimate transition moments between vibronic energy levels of the X2Π and 12Σ+ electronic states. Results were compared to available experimental and theoretical data. [Projekat Ministarstva nauke Republike Srbije, br. 172040

  11. Jahn-Teller effect in Rydberg series: A multi-state vibronic coupling problem

    International Nuclear Information System (INIS)

    Staib, A.; Domcke, W.; Sobolewski, A.L.

    1990-01-01

    Two simple limiting cases of Jahn-Teller (JT) coupling in Rydberg states of polyatomic molecules are considered, namely (i) JT coupling in Rydberg orbitals as well as in the ionization continuum (nondegenerate ion core, degenerate Rydberg series) and (ii) JT coupling in the ion core (degenerate ion core, nondegenerate Rydberg series). For both models simple and efficient algorithms for the computation of spectra (dynamical JT effect) are developed. The orbital JT effect is shown to represent a novel type of multi-state vibronic coupling, giving rise to interesting spectroscopic phenomena, among them resonant inter-Rydberg perturbations and JT induced autoionization. Particular attention is paid to the demonstration of the characteristic spectroscopic signatures of the two types of JT coupling in Rydberg states. (orig.)

  12. A study of vibronic coupling in the tilde C state of CO2+

    International Nuclear Information System (INIS)

    Roy, P.; Ferrett, T.A.; Schmidt, V.; Parr, A.C.; Southworth, S.H.; Hardis, J.E.; Bartlett, R.; Trela, W.; Dehmer, J.L.

    1987-01-01

    We have studied vibronic coupling in vibrationally resolved photoionization to the fourth electronic state of CO 2 + , C( 2 Σ/sub g/ + ), in the photon-energy range h nu = 20 to 28.5 eV. The measurements utilize high-resolution hemispherical electron analyzers, equipped with area detectors, and the SURF-II synchrotron radiation source at the National Bureau of Standards. The angular distribution asymmetry-parameters (β) for the allowed C(0,0,0) and forbidden C(1,0,1) (19.747 eV binding energy) peaks are found to be quite different. However, similarities between the C(1,0,1) β curve and that for the B state suggest that vibronic coupling to the B( 2 Σ/sub u/ + ) state of CO 2 + is the explanation for the intensity of the C state forbidden band in the first 8 eV above threshold

  13. Vibronic interactions proceeding from combined analytical and numerical considerations: Covalent functionalization of graphene by benzene, distortions, electronic transitions

    Energy Technology Data Exchange (ETDEWEB)

    Krasnenko, V.; Boltrushko, V.; Hizhnyakov, V. [Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411 Tartu (Estonia)

    2016-04-07

    Chemically bound states of benzene molecules with graphene are studied both analytically and numerically. The states are formed by switching off intrabonds of π-electrons in C{sub 6} rings to interbonds. A number of different undistorted and distorted structures are established both with aligned and with transversal mutual orientation of benzene and graphene. The vibronic interactions causing distortions of bound states are found, by using a combination of analytical and numerical considerations. This allows one to determine all electronic transitions of π-electrons without explicit numerical calculations of excited states, to find the conical intersections of potentials, and to show that the mechanism of distortions is the pseudo-Jahn-Teller effect. It is found that the aligned distorted benzene molecule placed between two graphene sheets makes a chemical bond with both of them, which may be used for fastening of graphene sheets together.

  14. Vibronic coupling density and related concepts

    International Nuclear Information System (INIS)

    Sato, Tohru; Uejima, Motoyuki; Iwahara, Naoya; Haruta, Naoki; Shizu, Katsuyuki; Tanaka, Kazuyoshi

    2013-01-01

    Vibronic coupling density is derived from a general point of view as a one-electron property density. Related concepts as well as their applications are presented. Linear and nonlinear vibronic coupling density and related concepts, orbital vibronic coupling density, reduced vibronic coupling density, atomic vibronic coupling constant, and effective vibronic coupling density, illustrate the origin of vibronic couplings and enable us to design novel functional molecules or to elucidate chemical reactions. Transition dipole moment density is defined as an example of the one-electron property density. Vibronic coupling density and transition dipole moment density open a way to design light-emitting molecules with high efficiency.

  15. Analysis of vibronic interactions in the molecules of cross-conjugated ketones

    Directory of Open Access Journals (Sweden)

    Kompaneez V.V.

    2017-01-01

    Full Text Available We have done quantitative analysis of vibronic parameters of two cross-conjugated δ-dimethylaminoketones. The research shows the influence of С-N and C=O bonds in the rings, and the radicals with nitro compounds on the vibronic parameters of characteristic bands, which describe the state (vibrations, types of deformation under excitation of the phenyl ring and the polyene bridge. Results described impact of the substituent’s nature on the parameters of intra- and intermolecular interactions presents for the studied compounds.

  16. Electron-vibron coupling effects on electron transport via a single-molecule magnet

    Science.gov (United States)

    McCaskey, Alexander; Yamamoto, Yoh; Warnock, Michael; Burzurí, Enrique; van der Zant, Herre S. J.; Park, Kyungwha

    2015-03-01

    We investigate how the electron-vibron coupling influences electron transport via an anisotropic magnetic molecule, such as a single-molecule magnet (SMM) Fe4, by using a model Hamiltonian with parameter values obtained from density-functional theory (DFT). The magnetic anisotropy parameters, vibrational energies, and electron-vibron coupling strengths of the Fe4 are computed using DFT. A giant spin model is applied to the Fe4 with only two charge states, specifically a neutral state with a total spin S =5 and a singly charged state with S =9 /2 , which is consistent with our DFT result and experiments on Fe4 single-molecule transistors. In sequential electron tunneling, we find that the magnetic anisotropy gives rise to new features in the conductance peaks arising from vibrational excitations. In particular, the peak height shows a strong, unusual dependence on the direction as well as magnitude of applied B field. The magnetic anisotropy also introduces vibrational satellite peaks whose position and height are modified with the direction and magnitude of applied B field. Furthermore, when multiple vibrational modes with considerable electron-vibron coupling have energies close to one another, a low-bias current is suppressed, independently of gate voltage and applied B field, although that is not the case for a single mode with a similar electron-vibron coupling. In the former case, the conductance peaks reveal a stronger B -field dependence than in the latter case. The new features appear because the magnetic anisotropy barrier is of the same order of magnitude as the energies of vibrational modes with significant electron-vibron coupling. Our findings clearly show the interesting interplay between magnetic anisotropy and electron-vibron coupling in electron transport via the Fe4. Similar behavior can be observed in transport via other anisotropic magnetic molecules.

  17. Bound states in the two-dimension massive quantum electrodynamics (Qed2)

    International Nuclear Information System (INIS)

    Alves, V.S.; Gomes, M.

    1994-01-01

    This work studies the fermion-antifermion bound states in the (1+1)D two-dimension massive quantum electrodynamic in the 1/N expansion. The scattering matrices in the non-relativistic approximation have been calculated through TQC, and compared with the cross section in the Born approximation, and therefore the potential responsible by the interactions in the scattering processes have been obtained. Using Schroedinger equation, the existence of possible bound states have been investigated

  18. Mixed-valence molecular four-dot unit for quantum cellular automata: Vibronic self-trapping and cell-cell response.

    Science.gov (United States)

    Tsukerblat, Boris; Palii, Andrew; Clemente-Juan, Juan Modesto; Coronado, Eugenio

    2015-10-07

    Our interest in this article is prompted by the vibronic problem of charge polarized states in the four-dot molecular quantum cellular automata (mQCA), a paradigm for nanoelectronics, in which binary information is encoded in charge configuration of the mQCA cell. Here, we report the evaluation of the electronic levels and adiabatic potentials of mixed-valence (MV) tetra-ruthenium (2Ru(ii) + 2Ru(iii)) derivatives (assembled as two coupled Creutz-Taube complexes) for which molecular implementations of quantum cellular automata (QCA) was proposed. The cell based on this molecule includes two holes shared among four spinless sites and correspondingly we employ the model which takes into account the two relevant electron transfer processes (through the side and through the diagonal of the square) as well as the difference in Coulomb energies for different instant positions of localization of the hole pair. The combined Jahn-Teller (JT) and pseudo JT vibronic coupling is treated within the conventional Piepho-Krauzs-Schatz model adapted to a bi-electronic MV species with the square-planar topology. The adiabatic potentials are evaluated for the low lying Coulomb levels in which the antipodal sites are occupied, the case just actual for utilization in mQCA. The conditions for the vibronic self-trapping in spin-singlet and spin-triplet states are revealed in terms of the two actual transfer pathways parameters and the strength of the vibronic coupling. Spin related effects in degrees of the localization which are found for spin-singlet and spin-triplet states are discussed. The polarization of the cell is evaluated and we demonstrate how the partial delocalization caused by the joint action of the vibronic coupling and electron transfer processes influences polarization of a four-dot cell. The results obtained within the adiabatic approach are compared with those based on the numerical solution of the dynamic vibronic problem. Finally, the Coulomb interaction between

  19. Effect of molecular weight on the vibronic structure of a diketopyrrolopyrrole polymer

    KAUST Repository

    Hayes, Sophia C.

    2016-09-27

    Resonance Raman Spectroscopy (RRS) is employed in this study to examine the influence of molecular weight on the optical response of a diketopyrrolopyrrole polymer (DPP-TT-T) in solution. The vibronic structure observed for the ground state absorption of this polymer is found to vary with molecular weight and solvent. Resonance Raman Intensity Analysis (RRIA) revealed that the absorption spectra can be described by at least two dipole-allowed transitions and the vibronic structure variation is due to differing contributions from linear and curved segments of the polymer.

  20. Effect of molecular weight on the vibronic structure of a diketopyrrolopyrrole polymer

    KAUST Repository

    Hayes, Sophia C.; Pieridou, Galatia; Vezie, Michelle; Few, Sheridan; Bronstein, Hugo; Meager, Iain; McCulloch, Iain; Nelson, Jenny

    2016-01-01

    Resonance Raman Spectroscopy (RRS) is employed in this study to examine the influence of molecular weight on the optical response of a diketopyrrolopyrrole polymer (DPP-TT-T) in solution. The vibronic structure observed for the ground state absorption of this polymer is found to vary with molecular weight and solvent. Resonance Raman Intensity Analysis (RRIA) revealed that the absorption spectra can be described by at least two dipole-allowed transitions and the vibronic structure variation is due to differing contributions from linear and curved segments of the polymer.

  1. Quasi-bound states in continuum

    International Nuclear Information System (INIS)

    Nakamura, Hiroaki; Hatano, Naomichi; Garmon, Sterling; Petrosky, Tomio

    2007-08-01

    We report the prediction of quasi-bound states (resonant states with very long lifetimes) that occur in the eigenvalue continuum of propagating states for a wide region of parameter space. These quasi-bound states are generated in a quantum wire with two channels and an adatom, when the energy bands of the two channels overlap. A would-be bound state that lays just below the upper energy band is slightly destabilized by the lower energy band and thereby becomes a resonant state with a very long lifetime (a second QBIC lays above the lower energy band). (author)

  2. Magnetic moment of a two-particle bound state in quantum electrodynamics

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Faustov, R.N.

    2002-01-01

    A quasipotential method for calculating relativistic and radiative corrections to the magnetic moment of a two-particle bound state is formulated for particles of arbitrary spin. It is shown that the expression for the g factors of bound particles involve O(α 2 ) terms depending on the particle spin. Numerical values are obtained for the g factors of the electron in the hydrogen atom and in deuterium

  3. Vibronic Boson Sampling: Generalized Gaussian Boson Sampling for Molecular Vibronic Spectra at Finite Temperature.

    Science.gov (United States)

    Huh, Joonsuk; Yung, Man-Hong

    2017-08-07

    Molecular vibroic spectroscopy, where the transitions involve non-trivial Bosonic correlation due to the Duschinsky Rotation, is strongly believed to be in a similar complexity class as Boson Sampling. At finite temperature, the problem is represented as a Boson Sampling experiment with correlated Gaussian input states. This molecular problem with temperature effect is intimately related to the various versions of Boson Sampling sharing the similar computational complexity. Here we provide a full description to this relation in the context of Gaussian Boson Sampling. We find a hierarchical structure, which illustrates the relationship among various Boson Sampling schemes. Specifically, we show that every instance of Gaussian Boson Sampling with an initial correlation can be simulated by an instance of Gaussian Boson Sampling without initial correlation, with only a polynomial overhead. Since every Gaussian state is associated with a thermal state, our result implies that every sampling problem in molecular vibronic transitions, at any temperature, can be simulated by Gaussian Boson Sampling associated with a product of vacuum modes. We refer such a generalized Gaussian Boson Sampling motivated by the molecular sampling problem as Vibronic Boson Sampling.

  4. Manipulation of Squeezed Two-Phonon Bound States using Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Nakamura Kazutaka G.

    2013-03-01

    Full Text Available Two-phonon bound states have been excited exclusively in ZnTe(110 via impulsive stimulated second-order Raman scattering, essentially being squeezed states due to phase coherent excitation of two identical components anticorrelated in the wave vector. By using coherent control technique with a pair of femtosecond laser pulses, the manipulation of squeezed states has been demonstrated in which both the amplitude and lifetime of coherent oscillations of squeezed states are modulated, indicating the feasibility to control the quantum noise and the quantum nature of phonon squeezed states, respectively.

  5. Emergent low-energy bound states in the two-orbital Hubbard model

    Science.gov (United States)

    Núñez-Fernández, Y.; Kotliar, G.; Hallberg, K.

    2018-03-01

    A repulsive Coulomb interaction between electrons in different orbitals in correlated materials can give rise to bound quasiparticle states. We study the nonhybridized two-orbital Hubbard model with intra- (inter)orbital interaction U (U12) and different bandwidths using an improved dynamical mean-field theory numerical technique which leads to reliable spectra on the real energy axis directly at zero temperature. We find that a finite density of states at the Fermi energy in one band is correlated with the emergence of well-defined quasiparticle states at excited energies Δ =U -U12 in the other band. These excitations are interband holon-doublon bound states. At the symmetric point U =U12 , the quasiparticle peaks are located at the Fermi energy, leading to a simultaneous and continuous Mott transition settling a long-standing controversy.

  6. The Raman and vibronic activity of intermolecular vibrations in aromatic-containing complexes and clusters

    International Nuclear Information System (INIS)

    Maxton, P.M.; Schaeffer, M.W.; Ohline, S.M.; Kim, W.; Venturo, V.A.; Felker, P.M.

    1994-01-01

    Theoretical and experimental results pertaining to the excitation of intermolecular vibrations in the Raman and vibronic spectra of aromatic-containing, weakly bound complexes and clusters are reported. The theoretical analysis of intermolecular Raman activity is based on the assumption that the polarizability tensor of a weakly bound species is given by the sum of the polarizability tensors of its constituent monomers. The analysis shows that the van der Waals bending fundamentals in aromatic--rare gas complexes may be expected to be strongly Raman active. More generally, it predicts strong Raman activity for intermolecular vibrations that involve the libration or internal rotation of monomer moieties having appreciable permanent polarizability anisotropies. The vibronic activity of intermolecular vibrations in aromatic-rare gas complexes is analyzed under the assumption that every vibronic band gains its strength from an aromatic-localized transition. It is found that intermolecular vibrational excitations can accompany aromatic-localized vibronic excitations by the usual Franck--Condon mechanism or by a mechanism dependent on the librational amplitude of the aromatic moiety during the course of the pertinent intermolecular vibration. The latter mechanism can impart appreciable intensity to bands that are forbidden by rigid-molecule symmetry selection rules. The applicability of such rules is therefore called into question. Finally, experimental spectra of intermolecular transitions, obtained by mass-selective, ionization-detected stimulated Raman spectroscopies, are reported for benzene--X (X=Ar, --Ar 2 , N 2 , HCl, CO 2 , and --fluorene), fluorobenzene--Ar and --Kr, aniline--Ar, and fluorene--Ar and --Ar 2 . The results support the conclusions of the theoretical analyses and provide further evidence for the value of Raman methods in characterizing intermolecular vibrational level structures

  7. Reassigning the CaH+ 11Σ → 21Σ vibronic transition with CaD+

    Science.gov (United States)

    Condoluci, J.; Janardan, S.; Calvin, A. T.; Rugango, R.; Shu, G.; Sherrill, C. D.; Brown, K. R.

    2017-12-01

    We observe vibronic transitions in CaD+ between the 11Σ and 21Σ electronic states by resonance enhanced multiphoton photodissociation spectroscopy in a Coulomb crystal. The vibronic transitions are compared with previous measurements on CaH+. The result is a revised assignment of the CaH+ vibronic levels and a disagreement with multi-state-complete-active-space second-order perturbation theory theoretical calculations by approximately 700 cm-1. Updated high-level coupled-cluster calculations that include core-valence correlations reduce the disagreement between theory and experiment to 300 cm-1.

  8. Simulating quantum search algorithm using vibronic states of I2 manipulated by optimally designed gate pulses

    International Nuclear Information System (INIS)

    Ohtsuki, Yukiyoshi

    2010-01-01

    In this paper, molecular quantum computation is numerically studied with the quantum search algorithm (Grover's algorithm) by means of optimal control simulation. Qubits are implemented in the vibronic states of I 2 , while gate operations are realized by optimally designed laser pulses. The methodological aspects of the simulation are discussed in detail. We show that the algorithm for solving a gate pulse-design problem has the same mathematical form as a state-to-state control problem in the density matrix formalism, which provides monotonically convergent algorithms as an alternative to the Krotov method. The sequential irradiation of separately designed gate pulses leads to the population distribution predicted by Grover's algorithm. The computational accuracy is reduced by the imperfect quality of the pulse design and by the electronic decoherence processes that are modeled by the non-Markovian master equation. However, as long as we focus on the population distribution of the vibronic qubits, we can search a target state with high probability without introducing error-correction processes during the computation. A generalized gate pulse-design scheme to explicitly include decoherence effects is outlined, in which we propose a new objective functional together with its solution algorithm that guarantees monotonic convergence.

  9. Four-quark bound states

    International Nuclear Information System (INIS)

    Zouzou, S.

    1986-01-01

    In the framework of simple non-relativistic potential models, we examine the system consisting of two quarks and two antiquarks with equal or unequal masses. We search for possible bound states below the threshold for the spontaneous dissociation into two mesons. We solve the four body problem by empirical or systematic variational methods and we include the virtual meson-meson components of the wave function. With standard two-body potentials, there is no proliferation of multiquarks. With unequal quark masses, we obtain however exotic (anti Qanti Qqq) bound states with a baryonic antidiquark-quark-quark structure very analogous to the heavy flavoured (Q'qq) baryons. (orig.)

  10. Towards quantification of vibronic coupling in photosynthetic antenna complexes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, V. P.; Westberg, M.; Wang, C.; Gellen, T.; Engel, G. S., E-mail: gsengel@uchicago.edu [Department of Chemistry, The James Franck Institute and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637 (United States); Dahlberg, P. D. [Graduate Program in the Biophysical Sciences, The James Franck Institute and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637 (United States); Gardiner, A. T.; Cogdell, R. J. [Department of Botany, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, Scotland (United Kingdom)

    2015-06-07

    Photosynthetic antenna complexes harvest sunlight and efficiently transport energy to the reaction center where charge separation powers biochemical energy storage. The discovery of existence of long lived quantum coherence during energy transfer has sparked the discussion on the role of quantum coherence on the energy transfer efficiency. Early works assigned observed coherences to electronic states, and theoretical studies showed that electronic coherences could affect energy transfer efficiency—by either enhancing or suppressing transfer. However, the nature of coherences has been fiercely debated as coherences only report the energy gap between the states that generate coherence signals. Recent works have suggested that either the coherences observed in photosynthetic antenna complexes arise from vibrational wave packets on the ground state or, alternatively, coherences arise from mixed electronic and vibrational states. Understanding origin of coherences is important for designing molecules for efficient light harvesting. Here, we give a direct experimental observation from a mutant of LH2, which does not have B800 chromophores, to distinguish between electronic, vibrational, and vibronic coherence. We also present a minimal theoretical model to characterize the coherences both in the two limiting cases of purely vibrational and purely electronic coherence as well as in the intermediate, vibronic regime.

  11. Meson and baryon families as vibronic states in sl(2) quantum universal enveloping algebra

    International Nuclear Information System (INIS)

    Iwao, Syurei; Ono, Yasuji

    1990-01-01

    A mass formula of the q-deformed modified harmonic oscillator type in the sl(2) quantum universal enveloping algebra is proposed for the meson and baryon families, by taking into account the known theories as a guide. Specifying the vibronic quantum number, the deformation parameter and associated ones of the theory are determined from available data for the scalar, pseudoscalar, vector meson and baryon families. The parameters determined from totally ten families not only predict many unobserved states, but also give restrictions on the observable number of states. The method may admit taking into account non-perturbative effects. (author)

  12. Rotational Parameters from Vibronic Eigenfunctions of Jahn-Teller Active Molecules

    Science.gov (United States)

    Garner, Scott M.; Miller, Terry A.

    2017-06-01

    The structure in rotational spectra of many free radical molecules is complicated by Jahn-Teller distortions. Understanding the magnitudes of these distortions is vital to determining the equilibrium geometric structure and details of potential energy surfaces predicted from electronic structure calculations. For example, in the recently studied {\\widetilde{A}^2E^{''} } state of the NO_3 radical, the magnitudes of distortions are yet to be well understood as results from experimental spectroscopic studies of its vibrational and rotational structure disagree with results from electronic structure calculations of the potential energy surface. By fitting either vibrationally resolved spectra or vibronic levels determined by a calculated potential energy surface, we obtain vibronic eigenfunctions for the system as linear combinations of basis functions from products of harmonic oscillators and the degenerate components of the electronic state. Using these vibronic eigenfunctions we are able to predict parameters in the rotational Hamiltonian such as the Watson Jahn-Teller distortion term, h_1, and compare with the results from the analysis of rotational experiments.

  13. Vibronic coupling effect on the electron transport through molecules

    Science.gov (United States)

    Tsukada, Masaru; Mitsutake, Kunihiro

    2007-03-01

    Electron transport through molecular bridges or molecular layers connected to nano-electrodes is determined by the combination of coherent and dissipative processes, controlled by the electron-vibron coupling, transfer integrals between the molecular orbitals, applied electric field and temperature. We propose a novel theoretical approach, which combines ab initio molecular orbital method with analytical many-boson model. As a case study, the long chain model of the thiophene oligomer is solved by a variation approach. Mixed states of moderately extended molecular orbital states mediated and localised by dress of vibron cloud are found as eigen-states. All the excited states accompanied by multiple quanta of vibration can be solved, and the overall carrier transport properties including the conductance, mobility, dissipation spectra are analyzed by solving the master equation with the transition rates estimated by the golden rule. We clarify obtained in a uniform systematic way, how the transport mode changes from a dominantly coherent transport to the dissipative hopping transport.

  14. Unexpected strong attraction in the presence of continuum bound state

    International Nuclear Information System (INIS)

    Delfino, A.; Frederico, T.

    1992-06-01

    The result of few-particle ground-state calculation employing a two-particle non-local potential supporting a continuum bound state in addition to a negative-energy bound state has occasionally revealed unexpected large attraction in producing a very strongly bound ground state. In the presence of the continuum bound state the difference of phase shift between zero and infinite energies has an extra jump of φ as in the presence of an additional bound state. The wave function of the continuum bound state is identical with that of a strongly bound negative-energy state, which leads us to postulate a pseudo bound state in the two-particle system in order to explain the unexpected attraction. The role of the Pauli forbidden states is expected to be similar to these pseudo states. (author)

  15. Photon virtual bound state

    International Nuclear Information System (INIS)

    Inoue, J.; Ohtaka, K.

    2004-01-01

    We study virtual bound states in photonics, which are a vectorial extension of electron virtual bound states. The condition for these states is derived. It is found that the Mie resonant state which satisfies the condition that the size parameter is less than the angular momentum should be interpreted as a photon virtual bound state. In order to confirm the validity of the concept, we compare the photonic density of states, the width of which represents the lifetime of the photon virtual bound states, with numerical results

  16. Energy spectra of vibron and cluster models in molecular and nuclear systems

    Science.gov (United States)

    Jalili Majarshin, A.; Sabri, H.; Jafarizadeh, M. A.

    2018-03-01

    The relation of the algebraic cluster model, i.e., of the vibron model and its extension, to the collective structure, is discussed. In the first section of the paper, we study the energy spectra of vibron model, for diatomic molecule then we derive the rotation-vibration spectrum of 2α, 3α and 4α configuration in the low-lying spectrum of 8Be, 12C and 16O nuclei. All vibrational and rotational states with ground and excited A, E and F states appear to have been observed, moreover the transitional descriptions of the vibron model and α-cluster model were considered by using an infinite-dimensional algebraic method based on the affine \\widehat{SU(1,1)} Lie algebra. The calculated energy spectra are compared with experimental data. Applications to the rotation-vibration spectrum for the diatomic molecule and many-body nuclear clusters indicate that there are solvable models and they can be approximated very well using the transitional theory.

  17. Analytic continuation of scattering data to the region of negative energies for systems that have one and two bound states

    International Nuclear Information System (INIS)

    Blokhintsev, L. D.; Savin, D. A.

    2016-01-01

    An exactly solvable potential model is used to study the possibility of deducing information about the features of bound states for the system under consideration (binding energies and asymptotic normalization coefficients) on the basis of data on continuum states. The present analysis is based on an analytic approximation and on the subsequent continuation of a partial-wave scattering function from the region of positive energies to the region of negative energies. Cases where the system has one or two bound states are studied. The α+d and α+"1"2C systems are taken as physical examples. In the case of one bound state, the scattering function is a smooth function of energy, and the procedure of its analytic continuation for different polynomial approximations leads to close results, which are nearly coincident with exact values. In the case of two bound states, the scattering function has two poles—one in the region of positive energies and the other in the region of negative energies between the energies corresponding to the two bound states in question. Padéapproximants are used to reproduce these poles. The inclusion of these poles proves to be necessary for correctly describing the properties of the bound states.

  18. Computation of Quantum Bound States on a Singly Punctured Two-Torus

    International Nuclear Information System (INIS)

    Kar-Tim Chan; Zainuddin Hishamuddin; Molladavoudi Saeid

    2013-01-01

    We study a quantum mechanical system on a singly punctured two-torus with bound states described by the Maass waveforms which are eigenfunctions of the hyperbolic Laplace—Beltrami operator. Since the discrete eigenvalues of the Maass cusp form are not known analytically, they are solved numerically using an adapted algorithm of Hejhal and Then to compute Maass cusp forms on the punctured two-torus. We report on the computational results of the lower lying eigenvalues for the punctured two-torus and find that they are doubly-degenerate. We also visualize the eigenstates of selected eigenvalues using GridMathematica

  19. Observation of vibronic emission spectrum of jet-cooled 3,5-difluorobenzyl radical.

    Science.gov (United States)

    Lee, Seung Woon; Yoon, Young Wook; Lee, Sang Kuk

    2010-09-02

    We applied the technique of corona-excited supersonic expansion using a pinhole-type glass nozzle to observe the vibronic emission spectrum of jet-cooled benzyl-type radicals from the corona discharge of precursor 3,5-difluorotoluene seeded in a large amount of inert helium carrier gas. The vibronically well-resolved emission spectrum was recorded with a long-path monochromator in the visible region. After subtracting the vibronic bands originating from isomeric difluorobenzyl radicals from the observed spectrum, we identified for the first time the bands belonging to the 3,5-difluorobenzyl radical, from which the electronic energy and vibrational mode frequencies of the 3,5-difluorobenzyl radical were accurately determined in the ground electronic state by comparison with those of the precursor and with those from an ab initio calculation.

  20. The shape of the electronic circular dichroism spectrum of (2,6-dimethylphenyl)(phenyl)methanol: interplay between conformational equilibria and vibronic effects.

    Science.gov (United States)

    Padula, Daniele; Cerezo, Javier; Pescitelli, Gennaro; Santoro, Fabrizio

    2017-12-13

    Comparison between chiroptical spectra and theoretical predictions is the method of choice for the assignment of the absolute configuration of chiral compounds in solution. Here we report the case of an apparently simple biarylcarbinol, whose electronic circular dichroism (ECD) in the 1 L b region exhibits a peculiar alternation of negative and positive bands. Adopting Density Functional Theory, and describing solvent effects with implicit methods, we found three stable conformers in ethanol, each of them with two close lying states corresponding to similar local 1 L b excitations on the two phenyls. We computed the corresponding vibronic ECD spectra in harmonic approximation, including Duschinsky mixings as well as both Franck Condon (FC) and Herzberg Teller (HT) effects. Exploiting a recently developed mixed quantum/classical method, we further investigated the contribution of the vibronic spectra of out-of-equilibrium structures along the interconversion path connecting the different conformers. In this way, we achieved a reasonable agreement with experiment and attributed the alternating signs of the bands to the existence of different conformers. The remaining discrepancies with experiment indicate that specific solute-solvent interactions modulate the relative conformers' stabilities, calling for new methods able to combine Molecular Dynamics explorations and vibronic calculations. Moreover, the poor performance of HT approaches and the existence of two closely-lying states suggest the necessity of an improved fully-nonadiabatic vibronic approach. These findings demonstrate that even for such a simple system as the biarylcarbinol investigated here, a full reproduction of the fine details of the ECD spectrum requires the development of new improved methods.

  1. Meson-meson bound state in a 2+1 lattice QCD model with two flavors and strong coupling

    International Nuclear Information System (INIS)

    Faria da Veiga, Paulo A.; O'Carroll, Michael; Neto, Antonio Francisco

    2005-01-01

    We consider the existence of bound states of two mesons in an imaginary-time formulation of lattice QCD. We analyze an SU(3) theory with two flavors in 2+1 dimensions and two-dimensional spin matrices. For a small hopping parameter and a sufficiently large glueball mass, as a preliminary, we show the existence of isoscalar and isovector mesonlike particles that have isolated dispersion curves (upper gap up to near the two-particle threshold ∼-4lnκ). The corresponding meson masses are equal up to and including O(κ 3 ) and are asymptotically of order -2lnκ-κ 2 . Considering the zero total isospin sector, we show that there is a meson-meson bound state solution to the Bethe-Salpeter equation in a ladder approximation, below the two-meson threshold, and with binding energy of order bκ 2 ≅0.02359κ 2 . In the context of the strong coupling expansion in κ, we show that there are two sources of meson-meson attraction. One comes from a quark-antiquark exchange. This is not a meson exchange, as the spin indices are not those of the meson particle, and we refer to this as a quasimeson exchange. The other arises from gauge field correlations of four overlapping bonds, two positively oriented and two of opposite orientation. Although the exchange part gives rise to a space range-one attractive potential, the main mechanism for the formation of the bound state comes from the gauge contribution. In our lattice Bethe-Salpeter equation approach, this mechanism is manifested by an attractive distance-zero energy-dependent potential. We recall that no bound state appeared in the one-flavor case, where the repulsive effect of Pauli exclusion is stronger

  2. Simulation of the single-vibronic-level emission spectrum of HPS

    Energy Technology Data Exchange (ETDEWEB)

    Mok, Daniel K. W., E-mail: bcdaniel@polyu.edu.hk, E-mail: epl@soton.ac.uk; Chau, Foo-tim [Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom (Hong Kong); Lee, Edmond P. F., E-mail: bcdaniel@polyu.edu.hk, E-mail: epl@soton.ac.uk [Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom (Hong Kong); School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Dyke, John M. [School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

    2014-05-21

    We have computed the potential energy surfaces of the X{sup ~1}A{sup ′} and A{sup ~1}A{sup ′′} states of HPS using the explicitly correlated multi-reference configuration interaction (MRCI-F12) method, and Franck–Condon factors between the two states, which include anharmonicity and Duschinsky rotation, with the aim of testing the assignment of the recently reported single-vibronic-level (SVL) emission spectrum of HPS [R. Grimminger, D. J. Clouthier, R. Tarroni, Z. Wang, and T. J. Sears, J. Chem. Phys. 139, 174306 (2013)]. These are the highest level calculations on these states yet reported. It is concluded that our spectral simulation supports the assignments of the molecular carrier, the electronic states involved and the vibrational structure of the experimental laser induced fluorescence, and SVL emission spectra proposed by Grimminger et al. [J. Chem. Phys. 139, 174306 (2013)]. However, there remain questions unanswered regarding the relative electronic energies of the two states and the geometry of the excited state of HPS.

  3. Simulation of the single-vibronic-level emission spectrum of HPS

    International Nuclear Information System (INIS)

    Mok, Daniel K. W.; Chau, Foo-tim; Lee, Edmond P. F.; Dyke, John M.

    2014-01-01

    We have computed the potential energy surfaces of the X ~1 A ′ and A ~1 A ′′ states of HPS using the explicitly correlated multi-reference configuration interaction (MRCI-F12) method, and Franck–Condon factors between the two states, which include anharmonicity and Duschinsky rotation, with the aim of testing the assignment of the recently reported single-vibronic-level (SVL) emission spectrum of HPS [R. Grimminger, D. J. Clouthier, R. Tarroni, Z. Wang, and T. J. Sears, J. Chem. Phys. 139, 174306 (2013)]. These are the highest level calculations on these states yet reported. It is concluded that our spectral simulation supports the assignments of the molecular carrier, the electronic states involved and the vibrational structure of the experimental laser induced fluorescence, and SVL emission spectra proposed by Grimminger et al. [J. Chem. Phys. 139, 174306 (2013)]. However, there remain questions unanswered regarding the relative electronic energies of the two states and the geometry of the excited state of HPS

  4. Simulation of the single-vibronic-level emission spectrum of HPS.

    Science.gov (United States)

    Mok, Daniel K W; Lee, Edmond P F; Chau, Foo-tim; Dyke, John M

    2014-05-21

    We have computed the potential energy surfaces of the X¹A' and ùA" states of HPS using the explicitly correlated multi-reference configuration interaction (MRCI-F12) method, and Franck-Condon factors between the two states, which include anharmonicity and Duschinsky rotation, with the aim of testing the assignment of the recently reported single-vibronic-level (SVL) emission spectrum of HPS [R. Grimminger, D. J. Clouthier, R. Tarroni, Z. Wang, and T. J. Sears, J. Chem. Phys. 139, 174306 (2013)]. These are the highest level calculations on these states yet reported. It is concluded that our spectral simulation supports the assignments of the molecular carrier, the electronic states involved and the vibrational structure of the experimental laser induced fluorescence, and SVL emission spectra proposed by Grimminger et al. [J. Chem. Phys. 139, 174306 (2013)]. However, there remain questions unanswered regarding the relative electronic energies of the two states and the geometry of the excited state of HPS.

  5. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Perlík, Václav; Seibt, Joachim; Šanda, František; Mančal, Tomáš [Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Prague 121 16 (Czech Republic); Cranston, Laura J.; Cogdell, Richard J. [Institute of Molecular Cell and System Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, Scotland (United Kingdom); Lincoln, Craig N.; Hauer, Jürgen, E-mail: juergen.hauer@tuwien.ac.at [Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, 1040 Vienna (Austria); Savolainen, Janne [Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum (Germany)

    2015-06-07

    The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system’s Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.

  6. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    International Nuclear Information System (INIS)

    Perlík, Václav; Seibt, Joachim; Šanda, František; Mančal, Tomáš; Cranston, Laura J.; Cogdell, Richard J.; Lincoln, Craig N.; Hauer, Jürgen; Savolainen, Janne

    2015-01-01

    The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system’s Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems

  7. Importance of Vibronic Effects in the UV-Vis Spectrum of the 7,7,8,8-Tetracyanoquinodimethane Anion.

    Science.gov (United States)

    Tapavicza, Enrico; Furche, Filipp; Sundholm, Dage

    2016-10-11

    We present a computational method for simulating vibronic absorption spectra in the ultraviolet-visible (UV-vis) range and apply it to the 7,7,8,8-tetracyanoquinodimethane anion (TCNQ - ), which has been used as a ligand in black absorbers. Gaussian broadening of vertical electronic excitation energies of TCNQ - from linear-response time-dependent density functional theory produces only one band, which is qualitatively incorrect. Thus, the harmonic vibrational modes of the two lowest doublet states were computed, and the vibronic UV-vis spectrum was simulated using the displaced harmonic oscillator approximation, the frequency-shifted harmonic oscillator approximation, and the full Duschinsky formalism. An efficient real-time generating function method was implemented to avoid the exponential complexity of conventional Franck-Condon approaches to vibronic spectra. The obtained UV-vis spectra for TCNQ - agree well with experiment; the Duschinsky rotation is found to have only a minor effect on the spectrum. Born-Oppenheimer molecular dynamics simulations combined with calculations of the electronic excitation energies for a large number of molecular structures were also used for simulating the UV-vis spectrum. The Born-Oppenheimer molecular dynamics simulations yield a broadening of the energetically lowest peak in the absorption spectrum, but additional vibrational bands present in the experimental and simulated quantum harmonic oscillator spectra are not observed in the molecular dynamics simulations. Our results underline the importance of vibronic effects for the UV-vis spectrum of TCNQ - , and they establish an efficient method for obtaining vibronic spectra using a combination of linear-response time-dependent density functional theory and a real-time generating function approach.

  8. Vibronic coupling in ionized organic molecules. Structural distortions and chemical reactions

    International Nuclear Information System (INIS)

    Williams, F.

    2002-01-01

    Complete text of publication follows. Ionized organic molecules (radical cations, RC) are prone to undergo vibronic coupling whenever there is a relatively small energy gap ( 2v point group of the neutral parent molecule by twisting at the olefinic π bond to the lower C 2 symmetry in the RC (Chem. Eur. J. 2002, 8, 1074). These experiments clearly revealed a double minimum in the potential energy surface along the a 2 torsional mode. This is in accord with the coupling of the 2 B 1 and 2 B 2 Born-Oppenheimer states in C 2v symmetry, this mixing of the 2 B 1 π-ionized ground state and the 2 B 2 δ-ionized excited state being facilitated by the low (∼ 1.0 eV) gap between these states, as estimated from photoelectron spectroscopy. Turning to the second class of RC where unimolecular rearrangement reactions are promoted by vibronic interaction, several cases have emerged where the rearrangement would not be expected if it were based only on the ground-state properties of the RC. It was found (Chem. Phy. Lett. 1988, 143, 521) that the ethylene oxide RC undergoes C-C ring opening to the oxallyl species despite the fact that the ground state corresponds to ionization from the nonbonding oxygen π lone-pair orbital. The reaction develops excited-state character as a result of the vibronic mixing so that the activation barrier to ring opening is lowered. We will discuss the unusual rearrangements of the bicyclo[1.1.1.]pentane and [1.1.1]propellane RC from a similar perspective, emphasis being placed on the decisive role of symmetry in predicting the course of these rearrangements. We illustrate how this approach can reconcile conflicting considerations on some of the 'unexpected' reaction pathways followed by highly strained organic RC

  9. Microscopic observation of magnon bound states and their dynamics.

    Science.gov (United States)

    Fukuhara, Takeshi; Schauß, Peter; Endres, Manuel; Hild, Sebastian; Cheneau, Marc; Bloch, Immanuel; Gross, Christian

    2013-10-03

    The existence of bound states of elementary spin waves (magnons) in one-dimensional quantum magnets was predicted almost 80 years ago. Identifying signatures of magnon bound states has so far remained the subject of intense theoretical research, and their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting in which to find such bound states by tracking the spin dynamics with single-spin and single-site resolution following a local excitation. Here we use in situ correlation measurements to observe two-magnon bound states directly in a one-dimensional Heisenberg spin chain comprising ultracold bosonic atoms in an optical lattice. We observe the quantum dynamics of free and bound magnon states through time-resolved measurements of two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single-magnon excitations. We also determine the decay time of bound magnons, which is probably limited by scattering on thermal fluctuations in the system. Our results provide a new way of studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.

  10. Quantum dynamics of a vibronically coupled linear chain using a surrogate Hamiltonian approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeong H., E-mail: myeong.lee@warwick.ac.uk; Troisi, Alessandro [Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2016-06-07

    Vibronic coupling between the electronic and vibrational degrees of freedom has been reported to play an important role in charge and exciton transport in organic photovoltaic materials, molecular aggregates, and light-harvesting complexes. Explicitly accounting for effective vibrational modes rather than treating them as a thermal environment has been shown to be crucial to describe the effect of vibronic coupling. We present a methodology to study dissipative quantum dynamics of vibronically coupled systems based on a surrogate Hamiltonian approach, which is in principle not limited by Markov approximation or weak system-bath interaction, using a vibronic basis. We apply vibronic surrogate Hamiltonian method to a linear chain system and discuss how different types of relaxation process, intramolecular vibrational relaxation and intermolecular vibronic relaxation, influence population dynamics of dissipative vibronic systems.

  11. Bound and rebound states

    International Nuclear Information System (INIS)

    Orzalesi, C.A.

    1979-01-01

    In relativistic quantum theory, bound states generate forces in the crossed channel; such forces can affect the binding and self-consistent solutions should be sought for the bound-state problem. The author investigates how self-consistency can be achieved by successive approximations, in a simple scalar model and with successive relativistic eikonal approximations (EAs). Within the generalized ladder approximation, some exact properties of the resulting ''first generation'' bound states are discussed. The binding energies in this approximation are rather small even for rather large values of the primary coupling constant. The coupling of the constituent particles to the first-generation reggeon is determined by a suitable EA and a new generalized ladder amplitude is constructed with rungs given either by the primary gluons or by the first-generation reggeons. The resulting new (second-generation) bound states are found in a reggeized EA. The size of the corrections to the binding energies due to the rebinding effects is surprisingly large. The procedure is then iterated, so as to find - again in an EA - the third-generation bound states. The procedure is found to be self-consistent already at this stage: the third-generation bound states coincide with those of second generation, and no further rebinding takes place in the higher iterations of the approximation method. Features - good and bad - of the model are discussed, as well as the possible relevance of rebinding mechanisms in hadron dynamics. (author)

  12. Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bizimana, Laurie A.; Brazard, Johanna; Carbery, William P.; Gellen, Tobias; Turner, Daniel B., E-mail: dturner@nyu.edu [Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 (United States)

    2015-10-28

    Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.

  13. Relativistic bound-state problem of a one-dimensional system

    International Nuclear Information System (INIS)

    Sato, T.; Niwa, T.; Ohtsubo, H.; Tamura, K.

    1991-01-01

    A Poincare-covariant description of the two-body bound-state problem in one-dimensional space is studied by using the relativistic Schrodinger equation. We derive the many-body Hamiltonian, electromagnetic current and generators of the Poincare group in the framework of one-boson exchange. Our theory satisfies Poincare algebra within the one-boson-exchange approximation. We numerically study the relativistic effects on the bound-state wavefunction and the elastic electromagnetic form factor. The Lorentz boost of the bound-state wavefunction and the two-body exchange current are shown to play an important role in guaranteeing the Lorentz invariance of the form factor. (author)

  14. Vibronic Spectroscopy of the Phenylcyanomethyl Radical

    Science.gov (United States)

    Mehta, Deepali N.; Kidwell, Nathanael M.; Zwier, Timothy S.

    2011-06-01

    Resonance stabilized radicals (RSRs) are thought to be key intermediates in the formation of larger molecules in planetary atmospheres. Given the nitrogen-rich atmosphere of Titan, and the prevalence of nitriles there, it is likely that nitrile and isonitrile RSRs could be especially important in pathways leading to the formation of more complex nitrogen-containing compounds and the aerosols ("tholins") that are ultimately produced. In this talk, the results of a gas phase, jet-cooled vibronic spectroscopy study of the phenylcyanomethyl radical (C_6H_5.{C}HCN), the nitrogen-containing analog of the 1-phenylpropargyl radical, will be presented. A resonant two color photon ionization spectrum over the range 21,350-22,200 Cm-1 (450.0-468.0 nm) has been recorded, and the D_0-D_1 origin band has been tentatively identified at 21,400 Cm-1. Studies identifying the ionization threshold, and characterizing the vibronic structure will also be presented. An analogous study of the phenylisocyanomethyl radical, C_6H_5.{C}HNC, is currently being pursued for comparison with that of phenylcyanomethyl radical.

  15. Gravitational coupling to two-particle bound states and momentum conservation in deep inelastic scattering

    International Nuclear Information System (INIS)

    Batiz, Zoltan; Gross, Franz

    2000-01-01

    The momentum conservation sum rule for deep inelastic scattering (DIS) from composite particles is investigated using the general theory of relativity. For two (1+1)-dimensional examples, it is shown that covariant theories automatically satisy the DIS momentum conservation sum rule provided the bound state is covariantly normalized. Therefore, in these cases the two DIS sum rules for baryon conservation and momentum conservation are equivalent. (c) 2000 The American Physical Society

  16. Organic Microcrystal Vibronic Lasers with Full-Spectrum Tunable Output beyond the Franck-Condon Principle.

    Science.gov (United States)

    Dong, Haiyun; Zhang, Chunhuan; Liu, Yuan; Yan, Yongli; Hu, Fengqin; Zhao, Yong Sheng

    2018-03-12

    The very broad emission bands of organic semiconductor materials are, in theory, suitable for achieving versatile solid-state lasers; however, most of organic materials only lase at short wavelength corresponding to the 0-1 transition governed by the Franck-Condon (FC) principle. A strategy is developed to overcome the limit of FC principle for tailoring the output of microlasers over a wide range based on the controlled vibronic emission of organic materials at microcrystal state. For the first time, the output wavelength of organic lasers is tailored across all vibronic (0-1, 0-2, 0-3, and even 0-4) bands spanning the entire emission spectrum. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Bound states in string nets

    Science.gov (United States)

    Schulz, Marc Daniel; Dusuel, Sébastien; Vidal, Julien

    2016-11-01

    We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.

  18. Yukawa Bound States and Their LHC Phenomenology

    Directory of Open Access Journals (Sweden)

    Enkhbat Tsedenbaljir

    2013-01-01

    Full Text Available We present the current status on the possible bound states of extra generation quarks. These include phenomenology and search strategy at the LHC. If chiral fourth-generation quarks do exist their strong Yukawa couplings, implied by current experimental lower bound on their masses, may lead to formation of bound states. Due to nearly degenerate 4G masses suggested by Precision Electroweak Test one can employ “heavy isospin” symmetry to classify possible spectrum. Among these states, the color-octet isosinglet vector ω 8 is the easiest to be produced at the LHC. The discovery potential and corresponding decay channels are covered in this paper. With possible light Higgs at ~125 GeV two-Higgs doublet version is briefly discussed.

  19. Relativistic bound state approach to fundamental forces including gravitation

    Directory of Open Access Journals (Sweden)

    Morsch H.P.

    2012-06-01

    Full Text Available To describe the structure of particle bound states of nature, a relativistic bound state formalism is presented, which requires a Lagrangian including scalar coupling of two boson fields. The underlying mechanisms are quite complex and require an interplay of overlapping boson fields and fermion-antifermion production. This gives rise to two potentials, a boson-exchange potential and one identified with the long sought confinement potential in hadrons. With minimal requirements, two elementary massless fermions (quantons - with and without charge - and one gauge boson, hadrons and leptons but also atoms and gravitational systems are described by bound states with electric and magnetic coupling between the charges and spins of quantons. No need is found for colour, Higgs-coupling and supersymmetry.

  20. Two-magnon bound state causes ultrafast thermally induced magnetisation switching

    Science.gov (United States)

    Barker, J.; Atxitia, U.; Ostler, T. A.; Hovorka, O.; Chubykalo-Fesenko, O.; Chantrell, R. W.

    2013-01-01

    There has been much interest recently in the discovery of thermally induced magnetisation switching using femtosecond laser excitation, where a ferrimagnetic system can be switched deterministically without an applied magnetic field. Experimental results suggest that the reversal occurs due to intrinsic material properties, but so far the microscopic mechanism responsible for reversal has not been identified. Using computational and analytic methods we show that the switching is caused by the excitation of two-magnon bound states, the properties of which are dependent on material factors. This discovery allows us to accurately predict the onset of switching and the identification of this mechanism will allow new classes of materials to be identified or designed for memory devices in the THz regime. PMID:24253110

  1. Vibronic Rabi resonances in harmonic and hard-wall ion traps for arbitrary laser intensity and detuning

    International Nuclear Information System (INIS)

    Lizuain, I.; Muga, J. G.

    2007-01-01

    We investigate laser-driven vibronic transitions of a single two-level atomic ion in harmonic and hard-wall traps. In the Lamb-Dicke regime, for tuned or detuned lasers with respect to the internal frequency of the ion, and weak or strong laser intensities, the vibronic transitions occur at well-isolated Rabi resonances, where the detuning-adapted Rabi frequency coincides with the transition frequency between vibrational modes. These vibronic resonances are characterized as avoided crossings of the dressed levels (eigenvalues of the full Hamiltonian). Their peculiarities due to symmetry constraints and trapping potential are also examined

  2. Volume dependence of N-body bound states

    Science.gov (United States)

    König, Sebastian; Lee, Dean

    2018-04-01

    We derive the finite-volume correction to the binding energy of an N-particle quantum bound state in a cubic periodic volume. Our results are applicable to bound states with arbitrary composition and total angular momentum, and in any number of spatial dimensions. The only assumptions are that the interactions have finite range. The finite-volume correction is a sum of contributions from all possible breakup channels. In the case where the separation is into two bound clusters, our result gives the leading volume dependence up to exponentially small corrections. If the separation is into three or more clusters, there is a power-law factor that is beyond the scope of this work, however our result again determines the leading exponential dependence. We also present two independent methods that use finite-volume data to determine asymptotic normalization coefficients. The coefficients are useful to determine low-energy capture reactions into weakly bound states relevant for nuclear astrophysics. Using the techniques introduced here, one can even extract the infinite-volume energy limit using data from a single-volume calculation. The derived relations are tested using several exactly solvable systems and numerical examples. We anticipate immediate applications to lattice calculations of hadronic, nuclear, and cold atomic systems.

  3. Instanton bound states in ABJM theory

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [DESY Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics

    2013-06-15

    The partition function of the ABJM theory receives non-perturbative corrections due to instanton effects. We study these non-perturbative corrections, including bound states of worldsheet instantons and membrane instantons, in the Fermi-gas approach. We require that the total non-perturbative correction should be always finite for arbitrary Chern-Simons level. This finiteness is realized quite non-trivially because each bound state contribution naively diverges at some levels. The poles of each contribution should be canceled out in total. We use this pole cancellation mechanism to find unknown bound state corrections from known ones. We conjecture a general expression of the bound state contribution. Summing up all the bound state contributions, we find that the effect of bound states is simply incorporated into the worldsheet instanton correction by a redefinition of the chemical potential in the Fermi-gas system. Analytic expressions of the 3- and 4-membrane instanton corrections are also proposed.

  4. Usefulness of bound-state approximations in reaction theory

    International Nuclear Information System (INIS)

    Adhikari, S.K.

    1981-01-01

    A bound-state approximation when applied to certain operators, such as the many-body resolvent operator for a two-body fragmentation channel, in many-body scattering equations, reduces such equations to equivalent two-body scattering equations which are supposed to provide a good description of the underlying physical process. In this paper we test several variants of bound-state approximations in the soluble three-boson Amado model and find that such approximations lead to weak and unacceptable kernels for the equivalent two-body scattering equations and hence to a poor description of the underlying many-body process

  5. Application of the N-quantum approximation method to bound state problems

    International Nuclear Information System (INIS)

    Raychaudhuri, A.

    1977-01-01

    The N-quantum approximation (NQA) method is examined in the light of its application to bound state problems. Bound state wave functions are obtained as expansion coefficients in a truncated Haag expansion. From the equations of motion for the Heisenberg field and the NQA expansion, an equation satisfied by the wave function is derived. Two different bound state systems are considered. In one case, the bound state problem of two identical scalars by scalar exchange is analyzed using the NQA. An integral equation satisfied by the wave function is derived. In the nonrelativistic limit, the equation is shown to reduce to the Schroedinger equation. The equation is solved numerically, and the results compared with those obtained for this system by other methods. The NQA method is also applied to the bound state of two spin 1/2 particles with electromagnetic interaction. The integral equation for the wave function is shown to agree with the corresponding Bethe Salpeter equation in the nonrelativistic limit. Using the Dirac (4 x 4) matrices the wave function is expanded in terms of structure functions and the equation for the wave function is reduced to two disjoint sets of coupled equation for the structure functions

  6. Phase sensitive control of vibronic guest-host interaction: Br2 in Ar matrix.

    Science.gov (United States)

    Ibrahim, Heide; Héjjas, Mónika; Fushitani, Mizuho; Schwentner, Nikolaus

    2009-07-02

    Vibronic progressions are programmed into a pulse shaper which converts them via the inherent Fourier transformation into a train of femtosecond pulses in time domain for chromophore excitation. Double pulse results agree with phase-sensitive wave packet superposition from a Michelson interferometer which delivers coherence times with high reliability. Spectral resolution of 1 nm and a spacing of around 4 nm within the 20 nm envelope centered at 590 nm delivers a train of seven phase-controlled 40 fs subpulses separated by 250 fs. Combs adjusted to the zero phonon lines (ZPL) and phonon sidebands (PSB) of the B state vibronic progression are reproduced in the chromophore for a coherent subpulse accumulation. B state ZPL wave packet dynamics dominates in pump-probe spectra due to its coherence despite an overwhelming but incoherent A state contribution in absorption. PSB comb accumulation is also phase sensitive and demonstrates coherence within several 100 matrix degrees of freedom in the vicinity.

  7. Solvable light-front model of the electromagnetic form factor of the relativistic two-body bound state in 1+1 dimensions

    International Nuclear Information System (INIS)

    Mankiewicz, L.; Sawicki, M.

    1989-01-01

    Within a relativistically correct yet analytically solvable model of light-front quantum mechanics we construct the electromagnetic form factor of the two-body bound state and we study the validity of the static approximation to the full form factor. Upon comparison of full form factors calculated for different values of binding energy we observe an unexpected effect that for very strongly bound states further increase in binding leads to an increase in the size of the bound system. A similar effect is found for another quantum-mechanical model of relativistic dynamics

  8. Two-dimensional electron states bound to an off-plane donor in a magnetic field

    International Nuclear Information System (INIS)

    Bruno-Alfonso, A; Candido, L; Hai, G-Q

    2010-01-01

    The states of an electron confined in a two-dimensional (2D) plane and bound to an off-plane donor impurity center, in the presence of a magnetic field, are investigated. The energy levels of the ground state and the first three excited states are calculated variationally. The binding energy and the mean orbital radius of these states are obtained as a function of the donor center position and the magnetic field strength. The limiting cases are discussed for an in-plane donor impurity (i.e. a 2D hydrogen atom) as well as for the donor center far away from the 2D plane in strong magnetic fields, which corresponds to a 2D harmonic oscillator.

  9. Comments upon a bound state model for a two body system

    International Nuclear Information System (INIS)

    Micu, L.

    2005-01-01

    We show that in classical mechanics, classical and relativistic quantum mechanics it is possible to replace the equation of the relative motion for a two-body bound system at rest by individual dynamical equations with correlated solutions. We compare the representations of a bound system in terms of the relative and individual coordinates and mention some of the observable differences. (author)

  10. Quasi-classical approaches to vibronic spectra revisited

    Science.gov (United States)

    Karsten, Sven; Ivanov, Sergei D.; Bokarev, Sergey I.; Kühn, Oliver

    2018-03-01

    The framework to approach quasi-classical dynamics in the electronic ground state is well established and is based on the Kubo-transformed time correlation function (TCF), being the most classical-like quantum TCF. Here we discuss whether the choice of the Kubo-transformed TCF as a starting point for simulating vibronic spectra is as unambiguous as it is for vibrational ones. Employing imaginary-time path integral techniques in combination with the interaction representation allowed us to formulate a method for simulating vibronic spectra in the adiabatic regime that takes nuclear quantum effects and dynamics on multiple potential energy surfaces into account. Further, a generalized quantum TCF is proposed that contains many well-established TCFs, including the Kubo one, as particular cases. Importantly, it also provides a framework to construct new quantum TCFs. Applying the developed methodology to the generalized TCF leads to a plethora of simulation protocols, which are based on the well-known TCFs as well as on new ones. Their performance is investigated on 1D anharmonic model systems at finite temperatures. It is shown that the protocols based on the new TCFs may lead to superior results with respect to those based on the common ones. The strategies to find the optimal approach are discussed.

  11. Vibronic relaxation in molecular mixed crystals : Pentacene in naphthalene and p-terphenyl

    NARCIS (Netherlands)

    Hesselink, Wim H.; Wiersma, Douwe A.

    1981-01-01

    Picosecond photon echo techniques are used to measure directly vibronic relaxation times in the first excited singlet state of pentacene in naphthalene and p-terphenyl. In regions of low (< 300 cm–1) and high (> 1000 cm–1) vibrational energy, relaxation is fast (τ <2 ps) due to direct phonon

  12. Complicated Fermi-type vibronic resonance: Untangling of the single-site quasi-line fluorescence excitation spectra of a methylated dibenzoporphin

    International Nuclear Information System (INIS)

    Arabei, S.M.; Kuzmitsky, V.A.; Solovyov, K.N.

    2008-01-01

    The quasi-line low-temperature (4.2 K) fluorescence excitation spectra of 2,3,12,13-tetramethyldibenzo[g,q]porphin introduced into an n-octane matrix have been measured in the range of the S 2 0 electronic transition at selective fluorescence monitoring for the two main types of impurity centers (sites). A characteristic feature of these spectra is that a conglomerate of quasi-lines - a structured complex band - is observed instead of one 0-0 quasi-line of the S 2 0 transition. In this band, the intensity distributions for the two main sites considerably differ from each other. The occurrence of such conglomerates is interpreted as a result of nonadiabatic vibrational-electronic interaction between the vibronic S 2 and S 1 states (the complex vibronic analogue of the Fermi resonance). The frequencies and intensities of individual transitions determined from the deconvolution of complex conglomerates are used as the initial data for solving the inverse spectroscopic problem: the determination of the unperturbed electronic and vibrational levels of states involved in the resonance and the vibronic-interaction matrix elements between them. This problem is solved with a method developed previously. The experimental results and their analysis are compared to the analogous data obtained earlier for meso-tetraazaporphin and meso-tetrapropylporphin. The energy intervals between the S 2 and S 1 electronic levels (ΔE S 2 S 1 ) of the two main types of impurity centers formed by molecules of a given porphyrin in the crystal matrix are found to significantly differ from each other, the values of this difference (δΔE S 2 S 1 ) being considerably greater for tetramethyldibenzoporphin, δΔE S 2 S 1 =228cm -1 , than for the two other porphyrins. At the same time, the energies of the unperturbed vibrational states of the S 1 electronic level participating in the resonance are very close to each other for these two sites

  13. Relativistic bound states: a mass formula for vector mesons

    International Nuclear Information System (INIS)

    Richard, J.L.; Sorba, P.

    1975-07-01

    In the framework of a relativistic description of two particles bound states, a mass formula for vector mesons considered as quark-antiquark systems bound by harmonic oscillator like forces is proposed. Results in good agreement with experimental values are obtained [fr

  14. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences

    NARCIS (Netherlands)

    Halpin, Alexei; Johnson, Philip J. M.; Tempelaar, Roel; Murphy, R. Scott; Knoester, Jasper; Jansen, Thomas L. C.; Miller, R. J. Dwayne

    The observation of persistent oscillatory signals in multidimensional spectra of protein-pigment complexes has spurred a debate on the role of coherence-assisted electronic energy transfer as a key operating principle in photosynthesis. Vibronic coupling has recently been proposed as an explanation

  15. Effect of Bound Entanglement on the Convertibility of Pure States

    International Nuclear Information System (INIS)

    Ishizaka, Satoshi

    2004-01-01

    I show that bound entanglement strongly influences the quantum entanglement processing of pure states: If N distant parties share appropriate bound entangled states with positive partial transpose, all N-partite pure entangled states become inter-convertible by stochastic local operations and classical communication (SLOCC) at the single copy level. This implies that the Schmidt rank of a bipartite pure entangled state can be increased, and that two incomparable tripartite entanglement of the GHZ and W type can be inter-converted by the assistance of bound entanglement. Further, I propose the simplest experimental scheme for the demonstration of the corresponding bound-entanglement-assisted SLOCC. This scheme does not need quantum gates and is feasible for the current experimental technology of linear optics

  16. Vibron Solitons and Soliton-Induced Infrared Spectra of Crystalline Acetanilide

    Science.gov (United States)

    Takeno, S.

    1986-01-01

    Red-shifted infrared spectra at low temperatures of amide I (C=O stretching) vibrations of crystalline acetanilide measured by Careri et al. are shown to be due to vibron solitons, which are nonlinearity-induced localized modes of vibrons arising from their nonlinear interactions with optic-type phonons. A nonlinear eigenvalue equation giving the eigenfrequency of stationary solitons is solved approximately by introducing lattice Green's functions, and the obtained result is in good agreement with the experimental result. Inclusion of interactions with acoustic phonons yields the Debye-Waller factor in the zero-phonon line spectrum of vibron solitons, in a manner analogous to the case of impurity-induced localized harmonic phonon modes in alkali halides.

  17. Accidental bound states in the continuum in an open Sinai billiard

    Energy Technology Data Exchange (ETDEWEB)

    Pilipchuk, A.S. [Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk (Russian Federation); Siberian Federal University, 660080 Krasnoyarsk (Russian Federation); Sadreev, A.F., E-mail: almas@tnp.krasn.ru [Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk (Russian Federation)

    2017-02-19

    The fundamental mechanism of the bound states in the continuum is the full destructive interference of two resonances when two eigenlevels of the closed system are crossing. There is, however, a wide class of quantum chaotic systems which display only avoided crossings of eigenlevels. As an example of such a system we consider the Sinai billiard coupled with two semi-infinite waveguides. We show that notwithstanding the absence of degeneracy bound states in the continuum occur due to accidental decoupling of the eigenstates of the billiard from the waveguides. - Highlights: • Bound states in the continuum in open chaotic billiards occur to accidental vanishing of coupling of eigenstate of billiard with waveguides.

  18. Few-body bound states on a three-dimensional and two-dimensional lattice and continuum limit for one-dimensional many-body system

    International Nuclear Information System (INIS)

    Rudin, S.I.

    1984-01-01

    The three-body bound states of particles moving on a lattice and interacting with two-body point-like potentials are studied in two dimensions (2D) and three dimensions (3D) for spin 1/2 fermions and spin O bosons (with application to magnons). When a three boson bound state forms in 3D, it does so discontinuously implying a finite size of approximately two lattice constants. This phenomenon does not occur in 2D. For three fermions, interactions are effectively absent in the state S = 3/2. In the state S = 1/2, when there is an interaction, the three particles complex is unstable against breakup into a bound pair S = 0 and a free third particle. A finite density of states for 2D lattice makes this result relevant for BCS theory of superconductivity in 3D in confirming the choice of singlet pair (Cooper pair) as the fundamental entity. Results for bosons allows estimation of the limits of validity of spin wave theory as applied to the anisotropic Heisenberg ferromagnet in 3D with J/sub z/ > J/sub x/ = J/sub y/

  19. Vibronic coupling in asymmetric bichromophores: Experimental investigation of diphenylmethane-d5

    International Nuclear Information System (INIS)

    Pillsbury, Nathan R.; Kidwell, Nathanael M.; Nebgen, Benjamin; Slipchenko, Lyudmila V.; Zwier, Timothy S.; Douglass, Kevin O.; Plusquellic, David F.; Cable, John R.

    2014-01-01

    Vibrationally and rotationally resolved electronic spectra of diphenylmethane-d 5 (DPM-d 5 ) are reported in the isolated-molecule environment of a supersonic expansion. While small, the asymmetry induced by deuteration of one of the aromatic rings is sufficient to cause several important effects that change the principle mechanism of vibronic coupling between the close-lying S 1 and S 2 states, and spectroscopic signatures such coupling produces. The splitting between S 1 and S 2 origins is 186 cm −1 , about 50% greater than its value in DPM-d 0 (123 cm −1 ), and an amount sufficient to bring the S 2 zero-point level into near-resonance with the v = 1 level in the S 1 state of a low-frequency phenyl flapping mode, ν R = 191 cm −1 . Dispersed fluorescence spectra bear clear evidence that Δv(R) = 1 Herzberg-Teller coupling dominates the near-resonant internal mixing between the S 1 and S 2 manifolds. The fluorescence into each pair of Franck-Condon active ring modes shows an asymmetry that suggests incorrectly that the S 1 and S 2 states may be electronically localized. From rotationally resolved studies, the S 0 and S 1 states have been well-fit to asymmetric rotor Hamiltonians while the S 2 state is perturbed and not fit. The transition dipole moment (TDM) orientation of the S 1 state is nearly perpendicular to the C 2 symmetry axes with 66(2)%:3(1)%:34(2)% a:b:c hybrid-type character while that of the S 2 origin contains 50(10)% a:c-type (S 1 ) and 50(10)% b-type (S 2 ) character. A model is put forward that explains qualitatively the TDM compositions and dispersed emission patterns without the need to invoke electronic localization. The experimental data discussed here serve as a foundation for a multi-mode vibronic coupling model capable of being applied to asymmetric bichromophores, as presented in the work of B. Nebgen and L. V. Slipchenko [“Vibronic coupling in asymmetric bichromophores: Theory and application to diphenylmethane-d 5 ,” J. Chem

  20. Fano effect and Andreev bound states in T-shape double quantum dots

    International Nuclear Information System (INIS)

    Calle, A.M.; Pacheco, M.; Orellana, P.A.

    2013-01-01

    In this Letter, we investigate the transport through a T-shaped double quantum dot coupled to two normal metal leads left and right and a superconducting lead. Analytical expressions of Andreev transmission and local density of states of the system at zero temperature have been obtained. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot. We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. Our results show that as a consequence of quantum interference and proximity effect, the transmission from normal to normal lead exhibits Fano resonances due to Andreev bound states. We find that this interference effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. - Highlights: • Transport properties of a double quantum dot coupled in T-shape configuration to conducting and superconducting leads are studied. • We report Fano antiresonances in the normal transmission due to the Andreev reflections in the superconducting lead. • We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. • Fano effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. • Andreev bound states survives even for strong dot-superconductor coupling

  1. Vibronic coupling in ionized organic molecules: structural distortions and chemical reactions

    International Nuclear Information System (INIS)

    Williams, Ffrancon

    2003-01-01

    Ionized organic molecules (radical cations) in radiation chemistry are liable to undergo vibronic coupling whenever there is a relatively small energy gap (∼0.5-1.5 eV) between their ground and excited states. As a result of this mixing, the force constant for the symmetry-allowed vibrational mode that couples these states is lowered in the ground state of the radical cation so that deformation can take place more easily along this specific mode. This pseudo-Jahn-Teller effect can then result in a permanent structural distortion of the radical cation relative to the symmetry of the parent neutral molecule. It can also bring about an energetically favored pathway for a facile chemical rearrangement along a reaction coordinate defined by the coupling mode. Examples taken from matrix-isolation studies are used to illustrate these dramatic consequences of vibronic coupling in radical cations. Thus, the bicyclo[2.2.2]oct-2-ene and tetramethylurea radical cations are found to have twisted structures departing from the C 2v symmetry of their parent molecules, while the oxirane and bicyclo[1.1.1]pentane radical cations undergo ring-opening rearrangements along reaction coordinates that correspond to the deformational modes predicted by the pseudo-Jahn-Teller effect

  2. Geometric phase effects in excited state dynamics through a conical intersection in large molecules: N-dimensional linear vibronic coupling model study

    Science.gov (United States)

    Li, Jiaru; Joubert-Doriol, Loïc; Izmaylov, Artur F.

    2017-08-01

    We investigate geometric phase (GP) effects in nonadiabatic transitions through a conical intersection (CI) in an N-dimensional linear vibronic coupling (ND-LVC) model. This model allows for the coordinate transformation encompassing all nonadiabatic effects within a two-dimensional (2D) subsystem, while the other N - 2 dimensions form a system of uncoupled harmonic oscillators identical for both electronic states and coupled bi-linearly with the subsystem coordinates. The 2D subsystem governs ultra-fast nonadiabatic dynamics through the CI and provides a convenient model for studying GP effects. Parameters of the original ND-LVC model define the Hamiltonian of the transformed 2D subsystem and thus influence GP effects directly. Our analysis reveals what values of ND-LVC parameters can introduce symmetry breaking in the 2D subsystem that diminishes GP effects.

  3. Shooting quasiparticles from Andreev bound states in a superconducting constriction

    Energy Technology Data Exchange (ETDEWEB)

    Riwar, R.-P.; Houzet, M.; Meyer, J. S. [University of Grenoble Alpes, INAC-SPSMS (France); Nazarov, Y. V., E-mail: Y.V.Nazarov@tudelft.nl [Delft University of Technology, Kavli Institute of NanoScience (Netherlands)

    2014-12-15

    A few-channel superconducting constriction provides a set of discrete Andreev bound states that may be populated with quasiparticles. Motivated by recent experimental research, we study the processes in an a.c. driven constriction whereby a quasiparticle is promoted to the delocalized states outside the superconducting gap and flies away. We distinguish two processes of this kind. In the process of ionization, a quasiparticle present in the Andreev bound state is transferred to the delocalized states leaving the constriction. The refill process involves two quasiparticles: one flies away while another one appears in the Andreev bound state. We notice an interesting asymmetry of these processes. The electron-like quasiparticles are predominantly emitted to one side of the constriction while the hole-like ones are emitted to the other side. This produces a charge imbalance of accumulated quasiparticles, that is opposite on opposite sides of the junction. The imbalance may be detected with a tunnel contact to a normal metal lead.

  4. Two-Dimensional Resonance Raman Signatures of Vibronic Coherence Transfer in Chemical Reactions.

    Science.gov (United States)

    Guo, Zhenkun; Molesky, Brian P; Cheshire, Thomas P; Moran, Andrew M

    2017-11-02

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in condensed phase systems. 2DRR spectroscopy is motivated by knowledge of non-equilibrium effects that cannot be detected with traditional resonance Raman spectroscopy. For example, 2DRR spectra may reveal correlated distributions of reactant and product geometries in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this chapter, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide. We show that signatures of "vibronic coherence transfer" in the photodissociation process can be targeted with particular 2DRR pulse sequences. Key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopy techniques are also addressed. Overall, recent experimental developments and applications of the 2DRR method suggest that it will be a valuable tool for elucidating ultrafast chemical reaction mechanisms.

  5. Connection between bound-states of bosons moving in one dimension

    International Nuclear Information System (INIS)

    Coutinho, F.A.B.

    1982-06-01

    It is shown that when a system of two identical bosons moving in one dimension have a bound state of energy ν sub(o), then the N body system will also have a bound state at a specific energy given by equation W(N+1) = 2N/1-N ]W(N)] - N+1/1-N ]W(N-1)]. (Author) [pt

  6. Inefficiency and classical communication bounds for conversion between partially entangled pure bipartite states

    International Nuclear Information System (INIS)

    Fortescue, Ben; Lo, H.-K.

    2005-01-01

    We derive lower limits on the inefficiency and classical communication costs of dilution between two-term bipartite pure states that are partially entangled. We first calculate explicit relations between the allowable error and classical communication costs of entanglement dilution using a previously described protocol, then consider a two-stage dilution from singlets with this protocol followed by some unknown protocol for conversion between partially entangled states. Applying overall lower bounds on classical communication and inefficiency to this two-stage protocol, we derive bounds for the unknown protocol. In addition we derive analogous (but looser) bounds for general pure states

  7. Franck-Condon Simulations including Anharmonicity of the Ã(1)A''-X̃(1)A' Absorption and Single Vibronic Level Emission Spectra of HSiCl and DSiCl.

    Science.gov (United States)

    Mok, Daniel W K; Lee, Edmond P F; Chau, Foo-Tim; Dyke, John M

    2009-03-10

    RCCSD(T) and/or CASSCF/MRCI calculations have been carried out on the X̃(1)A' and Ã(1)A'' states of HSiCl employing basis sets of up to the aug-cc-pV5Z quality. Contributions from core correlation and extrapolation to the complete basis set limit were included in determining the computed equilibrium geometrical parameters and relative electronic energy of these two states of HSiCl. Franck-Condon factors which include allowance for anharmonicity and Duschinsky rotation between these two states of HSiCl and DSiCl were calculated employing RCCSD(T) and CASSCF/MRCI potential energy functions, and were used to simulate the Ã(1)A'' ← X̃(1)A' absorption and Ã(1)A'' → X̃(1)A' single vibronic level (SVL) emission spectra of HSiCl and DSiCl. Simulated absorption and experimental LIF spectra, and simulated and observed Ã(1)A''(0,0,0) → X̃(1)A' SVL emission spectra, of HSiCl and DSiCl are in very good agreement. However, agreement between simulated and observed Ã(1)A''(0,1,0) → X̃(1)A' and Ã(1)A''(0,2,1) → X̃(1)A' SVL emission spectra of DSiCl is not as good. Preliminary calculations on low-lying excited states of HSiCl suggest that vibronic interaction between low-lying vibrational levels of the Ã(1)A'' state and highly excited vibrational levels of the ã(3)A'' is possible. Such vibronic interaction may change the character of the low-lying vibrational levels of the Ã(1)A'' state, which would lead to perturbation in the SVL emission spectra from these vibrational levels.

  8. Baryon-baryon bound states from first principles in 3+1 lattice QCD with two flavors and strong coupling

    International Nuclear Information System (INIS)

    Faria da Veiga, Paulo A.; O'Carroll, Michael

    2006-01-01

    We determine baryon-baryon bound states in (3+1)-dimensional SU(3) lattice QCD with two flavors, 4x4 spin matrices, and in an imaginary time formulation. For small hopping parameter κ>0 and large glueball mass (strong coupling), we show the existence of three-quark isospin 1/2 particles (proton and neutron) and isospin 3/2 baryons (delta particles), with asymptotic masses -3lnκ and isolated dispersion curves. Baryon-baryon bound states of isospin zero are found with binding energy of order κ 2 , using a ladder approximation to a lattice Bethe-Salpeter equation. The dominant baryon-baryon interaction is an energy-independent spatial range-one attractive potential with an O(κ 2 ) strength. There is also attraction arising from gauge field correlations associated with six overlapping bonds, but it is counterbalanced by Pauli repulsion to give a vanishing zero-range potential. The overall range-one potential results from a quark, antiquark exchange with no meson exchange interpretation; the repulsive or attractive nature of the interaction depends on the isospin and spin of the two-baryon state

  9. Contrasts between the vibronic contributions in the tris-(2,2'-bipyridyl)osmium(II) emission spectrum and the implications of resonance-Raman parameters.

    Science.gov (United States)

    Ondongo, Onduru S; Endicott, John F

    2009-04-06

    The emission spectrum of the tris-(2,2'-bipyridine)osmium(II) metal-to-ligand charge transfer (MLCT) excited-state frozen solution at 77 K differs qualitatively from that expected based on its reported resonance-Raman (rR) parameters in that (1) the dominant vibronic contributions to the emission spectrum are in the low frequency regime (corresponding to nuclear displacements in largely to metal-ligand vibrational modes) and these contributions are negligible in the rR; and (2) the amplitude of the emission sideband components that correspond to envelopes of largely bpy centered vibrational modes is about 40% of that expected (relative to the amplitude observed for the band origin) for a simple vibronic progression in these modes. The distortions in low frequency vibrational modes are attributable to configurational mixing between metal centered (LF) and MLCT excited states, and the small amplitudes of the bpy-mode vibronic components may be a consequence of some intrinsic differences of the distortions of the (3)MLCT and (1)MLCT excited states such as the zero-field splitting of the (3)MLCT excited state and the different distortions of these excited-state components.

  10. Three-nucleon forces and the trinucleon bound states

    International Nuclear Information System (INIS)

    Friar, J.L.; Frois, B.

    1986-04-01

    A summary of the bound-state working group session of the ''International Symposium on the Three-Body Force in the Three-Nucleon System'' is presented. The experimental evidence for three-nucleon forces has centered on two ground state properties: the tritium binding energy and the trinucleon form factors. Both are discussed

  11. Theory of Excitonic Delocalization for Robust Vibronic Dynamics in LH2.

    Science.gov (United States)

    Caycedo-Soler, Felipe; Lim, James; Oviedo-Casado, Santiago; van Hulst, Niek F; Huelga, Susana F; Plenio, Martin B

    2018-06-11

    Nonlinear spectroscopy has revealed long-lasting oscillations in the optical response of a variety of photosynthetic complexes. Different theoretical models that involve the coherent coupling of electronic (excitonic) or electronic-vibrational (vibronic) degrees of freedom have been put forward to explain these observations. The ensuing debate concerning the relevance of either mechanism may have obscured their complementarity. To illustrate this balance, we quantify how the excitonic delocalization in the LH2 unit of Rhodopseudomonas acidophila purple bacterium leads to correlations of excitonic energy fluctuations, relevant coherent vibronic coupling, and importantly, a decrease in the excitonic dephasing rates. Combining these effects, we identify a feasible origin for the long-lasting oscillations observed in fluorescent traces from time-delayed two-pulse single-molecule experiments performed on this photosynthetic complex and use this approach to discuss the role of this complementarity in other photosynthetic systems.

  12. Proximity effect tunneling into virtual bound state alloys

    International Nuclear Information System (INIS)

    Tang, I.M.; Roongkkeadsakoon, S.

    1984-01-01

    The effects of a narrow virtual bound state formed by transition metal impurities dissolved in the normal layer of a superconducting proximity effect sandwich are studied. Using standard renormalization techniques, we obtain the changes in the transition temperatures and the jumps in the specific heat at T/sub c/ as a function of the thickness of the normal layer, of the widths of the virtual bound states, and of the impurity concentrations. It is seen that narrow virtual bound states lead to decrease in the transition temperatures, while broad virtual bound states do not. It if further seen that the narrow virtual bound state causes the reduced specific heat jump at T/sub c/ to deviate from the BCS behavior expected of the pure sandwich

  13. Understanding the electron-phonon interaction in polar crystals: Perspective presented by the vibronic theory

    Science.gov (United States)

    Pishtshev, A.; Kristoffel, N.

    2017-05-01

    We outline our novel results relating to the physics of the electron-TO-phonon (el-TO-ph) interaction in a polar crystal. We explained why the el-TO-ph interaction becomes effectively strong in a ferroelectric, and showed how the electron density redistribution establishes favorable conditions for soft-behavior of the long-wavelength branch of the active TO vibration. In the context of the vibronic theory it has been demonstrated that at the macroscopic level the interaction of electrons with the polar zone-centre TO phonons can be associated with the internal long-range dipole forces. Also we elucidated a methodological issue of how local field effects are incorporated within the vibronic theory. These result provided not only substantial support for the vibronic mechanism of ferroelectricity but also presented direct evidence of equivalence between vibronic and the other lattice dynamics models. The corresponding comparison allowed us to introduce the original parametrization for constants of the vibronic interaction in terms of key material constants. The applicability of the suggested formula has been tested for a wide class of polar materials.

  14. Universal extra dimensions and Kaluza-Klein bound states

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Conroy, Justin M.; Sher, Marc; Turan, Ismail

    2004-01-01

    We study the bound states of the Kaluza-Klein (KK) excitations of quarks in certain models of universal extra dimensions. Such bound states may be detected at future lepton colliders in the cross section for the pair production of KK quarks near threshold. For typical values of model parameters, we find that 'KK quarkonia' have widths in the 10-100 MeV range, and production cross sections of the order of a few picobarns for the lightest resonances. Two body decays of the constituent KK quarks lead to distinctive experimental signatures. We point out that such KK resonances may be discovered before any of the higher KK modes

  15. Optical detection of magnetic resonance of the F-centre in CaO in its phosphorescent state

    International Nuclear Information System (INIS)

    Krap, C.J.

    1980-01-01

    The F-centre in CaO consists of two electrons trapped in an oxygen vacancy. The centre possesses bound excited states, of which the phosphorescent 3 Tsub(1u) state is a Jahn-Teller state. Jahn-Teller systems have been of interest in many investigations. However, detailed experimental studies about the relaxation paths for the Jahn-Teller states are relatively few. The author studies by means of optical detection of magnetic resonance (ODMR) and phosphorescence microwave double resonance (PMDR) techniques the relaxation between the components of the 3 Tsub(1u) state, the magnetic properties of the individual spin-vibronic Jahn-Teller states and the inhomogeneous line broadening in the ODMR and PMDR spectra. (Auth.)

  16. Vibronic spectra of Gd3+ in metaphosphate glasses: Comparison with Raman and infrared spectra

    International Nuclear Information System (INIS)

    Hall, D.W.; Brawer, S.A.; Weber, M.J.

    1982-01-01

    Vibronic sidebands associated with the 6 P/sub 7/2/→ 8 S/sub 7/2/ transition of Gd 3+ -doped metaphosphate glasses are observed using line-narrowed fluorescence techniques. Glasses having metal cations of different mass and charge (La,Al,Mg,Ba) are examined. Vibronic spectra, which probe vibrations about the rare-earth element site, are compared with polarized Raman scattering data and the infrared dielectric constant obtained from near-normal reflectance measurements. Results indicate that in metaphosphate glasses vibronic selection rules are similar to HV (vertical height) Raman selection rules. The wavelengths and relative intensities of peaks in the high-frequency portion of the vibronic spectra change with respect to corresponding peaks in the Raman spectra when the mass and/or charge of Gd 3+ differs significantly from that of the metal cation

  17. The bound state problem and quark confinement

    International Nuclear Information System (INIS)

    Chaichian, M.; Demichev, A.P.; Nelipa, N.F.

    1980-01-01

    A quantum field-theoretic model in which quark is confined is considered. System of equations for the Green functions of colour singlet and octet bound states is obtained. The method is based on the nonperturbative Schwinger-Dyson equations with the use of Slavnov-Taylor identities. It is shown that in the framework of the model if there exist singlet, then also exist octet bound states of the quark-antiquark system. Thus in general, confinement of free quarks does not mean absence of their coloured bound states. (author)

  18. Bound states in strongly correlated magnetic and electronic systems

    International Nuclear Information System (INIS)

    Trebst, S.

    2002-02-01

    A novel strong coupling expansion method to calculate two-particle spectra of quantum lattice models is developed. The technique can be used to study bosonic and fermionic models and in principle it can be applied to systems in any dimension. A number of strongly correlated magnetic and electronic systems are examined including the two-leg spin-half Heisenberg ladder, the dimerized Heisenberg chain with a frustrating next-nearest neighbor interaction, coupled Heisenberg ladders, and the one-dimensional Kondo lattice model. In the various models distinct bound states are found below the two-particle continuum. Quantitative calculations of the dispersion, coherence length and binding energy of these bound states are used to describe spectroscopic experiments on (Ca,La) 14 Cu 24 O 41 and NaV 2 O 5 . (orig.)

  19. Entropic Lower Bound for Distinguishability of Quantum States

    Directory of Open Access Journals (Sweden)

    Seungho Yang

    2015-01-01

    Full Text Available For a system randomly prepared in a number of quantum states, we present a lower bound for the distinguishability of the quantum states, that is, the success probability of determining the states in the form of entropy. When the states are all pure, acquiring the entropic lower bound requires only the density operator and the number of the possible states. This entropic bound shows a relation between the von Neumann entropy and the distinguishability.

  20. Resolving the Spatial Structures of Bound Hole States in Black Phosphorus.

    Science.gov (United States)

    Qiu, Zhizhan; Fang, Hanyan; Carvalho, Alexandra; Rodin, A S; Liu, Yanpeng; Tan, Sherman J R; Telychko, Mykola; Lv, Pin; Su, Jie; Wang, Yewu; Castro Neto, A H; Lu, Jiong

    2017-11-08

    Understanding the local electronic properties of individual defects and dopants in black phosphorus (BP) is of great importance for both fundamental research and technological applications. Here, we employ low-temperature scanning tunnelling microscope (LT-STM) to probe the local electronic structures of single acceptors in BP. We demonstrate that the charge state of individual acceptors can be reversibly switched by controlling the tip-induced band bending. In addition, acceptor-related resonance features in the tunnelling spectra can be attributed to the formation of Rydberg-like bound hole states. The spatial mapping of the quantum bound states shows two distinct shapes evolving from an extended ellipse shape for the 1s ground state to a dumbbell shape for the 2p x excited state. The wave functions of bound hole states can be well-described using the hydrogen-like model with anisotropic effective mass, corroborated by our theoretical calculations. Our findings not only provide new insight into the many-body interactions around single dopants in this anisotropic two-dimensional material but also pave the way to the design of novel quantum devices.

  1. Vibronic coupling in asymmetric bichromophores: Experimental investigation of diphenylmethane-d{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Pillsbury, Nathan R.; Kidwell, Nathanael M.; Nebgen, Benjamin; Slipchenko, Lyudmila V.; Zwier, Timothy S., E-mail: david.plusquellic@nist.gov, E-mail: zwier@purdue.edu [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084 (United States); Douglass, Kevin O.; Plusquellic, David F., E-mail: david.plusquellic@nist.gov, E-mail: zwier@purdue.edu [Quantum Electronics and Photonics Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305-3328 (United States); Cable, John R. [Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403-0213 (United States)

    2014-08-14

    Vibrationally and rotationally resolved electronic spectra of diphenylmethane-d{sub 5} (DPM-d{sub 5}) are reported in the isolated-molecule environment of a supersonic expansion. While small, the asymmetry induced by deuteration of one of the aromatic rings is sufficient to cause several important effects that change the principle mechanism of vibronic coupling between the close-lying S{sub 1} and S{sub 2} states, and spectroscopic signatures such coupling produces. The splitting between S{sub 1} and S{sub 2} origins is 186 cm{sup −1}, about 50% greater than its value in DPM-d{sub 0} (123 cm{sup −1}), and an amount sufficient to bring the S{sub 2} zero-point level into near-resonance with the v = 1 level in the S{sub 1} state of a low-frequency phenyl flapping mode, ν{sub R} = 191 cm{sup −1}. Dispersed fluorescence spectra bear clear evidence that Δv(R) = 1 Herzberg-Teller coupling dominates the near-resonant internal mixing between the S{sub 1} and S{sub 2} manifolds. The fluorescence into each pair of Franck-Condon active ring modes shows an asymmetry that suggests incorrectly that the S{sub 1} and S{sub 2} states may be electronically localized. From rotationally resolved studies, the S{sub 0} and S{sub 1} states have been well-fit to asymmetric rotor Hamiltonians while the S{sub 2} state is perturbed and not fit. The transition dipole moment (TDM) orientation of the S{sub 1} state is nearly perpendicular to the C{sub 2} symmetry axes with 66(2)%:3(1)%:34(2)% a:b:c hybrid-type character while that of the S{sub 2} origin contains 50(10)% a:c-type (S{sub 1}) and 50(10)% b-type (S{sub 2}) character. A model is put forward that explains qualitatively the TDM compositions and dispersed emission patterns without the need to invoke electronic localization. The experimental data discussed here serve as a foundation for a multi-mode vibronic coupling model capable of being applied to asymmetric bichromophores, as presented in the work of B. Nebgen and L. V

  2. Relativistic bound state wave functions

    International Nuclear Information System (INIS)

    Micu, L.

    2005-01-01

    A particular method of writing the bound state wave functions in relativistic form is applied to the solutions of the Dirac equation with confining potentials in order to obtain a relativistic description of a quark antiquark bound system representing a given meson. Concerning the role of the effective constituent in the present approach we first observe that without this additional constituent we couldn't expand the bound state wave function in terms of products of free states. Indeed, we notice that if the wave function depends on the relative coordinates only, all the expansion coefficients would be infinite. Secondly we remark that the effective constituent enabled us to give a Lorentz covariant meaning to the potential energy of the bound system which is now seen as the 4th component of a 4-momentum. On the other side, by relating the effective constituent to the quantum fluctuations of the background field which generate the binding, we provided a justification for the existence of some spatial degrees of freedom accompanying the interaction potential. These ones, which are quite unusual in quantum mechanics, in our model are the natural consequence of the the independence of the quarks and can be seen as the effect of the imperfect cancellation of the vector momenta during the quantum fluctuations. Related with all these we remark that the adequate representation for the relativistic description of a bound system is the momentum representation, because of the transparent and easy way of writing the conservation laws and the transformation properties of the wave functions. The only condition to be fulfilled is to find a suitable way to take into account the potential energy of the bound system. A particular feature of the present approach is that the confining forces are due to a kind of glue where both quarks are embedded. This recalls other bound state models where the wave function is factorized in terms of constituent wave functions and the confinement is

  3. Amplification of non-Markovian decay due to bound state absorption into continuum

    International Nuclear Information System (INIS)

    Garmon, S.; Simine, L.; Segal, D.; Petrosky, T.

    2013-01-01

    It is known that quantum systems yield non-exponential (power law) decay on long time scales, associated with continuum threshold effects contributing to the survival probability for a prepared initial state. For an open quantum system consisting of a discrete state coupled to continuum, we study the case in which a discrete bound state of the full Hamiltonian approaches the energy continuum as the system parameters are varied. We find in this case that at least two regions exist yielding qualitatively different power law decay behaviors; we term these the long time 'near zone' and long time 'far zone'. In the near zone the survival probability falls off according to a t -1 power law, and in the far zone i t falls off as t -3 . We show that the timescale T Q separating these two regions is inversely related to the gap between the discrete bound state energy and the continuum threshold. In the case that the bound state is absorbed into the continuum and vanishes, then the time scale T Q diverges and the survival probability follows the t -1 power law even on asymptotic scales. Conversely, one could study the case of an anti-bound state approaching the threshold before being ejected from the continuum to form a bound state. Again the t -1 power law dominates precisely at the point of ejection. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Dark-matter bound states from Feynman diagrams

    NARCIS (Netherlands)

    Petraki, K.; Postma, M.; Wiechers, M.

    2015-01-01

    If dark matter couples directly to a light force mediator, then it may form bound states in the early universe and in the non-relativistic environment of haloes today. In this work, we establish a field-theoretic framework for the computation of bound-state formation cross-sections, de-excitation

  5. Tunneling spectroscopy of quasiparticle bound states in a spinful Josephson junction.

    Science.gov (United States)

    Chang, W; Manucharyan, V E; Jespersen, T S; Nygård, J; Marcus, C M

    2013-05-24

    The spectrum of a segment of InAs nanowire, confined between two superconducting leads, was measured as function of gate voltage and superconducting phase difference using a third normal-metal tunnel probe. Subgap resonances for odd electron occupancy-interpreted as bound states involving a confined electron and a quasiparticle from the superconducting leads, reminiscent of Yu-Shiba-Rusinov states-evolve into Kondo-related resonances at higher magnetic fields. An additional zero-bias peak of unknown origin is observed to coexist with the quasiparticle bound states.

  6. Bound-state quark and gluon contributions to structure functions in QCD

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1991-01-01

    One can distinguish two types of contributions to the quark and gluon structure functions of hadrons in quantum chromodynamics: 'intrinsic' contributions, which are due to the direct scattering on the bound-state constituents, and 'extrinsic' contributions, which are derived from particles created in the collision. In this talk, I discuss several aspects of deep inealstic structure functions in which the bound-state structure of the proton plays a crucial role: (1) the properties of the intrinsic gluon distribution associated with the proton bound-state wavefunction; (2) the separation of the quark structure function of the proton into intrinsic 'bound-valence' and extrinsic 'non-valence' components which takes into account the Pauli principle; (3) the properties and identification of intrinsic heavy quark structure functions; and (4) a theory of shadowing and anti-shadowing of nuclear structure functions, directly related to quark-nucleon interactions and the gluon saturation phenomenon. (orig.)

  7. Bound-state quark and gluon contributions to structure functions in QCD

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1990-08-01

    One can distinguish two types of contributions to the quark and gluon structure functions of hadrons in quantum chromodynamics: ''intrinsic'' contributions, which are due to the direct scattering on the bound-state constituents, and ''extrinsic'' contributions, which are derived from particles created in the collision. In this talk, I discussed several aspects of deep inelastic structure functions in which the bound-state structure of the proton plays a crucial role: the properties of the intrinsic gluon distribution associated with the proton bound-state wavefunction; the separation of the quark structure function of the proton onto intrinsic ''bound-valence'' and extrinsic ''non-valence'' components which takes into account the Pauli principle; the properties and identification of intrinsic heavy quark structure functions; and a theory of shadowing and anti-shadowing of nuclear structure functions, directly related to quark-nucleon interactions and the gluon saturation phenomenon. 49 refs., 5 figs

  8. Bound entangled states violate a nonsymmetric local uncertainty relation

    International Nuclear Information System (INIS)

    Hofmann, Holger F.

    2003-01-01

    As a consequence of having a positive partial transpose, bound entangled states lack many of the properties otherwise associated with entanglement. It is therefore interesting to identify properties that distinguish bound entangled states from separable states. In this paper, it is shown that some bound entangled states violate a nonsymmetric class of local uncertainty relations [H. F. Hofmann and S. Takeuchi, Phys. Rev. A 68, 032103 (2003)]. This result indicates that the asymmetry of nonclassical correlations may be a characteristic feature of bound entanglement

  9. Minimum-error quantum distinguishability bounds from matrix monotone functions: A comment on 'Two-sided estimates of minimum-error distinguishability of mixed quantum states via generalized Holevo-Curlander bounds' [J. Math. Phys. 50, 032106 (2009)

    International Nuclear Information System (INIS)

    Tyson, Jon

    2009-01-01

    Matrix monotonicity is used to obtain upper bounds on minimum-error distinguishability of arbitrary ensembles of mixed quantum states. This generalizes one direction of a two-sided bound recently obtained by the author [J. Tyson, J. Math. Phys. 50, 032106 (2009)]. It is shown that the previously obtained special case has unique properties.

  10. Possible Existence of (cc¯)–Nucleus Bound States

    International Nuclear Information System (INIS)

    Yokota, Akira; Oka, Makoto; Hiyama, Emiko

    2014-01-01

    Charmonium (cc¯) bound states in few-nucleon systems, 2 H, 4 He and 8 Be, are studied via Gaussian Expansion Method (GEM). We adopt a Gaussian potential as an effective (cc¯)–nucleon (N) interaction. The relation between two-body (cc¯)–N scattering length a cc¯−N and the binding energies B of (cc¯)–nucleus bound states are given. Recent lattice QCD data of a cc¯−N corresponds to B≃0.5 MeV for (cc¯)− 4 He and 2 MeV for (cc¯)− 8 Be in our results. (author)

  11. VIBRONIC PROGRESSIONS IN SEVERAL DIFFUSE INTERSTELLAR BANDS

    International Nuclear Information System (INIS)

    Duley, W. W.; Kuzmin, Stanislav

    2010-01-01

    A number of vibronic progressions based on low-energy vibrational modes of a large molecule have been found in the diffuse interstellar band (DIB) spectrum of HD 183143. Four active vibrational modes have been identified with energies at 5.18 cm -1 , 21.41 cm -1 , 31.55 cm -1 , and 34.02 cm -1 . The mode at 34.02 cm -1 was previously recognized by Herbig. Four bands are associated with this molecule, with origins at 6862.61 A, 6843.64 A, 6203.14 A, and 5545.11 A (14589.1 cm -1 , 14608.08 cm -1 , 16116.41 cm -1 , and 18028.9 cm -1 , respectively). The progressions are harmonic and combination bands are observed involving all modes. The appearance of harmonic, rather than anharmonic, terms in these vibronic progressions is consistent with torsional motion of pendant rings, suggesting that the carrier is a 'floppy' molecule. Some constraints on the type and size of the molecule producing these bands are discussed.

  12. Inquiry for the conversion of the (π+ - π-) bound state into two π0

    International Nuclear Information System (INIS)

    Bunatyan, G.G.

    1998-01-01

    In the work presented, the decay of the pionium, that is the (π + π - ) bound state, into two π 0 is studied, the ππ-interaction causing this transition being described by the underlying Weinberg Lagrangian. The calculation with such a ππ-Lagrangian being carried out, the π-meson size r 0 emerges to be allowed for, and this quantity occurs in the final result. The bound (π + π - )-system itself is presumed to be due to the instantaneous Coulomb interaction and is treated consistently nonrelativistically, the Bethe-Salpeter equation being utilized. When calculating, the terms to the lowest order in the fine structure constant α and the terms ∼ ln (r 0 ) are retained. The obtained pionium lifetime τ is thought to be compatible with the conceivable future experimental data. The dependence of the results on the effective Lagrangian parameters is visualized. The investigation carried out persuades us that it is just the complete form of the genuine ππ-interaction that determines the pionium lifetime , but not much simply the ππ scattering lengths. The inquiry into pionium decaying promotes to specify the validity of the various ππ-interaction descriptions

  13. Highly accurate bound state calculations of the two-center molecular ions by using the universal variational expansion for three-body systems

    Science.gov (United States)

    Frolov, Alexei M.

    2018-03-01

    The universal variational expansion for the non-relativistic three-body systems is explicitly constructed. This universal expansion can be used to perform highly accurate numerical computations of the bound state spectra in various three-body systems, including Coulomb three-body systems with arbitrary particle masses and electric charges. Our main interest is related to the adiabatic three-body systems which contain one bound electron and two heavy nuclei of hydrogen isotopes: the protium p, deuterium d and tritium t. We also consider the analogous (model) hydrogen ion ∞H2+ with the two infinitely heavy nuclei.

  14. Mixed-Valence Molecular Unit for Quantum Cellular Automata: Beyond the Born-Oppenheimer Paradigm through the Symmetry-Assisted Vibronic Approach.

    Science.gov (United States)

    Clemente-Juan, Juan Modesto; Palii, Andrew; Coronado, Eugenio; Tsukerblat, Boris

    2016-08-09

    In this article, we focus on the electron-vibrational problem of the tetrameric mixed-valence (MV) complexes proposed for implementation as four-dot molecular quantum cellular automata (mQCA).1 Although the adiabatic approximation explored in ref 2 is an appropriate tool for the qualitative analysis of the basic characteristics of mQCA, like vibronic trapping of the electrons encoding binary information and cell-cell response, it loses its accuracy providing moderate vibronic coupling and fails in the description of the discrete pattern of the vibronic levels. Therefore, a precise solution of the quantum-mechanical vibronic problem is of primary importance for the evaluation of the shapes of the electron transfer optical absorption bands and quantitative analysis of the main parameters of tetrameric quantum cells. Here, we go beyond the Born-Oppenheimer paradigm and present a solution of the quantum-mechanical pseudo Jahn-Teller (JT) vibronic problem in bielectronic MV species (exemplified by the tetra-ruthenium complexes) based on the recently developed symmetry-assisted approach.3,4 The mathematical approach to the vibronic eigenproblem takes into consideration the point symmetry basis, and therefore, the total matrix of the JT Hamiltonian is blocked to the maximum extent. The submatrices correspond to the irreducible representations (irreps) of the point group. With this tool, we also extend the theory of the mQCA cell beyond the limit of prevailing Coulomb repulsion in the electronic pair (adopted in ref 2), and therefore, the general pseudo-JT problems for spin-singlet ((1)B1g, 2(1)A1g, (1)B2g, (1)Eu) ⊗ (b1g + eu) and spin-triplet states ((3)A2g, (3)B1g, 2(3)Eu) ⊗ (b1g + eu) in a square-planar bielectronic system are solved. The obtained symmetry-adapted electron-vibrational functions are employed for the calculation of the profiles (shape functions) of the charge transfer absorption bands in the tetrameric MV complexes and for the discussion of the

  15. Charged boson bound states in the kerr-newman metric

    International Nuclear Information System (INIS)

    Li Yuanjie; Zhang Duanming

    1986-01-01

    Charged boson bound states in Kerr-Newman metric are discussed. It is found that massless boson cannot be attracted by Kerr-Newman black hole to form bound states. For the massive boson, the condition of the nonbound states when 0 2 - Q 2 and both the condition and wave functions of the bound states when a = √M 2 - Q 2 are obtained. The energy mode of the bound states is single, E = (m√M 2 - Q 2 + eQM)/(2M 2 - Q 2 ). When Q = 0 or e = 0, the conclusion is in agreement with that of Zhang Shiwei and Su Rukeng

  16. Crossover from bound to free states in plasmas

    International Nuclear Information System (INIS)

    Lankin, Alexander V; Norman, Genri E

    2009-01-01

    A self-consistent joint description of free and weakly bound electron states in strongly coupled plasmas is presented. The existence of two problems is emphasized. The first one is a well-known restriction of the number of atomic excited states. Another one is a description of the smooth crossover from bound pair electron-ion excited states to collective excitations of free electrons. The fluctuation approach is developed to study the spectrum domain intermediate between low-lying excited atoms and free electron continuous energy levels. The molecular dynamics method is applied to study the plasma model since the method is able to distinguish all kinds of fluctuations. The electron-ion interaction is described by the temperature-independent cut-off Coulomb potential. The diagnostics of pair electron-ion fluctuations is developed. The concept of pair fluctuations elucidates the smooth vanishing of atomic states near the ionization limit. The approach suggested removes the artificial break of the electron state density at the ionization limit: atomic state density divergent at the negative energy side and free electron state density starting from zero density at the positive energy side

  17. Cosmological implications of Dark Matter bound states

    Energy Technology Data Exchange (ETDEWEB)

    Mitridate, Andrea [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa (Italy); Redi, Michele; Smirnov, Juri [INFN, Sezione di Firenze, and Dipartimento di Fisica e Astronomia, Università di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Strumia, Alessandro, E-mail: andrea.mitridate@gmail.com, E-mail: michele.redi@fi.infn.it, E-mail: juri.smirnov@mpi-hd.mpg.de, E-mail: alessandro.strumia@cern.ch [Dipartimento di Fisica dell' Università di Pisa and INFN, Pisa (Italy)

    2017-05-01

    We present generic formulæ for computing how Sommerfeld corrections together with bound-state formation affects the thermal abundance of Dark Matter with non-abelian gauge interactions. We consider DM as a fermion 3plet (wino) or 5plet under SU(2) {sub L} . In the latter case bound states raise to 11.5 TeV the DM mass required to reproduce the cosmological DM abundance and give indirect detection signals such as (for this mass) a dominant γ-line around 70 GeV. Furthermore, we consider DM co-annihilating with a colored particle, such as a squark or a gluino, finding that bound state effects are especially relevant in the latter case.

  18. Fano-type coupling of a bound paramagnetic state with 2D continuum

    International Nuclear Information System (INIS)

    Rozhansky, I. V.; Averkiev, N. S.; Lähderanta, E.

    2013-01-01

    We analyze an effect of a bound impurity state located at a tunnel distance from a quantum well (QW). The study is focused on the resonance case when the bound state energy lies within the continuum of the QW states. Using the developed theory we calculate spin polarization of 2D holes induced by paramagnetic (Mn) delta-layer in the vicinity of the QW and indirect exchange interaction between two impurities located at a tunnel distance from electron gas

  19. Rabi-vibronic resonance with large number of vibrational quanta

    OpenAIRE

    Glenn, R.; Raikh, M. E.

    2011-01-01

    We study theoretically the Rabi oscillations of a resonantly driven two-level system linearly coupled to a harmonic oscillator (vibrational mode) with frequency, \\omega_0. We show that for weak coupling, \\omega_p \\ll \\omega_0, where \\omega_p is the polaronic shift, Rabi oscillations are strongly modified in the vicinity of the Rabi-vibronic resonance \\Omega_R = \\omega_0, where \\Omega_R is the Rabi frequency. The width of the resonance is (\\Omega_R-\\omega_0) \\sim \\omega_p^{2/3} \\omega_0^{1/3} ...

  20. Fermionic bound states in distinct kinklike backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil); Mohammadi, A. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, Paraiba (Brazil)

    2017-04-15

    This work deals with fermions in the background of distinct localized structures in the two-dimensional spacetime. Although the structures have a similar topological character, which is responsible for the appearance of fractionally charged excitations, we want to investigate how the geometric deformations that appear in the localized structures contribute to the change in the physical properties of the fermionic bound states. We investigate the two-kink and compact kinklike backgrounds, and we consider two distinct boson-fermion interactions, one motivated by supersymmetry and the other described by the standard Yukawa coupling. (orig.)

  1. Effect of isotopic substitution on the collisional quenching of vibronically excited CO+

    International Nuclear Information System (INIS)

    Katayama, D.H.; Welsh, J.A.

    1983-01-01

    Rovibronic levels of the A 2 Pi/sub i/ state for 12 C 16 O + and 13 C 16 O + have been selectively excited by a pulsed, tunable dye laser and their time resolved fluorescence obtained as a function of helium pressure. These ions are formed by reaction of neutral carbon monoxide with helium metastable atoms created in a dc discharge. Since 13 CO + has essentially the same potential energy curves as 12 CO + , but differs primarily in its vibrational energy spacings, this experiment accentuates the role, in the collisional deactivation process, of the high lying ground state vibrational levels which are adjacent to the laser populated vibronic levels of the A 2 Pi/sub i/ state. Quenching rates are determined for the v' = 0, 1, and 2 levels which have relatively insignificant isotope shifts of a few wave numbers for the two isotopes. The difference in rates for the two isotopic ions demonstrates the importance of the positions for the high lying v'' = 10 and 11 ground state levels which have large isotope shifts of hundreds of wave numbers. A discussion of the deactivation process is given in terms of perturbations, Franck--Condon factors, energy gaps, and other considerations

  2. Stieltjes electrostatic model interpretation for bound state problems

    Indian Academy of Sciences (India)

    In this paper, it is shown that Stieltjes electrostatic model and quantum Hamilton Jacobi formalism are analogous to each other. This analogy allows the bound state problem to mimic as unit moving imaginary charges i ℏ , which are placed in between the two fixed imaginary charges arising due to the classical turning ...

  3. Local density of states in two-dimensional topological superconductors under a magnetic field: Signature of an exterior Majorana bound state

    Science.gov (United States)

    Suzuki, Shu-Ichiro; Kawaguchi, Yuki; Tanaka, Yukio

    2018-04-01

    We study quasiparticle states on a surface of a topological insulator (TI) with proximity-induced superconductivity under an external magnetic field. An applied magnetic field creates two Majorana bound states: a vortex Majorana state localized inside a vortex core and an exterior Majorana state localized along a circle centered at the vortex core. We calculate the spin-resolved local density of states (LDOS) and demonstrate that the shrinking of the radius of the exterior Majorana state, predicted in R. S. Akzyanov et al., Phys. Rev. B 94, 125428 (2016), 10.1103/PhysRevB.94.125428, under a strong magnetic field can be seen in LDOS without smeared out by nonzero-energy states. The spin-resolved LDOS further reveals that the spin of the exterior Majorana state is strongly spin-polarized. Accordingly, the induced odd-frequency spin-triplet pairs are found to be spin-polarized as well. In order to detect the exterior Majorana states, however, the Fermi energy should be closed to the Dirac point to avoid contributions from continuum levels. We also study a different two-dimensional topological-superconducting system where a two-dimensional electron gas with the spin-orbit coupling is sandwiched between an s -wave superconductor and a ferromagnetic insulator. We show that the radius of an exterior Majorana state can be tuned by an applied magnetic field. However, on the contrary to the results at a TI surface, neither the exterior Majorana state nor the induced odd-frequency spin-triplet pairs are spin-polarized. We conclude that the spin polarization of the Majorana state is attributed to the spin-polarized Landau level, which is characteristic for systems with the Dirac-like dispersion.

  4. Vibronic-structure tracking: A shortcut for vibrationally resolved UV/Vis-spectra calculations

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Dennis; König, Carolin; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de [Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster (Germany)

    2014-10-28

    The vibrational coarse structure and the band shapes of electronic absorption spectra are often dominated by just a few molecular vibrations. By contrast, the simulation of the vibronic structure even in the simplest theoretical models usually requires the calculation of the entire set of normal modes of vibration. Here, we exploit the idea of the mode-tracking protocol [M. Reiher and J. Neugebauer, J. Chem. Phys. 118, 1634 (2003)] in order to directly target and selectively calculate those normal modes which have the largest effect on the vibronic band shape for a certain electronic excitation. This is achieved by defining a criterion for the importance of a normal mode to the vibrational progressions in the absorption band within the so-called “independent mode, displaced harmonic oscillator” (IMDHO) model. We use this approach for a vibronic-structure investigation for several small test molecules as well as for a comparison of the vibronic absorption spectra of a truncated chlorophyll a model and the full chlorophyll a molecule. We show that the method allows to go beyond the often-used strategy to simulate absorption spectra based on broadened vertical excitation peaks with just a minimum of computational effort, which in case of chlorophyll a corresponds to about 10% of the cost for a full simulation within the IMDHO approach.

  5. Vibronic coupling in molecular crystals: A Franck-Condon Herzberg-Teller model of H-aggregate fluorescence based on quantum chemical cluster calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wykes, M., E-mail: mikewykes@gmail.com; Parambil, R.; Gierschner, J. [Madrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, 28049 Madrid (Spain); Beljonne, D. [Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons (Belgium)

    2015-09-21

    Here, we present a general approach to treating vibronic coupling in molecular crystals based on atomistic simulations of large clusters. Such clusters comprise model aggregates treated at the quantum chemical level embedded within a realistic environment treated at the molecular mechanics level. As we calculate ground and excited state equilibrium geometries and vibrational modes of model aggregates, our approach is able to capture effects arising from coupling to intermolecular degrees of freedom, absent from existing models relying on geometries and normal modes of single molecules. Using the geometries and vibrational modes of clusters, we are able to simulate the fluorescence spectra of aggregates for which the lowest excited state bears negligible oscillator strength (as is the case, e.g., ideal H-aggregates) by including both Franck-Condon (FC) and Herzberg-Teller (HT) vibronic transitions. The latter terms allow the adiabatic excited state of the cluster to couple with vibrations in a perturbative fashion via derivatives of the transition dipole moment along nuclear coordinates. While vibronic coupling simulations employing FC and HT terms are well established for single-molecules, to our knowledge this is the first time they are applied to molecular aggregates. Here, we apply this approach to the simulation of the low-temperature fluorescence spectrum of para-distyrylbenzene single-crystal H-aggregates and draw comparisons with coarse-grained Frenkel-Holstein approaches previously extensively applied to such systems.

  6. Experimental and theoretical study of bound and quasibound states of Ce{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Walter, C. W.; Gibson, N. D.; Li, Y.-G.; Matyas, D. J.; Alton, R. M.; Lou, S. E.; Field, R. L. III; Hanstorp, D.; Pan, Lin; Beck, Donald R. [Department of Physics and Astronomy, Denison University, Granville, Ohio 43023 (United States); Department of Physics, University of Gothenburg, SE-412 96 Gothenburg (Sweden); Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States)

    2011-09-15

    The negative ion of cerium is investigated experimentally with tunable infrared laser photodetachment spectroscopy and theoretically with relativistic configuration interaction in the continuum formalism. The relative cross section for neutral atom production is measured with a crossed ion-beam-laser-beam apparatus over the photon energy range of 0.54-0.75 eV. A rich resonance spectrum is revealed near the threshold with, at least, 12 peaks observed due to transitions from bound states of Ce{sup -} to either bound or quasibound excited states of the negative ion. Theoretical calculations of the photodetachment cross sections enable identification of the transitions responsible for the measured peaks. Two of the peaks are due to electric dipole-allowed bound-bound transitions in Ce{sup -}, making cerium only the second atomic negative ion that has been demonstrated to support multiple bound states of opposite parity. In addition, combining the experimental data with the theoretical analysis determines the electron affinity of cerium to be 0.628(10) eV and the fine structure splitting of the ground state of Ce{sup -} ({sup 4} H{sub 7/2}-{sup 4} H{sub 9/2}) to be 0.097 75(4) eV.

  7. Bound state and localization of excitation in many-body open systems

    Science.gov (United States)

    Cui, H. T.; Shen, H. Z.; Hou, S. C.; Yi, X. X.

    2018-04-01

    We study the exact bound state and time evolution for single excitations in one-dimensional X X Z spin chains within a non-Markovian reservoir. For the bound state, a common feature is the localization of single excitations, which means the spontaneous emission of excitations into the reservoir is prohibited. Exceptionally, the pseudo-bound state can be found, for which the single excitation has a finite probability of emission into the reservoir. In addition, a critical energy scale for bound states is also identified, below which only one bound state exists, and it is also the pseudo-bound state. The effect of quasirandom disorder in the spin chain is also discussed; such disorder induces the single excitation to locate at some spin sites. Furthermore, to display the effect of bound state and disorder on the preservation of quantum information, the time evolution of single excitations in spin chains is studied exactly. An interesting observation is that the excitation can stay at its initial location with high probability only when the bound state and disorder coexist. In contrast, when either one of them is absent, the information of the initial state can be erased completely or becomes mixed. This finding shows that the combination of bound state and disorder can provide an ideal mechanism for quantum memory.

  8. Scattering theory methods for bound state problems

    International Nuclear Information System (INIS)

    Raphael, R.B.; Tobocman, W.

    1978-01-01

    For the analysis of the properties of a bound state system one may use in place of the Schroedinger equation the Lippmann-Schwinger (LS) equation for the wave function or the LS equation for the reactance operator. Use of the LS equation for the reactance operator constrains the solution to have correct asymptotic behaviour, so this approach would appear to be desirable when the bound state wave function is to be used to calculate particle transfer form factors. The Schroedinger equation based N-level analysis of the s-wave bound states of a square well is compared to the ones based on the LS equation. It is found that the LS equation methods work better than the Schroedinger equation method. The method that uses the LS equation for the wave function gives the best results for the wave functions while the method that uses the LS equation for the reactance operator gives the best results for the binding energies. The accuracy of the reactance operator based method is remarkably insensitive to changes in the oscillator constant used for the harmonic oscillator function basis set. It is also remarkably insensitive to the number of nodes in the bound state wave function. (Auth.)

  9. Σ hypernuclear bound state observed in stopped K- reaction on 4He

    International Nuclear Information System (INIS)

    Hayano, R.S.; Ishikawa, T.; Iwasaki, M.; Outa, H.; Takada, E.; Tamura, H.; Sakaguchi, A.; Aoki, M.; Yamazaki, T.

    1988-12-01

    Results are presented of inclusive measurements of π ± momentum spectra from K - absorption at rest in liquid helium. We found a peak in the π - spectrum. The (K - , π + ) spectrum does not exhibit a clear peak in the Σ - bound region. Comparison of these two spectra suggests that the peak in the π - spectrum is due to the formation of the S = 0, I = 1/2 ground state of Σ-nucleus bound state. (J.P.N.)

  10. Signatures of Majorana bound states in one-dimensional topological superconductors

    International Nuclear Information System (INIS)

    Pientka, Falko

    2014-01-01

    Topological states of matter have fascinated condensed matter physicists for the past three decades. Famous examples include the integer and fractional quantum Hall states exhibiting a spectacular conductance quantization as well as topological insulators in two and three dimensions featuring gapless Dirac fermions at the boundary. Very recently, novel topological phases in superconductors have been subject of intense experimental and theoretical investigation. One-dimensional topological superconductors are particularly intriguing as they host exotic Majorana end states. These are zero-energy bound states with nonabelian exchange statistics potentially useful for topologically protected quantum computing. Recent theoretical and experimental advances have put the realization of Majorana states within reach of current measurement techniques. In this thesis we investigate signatures of Majorana bound states in realistic experiments aiming to improve the theoretical understanding of ongoing experimental efforts and to design novel measurement schemes, which exhibit convincing signatures of Majoranas. In particular we account for nonideal experimental conditions which can lead to qualitatively new features. Possible signatures of Majoranas can be accessed in the Josephson current through a weak link between two topological superconductors although the signatures in the dc Josephson effect are typically obscured by inevitable quasiparticle relaxation in the superconductor. Here we propose a measurement scheme in mesoscopic superconducting rings, where Majorana signatures persist even for infinitely fast relaxation. In a separate project we outline an alternative to the standard Josephson experiment in topological superconductors based on quantum wires. We delineate how Majoranas can be detected, when the Josephson current is induced by noncollinear magnetic fields applied to the two banks of the junction instead of a superconducting phase difference. Another important

  11. Non vertical vibronic transitions in atom molecule collisions

    International Nuclear Information System (INIS)

    Klomp, U.C.

    1982-01-01

    This thesis is mainly devoted to an experimental and theoretical study on vibronic transitions which occur in collisions between an alkali atom and several diatomic molecules. An experimental study on electron and ion production in repulsive Cs-CO and Cs-N 2 collisions, and in Cs-NO and Cs-O 2 non-repulsive collisions is presented. The experimental data are discussed in terms of some existing models. It is clear that a new consistent theory on vibronic transitions is needed to explain the experimental data. Such a theory is presented, and it is shown that some existing models are limiting cases of this theory. An experimental study on the relative probabilities for ion and electron production in collisions between a Na, K or Cs atom and an O 2 or NO molecule is also described. These experiments suggest that the incident velocity of the alkali atoms has a predominant influence on the relative probabilities for ion and electron production in these collisions. (Auth.)

  12. Bound States in the Mirror TBA

    NARCIS (Netherlands)

    Arutyunov, G.E.; Frolov, S.; van Tongeren, S.J.

    2012-01-01

    The spectrum of the light-cone AdS_5 \\times S^5 superstring contains states composed of particles with complex momenta including in particular those which turn into bound states in the decompactification limit. We propose the mirror TBA description for these states. We focus on a three-particle

  13. Lower bounds for the ground states of He-isoelectronic series

    International Nuclear Information System (INIS)

    Fraga, Serafin

    1981-01-01

    A formulation, based on the concept of null local kinetic energy regions, has been developed for the determination of lower bounds for the ground state of a two-electron atom. Numerical results, obtained from Hartree-Fock functions, are presented for the elements He through Kr of the two-electron series

  14. Vibronic oscillator strengths in cubic systems. I.- The adsorption spectrum of Tm+3

    International Nuclear Information System (INIS)

    Acevedo, R.; Hurtado, O.F.; Meruane, T.

    2000-01-01

    A symmetry adapted vibronic crystal field-ligand polarisation scheme is utilised with reference to the elpasolite type system, to gain understanding about the role played by both the electronic and the vibrational factors in the absorption intensity mechanisms of various selected excitation in this crystal. The calculation is performed assuming: The coupling among the internal and the external vibrations is negligible and therefore a seven atom system may be employed (though, we recognise that the vibrational frequencies values depend en several factors; among others the nature of both the host and the temperature. Additionally, no attempt has been made to include corrections due to spectral line shapes and to the shapes of the potential energy hypersurfaces associated with the terminal electronic terminal states). We have included some sophistication as for both the electronic and the vibrational wavefunctions are concerned. Three different set of electronic wavefunctions are reported and the sensitivity of the estimated overall vibronic intensities on both electronic and vibrational factors is tested against the experimental data , with reference to the 10K absorption spectrum. At this stage, we have excluded , the effects of both concentration and pressure upon the observed vibronic intensities, though new experiments and model calculations are needed. In this article, we report calculations for the whole set of transitions associated with the (a) , (b) and (c) .Our model calculation is based upon a minimum set of parameters to be fitted from experiment, mainly because. our main target is to advance the knowledge on mechanistic factors and the most likely paths for both emission and absorption for these type systems

  15. Rate Reduction for State-labelled Markov Chains with Upper Time-bounded CSL Requirements

    Directory of Open Access Journals (Sweden)

    Bharath Siva Kumar Tati

    2016-07-01

    Full Text Available This paper presents algorithms for identifying and reducing a dedicated set of controllable transition rates of a state-labelled continuous-time Markov chain model. The purpose of the reduction is to make states to satisfy a given requirement, specified as a CSL upper time-bounded Until formula. We distinguish two different cases, depending on the type of probability bound. A natural partitioning of the state space allows us to develop possible solutions, leading to simple algorithms for both cases.

  16. Gate-tunable Andreev bound states in InSb nanowire Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ning; Li, Sen; Fan, Dingxun; Xu, Hongqi [Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China); Caroff, Philippe [Division of Solid State Physics, Lund University, P. O. Box 118, S-221 00 Lund (Sweden)

    2016-07-01

    Hybrid InSb nanowire-superconductor devices are promising candidates for investigating Majorana modes in solid-state devices and future technologies of topological quantum manipulation. Here, we report low-temperature transport measurements on an individual InSb nanowire quantum dot coupled to superconducting contacts that exhibit an interplay between the Kondo effects and superconductivity. We observed two types of subgap resonance states within the superconducting gap, which can be attributed to gate-tunable Andreev bound states in Coulomb valleys with different Kondo temperatures. The presence of the gate-tunable 0 and pi junction allow us to investigate the fundamental 0- pi transition. Detailed magnetic field and temperature evolution of level spectroscopy demonstrate different behavior of two types of the Andreev bound states. Our results exhibit that the InSb nanowires can provide a promising platform for exploring phase coherence transport and the effect of spin-orbit coupling in semiconductor nanowire-superconductor hybrid device.

  17. Method for constructing bound state wave functions of two interacting particles on nullplanes

    International Nuclear Information System (INIS)

    Leidigh, T.J.

    1980-01-01

    Nullplane position and momentum coordinates are defined in terms of the generators of the Poincare group. A transformation to center-of-mass and relative coordinates for a two-particle system is made. Then, another transformation from the original relative coordinates to a new set is made. In terms of the new relative coordinates the formal analogy with nonrelativistic quantum mechanics, already familiar in the nullplane formalism, is greatly enhanced. These coordinates do not appear to have been used previously. The most general form for a two-particle interaction is then partially determined and two methods for solving the remaining constraints are shown to be equivalent. The similarity to nonrelativistic quantum mechanics is used to solve a bound state problem with an interaction resembling a harmonic oscillator. The wave function is then used to model an unstable particle, which has zero spin in the limit in which the particle becomes stable. In the presence of the decay-producing interaction it is shown that the spin spectrum of the parent particle does not remain sharply zero. This is the first relativistic model to unequivocally display this result. The result is interpreted as indicating that real, relativistic, unstable particles may not possess a sharp spin spectrum

  18. Dipole-bound states as doorways in (dissociative) electron attachment

    International Nuclear Information System (INIS)

    Sommerfeld, Thomas

    2005-01-01

    This communication starts with a comparison of dissociative recombination and dissociative attachment placing emphasis on the role of resonances as reactive intermediates. The main focus is then the mechanism of electron attachment to polar molecules at very low energies (100 meV). The scheme considered consists of two steps: First, an electron is captured in a diffuse dipole-bound state depositing its energy in the vibrational degrees of freedom, in other words, a vibrational Feshbach resonance is formed. Then, owing to the coupling with a valence state, the electron is transferred into a compact valence orbital, and depending on the electron affinities of the valence state and possible dissociation products, as well as on the details of the intramolecular redistribution of vibrational energy, long-lived anions can be generated or dissociation reactions can be initiated. The key property in this context is the electronic coupling strength between the diffuse dipole-bound and the compact valence states. We describe how the coupling strength can be extracted from ab initio data, and present results for Nitromethane, Uracil and Cyanoacetylene

  19. Stochastic integration of the Bethe-Salpeter equation for two bound fermions

    International Nuclear Information System (INIS)

    Salomon, M.

    1988-09-01

    A non-perturbative method using a Monte Carlo algorithm is used to integrate the Bethe-Salpeter equation in momentum space. Solutions for two scalars and two fermions with an arbitrary coupling constant are calculated for bound states in the ladder approximation. The results are compared with other numerical methods. (Author) (13 refs., 2 figs.)

  20. A note on BPS vortex bound states

    Directory of Open Access Journals (Sweden)

    A. Alonso-Izquierdo

    2016-02-01

    Full Text Available In this note we investigate bound states, where scalar and vector bosons are trapped by BPS vortices in the Abelian Higgs model with a critical ratio of the couplings. A class of internal modes of fluctuation around cylindrically symmetric BPS vortices is characterized mathematically, analyzing the spectrum of the second-order fluctuation operator when the Higgs and vector boson masses are equal. A few of these bound states with low values of quantized magnetic flux are described fully, and their main properties are discussed.

  1. A note on BPS vortex bound states

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Izquierdo, A., E-mail: alonsoiz@usal.es [Departamento de Matematica Aplicada, Universidad de Salamanca (Spain); Garcia Fuertes, W., E-mail: wifredo@uniovi.es [Departamento de Fisica, Universidad de Oviedo (Spain); Mateos Guilarte, J., E-mail: guilarte@usal.es [Departamento de Fisica Fundamental, Universidad de Salamanca (Spain)

    2016-02-10

    In this note we investigate bound states, where scalar and vector bosons are trapped by BPS vortices in the Abelian Higgs model with a critical ratio of the couplings. A class of internal modes of fluctuation around cylindrically symmetric BPS vortices is characterized mathematically, analyzing the spectrum of the second-order fluctuation operator when the Higgs and vector boson masses are equal. A few of these bound states with low values of quantized magnetic flux are described fully, and their main properties are discussed.

  2. Local correlations of mixed two-qubit states

    International Nuclear Information System (INIS)

    Zhang Fulin; Chen Jingling; Ren Changliang; Shi Mingjun

    2010-01-01

    The quantum probability distribution arising from single-copy von Neumann measurements on an arbitrary two-qubit state is decomposed into the local and nonlocal parts, in the approach of Elitzur, Popescu and Rohrlich [A. Elitzur, S. Popescu, D. Rohrlich, Phys. Lett. A 162 (1992) 25]. A lower bound of the local weight is proved being connected with the concurrence of the state p L max =1-C(ρ). The local probability distributions for two families of mixed states are constructed independently, which accord with the lower bound.

  3. Pair condensation and bound states in fermionic systems

    International Nuclear Information System (INIS)

    Sedrakian, Armen; Clark, John W.

    2006-01-01

    We study the finite temperature-density phase diagram of an attractive fermionic system that supports two-body (dimer) and three-body (trimer) bound states in free space. Using interactions characteristic for nuclear systems, we obtain the critical temperature T c2 for the superfluid phase transition and the limiting temperature T c3 for the extinction of trimers. The phase diagram features a Cooper-pair condensate in the high-density, low-temperature domain which, with decreasing density, crosses over to a Bose condensate of strongly bound dimers. The high-temperature, low-density domain is populated by trimers whose binding energy decreases toward the density-temperature domain occupied by the superfluid and vanishes at a critical temperature T c3 >T c2

  4. Complex Kohn variational principle for two-nucleon bound-state and scattering with the tensor potential

    International Nuclear Information System (INIS)

    Araujo Junior, C.F. de; Adhikari, S.K.; Tomio, L.

    1993-10-01

    Complex Kohn variational principle is applied to the numerical solution of the fully off-shell Lippmann-Schwinger equation for nucleon-nucleon scattering for various partial waves including the coupled 3 S 1 - 3 D 1 channel. Analytic expressions are obtained for all the integrals in the method for a suitable choice of expansion functions. Calculations with the partial waves 1 S 0 , 1 P 1 , 1 D 2 , and 3 S 1 - 3 D 1 of the Reid soft core potential show that the method converges faster than other solution schemes not only for the phase shift but also for the off-shell t matrix elements. It is also shown that its is trivial to modify this variational principle in order to make it suitable for bound-stage calculations. The bound-state approach is illustrated for the 3 S 1 - 3 D 1 channel of the Reid soft-core potential for calculating the deuteron binding, wave function and the D state asymptotic parameters. (author)

  5. Remote information concentration by a Greenberger-Horne-Zeilinger state and by a bound entangled state

    International Nuclear Information System (INIS)

    Yu, Yafei; Zhan, Mingsheng; Feng, Jian

    2003-01-01

    We compare remote quantum information concentration by a Greenberger-Horne-Zeilinger (GHZ) state with an unlockable bound entangled state. We find that in view of communication security the bound entangled state works better than the GHZ state

  6. Quantum Bocce: Magnon–magnon collisions between propagating and bound states in 1D spin chains

    International Nuclear Information System (INIS)

    Longo, Paolo; Greentree, Andrew D.; Busch, Kurt; Cole, Jared H.

    2013-01-01

    The dynamics of two magnons in a Heisenberg spin chain under the influence of a non-uniform magnetic field is investigated by means of a numerical wave-function-based approach using a Holstein–Primakoff transformation. The magnetic field is localized in space such that it supports exactly one single-particle bound state. We study the interaction of this bound mode with an incoming spin wave and the interplay between transmittance, energy and momentum matching. We find analytic criteria for maximizing the interconversion between propagating single-magnon modes and true propagating two-magnon states. The manipulation of bound and propagating magnons is an essential step towards quantum magnonics.

  7. Hadrons in two-dimensional quantum chromodynamics: Construction and study of bound states by means of perturbative and non-perturbative methods

    International Nuclear Information System (INIS)

    Zeppenfeld, D.

    1984-01-01

    The present thesis deals with the construction and the analysis of mesonic bound states in SU(N) gauge theories in a two-dimensional space-time. The based field theory can thereby be considered as a simplified version of the QCD, the theory of the strong interactions. After an extensive discussion of the quantization in the temporal gauge and after the Poincare invariance of the theory has been shown mesonic bound states and the meson spectrum for different ranges of the free parameters of the theory (quark mass, coupling constant, and index N of the gauge group) are treated. The spectrum is given by a boundary value problem which in the perturbative limit is solved analytically. For massless quarks gauge-invariant annihilation operators are constructed which permit an exact solution of the energy eigenvalue equation. The energy eigenstates so found described massive interacting mesons which are surrounded by a cloud of massless free particles. (orig.) [de

  8. Models for light QCD bound states

    International Nuclear Information System (INIS)

    LaCourse, D.P.

    1992-01-01

    After a brief overview of Regge, tower, and heavy-quark experimental data, this thesis examines two massless wave equations relevant to quark bound states. We establish general conditions on the Lorentz scalar and Lorentz vector potentials which yield arbitrary leading Regge trajectories for the case of circular classical motion. A semi-classical approximation which includes radial motion reproduces remarkably well the exact solutions. Conditions for tower structure are examined, and found to be incompatible with conditions which give a Nambu stringlike Regge slope. The author then proposes a generalization of the usual potential model of quark bound states in which the confining flux tube is a dynamical object carrying both angular momentum and energy. The Q bar Q-string system with spinless quarks is quantized using an implicit operator technique and the resulting relativistic wave equation is solved. For heavy quarks the usual Schroedinger valence-quark model is recovered. The Regge slope with light quarks agree with the classical rotating-string result and is significantly larger and the effects of short-range forces are also considered. A relativistic generalization of the quantized flux tube model predicts the glueball ground state mass to be √3/α' ≅ 1.9 GeV where α' is the normal Regge slope. The groundstate as well as excited levels like considerably above the expectations of previous models and also above various proposed experimental candidates. The glueball Regge slope is only about three-eighths that for valence quark hadrons. A semi-classical calculation of the Regge slope is in good agreement with a numerically exact value

  9. Topologically protected bound states in one-dimensional Floquet acoustic waveguide systems

    Science.gov (United States)

    Peng, Yu-Gui; Geng, Zhi-Guo; Zhu, Xue-Feng

    2018-03-01

    Topological manipulation of sound has recently been a hot spot in acoustics due to the fascinating property of defect immune transport. To the best of our knowledge, the studies on one-dimensional (1D) topological acoustic systems hitherto mainly focus on the case of the Su-Schrieffer-Heeger model. Here, we show that topologically protected bound states may also exist in 1D periodically modulated acoustic waveguide systems, viz., 1D Floquet topological insulators. The results show that tuning the coupling strength in a waveguide lattice could trigger topological phase transition, which gives rise to topologically protected interface states as we put together two waveguide lattices featured with different topological phases or winding numbers. However, for the combined lattice, input at the waveguides other than the interfacial ones will excite bulk states. We have further verified the robustness of interface bound states against the variation of coupling strengths between the two distinct waveguide lattices. This work extends the scope of topological acoustics and may promote potential applications for acoustic devices with topological functionalities.

  10. Bound states in weakly disordered spin ladders

    Energy Technology Data Exchange (ETDEWEB)

    Arlego, M. [Departamento de Fisica, Universidad Nacional de La Plata, CC 67 (1900) La Plata (Argentina)]. E-mail: arlego@venus.fisica.unlp.edu.ar; Brenig, W. [Institut fuer Theoretische Physik, Technische Universitaet Braunschweig (Germany); Cabra, D.C. [Laboratoire de Physique Theorique, Universite Louis Pasteur Strasbourg (France); Heidrich-Meisner, F. [Institut fuer Theoretische Physik, Technische Universitaet Braunschweig (Germany); Honecker, A. [Institut fuer Theoretische Physik, Technische Universitaet Braunschweig (Germany); Rossini, G. [Departamento de Fisica, Universidad Nacional de La Plata, CC 67 (1900) La Plata (Argentina)

    2005-04-30

    We study the appearance of bound states in the spin gap of spin-12 ladders induced by weak bond disorder. Starting from the strong-coupling limit, i.e., the limit of weakly coupled dimers, we perform a projection on the single-triplet subspace and derive the position of bound states for the single impurity problem of one modified coupling as well as for small impurity clusters. The case of a finite concentration of impurities is treated with the coherent-potential approximation (CPA) in the strong-coupling limit and compared with numerical results. Further, we analyze the details in the structure of the density of states and relate their origin to the influence of impurity clusters.

  11. Nonthreshold D-brane bound states and black holes with nonzero entropy

    International Nuclear Information System (INIS)

    Costa, M.S.; Cvetic, M.

    1997-01-01

    We start with Bogomol close-quote nyi-Prasad-Sommerfield- (BPS) saturated configurations of two (orthogonally) intersecting M-branes and use the electromagnetic duality or dimensional reduction along a boost, in order to obtain new p-brane bound states. In the first case the resulting configurations are interpreted as BPS-saturated nonthreshold bound states of intersecting p-branes, and in the second case as p-branes intersecting at angles and their duals. As a by-product we deduce the enhancement of supersymmetry as the angle approaches zero. We also comment on the D-brane theory describing these new bound states, and a connection between the angle and the world-volume gauge fields of the D-brane system. We use these configurations to find new embeddings of the four- and five-dimensional black holes with nonzero entropy, whose entropy now also depends on the angle and world-volume gauge fields. The corresponding D-brane configuration sheds light on the microscopic entropy of such black holes. copyright 1997 The American Physical Society

  12. Bounds on the entanglement attainable from unitary transformed thermal states in liquid-state nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Yu, Terri M.; Brown, Kenneth R.; Chuang, Isaac L.

    2005-01-01

    The role of mixed-state entanglement in liquid-state nuclear magnetic resonance (NMR) quantum computation is not yet well understood. In particular, despite the success of quantum-information processing with NMR, recent work has shown that quantum states used in most of those experiments were not entangled. This is because these states, derived by unitary transforms from the thermal equilibrium state, were too close to the maximally mixed state. We are thus motivated to determine whether a given NMR state is entanglable - that is, does there exist a unitary transform that entangles the state? The boundary between entanglable and nonentanglable thermal states is a function of the spin system size N and its temperature T. We provide bounds on the location of this boundary using analytical and numerical methods; our tightest bound scales as N∼T, giving a lower bound requiring at least N∼22 000 proton spins to realize an entanglable thermal state at typical laboratory NMR magnetic fields. These bounds are tighter than known bounds on the entanglability of effective pure states

  13. Covariant equations for the three-body bound state

    International Nuclear Information System (INIS)

    Stadler, A.; Gross, F.; Frank, M.

    1997-01-01

    The covariant spectator (or Gross) equations for the bound state of three identical spin 1/2 particles, in which two of the three interacting particles are always on shell, are developed and reduced to a form suitable for numerical solution. The equations are first written in operator form and compared to the Bethe-Salpeter equation, then expanded into plane wave momentum states, and finally expanded into partial waves using the three-body helicity formalism first introduced by Wick. In order to solve the equations, the two-body scattering amplitudes must be boosted from the overall three-body rest frame to their individual two-body rest frames, and all effects which arise from these boosts, including Wigner rotations and p-spin decomposition of the shell-particle, are treated exactly. In their final form, the equations reduce to a coupled set of Faddeev-like double integral equations with additional channels arising from the negative p-spin states of the off-shell particle

  14. Relativistic actions for bound-states and applications in the meson spectroscopy

    International Nuclear Information System (INIS)

    Silva Carvalho, Hendly da.

    1991-08-01

    We study relativistic equations for bound states of two-body systems using Dirac's constraint formalism and supersymmetry. The two-body system can be of spinless particles, one of them spinning and the other one spinless, or both of them spinning. The interaction is described by scalar, timelike four-vector and spacelike four-vector potentials under Lorentz transformations. As an application we use the relativistic wave equation for two scalar particles and calculate the mass spectra of the mesons treating them as spinless quark-antiquark bound states. The interaction potential in this case is a convenient adaptation of the potential employed in non-relativistic calculations. Finally, we compare our results with more recent experimental data and with theoretical results obtained with the same potential used by us but with a non-relativistic wave equation. We also compare our results with results obtained with the relativistic wave equation but with a different interaction potential. (author). 38 refs, 9 figs, 8 tabs

  15. Maximum and minimum entropy states yielding local continuity bounds

    Science.gov (United States)

    Hanson, Eric P.; Datta, Nilanjana

    2018-04-01

    Given an arbitrary quantum state (σ), we obtain an explicit construction of a state ρɛ * ( σ ) [respectively, ρ * , ɛ ( σ ) ] which has the maximum (respectively, minimum) entropy among all states which lie in a specified neighborhood (ɛ-ball) of σ. Computing the entropy of these states leads to a local strengthening of the continuity bound of the von Neumann entropy, i.e., the Audenaert-Fannes inequality. Our bound is local in the sense that it depends on the spectrum of σ. The states ρɛ * ( σ ) and ρ * , ɛ (σ) depend only on the geometry of the ɛ-ball and are in fact optimizers for a larger class of entropies. These include the Rényi entropy and the minimum- and maximum-entropies, providing explicit formulas for certain smoothed quantities. This allows us to obtain local continuity bounds for these quantities as well. In obtaining this bound, we first derive a more general result which may be of independent interest, namely, a necessary and sufficient condition under which a state maximizes a concave and Gâteaux-differentiable function in an ɛ-ball around a given state σ. Examples of such a function include the von Neumann entropy and the conditional entropy of bipartite states. Our proofs employ tools from the theory of convex optimization under non-differentiable constraints, in particular Fermat's rule, and majorization theory.

  16. Bound states of 'dressed' particles

    International Nuclear Information System (INIS)

    Shirokov, M.I.

    1994-01-01

    A new approach to the problem of bound states in relativistic quantum field theories is suggested. It uses the creation - destruction operators of 'dresses' particles which have been granted by Faddeev's (1963) 'dressing' formalism. Peculiarities of the proposed approach as compared to the known ones are discussed. 8 refs. (author)

  17. Vibrational and vibronic coherences in the dynamics of the FMO complex

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaomeng; Kühn, Oliver, E-mail: oliver.kuehn@uni-rostock.de

    2016-12-20

    The coupled exciton–vibrational dynamics of a seven site Frenkel exciton model of the Fenna–Matthews–Olson (FMO) complex is investigated using a Quantum Master Equation approach. Thereby, one vibrational mode per monomer is treated explicitly as being part of the relevant system. Emphasis is put on the comparison of this model with that of a purely excitonic relevant system. Further, the effects of two different approximations to the exciton–vibrational basis are investigated, namely the one- and two-particle description. Analysis of the vibronic and vibrational density matrix in the site basis points to the importance of on- and inter-site coherences for the exciton transfer. Here, one- and two-particle approximations give rise to qualitatively different results.

  18. Majorana bound states in a disordered quantum dot chain

    International Nuclear Information System (INIS)

    Zhang, P; Nori, Franco

    2016-01-01

    We study Majorana bound states in a disordered chain of semiconductor quantum dots proximity-coupled to an s -wave superconductor. By calculating its topological quantum number, based on the scattering-matrix method and a tight-binding model, we can identify the topological property of such an inhomogeneous one-dimensional system. We study the robustness of Majorana bound states against disorder in both the spin-independent terms (including the chemical potential and the regular spin-conserving hopping) and the spin-dependent term, i.e., the spin-flip hopping due to the Rashba spin–orbit coupling. We find that the Majorana bound states are not completely immune to the spin-independent disorder, especially when the latter is strong. Meanwhile, the Majorana bound states are relatively robust against spin-dependent disorder, as long as the spin-flip hopping is of uniform sign (i.e., the varying spin-flip hopping term does not change its sign along the chain). Nevertheless, when the disorder induces sign-flip in spin-flip hopping, the topological-nontopological phase transition takes place in the low-chemical-potential region. (paper)

  19. In-gap bound states induced by interstitial Fe impurities in iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Degang, E-mail: degangzhang@yahoo.com

    2015-12-15

    Highlights: • We provide an explanation for the interesting STM observation of the robust zero energy bound state on the interstitial Fe impurities in iron-based superconductors. - Abstract: Based on a two-orbit four-band tight binding model, we investigate the low-lying electronic states around the interstitial excess Fe ions in the iron-based superconductors by using T-matrix approach. It is shown that the local density of states at the interstitial Fe impurity (IFI) possesses a strong resonance inside the gap, which seems to be insensitive to the doping and the pairing symmetry in the Fe–Fe plane, while a single or two resonances appear at the nearest neighboring (NN) Fe sites. The location and height of the resonance peaks only depend on the hopping t and the pairing parameter Δ{sub I} between the IFI and the NN Fe sites. These in-gap resonances are originated in the Andreev’s bound states due to the quasiparticle tunneling through the IFI, leading to the change of the magnitude of the superconducting order parameter. When both t and Δ{sub I} are small, this robust zero-energy bound state near the IFI is consistent with recent scanning tunneling microscopy observations.

  20. Symanzik approach in modeling of bound states of Dirac particle in singular background

    Directory of Open Access Journals (Sweden)

    Pismak Yu. M.

    2017-01-01

    Full Text Available In the model of interaction of spinor field with homogeneous isotropic material plane constructed in framework of Symanzik approach, the bound states are studied. For localized near plane Dirac particle the expression for current, charge and density are presented. For bound state with massless dispersion law the current, charge and density are calculated for simplified model with 2 parameter exactly.The model can find application to a wide class of phenomena arising by the interaction of fields of quantum electrodynamics with two-dimensional materials.

  1. Exchange interaction in scattering on the bound state

    International Nuclear Information System (INIS)

    Arkhipov, A.A.; Savrin, V.I.

    1975-01-01

    In the framework of the one-time formulation of three-body problem in quantum field theory, the problem of scattering on the bound state is considered for the case when one of the incident particles is identical to one of the particles of the target. It is shown that due to the identical nature of these particles the exchange interaction takes place which can be connected with the mechanism of scattering on the bound state with the rearrangement

  2. Effects of QCD bound states on dark matter relic abundance

    Energy Technology Data Exchange (ETDEWEB)

    Liew, Seng Pei [Department of Physics, The University of Tokyo,Bunkyo-ku, Tokyo 113-0033 (Japan); Luo, Feng [Kavli IPMU (WPI), UTIAS, The University of Tokyo,Kashiwa, Chiba 277-8583 (Japan)

    2017-02-17

    We study scenarios where there exists an exotic massive particle charged under QCD in the early Universe. We calculate the formation and dissociation rates of bound states formed by pairs of these particles, and apply the results in dark matter (DM) coannihilation scenarios, including also the Sommerfeld effect. We find that on top of the Sommerfeld enhancement, bound-state effects can further significantly increase the largest possible DM masses which can give the observed DM relic abundance, by ∼30–100% with respect to values obtained by considering the Sommerfeld effect only, for the color triplet or octet exotic particles we consider. In particular, it indicates that the Bino DM mass in the right-handed stop-Bino coannihilation scenario in the Minimal Supersymmetric extension of the Standard Model (MSSM) can reach ∼2.5 TeV, even though the potential between the stop and antistop prior to forming a bound state is repulsive. We also apply the bound-state effects in the calculations of relic abundance of long-lived or metastable massive colored particles, and discuss the implications on the BBN constraints and the abundance of a super-weakly interacting DM. The corrections for the bound-state effect when the exotic massive colored particles also carry electric charges, and the collider bounds are also discussed.

  3. Bound states in curved quantum waveguides

    International Nuclear Information System (INIS)

    Exner, P.; Seba, P.

    1987-01-01

    We study free quantum particle living on a curved planar strip Ω of a fixed width d with Dirichlet boundary conditions. It can serve as a model for electrons in thin films on a cylindrical-type substrate, or in a curved quantum wire. Assuming that the boundary of Ω is infinitely smooth and its curvature decays fast enough at infinity, we prove that a bound state with energy below the first transversal mode exists for all sufficiently small d. A lower bound on the critical width is obtained using the Birman-Schwinger technique. (orig.)

  4. Comparing two reliability upper bounds for multistate systems

    International Nuclear Information System (INIS)

    Meng, Fan C.

    2005-01-01

    The path-cut reliability bound due to Esary and Proschan [J. Am. Stat. Assoc. 65 (1970) 329] and the minimax reliability bound due to Barlow and Proschan [Statistical Theory of Reliability and Life Testing: Probability Models, 1981] for binary systems have been generalized to multistate systems by Block and Savits [J. Appl. Probab. 19 (1982) 391]. Some comparison results concerning the two multistate lower bounds for various types of multistate systems are given by Meng [Probab. Eng. Inform. Sci. 16 (2002) 485]. In this note we compare the two multistate upper bounds and present results which generalize some previous ones obtained by Maymin [J. Stat. Plan. Inference 16 (1987) 337] for binary systems. Examples are given to illustrate our results

  5. Majorana bound states in a coupled quantum-dot hybrid-nanowire system

    DEFF Research Database (Denmark)

    Deng, M. T.; Vaitiekenas, S.; Hansen, E. B.

    2016-01-01

    Hybrid nanowires combining semiconductor and superconductor materials appear well suited for the creation, detection, and control of Majorana bound states (MBSs). We demonstrate the emergence of MBSs from coalescing Andreev bound states (ABSs) in a hybrid InAs nanowire with epitaxial Al, using...... with the end-dot bound state, which is in agreement with a numerical model. The ABS/MBS spectra provide parameters that are useful for understanding topological superconductivity in this system....

  6. Upper bounds on the relative energy difference of pure and mixed Gaussian states with a fixed fidelity

    International Nuclear Information System (INIS)

    Dodonov, V V

    2012-01-01

    Exact and approximate formulas for the upper bound of the relative energy difference of two Gaussian states with a fixed fidelity between them are derived. The reciprocal formulas for the upper bound of the fidelity for the fixed value of the relative energy difference are also obtained. The bounds appear higher for pure states than for mixed ones, and their maximal values correspond to squeezed vacuum states. In particular, to guarantee the relative energy difference less than 10%, for quite arbitrary Gaussian states, the fidelity between them must exceed the level 0.998866. (fast track communication)

  7. Relativistic bound states

    International Nuclear Information System (INIS)

    Ritchie, Burke

    2006-01-01

    The Hamiltonian for Dirac's second-order equation depends nonlinearly on the potential V and the energy E. For this reason the magnetic contribution to the Hamiltonian for s-waves, which has a short range, is attractive for a repulsive Coulomb potential (V>0) and repulsive for an attractive Coulomb potential (V 2 . Usually solutions are found in the regime E=mc 2 +ε , where except for high Z, ε 2 . Here it is shown that for V>0 the attractive magnetic term and the linear repulsive term combine to support a bound state near E=0.5mc 2 corresponding to a binding energy E b =-ε =0.5mc 2

  8. Ab initio investigation on the valence and dipole-bound states of CNa - and SiNa -

    Science.gov (United States)

    Kalcher, Josef; Sax, Alexander F.

    2000-08-01

    CNa - and SiNa - have been studied by the CAS-ACPF method. The 3Σ- ground states have binding energies of 5420 and 7517 cm -1, respectively. The 5Σ- excited states are 494 and 1551 cm -1 above the respective ground states. The 1Δ , 3Π , and 1Π valence-excited states for SiNa - should be at least metastable. CNa - and SiNa - possess dipole-bound 5Σ- and 3Σ- states. Binding energies of these states in CNa - are 217 and 236 cm -1, respectively. SiNa - has two stable 5Σ- dipole-bound states, whose binding energies are 246 and 118 cm -1, respectively.

  9. Deeply quasi-bound state in single- and double-K nuclear clusters

    Energy Technology Data Exchange (ETDEWEB)

    Marri, S.; Kalantari, S.Z. [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Esmaili, J. [Shahrekord University, Department of Physics, Faculty of Basic Sciences, Shahrekord (Iran, Islamic Republic of)

    2016-12-15

    New calculations of the quasi-bound state positions in K{sup -}K{sup -}pp kaonic nuclear cluster are performed using non-relativistic four-body Faddeev-type equations in AGS form. The corresponding separable approximation for the integral kernels in the three- and four-body kaonic clusters is obtained by using the Hilbert-Schmidt expansion procedure. Different phenomenological models of anti KN-πΣ potentials with one- and two-pole structure of Λ(1405) resonance and separable potential models for anti K- anti K and nucleon-nucleon interactions, are used. The dependence of the resulting four-body binding energy on models of anti KN-πΣ interaction is investigated. We obtained the binding energy of the K{sup -}K{sup -}pp quasi-bound state ∝ 80-94 MeV with the phenomenological anti KN potentials. The width is about ∝ 5-8 MeV for the two-pole models of the interaction, while the one-pole potentials give ∝ 24-31 MeV width. (orig.)

  10. Quasi-bound states, resonance tunnelling, and tunnelling times ...

    Indian Academy of Sciences (India)

    analysis of bound states below the threshold energy E = 0 and continuum above the threshold .... p are time reversal states of each other. Similarly, the ... are occurring at above-barrier energies and we do not treat them as QB states. They can ...

  11. Bound states embedded into continuous spectrum as 'gathered' (compactified) scattering waves

    International Nuclear Information System (INIS)

    Zakhar'ev, B.N.; Chabanov, V.M.

    1995-01-01

    It is shown that states of continuous spectrum (the half-line case) can be considered as bound states normalized by unity but distributed on the infinite interval with vanishing density. Then the algorithms of shifting the range of primary localization of a chosen bound state in potential well of finite width appear to be applicable to scattering functions. The potential perturbations of the same type (but now on half-axis) concentrate the scattering wave in near vicinity of the origin, which leads to creation of bound state embedded into continuous spectrum. (author). 8 refs., 7 figs

  12. Vibronic intensities for Er3+ in Cs2 NaErCl6

    International Nuclear Information System (INIS)

    Acevedo, R.; Navarro, G.; Meruane, T.

    2001-01-01

    In this current study, we have undertaken vibronic intensity calculations for the absorptions (( 4 I 15/2 ) Γ k ) → (( 4 I 13/2 ) Γ l ) of the Er 3+ in the Cs 2 NaErCl 6 elpasolite type system. This system is extremely complicated to handle from both a theoretical and an experimental viewpoints. This theoretical work shows that over an energy range of about 400 cm -1 , a substantial amount of transitions are likely to take place (about 100 transitions; twenty five of them are magnetic dipole allowed and seventy five are vibronically allowed). It is then a formidable task to identify and assign all of these transitions in a non-ambiguous way. Also the experimental evidence available for these absorptions is related to a total of about twenty lines in the luminescence spectrum of this system. The spectrum itself is very challenging and the superposition of spectral features is most likely to occur. A careful analysis of the calculated vibronic intensities and overall oscillator strengths for the various transitions indicates that the current model used is both flexible and appropriate to deal with this kind of systems. In a forthcoming paper, we will examine the rather unusual high intensity associated with the (( 4 I 15/2 ) Γ k ) → (( 4 S 3/2 ) Γ l ) excitations. (Author)

  13. Spectrum of gluino bound states

    International Nuclear Information System (INIS)

    Chanowitz, M.; Sharpe, S.; California Univ., Berkeley

    1983-01-01

    Using the bag model to first order in αsub(s) we find that if light gluinos exist they will appear as constituents of electrically charged bound states which are stable against strong interaction decay. We review the present experimental constraints and conclude that light, long-lived charged hadrons containing gluinos might exist with lifetimes between 2x10 - 8 and 10 - 14 s. (orig.)

  14. Color ferromagnetic vacuum states in QCD and two-loop energy densities

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Ninomiya, M.

    1979-12-01

    Two-loop energy densities of color ferromagnetic states are obtained using the β-function calculated to two-loop approximation and the exact formula for the energy density of such a state. This is used to derive bounds on the MIT bag constant correcting the previous bound in one-loop approximation. For a constant field color ferromagnetic ansatz state the bound on the QCD scale parameter Λsub(p) 3 -vacuum ansatz with two-loop and instanton correction gives Λsub(p)<= 0.16 GeV. Tt is stressed that the 'perturbative vacuum', which is identified with the inside bag state is a somewhat ill defined concept due to a path-dependence in the integral giving the energy density. (Auth.)

  15. Interaction of solitons and the formation of bound states in the generalized Lugiato-Lefever equation

    Science.gov (United States)

    Parra-Rivas, Pedro; Gomila, Damia; Colet, Pere; Gelens, Lendert

    2017-07-01

    Bound states, also called soliton molecules, can form as a result of the interaction between individual solitons. This interaction is mediated through the tails of each soliton that overlap with one another. When such soliton tails have spatial oscillations, locking or pinning between two solitons can occur at fixed distances related with the wavelength of these oscillations, thus forming a bound state. In this work, we study the formation and stability of various types of bound states in the Lugiato-Lefever equation by computing their interaction potential and by analyzing the properties of the oscillatory tails. Moreover, we study the effect of higher order dispersion and noise in the pump intensity on the dynamics of bound states. In doing so, we reveal that perturbations to the Lugiato-Lefever equation that maintain reversibility, such as fourth order dispersion, lead to bound states that tend to separate from one another in time when noise is added. This separation force is determined by the shape of the envelope of the interaction potential, as well as an additional Brownian ratchet effect. In systems with broken reversibility, such as third order dispersion, this ratchet effect continues to push solitons within a bound state apart. However, the force generated by the envelope of the potential is now such that it pushes the solitons towards each other, leading to a null net drift of the solitons. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  16. Optimal Two Parameter Bounds for the Seiffert Mean

    Directory of Open Access Journals (Sweden)

    Hui Sun

    2013-01-01

    Full Text Available We obtain sharp bounds for the Seiffert mean in terms of a two parameter family of means. Our results generalize and extend the recent bounds presented in the Journal of Inequalities and Applications (2012 and Abstract and Applied Analysis (2012.

  17. Bounds on the capacity of constrained two-dimensional codes

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Justesen, Jørn

    2000-01-01

    Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run-l...

  18. Improved Rosen's conditions on bound states of Schroedinger operators

    International Nuclear Information System (INIS)

    Exner, P.

    1984-01-01

    We derive a necessary condition on a Schroedinger operator H=-Δ+V on Lsup(2)(Rsup(d)), d>=3 to have a bound state below a given energy epsilon, and a lower bound to the ground-state energy of H. These conditions are expressed in terms of the potential V alone, and generalize the recent results of Rosen to the dimensions d>3 and to the potentials that are not necessarily rapidly decreasing. Some examples are given

  19. A narrow quasi-bound state of the DNN system

    International Nuclear Information System (INIS)

    Doté, A.; Bayar, M.; Xiao, C.W.; Hyodo, T.; Oka, M.; Oset, E.

    2013-01-01

    We have investigated a charmed system of DNN (composed of two nucleons and a D meson) by a complementary study with a variational calculation and a Faddeev calculation with fixed-center approximation (Faddeev-FCA). In the present study, we employ a DN potential based on a vector–meson exchange picture in which a resonant Λ c (2595) is dynamically generated as a DN quasi-bound state, similarly to the Λ(1405) as a K ¯ N one in the strange sector. As a result of the study of variational calculation with an effective DN potential and three kinds of NN potentials, the DNN(J π =0 − ,I=1/2) is found to be a narrow quasi-bound state below Λ c (2595)N threshold: total binding energy ∼225 MeV and mesonic decay width ∼25 MeV. On the other hand, the J π =1 − state is considered to be a scattering state of Λ c (2595) and a nucleon. These results are essentially supported by the Faddeev-FCA calculation. By the analysis of the variational wave function, we have found a unique structure in the DNN(J π =0 − ,I=1/2) such that the D meson stays around the center of the total system due to the heaviness of the D meson

  20. Systematic assignment of Feshbach resonances via an asymptotic bound state model

    NARCIS (Netherlands)

    Goosen, M.; Kokkelmans, SJ.J.M.F.

    2008-01-01

    We present an Asymptotic Bound state Model (ABM), which is useful to predict Feshbach resonances. The model utilizes asymptotic properties of the interaction potentials to represent coupled molecular wavefunctions. The bound states of this system give rise to Feshbach resonances, localized at the

  1. Muonic-hydrogen molecular bound states, quasibound states, and resonances in the Born-Oppenheimer approximation

    International Nuclear Information System (INIS)

    Jackson, J.D.

    1994-01-01

    The Born-Oppenheimer approximation is used as an exploratory tool to study bound states, quasibound states, and scattering resonances in muon (μ)--hydrogen (x)--hydrogen (y) molecular ions. Our purpose is to comment on the existence and nature of the narrow states reported in three-body calculations, for L=0 and 1, at approximately 55 eV above threshold and the family of states in the same partial waves reported about 1.9 keV above threshold. We first discuss the motivation for study of excited states beyond the well-known and well-studied bound states. Then we reproduce the energies and other properties of these well-known states to show that, despite the relatively large muon mass, the Born-Oppenheimer approximation gives a good, semiquantitative description containing all the essential physics. Born-Oppenheimer calculations of the s- and p-wave scattering of d-(dμ), d-(tμ), and t-(tμ) are compared with the accurate three-body results, again with general success. The places of disagreement are understood in terms of the differences in location of slightly bound (or unbound) states in the Born-Oppenheimer approximation compared to the accurate three-body calculations

  2. Lower bounds for ballistic current and noise in non-equilibrium quantum steady states

    Directory of Open Access Journals (Sweden)

    Benjamin Doyon

    2015-03-01

    Full Text Available Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.

  3. Quarks as quasiparticles of bound states

    International Nuclear Information System (INIS)

    Tyapkin, A.A.

    1977-01-01

    Interpretation of quarks as strongly bound subsystems of the baryon structure, being in various states with integer the quantum numbers Q and B, is considered. Three original quark states, distinguished by Q, B, and J, are unambiguously determined from the condition that the quarks have the corresponding fractional quantum numbers while the integer quantum numbers for the whole system are known. With this in view the new quantum number ''colour'' is interpreted as a quantity, specifying the appearance of the subsystems in various eigen-states. Basing on the generalized Sakata model, the self-consistency of change of the colour states in the three-quark system is explained

  4. Electronic and vibronic properties of a discotic liquid-crystal and its charge transfer complex

    Energy Technology Data Exchange (ETDEWEB)

    Haverkate, Lucas A.; Mulder, Fokko M. [Reactor Institute Delft, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands); Zbiri, Mohamed, E-mail: zbiri@ill.fr; Johnson, Mark R. [Institut Laue Langevin, 38042 Grenoble Cedex 9 (France); Carter, Elizabeth [Vibrational Spectroscopy Facility, School of Chemistry, The University of Sydney, NSW 2008 (Australia); Kotlewski, Arek; Picken, S. [ChemE-NSM, Faculty of Chemistry, Delft University of Technology, 2628BL/136 Delft (Netherlands); Kearley, Gordon J. [Bragg Institute, Australian Nuclear Science and Technology Organisation, Menai, NSW 2234 (Australia)

    2014-01-07

    Discotic liquid crystalline (DLC) charge transfer (CT) complexes combine visible light absorption and rapid charge transfer characteristics, being favorable properties for photovoltaic (PV) applications. We present a detailed study of the electronic and vibrational properties of the prototypic 1:1 mixture of discotic 2,3,6,7,10,11-hexakishexyloxytriphenylene (HAT6) and 2,4,7-trinitro-9-fluorenone (TNF). It is shown that intermolecular charge transfer occurs in the ground state of the complex: a charge delocalization of about 10{sup −2} electron from the HAT6 core to TNF is deduced from both Raman and our previous NMR measurements [L. A. Haverkate, M. Zbiri, M. R. Johnson, B. Deme, H. J. M. de Groot, F. Lefeber, A. Kotlewski, S. J. Picken, F. M. Mulder, and G. J. Kearley, J. Phys. Chem. B 116, 13098 (2012)], implying the presence of permanent dipoles at the donor-acceptor interface. A combined analysis of density functional theory calculations, resonant Raman and UV-VIS absorption measurements indicate that fast relaxation occurs in the UV region due to intramolecular vibronic coupling of HAT6 quinoidal modes with lower lying electronic states. Relatively slower relaxation in the visible region the excited CT-band of the complex is also indicated, which likely involves motions of the TNF nitro groups. The fast quinoidal relaxation process in the hot UV band of HAT6 relates to pseudo-Jahn-Teller interactions in a single benzene unit, suggesting that the underlying vibronic coupling mechanism can be generic for polyaromatic hydrocarbons. Both the presence of ground state CT dipoles and relatively slow relaxation processes in the excited CT band can be relevant concerning the design of DLC based organic PV systems.

  5. Absorption enhancement in type-II coupled quantum rings due to existence of quasi-bound states

    Science.gov (United States)

    Hsieh, Chi-Ti; Lin, Shih-Yen; Chang, Shu-Wei

    2018-02-01

    The absorption of type-II nanostructures is often weaker than type-I counterpart due to spatially separated electrons and holes. We model the bound-to-continuum absorption of type-II quantum rings (QRs) using a multiband source-radiation approach using the retarded Green function in the cylindrical coordinate system. The selection rules due to the circular symmetry for allowed transitions of absorption are utilized. The bound-tocontinuum absorptions of type-II GaSb coupled and uncoupled QRs embedded in GaAs matrix are compared here. The GaSb QRs act as energy barriers for electrons but potential wells for holes. For the coupled QR structure, the region sandwiched between two QRs forms a potential reservoir of quasi-bound electrons. Electrons in these states, though look like bound ones, would ultimately tunnel out of the reservoir through barriers. Multiband perfectly-matched layers are introduced to model the tunneling of quasi-bound states into open space. Resonance peaks are observed on the absorption spectra of type-II coupled QRs due to the formation of quasi-bound states in conduction bands, but no resonance exist in the uncoupled QR. The tunneling time of these metastable states can be extracted from the resonance and is in the order of ten femtoseconds. Absorption of coupled QRs is significantly enhanced as compared to that of uncoupled ones in certain spectral windows of interest. These features may improve the performance of photon detectors and photovoltaic devices based on type-II semiconductor nanostructures.

  6. Threshold energy dependence as a function of potential strength and the nonexistence of bound states

    International Nuclear Information System (INIS)

    Aronson, I.; Kleinman, C.J.; Spruch, L.

    1975-01-01

    The difficulty in attempting to prove that a given set of particles cannot form a bound state is the absence of a margin of error; the possibility of a bound state of arbitrarily small binding energy must be ruled out. At the sacrifice of rigor, one can hope to bypass the difficulty by studying the ground-state energy E(lambda) associated with H(lambda) identical with H/sub true/ + lambda/sub ν/, where H/sub true/ is the true Hamiltonian, ν is an artificial attractive potential, and lambda greater than 0. E(lambda) can be estimated via a Rayleigh-Ritz calculation. If H/sub true/ falls just short of being able to support a bound state, H(lambda) for lambda ''not too small'' will support a bound state of some significant binding. A margin of error is thereby created; the inability to find a bound state for lambda ''not too small'' suggests not only that H(lambda) can support at best a weakly bound state but that H/sub true/ cannot support a bound state at all. To give the argument real substance, one studies E(lambda) in the neighborhood of lambda = lambda 0 , the (unknown) smallest value for lambda for which H(lambda) can support a bound state. A comparison of E(lambda) determined numerically with the form of E(lambda) obtained with the use of a crude bound-state wave function in the Feynman theorem gives a rough self-consistency check. One thereby obtains a believable lower bound on the energy of a possible bound state of H/sub true/ or a believable argument that no such bound state exists. The method is applied to the triplet state of H -

  7. Numerical Solutions of One Reduced Bethe-Salpeter Equation for the Coulombic Bound States Composed of Virtual Constituents

    Science.gov (United States)

    Chen, Jiao-Kai

    2018-04-01

    We present one reduction of the Bethe-Salpeter equation for the bound states composed of two off-mass-shell constituents. Both the relativistic effects and the virtuality effects can be considered in the obtained spinless virtuality distribution equation. The eigenvalues of the spinless virtuality distribution equation are perturbatively calculated and the bound states e+e-, μ+μ-, τ+τ-, μ+e-, and τ+e- are discussed.

  8. Ultrafast vibronic dynamics of dye molecules studied by the induced grating method

    International Nuclear Information System (INIS)

    Liu, C.H.; Troeger, P.; Laubereau, A.

    1985-08-01

    Previous work on transient polarization spectroscopy applying the induced grating technique concentrated on the time scale > 10 -11 s. Only one earlier study on a shorter time scale showed the occurrence of the so-called coherence peak without a detailed explanation for this phenomena. We report new theoretical and experimental data on a polarization effect that occurs in the nonlinear Rayleigh scattering of delayed probing pulses from induced population gratings. The periodic population changes are generated by two synchronized pumping pulses of the same frequency. Model calculations are presented, which carefully evaluate the orientational distribution and give quantitative information on the scattering signal for various polarization conditions. The scattering mechanism for the coherence peak is explained as a two step process with one photon absorption and emission process; it depends on the vibronic relaxation of the terminating level in the excited electronic state. Experimental results are reported for the vibrational and orientational relaxation times. For example values of tausub(v)=0.2+-0.2 ps and tausub(v)=0.8+-0.3 ps are measured respectively for Rhodamine 6G in ethanol and phenoxazone 9 in dioxane. Our three-beam transient grating technique under general polarization conditions can be used for the study of a variety of dynamic processes of molecules in the excited electronic or ground state. An important advantage compared to nonlinear absorption or induced dichroism techniques is that the scattering method avoids undesirable background signals. (author)

  9. Surface-bound states in nanodiamonds

    Science.gov (United States)

    Han, Peng; Antonov, Denis; Wrachtrup, Jörg; Bester, Gabriel

    2017-05-01

    We show via ab initio calculations and an electrostatic model that the notoriously low, but positive, electron affinity of bulk diamond becomes negative for hydrogen passivated nanodiamonds and argue that this peculiar situation (type-II offset with a vacuum level at nearly midgap) and the three further conditions: (i) a surface dipole with positive charge on the outside layer, (ii) a spherical symmetry, and (iii) a dielectric mismatch at the surface, results in the emergence of a peculiar type of surface state localized just outside the nanodiamond. These states are referred to as "surface-bound states" and have consequently a strong environmental sensitivity. These type of states should exist in any nanostructure with negative electron affinity. We further quantify the band offsets of different type of nanostructures as well as the exciton binding energy and contrast the results with results for "conventional" silicon quantum dots.

  10. Numerical studies of the Bethe-Salpeter equation for a two-fermion bound state

    Science.gov (United States)

    de Paula, W.; Frederico, T.; Salmè, G.; Viviani, M.

    2018-03-01

    Some recent advances on the solution of the Bethe-Salpeter equation (BSE) for a two-fermion bound system directly in Minkowski space are presented. The calculations are based on the expression of the Bethe-Salpeter amplitude in terms of the so-called Nakanishi integral representation and on the light-front projection (i.e. the integration of the light-front variable k - = k 0 - k 3). The latter technique allows for the analytically exact treatment of the singularities plaguing the two-fermion BSE in Minkowski space. The good agreement observed between our results and those obtained using other existing numerical methods, based on both Minkowski and Euclidean space techniques, fully corroborate our analytical treatment.

  11. Bound states and Cooper pairs of molecules in 2D optical lattices bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Guardian, A.; Dominguez-Castro, G.A.; Paredes, R. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico (Mexico)

    2016-08-15

    We investigate the formation of Cooper pairs, bound dimers and the dimer-dimer elastic scattering of ultracold dipolar Fermi molecules confined in a 2D optical lattice bilayer configuration. While the energy and their associated bound states are determined in a variational way, the correlated two-molecule pair is addressed as in the original Cooper formulation. We demonstrate that the 2D lattice confinement favors the formation of zero center mass momentum bound states. Regarding the Cooper pairs binding energy, this depends on the molecule populations in each layer. Maximum binding energies occur for non-zero (zero) pair momentum when the Fermi system is polarized (unpolarized). We find an analytic expression for the dimer-dimer effective interaction in the deep BEC regime. The present analysis represents a route for addressing the BCS-BEC crossover in dipolar Fermi gases confined in 2D optical lattices within the current experimental panorama. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Probing the Vibrational Spectroscopy of the Deprotonated Thymine Radical by Photodetachment and State-Selective Autodetachment Photoelectron Spectroscopy via Dipole-Bound States

    Science.gov (United States)

    Huang, Dao-Ling; Zhu, Guo-Zhu; Wang, Lai-Sheng

    2016-06-01

    Deprotonated thymine can exist in two different forms, depending on which of its two N sites is deprotonated: N1[T-H]^- or N3[T-H]^-. Here we report a photodetachment study of the N1[T-H]^- isomer cooled in a cryogenic ion trap and the observation of an excited dipole-bound state. Eighteen vibrational levels of the dipole-bound state are observed, and its vibrational ground state is found to be 238 ± 5 wn below the detachment threshold of N1[T-H]^-. The electron affinity of the deprotonated thymine radical (N1[T-H]^.) is measured accruately to be 26 322 ± 5 wn (3.2635 ± 0.0006 eV). By tuning the detachment laser to the sixteen vibrational levels of the dipole-bound state that are above the detachment threshold, highly non-Franck-Condon resonant-enhanced photoelectron spectra are obtained due to state- and mode-selective vibrational autodetachment. Much richer vibrational information is obtained for the deprotonated thymine radical from the photodetachment and resonant-enhanced photoelectron spectroscopy. Eleven fundamental vibrational frequencies in the low-frequency regime are obtained for the N1[T-H]^. radical, including the two lowest-frequency internal rotational modes of the methyl group at 70 ± 8 wn and 92 ± 5 wn. D. L. Huang, H. T. Liu, C. G. Ning, G. Z. Zhu and L. S. Wang, Chem. Sci., 6, 3129-3138 (2015)

  13. First observation of bound-state β-decay

    International Nuclear Information System (INIS)

    Jung, M.; Bosch, F.; Beckert, K.; Eickhoff, H.; Folger, H.; Franzke, B.; Kienle, P.; Klepper, O.; Koenig, W.; Kozhuharov, C.; Mann, R.; Moshammer, R.; Nolden, F.; Schaaf, U.; Soff, G.; Spaedtke, P.; Steck, M.; Stoehlker, T.; Suemmerer, K.

    1992-06-01

    Bound-state Β - decay was observed for the first time by storing bare 66 163 Dy 66+ ions in a heavy-ion storage ring. From the number of 67 163 Ho 66+ daughter ions, measured as a function of the storage time, a half-life of 47 4 +5 - d was derived. By comparing this result with reported half-lives for electron capture (EC) from the M 1 and M 2 shells of neutral 67 163 Ho, bounds for both the Q EC value of neutral 67 163 Ho and for the electron neutrino mass were set. (orig.)

  14. Nonlinear spectroscopy of the bound exciton states in CdSe single crystals

    International Nuclear Information System (INIS)

    Lisitsa, M.P.; Onishchenko, N.A.; Stolyarenko, A.V.; Ananchenko, V.V.; Polishchuk, S.V.

    1989-01-01

    The study is devoted to the pulsed laser radiation effect on the time-resolved variations of free and bound exciton bands region at the helium temperature. A gradual disappearance of the bound I 2 exciton state is observed with increase of the excitation intensity I in CdSe transmission spectra. This phenomenon is explained by the fact that despite of the shorter life of I 2 excitons as compared to the free ones, the concentration of the centres on which they localize is rather low (≤10 16 cm -3 ) while the evolution of the light-generated electron-hole pairs is such as the most probable recombination through the bound excitons. The transmission spectrum kinetics is studied. The intensity limitation of the laser pulse transmitted through the crystal in the region of the exciton ground state region is shown to be related with two-photon absorption (TPA) in which the exciton state is an intermediate level. The calculation results are in good agreement with the experiment. The estimations show the giant TPA coefficient of ∼10 3 cm/MW. The evolution of photoexcited nonequilibrium electron-hole pairs is studied. The possibility of using CdSe single crystals as spectrum-selective limiters of the laser pulses is shown. (author)

  15. Tunable hybridization of Majorana bound states at the quantum spin Hall edge

    Science.gov (United States)

    Keidel, Felix; Burset, Pablo; Trauzettel, Björn

    2018-02-01

    Confinement at the helical edge of a topological insulator is possible in the presence of proximity-induced magnetic (F) or superconducting (S) order. The interplay of both phenomena leads to the formation of localized Majorana bound states (MBS) or likewise (under certain resonance conditions) the formation of ordinary Andreev bound states (ABS). We investigate the properties of bound states in junctions composed of alternating regions of F or S barriers. Interestingly, the direction of magnetization in F regions and the relative superconducting phase between S regions can be exploited to hybridize MBS or ABS at will. We show that the local properties of MBS translate into a particular nonlocal superconducting pairing amplitude. Remarkably, the symmetry of the pairing amplitude contains information about the nature of the bound state that it stems from. Hence this symmetry can in principle be used to distinguish MBS from ABS, owing to the strong connection between local density of states and nonlocal pairing in our setup.

  16. Bound states in quantum field theory and coherent states: A fresh look

    International Nuclear Information System (INIS)

    Misra, S.P.

    1986-09-01

    We consider here bound state equations in quantum field theory where the state explicitly includes radiation quanta as constituents with the number of such quanta not fixed. The fully interacting system is dealt with through equal time commutators/anticommutators of field operators. The multiparticle channel for the radiation field is approximated through coherent state representations. (author)

  17. Electron-vibron coupling effects on electron transport via a single-molecule magnet

    NARCIS (Netherlands)

    McCaskey, A.; Yamamoto, Y.; Warnock, M.; Burzuri, E.; Van der Zant, H.S.J.; Park, K.

    2015-01-01

    We investigate how the electron-vibron coupling influences electron transport via an anisotropic magnetic molecule, such as a single-molecule magnet (SMM) Fe4, by using a model Hamiltonian with parameter values obtained from density-functional theory (DFT). The magnetic anisotropy parameters,

  18. Andreev bound states. Some quasiclassical reflections

    International Nuclear Information System (INIS)

    Lin, Y.; Leggett, A. J.

    2014-01-01

    We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with a splitting which is proportional to the exponentially small amplitude for “normal” reflection by the edges of the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a resolution to it

  19. Andreev bound states. Some quasiclassical reflections

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y., E-mail: yiriolin@illinois.edu; Leggett, A. J. [University of Illinois at Urhana-Champaign, Dept. of Physics (United States)

    2014-12-15

    We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with a splitting which is proportional to the exponentially small amplitude for “normal” reflection by the edges of the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a resolution to it.

  20. Hadamard States for the Klein-Gordon Equation on Lorentzian Manifolds of Bounded Geometry

    Science.gov (United States)

    Gérard, Christian; Oulghazi, Omar; Wrochna, Michał

    2017-06-01

    We consider the Klein-Gordon equation on a class of Lorentzian manifolds with Cauchy surface of bounded geometry, which is shown to include examples such as exterior Kerr, Kerr-de Sitter spacetime and the maximal globally hyperbolic extension of the Kerr outer region. In this setup, we give an approximate diagonalization and a microlocal decomposition of the Cauchy evolution using a time-dependent version of the pseudodifferential calculus on Riemannian manifolds of bounded geometry. We apply this result to construct all pure regular Hadamard states (and associated Feynman inverses), where regular refers to the state's two-point function having Cauchy data given by pseudodifferential operators. This allows us to conclude that there is a one-parameter family of elliptic pseudodifferential operators that encodes both the choice of (pure, regular) Hadamard state and the underlying spacetime metric.

  1. Proof of the insecurity of quantum secret sharing based on the Smolin bound entangled states

    International Nuclear Information System (INIS)

    Ya-Fei, Yu; Zhi-Ming, Zhang

    2009-01-01

    This paper reconsiders carefully the possibility of using the Smolin bound entangled states as the carrier for sharing quantum secret. It finds that the process of quantum secret sharing based on Smolin states has insecurity though the Smolin state was reported to violate maximally the two-setting Bell-inequality. The general proof is given. (general)

  2. Saha equation, single and two particle states

    International Nuclear Information System (INIS)

    Kraeft, W.D.; Girardeau, M.D.; Strege, B.

    1990-01-01

    Single and two particle porperties in dense plasma are discussed in connection with their role in the mass action law for a partially ionized plasma. The two particle bound states are nearly density independent, while the continuum is essentially shifted. The single particle states are damped, and their energy has a negative shift and a parabolic behaviour for small momenta. (orig.)

  3. Bag-model analyses of proton-antiproton scattering and atomic bound states

    International Nuclear Information System (INIS)

    Alberg, M.A.; Freedman, R.A.; Henley, E.M.; Hwang, W.P.; Seckel, D.; Wilets, L.

    1983-01-01

    We study proton-antiproton (pp-bar ) scattering using the static real potential of Bryan and Phillips outside a cutoff radius rsub0 and two different shapes for the imaginary potential inside a radius R*. These forms, motivated by bag models, are a one-gluon-annihilation potential and a simple geometric-overlap form. In both cases there are three adjustable parameters: the effective bag radius R*, the effective strong coupling constant αsubssup*, and rsub0. There is also a choice for the form of the real potential inside the cutoff radius rsub0. Analysis of the pp-bar scattering data in the laboratory-momentum region 0.4--0.7 GeV/c yields an effective nucleon bag radius R* in the range 0.6--1.1 fm, with the best fit obtained for R* = 0.86 fm. Arguments are presented that the deduced value of R* is likely to be an upper bound on the isolated nucleon bag radius. The present results are consistent with the range of bag radii in current bag models. We have also used the resultant optical potential to calculate the shifts and widths of the sup3Ssub1 and sup1Ssub0 atomic bound states of the pp-bar system. For both states we find upward (repulsive) shifts and widths of about 1 keV. We find no evidence for narrow, strongly bound pp-bar states in our potential model

  4. Electron-electron bound states in parity-preserving QED3

    International Nuclear Information System (INIS)

    Belich, H.; Helayel-Neto, J.A.; Centro Brasileiro de Pesquisas Fisicas; Cima, O.M. del; Ferreira Junior, M.M.; Maranhao Univ., Sao Luis, MA

    2002-04-01

    By considering the Higgs mechanism in the framework of a parity-preserving Planar Quantum Electrodynamics, one shows that an attractive electron-electron interaction may dominate. The e - e - interaction potential emerges as the non-relativistic limit of the Moeller scattering amplitude and it results attractive with a suitable choice of parameters. Numerically values of the e - e - binding energy are obtained by solving the two-dimensional Schroedinger equation. The existence of bound states is a strong indicative that this model may be adopted to address the pairing mechanism of high-T c superconductivity. (author)

  5. Probing Andreev bound states in one-atom superconducting contacts

    Energy Technology Data Exchange (ETDEWEB)

    Pothier, Hugues; Janvier, Camille; Tosi, Leandro; Girit, Caglar; Goffman, Marcelo; Esteve, Daniel; Urbina, Cristian [Quantronics Group, SPEC, CEA-Saclay (France)

    2015-07-01

    Superconductors are characterized by a dissipationless current. Since the work of Josephson 50 years ago, it is known that a supercurrent can even flow through tunnel junctions between superconductors. This Josephson effect also occurs through any type of ''weak links'' between superconductors: non-superconducting materials, constrictions,.. A unified understanding of the Josephson effect has emerged from a mesoscopic description of weak links. It relies on the existence of doublets of localized states that have energies below the superconducting gap: the Andreev bound states. I will present experiments performed on the simplest conductor possible, a single-atom contact between superconductors, that illustrate these concepts. The most recent work demonstrates time-domain manipulation of quantum superpositions of Andreev bound states.

  6. Use of Dirac-Coulomb Sturmians of the first-order for relativistic calculations of two-photon bound-bound transition amplitudes in hydrogenic-like ions

    International Nuclear Information System (INIS)

    Tetchou Nganso, H.M.; Kwato Njock, M.G.

    2005-08-01

    A fully relativistic treatment of the S-matrix elements describing two-photon bound-bound transition amplitudes in hydrogenic-like ions is undertaken in the present work. Several selected transitions from the ground state vertical bar 1 2 S> towards the L and M shells (vertical bar 2 2 S>, vertical bar 3 2 S>,vertical bar 3 2 D 1/2 >, and vertical bar 3 2 D 5/2 ) are described. For that purpose, we use the complete set of relativistic Sturmian functions derived by Szmytkowski from the first-order Sturm- Liouville problems for the Dirac equation. The method followed consists in writing the matrix elements in terms of Green functions expanded over the first-order Dirac-Coulomb Sturmians. Previous approaches used the Sturmian basis associated with the Gell-Mann-Feynman equation. However these latter second-order Sturmian functions do not form a complete set and cannot rigorously describe the process under study. On the other hand, a distinctive feature of our tensor treatment is that the expressions derived are quite general and could be applied to any multipole of the two photon bound-bound transitions. In the case of dipole transitions considered by Szymanowski et al., in their calculations, the selection rules derived from our method lead to two additional terms related to l lp =2 and l 2p =2. (author)

  7. Bound-state formation for thermal relic dark matter and unitarity

    International Nuclear Information System (INIS)

    Harling, Benedict von; Petraki, Kalliopi

    2014-01-01

    We show that the relic abundance of thermal dark matter annihilating via a long-range interaction, is significantly affected by the formation and decay of dark matter bound states in the early universe, if the dark matter mass is above a few TeV . We determine the coupling required to obtain the observed dark matter density, taking into account both the direct 2-to-2 annihilations and the formation of bound states, and provide an analytical fit. We argue that the unitarity limit on the inelastic cross-section is realized only if dark matter annihilates via a long-range interaction, and we determine the upper bound on the mass of thermal-relic dark matter to be about 197 (139) TeV for (non)-self-conjugate dark matter

  8. Deeply bound pionic states and modifications of hadrons

    International Nuclear Information System (INIS)

    Hirenzaki, S.

    2000-01-01

    We have studied the structure and formation of mesic atoms and mesic nuclei theoretically. The latest results on the deeply bound pionic atoms, the kaonic atoms and the sigma states are reported. (author)

  9. Hyperquarks and bosonic preon bound states

    International Nuclear Information System (INIS)

    Schmid, Michael L.; Buchmann, Alfons J.

    2009-01-01

    In a model in which leptons, quarks, and the recently introduced hyperquarks are built up from two fundamental spin-(1/2) preons, the standard model weak gauge bosons emerge as preon bound states. In addition, the model predicts a host of new composite gauge bosons, in particular, those responsible for hyperquark and proton decay. Their presence entails a left-right symmetric extension of the standard model weak interactions and a scheme for a partial and grand unification of nongravitational interactions based on, respectively, the effective gauge groups SU(6) P and SU(9) G . This leads to a prediction of the Weinberg angle at low energies in good agreement with experiment. Furthermore, using evolution equations for the effective coupling strengths, we calculate the partial and grand unification scales, the hyperquark mass scale, as well as the mass and decay rate of the lightest hyperhadron.

  10. Secret key distillation from shielded two-qubit states

    International Nuclear Information System (INIS)

    Bae, Joonwoo

    2010-01-01

    The quantum states corresponding to a secret key are characterized using the so-called private states, where the key part consisting of a secret key is shielded by the additional systems. Based on the construction, it was shown that a secret key can be distilled from bound entangled states. In this work, I consider the shielded two-qubit states in a key-distillation scenario and derive the conditions under which a secret key can be distilled using the recurrence protocol or the two-way classical distillation, advantage distillation together with one-way postprocessing. From the security conditions, it is shown that a secret key can be distilled from bound entangled states in a much wider range. In addition, I consider the case that in which white noise is added to quantum states and show that the classical distillation protocol still works despite a certain amount of noise although the recurrence protocol does not.

  11. Ab initio ro-vibronic spectroscopy of SiCCl (X{sup ~2}Π)

    Energy Technology Data Exchange (ETDEWEB)

    Brites, Vincent [Université d’Evry Val d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, LAMBE CNRS UMR 8587, Boulevard F. Mitterrand, 91025 Evry Cedex (France); Mitrushchenkov, Alexander O.; Léonard, Céline, E-mail: celine.leonard@u-pem.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Peterson, Kirk A. [Department of Chemistry, Washington State University, Pullman, Washington 99164 (United States)

    2014-07-21

    The full dimensional potential energy surfaces of the {sup 2}A{sup ′} and {sup 2}A{sup ′′} electronic components of X{sup ~2}Π SiCCl have been computed using the explicitly correlated coupled cluster method, UCCSD(T)-F12b, combined with a composite approach taking into account basis set incompleteness, core-valence correlation, scalar relativity, and higher order excitations. The spin-orbit and dipole moment surfaces have also been computed ab initio. The ro-vibronic energy levels and absorption spectrum at 5 K have been determined from variational calculations. The influence of each correction on the fundamental frequencies is discussed. An assignment is proposed for bands observed in the LIF experiment of Smith et al. [J. Chem. Phys. 117, 6446 (2002)]. The overall agreement between the experimental and calculated ro-vibronic levels is better than 7 cm{sup −1} which is comparable with the 10–20 cm{sup −1} resolution of the emission spectrum.

  12. Heavy-to-light form factors for non-relativistic bound states

    International Nuclear Information System (INIS)

    Bell, G.; Feldmann, Th.

    2007-01-01

    We investigate transition form factors between non-relativistic QCD bound states at large recoil energy. Assuming the decaying quark to be much heavier than its decay product, the relativistic dynamics can be treated according to the factorization formula for heavy-to-light form factors obtained from the heavy-quark expansion in QCD. The non-relativistic expansion determines the bound-state wave functions to be Coulomb-like. As a consequence, one can explicitly calculate the so-called 'soft-overlap' contribution to the transition form factor

  13. Two-terminal charge tunneling: Disentangling Majorana zero modes from partially separated Andreev bound states in semiconductor-superconductor heterostructures

    Science.gov (United States)

    Moore, Christopher; Stanescu, Tudor D.; Tewari, Sumanta

    2018-04-01

    We show that a pair of overlapping Majorana bound states (MBSs) forming a partially separated Andreev bound state (ps-ABS) represents a generic low-energy feature in spin-orbit-coupled semiconductor-superconductor (SM-SC) hybrid nanowire in the presence of a Zeeman field. The ps-ABS interpolates continuously between the "garden variety" ABS, which consists of two MBSs sitting on top of each other, and the topologically protected Majorana zero modes (MZMs), which are separated by a distance given by the length of the wire. The really problematic ps-ABSs consist of component MBSs separated by a distance of the order of the characteristic Majorana decay length ξ , and have nearly zero energy in a significant range of control parameters, such as the Zeeman field and chemical potential, within the topologically trivial phase. Despite being topologically trivial, such ps-ABSs can generate signatures identical to MZMs in local charge tunneling experiments. In particular, the height of the zero-bias conductance peak (ZBCP) generated by ps-ABSs has the quantized value 2 e2/h , and it can remain unchanged in an extended range of experimental parameters, such as Zeeman field and the tunnel barrier height. We illustrate the formation of such low-energy robust ps-ABSs in two experimentally relevant situations: a hybrid SM-SC system consisting of a proximitized nanowire coupled to a quantum dot and the SM-SC system in the presence of a spatially varying inhomogeneous potential. We then show that, unlike local measurements, a two-terminal experiment involving charge tunneling at both ends of the wire is capable of distinguishing between the generic ps-ABSs and the non-Abelian MZMs. While the MZMs localized at the opposite ends of the wire generate correlated differential conduction spectra, including correlations in energy splittings and critical Zeeman fields associated with the emergence of the ZBCPs, such correlations are absent if the ZBCPs are due to ps-ABSs emerging in the

  14. Closed form bound-state perturbation theory

    Directory of Open Access Journals (Sweden)

    Ollie J. Rose

    1980-01-01

    Full Text Available The perturbed Schrödinger eigenvalue problem for bound states is cast into integral form using Green's Functions. A systematic algorithm is developed and applied to the resulting equation giving rise to approximate solutions expressed as functions of the given perturbation parameter. As a by-product, convergence radii for the traditional Rayleigh-Schrödinger and Brillouin-Wigner perturbation theories emerge in a natural way.

  15. An upper bound on the second order asymptotic expansion for the quantum communication cost of state redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Nilanjana, E-mail: n.datta@statslab.cam.ac.uk [Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Hsieh, Min-Hsiu, E-mail: Min-Hsiu.Hsieh@uts.edu.au [Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007 (Australia); Oppenheim, Jonathan, E-mail: j.oppenheim@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Department of Computer Science and Centre for Quantum Technologies, National University of Singapore, Singapore 119615 (Singapore)

    2016-05-15

    State redistribution is the protocol in which given an arbitrary tripartite quantum state, with two of the subsystems initially being with Alice and one being with Bob, the goal is for Alice to send one of her subsystems to Bob, possibly with the help of prior shared entanglement. We derive an upper bound on the second order asymptotic expansion for the quantum communication cost of achieving state redistribution with a given finite accuracy. In proving our result, we also obtain an upper bound on the quantum communication cost of this protocol in the one-shot setting, by using the protocol of coherent state merging as a primitive.

  16. On bound states of photons in noncommutative U(1) gauge theory

    International Nuclear Information System (INIS)

    Fatollahi, A.H.; Jafari, A.

    2006-01-01

    We consider the possibility that photons of noncommutative U(1) gauge theory can make bound states. Using the potential model, developed based on the constituent gluon picture of QCD glue-balls, arguments are presented in favor of the existence of these bound states. The basic ingredient of the potential model is that the self-interacting massless gauge particles may get mass by the inclusion of non-perturbative effects. (orig.)

  17. Do bound color octet states of liberated quarks exist

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1979-01-01

    In models where quarks are liberated and color can be excited, the three-quark color-octet state is shown to be unbound and unstable against breakup into free quarks and diquarks. The signature for color excitation in deep inelastic processes will not be a bound three-quark state which decays electromagnetically but a final state containing free quarks. (author)

  18. Bound states and scattering lengths of three two-component particles with zero-range interactions under one-dimensional confinement

    International Nuclear Information System (INIS)

    Kartavtsev, O.I.; Malykh, A.V.; Sofianos, S.A.

    2008-01-01

    The universal three-body dynamics in ultracold binary gases confined to one-dimensional motion is studied. The three-body binding energies and the (2+1)-scattering lengths are calculated for two identical particles of mass m and a different one of mass m 1 , between which interactions are described in the low-energy limit by zero-range potentials. The critical values of the mass ratio m/m 1 , at which the three-body states arise and the (2+1)-scattering length equals zero, are determined both for zero and infinite interaction strength λ 1 of the identical particles. A number of exact results are enlisted and asymptotic dependences both for m/m 1 → infinity and λ 1 → -infinity are derived. Combining the numerical and analytical results, a schematic diagram showing the number of the three-body bound states and the sign of the (2+1)-scattering length in the plane of the mass ratio and interaction-strength ratio is deduced. The results provide a description of the homogeneous and mixed phases of atoms and molecules in dilute binary quantum gases

  19. Meson bound states and inclusive hardon scattering in quantum chromodynamics

    International Nuclear Information System (INIS)

    Beavis, D.R.

    1980-01-01

    In the first part we study the charmonium and UPSILON systems with a simple Coulomb plus linear potential. The parameters of the potential are determined by the charmonium states other than 1 S 0 states. We successfully predict that the states X(2830) and x(3450) are not the 1 S 0 partners of J/psi and psi'. The same effective potential also gives a good description of the UPSILON system. The Lorentz nature of the confinement potential is determined to be an equal mixture of vector and scalar. In the second part we extend a method for obtaining bound states and wavefunctions for relativistic confined systems. The important aspect of this treatment is the input of the asymptotic expansion of the two-point functions. We test the bound state approximation for a system defined by an equivalent potential V(r) = lambda 2 tanh 2 (g 2 r/lambda). Excellent results are obtained, even though a threshold is present. Finally, in the third section, we analyze the 100 GeV/c π - p→π 0 X data of Barnes et al. for moderate t, 1.5 less than or equal to -t less than or equal to 4.0 (GeV/c) 2 with the constituent scattering models. We obtain very good agreement in normalization and the x and t behavior of dsigma/dtdx using the FF1 model. The analysis of π - p→etaX gives additional support to this interpretation. The predictions of perturbative QCD and FF1 for π - p→π 0 X are given

  20. Robust Active MPC Synchronization for Two Discrete-Time Chaotic Systems with Bounded Disturbance

    Directory of Open Access Journals (Sweden)

    Longge Zhang

    2017-01-01

    Full Text Available This paper proposes a synchronization scheme for two discrete-time chaotic systems with bounded disturbance. By using active control method and imposing some restriction on the error state, the computation of controller’s feedback matrix is converted to the min-max optimization problem. The theoretical results are derived with the aid of predictive model predictive paradigm and linear matrix inequality technique. Two example simulations are performed to show the effectiveness of the designed control method.

  1. Bound State Eigenvalues of the Schroedinger Eq. in two Spatial Variables.

    Science.gov (United States)

    Rawitscher, George H.; Koltracht, Israel

    2002-08-01

    An efficient spectral integral equation method (SIEM) has recently been developed for obtaining the scattering solution of a one-dimensional Schroedinger equation.(R.A. Gonzales, S.-Y. Kang, I. Koltracht and G. Rawitscher, J. of Comput. Phys. 153, 160 (1999).) The purpose of the present study is to extend this method to the case of bound-states in more than one dimension. Even though other methods have already been developed for this case, such as finite element methods, the application we have in mind is to solve the non-linear Bose-Einstein condensate case in the presence of an optical lattice. In the presence of a trapping potential alone, a B-E condensate solution has been obtained by a new iterative spectral method which solves the differential equation.(Y.-S. Choi, J. Javanainen, I. Koltracht, M. Koš)trun, P.J. McKenna and N. Savytska "A Fast Algorithm for the Solution of the Time-Independent Gross-Pitaevskii Equation," Submitted to Computational Physics. But this method becomes inadequate for the case that several potential barriers are also present. The reason that the SIEM is expected to be better suited is that it distributes the collocation points much more efficiently into partitions of variable size.

  2. Fermionic bound states in Minkowski space. Light-cone singularities and structure

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Wayne de; Frederico, Tobias; Pimentel, Rafael [Instituto Tecnologico de Aeronautica, DCTA, Dept. de Fisica, Sao Jose dos Campos, Sao Paulo (Brazil); Salme, Giovanni [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Viviani, Michele [Istituto Nazionale di Fisica Nucleare, Pisa (Italy)

    2017-11-15

    The Bethe-Salpeter equation for two-body bound system with spin 1/2 constituent is addressed directly in the Minkowski space. In order to accomplish this aim we use the Nakanishi integral representation of the Bethe-Salpeter amplitude and exploit the formal tool represented by the exact projection onto the null-plane. This formal step allows one (i) to deal with end-point singularities one meets and (ii) to find stable results, up to strongly relativistic regimes, which settle in strongly bound systems. We apply this technique to obtain the numerical dependence of the binding energies upon the coupling constants and the light-front amplitudes for a fermion-fermion 0{sup +} state with interaction kernels, in ladder approximation, corresponding to scalar-, pseudoscalar- and vector-boson exchanges, respectively. After completing the numerical survey of the previous cases, we extend our approach to a quark-antiquark system in 0{sup -} state, taking both constituent-fermion and exchanged-boson masses, from lattice calculations. Interestingly, the calculated light-front amplitudes for such a mock pion show peculiar signatures of the spin degrees of freedom. (orig.)

  3. The ordering of low-lyiing bound states of three identical particles

    International Nuclear Information System (INIS)

    Richard, J.M.; Taxil, P.

    1990-01-01

    New results are presented on the ordering of bound states of three identical particles, a problem inspired by baryon spectroscopy. We first study the case of a perturbed harmonic oscillator and relate the splitting pattern to the level spacings in the two-body problem. We also obtain much more general results, valid for almost any symmetric potential, not necessarily pairwise. The proof is given in the framework of the hyperspherical formalism. (orig.)

  4. Hyperon polarizabilities in the bound-state soliton model

    International Nuclear Information System (INIS)

    Gobbi, C.; Scoccola, N.N.

    1996-01-01

    A detailed calculation of electric and magnetic static polarizabilities of octet hyperons is presented in the framework of the bound-state soliton model. Both seagull and dispersive contributions are considered, and the results are compared with different model predictions. (orig.)

  5. K-nuclear bound states in a dynamical model

    Czech Academy of Sciences Publication Activity Database

    Mareš, Jiří; Friedman, E.; Gal, A.

    2006-01-01

    Roč. 770, 1/2 (2006), s. 84-105 ISSN 0375-9474 Institutional research plan: CEZ:AV0Z10480505 Keywords : kaonic atoms * K-nuclear bound states * K-nucleus interaction Subject RIV: BE - Theoretical Physics Impact factor: 2.155, year: 2006

  6. Predicting Keto-Enol Equilibrium from Combining UV/Visible Absorption Spectroscopy with Quantum Chemical Calculations of Vibronic Structures for Many Excited States. A Case Study on Salicylideneanilines.

    Science.gov (United States)

    Zutterman, Freddy; Louant, Orian; Mercier, Gabriel; Leyssens, Tom; Champagne, Benoît

    2018-06-21

    Salicylideneanilines are characterized by a tautomer equilibrium, between an enol and a keto form of different colors, at the origin of their remarkable thermochromic, solvatochromic, and photochromic properties. The enol form is usually the most stable but appropriate choice of substituents and conditions (solvent, crystal, host compound) can displace the equilibrium toward the keto form so that there is a need for fast prediction of the keto:enol abundance ratio. Here we demonstrate the reliability of a combined theoretical-experimental method, based on comparing simulated and measured UV/visible absorption spectra, to determine this keto/enol ratio. The calculations of the excitation energies, oscillator strengths, and vibronic structures of both enol and keto forms are performed for all excited states absorbing in the relevant (visible and near-UV) wavelength range at the time-dependent density functional theory level by accounting for solvent effects using the polarizable continuum model. This approach is illustrated for two salicylideneaniline derivatives, which are present, in solution, under the form of keto-enol mixtures. The results are compared to those of chemometric analysis as well as ab initio predictions of the reaction free enthalpies.

  7. Multi-mode-multi-state quantum dynamics of key five-membered heterocycles: spectroscopy and ultrafast internal conversion

    International Nuclear Information System (INIS)

    Koeppel, H.; Gromov, E.V.; Trofimov, A.B.

    2004-01-01

    The multi-mode and multi-state vibronic interactions in the heterocyclic molecules furan, pyrrole, thiophene and their radical cations are investigated theoretically, employing a linear vibronic coupling scheme. The underlying system parameters are determined from large-scale ab initio computations. Previous time-independent dynamical calculations on the radical cations are extended by wave-packet propagations (using the MCTDH method) confirming the strong nonadiabatic coupling effects. For the singlet excited states of furan and thiophene quantum dynamical calculations are presented which go beyond the two-state approximation frequently applied in the literature. The characteristic spectral structures are well reproduced, especially in the case of furan. The implications of these results on the photochemical reaction dynamics of these species are discussed

  8. Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions

    International Nuclear Information System (INIS)

    Hetzheim, Henrik

    2009-01-01

    The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)

  9. Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Hetzheim, Henrik

    2009-01-14

    The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)

  10. Bound states and scattering in four-body systems

    International Nuclear Information System (INIS)

    Narodetsky, I.M.

    1979-01-01

    It is the purpose of this review to provide the clear and elementary introduction in the integral equation method and to demonstrate explicitely its usefulness for the physical applications. The existing results concerning the application of the integral equation technique for the four-nucleon bound states and scattering are reviewed.The treatment is based on the quasiparticle approach that permits the simple interpretation of the equations in terms of quasiparticle scattering. The mathematical basis for the quasiparticle approach is the Hilbert-Schmidt theorem of the Fredholm integral equation theory. This paper contains the detailed discussion of the Hilbert-Schmidt expansion as applied to the 2-particle amplitudes and to the 3 + 1 and 2 + 2 amplitudes which are the kernels of the four-body equations. The review contains essentially the discussion of the four-body quasiparticle equations and results obtained for bound states and scattering

  11. Bounds on the Capacity of Weakly constrained two-dimensional Codes

    DEFF Research Database (Denmark)

    Forchhammer, Søren

    2002-01-01

    Upper and lower bounds are presented for the capacity of weakly constrained two-dimensional codes. The maximum entropy is calculated for two simple models of 2-D codes constraining the probability of neighboring 1s as an example. For given models of the coded data, upper and lower bounds...... on the capacity for 2-D channel models based on occurrences of neighboring 1s are considered....

  12. Universal bounds on current fluctuations.

    Science.gov (United States)

    Pietzonka, Patrick; Barato, Andre C; Seifert, Udo

    2016-05-01

    For current fluctuations in nonequilibrium steady states of Markovian processes, we derive four different universal bounds valid beyond the Gaussian regime. Different variants of these bounds apply to either the entropy change or any individual current, e.g., the rate of substrate consumption in a chemical reaction or the electron current in an electronic device. The bounds vary with respect to their degree of universality and tightness. A universal parabolic bound on the generating function of an arbitrary current depends solely on the average entropy production. A second, stronger bound requires knowledge both of the thermodynamic forces that drive the system and of the topology of the network of states. These two bounds are conjectures based on extensive numerics. An exponential bound that depends only on the average entropy production and the average number of transitions per time is rigorously proved. This bound has no obvious relation to the parabolic bound but it is typically tighter further away from equilibrium. An asymptotic bound that depends on the specific transition rates and becomes tight for large fluctuations is also derived. This bound allows for the prediction of the asymptotic growth of the generating function. Even though our results are restricted to networks with a finite number of states, we show that the parabolic bound is also valid for three paradigmatic examples of driven diffusive systems for which the generating function can be calculated using the additivity principle. Our bounds provide a general class of constraints for nonequilibrium systems.

  13. Two-dimensional Navier-Stokes turbulence in bounded domains

    NARCIS (Netherlands)

    Clercx, H.J.H.; van Heijst, G.J.F.

    In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the

  14. Two-dimensional Navier-Stokes turbulence in bounded domains

    NARCIS (Netherlands)

    Clercx, H.J.H.; Heijst, van G.J.F.

    2009-01-01

    In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the

  15. Generation of bound states of pulses in a SESAM mode-locked Cr:ZnSe laser

    Science.gov (United States)

    Bu, Xiangbao; Shi, Yuhang; Xu, Jia; Li, Huijuan; Wang, Pu

    2018-06-01

    We report on the generation of bound states of pulses in a SESAM mode-locked Cr:ZnSe laser around 2415 nm. A thulium-doped double-clad fiber laser at 1908 nm was used as the pump source. Bound states with various pulse separations at different dispersion regimes were obtained. Especially, in the anomalous dispersion regime, vibrating bound state of solitons exhibiting an evolving phase was obtained.

  16. Some simple conditions of bound states of Schroedinger operators in dimension d >= 3

    International Nuclear Information System (INIS)

    Exner, P.

    1984-01-01

    A necessary condition for existence of bound states below a given energy of a Schroedinger operator H=-Δ+V on L 2 (Rsup(d)), d>=3, together with a lower bound to the ground-state energy of H are derived using the Sobolev inequalities. It generalizes some recent results to the dimensions d>3 and to the potentials that are not necessarily rapidly decreasing. Comparison to other known necessary conditions is given. The examples of the d-dimensional hydrogen-like atom and the d-dimensional harmonic oscillator are discussed. In both of them the bound to the ground-state energy becomes remarkably tight for large values of d

  17. On resonances and bound states of Smilansky Hamiltonian

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Lotoreichik, Vladimir; Tater, Miloš

    2016-01-01

    Roč. 7, č. 5 (2016), s. 789-802 ISSN 2220-8054 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Smilansky Hamiltonian * resonances * resonance free region * weak coupling asymptotics * Riemann surface * bound states Subject RIV: BE - Theoretical Physics

  18. Accurate calculations of bound rovibrational states for argon trimer

    Energy Technology Data Exchange (ETDEWEB)

    Brandon, Drew; Poirier, Bill [Department of Chemistry and Biochemistry, and Department of Physics, Texas Tech University, Box 41061, Lubbock, Texas 79409-1061 (United States)

    2014-07-21

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar{sub 3}), using the ScalIT suite of parallel codes. The Ar{sub 3} rovibrational energy levels are computed to a very high level of accuracy (10{sup −3} cm{sup −1} or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar{sub 3} are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar{sub 3} is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar{sub 3} may be found in the current literature—and only for the lowest-lying rotational excitations.

  19. Three-photon laser spectroscopy of even-parity bound states of samarium atom

    International Nuclear Information System (INIS)

    Gomonaj, O.Yi.; Kudelich, O.Yi.

    2002-01-01

    The energy spectrum of highly-excited even-parity bound states of a Sm atom, lying in the energy range 34421.1 - 36031.8 cm -1 , is investigated using three-photon resonance-ionization spectroscopy. The energies and total momenta of 48 levels are determined. Eight new levels not observed before are discovered. Thirteen intense two-photon transitions, which can be used in the schemes of Sm atom effective photoionization, are observed

  20. Reduced conservatism in stability robustness bounds by state transformation

    Science.gov (United States)

    Yedavalli, R. K.; Liang, Z.

    1986-01-01

    This note addresses the issue of 'conservatism' in the time domain stability robustness bounds obtained by the Liapunov approach. A state transformation is employed to improve the upper bounds on the linear time-varying perturbation of an asymptotically stable linear time-invariant system for robust stability. This improvement is due to the variance of the conservatism of the Liapunov approach with respect to the basis of the vector space in which the Liapunov function is constructed. Improved bounds are obtained, using a transformation, on elemental and vector norms of perturbations (i.e., structured perturbations) as well as on a matrix norm of perturbations (i.e., unstructured perturbations). For the case of a diagonal transformation, an algorithm is proposed to find the 'optimal' transformation. Several examples are presented to illustrate the proposed analysis.

  1. Observation of the Stark effect in υ+ = 0 Rydberg states of NO: a comparison between predissociating and bound states

    International Nuclear Information System (INIS)

    Jones, N J A; Minns, R S; Patel, R; Fielding, H H

    2008-01-01

    The Stark spectra of Rydberg states of NO below the υ + = 0 ionization limit, with principal quantum numbers n = 25-30, have been investigated in the presence of dc electric fields in the range 0-150 V cm -1 . The Stark states were accessed by two-colour, double-resonance excitation via the υ' = 0, N' = 0 rovibrational state of the A 2 Σ + state. The N( 2 D) atoms produced by predissociation were measured by (2 + 1) resonance-enhanced multiphoton ionization, and compared with pulsed-field ionization spectra of the bound Rydberg state population (Patel et al 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1369)

  2. New approximation to the bound states of Schroedinger operators with coulomb interaction

    International Nuclear Information System (INIS)

    Nunez, M.A.; Izquierdo B., G.

    1994-01-01

    In this work, the authors present a mathematical formulation of the physical fact that the bound states of a quantum system confined into a box Ω (with impenetrable walls) are similar to those of the unconfined system, if the box Ω is sufficiently large, and it is shown how the bound states of atomic and molecular Hamiltonians can be approximated by those of the system confined for a box Ω large enough (Dirichlet eigenproblem in Ω). Thus, a method for computing bound states is obtained which has the advantage of reducing the problem to the case of compact operators. This implies that a broad class of numerical and analytic techniques used for solving the Dirichlet problem, may be applied in full strength to obtain accurate computations of energy levels, wave functions, and other physical properties of interest

  3. Vibronic intensities for Er{sup 3+} in Cs{sub 2} NaErCl{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, R.; Navarro, G. [Departamento de Quimica Basica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Beauchef 850, Casilla 2777, Santiago (Chile); Meruane, T. [Universidad Metropolitana de Ciencias y Educacion, Av. Jose Pedro Alessandri 774, Casilla 147-C Santiago (Chile)

    2001-07-01

    In this current study, we have undertaken vibronic intensity calculations for the absorptions (({sup 4}I{sub 15/2}) {gamma}{sub k}) {yields} (({sup 4}I{sub 13/2}) {gamma}{sub l}) of the Er{sup 3+} in the Cs{sub 2}NaErCl{sub 6} elpasolite type system. This system is extremely complicated to handle from both a theoretical and an experimental viewpoints. This theoretical work shows that over an energy range of about 400 cm{sup -1}, a substantial amount of transitions are likely to take place (about 100 transitions; twenty five of them are magnetic dipole allowed and seventy five are vibronically allowed). It is then a formidable task to identify and assign all of these transitions in a non-ambiguous way. Also the experimental evidence available for these absorptions is related to a total of about twenty lines in the luminescence spectrum of this system. The spectrum itself is very challenging and the superposition of spectral features is most likely to occur. A careful analysis of the calculated vibronic intensities and overall oscillator strengths for the various transitions indicates that the current model used is both flexible and appropriate to deal with this kind of systems. In a forthcoming paper, we will examine the rather unusual high intensity associated with the (({sup 4}I{sub 15/2}) {gamma}{sub k}) {yields} (({sup 4}S{sub 3/2}) {gamma}{sub l}) excitations. (Author)

  4. Electron-electron bound states in parity-preserving QED{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H.; Helayel-Neto, J.A. [Universidade Catolica do Petropolis, RJ (Brazil). Grupo de Fisica Teorica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas; Cima, O.M. del [Universidade Catolica do Petropolis, RJ (Brazil). Grupo de Fisica Teorica; Ferreira Junior, M.M. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]|[Maranhao Univ., Sao Luis, MA (Brazil). Dept. de Fisica

    2002-04-01

    By considering the Higgs mechanism in the framework of a parity-preserving Planar Quantum Electrodynamics, one shows that an attractive electron-electron interaction may dominate. The e{sup -}e{sup -} interaction potential emerges as the non-relativistic limit of the Moeller scattering amplitude and it results attractive with a suitable choice of parameters. Numerically values of the e{sup -}e{sup -} binding energy are obtained by solving the two-dimensional Schroedinger equation. The existence of bound states is a strong indicative that this model may be adopted to address the pairing mechanism of high-T{sub c} superconductivity. (author)

  5. Covalently bound molecular states in beryllium and carbon isotopes

    International Nuclear Information System (INIS)

    Wolfram von, Oertzen; Hans-Gerhard, Bohlen; Wolfram von, Oertzen

    2003-01-01

    Nuclear clustering in N=Z nuclei has been studied since many decades. States close to the decay thresholds, as described by the Ikeda diagram, are of particular interest. Recent studies in loosely bound systems, as observed with neutron-rich nuclei has revived the interest in cluster structures in nuclei, with additional valence neutrons, which give rise to pronounced covalent molecular structures. The Beryllium isotopes represent the first example of such unique states in nuclear physics with extreme deformations. In the deformed shell model these are referred to as super- and hyper-deformation. These states can be described explicitly by molecular concepts, with neutrons in covalent binding orbits. Examples of recent experiments performed at the HMI-Berlin demonstrating the molecular structure of the rotational bands in Beryllium isotopes are presented. Further work on chain states (nuclear polymers) in the carbon isotopes is in progress, these are the first examples of deformed structures in nuclei with an axis ratio of 3:1. A threshold diagram with clusters bound via neutrons in covalent molecular configurations can be established, which can serve as a guideline for future work. (authors)

  6. Unambiguous state discrimination of two density matrices in quantum information theory

    International Nuclear Information System (INIS)

    Raynal, P.

    2008-01-01

    Quantum state discrimination is a fundamental task in quantum information theory. The signals are usually nonorthogonal quantum states, which implies that they can not be perfectly distinguished. One possible discrimination strategy is the so-called Unambiguous State Discrimination (USD) where the states are successfully identified with non-unit probability, but without error. The optimal USD measurement has been extensively studied in the case of pure states, especially for any pair of pure states. Recently, the problem of unambiguously discriminating mixed quantum states has attracted much attention. In the case of a pair of generic mixed states, no complete solution is known. In this thesis, we first present reduction theorems for optimal unambiguous discrimination of two generic density matrices. We show that this problem can be reduced to that of two density matrices that have the same rank r in a 2r-dimensional Hilbert space. These reduction theorems also allow us to reduce USD problems to simpler ones for which the solution might be known. As an application, we consider the unambiguous comparison of n linearly independent pure states with a simple symmetry. Moreover, lower bounds on the optimal failure probability have been derived. For two mixed states they are given in terms of the fidelity. Here we give tighter bounds as well as necessary and sufficient conditions for two mixed states to reach these bounds. We also construct the corresponding optimal measurement. With this result, we provide analytical solutions for unambiguously discriminating a class of generic mixed states. This goes beyond known results which are all reducible to some pure state case. We however show that examples exist where the bounds cannot be reached. Next, we derive properties on the rank and the spectrum of an optimal USD measurement. This finally leads to a second class of exact solutions. Indeed we present the optimal failure probability as well as the optimal measurement for

  7. Parity lifetime of bound states in a proximitized semiconductor nanowire

    DEFF Research Database (Denmark)

    Higginbotham, Andrew Patrick; Albrecht, Sven Marian; Kirsanskas, Gediminas

    2015-01-01

    Quasiparticle excitations can compromise the performance of superconducting devices, causing high frequency dissipation, decoherence in Josephson qubits, and braiding errors in proposed Majorana-based topological quantum computers. Quasiparticle dynamics have been studied in detail in metallic...... superconductor layer, yielding an isolated, proximitized nanowire segment. We identify Andreev-like bound states in the semiconductor via bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound...

  8. The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays

    Energy Technology Data Exchange (ETDEWEB)

    Gadella, M. [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Kuru, Ş. [Department of Physics, Faculty of Science, Ankara University, 06100 Ankara (Turkey); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2017-04-15

    We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays for the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.

  9. New approach to calculate bound state eigenvalues

    International Nuclear Information System (INIS)

    Gerck, E.; Gallas, J.A.C.

    1983-01-01

    A method of solving the radial Schrodinger equation for bound states is discussed. The method is based on a new piecewise representation of the second derivative operator on a set of functions that obey the boundary conditions. This representation is trivially diagonalised and leads to closed form expressions of the type E sub(n)=E(ab+b+c/n+...) for the eigenvalues. Examples are given for the power-law and logarithmic potentials. (Author) [pt

  10. A study of the bound states for square potential wells with position-dependent mass

    International Nuclear Information System (INIS)

    Ganguly, A.; Kuru, S.; Negro, J.; Nieto, L.M.

    2006-01-01

    A potential well with position-dependent mass is studied for bound states. Applying appropriate matching conditions, a transcendental equation is derived for the energy eigenvalues. Numerical results are presented graphically and the variation of the energy of the bound states are calculated as a function of the well-width and mass

  11. Bounds on the entanglement entropy of droplet states in the XXZ spin chain

    Science.gov (United States)

    Beaud, V.; Warzel, S.

    2018-01-01

    We consider a class of one-dimensional quantum spin systems on the finite lattice Λ ⊂Z , related to the XXZ spin chain in its Ising phase. It includes in particular the so-called droplet Hamiltonian. The entanglement entropy of energetically low-lying states over a bipartition Λ = B ∪ Bc is investigated and proven to satisfy a logarithmic bound in terms of min{n, |B|, |Bc|}, where n denotes the maximal number of down spins in the considered state. Upon addition of any (positive) random potential, the bound becomes uniformly constant on average, thereby establishing an area law. The proof is based on spectral methods: a deterministic bound on the local (many-body integrated) density of states is derived from an energetically motivated Combes-Thomas estimate.

  12. Aspects of Majorana Bound States in One-Dimensional Systems with and without Time-Reversal Symmetry

    DEFF Research Database (Denmark)

    Wölms, Konrad Udo Hannes

    In recent years there has been a lot of interest in topological phases of matter. Unlike conventional phases of matter, topological phases are not distinguished by symmetries, but by so-called topological invariants which have more subtle physical implications. It comes therefore as no surprise...... phase the edge excitations are called Majorana bound states and they are interesting in themselves. There has been a lot of eort in detecting Majorana bound states in the lab. One reason is that these excitations provide evidence that a system is indeed in a topological phase. It is therefore required...... to have unambiguous experimental evidence for the presence Majorana bound states, which in turn requires a good theoretical understanding of the physics associated with Majorana bound states. In particular for the most common experimental methods that are used to study them, the signature of Majorana...

  13. Impurity bound states in mesoscopic topological superconducting loops

    Science.gov (United States)

    Jin, Yan-Yan; Zha, Guo-Qiao; Zhou, Shi-Ping

    2018-06-01

    We study numerically the effect induced by magnetic impurities in topological s-wave superconducting loops with spin-orbit interaction based on spin-generalized Bogoliubov-de Gennes equations. In the case of a single magnetic impurity, it is found that the midgap bound states can cross the Fermi level at an appropriate impurity strength and the circulating spin current jumps at the crossing point. The evolution of the zero-energy mode can be effectively tuned by the located site of a single magnetic impurity. For the effect of many magnetic impurities, two independent midway or edge impurities cannot lead to the overlap of zero modes. The multiple zero-energy modes can be effectively realized by embedding a single Josephson junction with impurity scattering into the system, and the spin current displays oscillatory feature with increasing the layer thickness.

  14. Generalized Hofmann quantum process fidelity bounds for quantum filters

    Science.gov (United States)

    Sedlák, Michal; Fiurášek, Jaromír

    2016-04-01

    We propose and investigate bounds on the quantum process fidelity of quantum filters, i.e., probabilistic quantum operations represented by a single Kraus operator K . These bounds generalize the Hofmann bounds on the quantum process fidelity of unitary operations [H. F. Hofmann, Phys. Rev. Lett. 94, 160504 (2005), 10.1103/PhysRevLett.94.160504] and are based on probing the quantum filter with pure states forming two mutually unbiased bases. Determination of these bounds therefore requires far fewer measurements than full quantum process tomography. We find that it is particularly suitable to construct one of the probe bases from the right eigenstates of K , because in this case the bounds are tight in the sense that if the actual filter coincides with the ideal one, then both the lower and the upper bounds are equal to 1. We theoretically investigate the application of these bounds to a two-qubit optical quantum filter formed by the interference of two photons on a partially polarizing beam splitter. For an experimentally convenient choice of factorized input states and measurements we study the tightness of the bounds. We show that more stringent bounds can be obtained by more sophisticated processing of the data using convex optimization and we compare our methods for different choices of the input probe states.

  15. Quantifying entanglement in two-mode Gaussian states

    Science.gov (United States)

    Tserkis, Spyros; Ralph, Timothy C.

    2017-12-01

    Entangled two-mode Gaussian states are a key resource for quantum information technologies such as teleportation, quantum cryptography, and quantum computation, so quantification of Gaussian entanglement is an important problem. Entanglement of formation is unanimously considered a proper measure of quantum correlations, but for arbitrary two-mode Gaussian states no analytical form is currently known. In contrast, logarithmic negativity is a measure that is straightforward to calculate and so has been adopted by most researchers, even though it is a less faithful quantifier. In this work, we derive an analytical lower bound for entanglement of formation of generic two-mode Gaussian states, which becomes tight for symmetric states and for states with balanced correlations. We define simple expressions for entanglement of formation in physically relevant situations and use these to illustrate the problematic behavior of logarithmic negativity, which can lead to spurious conclusions.

  16. Andreev bound states probed in three-terminal quantum dots

    Science.gov (United States)

    Gramich, J.; Baumgartner, A.; Schönenberger, C.

    2017-11-01

    Andreev bound states (ABSs) are well-defined many-body quantum states that emerge from the hybridization of individual quantum dot (QD) states with a superconductor and exhibit very rich and fundamental phenomena. We demonstrate several electron transport phenomena mediated by ABSs that form on three-terminal carbon nanotube (CNT) QDs, with one superconducting (S) contact in the center and two adjacent normal-metal (N) contacts. Three-terminal spectroscopy allows us to identify the coupling to the N contacts as the origin of the Andreev resonance (AR) linewidths and to determine the critical coupling strengths to S, for which a ground state (or quantum phase) transition in such S-QD systems can occur. In addition, we ascribe replicas of the lowest-energy ABS resonance to transitions between the ABS and odd-parity excited QD states, a process we call excited state ABS resonances. In the conductance between the two N contacts we find a characteristic pattern of positive and negative differential subgap conductance, which we explain by considering two nonlocal processes, the creation of Cooper pairs in S by electrons from both N terminals, and a transport mechanism we call resonant ABS tunneling, possible only in multiterminal QD devices. In the latter process, electrons are transferred via the ABS without effectively creating Cooper pairs in S. The three-terminal geometry also allows spectroscopy experiments with different boundary conditions, for example by leaving S floating. Surprisingly, we find that, depending on the boundary conditions and the device parameters, the experiments either show single-particle Coulomb blockade resonances, ABS characteristics, or both in the same measurements, seemingly contradicting the notion of ABSs replacing the single-particle states as eigenstates of the QD. We qualitatively explain these results as originating from the finite time scale required for the coherent oscillations between the superposition states after a single

  17. Bound states of Θ+ in nuclei

    International Nuclear Information System (INIS)

    Oset, E.; Cabrera, D.; Li, Q.B.; Magas, V.K.; Vicente Vacas, M.J.

    2005-01-01

    We study the binding energy and the width of the Θ + in nuclei, associated to the KN and KπN components. The first one leads to negligible contributions while the second one leads to a sizeable attraction, enough to bind the Θ + in nuclei. Pauli blocking and binding effects on the KN decay reduce considerably the Θ + decay width in nuclei and medium effects associated to the KπN component also lead to a very small width, as a consequence of which one finds separation between the bound levels considerably larger than the width of the states

  18. Relativistic treatment of fermion-antifermion bound states

    International Nuclear Information System (INIS)

    Lucha, W.; Rupprecht, H.; Schoeberl, F.F.

    1990-01-01

    We discuss the relativistic treatment of fermion-antifermion bound states by an effective-Hamiltonian method which imitates their description in terms of nonrelativistic potential models: the effective interaction potential, to be used in a Schroedinger equation which incorporates relativistic kinematics, is derived from the underlying quantum field theory. This approach is equivalent to the instantaneous approximation to the Bethe-Salpeter equation called Salpeter equation but comes closer to physical intuition than the latter one. (Author) 14 refs

  19. The covariant-evolution-operator method in bound-state QED

    International Nuclear Information System (INIS)

    Lindgren, Ingvar; Salomonson, Sten; Aasen, Bjoern

    2004-01-01

    The methods of quantum-electrodynamical (QED) calculations on bound atomic systems are reviewed with emphasis on the newly developed covariant-evolution-operator method. The aim is to compare that method with other available methods and also to point out possibilities to combine that with standard many-body perturbation theory (MBPT) in order to perform accurate numerical QED calculations, including quasi-degeneracy, also for light elements, where the electron correlation is relatively strong. As a background, the time-independent many-body perturbation theory (MBPT) is briefly reviewed, particularly the method with extended model space. Time-dependent perturbation theory is discussed in some detail, introducing the time-evolution operator and the Gell-Mann-Low relation, generalized to an arbitrary model space. Three methods of treating the bound-state QED problem are discussed. The standard S-matrix formulation, which is restricted to a degenerate model space, is discussed only briefly. Two methods applicable also to the quasi-degenerate problem are treated in more detail, the two-times Green's-function and the covariant-evolution-operator techniques. The treatment is concentrated on the latter technique, which has been developed more recently and which has not been discussed in more detail before. A comparison of the two-times Green's-function and the covariant-evolution-operator techniques, which have great similarities, is performed. In the appendix a simple procedure is derived for expressing the evolution-operator diagrams of arbitrary order. The possibilities of merging QED in the covariant evolution-operator formulation with MBPT in a systematic way is indicated. With such a technique it might be feasible to perform accurate QED calculations also on light elements, which is presently not possible with the techniques available

  20. Bound states and scattering coefficients of the -aδ(x)+bδ'(x) potential

    International Nuclear Information System (INIS)

    Gadella, M.; Negro, J.; Nieto, L.M.

    2009-01-01

    We show that a one-dimensional Schroedinger equation in which the potential is a delta well plus a δ ' interaction at the same point has a bound state, and we obtain the energy of this bound state in terms of the parameters. In addition, the expression of the reflection and transmission coefficients is also fully determined

  1. Geometric phase effects in low-energy dynamics near conical intersections: A study of the multidimensional linear vibronic coupling model

    International Nuclear Information System (INIS)

    Joubert-Doriol, Loïc; Ryabinkin, Ilya G.; Izmaylov, Artur F.

    2013-01-01

    In molecular systems containing conical intersections (CIs), a nontrivial geometric phase (GP) appears in the nuclear and electronic wave functions in the adiabatic representation. We study GP effects in nuclear dynamics of an N-dimensional linear vibronic coupling (LVC) model. The main impact of GP on low-energy nuclear dynamics is reduction of population transfer between the local minima of the LVC lower energy surface. For the LVC model, we proposed an isometric coordinate transformation that confines non-adiabatic effects within a two-dimensional subsystem interacting with an N − 2 dimensional environment. Since environmental modes do not couple electronic states, all GP effects originate from nuclear dynamics within the subsystem. We explored when the GP affects nuclear dynamics of the isolated subsystem, and how the subsystem-environment interaction can interfere with GP effects. Comparing quantum dynamics with and without GP allowed us to devise simple rules to determine significance of the GP for nuclear dynamics in this model

  2. Large impedances and Majorana bound states in superconducting circuits

    International Nuclear Information System (INIS)

    Ulrich, Jascha

    2017-01-01

    Superconducting circuits offer the opportunity to study quantum mechanics on mesoscopic scales unimpeded by dissipation. This fact and the nonlinearity of the Josephson inductance make it possible to use superconducting circuits as artificial atoms whose long-lived states can be selectively addressed and studied. A pronounced nonlinearity of the energy spectrum, however, requires quantum fluctuations of the flux across the Josephson junction which are large on the scale of the superconducting flux quantum Φ Q =h/2e. This implies charge fluctuations below the single Cooper-pair limit via flux-charge duality. The localization of charge leads to a strong susceptibility to interactions with charges in the environment which has motivated the search for schemes to decouple charges from their environment. This thesis is concerned with theoretical challenges arising from two complementary approaches to this problem: the realization of large impedances and the fractionalization of electrons by means of Majorana bound states. In recent years, the decoupling of charges from the environment through reactive large impedances, so-called ''superinductances'' L, has attracted much interest. These inductances feature small parasitic capacitance C such that the characteristic impedance √(L/C) is much larger than the superconducting resistance quantum R Q =h/4e 2 . Superinductances have various applications ranging from qubit designs such as the 0-π qubit or the fluxonium to impedance matching, Bloch oscillations and the stabilization of phase slips in superconducting nanowires. Although there exists a well-established formalism for the quantization of superconducting circuits in terms of node fluxes, this formalism is ill-suited for the description of fast flux transport with localized charges in large-impedance environments. In particular, the nonlinear capacitive behavior of phase slip junctions cannot be modeled in a straightforward way using node fluxes

  3. Static and dynamic properties of QCD bound states

    International Nuclear Information System (INIS)

    Kubrak, Stanislav

    2015-01-01

    The QCD phenomenology can be faced with the framework of the coupled quark DSE, meson BSE and baryon Faddeev equation, providing non-perturbative, continuum and Poincare invariant scientific approach. The research performed throughout this thesis is twofold. From one perspective we focus on the investigation of mass spectra for mesons with total spin quantum number J=3 and arising Regge-trajectory for natural parity states J PC =1 -- ,2 ++ ,3 -- within rainbow-ladder single gluon exchange model. The other findings are concerning the impact of the pion cloud effect on J>2 meson states, baryon masses, namely on Nucleon and Delta three-body bound states and meson dynamical properties like the pion form factor.

  4. Bound states and molecular structure of systems with hyperons

    International Nuclear Information System (INIS)

    Akaishi, Y.

    1992-01-01

    Microscopic calculations are done for Σ-hypernuclear few-body systems by a method named ATMS. Among two- to five-body systems, only the Σ 4 He(0 + ) and Σ 4 H(0 + ) hypernuclei are expected to be bound: The binding energy and the width of the former are calculated to be 3.7 ∼ 4.6 MeV and 4.5 ∼ 7.9 MeV, respectively. The observation of Σ 4 He at KEK is in good agreement with the above prediction. The nucleus-Σ potential has a strong Lane term and a repulsive bump at short distance. The Lane term makes the system bound and the bump suppresses the ΣN → ΛN conversion. X-ray measurement of level shifts in the 4 He-Σ - , 3 He-Σ - and 3 H-Σ - atoms can provide another information on the Lane term. In 208 Pb, there may exist a peculiar state, Coulomb-assisted (atomnucleus) hybrid state, where Σ - is trapped in the surface region by the strong interaction with the aid of the inner centrifugal repulsion and the outer Coulomb attraction. An analysis is given for new data of Ξ -.12 C atomic or nuclear systems from the emulsion-counter experiment at KEK. The double-Λ hypernucleus formation rate is calculated for a stopped Ξ - on 4 He. A high branching ratio of 37% is obtained for the ΛΛ 4 H formation from a Ξ -.4 He atom. The detection of about 2.3 MeV neutron is proposed to search for lightest double-Λ hypernucleus ΛΛ 4 H. (author)

  5. Cytometry of chromatin bound Mcm6 and PCNA identifies two states in G1 that are separated functionally by the G1 restriction point1

    Directory of Open Access Journals (Sweden)

    Jacobberger James W

    2010-04-01

    Full Text Available Abstract Background Cytometric measurements of DNA content and chromatin-bound Mcm2 have demonstrated bimodal patterns of expression in G1. These patterns, the replication licensing function of Mcm proteins, and a correlation between Mcm loading and cell cycle commitment for cells re-entering the cell cycle, led us to test the idea that cells expressing a defined high level of chromatin-bound Mcm6 in G1 are committed - i.e., past the G1 restriction point. We developed a cell-based assay for tightly-bound PCNA (PCNA* and Mcm6 (Mcm6*, DNA content, and a mitotic marker to clearly define G1, S, G2, and M phases of the cell cycle. hTERT-BJ1, hTERT-RPE-1, and Molt4 cells were extracted with Triton X-100 followed by methanol fixation, stained with antibodies and DAPI, then measured by cytometry. Results Bivariate analysis of cytometric data demonstrated complex patterns with distinct clustering for all combinations of the 4 variables. In G1, cells clustered in two groups characterized by low and high Mcm6* expression. Serum starvation and release experiments showed that residence in the high group was in late G1, just prior to S phase. Kinetic experiments, employing serum withdrawal, and stathmokinetic analysis with aphidicolin, mimosine or nocodazole demonstrated that cells with high levels of Mcm6* cycled with the committed phases of the cell cycle (S, G2, and M. Conclusions A multivariate assay for Mcm6*, PCNA*, DNA content, and a mitotic marker provides analysis capable of estimating the fraction of pre and post-restriction point G1 cells and supports the idea that there are at least two states in G1 defined by levels of chromatin bound Mcm proteins.

  6. Nucleon Viewed as a Borromean Bound-State

    Science.gov (United States)

    Segovia, Jorge; Mezrag, Cédric; Chang, Lei; Roberts, Craig D.

    2018-05-01

    We explain how the emergent phenomenon of dynamical chiral symmetry breaking ensures that Poincaré covariant analyses of the three valence-quark scattering problem in continuum quantum field theory yield a picture of the nucleon as a Borromean bound-state, in which binding arises primarily through the sum of two separate contributions. One involves aspects of the non-Abelian character of Quantum Chromodynamics that are expressed in the strong running coupling and generate tight, dynamical color-antitriplet quark-quark correlations in the scalar-isoscalar and pseudovector-isotriplet channels. This attraction is magnified by quark exchange associated with diquark breakup and reformation, which is required in order to ensure that each valence-quark participates in all diquark correlations to the complete extent allowed by its quantum numbers. Combining these effects, we arrive at a properly antisymmetrised Faddeev wave function for the nucleon and calculate, e.g. the flavor-separated versions of the Dirac and Pauli form factors and the proton's leading-twist parton distribution amplitude. We conclude that available data and planned experiments are capable of validating the proposed picture.

  7. Coexistence of a bound state and scattering at the same energy value: a quantum paradox

    International Nuclear Information System (INIS)

    Chabanov, V.M.; Zakhar'ev, B.N.

    1998-01-01

    The example of a multi-channel system which possesses both bound (not quasi-bound !) and scattering states at the same energy value E is demonstrated. A special interaction has ability to confine waves near the origin and simultaneously admit scattering (even with transparency) at the fixed spectral point. These interaction matrices and wave functions can be continued to the whole axis. As another multi-channel peculiarity having no one-channel analogues was found a class of absolutely transparent interaction matrices without bound states

  8. A search for bound states of the /eta/-meson in light nuclei

    International Nuclear Information System (INIS)

    Pile, P.H.

    1988-01-01

    This paper describes an experiment designed to search for a new form of nuclear matter--a bound /eta/-nucleus system. The (π + ,p) reaction was used to study the possible formation of an /eta/-mesic nucleus. No narrow /eta/-nuclear bound states were observed using 7 Li, 12 C, 16 O and 27 Al targets. 7 refs., 4 figs., 1 tab

  9. Excitation spectra and wave functions of quasiparticle bound states in bilayer Rashba superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, Yoichi, E-mail: higashiyoichi@ms.osakafu-u.ac.jp [Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Nagai, Yuki [CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871 (Japan); Yoshida, Tomohiro [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Kato, Masaru [Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Yanase, Youichi [Department of Physics, Niigata University, Niigata 950-2181 (Japan)

    2015-11-15

    Highlights: • We focus on the pair-density wave state in bilayer Rashba superconductors. • The zero energy Bogoliubov wave functions are localized at the edge and vortex core. • We investigate the excitation spectra of edge and vortex bound states. - Abstract: We study the excitation spectra and the wave functions of quasiparticle bound states at a vortex and an edge in bilayer Rashba superconductors under a magnetic field. In particular, we focus on the quasiparticle states at the zero energy in the pair-density wave state in a topologically non-trivial phase. We numerically demonstrate that the quasiparticle wave functions with zero energy are localized at both the edge and the vortex core if the magnetic field exceeds the critical value.

  10. Bound and resonant states in Coulomb-like potentials

    International Nuclear Information System (INIS)

    Papp, Z.

    1985-12-01

    The potential separable expansion method was generalized for calculating bound and resonant states in Coulomb-like potentials. The complete set of Coulomb-Sturmian functions was taken as the basis to expand the short-range potential. On this basis the matrix elements of the Coulomb-Green functions were given in closed form as functions of the (complex) energy. The feasibility of the method is demonstrated by a numerical example. (author)

  11. Boson bound states in the β-Fermi–Pasta–Ulam model

    Indian Academy of Sciences (India)

    The bound states of four bosons in the quantum -Fermi–Pasta–Ulam model are investigated and some interesting results are presented using the number conserving approximation combined ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science

  12. A corrected NEGF + DFT approach for calculating electronic transport through molecular devices: Filling bound states and patching the non-equilibrium integration

    International Nuclear Information System (INIS)

    Li Rui; Zhang Jiaxing; Hou Shimin; Qian Zekan; Shen Ziyong; Zhao Xingyu; Xue Zengquan

    2007-01-01

    We discuss two problems in the conventional approach for studying charge transport in molecular electronic devices that is based on the non-equilibrium Green's function formalism and density functional theory, i.e., the bound states and the numerical integration of the non-equilibrium density matrix. A scheme of filling the bound states in the bias window and a method of patching the non-equilibrium integration are proposed, both of which are referred to as the non-equilibrium correction. The discussion is illustrated by means of calculations on a model system consisting of a 4,4 bipyridine molecule connected to two semi-infinite gold monatomic chains

  13. Does the Higgs mechanism favour electron-electron bound states in Maxwell-Chern-Simons QED3?

    International Nuclear Information System (INIS)

    Belich, Humberto; Helayeel-Neto, Jose Abdalla; Ferreira Junior, Manoel Messias

    2000-01-01

    Full text follows: We show that low-energy electron-electron bound states appear in the Maxwell-Chern-Simons (MCS) planar QED. In spite of the repulsive interaction mediated by the MCS gauge field, a net attractive interaction stems due to the Higgs mechanism through an Yukawa-type interaction. The spontaneous breaking of a local U(1)-symmetry is realized by a γ 6 -type potential. We conclude, by using the Schroedinger equation associated to the net attractive scattering potential, that electron-electron bound states arise in the model. Therefore, the Higgs mechanism overcomes the difficulties found out by Girotti et al. (Phys. Rev. Lett. 69 (1992) 2623) in searching for bound states in the MCS planar QED. (author)

  14. Ultraheavy Yukawa-bound states of fourth-generation at Large ...

    Indian Academy of Sciences (India)

    2012-10-05

    Oct 5, 2012 ... Abstract. A study of bound states of the fourth-generation quarks in the range of 500–700 GeV is presented, where the binding energies are expected to be mainly of Yukawa origin, with QCD subdominant. Near degeneracy of their masses exhibits a new 'isospin'. The production of a colour- octet, isosinglet ...

  15. Bound-state β decay of a neutron in a strong magnetic field

    International Nuclear Information System (INIS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2005-01-01

    The β decay of a neutron into a bound (pe - ) state and an antineutrino in the presence of a strong uniform magnetic field (B > or approx. 10 13 G) is considered. The β decay process is treated within the framework of the standard model of weak interactions. A Bethe-Salpeter formalism is employed for description of the bound (pe - ) system in a strong magnetic field. For the field strengths 10 13 18 G the estimate for the ratio of the bound-state decay rate w b and the usual (continuum-state) decay rate w c is derived. It is found that in such strong magnetic fields w b /w c ∼0.1-0.4. This is in contrast to the field-free case, where w b /w c ≅4.2x10 -6 [J. N. Bahcall, Phys. Rev. 124, 495 (1961); L. L. Nemenov, Sov. J. Nucl. Phys. 15, 582 (1972); X. Song, J. Phys. G: Nucl. Phys. 13, 1023 (1987)]. The dependence of the ratio w b /w c on the magnetic field strength B exhibits a logarithmiclike behavior. The obtained results can be important for applications in astrophysics and cosmology

  16. Localized bound states of fermions interacting via massive vector bosons

    International Nuclear Information System (INIS)

    Ionescu, D.C.; Reinhardt, J.; Mueller, B.; Greiner, W.; Soff, G.

    1988-11-01

    A model for composite consisting of fermions with internal degrees of freedom interacting via intermediate vector bosons (IVB) is constructed. We find highly localized, low-mass bound states in the Hartree-Fock approximation. We investigate the dependence of these states as function of the coupling constant and vector boson mass. In the limit of infinite vector boson mass the interaction is described by Fermi-type contact forces. (orig.)

  17. A bridge between hyperspherical and integro-differential approaches to the many-body bound states

    International Nuclear Information System (INIS)

    Fabre de la Ripelle, M.

    1986-01-01

    The solution of the Schroedinger equation can be obtained from the one of a system of coupled differential equations generated from the potential harmonic expansion of the bound-state wave function of a system of identical particles governed by two-body central interactions. It is shown that the system of coupled equations can be transformed into an equivalent integro-differential equation. For three bosons in S states this equation is identical to the Faddeev equation as written by Noyes. The integro-differential equations describing the triton for non-central realistic N-N forces are explicitly given. (Auth.)

  18. Boson bound states in the β-Fermi–Pasta–Ulam model

    Indian Academy of Sciences (India)

    5. — journal of. November 2013 physics pp. 839–848. Boson bound states in the ... of Basic Sciences, The First Aeronautical Institute of the Air Force, Xinyang 464000, ..... [4] N Boechler, G Theocharis, S Job, P G Kevrekidis, M A Porter and C ...

  19. Many electron variational ground state of the two dimensional Anderson lattice

    International Nuclear Information System (INIS)

    Zhou, Y.; Bowen, S.P.; Mancini, J.D.

    1991-02-01

    A variational upper bound of the ground state energy of two dimensional finite Anderson lattices is determined as a function of lattice size (up to 16 x 16). Two different sets of many-electron basis vectors are used to determine the ground state for all values of the coulomb integral U. This variational scheme has been successfully tested for one dimensional models and should give good estimates in two dimensions

  20. Spectroscopic properties of the S1 state of linear carotenoids after excess energy excitation

    Science.gov (United States)

    Kuznetsova, Valentyna; Southall, June; Cogdell, Richard J.; Fuciman, Marcel; Polívka, Tomáš

    2017-09-01

    Properties of the S1 state of neurosporene, spheroidene and lycopene were studied after excess energy excitation in the S2 state. Excitation of carotenoids into higher vibronic levels of the S2 state generates excess vibrational energy in the S1 state. The vibrationally hot S1 state relaxes faster when carotenoid is excited into the S2 state with excess energy, but the S1 lifetime remains constant regardless of which vibronic level of the S2 state is excited. The S∗ signal depends on excitation energy only for spheroidene, which is likely due to asymmetry of the molecule, facilitating conformations responsible for the S∗ signal.

  1. Possibility of a 4He2 bound state, effective range theory, and very low energy He--He scattering

    International Nuclear Information System (INIS)

    Uang, Y.; Stwalley, W.C.

    1982-01-01

    The best available intermolecular potential for helium by Aziz, Nain, Carley, Taylor, and McConville is shown here for the first time to have a 4 He 2 bound state. Two numerical analyses, namely, eigenvalue solution and effective range theory, are used to support this conclusion. Unlike usual chemically bound species, the binding energy of this very weakly bound level is found to be only 8.3 x 10 -4 K, which is four orders of magnitude smaller than the potential well depth epsilon = 10.8 K. The scattering length for He+He collisions, determined from effective range theory, is used to calculate the elastic cross section in the very low energy limit. The results (1.878 x 10 5 A 2 for 4 He+ 4 He and 6.035 x 10 2 A for 3 He+ 3 He) are consistent with measurements at the lowest velocities yet attained. In terms of the estimated uncertainties of the parameters of the potential of Aziz and co-workers, it is shown that it is very likely that a bound state of the 4 He 2 molecule does in fact exist

  2. Scattering integral equations and four nucleon problem. Four nucleon bound states and scattering

    International Nuclear Information System (INIS)

    Narodetskij, I.M.

    1981-01-01

    Existing results from the application of integral equation technique four-nucleon bound states and scattering are reviewed. The purpose of this review is to provide a clear and elementary introduction in the integral equation method and to demonstrate its usefulness in physical applications. Developments in the actual numerical solutions of Faddeev-Yakubovsky type equations are such that a detailed comparison can be made with experiment. Bound state calculations indicate that a nonrelativistic description with pairwise nuclear forces does not suffice and additional degrees of freedom are noted [ru

  3. Algorithms for polynomial spectral factorization and bounded-real balanced state space representations

    NARCIS (Netherlands)

    Rapisarda, P.; Trentelman, H.L.; Minh, H.B.

    We illustrate an algorithm that starting from the image representation of a strictly bounded-real system computes a minimal balanced state variable, from which a minimal balanced state realization is readily obtained. The algorithm stems from an iterative procedure to compute a storage function,

  4. R-matrix calculations for few-quark bound states

    International Nuclear Information System (INIS)

    Shalchi, M.A.; Hadizadeh, M.R.

    2016-01-01

    The R-matrix method is implemented to study the heavy charm and bottom diquark, triquark, tetraquark, and pentaquarks in configuration space, as the bound states of quark-antiquark, diquark-quark, diquark-antidiquark, and diquark-antitriquark systems, respectively. The mass spectrum and the size of these systems are calculated for different partial wave channels. The calculated masses are compared with recent theoretical results obtained by other methods in momentum and configuration spaces and also by available experimental data. (orig.)

  5. Bounding species distribution models

    Directory of Open Access Journals (Sweden)

    Thomas J. STOHLGREN, Catherine S. JARNEVICH, Wayne E. ESAIAS,Jeffrey T. MORISETTE

    2011-10-01

    Full Text Available Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for “clamping” model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART and maximum entropy (Maxent models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5: 642–647, 2011].

  6. Bounding Species Distribution Models

    Science.gov (United States)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  7. Robustness of Majorana bound states in the short-junction limit

    NARCIS (Netherlands)

    Sticlet, D.C.; Nijholt, B.; Akhmerov, A.R.

    2017-01-01

    We study the effects of strong coupling between a superconductor and a semiconductor nanowire on the creation of the Majorana bound states, when the quasiparticle dwell time in the normal part of the nanowire is much shorter than the inverse superconducting gap. This "short-junction" limit is

  8. Lower Bounds on the Capacity of the Relay Channel with States at the Source

    Directory of Open Access Journals (Sweden)

    Abdellatif Zaidi

    2009-01-01

    Full Text Available We consider a state-dependent three-terminal full-duplex relay channel with the channel states noncausally available at only the source, that is, neither at the relay nor at the destination. This model has application to cooperation over certain wireless channels with asymmetric cognition capabilities and cognitive interference relay channels. We establish lower bounds on the channel capacity for both discrete memoryless (DM and Gaussian cases. For the DM case, the coding scheme for the lower bound uses techniques of rate-splitting at the source, decode-and-forward (DF relaying, and a Gel'fand-Pinsker-like binning scheme. In this coding scheme, the relay decodes only partially the information sent by the source. Due to the rate-splitting, this lower bound is better than the one obtained by assuming that the relay decodes all the information from the source, that is, full-DF. For the Gaussian case, we consider channel models in which each of the relay node and the destination node experiences on its link an additive Gaussian outside interference. We first focus on the case in which the links to the relay and to the destination are corrupted by the same interference; and then we focus on the case of independent interferences. We also discuss a model with correlated interferences. For each of the first two models, we establish a lower bound on the channel capacity. The coding schemes for the lower bounds use techniques of dirty paper coding or carbon copying onto dirty paper, interference reduction at the source and decode-and-forward relaying. The results reveal that, by opposition to carbon copying onto dirty paper and its root Costa's initial dirty paper coding (DPC, it may be beneficial in our setup that the informed source uses a part of its power to partially cancel the effect of the interference so that the uninformed relay benefits from this cancellation, and so the source benefits in turn.

  9. Upper bounds on entangling rates of bipartite Hamiltonians

    International Nuclear Information System (INIS)

    Bravyi, Sergey

    2007-01-01

    We discuss upper bounds on the rate at which unitary evolution governed by a nonlocal Hamiltonian can generate entanglement in a bipartite system. Given a bipartite Hamiltonian H coupling two finite dimensional particles A and B, the entangling rate is shown to be upper bounded by c log(d) parallel H parallel, where d is the smallest dimension of the interacting particles parallel H parallel is the operator norm of H, and c is a constant close to 1. Under certain restrictions on the initial state we prove an analogous upper bound for the ancilla-assisted entangling rate with a constant c that does not depend upon dimensions of local ancillas. The restriction is that the initial state has at most two distinct Schmidt coefficients (each coefficient may have arbitrarily large multiplicity). Our proof is based on analysis of a mixing rate - a functional measuring how fast entropy can be produced if one mixes a time-independent state with a state evolving unitarily

  10. Raman dispersion spectroscopy on the highly saddled nickel(II)-octaethyltetraphenylporphyrin reveals the symmetry of nonplanar distortions and the vibronic coupling strength of normal modes

    International Nuclear Information System (INIS)

    Schweitzer-Stenner, R.; Stichternath, A.; Dreybrodt, W.; Jentzen, W.; Song, X.; Shelnutt, J.A.; Nielsen, O.F.; Medforth, C.J.; Smith, K.M.

    1997-01-01

    We have measured the polarized Raman cross sections and depolarization ratios of 16 fundamental modes of nickel octaethyltetraphenylporphyrin in a CS 2 solution for 16 fundamental modes, i.e., the A 1g -type vibrations ν 1 , ν 2 , ν 3 , ν 4 , ν 5 , and φ 8 , the B 1g vibrations ν 11 and ν 14 , the B 2g vibrations ν 28 , ν 29 , and ν 30 and the antisymmetric A 2g modes ν 19 , ν 20 , ν 22 , and ν 23 as function of the excitation wavelength. The data cover the entire resonant regions of the Q- and B-bands. They were analyzed by use of a theory which describes intra- and intermolecular coupling in terms of a time-independent nonadiabatic perturbation theory [E. Unger, U. Bobinger, W. Dreybrodt, and R. Schweitzer-Stenner, J. Phys. Chem. 97, 9956 (1993)]. This approach explicitly accounts in a self-consistent way for multimode mixing with all Raman modes investigated. The vibronic coupling parameters obtained from this procedure were then used to successfully fit the vibronic side bands of the absorption spectrum and to calculate the resonance excitation profiles in absolute units. Our results show that the porphyrin macrocycle is subject to B 2u -(saddling) and B 1u -(ruffling) distortions which lower its symmetry to S 4 . Thus, evidence is provided that the porphyrin molecule maintains the nonplanar structure of its crystal phase in an organic solvent. The vibronic coupling parameters indicate a breakdown of the four-orbital model. This notion is corroborated by (ZINDO/S) calculations which reveal that significant configurational interaction occurs between the electronic transitions into |Q right-angle- and |1B right-angle-states and various porphyrin→porphyrin, metal→porphyrin, and porphyrin→metal transitions. (Abstract Truncated)

  11. Deeply bound pionic atom

    International Nuclear Information System (INIS)

    Toki, Hiroshi; Yamazaki, Toshimitsu

    1989-01-01

    The standard method of pionic atom formation does not produce deeply bound pionic atoms. A study is made on the properties of deeply bound pionic atom states by using the standard pion-nucleus optical potential. Another study is made to estimate the cross sections of the formation of ls pionic atom states by various methods. The pion-nucleus optical potential is determined by weakly bound pionic atom states and pion nucleus scattering. Although this potential may not be valid for deeply bound pionic atoms, it should provide some hint on binding energies and level widths of deeply bound states. The width of the ls state comes out to be 0.3 MeV and is well separated from the rest. The charge dependence of the ls state is investigated. The binding energies and the widths increase linearly with Z azbove a Z of 30. The report then discusses various methods to populate deeply bound pionic atoms. In particular, 'pion exchange' reactions are proposed. (n, pπ) reaction is discussed first. The cross section is calculated by assuming the in- and out-going nucleons on-shell and the produced pion in (n1) pionic atom states. Then, (n, dπ - ) cross sections are estimated. (p, 2 Heπ - ) reaction would have cross sections similar to the cross section of (n, dπ - ) reaction. In conclusion, it seems best to do (n, p) experiment on heavy nuclei for deeply bound pionic atom. (Nogami, K.)

  12. Pentaquark as a NK* bound state with TJP=0(3/2)-

    International Nuclear Information System (INIS)

    Takeuchi, Sachiko; Shimizu, Kiyotaka

    2005-01-01

    We have investigated negative-parity uudds pentaquarks by employing a quark model with the meson exchange and the effective gluon exchange as qq and qq interactions. The system of five quarks is dynamically solved; the qq and qq correlations are taken into account in the wave function. The masses of the pentaquarks are found to be reasonably low. It is found that the lowest-mass state is TJ P =0(1/2) - and the next lowest one is 0(3/2) - . The former is reported to have a large width. We argue that the observed narrow peak corresponds to the latter state. It is still necessary to introduce an extra attraction to reduce the mass further by 140-280 MeV to reproduce the observed Θ + mass. Since their level splitting is less than 80 MeV, the lower level will not become a bound state below the NK threshold even after such an attraction is introduced. It is also found that the relative distance of two quarks with the attractive interaction is found to be by about 1.2-1.3 times closer than that of the repulsive one. The two-body correlation seems important in the pentaquark systems

  13. Upper bounds on the entropy of radiation systems

    Institute of Scientific and Technical Information of China (English)

    汪定雄

    1997-01-01

    The upper bounds on the entropy of a radiation system confined to a spherical box are calculated in six cases by using the equation of state of radiation in flat spacetime and the equation of state of radiation near black-hole horizon,which was derived by Li and Liu (hereafter the Li-Liu equation).It turns out that the Li-Liu equation does have unique advantage in dealing with the entropy bound of critical self-gravitating radiation systems,while the usual equation of state will result in entropy divergence.In the case of non-self-gravitating radiation systems and non-critical self-gravitating radiation systems,there is no difference in the entropy bounds derived by these two equations of state.

  14. Recent advances in bound state quantum electrodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Lepage, G.P.

    1977-06-01

    Recent developments are reviewed in four areas of computational quantum electrodynamics: a new relativistic two-body formalism equal in rigor to the Bethe-Salpeter formalism but with strong calculational advantages is discussed; recent work on the computation of the decay rate of bound systems (positronium in particular) is presented; limits on possible composite structure of leptons are discussed; a new multidimensional integration program ('VEGAS') suitable for higher order calculations is presented

  15. Security bound of two-basis quantum-key-distribution protocols using qudits

    International Nuclear Information System (INIS)

    Nikolopoulos, Georgios M.; Alber, Gernot

    2005-01-01

    We investigate the security bounds of quantum-cryptographic protocols using d-level systems. In particular, we focus on schemes that use two mutually unbiased bases, thus extending the Bennett-Brassard 1984 quantum-key-distribution scheme to higher dimensions. Under the assumption of general coherent attacks, we derive an analytic expression for the ultimate upper security bound of such quantum-cryptography schemes. This bound is well below the predictions of optimal cloning machines. The possibility of extraction of a secret key beyond entanglement distillation is discussed. In the case of qutrits we argue that any eavesdropping strategy is equivalent to a symmetric one. For higher dimensions such an equivalence is generally no longer valid

  16. Interaction of D0-brane bound states and Ramond-Ramond photons

    International Nuclear Information System (INIS)

    Fatollahi, Amir H.

    2002-01-01

    We consider the problem of the interaction between a D0-brane bound state and one-form Ramond-Ramond (RR) photons using the world-line theory. Based on the fact that in the world-line theory the RR gauge fields depend on the matrix coordinates of D0-branes, the gauge fields also appear as matrices in the formulation. At the classical level, we derive the Lorentz-like equations of motion for D0-branes, and it is observed that the center of mass is colorless with respect to the SU(N) sector of the background. Using the path integral method, the perturbation theory for the interaction between the bound state and the RR background is developed. Qualitative considerations show that the possibility of the existence of a map between the world-line theory and the non-Abelian gauge theory is very considerable

  17. Lower bound on inconclusive probability of unambiguous discrimination

    International Nuclear Information System (INIS)

    Feng Yuan; Zhang Shengyu; Duan Runyao; Ying Mingsheng

    2002-01-01

    We derive a lower bound on the inconclusive probability of unambiguous discrimination among n linearly independent quantum states by using the constraint of no signaling. It improves the bound presented in the paper of Zhang, Feng, Sun, and Ying [Phys. Rev. A 64, 062103 (2001)], and when the optimal discrimination can be reached, these two bounds coincide with each other. An alternative method of constructing an appropriate measurement to prove the lower bound is also presented

  18. What can Andreev bound states tell us about superconductors?

    Science.gov (United States)

    Millo, Oded; Koren, Gad

    2018-08-06

    Zero-energy Andreev bound states, which manifest themselves in the tunnelling spectra as zero-bias conductance peaks (ZBCPs), are abundant at interfaces between superconductors and other materials and on the nodal surface of high-temperature superconductors. In this review, we focus on the information such excitations can provide on the properties of superconductor systems. First, a general introduction to the physics of Andreev bound states in superconductor/normal metal interfaces is given with a particular emphasis on why they appear at zero energy in d -wave superconductors. Then, specific spectroscopic tunnelling studies of thin films, bilayers and junctions are described, focusing on the corresponding ZBCP features. Scanning tunnelling spectroscopy (STS) studies show that the ZBCPs on the c -axis YBa 2 Cu 3 O 7- δ (YBCO) films are correlated with the surface morphology and appear only in proximity to (110) facets. STS on c -axis La 1.88 Sr 0.12 CuO 4 (LSCO) films exhibiting the 1/8 anomaly shows spatially modulated peaks near zero bias associated with the anti-phase ordering of the d -wave order parameter predicted at this doping level. ZBCPs were also found in micrometre-size edge junctions of YBCO/SrRuO 3 /YBCO, where SrRuO 3 is ferromagnetic. Here, the results are consistent with a crossed Andreev reflection effect (CARE) at the narrow domain walls of the SrRuO 3 ZBCPs measured in STS studies of manganite/cuprate bilayers could not be attributed to CARE because the manganite's domain wall is much larger than the coherence length in YBCO, and instead are attributed to proximity-induced triplet-pairing superconductivity with non-conventional symmetry. And finally, ZBCPs found in junctions of non-intentionally doped topological insulator films of Bi 2 Se 3 and the s -wave superconductor NbN are attributed to proximity-induced p x  + ip y triplet order parameter in the topological material.This article is part of the theme issue 'Andreev bound states'.

  19. The characterization of the high-frequency vibronic contributions to the 77 K emission spectra of ruthenium-am(m)ine-bipyridyl complexes, their attenuation with decreasing energy gaps, and the implications of strong electronic coupling for inverted-region electron transfer.

    Science.gov (United States)

    Xie, Puhui; Chen, Yuan-Jang; Uddin, Md Jamal; Endicott, John F

    2005-06-02

    The 77 K emission spectra of a series of [Ru(Am)6-2n(bpy)n]2+ complexes (n = 1-3) have been determined in order to evaluate the effects of appreciable excited state (e)/ground state (g) configurational mixing on the properties of simple electron-transfer systems. The principal focus is on the vibronic contributions, and the correlated distortions of the bipyridine ligand in the emitting MLCT excited state. To address the issues that are involved, the emission band shape at 77 K is interpreted as the sum of a fundamental component, corresponding to the {e,0'} --> {g,0} transition, and progressions in the ground-state vibrational modes that correlate with the excited-state distortion. Literature values of the vibrational parameters determined from the resonance-Raman (rR) for [Ru(NH3)4bpy]2+ and [Ru(bpy)3]2+ are used to model the emission spectra and to evaluate the spectral analysis. The Gaussian fundamental component with an energy Ef and bandwidth Deltanu1/2 is deconvoluted from the observed emission spectrum. The first-, second-, and third-order terms in the progressions of the vibrational modes that contribute to the band shape are evaluated as the sums of Gaussian-shaped contributions of width Deltanu1/2. The fundamental and the rR parameters give an excellent fit of the observed emission spectrum of [Ru(NH3)4bpy]2+, but not as good for the [Ru(bpy)3]2+ emission spectrum probably because the Franck-Condon excited state probed by the rR is different in symmetry from the emitting MLCT excited state. Variations in vibronic contributions for the series of complexes are evaluated in terms of reorganizational energy profiles (emreps, Lambdax) derived from the observed spectra, and modeled using the rR parameters. This modeling demonstrates that most of the intensity of the vibronic envelopes obtained from the frozen solution emission spectra arises from the overlapping of first-order vibronic contributions of significant bandwidth with additional convoluted

  20. Relativistic description of quark-antiquark bound states. Spin-independent treatment

    International Nuclear Information System (INIS)

    Gara, A.; Durand, B.; Durand, L.; Nickisch, L.J.

    1989-01-01

    We present the results of a detailed study of light- and heavy-quark--antiquark bound states in the context of the reduced Bethe-Salpeter equation with static vector and scalar interactions. In the present paper, we consider the spin-averaged spectra. Spin effects are considered in a separate paper. We find that this approach, although apparently successful for the heavy-quark b bar b and c bar c states, fails for the s bar s, l bar l, and light-heavy states. The reasons for the failure are intrinsic to the method, as we discuss. Difficulties are already evident for the c bar c states

  1. Intrinsic two-dimensional states on the pristine surface of tellurium

    Science.gov (United States)

    Li, Pengke; Appelbaum, Ian

    2018-05-01

    Atomic chains configured in a helical geometry have fascinating properties, including phases hosting localized bound states in their electronic structure. We show how the zero-dimensional state—bound to the edge of a single one-dimensional helical chain of tellurium atoms—evolves into two-dimensional bands on the c -axis surface of the three-dimensional trigonal bulk. We give an effective Hamiltonian description of its dispersion in k space by exploiting confinement to a virtual bilayer, and elaborate on the diminished role of spin-orbit coupling. These intrinsic gap-penetrating surface bands were neglected in the interpretation of seminal experiments, where two-dimensional transport was otherwise attributed to extrinsic accumulation layers.

  2. Bound-state perturbation theory and annihilation effects in positronium

    International Nuclear Information System (INIS)

    Abbasabadi, A.; Repko, W.W.

    1987-01-01

    Working in Coulomb gauge and using the lowest-order equation proposed by Barbieri and Remiddi it is calculated, in the one-loop order of perturbation theory, the decay rate and the energy shift of the ground states of parapositronium and orthopositronium, respectively. Our result for the decay rate agrees with that of Harris and Brown. For contribution of one-photon-annihilation channel to the energy shift, it is confirmed the result of Karplus and Klein. These results are derived completely within the bound-state formalism and avoid the necessity of performing on-mass-shell wave function and vertex renormalization subtractions

  3. Virtual-bound, filamentary and layered states in a box-shaped quantum dot of square potential form the exact numerical solution of the effective mass Schrödinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Luque, A., E-mail: a.luque@upm.es [Instituto de Energía Solar, Universidad Politécnica de Madrid (Spain); Mellor, A.; Tobías, I.; Antolín, E.; Linares, P.G.; Ramiro, I.; Martí, A. [Instituto de Energía Solar, Universidad Politécnica de Madrid (Spain)

    2013-03-15

    The effective mass Schrödinger equation of a QD of parallelepipedic shape with a square potential well is solved by diagonalizing the exact Hamiltonian matrix developed in a basis of separation-of-variables wavefunctions. The expected below bandgap bound states are found not to differ very much from the former approximate calculations. In addition, the presence of bound states within the conduction band is confirmed. Furthermore, filamentary states bounded in two dimensions and extended in one dimension and layered states with only one dimension bounded, all within the conduction band—which are similar to those originated in quantum wires and quantum wells—coexist with the ordinary continuum spectrum of plane waves. All these subtleties are absent in spherically shaped quantum dots, often used for modeling.

  4. Another comment on 'relativistic description of quark-antiquark bound states'

    International Nuclear Information System (INIS)

    Lucha, W.; Rupprecht, H.; Schoeberl, F.F.

    1991-04-01

    We point out some ambiguities in the treatment of fermion-antifermion bound states by solving the reduced Salpeter equation in coordinate space. Our observations allow to cast some doubt on the validity of the conclusion of Gara et al. that moving from a nonrelativistic to a relativistic description makes things worse. (authors)

  5. Entanglement negativity bounds for fermionic Gaussian states

    Science.gov (United States)

    Eisert, Jens; Eisler, Viktor; Zimborás, Zoltán

    2018-04-01

    The entanglement negativity is a versatile measure of entanglement that has numerous applications in quantum information and in condensed matter theory. It can not only efficiently be computed in the Hilbert space dimension, but for noninteracting bosonic systems, one can compute the negativity efficiently in the number of modes. However, such an efficient computation does not carry over to the fermionic realm, the ultimate reason for this being that the partial transpose of a fermionic Gaussian state is no longer Gaussian. To provide a remedy for this state of affairs, in this work, we introduce efficiently computable and rigorous upper and lower bounds to the negativity, making use of techniques of semidefinite programming, building upon the Lagrangian formulation of fermionic linear optics, and exploiting suitable products of Gaussian operators. We discuss examples in quantum many-body theory and hint at applications in the study of topological properties at finite temperature.

  6. Tunneling Splittings in Vibronic Structure of CH_3F^+ ( X^2E): Studied by High Resolution Photoelectron Spectra and AB Initio Theoretical Method

    Science.gov (United States)

    Mo, Yuxiang; Gao, Shuming; Dai, Zuyang; Li, Hua

    2013-06-01

    We report a combined experimental and theoretical study on the vibronic structure of CH_3F^+. The results show that the tunneling splittings of vibrational energy levels occur in CH_3F^+ due to the Jahn-Teller effect. Experimentally, we have measured a high resolution ZEKE spectrum of CH_3F up to 3500 cm^-^1 above the ground state. Theoretically, we performed an ab initio calculation based on the diabatic model. The adiabatic potential energy surfaces (APES) of CH_3F^+ have been calculated at the MRCI/CAS/avq(t)z level and expressed by Taylor expansions with normal coordinates as variables. The energy gradients for the lower and upper APES, the derivative couplings between them and also the energies of the APES have been used to determine the coefficients in the Taylor expansion. The spin-vibronic energy levels have been calculated by accounting all six vibrational modes and their couplings. The experimental ZEKE spectra were assigned based on the theoretical calculations. W. Domcke, D. R. Yarkony, and H. Köpple (Eds.), Conical Intersections: Eletronic Structure, Dynamics and Spectroscopy (World Scientific, Singapore, 2004). M. S. Schuurman, D. E. Weinberg, and D. R. Yarkony, J. Chem. Phys. 127, 104309 (2007).

  7. A nonlinear programming approach to lower bounds for the ground-state energy of helium

    International Nuclear Information System (INIS)

    Porras, I.; Feldmann, D.M.; King, F.W.

    1999-01-01

    Lower-bound estimates for the ground-state energy of the helium atom are determined using nonlinear programming techniques. Optimized lower bounds are determined for single-particle, radially correlated, and general correlated wave functions. The local nature of the method employed makes it a very severe test of the accuracy of the wave function

  8. Vibronic dephasing model for coherent-to-incoherent crossover in DNA

    Science.gov (United States)

    Karasch, Patrick; Ryndyk, Dmitry A.; Frauenheim, Thomas

    2018-05-01

    In this paper, we investigate the interplay between coherent and incoherent charge transport in cytosine-guanine (GC-) rich DNA molecules. Our objective is to introduce a physically grounded approach to dephasing in large molecules and to understand the length-dependent charge transport characteristics, and especially the crossover from the coherent tunneling to incoherent hopping regime at different temperatures. Therefore, we apply the vibronic dephasing model and compare the results to the Büttiker probe model which is commonly used to describe decoherence effects in charge transport. Using the full ladder model and simplified one-dimensional model of DNA, we consider molecular junctions with alternating and stacked GC sequences and compare our results to recent experimental measurements.

  9. Analytical study of bound states in graphene nanoribbons and carbon nanotubes: The variable phase method and the relativistic Levinson theorem

    Energy Technology Data Exchange (ETDEWEB)

    Miserev, D. S., E-mail: d.miserev@student.unsw.edu.au, E-mail: erazorheader@gmail.com [University of New South Wales, School of Physics (Australia)

    2016-06-15

    The problem of localized states in 1D systems with a relativistic spectrum, namely, graphene stripes and carbon nanotubes, is studied analytically. The bound state as a superposition of two chiral states is completely described by their relative phase, which is the foundation of the variable phase method (VPM) developed herein. Based on our VPM, we formulate and prove the relativistic Levinson theorem. The problem of bound states can be reduced to the analysis of closed trajectories of some vector field. Remarkably, the Levinson theorem appears as the Poincaré index theorem for these closed trajectories. The VPM equation is also reduced to the nonrelativistic and semiclassical limits. The limit of a small momentum p{sub y} of transverse quantization is applicable to an arbitrary integrable potential. In this case, a single confined mode is predicted.

  10. Exact spinor-scalar bound states in a quantum field theory with scalar interactions

    International Nuclear Information System (INIS)

    Shpytko, Volodymyr; Darewych, Jurij

    2001-01-01

    We study two-particle systems in a model quantum field theory in which scalar particles and spinor particles interact via a mediating scalar field. The Lagrangian of the model is reformulated by using covariant Green's functions to solve for the mediating field in terms of the particle fields. This results in a Hamiltonian in which the mediating-field propagator appears directly in the interaction term. It is shown that exact two-particle eigenstates of the Hamiltonian can be determined. The resulting relativistic fermion-boson equation is shown to have Dirac and Klein-Gordon one-particle limits. Analytical solutions for the bound state energy spectrum are obtained for the case of massless mediating fields

  11. Determinable solutions for one-dimensional quantum potentials: scattering, quasi-bound and bound-state problems

    International Nuclear Information System (INIS)

    Lee, Hwasung; Lee, Y J

    2007-01-01

    We derive analytic expressions of the recursive solutions to Schroedinger's equation by means of a cutoff-potential technique for one-dimensional piecewise-constant potentials. These solutions provide a method for accurately determining the transmission probabilities as well as the wavefunction in both classically accessible regions and inaccessible regions for any barrier potentials. It is also shown that the energy eigenvalues and the wavefunctions of bound states can be obtained for potential-well structures by exploiting this method. Calculational results of illustrative examples are shown in order to verify this method for treating barrier and potential-well problems

  12. Two-electron states of a group-V donor in silicon from atomistic full configuration interactions

    Science.gov (United States)

    Tankasala, Archana; Salfi, Joseph; Bocquel, Juanita; Voisin, Benoit; Usman, Muhammad; Klimeck, Gerhard; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.; Rogge, Sven; Rahman, Rajib

    2018-05-01

    Two-electron states bound to donors in silicon are important for both two-qubit gates and spin readout. We present a full configuration interaction technique in the atomistic tight-binding basis to capture multielectron exchange and correlation effects taking into account the full band structure of silicon and the atomic-scale granularity of a nanoscale device. Excited s -like states of A1 symmetry are found to strongly influence the charging energy of a negative donor center. We apply the technique on subsurface dopants subjected to gate electric fields and show that bound triplet states appear in the spectrum as a result of decreased charging energy. The exchange energy, obtained for the two-electron states in various confinement regimes, may enable engineering electrical control of spins in donor-dot hybrid qubits.

  13. Entropy Bounds for Constrained Two-Dimensional Fields

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto; Justesen, Jørn

    1999-01-01

    The maximum entropy and thereby the capacity of 2-D fields given by certain constraints on configurations are considered. Upper and lower bounds are derived.......The maximum entropy and thereby the capacity of 2-D fields given by certain constraints on configurations are considered. Upper and lower bounds are derived....

  14. Bound states in the (2+1)D scalar electrodynamics with Chern-Simons term

    International Nuclear Information System (INIS)

    Gomes, M.O.C.; Malacarne, L.C.

    1994-01-01

    This work studies the existence of bound states for the 3-dimensions scalar electrodynamics, with the Chern-Simons. Quantum field theory is used for calculation of the M fi scattering matrices, in the non-relativistic approximation. The field propagators responsible for the interaction in the scattering processes have been calculated, and scattering matrices have been constructed. After obtaining the scattering matrix, the cross section in the quantum field theory has been compared with the quantum mechanic cross section in the Born approximation, allowing to obtain the form of the potential responsible for the interactions in the scattering processes. The possibility of bound states are analyzed by using the Schroedinger equation

  15. Symmetrical analysis of the defect level splitting in two-dimensional photonic crystals

    International Nuclear Information System (INIS)

    Malkova, N; Kim, S; Gopalan, V

    2003-01-01

    In this paper doubly degenerate defect states in the band gap of the two-dimensional photonic crystal are studied. These states can be split by a convenient distortion of the lattice. Through analogy with the Jahn-Teller effect in solids, we present a group theoretical analysis of the lifting of the degeneracy of doubly degenerate states in a square lattice by different vibronic modes. The effect is supported by the supercell plane-wave model and by the finite difference time domain technique. We suggest ways for using the effect in photonic switching devices and waveguides

  16. Search for weakly decaying Λn‾ and ΛΛ exotic bound states in central Pb–Pb collisions at sNN=2.76 TeV

    Directory of Open Access Journals (Sweden)

    J. Adam

    2016-01-01

    Full Text Available We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possible Λn‾ bound state. The search is performed with the ALICE detector in central (0–10% Pb–Pb collisions at sNN=2.76 TeV, by invariant mass analysis in the decay modes Λn‾→d‾π+ and H-dibaryon →Λpπ−. No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton.

  17. Morse potential, symmetric Morse potential and bracketed bound-state energies

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2016-01-01

    Roč. 31, č. 14 (2016), s. 1650088 ISSN 0217-7323 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : quantum bound states * special functions * Morse potential * symmetrized Morse potential * upper and lower energy estimates * computer-assisted symbolic manipulations Subject RIV: BE - Theoretical Physics Impact factor: 1.165, year: 2016

  18. Many-body scattering theory methods as a means for solving bound-state problems: Applications of arrangement-channel quantum mechanics

    International Nuclear Information System (INIS)

    Levin, F.S.; Krueger, H.

    1977-01-01

    We propose in this article that the non-Hermitian equations typical of some many-body scattering theories be used to help solve many-body bound-state problems. The basic idea is to exploit the channel nature of many-body bound states that must exist because bound states are obvious negative-energy extensions of scattering states. Since atomic, molecular, and nuclear systems all display multichannel effects for E > 0, at least through Pauli-principle effects if not through mass-transfer reactions, this use of positive-energy methods for solving bound-state problems could have wide applicability. The development used here is based on the channel-component-state method of the channel-coupling-array theory, recently described in detail for the E > 0 case, and various aspects of the formalism are discussed. Detailed calculations using simple approximations are discussed for H 2 + , one of the simplest systems displaying channel structure. Comparison with the exact, Born-Oppenheimer results of Wind show that the non-Hermitian-equation, channel-component values of the equilibrium separation and total binding energy are accurate to within 2%, while the dissociation energy is accurate to 10%. The resulting wave function is identical to that arising from the simplest MO calculation, for which these numbers are less accurate than the preceding by at least a factor of 3. We also show that identical particle symmetry for the H 2 + case reduces the pair of coupled (two-channel) equations to a single equation with an exchange term. Similar reductions will occur for larger numbers of identical particles, thus suggesting application of the formalism to atomic structure problems. A detailed analysis of the present numerical results, their general implications, and possible applications is also given

  19. QCD bound states at finite temperature and baryon number

    International Nuclear Information System (INIS)

    Kalinovsky, Yu.L.; Muenchow, L.

    1991-04-01

    Quark-antiquark bound states are described within the Bethe-Salpeter equation for a class of quark models with instantaneous 4-quark interaction at finite temperature. Thereby decompositions of the Bethe-Salpeter vertex and wave functions according to their Lorentz structures and the particles content are used. As an application of general scheme, we determine the mass spectrum of low-lying mesons for a special Nambu-Jona-Lasinio model inspired by QCD for hadrons. (orig.)

  20. Three-body unitary transformations, three-body forces, and trinucleon bound state properties

    International Nuclear Information System (INIS)

    Haftel, M.I.

    1976-01-01

    A three-body unitary transformation method for the study of three-body forces is presented. Starting with a three-body Hamiltonian with two-body forces, unitary transformations are introduced to generate Hamiltonians that have both two- and three-body forces. For cases of physical interest, the two-body forces of the altered Hamiltonians are phase equivalent (for two-body scattering) to the original and the three-body force vanishes when any interparticle distance is large. Specific examples are presented. Applications for studying the possible role of three-body forces in accounting for trinucleon bound state properties are examined. Calculations of the 3 He and 3 H charge form factors and Coulomb energy difference with hyperspherical radial transformations and with conventional N-N potentials are performed. The form factor calculations demonstrate how the proposed method can help obtain improved agreement with experiment by the introduction of appropriate three-body forces. Calculations of the Coulomb energy difference confirm previous estimates concerning charge symmetry breaking in the N-N interaction

  1. Large Deviation Bounds for a Polling System with Two Queues and Multiple Servers

    OpenAIRE

    Wei, Fen

    2004-01-01

    In this paper, we present large deviation bounds for a discrete-time polling system consisting of two-par-allel queues and m servers. The arrival process in each queue is an arbitrary, and possibly correlated, stochastic process. Each server (serves) independently serves the two queues according to a Bernoulli service schedule. Using large deviation techniques, we analyze the tail behavior of the stationary distribution of the queue length processes, and derive upper and lower bounds of the b...

  2. Hunt for the 11P1 bound state of charmonium

    International Nuclear Information System (INIS)

    Porter, F.C.

    1982-02-01

    Using the Crystal Ball detector at SPEAR, we have looked for evidence of the isospin-violating decay psi' → π 01 P 1 , where 1 P 1 is the predicted spin-singlet p-wave bound state of charmonium. For a 1 P 1 state at the predicted mass (approx. 3520 MeV), we obtain the 95% confidence level limits: BR(psi' → π 01 P 1 ) 01 P 1 )BR( 1 P 1 → γn/sub c/ < 0.14%. These limits are compared with simple theoretical predictions

  3. A simple parameter-free wavefunction for the ground state of two-electron atoms

    International Nuclear Information System (INIS)

    Ancarani, L U; Rodriguez, K V; Gasaneo, G

    2007-01-01

    We propose a simple and pedagogical wavefunction for the ground state of two-electron atoms which (i) is parameter free (ii) satisfies all two-particle cusp conditions (iii) yields reasonable ground-state energies, including the prediction of a bound state for H - . The mean energy, and other mean physical quantities, is evaluated analytically. The simplicity of the result can be useful as an easy-to-use wavefunction when testing collision models

  4. Bounds on absolutely maximally entangled states from shadow inequalities, and the quantum MacWilliams identity

    Science.gov (United States)

    Huber, Felix; Eltschka, Christopher; Siewert, Jens; Gühne, Otfried

    2018-04-01

    A pure multipartite quantum state is called absolutely maximally entangled (AME), if all reductions obtained by tracing out at least half of its parties are maximally mixed. Maximal entanglement is then present across every bipartition. The existence of such states is in many cases unclear. With the help of the weight enumerator machinery known from quantum error correction and the shadow inequalities, we obtain new bounds on the existence of AME states in dimensions larger than two. To complete the treatment on the weight enumerator machinery, the quantum MacWilliams identity is derived in the Bloch representation. Finally, we consider AME states whose subsystems have different local dimensions, and present an example for a 2×3×3×3 system that shows maximal entanglement across every bipartition.

  5. The search for deeply bound kaonic states with FOPI

    International Nuclear Information System (INIS)

    Schmid, P.; Buehler, P.; Cargnelli, M.; Marton, J.; Widmann, E.; Zmeskal, J.

    2006-01-01

    Full text: New formation mechanisms for the creation of dense, exotic nuclear systems involving strangeness were recently proposed by Y. Akaishi and T. Yamazaki. Their calculations show that a K - might form deeply bound states in light nuclei - so called kaonic clusters - with central densities of several times the normal nuclear density. In the presentation a short overview of these exotic nuclear systems will be given and a new experiment with FOPI at GSI will be discussed. The aim of this experiment was to search for the simplest cluster - a ppK - state. This state is produced at GSI in the following high energy reaction: p + ''d'' → ppK - + K + + n'' with incident energies of 3.5 GeV. The experimental set-up will be presented in detail. (author)

  6. Radiative bound-state formation in unbroken perturbative non-Abelian theories and implications for dark matter

    OpenAIRE

    Harz, Julia; Petraki, Kalliopi

    2018-01-01

    We compute the cross-sections for the radiative capture of non-relativistic particles into bound states, in unbroken perturbative non-Abelian theories. We find that the formation of bound states via emission of a gauge boson can be significant for a variety of dark matter models that feature non-Abelian long-range interactions, including multi-TeV scale WIMPs and dark matter co-annihilating with coloured partners. Our results disagree with previous computations, on the relative sign of the Ab...

  7. Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Illuminati, Fabrizio

    2005-01-01

    We study the entanglement of general (pure or mixed) two-mode Gaussian states of continuous-variable systems by comparing the two available classes of computable measures of entanglement: entropy-inspired Gaussian convex-roof measures and positive partial transposition-inspired measures (negativity and logarithmic negativity). We first review the formalism of Gaussian measures of entanglement, adopting the framework introduced in M. M. Wolf et al., Phys. Rev. A 69, 052320 (2004), where the Gaussian entanglement of formation was defined. We compute explicitly Gaussian measures of entanglement for two important families of nonsymmetric two-mode Gaussian state: namely, the states of extremal (maximal and minimal) negativities at fixed global and local purities, introduced in G. Adesso et al., Phys. Rev. Lett. 92, 087901 (2004). This analysis allows us to compare the different orderings induced on the set of entangled two-mode Gaussian states by the negativities and by the Gaussian measures of entanglement. We find that in a certain range of values of the global and local purities (characterizing the covariance matrix of the corresponding extremal states), states of minimum negativity can have more Gaussian entanglement of formation than states of maximum negativity. Consequently, Gaussian measures and negativities are definitely inequivalent measures of entanglement on nonsymmetric two-mode Gaussian states, even when restricted to a class of extremal states. On the other hand, the two families of entanglement measures are completely equivalent on symmetric states, for which the Gaussian entanglement of formation coincides with the true entanglement of formation. Finally, we show that the inequivalence between the two families of continuous-variable entanglement measures is somehow limited. Namely, we rigorously prove that, at fixed negativities, the Gaussian measures of entanglement are bounded from below. Moreover, we provide some strong evidence suggesting that they

  8. Homogenization of non-uniformly bounded periodic diffusion energies in dimension two

    International Nuclear Information System (INIS)

    Braides, Andrea; Briane, Marc; Casado-Díaz, Juan

    2009-01-01

    This paper deals with the homogenization of two-dimensional oscillating convex functionals, the densities of which are equicoercive but not uniformly bounded from above. Using a uniform-convergence result for the minimizers, which holds for this type of scalar problems in dimension two, we prove in particular that the limit energy is local and recover the validity of the analogue of the well-known periodic homogenization formula in this degenerate case. However, in the present context the classical argument leading to integral representation based on the use of cut-off functions is useless due to the unboundedness of the densities. In its place we build sequences with bounded energy, which converge uniformly to piecewise-affine functions, taking point-wise extrema of recovery sequences for affine functions

  9. Diabetes Among United States-Bound Adult Refugees, 2009-2014.

    Science.gov (United States)

    Benoit, Stephen R; Gregg, Edward W; Zhou, Weigong; Painter, John A

    2016-12-01

    We reported diabetes prevalence among all US-bound adult refugees and assessed factors associated with disease. We analyzed overseas medical evaluations of US-bound refugees from 2009 through 2014 by using CDC's Electronic Disease Notification System. We identified refugees with diabetes by searching for diabetes-related keywords and medications in examination forms with text-parsing techniques. Age-adjusted prevalence rates were reported and factors associated with diabetes were assessed by using logistic regression. Of 248,850 refugees aged ≥18 years examined over 5 years, 5767 (2.3 %) had diabetes. Iraqis had the highest crude (5.1 %) and age-adjusted (8.9 %) prevalence of disease. Higher age group and body mass index were associated with diabetes in all regions. Diabetes prevalence varied by refugee nationality. Although the absolute rates were lower than rates in the United States, the prevalence is still concerning given the younger age of the population and their need for health services upon resettlement.

  10. The light bound states of N=1 supersymmetric SU(3) Yang-Mills theory on the lattice

    Science.gov (United States)

    Ali, Sajid; Bergner, Georg; Gerber, Henning; Giudice, Pietro; Montvay, Istvan; Münster, Gernot; Piemonte, Stefano; Scior, Philipp

    2018-03-01

    In this article we summarise our results from numerical simulations of N=1 supersymmetric Yang-Mills theory with gauge group SU(3). We use the formulation of Curci and Veneziano with clover-improved Wilson fermions. The masses of various bound states have been obtained at different values of the gluino mass and gauge coupling. Extrapolations to the limit of vanishing gluino mass indicate that the bound states form mass-degenerate supermultiplets.

  11. Theoretical investigation of potential energy surface and bound states for the van der Waals complex Ar–BrCl dimer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Rui [School of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou (China); Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan (China); Li, Song, E-mail: lsong@yangtzeu.edu.cn [School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou (China); Chen, Shan-Jun; Chen, Yan [School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou (China); Zheng, Li-Min [Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan (China)

    2015-09-08

    Highlights: • A two-dimensional potential for Ar–BrCl is constructed at the CCSD(T) level. • The PES is characterized by three minima and two saddle points between them. • Bound state calculations were carried out for the complex. - Abstract: The intermolecular potential energy surface (PES) of the ground electronic state for the Ar–BrCl dimer is constructed at the CCSD(T) level with the aug-cc-pVQZ basis set and mid-bond functions. The PES is characterized by three minima and two saddle points. The global minimum corresponding to a collinear Ar–BrCl configuration, which has been observed experimentally, is located at R = 4.10 Å and θ = 2.5° with a well depth of −285.207 cm{sup −1}. A nearly T-shaped structure and an anti-linear Ar–ClBr geometry is also predicted. The bound state calculations are preformed to study intermolecular vibrational modes, rotational levels and average structures for the complex. Our transition frequencies, spectroscopic constants and average structures for all isotopomers of the collinear isomer agree well with experimental data. We have also provided pure rotational transitional frequencies for both nearly T-shaped and anti-linear isomers. These results are significant for further experimental investigations of the Ar–BrCl dimer.

  12. Vibronic coupling in the excited-states of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Miki, Takeshi [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany; Buckup, Tiago [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany; Krause, Marie S. [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany; Southall, June [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow; UK; Cogdell, Richard J. [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow; UK; Motzkus, Marcus [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany

    2016-01-01

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2to the optically dark state S1.

  13. Light-Front Hamiltonian Approach to the Bound-State Problem in Quantum Electrodynamics

    Science.gov (United States)

    Jones, Billy D.

    1997-10-01

    Why is the study of the Lamb shift in hydrogen, which at the level of detail found in this paper was largely completed by Bethe in 1947, of any real interest today? While completing such a calculation using new techniques may be very interesting for formal and academic reasons, our primary motivation is to lay groundwork for precision bound-state calculations in QCD. The Lamb shift provides an excellent pedagogical tool for illustrating light-front Hamiltonian techniques, which are not widely known; but more importantly it presents three of the central dynamical and computational problems that we must face to make these techniques useful for solving QCD: How does a constituent picture emerge in a gauge field theory? How do bound-state energy scales emerge non-perturbatively? How does rotational symmetry emerge in a non-perturbative light-front calculation?

  14. Large N Chern-Simons with massive fundamental fermions — A model with no bound states

    International Nuclear Information System (INIS)

    Frishman, Yitzhak; Sonnenschein, Jacob

    2014-01-01

    In a previous paper http://dx.doi.org/10.1007/JHEP12(2013)091, we analyzed the theory of massive fermions in the fundamental representation coupled to a U(N) Chern-Simons gauge theory in three dimensions at level K. It was done in the large N, large K limits where λ=(N/K) was kept fixed. Among other results, we showed there that there are no high mass “quark anti-quark" bound states. Here we show that there are no bound states at all.

  15. Quantum-dynamical Modeling of the Rydberg to Valence Excited-State Internal Conversion in Cyclobutanone and Cyclopentanone

    DEFF Research Database (Denmark)

    Kuhlman, T. S.; Sauer, Stephan P. A.; Solling, T. I.

    2013-01-01

    In this paper we present 4-state, 5-dimensional Vibronic Coupling Hamiltonians for cyclobutanone and cyclopentanone. Wave packet calculations using these Hamiltonians reveal that for cyclobutanone the (n,3s) to (n,π*) internal conversion involves direct motion in nuclear modes coupling the two st...... states leading to fast population transfer. For cyclopentanone, internal vibrational energy redistribution is a bottleneck for activating reactive nuclear modes leading to slower population transfer....

  16. An upper bound for codes for the noisy two-access binary adder channel

    NARCIS (Netherlands)

    Tilborg, van H.C.A.

    1986-01-01

    Using earlier methods a combinatorial upper bound is derived for|C|. cdot |D|, where(C,D)is adelta-decodable code pair for the noisy two-access binary adder channel. Asymptotically, this bound reduces toR_{1}=R_{2} leq frac{3}{2} + elog_{2} e - (frac{1}{2} + e) log_{2} (1 + 2e)= frac{1}{2} - e +

  17. NLIE of Dirichlet sine-Gordon model for boundary bound states

    International Nuclear Information System (INIS)

    Ahn, Changrim; Bajnok, Zoltan; Palla, Laszlo; Ravanini, Francesco

    2008-01-01

    We investigate boundary bound states of sine-Gordon model on the finite-size strip with Dirichlet boundary conditions. For the purpose we derive the nonlinear integral equation (NLIE) for the boundary excited states from the Bethe ansatz equation of the inhomogeneous XXZ spin 1/2 chain with boundary imaginary roots discovered by Saleur and Skorik. Taking a large volume (IR) limit we calculate boundary energies, boundary reflection factors and boundary Luescher corrections and compare with the excited boundary states of the Dirichlet sine-Gordon model first considered by Dorey and Mattsson. We also consider the short distance limit and relate the IR scattering data with that of the UV conformal field theory

  18. Excitations and possible bound states in the S = 1/2 alternating chain compound (VO)2P2O7

    International Nuclear Information System (INIS)

    Tennant, D.A.; Nagler, S.E.; Sales, B.C.

    1997-01-01

    Magnetic excitations in an array of (VO) 2 P 2 O 7 single crystals have been measured using inelastic neutron scattering. Until now, (VO) 2 P 2 O 7 has been thought of as a two-leg antiferromagnetic Heisenberg spin ladder with chains running in the a-direction. The present results show unequivocally that (VO) 2 P 2 O 7 is best described as an alternating spin-chain directed along the crystallographic b-direction. In addition to the expected magnon with magnetic zone-center energy gap Δ = 3.1 meV, a second excitation is observed at an energy just below 2Δ. The higher mode may be a triplet two-magnon bound state. Numerical results in support of bound modes are presented

  19. Bound states of Dirac fermions in monolayer gapped graphene in the presence of local perturbations

    International Nuclear Information System (INIS)

    Yarmohammadi, Mohsen; Zareyan, Malek

    2016-01-01

    In graphene, conductance electrons behave as massless relativistic particles and obey an analogue of the Dirac equation in two dimensions with a chiral nature. For this reason, the bounding of electrons in graphene in the form of geometries of quantum dots is impossible. In gapless graphene, due to its unique electronic band structure, there is a minimal conductivity at Dirac points, that is, in the limit of zero doping. This creates a problem for using such a highly motivated new material in electronic devices. One of the ways to overcome this problem is the creation of a band gap in the graphene band structure, which is made by inversion symmetry breaking (symmetry of sublattices). We investigate the confined states of the massless Dirac fermions in an impured graphene by the short-range perturbations for “local chemical potential” and “local gap”. The calculated energy spectrum exhibits quite different features with and without the perturbations. A characteristic equation for bound states (BSs) has been obtained. It is surprisingly found that the relation between the radial functions of sublattices wave functions, i.e., , , and , , can be established by SO (2) group. (paper)

  20. Bound states in continuum: Quantum dots in a quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Prodanović, Nikola, E-mail: elnpr@leeds.ac.uk [Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Milanović, Vitomir [School of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade (Serbia); Ikonić, Zoran; Indjin, Dragan; Harrison, Paul [Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom)

    2013-11-01

    We report on the existence of a bound state in the continuum (BIC) of quantum rods (QR). QRs are novel elongated InGaAs quantum dot nanostructures embedded in the shallower InGaAs quantum well. BIC appears as an excited confined dot state and energetically above the bottom of a well subband continuum. We prove that high height-to-diameter QR aspect ratio and the presence of a quantum well are indispensable conditions for accommodating the BIC. QRs are unique semiconductor nanostructures, exhibiting this mathematical curiosity predicted 83 years ago by Wigner and von Neumann.

  1. Relativistic bound states in the presence of spherically ring-shaped q-deformed Woods–Saxon potential with arbitrary l-states

    International Nuclear Information System (INIS)

    Ikhdair, S.M.; Hamzavi, M.; Rajabi, A.A.

    2013-01-01

    Approximate bound-state solutions of the Dirac equation with q-deformed Woods–Saxon (WS) plus a new generalized ring-shaped (RS) potential are obtained for any arbitrary l-state. The energy eigenvalue equation and corresponding two-component wave functions are calculated by solving the radial and angular wave equations within a shortcut of the Nikiforov–Uvarov (NU) method. The solutions of the radial and polar angular parts of the wave function are expressed in terms of the Jacobi polynomials. A new approximation being expressed in terms of the potential parameters is carried out to deal with the strong singular centrifugal potential term l(l+1)r -2 . Under some limitations, we can obtain solution for the RS Hulthen potential and the standard usual spherical WS potential (q = 1). (author)

  2. On the bound states of Schrodinger operators with -interactions on conical surfaces

    Czech Academy of Sciences Publication Activity Database

    Lotoreichik, Vladimir; Ourmieres-Bonafos, T.

    2016-01-01

    Roč. 41, č. 6 (2016), s. 999-1028 ISSN 0360-5302 Institutional support: RVO:61389005 Keywords : conical and hyperconical surfaces * delta-interaction * existence of bound states * Schrodinger operator * spectral asymptotics Subject RIV: BE - Theoretical Physics Impact factor: 1.608, year: 2016

  3. Proton-coupled electron transfer versus hydrogen atom transfer: generation of charge-localized diabatic states.

    Science.gov (United States)

    Sirjoosingh, Andrew; Hammes-Schiffer, Sharon

    2011-03-24

    The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.

  4. Naturalness made easy: two-loop naturalness bounds on minimal SM extensions

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Jackson D.; Cox, Peter [ARC Centre of Excellence for Particle Physics at the Terascale,School of Physics, University of Melbourne,Melbourne, 3010 (Australia)

    2017-02-24

    The main result of this paper is a collection of conservative naturalness bounds on minimal extensions of the Standard Model by (vector-like) fermionic or scalar gauge multiplets. Within, we advocate for an intuitive and physical concept of naturalness built upon the renormalisation group equations. In the effective field theory of the Standard Model plus a gauge multiplet with mass M, the low scale Higgs mass parameter is a calculable function of (MS)-bar input parameters defined at some high scale Λ{sub h}>M. If the Higgs mass is very sensitive to these input parameters, then this signifies a naturalness problem. To sensibly capture the sensitivity, it is shown how a sensitivity measure can be rigorously derived as a Bayesian model comparison, which reduces in a relevant limit to a Barbieri-Giudice-like fine-tuning measure. This measure is fully generalisable to any perturbative EFT. The interesting results of our two-loop renormalisation group study are as follows: for Λ{sub h}=Λ{sub Pl} we find “10% fine-tuning” bounds on the masses of various gauge multiplets of Mbounds on fermionic gauge multiplets significantly weaker than for scalars; these bounds remain finite in the limit Λ{sub h}→M{sup +}, weakening to Mbounds on coloured multiplets are no more severe than for electroweak multiplets, since they only directly correct the Higgs mass at three-loop.

  5. Monopole-fermion and dyon-fermion bound states. Pt. 5

    International Nuclear Information System (INIS)

    Osland, P.; Harvard Univ., Cambridge, MA; Schultz, C.L.; Wu, T.T.

    1985-02-01

    We present explicit, approximate, remarkably precise results for the Kazama-Yang hamiltonian, which describes a Dirac monopole interacting with a spin-1/2 fermion that has an extra magnetic moment. The results are valid for bound states of angular momentum j >= Zvertical strokeegvertical stroke+1/2, where the radial wave functions are determined by four coupled differential equations. These equations have been solved analytically for M - E << M, which is a limit of considerable practical interest. Binding energies and wave functions are given. (orig.)

  6. Bound states for non-symmetric evolution Schroedinger potentials

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Gulmaro Corona [Area de Analisis Matematico y sus Aplicaciones, Universidad Autonoma Metropolitana-Azcapotalco, Atzcapotzalco, DF (Mexico)). E-mail: ccg@correo.azc.uam.mx

    2001-09-14

    We consider the spectral problem associated with the evolution Schroedinger equation, (D{sup 2}+ k{sup 2}){phi}=u{phi}, where u is a matrix-square-valued function, with entries in the Schwartz class defined on the real line. The solution {phi}, called the wavefunction, consists of a function of one real variable, matrix-square-valued with entries in the Schwartz class. This problem has been dealt for symmetric potentials u. We found for the present case that the bound states are localized similarly to the scalar and symmetric cases, but by the zeroes of an analytic matrix-valued function. If we add an extra condition to the potential u, we can determine these states by an analytic scalar function. We do this by generalizing the scalar and symmetric cases but without using the fact that the Wronskian of a pair of wavefunction is constant. (author)

  7. Applications of the infinite momentum method to quantum electrodynamics and bound state problem

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1973-01-01

    It is shown that the infinite momentum method is a valid and useful calculational alternative to standard perturbation theory methods. The most exciting future applications may be in bound state problems in quantum electrodynamics

  8. Recoil effects in the hyperfine structure of QED bound states

    International Nuclear Information System (INIS)

    Bodwin, G.T.; Yennie, D.R.; Gregorio, M.A.

    1985-01-01

    The authors give a general discussion of the derivation from field theory of a formalism for the perturbative solution of the relativistic two-body problem. The lowest-order expression for the four-point function is given in terms of a two-particle three-dimensional propagator in a static potential. It is obtained by fixing the loop energy in the four-dimensional formalism at a point which is independent of the loop momentum and is symmetric in the two particle variables. This method avoids awkward positive- and negative-energy projectors, with their attendant energy square roots, and allows one to recover the Dirac equation straightforwardly in the nonrecoil limit. The perturbations appear as a variety of four-dimensional kernels which are rearranged and regrouped into convenient sets. In particular, they are transformed from the Coulomb to the Feynman gauge, which greatly simplifies the expressions that must be evaluated. Although the approach is particularly convenient for the precision analysis of QED bound states, it is not limited to such applications. The authors use it to give the first unified treatment of all presently known recoil corrections to the muonium hyperfine structure and also to verify the corresponding contributions through order α 2 lnαE/sub F/ in positronium. The required integrals are evaluated analytically

  9. Quantum-dynamical Modeling of the Rydberg to Valence Excited-State Internal Conversion in Cyclobutanone and Cyclopentanone

    Directory of Open Access Journals (Sweden)

    Møller K. B.

    2013-03-01

    Full Text Available In this paper we present 4-state, 5-dimensional Vibronic Coupling Hamiltonians for cyclobutanone and cyclopentanone. Wave packet calculations using these Hamiltonians reveal that for cyclobutanone the (n,3s to (n,π* internal conversion involves direct motion in nuclear modes coupling the two states leading to fast population transfer. For cyclopentanone, internal vibrational energy redistribution is a bottleneck for activating reactive nuclear modes leading to slower population transfer.

  10. Bounds on the number of bound states in the transfer matrix spectrum for some weakly correlated lattice models

    International Nuclear Information System (INIS)

    O’Carroll, Michael

    2012-01-01

    We consider the interaction of particles in weakly correlated lattice quantum field theories. In the imaginary time functional integral formulation of these theories there is a relative coordinate lattice Schroedinger operator H which approximately describes the interaction of these particles. Scalar and vector spin, QCD and Gross-Neveu models are included in these theories. In the weakly correlated regime H=H o +W where H o =−γΔ l , 0 l is the d-dimensional lattice Laplacian: γ=β, the inverse temperature for spin systems and γ=κ 3 where κ is the hopping parameter for QCD. W is a self-adjoint potential operator which may have non-local contributions but obeys the bound ‖W(x, y)‖⩽cexp ( −a(‖x‖+‖y‖)), a large: exp−a=β/β o (1/2) (κ/κ o ) for spin (QCD) models. H o , W, and H act in l 2 (Z d ), d⩾ 1. The spectrum of H below zero is known to be discrete and we obtain bounds on the number of states below zero. This number depends on the short range properties of W, i.e., the long range tail does not increase the number of states.

  11. Computing a Non-trivial Lower Bound on the Joint Entropy between Two Images

    Energy Technology Data Exchange (ETDEWEB)

    Perumalla, Kalyan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    In this report, a non-trivial lower bound on the joint entropy of two non-identical images is developed, which is greater than the individual entropies of the images. The lower bound is the least joint entropy possible among all pairs of images that have the same histograms as those of the given images. New algorithms are presented to compute the joint entropy lower bound with a computation time proportional to S log S where S is the number of histogram bins of the images. This is faster than the traditional methods of computing the exact joint entropy with a computation time that is quadratic in S .

  12. The tensor rank of tensor product of two three-qubit W states is eight

    OpenAIRE

    Chen, Lin; Friedland, Shmuel

    2017-01-01

    We show that the tensor rank of tensor product of two three-qubit W states is not less than eight. Combining this result with the recent result of M. Christandl, A. K. Jensen, and J. Zuiddam that the tensor rank of tensor product of two three-qubit W states is at most eight, we deduce that the tensor rank of tensor product of two three-qubit W states is eight. We also construct the upper bound of the tensor rank of tensor product of many three-qubit W states.

  13. Relativistic actions for bound-states and applications in the meson spectroscopy; Acoes relativisticas para estados ligados e aplicacoes na espectroscopia de mesons

    Energy Technology Data Exchange (ETDEWEB)

    Silva Carvalho, Hendly da

    1991-08-01

    We study relativistic equations for bound states of two-body systems using Dirac`s constraint formalism and supersymmetry. The two-body system can be of spinless particles, one of them spinning and the other one spinless, or both of them spinning. The interaction is described by scalar, timelike four-vector and spacelike four-vector potentials under Lorentz transformations. As an application we use the relativistic wave equation for two scalar particles and calculate the mass spectra of the mesons treating them as spinless quark-antiquark bound states. The interaction potential in this case is a convenient adaptation of the potential employed in non-relativistic calculations. Finally, we compare our results with more recent experimental data and with theoretical results obtained with the same potential used by us but with a non-relativistic wave equation. We also compare our results with results obtained with the relativistic wave equation but with a different interaction potential. (author). 38 refs, 9 figs, 8 tabs.

  14. Radiative bound-state-formation cross-sections for dark matter interacting via a Yukawa potential

    Energy Technology Data Exchange (ETDEWEB)

    Petraki, Kalliopi [LPTHE, CNRS, UMR 7589,4 Place Jussieu, F-75252, Paris (France); Nikhef,Science Park 105, 1098 XG Amsterdam (Netherlands); Postma, Marieke; Vries, Jordy de [Nikhef,Science Park 105, 1098 XG Amsterdam (Netherlands)

    2017-04-13

    We calculate the cross-sections for the radiative formation of bound states by dark matter whose interactions are described in the non-relativistic regime by a Yukawa potential. These cross-sections are important for cosmological and phenomenological studies of dark matter with long-range interactions, residing in a hidden sector, as well as for TeV-scale WIMP dark matter. We provide the leading-order contributions to the cross-sections for the dominant capture processes occurring via emission of a vector or a scalar boson. We offer a detailed inspection of their features, including their velocity dependence within and outside the Coulomb regime, and their resonance structure. For pairs of annihilating particles, we compare bound-state formation with annihilation.

  15. Detecting Majorana bound states coupling with an Aharonov-Bohm interferometer

    Science.gov (United States)

    Orellana, Pedro; Ramos Andrade, Juan Pablo; Ulloa, Sergio

    In this work we consider a quantum dot (QD) connected to current leads arranged to mediate the interaction between two topological nanowires, both hosting Majorana bound states (MBS) at their ends. In an interesting system geometry, one nanowire has both ends coupled with the QD, forming an Aharonov-Bohm (AB) interferometer, while the other is placed nearby such that two MBS belonging to different nanowires can interact. We model the system using an effective low energy Hamiltonian, considering that the QD is embedded between metallic leads. Using a Green's function formalism via the equation of motion procedure, we find that the conductance across the leads can show MBS signatures, i.e. half-maximum conductance at zero-energy, when both topological nanowires are connected, independent of the AB flux phase. This system may be used as a detector of the effective connections between independent MBS by monitoring the conductance while tuning the AB phase. J.P.R.-A. acknowledge support from scholarship CONICYT-Chile No.21141034. P.A.O. acknowledges support from FONDECYT Grant No. 1140571 and S.E.U. acknowledge support from NSF Grant No. DMR 1508325.

  16. Influence of low-energy scattering on loosely bound states

    International Nuclear Information System (INIS)

    Sparenberg, Jean-Marc; Capel, Pierre; Baye, Daniel

    2010-01-01

    Compact algebraic equations are derived that connect the binding energy and the asymptotic normalization constant (ANC) of a subthreshold bound state with the effective-range expansion of the corresponding partial wave. These relations are established for positively charged and neutral particles, using the analytic continuation of the scattering (S) matrix in the complex wave-number plane. Their accuracy is checked on simple local potential models for the 16 O+n, 16 O+p, and 12 C+α nuclear systems, with exotic nuclei and nuclear astrophysics applications in mind.

  17. Rapidly converging bound state eigenenergies for the two dimensional quantum dipole

    International Nuclear Information System (INIS)

    Handy, C R; Vrinceanu, D

    2013-01-01

    We examine the effectiveness of a new spectral method in solving the two dimensional dipole problem (DP), as originally formulated by Dasbiswas et al (2010 Phys. Rev. B: At. Mol. Opt. Phys. 81 064516), and recently analysed by Amore and Fernandez (AF, 2012 Phys. Rev. B: At. Mol. Opt. Phys. 45 235004), through a large, non-orthogonal basis, Rayleigh–Ritz (RR) analysis. This deceptively simple problem has a long history of poorly approximated energy values, particularly for the ground state, until the recent work by AF. In contrast to their approach, we implement an orthogonal polynomial projection quantization (OPPQ) analysis (Handy and Vrinceanu 2013 J. Phys. A: Math. Theor. 46 135202), involving expanding the wavefunction in terms of a complete basis, Ψ( r-vector )=∑ n Ω n P n ( r-vector )R( r-vector ), where P n are the orthogonal polynomials relative to the weight R. For systems transformable into a moment equation, such as DP, the projection coefficients are determinable in closed form, yielding an efficient quantization procedure, particularly when the weight assumes the asymptotic form of the physical solutions. There are several theoretical reasons why the OPPQ should be more effective than the above RR approach. Indeed, comparable results are achieved with significantly fewer OPPQ variational parameters as compared to RR-variational parameters. For instance, with regards to the delicate ground state energy, 130 OPPQ variables are required to achieve E gr = −0.137 7614 (E gr = −0.137 7514 after a Shanks transform) as opposed to the 821 required within the RR formulation: E gr = −0.137 7478. Despite this, the relative slow convergence for low lying even parity states, within both the OPPQ and RR formulations, suggests that significant logarithmic contributions to the wavefunction, at the origin, have been ignored by all previous investigators. Modifying the RR variational analysis to include log-dependent basis, affirms this through an

  18. Search for weakly decaying $\\overline{\\Lambda\\mathrm{n}}$ and $\\Lambda\\Lambda $ exotic bound states in central Pb-Pb collisions at $\\sqrt{s_{\\rm NN}}$ = 2.76 TeV

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kouzinopoulos, Charalampos; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasnopolskiy, Stanislav; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-01-10

    We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possible $\\overline{\\Lambda\\mathrm{n}}$ bound state. The search is performed with the ALICE detector in central (0-10%) Pb-Pb collisions at $ \\sqrt{s_{\\rm{NN}}} = 2.76$ TeV, by invariant mass analysis in the decay modes $\\overline{\\Lambda\\mathrm{n}} \\rightarrow \\overline{\\mathrm{d}} \\pi^{+} $ and H-dibaryon $\\rightarrow \\Lambda \\mathrm{p} \\pi^{-}$. No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton.

  19. Bound state solution of the Grassmannian nonlinear sigma model with fermions

    International Nuclear Information System (INIS)

    Abdalla, E.; Lima-Santos, A.

    1987-11-01

    We construct the s matrix for bound state (gauge-invariant) scattering for nonlinear sigma models defined on the manifold SU(N)/S(U(p)x (lower casex)U(n-p)) with fermions. It is not possible to compute gauge non-singlet matrix elements. In the present language they are not submitted to sufficiently many constraints derived from higher conservation laws. (author) [pt

  20. Two-state approximation of the Fadeev-Hahn equations

    International Nuclear Information System (INIS)

    Brener, S.E.

    1993-01-01

    The equations have been chosen which allow both to solve the scattering problems and to calculate the parameters of bound states of three particles with Coulomb interaction when the system energy is below the decay to three separate particles. The method of constructing of equations which are most suitable for concrete problems is considered. Different numerical schemes to calculate the low energy scattering cross sections with two-particle clusterization in 'in' and 'out' collision's channels have been developed. The bounds of applied approaches were determined and the peculiarities connected with differently defined reaction amplitudes under these approaches have been considered. The interpretation of obtained results at different definitions of reaction amplitudes was demonstrated, and the elastic, inelastic cross sections and muon transfer rates in hydrogen isotope mesic atom collisions have been calculated using Fadeev-Hahn equations. (author)

  1. The g-factor of the bound electron in hydrogenic ions

    International Nuclear Information System (INIS)

    Quint, Wolfgang

    2001-01-01

    We report on the measurement of the g-factor of the electron bound in an atomic ion. A single hydrogenic ion ( 12 C 5+ ) is stored in a Penning trap. The electronic spin state of the ion is monitored via the continuous Stern-Gerlach effect in a quantum non-demolition measurement. Quantum jumps between the two spin states (spin up and spin down) are induced by a microwave field at the spin precession frequency of the bound electron. The g-factor of the bound electron is obtained by varying the microwave frequency and counting the number of spin flips for a fixed time interval. Applications of the continuous Stern-Gerlach effect include high-accuracy tests of bound-state quantum electrodynamics (QED), the measurement of the atomic mass of the electron, the determination of the fine structure constant α, and the measurement of nuclear g-factors

  2. Bounded energy states in homogeneous turbulent shear flow: An alternative view

    Science.gov (United States)

    Bernard, Peter S.; Speziale, Charles G.

    1990-01-01

    The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if vortex stretching is accounted for in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are present for a k-epsilon model modified to account for vortex stretching. The calculations indicate an initial exponential time growth of the turbulent kinetic energy and dissipation rate for elapsed times that are as large as those considered in any of the previously conducted physical or numerical experiments on homogeneous shear flow. However, vortex stretching eventually takes over and forces a production-equals-dissipation equilibrium with bounded energy states. The validity of this result is further supported by an independent theoretical argument. It is concluded that the generally accepted structural equilibrium for homogeneous shear flow with unbounded component energies is in need of re-examination.

  3. The coherence lifetime-borrowing effect in vibronically coupled molecular aggregates under non-perturbative system-environment interactions.

    Science.gov (United States)

    Yeh, Shu-Hao; Engel, Gregory S.; Kais, Sabre

    Recently it has been suggested that the long-lived coherences in some photosynthetic pigment-protein systems, such as the Fenna-Matthews-Olson complex, could be attributed to the mixing of the pigments' electronic and vibrational degrees of freedom. In order to verify whether this is the case and to understand its underlying mechanism, a theoretical model capable of including both the electronic excitations and intramolecular vibrational modes of the pigments is necessary. Our model simultaneously considers the electronic and vibrational degrees of freedom, treating the system-environment interactions non-perturbatively by implementing the hierarchical equations of motion approach. Here we report the simulated two-dimensional electronic spectra of vibronically coupled molecular dimers to demonstrate how the electronic coherence lifetimes can be extended by borrowing the lifetime from the vibrational coherences. Funded by Qatar National Research Fund and Qatar Environment and Energy Research Institute.

  4. A lower bound on the relative error of mixed-state cloning and related operations

    International Nuclear Information System (INIS)

    Rastegin, A E

    2003-01-01

    We extend the concept of the relative error to mixed-state cloning and related physical operations, in which the ancilla contains some information a priori about the input state. The lower bound on the relative error is obtained. It is shown that this result provides further support for a stronger no-cloning theorem

  5. Reaching the Quantum Cramér-Rao Bound for Transmission Measurements

    Science.gov (United States)

    Woodworth, Timothy; Chan, Kam Wai Clifford; Marino, Alberto

    2017-04-01

    The quantum Cramér-Rao bound (QCRB) is commonly used to quantify the lower bound for the uncertainty in the estimation of a given parameter. Here, we calculate the QCRB for transmission measurements of an optical system probed by a beam of light. Estimating the transmission of an optical element is important as it is required for the calibration of optimal states for interferometers, characterization of high efficiency photodetectors, or as part of other measurements, such as those in plasmonic sensors or in ellipsometry. We use a beam splitter model for the losses introduced by the optical system to calculate the QCRB for different input states. We compare the bound for a coherent state, a two-mode squeezed-state (TMSS), a single-mode squeezed-state (SMSS), and a Fock state and show that it is possible to obtain an ultimate lower bound, regardless of the state used to probe the system. We prove that the Fock state gives the lowest possible uncertainty in estimating the transmission for any state and demonstrate that the TMSS and SMSS approach this ultimate bound for large levels of squeezing. Finally, we show that a simple measurement strategy for the TMSS, namely an intensity difference measurement, is able to saturate the QCRB. Work supported by the W.M. Keck Foundation.

  6. Toward a general mixed quantum/classical method for the calculation of the vibronic ECD of a flexible dye molecule with different stable conformers: Revisiting the case of 2,2,2-trifluoro-anthrylethanol.

    Science.gov (United States)

    Cerezo, Javier; Aranda, Daniel; Avila Ferrer, Francisco J; Prampolini, Giacomo; Mazzeo, Giuseppe; Longhi, Giovanna; Abbate, Sergio; Santoro, Fabrizio

    2018-06-01

    We extend a recently proposed mixed quantum/classical method for computing the vibronic electronic circular dichroism (ECD) spectrum of molecules with different conformers, to cases where more than one hindered rotation is present. The method generalizes the standard procedure, based on the simple Boltzmann average of the vibronic spectra of the stable conformers, and includes the contribution of structures that sample all the accessible conformational space. It is applied to the simulation of the ECD spectrum of (S)-2,2,2-trifluoroanthrylethanol, a molecule with easily interconvertible conformers, whose spectrum exhibits a pattern of alternating positive and negative vibronic peaks. Results are in very good agreement with experiment and show that spectra averaged over all the sampled conformational space can deviate significantly from the simple average of the contributions of the stable conformers. The present mixed quantum/classical method is able to capture the effect of the nonlinear dependence of the rotatory strength on the molecular structure and of the anharmonic couplings among the modes responsible for molecular flexibility. Despite its computational cost, the procedure is still affordable and promises to be useful in all cases where the ECD shape arises from a subtle balance between vibronic effects and conformational variety. © 2018 Wiley Periodicals, Inc.

  7. Quartified leptonic color, bound states, and future electron–positron collider

    Directory of Open Access Journals (Sweden)

    Corey Kownacki

    2017-06-01

    Full Text Available The [SU(3]4 quartification model of Babu, Ma, and Willenbrock (BMW, proposed in 2003, predicts a confining leptonic color SU(2 gauge symmetry, which becomes strong at the keV scale. It also predicts the existence of three families of half-charged leptons (hemions below the TeV scale. These hemions are confined to form bound states which are not so easy to discover at the Large Hadron Collider (LHC. However, just as J/ψ and ϒ appeared as sharp resonances in e−e+ colliders of the 20th century, the corresponding ‘hemionium’ states are expected at a future e−e+ collider of the 21st century.

  8. Contribution of Bound States to the Harmonic Generation in Hydrogen at Moderate Laser Intensities

    National Research Council Canada - National Science Library

    Davis, Jack

    2002-01-01

    .... The disappearance of bound parabolic states with large electric dipole moments in moderately strong fields leads to the simplification of the expression for the total time-dependent dipole moment of the atom...

  9. Faddeev-Yakubovsky technique for weakly bound systems

    International Nuclear Information System (INIS)

    Hadizadeh, M.R.; Yamashita, M.T.; Tomio, Lauro; Delfino, A.

    2011-01-01

    Nature shows the existence of weakly bound systems in different sectors, ranging from atomic to nuclear physics. Few-body systems with large scattering length exhibit universal features, which are independent of the details of the interaction, and thus are common to nuclear and atomic systems. Very different methods are used to study the properties of few-body systems, from Faddeev methods to diagonalization methods that rely on an expansion of the wave functions in a complete basis set, like e.g. hyper-spherical harmonics and no core shell model. In this talk we present Faddeev-Yakubovsky method to study the three- and four-body bound states in momentum space. To show the efficiency and accuracy of the method we investigate the three- and four-boson weakly bound states in unitary limit (for zero two-body binding) and we present a pretty complete picture of universality. (author)

  10. Neutron scattering study of two-magnon states in the quantum magnet copper nitrate

    DEFF Research Database (Denmark)

    Tennant, D.A.; Broholm, C.; Reich, D.H.

    2003-01-01

    We report measurements of the two-magnon states in a dimerized antiferromagnetic chain material, copper nitrate [Cu(NO3)(2).2.5D(2)O]. Using inelastic neutron scattering we have measured the one- and two-magnon excitation spectra in a large single crystal. The data are in excellent agreement...... with a perturbative expansion of the alternating Heisenberg Hamiltonian from the strongly dimerized limit. The expansion predicts a two-magnon bound state for qsimilar to(2n+1)pid which is consistent with the neutron scattering data....

  11. Quasi-bound state resonances of charged massive scalar fields in the near-extremal Reissner-Nordstroem black-hole spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)

    2017-05-15

    The quasi-bound states of charged massive scalar fields in the near-extremal charged Reissner-Nordstroem black-hole spacetime are studied analytically. These discrete resonant modes of the composed black-hole-field system are characterized by the physically motivated boundary condition of ingoing waves at the black-hole horizon and exponentially decaying (bounded) radial eigenfunctions at spatial infinity. Solving the Klein-Gordon wave equation for the linearized scalar fields in the black-hole spacetime, we derive a remarkably compact analytical formula for the complex frequency spectrum which characterizes the quasi-bound state resonances of the composed Reissner-Nordstroem-black-hole-charged-massive-scalar-field system. (orig.)

  12. First direct observation of bound-state beta-decay: Measurements of branching and lifetime of 207Tl81+ fragments

    International Nuclear Information System (INIS)

    Boutin, D.

    2005-08-01

    The first experimental observation of bound-state beta-decay showed, that due solely to the electron stripping, a stable nuclide, e.g. 163 Dy, became unstable. Also a drastic modification of the half-life of bare 187 Re, from 4.12(2) x 10 10 years down to 32.9(20) years, could be observed. It was mainly due to the possibility for the mother nuclide to decay into a previously inaccessible nuclear level of the daughter nuclide. It was proposed to study a nuclide where this decay mode was competing with continuum-state beta-decay, in order to measure their respective branchings. The ratio β b /β c could also be evaluated for the first time. 207 Tl was chosen due to its high atomic number, and Q-value of about 1.4 MeV, small enough to enhance the β b probability and large enough to allow the use of time-resolved Schottky Mass Spectrometry (SMS) to study the evolution of mother and bound-state beta-decay daughter ions. The decay properties of the ground state and isomeric state of 207 Tl 81+ have been investigated at the GSI accelerator facility in two separate experiments. For the first time β-decay where the electron could go either to a bound state (atomic orbitals) and lead to 207 Pb 81+ as a daughter nuclide, or to a continuum state and lead to 207 Pb 82+ , has been observed. The respective branchings of these two processes could be measured as well. The deduced total nuclear half-life of 255(17) s for 207 Tl 81+ , was slightly modified with respect to the half-life of the neutral atom of 286(2) s. It was nevertheless in very good agreement with calculations based on the assumption that the beta-decay was following an allowed type of transition. The branching β b /β c =0.192(20), was also in very good agreement with the same calculations. The application of stochastic precooling allowed to observe in addition the 1348 keV short-lived isomeric state of 207 Tl. The half-life of this isomeric state was measured as 1.47(32) s, which shows a small deviation

  13. Bound states of quarks calculated with stochastic integration of the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Salomon, M.

    1992-07-01

    We have computed the masses, wave functions and sea quark content of mesons in their ground state by integrating the Bethe-Salpeter equation with a stochastic algorithm. This method allows the inclusion of a large set of diagrams. Inspection of the kernel of the equation shows that q-q-bar pairs with similar constituent masses in a singlet spin state exhibit a high bound state which is not present in other pairs. The pion, kaon and eta belongs to this category. 19 refs., 2 figs., 2 tabs

  14. Gravitationally self-bound quantum states in unstable potentials

    Science.gov (United States)

    Jääskeläinen, Markku

    2018-04-01

    Quantum mechanics at present cannot be unified with the theory of gravity at the deepest level, and to guide research towards the solution of this fundamental problem, we need to look for ways to observe or refute predictions originating from attempts to combine quantum theory with gravity. The influence of the gravitational field created by the material density given by the wave function itself gives rise to nontrivial phenomena. In this study I consider the wave function for the center-of-mass coordinate of a spherical mass distribution under the influence of the self-interaction of Newtonian gravity. I solve numerically for the ground state in the presence of an unstable potential and find that the energy of the free-space bound state can be lowered despite the nontrapping character of the potential. The center-of-mass ground state becomes increasingly localized for the used unstable potentials, although only in a limited parameter regime. The feebleness of the energy shift makes the observation of these effects demanding and requires further developments in the cooling of material particles. In addition, the influence of gravitational perturbations that are present in typical laboratory settings necessitates the use of extremely quiet and controlled environments such as those provided by recently proposed space-borne experiments.

  15. On Ostrowski Type Inequalities for Functions of Two Variables with Bounded Variation

    Directory of Open Access Journals (Sweden)

    Hüseyin Budak

    2016-10-01

    Full Text Available In this paper, we establish a new generalization of Ostrowski type inequalities for functions of two independent variables with bounded variation and apply it for qubature formulae. Some connections with the rectangle, the midpoint and Simpson's rule are also given.

  16. Bound states on the lattice with partially twisted boundary conditions

    International Nuclear Information System (INIS)

    Agadjanov, D.; Guo, F.-K.; Ríos, G.; Rusetsky, A.

    2015-01-01

    We propose a method to study the nature of exotic hadrons by determining the wave function renormalization constant Z from lattice simulations. It is shown that, instead of studying the volume-dependence of the spectrum, one may investigate the dependence of the spectrum on the twisting angle, imposing twisted boundary conditions on the fermion fields on the lattice. In certain cases, e.g., the case of the DK bound state which is addressed in detail, it is demonstrated that the partial twisting is equivalent to the full twisting up to exponentially small corrections.

  17. Estimation of radon progeny equilibrium factors and their uncertainty bounds using solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Eappen, K.P.; Mayya, Y.S.; Patnaik, R.L.; Kushwaha, H.S.

    2006-01-01

    For the assessment of inhalation doses due to radon and its progeny to uranium mine workers, it is necessary to have information on the time integrated gas concentrations and equilibrium factors. Passive single cup dosimeters using solid state nuclear track detectors (SSNTD) are best suited for this purpose. These generally contain two SSNTDs, one placed inside the cup to measure only the radon gas concentration and other outside the cup for recording tracks due to both radon gas and the progeny species. However, since one obtains only two numbers by this method whereas information on four quantities is required for an unambiguous estimation of dose, there is a need for developing an optimal methodology for extracting information on the equilibrium factors. Several techniques proposed earlier have essentially been based on deterministic approaches, which do not fully take into account all the possible uncertainties in the environmental parameters. Keeping this in view, a simple 'mean of bounds' methodology is proposed to extract equilibrium factors based on their absolute bounds and the associated uncertainties as obtained from general arguments of radon progeny disequilibrium. This may be considered as reasonable estimates of the equilibrium factors in the absence of a knowledge of fluctuation in the environmental variables. The results are compared with those from direct measurements both in the laboratory and in real field situations. In view of the good agreement found between these, it is proposed that the simple mean of bounds estimate may be useful for practical applications in inhalation dosimetry of mine workers

  18. Quantum phase transition in the U(4) vibron model and the E(3) symmetry

    International Nuclear Information System (INIS)

    Zhang Yu; Hou Zhanfeng; Chen Huan; Wei Haiqing; Liu Yuxin

    2008-01-01

    We study the details of the U(3)-O(4) quantum phase transition in the U(4) vibron model. Both asymptotic analysis in the classical limit and rigorous calculations for finite boson number systems indicate that a second-order phase transition is still there even for the systems with boson number N ranging from tens to hundreds. Two kinds of effective order parameters, including E1 transition ratios B(E1:2 1 →1 1 )/B(E1:1 1 →0 1 ) and B(E1:0 2 →1 1 )/B(E1:1 1 →0 1 ), and the energy ratios E 2 1 /E 0 2 and E 3 1 /E 0 2 are proposed to identify the second-order phase transition in experiments. We also found that the critical point of phase transition can be approximately described by the E(3) symmetry, which persists even for moderate N∼10 protected by the scaling behaviors of quantities at the critical point. In addition, a possible empirical example exhibiting roughly the E(3) symmetry is discussed

  19. Binding of two-electron metastable states in semiconductor quantum dots under a magnetic field

    Science.gov (United States)

    Garagiola, Mariano; Pont, Federico M.; Osenda, Omar

    2018-04-01

    Applying a strong enough magnetic field results in the binding of few-electron resonant states. The mechanism was proposed many years ago but its verification in laboratory conditions is far more recent. In this work we study the binding of two-electron resonant states. The electrons are confined in a cylindrical quantum dot which is embedded in a semiconductor wire. The geometry considered is similar to the one used in actual experimental setups. The low-energy two-electron spectrum is calculated numerically from an effective-mass approximation Hamiltonian modelling the system. Methods for binding threshold calculations in systems with one and two electrons are thoroughly studied; in particular, we use quantum information quantities to assess when the strong lateral confinement approximation can be used to obtain reliable low-energy spectra. For simplicity, only cases without bound states in the absence of an external field are considered. Under these conditions, the binding threshold for the one-electron case is given by the lowest Landau energy level. Moreover, the energy of the one-electron bounded resonance can be used to obtain the two-electron binding threshold. It is shown that for realistic values of the two-electron model parameters it is feasible to bind resonances with field strengths of a few tens of tesla.

  20. Orotidine-5'-monophosphate decarboxylase catalysis: Kinetic isotope effects and the state of hybridization of a bound transition-state analogue

    Energy Technology Data Exchange (ETDEWEB)

    Acheson, S.A.; Bell, J.B.; Jones, M.E.; Wolfenden, R. (Univ. of North Carolina School of Medicine, Chapel Hill (USA))

    1990-04-03

    The enzymatic decarboxylation of orotidine 5'-monophosphate may proceed by an addition-elimination mechanism involving a covalently bound intermediate or by elimination of CO2 to generate a nitrogen ylide. In an attempt to distinguish between these two alternatives, 1-(phosphoribosyl)barbituric acid was synthesized with 13C at the 5-position. Interaction of this potential transition-state analogue inhibitor with yeast orotidine-5'-monophosphate decarboxylase resulted in a small (0.6 ppm) downfield displacement of the C-5 resonance, indicating no rehybridization of the kind that might have been expected to accompany 5,6-addition of an enzyme nucleophile. When the substrate orotidine 5'-monophosphate was synthesized with deuterium at C-5, no significant change in kcat (H/D = 0.99 +/- 0.06) or kcat/KM (H/D = 1.00 +/- 0.06) was found to result, suggesting that C-5 does not undergo significant changes in geometry before or during the step that determines the rate of the catalytic process. These results are consistent with a nitrogen ylide mechanism and offer no support for the intervention of covalently bound intermediates in the catalytic process.

  1. Spectroscopy of the hghest Rb2 bound states with 10 kHz precision

    NARCIS (Netherlands)

    Verhaar, B.J.; Kokkelmans, S.J.J.M.F.; van Kempen, E.G.M.; Freeland, R.S.; Wynar, R.; Comparat, D.; Ryu, C.; Heinzen, D.J.

    2001-01-01

    We have measured the binding energy of four of the highest bound vibrational levels of the ground electronic states of the ^87Rb2 molecule with a precision better than 10 kHz. The measurements were carried out using stimulated Raman photoassociation in an ^87Rb Bose-Einstein condensate. We have

  2. Finite state projection based bounds to compare chemical master equation models using single-cell data

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Zachary [School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Neuert, Gregor [Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 (United States); Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232 (United States); Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee 37232 (United States); Munsky, Brian [School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States)

    2016-08-21

    Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort. In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.

  3. Interband type-II miniband-to-bound state diode lasers for the midinfrared

    International Nuclear Information System (INIS)

    Mermelstein, C.; Schmitz, J.; Kiefer, R.; Walther, M.; Wagner, J.

    2004-01-01

    A design for midinfrared diode lasers based on interband type-II miniband-to-bound state transitions is proposed and has been demonstrated experimentally. Type-II miniband-to-bound state laser structures emitting at 3.25 μm with active regions consisting of 5 and 10 W periods were grown by solid-source molecular-beam epitaxy and processed into ridge waveguide lasers. Substrate-side down mounted devices with a 10 period active region and uncoated facets could be operated in continuous-wave (cw) mode up to 185 K and as high as 260 K in pulsed mode. A high characteristic temperature of 100 K has been achieved for heat-sink temperatures below 140 K, decreasing to 33 K for the 140 to 185 K interval. At 110 K, a 5 period laser structure exhibited a threshold current density of 177 A/cm 2 and a slope efficiency of 61 mW/A. Single-ended output powers of 144 mW in cw mode and exceeding 330 mW in pulsed operation were obtained for a substrate-side down mounted 5 period diode laser with high-reflection/antireflection coated mirror facets, operated at 110 K

  4. Short versus long range interactions and the size of two-body weakly bound objects

    International Nuclear Information System (INIS)

    Lombard, R.J.; Volpe, C.

    2003-01-01

    Very weakly bound systems may manifest intriguing ''universal'' properties, independent of the specific interaction which keeps the system bound. An interesting example is given by relations between the size of the system and the separation energy, or scaling laws. So far, scaling laws have been investigated for short-range and long-range (repulsive) potentials. We report here on scaling laws for weakly bound two-body systems valid for a larger class of potentials, i.e. short-range potentials having a repulsive core and long-range attractive potentials. We emphasize analogies and differences between the short- and the long-range case. In particular, we show that the emergence of halos is a threshold phenomenon which can arise when the system is bound not only by short-range interactions but also by long-range ones, and this for any value of the orbital angular momentum l. These results enlarge the image of halo systems we are accustomed to. (orig.)

  5. Polarized two-photon photoselection in EGFP: Theory and experiment.

    Science.gov (United States)

    Masters, T A; Marsh, R J; Blacker, T S; Armoogum, D A; Larijani, B; Bain, A J

    2018-04-07

    In this work, we present a complete theoretical description of the excited state order created by two-photon photoselection from an isotropic ground state; this encompasses both the conventionally measured quadrupolar (K = 2) and the "hidden" degree of hexadecapolar (K = 4) transition dipole alignment, their dependence on the two-photon transition tensor and emission transition dipole moment orientation. Linearly and circularly polarized two-photon absorption (TPA) and time-resolved single- and two-photon fluorescence anisotropy measurements are used to determine the structure of the transition tensor in the deprotonated form of enhanced green fluorescent protein. For excitation wavelengths between 800 nm and 900 nm, TPA is best described by a single element, almost completely diagonal, two-dimensional (planar) transition tensor whose principal axis is collinear to that of the single-photon S 0 → S 1 transition moment. These observations are in accordance with assignments of the near-infrared two-photon absorption band in fluorescent proteins to a vibronically enhanced S 0 → S 1 transition.

  6. Polarized two-photon photoselection in EGFP: Theory and experiment

    Science.gov (United States)

    Masters, T. A.; Marsh, R. J.; Blacker, T. S.; Armoogum, D. A.; Larijani, B.; Bain, A. J.

    2018-04-01

    In this work, we present a complete theoretical description of the excited state order created by two-photon photoselection from an isotropic ground state; this encompasses both the conventionally measured quadrupolar (K = 2) and the "hidden" degree of hexadecapolar (K = 4) transition dipole alignment, their dependence on the two-photon transition tensor and emission transition dipole moment orientation. Linearly and circularly polarized two-photon absorption (TPA) and time-resolved single- and two-photon fluorescence anisotropy measurements are used to determine the structure of the transition tensor in the deprotonated form of enhanced green fluorescent protein. For excitation wavelengths between 800 nm and 900 nm, TPA is best described by a single element, almost completely diagonal, two-dimensional (planar) transition tensor whose principal axis is collinear to that of the single-photon S0 → S1 transition moment. These observations are in accordance with assignments of the near-infrared two-photon absorption band in fluorescent proteins to a vibronically enhanced S0 → S1 transition.

  7. Variational lower bound on the scattering length

    International Nuclear Information System (INIS)

    Rosenberg, L.; Spruch, L.

    1975-01-01

    The scattering length A characterizes the zero-energy scattering of one system by another. It was shown some time ago that a variational upper bound on A could be obtained using methods, of the Rayleigh-Ritz type, which are commonly employed to obtain upper bounds on energy eigenvalues. Here we formulate a method for obtaining a variational lower bound on A. Once again the essential idea is to express the scattering length as a variational estimate plus an error term and then to reduce the problem of bounding the error term to one involving bounds on energy eigenvalues. In particular, the variational lower bound on A is rigorously established provided a certin modified Hamiltonian can be shown to have no discrete states lying below the level of the continuum threshold. It is unfortunately true that necessary conditions for the existence of bound states are not available for multiparticle systems in general. However, in the case of positron-atom scattering the adiabatic approximation can be introduced as an (essentially) solvable comparison problem to rigorously establish the nonexistence of bound states of the modified Hamiltonian. It has recently been shown how the validity of the variational upper bound on A can be maintained when the target ground-state wave function is imprecisely known. Similar methods can be used to maintain the variational lower bound on A. Since the bound is variational, the error in the calculated scattering length will be of second order in the error in the wave function. The use of the adiabatic approximation in the present context places no limitation in principle on the accuracy achievable

  8. Universal bounds in even-spin CFTs

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, Joshua D. [Department of Physics, National Taiwan University,Taipei, Taiwan (China)

    2015-12-01

    We prove using invariance under the modular S− and ST−transformations that every unitary two-dimensional conformal field theory (CFT) having only even-spin primary operators (with no extended chiral algebra and with right- and left-central charges c,c̃>1) contains a primary operator with dimension Δ{sub 1} satisfying 0<Δ{sub 1}<((c+c̃)/24)+0.09280…. After deriving both analytical and numerical bounds, we discuss how to extend our methods to bound higher conformal dimensions before deriving lower and upper bounds on the number of primary operators in a given energy range. Using the AdS{sub 3}/CFT{sub 2} dictionary, the bound on Δ{sub 1} proves the lightest massive excitation in appropriate theories of 3D matter and gravity with cosmological constant Λ<0 can be no heavier than 1/8G{sub N}+O(√(−Λ)); the bounds on the number of operators are related via AdS/CFT to the entropy of states in the dual gravitational theory. In the flat-space approximation, the limiting mass is exactly that of the lightest BTZ black hole.

  9. Rovibrational bound states of SO2 isotopologues. I: Total angular momentum J = 0-10

    Science.gov (United States)

    Kumar, Praveen; Ellis, Joseph; Poirier, Bill

    2015-04-01

    Isotopic variation of the rovibrational bound states of SO2 for the four stable sulfur isotopes 32-34,36S is investigated in comprehensive detail. In a two-part series, we compute the low-lying energy levels for all values of total angular momentum in the range J = 0-20. All rovibrational levels are computed, to an extremely high level of numerical convergence. The calculations have been carried out using the ScalIT suite of parallel codes. The present study (Paper I) examines the J = 0-10 rovibrational levels, providing unambiguous symmetry and rovibrational label assignments for each computed state. The calculated vibrational energy levels exhibit very good agreement with previously reported experimental and theoretical data. Rovibrational energy levels, calculated without any Coriolis approximations, are reported here for the first time. Among other potential ramifications, this data will facilitate understanding of the origin of mass-independent fractionation of sulfur isotopes in the Archean rock record-of great relevance for understanding the "oxygen revolution".

  10. Bounded Tamper Resilience

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Faust, Sebastian; Mukherjee, Pratyay

    2013-01-01

    Related key attacks (RKAs) are powerful cryptanalytic attacks where an adversary can change the secret key and observe the effect of such changes at the output. The state of the art in RKA security protects against an a-priori unbounded number of certain algebraic induced key relations, e.......g., affine functions or polynomials of bounded degree. In this work, we show that it is possible to go beyond the algebraic barrier and achieve security against arbitrary key relations, by restricting the number of tampering queries the adversary is allowed to ask for. The latter restriction is necessary......-protocols (including the Okamoto scheme, for instance) are secure even if the adversary can arbitrarily tamper with the prover’s state a bounded number of times and obtain some bounded amount of leakage. Interestingly, for the Okamoto scheme we can allow also independent tampering with the public parameters. We show...

  11. Speed of quantum evolution of entangled two qubits states: Local vs. global evolution

    International Nuclear Information System (INIS)

    Curilef, S; Zander, C; Plastino, A R

    2008-01-01

    There is a lower bound for the 'speed' of quantum evolution as measured by the time needed to reach an orthogonal state. We show that, for two-qubits systems, states saturating the quantum speed limit tend to exhibit a small amount of local evolution, as measured by the fidelity between the initial and final single qubit states after the time τ required by the composite system to reach an orthogonal state. Consequently, a trade-off between the speed of global evolution and the amount of local evolution seems to be at work.

  12. Bound states via Higgs exchanging and heavy resonant di-Higgs

    Directory of Open Access Journals (Sweden)

    Zhaofeng Kang

    2017-08-01

    Full Text Available The existence of Higgs boson h predicted by the standard model (SM was established and hunting for clues to new physics (NP hidden in h has become the top priority in particle physics. In this paper we explore an intriguing phenomenon that prevails in NP associated with h, bound state (Bh, referring to the ground state only of relatively heavy particles ϕ out of NP via interchanging h. This is well-motivated due to the intrinsic properties of h: It has zero spin and light mass, capable of mediating Yukawa interactions; moreover, it may be strongly coupled to ϕ in several important contexts, from addressing the naturalness problem by compositeness/supersymmetry (SUSY/classical scale invariance to understanding neutrino mass origin radiatively and matter asymmetry by electroweak baryogensis. The new resonance Bh, being a neutral scalar boson, has important implications to the large hadron collider (LHC di-Higgs search because it yields a clear resonant di-Higgs signature at the high mass region (≳1 TeV. In other words, searching for Bh offers a new avenue to probe the hidden sector with a Higgs-portal. For illustration in this paper we concentrate on two examples, the stop sector in SUSY and an inert Higgs doublet from a radiative neutrino model. In particular, h-mediation opens a new and wide window to probe the conventional stoponium and the current date begins to have sensitivity to stoponium around TeV.

  13. Bound states via Higgs exchanging and heavy resonant di-Higgs

    Science.gov (United States)

    Kang, Zhaofeng

    2017-08-01

    The existence of Higgs boson h predicted by the standard model (SM) was established and hunting for clues to new physics (NP) hidden in h has become the top priority in particle physics. In this paper we explore an intriguing phenomenon that prevails in NP associated with h, bound state (Bh, referring to the ground state only) of relatively heavy particles ϕ out of NP via interchanging h. This is well-motivated due to the intrinsic properties of h: It has zero spin and light mass, capable of mediating Yukawa interactions; moreover, it may be strongly coupled to ϕ in several important contexts, from addressing the naturalness problem by compositeness/supersymmetry (SUSY)/classical scale invariance to understanding neutrino mass origin radiatively and matter asymmetry by electroweak baryogensis. The new resonance Bh, being a neutral scalar boson, has important implications to the large hadron collider (LHC) di-Higgs search because it yields a clear resonant di-Higgs signature at the high mass region (≳ 1 TeV). In other words, searching for Bh offers a new avenue to probe the hidden sector with a Higgs-portal. For illustration in this paper we concentrate on two examples, the stop sector in SUSY and an inert Higgs doublet from a radiative neutrino model. In particular, h-mediation opens a new and wide window to probe the conventional stoponium and the current date begins to have sensitivity to stoponium around TeV.

  14. Electroweak-charged bound states as LHC probes of hidden forces

    Science.gov (United States)

    Li, Lingfeng; Salvioni, Ennio; Tsai, Yuhsin; Zheng, Rui

    2018-01-01

    We explore the LHC reach on beyond-the-standard model (BSM) particles X associated with a new strong force in a hidden sector. We focus on the motivated scenario where the SM and hidden sectors are connected by fermionic mediators ψ+,0 that carry SM electroweak charges. The most promising signal is the Drell-Yan production of a ψ±ψ¯ 0 pair, which forms an electrically charged vector bound state ϒ± due to the hidden force and later undergoes resonant annihilation into W±X . We analyze this final state in detail in the cases where X is a real scalar ϕ that decays to b b ¯, or a dark photon γd that decays to dileptons. For prompt X decays, we show that the corresponding signatures can be efficiently probed by extending the existing ATLAS and CMS diboson searches to include heavy resonance decays into BSM particles. For long-lived X , we propose new searches where the requirement of a prompt hard lepton originating from the W boson ensures triggering and essentially removes any SM backgrounds. To illustrate the potential of our results, we interpret them within two explicit models that contain strong hidden forces and electroweak-charged mediators, namely λ -supersymmetry (SUSY) and non-SUSY ultraviolet extensions of the twin Higgs model. The resonant nature of the signals allows for the reconstruction of the mass of both ϒ± and X , thus providing a wealth of information about the hidden sector.

  15. Drift mode in a bounded plasma having two-ion species

    International Nuclear Information System (INIS)

    Ahmad, Ali; Sajid, M.; Saleem, H.

    2008-01-01

    The drift wave is investigated in a two-ion species plasma in several different cases. The global drift mode is studied in a plasma bounded in a cylinder having Gaussian density profile corresponding to different poloidal wavenumbers. The frequency of the mode becomes a little larger when it is investigated without including the ion cyclotron wave dynamics. The effect of magnetic shear on the wave propagation along the density gradient is studied in a Cartesian geometry assuming absorbing boundary. It is found that the wave amplitude is reduced when two-ion species are present (with the same concentration) compared to pure electron-ion plasma

  16. New rational extensions of solvable potentials with finite bound state spectrum

    International Nuclear Information System (INIS)

    Grandati, Yves

    2012-01-01

    Using the disconjugacy properties of the Schrödinger equation, we develop a new type of generalized SUSY QM partnership which allows generating new solvable rational extensions for translationally shape invariant potentials having a finite bound state spectrum. For this we prolong the dispersion relation relating the energy to the quantum number out of the physical domain until a disconjugacy sector. By Darboux–Bäcklund Transformations built on these prolonged states we obtain new regular isospectral extensions of the initial potential. We give the spectra of these extensions in terms of new orthogonal polynomials and study their shape invariance properties. -- Highlights: ► New solvable quantum potentials. ► SUSY quantum partnership generalized to excited states. ► Based on disconjugacy theorems and asymptotic behaviour. ► Exact spectrum in terms of new orthogonal polynomials. ► Enlarged shape invariance property.

  17. A search for deeply-bound kaonic nuclear states at J-PARC

    Directory of Open Access Journals (Sweden)

    Sakaguchi A.

    2010-04-01

    Full Text Available The J-PARC E15 experiment will be performed to search for the simplest kaonic nuclear bound state, K− pp, by the in-flight 3He(K−,n reaction. The exclusive measurement can be performed by a simultaneous measurement of the missing mass using the primary neutron and the invariant mass via the expected decay, K− pp → Λp → pπ− p. In this report, an overview of the experiment and the preparation status are presented.

  18. Characterization of excited electronic states of naphthalene by resonance Raman and hyper-Raman scattering

    International Nuclear Information System (INIS)

    Bonang, C.C.; Cameron, S.M.

    1992-01-01

    The first resonance Raman and hyper-Raman scattering from naphthalene are reported. Fourth harmonic of a mode-locked Nd:YAG laser is used to resonantly excite the 1 B 1u + transition, producing Raman spectra that confirm the dominance of the vibronically active ν 28 (b 3g ) mode and the Franck--Condon active a g modes, ν 5 and ν 3 . A synchronously pumped stilbene dye laser and its second harmonic are employed as the excitation sources for hyper-Raman and Raman scattering from the overlapping 1 B 2 u + and 1 A g - states. The Raman spectra indicate that the equilibrium geometry of naphthalene is distorted primarily along ν 5 , ν 8 , and ν 7 normal coordinates upon excitation to 1 B 2 u + . The hyper-Raman spectrum shows that ν 25 (b 2u ) is the mode principally responsible for vibronic coupling between the 1 A g - and 1 B 2u + states. The results demonstrate the advantageous features of resonance hyper-Raman scattering for the case of overlapping one- and two-photon allowed transitions. Calculations based on simple molecular orbital configurations are shown to qualitatively agree with the experimental results

  19. Evaluation of upper and lower bounds to energy eigenvalues in Shoenberg's perturbation-theory ground state by means of partitioning technique

    International Nuclear Information System (INIS)

    Logrado, P.G.; Vianna, J.D.M.

    Upper and lower bounds for the energy eigenvalues is Schoenberg's perturbation-theory ground state are studied. After a review of the characteristic features of the partitioning techniques the perturbative expansion proposed by Schoenberg is generated from an exact operator equation. The upper and lower bounds for the ground state eigenvalue are derived by using reaction and wave operators concepts, the bracketing function and operator inequalities. (Author) [pt

  20. Observations of bound and unbound states of Ce−

    International Nuclear Information System (INIS)

    Walter, C W; Li, Y-G; Matyas, D J; Alton, R M; Lou, S E; III, R L Field; Gibson, N D; Hanstorp, D

    2012-01-01

    The negative ion of cerium has been investigated with tunable infrared laser photodetachment spectroscopy over selected photon energy ranges between 0.56 − 0.70 eV. The spectrum reveals several sharp peaks due to negative ion resonances and possible bound-bound transitions in Ce − . The newly observed transitions, together with our previous measurements, provide insight into the rich near-threshold spectrum of this lanthanide negative ion.

  1. Photodissociation spectroscopy of the Mg + -CO2 complex and its isotopic analogs

    Science.gov (United States)

    Yeh, C. S.; Willey, K. F.; Robbins, D. L.; Pilgrim, J. S.; Duncan, M. A.

    1993-02-01

    Mg+-CO2 ion-molecule cluster complexes are produced by laser vaporization in a pulsed nozzle cluster source. The vibronic spectroscopy in these complexes is studied with mass-selected photodissociation spectroscopy in a reflectron time-of-flight mass spectrometer. Two excited electronic states are observed (2) 2Σ+ and 2Π. The 2Π state has a vibrational progression in the metal-CO2 stretching mode (ωe'=381.8 cm-1). The complexes are linear (Mg+-OCO) and are bound by the charge-quadrupole interaction. The dissociation energy (D0`) is 14.7 kcal/mol. Corresponding spectra are measured for each of the 24, 25, and 26 isotopes of magnesium. These results are compared to theoretical predictions made by Bauschlicher and co-workers.

  2. Low-pressure appraoch to the formation and study of exciplex systems

    International Nuclear Information System (INIS)

    Sanzone, G.

    1977-11-01

    Studies on the formation and properties of new materials for high-energy, gas-phase lasers are described. Attention is directed mainly to systems having bound excited states but unbound ground states. An important class of such excimer/exciplex systems has a van der Waals dimer/oligomer as its ground state. This research attempts to probe the relative rates of electron pumping of excited-state manifolds and the preferentially pumped vibronic states within each manifold. Reactive quenching of emission, resonant self-absorption of laser emissions, and collision- and noncollision-induced intersystem crossing are also considered. 11 figures, 2 tables

  3. Semi-inclusive B->K(K*)X decays with initial bound state effects

    International Nuclear Information System (INIS)

    He, Xiao-Gang; Jin, Changhao; Ma, J. P.

    2001-01-01

    The effects of the initial b quark bound state for the semi-inclusive decays B->K(K * )X are studied using light cone expansion and heavy quark effective theory methods. We find that the initial bound state effects on the branching ratios and CP asymmetries are small. In the light cone expansion approach, the CP-averaged branching ratios are increased by about 2% with respect to the free b-quark decay. For {bar B} 0 ->K - (K *- )X, the CP-averaged branching ratios are sensitive to the phase γ and the CP asymmetry can be as large as 7% (14%), whereas for B - ->{bar K} 0 ({bar K} *0 )X the CP-averaged branching ratios are not sensitive to γ and the CP asymmetries are small ( -4 [(0.25 - 2.0)x10 -4 ] for {bar B} 0 ->K - (K *- )X and (0.77 - 0.84)x10 -4 [(0.67 - 0.74)x10 -4 ] for B - ->{bar K} 0 ({bar K} *0 )X, depending on the value of the CP violating phase γ. In the heavy quark effective theory approach, we find that the branching ratios are decreased by about 10% and the CP asymmetries are not affected. These predictions can be tested in the near future

  4. Bound entanglement and local realism

    International Nuclear Information System (INIS)

    Kaszlikowski, Dagomir; Zukowski, Marek; Gnacinski, Piotr

    2002-01-01

    We show using a numerical approach, which gives necessary and sufficient conditions for the existence of local realism, that the bound entangled state presented in Bennett et al. [Phys. Rev. Lett. 82, 5385 (1999)] admits a local and realistic description. We also find the lowest possible amount of some appropriate entangled state that must be ad-mixed to the bound entangled state so that the resulting density operator has no local and realistic description and as such can be useful in quantum communication and quantum computation

  5. Bound states in the continuum on periodic structures surrounded by strong resonances

    Science.gov (United States)

    Yuan, Lijun; Lu, Ya Yan

    2018-04-01

    Bound states in the continuum (BICs) are trapped or guided modes with their frequencies in the frequency intervals of the radiation modes. On periodic structures, a BIC is surrounded by a family of resonant modes with their quality factors approaching infinity. Typically the quality factors are proportional to 1 /|β - β*|2 , where β and β* are the Bloch wave vectors of the resonant modes and the BIC, respectively. But for some special BICs, the quality factors are proportional to 1 /|β - β*|4 . In this paper, a general condition is derived for such special BICs on two-dimensional periodic structures. As a numerical example, we use the general condition to calculate special BICs, which are antisymmetric standing waves, on a periodic array of circular cylinders, and show their dependence on parameters. The special BICs are important for practical applications, because they produce resonances with large quality factors for a very large range of β .

  6. Bound states of water in gelatin discriminated by near-infrared spectroscopy

    Science.gov (United States)

    Otsuka, Yukiko; Shirakashi, Ryo; Hirakawa, Kazuhiko

    2017-11-01

    By near-infrared spectroscopy, we classified water molecules in hydrated gelatin membranes in a drying process. Absorbance spectra in the frequency range of 4500-5500 cm-1 were resolved into three peaks, S0, S1, and S2, that correspond to water molecules with different hydrogen bond states. From the areas of the absorbance peaks as a function of the water content of gelatin, together with the information on the freezing properties of water measured by differential scanning calorimetry, we found that, when the water content is less than 20%, free water disappears and only weakly and strongly bound waters remain. We also found that the weakly bound water consists of S0, S1, and S2 water molecules with a simple composition of \\text{S}0:\\text{S}1:\\text{S}2 ≈ 1:2:0. Using this information, most of the freezable water was determined to be free water. Our classification provides a simple method of estimating the retention and freezing properties of processed foods or drugs by infrared spectroscopy.

  7. Bounding approaches to system identification

    CERN Document Server

    Norton, John; Piet-Lahanier, Hélène; Walter, Éric

    1996-01-01

    In response to the growing interest in bounding error approaches, the editors of this volume offer the first collection of papers to describe advances in techniques and applications of bounding of the parameters, or state variables, of uncertain dynamical systems. Contributors explore the application of the bounding approach as an alternative to the probabilistic analysis of such systems, relating its importance to robust control-system design.

  8. Orthogonality-condition model for bound states with a separable expansion of the potential

    International Nuclear Information System (INIS)

    Pal, K.F.

    1984-01-01

    A very efficient solution of the equation of Saito's orthogonality-condition model (OCM) is reported for bound states by means of a separable expansion of the potential (PSE method). Some simplifications of the published formulae of the PSE method is derived, which facilitate its application to the OCM and may be useful in solving the Schroedinger equation as well. (author)

  9. Time-stepping approach for solving upper-bound problems: Application to two-dimensional Rayleigh-Bénard convection

    Science.gov (United States)

    Wen, Baole; Chini, Gregory P.; Kerswell, Rich R.; Doering, Charles R.

    2015-10-01

    An alternative computational procedure for numerically solving a class of variational problems arising from rigorous upper-bound analysis of forced-dissipative infinite-dimensional nonlinear dynamical systems, including the Navier-Stokes and Oberbeck-Boussinesq equations, is analyzed and applied to Rayleigh-Bénard convection. A proof that the only steady state to which this numerical algorithm can converge is the required global optimal of the relevant variational problem is given for three canonical flow configurations. In contrast with most other numerical schemes for computing the optimal bounds on transported quantities (e.g., heat or momentum) within the "background field" variational framework, which employ variants of Newton's method and hence require very accurate initial iterates, the new computational method is easy to implement and, crucially, does not require numerical continuation. The algorithm is used to determine the optimal background-method bound on the heat transport enhancement factor, i.e., the Nusselt number (Nu), as a function of the Rayleigh number (Ra), Prandtl number (Pr), and domain aspect ratio L in two-dimensional Rayleigh-Bénard convection between stress-free isothermal boundaries (Rayleigh's original 1916 model of convection). The result of the computation is significant because analyses, laboratory experiments, and numerical simulations have suggested a range of exponents α and β in the presumed Nu˜PrαRaβ scaling relation. The computations clearly show that for Ra≤1010 at fixed L =2 √{2 },Nu≤0.106 Pr0Ra5/12 , which indicates that molecular transport cannot generally be neglected in the "ultimate" high-Ra regime.

  10. NASA's explorer school and spaceward bound programs: Insights into two education programs designed to heighten public support for space science initiatives

    Science.gov (United States)

    Allner, Matthew; McKay, Christopher P; Coe, Liza; Rask, Jon; Paradise, Jim; Wynne, J. Judson

    2010-01-01

    IntroductionNASA has played an influential role in bringing the enthusiasm of space science to schools across the United States since the 1980s. The evolution of this public outreach has led to a variety of NASA funded education programs designed to promote student interest in science, technology, engineering, math, and geography (STEM-G) careers.PurposeThis paper investigates the educational outreach initiatives, structure, and impact of two of NASA's largest educational programs: the NASA Explorer School (NES) and NASA Spaceward Bound programs.ResultsSince its induction in 2003 the NES program has networked and provided resources to over 300 schools across the United States. Future directions include further development of mentor schools for each new NES school selected, while also developing a longitudinal student tracking system for NES students to monitor their future involvement in STEM-G careers. The Spaceward Bound program, now in its third year of teacher outreach, is looking to further expand its teacher network and scientific collaboration efforts, while building on its teacher mentorship framework.

  11. Quantum localization and bound-state formation in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Franzosi, Roberto; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2010-01-01

    We discuss the possibility of exponential quantum localization in systems of ultracold bosonic atoms with repulsive interactions in open optical lattices without disorder. We show that exponential localization occurs in the maximally excited state of the lowest energy band. We establish the conditions under which the presence of the upper energy bands can be neglected, determine the successive stages and the quantum phase boundaries at which localization occurs, and discuss schemes to detect it experimentally by visibility measurements. The discussed mechanism is a particular type of quantum localization that is intuitively understood in terms of the interplay between nonlinearity and a bounded energy spectrum.

  12. Single-molecule folding mechanisms of the apo- and Mg2+-bound states of human neuronal calcium sensor-1

    DEFF Research Database (Denmark)

    Naqvi, Mohsin M; Heiðarsson, Pétur Orri; Otazo, Mariela R

    2015-01-01

    , at least transiently, at resting Ca(2+) conditions. Here, we used optical tweezers to study the folding behavior of individual NCS-1 molecules in the presence of Mg(2+) and in the absence of divalent ions. Under tension, the Mg(2+)-bound state of NCS-1 unfolds and refolds in a three-state process...... in a variety of cellular processes in which it has been linked to a number of disorders such as schizophrenia and autism. Despite extensive studies on the Ca(2+)-activated state of NCS proteins, little is known about the conformational dynamics of the Mg(2+)-bound and apo states, both of which are populated...... by populating one intermediate state consisting of a folded C-domain and an unfolded N-domain. The interconversion at equilibrium between the different molecular states populated by NCS-1 was monitored in real time through constant-force measurements and the energy landscapes underlying the observed transitions...

  13. Spin coherence in phosphorescent triplet states

    International Nuclear Information System (INIS)

    Hof, C.A. van 't

    1977-01-01

    The electron spin echo is studied on the dephasing mechanism in the photo-excited triplet state of quinoline in a durene host. First, a comparative investigation of the merits of the different spin echo techniques is presented. It turns out that the rotary echo generally yields a longer phase memory time than the two-pulse echo, whereas in the Carr-Purcell experiment, the dephasing can even be largely suppressed. Secondly, it is shown that the dephasing mechanism is determined by the nuclear spins of the guest molecules as well as those in the host material. A theoretical basis for interpreting the effect of vibronic relaxation on the decay rate of the rotary echo, as observed in parabenzoquinone, is given. Similar experiments in aniline reveal also that in this molecule, two close-lying triplet states exist, which is attributed to an inversion vibration analogous to the well-known example in ammonia

  14. K-dimensional trio coherent states

    International Nuclear Information System (INIS)

    Yi, Hyo Seok; Nguyen, Ba An; Kim, Jaewan

    2004-01-01

    We introduce a novel class of higher-order, three-mode states called K-dimensional trio coherent states. We study their mathematical properties and prove that they form a complete set in a truncated Fock space. We also study their physical content by explicitly showing that they exhibit nonclassical features such as oscillatory number distribution, sub-Poissonian statistics, Cauchy-Schwarz inequality violation and phase-space quantum interferences. Finally, we propose an experimental scheme to realize the state with K = 2 in the quantized vibronic motion of a trapped ion

  15. Experimental investigation of supercurrent enhancement in S-N-S junctions by non-equilibrium injection into supercurrent-carrying bound Andreev states

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Taboryski, Rafael Jozef; Sørensen, C B

    2001-01-01

    We report measurements on three-terminal superconductor-semiconductor-superconductor injection devices demonstrating enhancement of the supercurrent by injection from a superconducting injector electrode. Two other electrodes were used to form the detector junction. Applying a small voltage...... of enhancement of the supercurrent by non-equilibrium injection into bound supercurrent-carrying Andreev states. The effect persists to temperatures where the equilibrium supercurrent has vanished. (C) 2001 Elsevier Science B.V. All rights reserved....

  16. Simple functional-differential equations for the bound-state wave-function components

    International Nuclear Information System (INIS)

    Kamuntavicius, G.P.

    1986-01-01

    The author presents a new method of a direct derivation of differential equations for the wave-function components of identical-particles systems. The method generates in a simple manner all the possible variants of these equations. In some cases they are the differential equations of Faddeev or Yakubovskii. It is shown that the case of the bound states allows to formulate very simple equations for the components which are equivalent to the Schroedinger equation for the complete wave function. The components with a minimal antisymmetry are defined and the corresponding equations are derived. (Auth.)

  17. Effects of Charge-Transfer Excitons on the Photophysics of Organic Semiconductors

    Science.gov (United States)

    Hestand, Nicholas J.

    The field of organic electronics has received considerable attention over the past several years due to the promise of novel electronic materials that are cheap, flexible and light weight. While some devices based on organic materials have already emerged on the market (e.g. organic light emitting diodes), a deeper understanding of the excited states within the condensed phase is necessary both to improve current commercial products and to develop new materials for applications that are currently in the commercial pipeline (e.g. organic photovoltaics, wearable displays, and field effect transistors). To this end, a model for pi-conjugated molecular aggregates and crystals is developed and analyzed. The model considers two types of electronic excitations, namely Frenkel and charge-transfer excitons, both of which play a prominent role in determining the nature of the excited states within tightly-packed organic systems. The former consist of an electron-hole pair bound to the same molecule while in the later the electron and hole are located on different molecules. The model also considers the important nuclear reorganization that occurs when the system switches between electronic states. This is achieved using a Holstein-style Hamiltonian that includes linear vibronic coupling of the electronic states to the nuclear motion associated with the high frequency vinyl-stretching and ring-breathing modes. Analysis of the model reveals spectroscopic signatures of charge-transfer mediated J- and H-aggregation in systems where the photophysical properties are determined primarily by charge-transfer interactions. Importantly, such signatures are found to be sensitive to the relative phase of the intermolecular electron and hole transfer integrals, and the relative energy of the Frenkel and charge-transfer states. When the charge-transfer integrals are in phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits J

  18. Bionic Control of Cheetah Bounding with a Segmented Spine

    OpenAIRE

    Wang, Chunlei; Wang, Shigang

    2016-01-01

    A cheetah model is built to mimic real cheetah and its mechanical and dimensional parameters are derived from the real cheetah. In particular, two joints in spine and four joints in a leg are used to realize the motion of segmented spine and segmented legs which are the key properties of the cheetah bounding. For actuating and stabilizing the bounding gait of cheetah, we present a bioinspired controller based on the state-machine. The controller mainly mimics the function of the cerebellum to...

  19. Bound states in the continuum and Fano antiresonance in electronic transport through a four-quantum-dot system

    International Nuclear Information System (INIS)

    Yan Junxia; Fu Huahua

    2013-01-01

    We study the electronic transport through a four-quantum-dot (FQD) structure with a diamond-like shape through nonequilibrium Green's function theory. It is observed that the bound state in the continuum (BIC) appears in this multiple QDs system, and the position of the BIC in the total density of states (TDOS) spectrum is tightly determined by the strength of the electronic hopping between the upper QD and the lower one. As the symmetry in the energy levels in these two QDs is broken, the BIC is suppressed to a general conductance peak with a finite width, and meanwhile a Fano-type antiresonance with a zero point appears in the conductance spectrum. These results will develop our understanding of the BICs and their spintronic device applications of spin filter and quantum computing.

  20. Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum.

    Science.gov (United States)

    Thyrhaug, Erling; Lincoln, Craig N; Branchi, Federico; Cerullo, Giulio; Perlík, Václav; Šanda, František; Lokstein, Heiko; Hauer, Jürgen

    2018-03-01

    The peripheral light-harvesting antenna complex (LH2) of purple photosynthetic bacteria is an ideal testing ground for models of structure-function relationships due to its well-determined molecular structure and ultrafast energy deactivation. It has been the target for numerous studies in both theory and ultrafast spectroscopy; nevertheless, certain aspects of the convoluted relaxation network of LH2 lack a satisfactory explanation by conventional theories. For example, the initial carotenoid-to-bacteriochlorophyll energy transfer step necessary on visible light excitation was long considered to follow the Förster mechanism, even though transfer times as short as 40 femtoseconds (fs) have been observed. Such transfer times are hard to accommodate by Förster theory, as the moderate coupling strengths found in LH2 suggest much slower transfer within this framework. In this study, we investigate LH2 from Phaeospirillum (Ph.) molischianum in two types of transient absorption experiments-with narrowband pump and white-light probe resulting in 100 fs time resolution, and with degenerate broadband 10 fs pump and probe pulses. With regard to the split Q x band in this system, we show that vibronically mediated transfer explains both the ultrafast carotenoid-to-B850 transfer, and the almost complete lack of transfer to B800. These results are beyond Förster theory, which predicts an almost equal partition between the two channels.

  1. Rovibrational bound states of SO2 isotopologues. II: Total angular momentum J = 11-20

    Science.gov (United States)

    Kumar, Praveen; Poirier, Bill

    2015-11-01

    In a two-part series, the rovibrational bound states of SO2 are investigated in comprehensive detail, for all four stable sulfur isotopes 32-34,36S. All low-lying rovibrational energy levels-both permutation-symmetry-allowed and not allowed-are computed, for all values of total angular momentum in the range J = 0-20. The calculations have carried out using the ScalIT suite of parallel codes. The present study (Paper II) examines the J = 11-20 rovibrational levels, providing symmetry and rovibrational labels for every computed state, relying on a new lambda-doublet splitting technique to make completely unambiguous assignments. Isotope shifts are analyzed, as is the validity of ;J-shifting; as a predictor of rotational fine structure. Among other ramifications, this work will facilitate understanding of mass-independent fractionation of sulfur isotopes (S-MIF) observed in the Archean rock record-particularly as this may have arisen from self shielding. S-MIF, in turn is highly relevant in the broader context of understanding the ;oxygen revolution;.

  2. Gauge-invariant, nonperturbative approach to the infrared-finite bound-state problem in QCD

    International Nuclear Information System (INIS)

    Gogokhia, V.Sh.

    1989-09-01

    Gauge invariant, nonperturbative approach to the bound state problem within the infrared finite Bethe-Salpeter equation is presented. Condition of cancellation of the nonperturbative infrared divergences is derived. Solutions for the quark propagator and corresponding quark gluon vertex function are written down which can be directly applied to the Bethe-Salpeter equation, in particular to the 'generalized ladder' approximation of this equation. (author) 18 refs.; 3 figs

  3. Bottom and charm mass determinations from global fits to Q\\overline{Q} bound states at N3LO

    Science.gov (United States)

    Mateu, Vicent; Ortega, Pablo G.

    2018-01-01

    The bottomonium spectrum up to n = 3 is studied within Non-Relativistic Quantum Chromodynamics up to N3LO. We consider finite charm quark mass effects both in the QCD potential and the \\overline{MS} -pole mass relation up to third order in the Y-scheme counting. The u = 1 /2 renormalon of the static potential is canceled by expressing the bottom quark pole mass in terms of the MSR mass. A careful investigation of scale variation reveals that, while n = 1 , 2 states are well behaved within perturbation theory, n = 3 bound states are no longer reliable. We carry out our analysis in the n ℓ = 3 and n ℓ = 4 schemes and conclude that, as long as finite m c effects are smoothly incorporated in the MSR mass definition, the difference between the two schemes is rather small. Performing a fit to b\\overline{b} bound states we find {\\overline{m}}_b({\\overline{m}}_b) = 4 .216 ± 0 .039 GeV. We extend our analysis to the lowest lying charmonium states finding {\\overline{m}}_c({\\overline{m}}_c) = 1 .273 ± 0 .054 GeV. Finally, we perform simultaneous fits for {\\overline{m}}_b and α s finding {α}_s^{({n}_f=5)}({m}_Z)=0.1178± 0.0051 . Additionally, using a modified version of the MSR mass with lighter massive quarks we are able to predict the uncalculated O({α}_s^4) virtual massive quark corrections to the relation between the \\overline{MS} and pole masses.

  4. Stimulated emission pumping of NH in flames by using two-color resonant four-wave mixing

    Energy Technology Data Exchange (ETDEWEB)

    Radi, P P; Frey, H M; Mischler, B; Tzannis, A P; Beaud, P; Gerber, T [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    In this work we examine the analytical potential of two-color resonant four-wave mixing for the determination and characterization of trace elements in a combustion environment. Experimental results for NH in flames at atmospheric pressure are presented. The selectivity of the technique is used to simplify the Q-branch region of the (0-0)A{sup 3}{Pi}-X{sup 3}{Sigma} vibronic transition of NH. In addition, we demonstrate that the technique is sensitive to state changing collisions. (author) 2 figs., 5 refs.

  5. Variational energy for Θ+ - 2H bound state

    International Nuclear Information System (INIS)

    Shoeb, Mohammad; Naz, Tabassum; Siddiqah, Mariyah

    2015-01-01

    Pentaquark is considered to be a exotic particle with valency structure of four quarks and antiquark. Diakonov et. al. have made a prediction for the existence of strangeness S= +1 and isospin zero pentaquark Θ + (uudds¯) of mass 1.54 GeV with a narrow width and j p = 1/2 + which is a member of an antidecuplet. Small width is assumed to be a consequence of even parity. We may point out that many experimental searches for the existence of Θ + that have been made in the past have remained inconclusive. Miller has proposed a schematic model where coherent interaction of us¯ and ds¯ pairs leads to very large attractive residual interaction which in turn produces a strongly attractive Θ-nucleon spin-independent local potential, sufficient to produce a bound state of Θ-nuclear matter that is stable against strong decay. In the model under discussion the Θ has been regarded as a collective vibration of nucleon

  6. Full-potential multiple scattering theory with space-filling cells for bound and continuum states.

    Science.gov (United States)

    Hatada, Keisuke; Hayakawa, Kuniko; Benfatto, Maurizio; Natoli, Calogero R

    2010-05-12

    We present a rigorous derivation of a real-space full-potential multiple scattering theory (FP-MST) that is free from the drawbacks that up to now have impaired its development (in particular the need to expand cell shape functions in spherical harmonics and rectangular matrices), valid both for continuum and bound states, under conditions for space partitioning that are not excessively restrictive and easily implemented. In this connection we give a new scheme to generate local basis functions for the truncated potential cells that is simple, fast, efficient, valid for any shape of the cell and reduces to the minimum the number of spherical harmonics in the expansion of the scattering wavefunction. The method also avoids the need for saturating 'internal sums' due to the re-expansion of the spherical Hankel functions around another point in space (usually another cell center). Thus this approach provides a straightforward extension of MST in the muffin-tin (MT) approximation, with only one truncation parameter given by the classical relation l(max) = kR(b), where k is the electron wavevector (either in the excited or ground state of the system under consideration) and R(b) is the radius of the bounding sphere of the scattering cell. Moreover, the scattering path operator of the theory can be found in terms of an absolutely convergent procedure in the l(max) --> ∞ limit. Consequently, this feature provides a firm ground for the use of FP-MST as a viable method for electronic structure calculations and makes possible the computation of x-ray spectroscopies, notably photo-electron diffraction, absorption and anomalous scattering among others, with the ease and versatility of the corresponding MT theory. Some numerical applications of the theory are presented, both for continuum and bound states.

  7. A priori bounds for solutions of two-point boundary value problems using differential inequalities

    International Nuclear Information System (INIS)

    Vidossich, G.

    1979-01-01

    Two point boundary value problems for systems of differential equations are studied with a new approach based on differential inequalities of first order. This leads to the following results: (i) one-sided conditions are enough, in the sense that the inner product is substituted to the norm; (ii) the upper bound exists for practically any kind of equations and boundary value problem if the interval is sufficiently small since it depends on the Peano existence theorem; (iii) the bound seems convenient when the equation has some singularity in t as well as when sigular problems are considered. (author)

  8. Can the Σ-nn system be bound?

    International Nuclear Information System (INIS)

    Stadler, A.; Gibson, B.F.

    1994-01-01

    Motivated by the Σ-hypernuclear states reported in (K - ,π ± ) experiments, we have explored the possibility that there exists a particle-stable Σ - nn bound state. For the Juelich A hyperon-nucleon, realistic-force model, our calculations yield little reason to expect a positive-parity bound state or resonance in either the J=1/2 or the J=3/2 channels

  9. Multiple-Pulse Operation and Bound States of Solitons in Passive Mode-Locked Fiber Lasers

    Directory of Open Access Journals (Sweden)

    A. Komarov

    2012-01-01

    Full Text Available We present results of our research on a multiple-pulse operation of passive mode-locked fiber lasers. The research has been performed on basis of numerical simulation. Multihysteresis dependence of both an intracavity energy and peak intensities of intracavity ultrashort pulses on pump power is found. It is shown that the change of a number of ultrashort pulses in a laser cavity can be realized by hard as well as soft regimes of an excitation and an annihilation of new solitons. Bound steady states of interacting solitons are studied for various mechanisms of nonlinear losses shaping ultrashort pulses. Possibility of coding of information on basis of soliton trains with various bonds between neighboring pulses is discussed. The role of dispersive wave emitted by solitons because of lumped intracavity elements in a formation of powerful soliton wings is analyzed. It is found that such powerful wings result in large bounding energies of interacting solitons in steady states. Various problems of a soliton interaction in passive mode-locked fiber lasers are discussed.

  10. Search for quasi bound η mesons

    International Nuclear Information System (INIS)

    Machner, H

    2015-01-01

    The search for a quasi bound η meson in atomic nuclei is reviewed. This tentative state is studied theoretically as well as experimentally. The theory starts from elastic η nucleon scattering which is derived from production data within some models. From this interaction the η nucleus interaction is derived. Model calculations predict binding energies and widths of the quasi bound state. Another method is to derive the η nucleus interaction from excitation functions of η production experiments. The s wave interaction is extracted from such data via final state interaction (FSI) theorem. We give the derivation of s wave amplitudes in partial wave expansion and in helicity amplitudes and their relation to observables. Different experiments extracting the FSI are discussed as are production experiments. So far only three experiments give evidence for the existence of the quasi bound state: a pion double charge exchange experiment, an effective mass measurement, and a transfer reaction at recoil free kinematics with observation of the decay of the state. (topical review)

  11. Time-resolved entanglement of bound and dissociative atoms and molecules

    International Nuclear Information System (INIS)

    Mishima, K.; Hayashi, M.; Lin, S.H.

    2004-01-01

    In this paper, we theoretically examine the time-independent and -dependent degrees of entanglement fidelities of bi-partite systems consisting of various bound two particles and of those of dissociative ones. The target maximally entangled state is defined as the non-interacting two particles: they are assumed to be infinitely far away from each other in the distant future. In this case, the potential energy functions which are non-local in nature can be regarded as entangling source. We investigate, how much we can make the target maximally entangled state from the initial (probably somewhat entangled) state without using any non-local external unitary transformation. Specifically, we investigate the cases where the two particles interact by attractive and repulsive Coulomb, harmonic, and Morse potentials which are ubiquitous in physics and chemistry. All of these omnipresent potentials exert non-local unitary transformations of multi-partite systems, which gives rise to the time-dependent entanglement according to the time-dependent Schroedinger equation. In the time-independent case, the bound state with identical mass or different mass shows a definite time-independent entanglement fidelity for each eigenstate. In the time-dependent case, time-dependence manifests itself both in the bound and the dissociative systems. In the former case, the entanglement shows regular oscillatory patterns in harmony with the wave packet revival in the harmonic potential and a prominent enhancement in the anharmonic potential while in the latter case the entanglement diminishes very quickly. From these results, we point out that the time-evolution of the entanglement is much more sensitive to the interaction (potential) of two particles and to the initial wavepacket than that of the autocorrelation function

  12. Two exciton states in discrete and continuum alpha-helical proteins

    International Nuclear Information System (INIS)

    Latha, M.M.; Merlin, G.

    2012-01-01

    The dynamics of alpha-helical proteins is described by proposing a model Hamiltonian representing two exciton bound states. The dynamics is studied by constructing the equations of motion using a two exciton eigen-function in the discrete level. A numerical analysis shows the existence of two excitons in alpha-helical proteins and its propagation as solitons along the hydrogen bonding spines. The lattice model is also treated in the continuum limit which is a valid approximation in the low temperature, long wavelength limit. The resulting equation is studied using the multiple scale perturbation analysis which also shows the transfer of two exciton energy through alpha-helical proteins in the form of solitons with no change in velocity and amplitude. -- Highlights: ► The dynamics of alpha-helical proteins with two exciton states is studied. ► The dynamics is studied both in the discrete and continuum levels. ► The resulting equations are solved numerically and analytically. ► The solution supports the propagation of the energy in the form of solitons.

  13. Bound states of the Dirac equation with some physical potentials by the Nikiforov-Uvarov method

    Energy Technology Data Exchange (ETDEWEB)

    Setare, Mohammad R; Haidari, S [Department of Physics, University of Kurdistan, Pasdaran Avenue, Sanandaj (Iran, Islamic Republic of)], E-mail: rezakord@ipm.ir, E-mail: heidary.somayeh@gmail.com

    2010-01-15

    Exact analytical solutions for the s-wave Dirac equation with the reflectionless-type, Rosen-Morse and Manning-Rosen potentials are obtained, under the condition of spin symmetry. We obtained bound state energy eigenvalues and corresponding spinor wave function in the framework of the Nikiforov-Uvarov (NU) method.

  14. Security bound of continuous-variable quantum key distribution with noisy coherent states and channel

    International Nuclear Information System (INIS)

    Shen Yong; Yang Jian; Guo Hong

    2009-01-01

    Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.

  15. Security bound of continuous-variable quantum key distribution with noisy coherent states and channel

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yong; Yang Jian; Guo Hong, E-mail: hongguo@pku.edu.c [CREAM Group, State Key Laboratory of Advanced Optical Communication Systems and Networks (Peking University) and Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)

    2009-12-14

    Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.

  16. Meson-nucleus potentials and the search for meson-nucleus bound states

    Science.gov (United States)

    Metag, V.; Nanova, M.; Paryev, E. Ya.

    2017-11-01

    Recent experiments studying the meson-nucleus interaction to extract meson-nucleus potentials are reviewed. The real part of the potentials quantifies whether the interaction is attractive or repulsive while the imaginary part describes the meson absorption in nuclei. The review is focused on mesons which are sufficiently long-lived to potentially form meson-nucleus quasi-bound states. The presentation is confined to meson production off nuclei in photon-, pion-, proton-, and light-ion induced reactions and heavy-ion collisions at energies near the production threshold. Tools to extract the potential parameters are presented. In most cases, the real part of the potential is determined by comparing measured meson momentum distributions or excitation functions with collision model or transport model calculations. The imaginary part is extracted from transparency ratio measurements. Results on K+ ,K0 ,K- , η ,η‧ , ω, and ϕ mesons are presented and compared with theoretical predictions. The interaction of K+ and K0 mesons with nuclei is found to be weakly repulsive, while the K- , η ,η‧ , ω and ϕ meson-nucleus potentials are attractive, however, with widely different strengths. Because of meson absorption in the nuclear medium the imaginary parts of the meson-nucleus potentials are all negative, again with a large spread. An outlook on planned experiments in the charm sector is given. In view of the determined potential parameters, the criteria and chances for experimentally observing meson-nucleus quasi-bound states are discussed. The most promising candidates appear to be the η and η‧ mesons.

  17. The number of bound states for a discrete Schroedinger operator on ZN, N≥1, lattices

    International Nuclear Information System (INIS)

    Karachalios, N I

    2008-01-01

    We consider the discrete Schroedinger operator -Δ d +U in Z N , N≥1 in the case of a potential with negative part in an appropriate l σ -space (decays with an appropriate rate). We present a discrete analog of the method of Li and Yau (1983 Commun. Math. Phys. 88 309-18), proving an explicit upper estimate on the number of bound states N d (0)={j:μ j ≤0}, which is independent of the dimension of the lattice. This is a major difference with the continuous counterpart estimate, which is not valid when N = 1, 2. As a consequence, a dimension-independent smallness criterion for the existence of bound states is derived in contrast to the continuous case as well as to the discrete case of vanishing potential. A short comment is made on possible applications of the results to the study of the dynamics of some particular spatially discrete nonlinear systems

  18. First direct observation of bound-state beta-decay. Measurements of branching and lifetime of {sup 207}Tl{sup 81+} fragments

    Energy Technology Data Exchange (ETDEWEB)

    Boutin, D.

    2005-08-01

    The first experimental observation of bound-state beta-decay showed, that due solely to the electron stripping, a stable nuclide, e.g. {sup 163}Dy, became unstable. Also a drastic modification of the half-life of bare {sup 187}Re, from 4.12(2) x 10{sup 10} years down to 32.9(20) years, could be observed. It was mainly due to the possibility for the mother nuclide to decay into a previously inaccessible nuclear level of the daughter nuclide. It was proposed to study a nuclide where this decay mode was competing with continuum-state beta-decay, in order to measure their respective branchings. The ratio {beta}{sub b}/{beta}{sub c} could also be evaluated for the first time. {sup 207}Tl was chosen due to its high atomic number, and Q-value of about 1.4 MeV, small enough to enhance the {beta}{sub b} probability and large enough to allow the use of time-resolved Schottky Mass Spectrometry (SMS) to study the evolution of mother and bound-state beta-decay daughter ions. The decay properties of the ground state and isomeric state of {sup 207}Tl{sup 81+} have been investigated at the GSI accelerator facility in two separate experiments. For the first time {beta}-decay where the electron could go either to a bound state (atomic orbitals) and lead to {sup 207}Pb{sup 81+} as a daughter nuclide, or to a continuum state and lead to {sup 207}Pb{sup 82+}, has been observed. The respective branchings of these two processes could be measured as well. The deduced total nuclear half-life of 255(17) s for {sup 207}Tl{sup 81+}, was slightly modified with respect to the half-life of the neutral atom of 286(2) s. It was nevertheless in very good agreement with calculations based on the assumption that the beta-decay was following an allowed type of transition. The branching {beta}{sub b}/{beta}{sub c}=0.192(20), was also in very good agreement with the same calculations. The application of stochastic precooling allowed to observe in addition the 1348 keV short-lived isomeric state of {sup

  19. Probing the Dark Sector with Dark Matter Bound States.

    Science.gov (United States)

    An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue

    2016-04-15

    A model of the dark sector where O(few  GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,μ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.

  20. Bounding the space of holographic CFTs with chaos

    Energy Technology Data Exchange (ETDEWEB)

    Perlmutter, Eric [Department of Physics, Princeton University,Jadwin Hall, Princeton, NJ 08544 (United States)

    2016-10-13

    Thermal states of quantum systems with many degrees of freedom are subject to a bound on the rate of onset of chaos, including a bound on the Lyapunov exponent, λ{sub L}≤2π/β. We harness this bound to constrain the space of putative holographic CFTs and their would-be dual theories of AdS gravity. First, by studying out-of-time-order four-point functions, we discuss how λ{sub L}=2π/β in ordinary two-dimensional holographic CFTs is related to properties of the OPE at strong coupling. We then rule out the existence of unitary, sparse two-dimensional CFTs with large central charge and a set of higher spin currents of bounded spin; this implies the inconsistency of weakly coupled AdS{sub 3} higher spin gravities without infinite towers of gauge fields, such as the SL(N) theories. This fits naturally with the structure of higher-dimensional gravity, where finite towers of higher spin fields lead to acausality. On the other hand, unitary CFTs with classical W{sub ∞}[λ] symmetry, dual to 3D Vasiliev or hs[λ] higher spin gravities, do not violate the chaos bound, instead exhibiting no chaos: λ{sub L}=0. Independently, we show that such theories violate unitarity for |λ|>2. These results encourage a tensionless string theory interpretation of the 3D Vasiliev theory.

  1. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion.

    Science.gov (United States)

    Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  2. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    International Nuclear Information System (INIS)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-01-01

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  3. Negativity of asymmetric two-mode Gaussian states: An explicit analytic formula and physical interpretation

    International Nuclear Information System (INIS)

    Poon, Phoenix S. Y.; Law, C. K.

    2007-01-01

    We show that the negativity of a general two-mode Gaussian state can be explicitly expressed in terms of an optimal uncertainty product in position-momentum space. Such an uncertainty product is shown to have the greatest violation of a separability criterion based on positive partial transposition. Our analytic formula indicates the observables determining the negativity. For asymmetric Gaussian states, we show that the negativity is controlled by an asymmetric parameter which sets an upper bound for the negativity

  4. Backbone resonance assignments for G protein α(i3) subunit in the GDP-bound state.

    Science.gov (United States)

    Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio

    2014-10-01

    Guanine-nucleotide binding proteins (G proteins) serve as molecular switches in signaling pathways, by coupling the activation of G protein-coupled receptors (GPCRs) at the cell surface to intracellular responses. In the resting state, G protein forms a heterotrimer, consisting of the G protein α subunit with GDP (Gα·GDP) and the G protein βγ subunit (Gβγ). Ligand binding to GPCRs promotes the GDP-GTP exchange on Gα, leading to the dissociation of the GTP-bound form of Gα (Gα·GTP) and Gβγ. Then, Gα·GTP and Gβγ bind to their downstream effector enzymes or ion channels and regulate their activities, leading to a variety of cellular responses. Finally, Gα hydrolyzes the bound GTP to GDP and returns to the resting state by re-associating with Gβγ. The G proteins are classified with four major families based on the amino acid sequences of Gα: i/o, s, q/11, and 12/13. Here, we established the backbone resonance assignments of human Gαi3, a member of the i/o family with a molecular weight of 41 K, in complex with GDP. The chemical shifts were compared with those of Gα(i3) in complex with a GTP-analogue, GTPγS, which we recently reported, indicating that the residues with significant chemical shift differences are mostly consistent with the regions with the structural differences between the GDP- and GTPγS-bound states, as indicated in the crystal structures. The assignments of Gα(i3)·GDP would be useful for the analyses of the dynamics of Gα(i3) and its interactions with various target molecules.

  5. Bound states of a light atom and two heavy dipoles in two dimensions

    DEFF Research Database (Denmark)

    Rosa, D. S.; Bellotti, F. F.; Jensen, Aksel Stenholm

    2016-01-01

    We study a three-body system, formed by a light particle and two identical heavy dipoles, in two dimensions in the Born-Oppenheimer approximation. We present the analytic light-particle wave function resulting from an attractive zero-range potential between the light and each of the heavy particles...

  6. Low-pressure approach to the formation and study of exciplex systems

    International Nuclear Information System (INIS)

    Sanzone, G.

    1977-10-01

    Studies on the formation and properties of new materials for high-energy, gas-phase lasers are described. Attention is directed mainly to systems having bound excited states but unbound ground states. An important class of such excimer/exciplex systems has a van der Waals dimer/oligomer as its ground state. This research attempts to probe the relative rates of electron pumping of excited-state manifolds and the preferentially pumped vibronic states within each manifold. Reactive quenching of emission, resonant self-absorption of laser emissions, and collision- and noncollision-induced intersystem crossing are also considered. Lists of personnel and facilities are included. 8 figures, 2 tables

  7. Robustness bounds and practical limitations of quantum key distribution

    International Nuclear Information System (INIS)

    Khalique, Aeysha

    2008-01-01

    Quantum information theory is a modern branch of theoretical physics. One of its main goals is to interpret concepts of quantum physics. This leads to a deeper understanding of quantum theory. The most common examples of practical applications of basic quantum theory are quantum computation and quantum cryptography. Quantum cryptography provides secure communication between legitimate users even in the presence of an adversary by making possible the distribution of a secret key. It then allows error correction and privacy amplification, which is elimination of adversary information, through classical communication. In this thesis two important aspects of quantum key distribution are covered, namely robustness bounds with respect to provable entanglement for ideal protocols and practical quantum key distribution using two-way classical communication. In part one of the thesis, ideal quantum key distribution protocols and their robustness in terms of provable entanglement are discussed. The robustness bounds are proved for most general coherent attacks. These bounds for provable entanglement are already known to be 25% for the four-state protocol and 33% for the six-state protocol. We anticipate to provide a region in which the legitimate users share entanglement. This region is large for the four-state protocol and is reduced to a smaller region for the six-state protocol because of additional constraint on it. We also investigate the information cost which the adversary has to pay in order to reach these bounds. In part two we adopt a more practical approach. We investigate the limitation on distance of secure communication because of practical restrictions. In particular we investigate the restrictions due to the lack of single photon sources, the lossy channel and faulty detectors. These practical limitations have already been observed using one-way classical communication between legitimate users. It has been observed that it is actually the dark count rate that

  8. Bound-state problem in the light-front Tamm-Dancoff approximation: Numerical study in 1+1 dimensions

    International Nuclear Information System (INIS)

    Harindranath, A.; Perry, R.J.; Shigemitsu, J.

    1992-01-01

    Numerical solutions to the two-fermion bound-state problem in the (1+1)-dimensional Yukawa model are presented within the lowest-order light-front Tamm-Dancoff approximation (i.e., keeping only two-fermion and two-fermion--one-boson sectors). Our motivation is twofold. First, we want to understand the dynamics of the model from the very-weak-coupling domain, where the system is governed by nonrelativistic dynamics, to moderate and strong-coupling domains where retardation and self-energy effects become important. Second, we want to develop techniques for solving coupled Tamm-Dancoff integral equations, in particular, methods that can be generalized to higher-order Tamm-Dancoff approximations. To achieve the first goal we first simplify the problem considerably (from a numerical point of view) by the explicit elimination of the higher Fock-space sector. The resulting integral equation, whose kernel depends upon the invariant mass of the state, is solved for the coupling constant, for a given set of the invariant mass and fermion and boson mass parameters. To achieve the second goal we solve the coupled set of equations using both basis functions and direct-discretization techniques. Results from these more general techniques are compared with the explicit-elimination method

  9. Mutual friction in superfluid 3He: Effects of bound states in the vortex core

    International Nuclear Information System (INIS)

    Kopnin, N.B.; Salomaa, M.M.

    1991-01-01

    The motion of singular quantized vortex lines in superfluid 3 He is considered for the A and B phases. Mutual friction is calculated within a microscopic quantum-mechanical Green's-function formalism, valid for dynamical processes. This enables us to include all the different physical phenomena in a unified approach. We consider axisymmetric vortices for temperatures considerably lower than T c . In this regime, the main contribution to the force exerted on a moving vortex originates from the localized Fermi excitations occupying quantized energy eigenstates in the vortex core. These 3 He quasiparticle states are similar to the quantized motion of charge in a magnetic field; thus vortex motion in 3 He resembles the Hall phenomenon in metals. The outcome is that the viscous drag cannot simply be expressed through the cross sections for 3 He quasiparticles scattering off the vortex, but is rather due to the mutual interactions between the localized quasiparticles and the normal excitations. Our calculations conform with the experimental values for the mutual-friction parameters. We also discuss vortex oscillations, and predict that strong dissipation should be observed at a resonant frequency of about 10 kHz, owing to transitions between the bound-state energy levels. This effect could be used for detecting and measuring the quantization of the bound-state spectrum for superfluid 3 He in the vortex-core matter

  10. Logarithmic corrections to the uncertainty principle and infinitude of the number of bound states of n-particle systems

    International Nuclear Information System (INIS)

    Perez, J.F.; Coutinho, F.A.B.; Malta, C.P.

    1985-01-01

    It is shown that critical long distance behaviour for a two-body potential, defining the finiteness or infinitude of the number of negative eigenvalues of Schrodinger operators in ν-dimensions, are given by v sub(k) (r) = - [ν-2/2r] 2 - 1/(2rlnr) 2 + ... - 1/(2rlnr.lnlnr...ln sub(k)r) 2 where k=0,1... for ν not=2 and k=1,2... if ν=2. This result is a consequence of logarithmic corrections to an inequality known as Uncertainty Principle. If the continuum threshold in the N-body problem is defined by a two-cluster break up our results generate corrections to the existing sufficient conditions for the existence of infinitely many bound states. (Author) [pt

  11. Three-body Coulomb bound states

    Science.gov (United States)

    Bhatia, A. K.; Drachman, Richard J.

    1987-01-01

    The binding energies of three-particle systems containing two electrons and one positive particle of mass M are reexamined in an attempt to understand the approximate proportionality of the 1Se ground-state binding energies of the reduced masses, as pointed out by Botero and Green (1986). The contribution to the energy of the mass-polarization term is evaluated. No fundamental principle is involved, since the mass polarization merely decreases somewhat as the mass of the positive particle is reduced below the proton mass. In the case of the excited 3Pe state, this reduction is not sufficient to allow binding when M approaches the electron mass. Some properties of the recently observed negative muonium ion (e/-/ mu/+/ e/-/) are also computed.

  12. Detection of a π-μ coulomb bound states

    International Nuclear Information System (INIS)

    Coombes, R.; Flexer, R.; Hall, A.

    1977-01-01

    The detection of hydrogen-like atoms is reported consisting of a negative (or positive) pion and a positive (or negative) muon in a coulomb bound state. These π-μ atoms are formed when the PI and μ from the decay have sufficiently small relative momentum to bind. Only the evidence related to the detection of these atoms is discussed. The Ksub(L)sup(0) particles which give rise to ''atomic beam'' are produced by 30 GeV proton beam striking a 10 cm beryllium target. From analysis of data 33 events are chosen. For each of these events the parameter α = Psub(π)-Psub(μ)/Psub(π)+Psub(μ) is plotted, where PPI is the pion momentum, and Pμ is the muon momentum. A study of this parameter through an examination of e + e - pairs indicates that the acceptance of apparatus is flat within 30%. The data shows a clear peak at the predicted point containing a total of 21 events with an estimated background of 3 events. The width of the peak is consistent with that expected from measurement errors

  13. Unified description of bound, resonant and scattering states

    International Nuclear Information System (INIS)

    Konya, B.; Levai, G.; Papp, Z.

    2000-01-01

    Recently we have introduced a general method for calculating the discrete Hilbert-space basis representation of the Green's operators of those Hamiltonians which have infinite symmetric tridiagonal matrix forms. The elements of this matrix are used in the calculation of the Green's matrix in terms of a three-term recurrence relation and continued fractions. We specified our general approach to the case of the Coulomb problem and the Coulomb-Sturmian basis associated with it. As a further step, we can combine this new way of calculating the Coulomb-Green's matrix with a technique of solving integral equations in discrete Hilbert-space-basis representations. This provides us with a quantum mechanical approximation method which is rather general in the sense that it is equally applicable to solving bound-, resonant- and scattering-state problems with practically any potential of physical relevance. The method is especially suited to problems where Coulomb-like asymptotics have to be treated, but the formalism also contains the case of the free Green's operator as a special case. (author)

  14. Transient response in granular quasi-two-dimensional bounded heap flow.

    Science.gov (United States)

    Xiao, Hongyi; Ottino, Julio M; Lueptow, Richard M; Umbanhowar, Paul B

    2017-10-01

    We study the transition between steady flows of noncohesive granular materials in quasi-two-dimensional bounded heaps by suddenly changing the feed rate. In both experiments and simulations, the primary feature of the transition is a wedge of flowing particles that propagates downstream over the rising free surface with a wedge front velocity inversely proportional to the square root of time. An additional longer duration transient process continues after the wedge front reaches the downstream wall. The entire transition is well modeled as a moving boundary problem with a diffusionlike equation derived from local mass balance and a local relation between the flux and the surface slope.

  15. Electromagnetic structure of a bound nucleon

    International Nuclear Information System (INIS)

    Nogami, Y.

    1977-01-01

    The effect of binding on the electromagnetic (e.m.) structure of a nucleon in a nucleus is examined by means of a model consisting of a single nucleon which is bound in a harmonic oscillator potential and also coupled to the pion field through the Chew-Low interaction. The 'two-pion contribution' to the e.m. structure is considered. This is the part which is probably most susceptible to the binding effect. By the binding effect it is meant the one which arises because the nucleon wave functions, in the intermediate state as well as in the initial and final states, are distorted by the potential in which the nucleon is bound. This may be compared to a similar correction to the impulse approximation for pion-nucleus scattering. Unlike the latter which is likely to be quite appreciable, the binding correction to the e.m. structure of the nucleon is found to be negligibly small. The so-called quenching effect due to the Pauli principle when there are other nucleons is also discussed [pt

  16. Bounded energy states in homogeneous turbulent shear flow - An alternative view

    Science.gov (United States)

    Bernard, P. S.; Speziale, C. G.

    1992-01-01

    The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if a residual vortex stretching term is maintained in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are presented for a k-epsilon model modified to account for net vortex stretching.

  17. Bounded Rationality and Budgeting

    OpenAIRE

    Ibrahim, Mukdad

    2016-01-01

    This article discusses the theory of bounded rationality which had been introduced by Herbert Simon in the 1950s. Simon introduced the notion of bounded rationality stating that while decision-makers strive for rationality, they are limited by the effect of the environment, their information process capacity and by the constraints on their information storage and retrieval capabilities. Moreover, this article tries to specifically blend this notion into budgeting, using the foundations of inc...

  18. Structure and conformational dynamics of molecules in the excited electronic states: theory and experiment

    International Nuclear Information System (INIS)

    Godunov, I.A.; Bataev, V.A.; Maslov, D.V.; Yakovlev, N.N.

    2017-01-01

    The structure of conformational non-rigid molecules in the excited electronic states are investigated by joint theoretical and experimental methods. The theoretical part of work consist of two stages. In first stage the ab initio quantum-chemical calculations are carried out using high level methods. In second stage the vibrational problems of the various dimensions are solved by variational method for vibrations of large amplitude. In experimental part of work the vibronic spectra are investigated: gas-phase absorption and also, fluorescence excitation spectra of jet-cooled molecules. Some examples are considered.

  19. The core spline method for solution of quantum-mechanical systems of differential equations for bound states

    International Nuclear Information System (INIS)

    Aleksandrov, L.; Drenska, M.; Karadzhov, D.

    1986-01-01

    A generalization of the core spline method is given in the case of solution of the general bound state problem for a system of M linear differential equations with coefficients depending on the spectral parameter. The recursion scheme for construction of basic splines is described. The wave functions are expressed as linear combinations of basic splines, which are approximate partial solutions of the system. The spectral parameter (the eigenvalue) is determined from the condition for existence of a nontrivial solution of a (MxM) linear algebraic system at the last collocation point. The nontrivial solutions of this system determine (M - 1) coefficients of the linear spans, expressing the wave functions. The last unknown coefficient is determined from a boundary (or normalization) condition for the system. The computational aspects of the method are discussed, in particular, its concrete algorithmic realization used in the RODSOL program. The numerical solution of the Dirac system for the bound states of a hydrogen atom is given is an example

  20. The role of dissociation channels of excited electronic states in quantum optimal control of ozone isomerization: A three-state dynamical model

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Yuzuru, E-mail: kurosaki.yuzuru@jaea.go.jp [Quantum Beam Science Directorate, Tokai Research and Development Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Ho, Tak-San, E-mail: tsho@Princeton.EDU [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States); Rabitz, Herschel, E-mail: hrabitz@Princeton.EDU [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States)

    2016-05-01

    The prospect of performing the open → cyclic ozone isomerization has attracted much research attention. Here we explore this consideration theoretically by performing quantum optimal control calculations to demonstrate the important role that excited-state dissociation channels could play in the isomerization transformation. In the calculations we use a three-state, one-dimensional dynamical model constructed from the lowest five {sup 1}A′ potential energy curves obtained with high-level ab initio calculations. Besides the laser field-dipole couplings between all three states, this model also includes the diabatic coupling between the two excited states at an avoided crossing leading to competing dissociation channels that can further hinder the isomerization process. The present three-state optimal control simulations examine two possible control pathways previously considered in a two-state model, and reveal that only one of the pathways is viable, achieving a robust ∼95% yield to the cyclic target in the three-state model. This work represents a step towards an ultimate model for the open → cyclic ozone transformation capable of giving adequate guidance about the necessary experimental control field resources as well as an estimate of the ro-vibronic spectral character of cyclic ozone as a basis for an appropriate probe of its formation.

  1. Metastable states in parametrically excited multimode Hamiltonian systems

    CERN Document Server

    Kirr, E

    2003-01-01

    Consider a linear autonomous Hamiltonian system with time periodic bound state solutions. In this paper we study their dynamics under time almost periodic perturbations which are small, localized and Hamiltonian. The analysis proceeds through a reduction of the original infinite dimensional dynamical system to the dynamics of two coupled subsystems: a dominant m-dimensional system of ordinary differential equations (normal form), governing the projections onto the bound states and an infinite dimensional dispersive wave equation. The present work generalizes previous work of the authors, where the case of a single bound state is considered. Here, the interaction picture is considerably more complicated and requires deeper analysis, due to a multiplicity of bound states and the very general nature of the perturbation's time dependence. Parametric forcing induces coupling of bound states to continuum radiation modes, bound states directly to bound states, as well as coupling among bound states, which is mediate...

  2. Dissecting zero modes and bound states on BPS vortices in Ginzburg-Landau superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, A. Alonso [Departamento de Matematica Aplicada, Universidad de Salamanca,Facultad de Ciencias Agrarias y Ambientales,Av. Filiberto Villalobos 119, E-37008 Salamanca (Spain); Fuertes, W. Garcia [Departamento de Fisica, Universidad de Oviedo, Facultad de Ciencias,Calle Calvo Sotelo s/n, E-33007 Oviedo (Spain); Guilarte, J. Mateos [Departamento de Fisica Fundamental, Universidad de Salamanca, Facultad de Ciencias,Plaza de la Merced, E-37008 Salamanca (Spain)

    2016-05-12

    In this paper the zero modes of fluctuation of cylindrically symmetric self-dual vortices are analyzed and described in full detail. These BPS topological defects arise at the critical point between Type II and Type I superconductors, or, equivalently, when the masses of the Higgs particle and the vector boson in the Abelian Higgs model are equal. In addition, novel bound states of Higss and vector bosons trapped by the self-dual vortices at their core are found and investigated.

  3. Analysis of bound-state spectra near the threshold of neutral particle interaction potentials

    International Nuclear Information System (INIS)

    Ou Fang; Cao Zhuangqi; Chen Jianping; Xu Junjie

    2006-01-01

    It is understood that conventional semiclassical approximations deteriorate towards threshold in a typical neutral particle interaction potential which is important for the study of ultra-cold atoms and molecules. In this Letter we give an example of the Lennard-Jones potential with tuning of the strength parameter on the basis of the analytical transfer matrix (ATM) method. Highly accurate quantum mechanical results, such as number of the bound states, energy level density and the eigenvalues with extremely low energies have been derived

  4. Numerical solution of the Schrodinger equation for stationary bound states using nodel theorem

    International Nuclear Information System (INIS)

    Chen Zhijiang; Kong Fanmei; Din Yibin

    1987-01-01

    An iterative procedure for getting the numerical solution of Schrodinger equation on stationary bound states is introduced. The theoretical foundtion, the practical steps and the method are presented. An example is added at the end. Comparing with other methods, the present one requires less storage, less running time but posesses higher accuracy. It can be run on the personal computer or microcomputer with 256 K memory and 16 bit word length such as IBM/PC, MC68000/83/20, PDP11/23 etc

  5. Quasipotential approach to the Coulomb bound state problem for spin-0 and spin-/sup 1///sub 2/ particles

    CERN Document Server

    Rizov, V A; Todorov, I T

    1975-01-01

    A recently proposed local quasipotential equation is reviewed and applied to the electromagnetic interaction of a spin-0 and a spin-/sup 1///sub 2/ particle. The Dirac particle is treated in a covariant two- component formalism in the neighbourhood of the mass shell. The fine structure of the bound state energy levels and the main part of the Lamb shift (of order alpha /sup 5/In(1/ alpha ) are evaluated with full account of relativistic recoil effects (without using any inverse mass expansion). Possible relevance of the techniques developed in this paper to fine structure calculations for meso-atomic systems is pointed out. (14 refs).

  6. Nonlinear bayesian state filtering with missing measurements and bounded noise and its application to vehicle position estimation

    Czech Academy of Sciences Publication Activity Database

    Pavelková, Lenka

    2011-01-01

    Roč. 47, č. 3 (2011), s. 370-384 ISSN 0023-5954 R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : non-linear state space model * bounded uncertainty * missing measurements * state filtering * vehicle position estimation Subject RIV: BC - Control Systems Theory Impact factor: 0.454, year: 2011 http://library.utia.cas.cz/separaty/2011/AS/pavelkova-0360239.pdf

  7. Performance Evaluation of a Novel CDMA Detection Technique: The Two-State Approach

    Directory of Open Access Journals (Sweden)

    Luca Simone Ronga

    2005-04-01

    Full Text Available The use of code division multiple access (CDMA makes third-generation wireless systems interference limited rather than noise limited. The research for new methods to reduce interference and increase efficiency lead us to formulate a signaling method where fast impulsive silence states are mapped on zero-energy symbols. The theoretical formulation of the optimum receiver is reported and the asymptotic multiuser efficiency (AME as well as an upper bound of the probability of error have been derived and applied to the conventional receiver and the decorrelating detector. Moreover, computer simulations have been performed to show the advantages of the proposed two-state scheme over the traditional single-state receiver in a multiuser CDMA system operating in a multipath fading channel.

  8. Bounds on Cubic Lorentz-Violating Terms in the Fermionic Dispersion Relation

    OpenAIRE

    Bertolami, O.; Rosa, J. G.

    2004-01-01

    We study the recently proposed Lorentz-violating dispersion relation for fermions and show that it leads to two distinct cubic operators in the momentum. We compute the leading order terms that modify the non-relativistic equations of motion and use experimental results for the hyperfine transition in the ground state of the ${}^9\\textrm Be^+$ ion to bound the values of the Lorentz-violating parameters $\\eta_1$ and $\\eta_2$ for neutrons. The resulting bounds depend on the value of the Lorenz-...

  9. Bound-state wave functions at rest in describing deep inelastic scattering

    International Nuclear Information System (INIS)

    Khvedelidze, A.M.; Kvinikhidze, A.N.

    1991-01-01

    The deep inelastic process of the lepton-hadron scattering is studied in the bound-state rest frame. A new version of expanding structure functions in interaction constant powers is proposed, each term in it having spectral properties. This expansion makes it possible to consider contributions of composites in the final state to the cross section. It is shown that, as compared with the system P z →∞, the impulse approximation is insufficient for describing correctly the elastic limit in the composite particle rest frame. The leading asymptotics of structure functions as χ Bj →1 can be obtained by taking into account the interaction of contituents in the final state. It is shown that in contrast to the 'light-cone' formalism the ratio F 2 en (χ)/F 2 ep (χ) as χ Bj →1 depends on the explicit form of the spatial part of the nucleon wave function and, in particular, assuming the relativistic character of internal motion, it may be lower than the well-known prediction (i.e. 3/7). This is due to the correct consideration of spin degrees of freedom of the wave function of the nucleon at rest. (orig.)

  10. Bound and free waves in non-collinear second harmonic generation.

    Science.gov (United States)

    Larciprete, M C; Bovino, F A; Belardini, A; Sibilia, C; Bertolotti, M

    2009-09-14

    We analyze the relationship between the bound and the free waves in the noncollinear SHG scheme, along with the vectorial conservation law for the different components arising when there are two pump beams impinging on the sample with two different incidence angles. The generated power is systematically investigated, by varying the polarization state of both fundamental beams, while absorption is included via the Herman and Hayden correction terms. The theoretical simulations, obtained for samples which are some coherence length thick show that the resulting polarization mapping is an useful tool to put in evidence the interference between bound and free waves, as well as the effect of absorption on the interference pattern.

  11. Highly excited bound-state resonances of short-range inverse power-law potentials

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)

    2017-11-15

    We study analytically the radial Schroedinger equation with long-range attractive potentials whose asymptotic behaviors are dominated by inverse power-law tails of the form V(r) = -β{sub n}r{sup -n} with n > 2. In particular, assuming that the effective radial potential is characterized by a short-range infinitely repulsive core of radius R, we derive a compact analytical formula for the threshold energy E{sub l}{sup max} = E{sub l}{sup max}(n, β{sub n}, R), which characterizes the most weakly bound-state resonance (the most excited energy level) of the quantum system. (orig.)

  12. On semidefinite programming bounds for graph bandwidth

    NARCIS (Netherlands)

    de Klerk, E.; Nagy, M.; Sotirov, R.

    2013-01-01

    In this paper, we propose two new lower bounds on graph bandwidth and cyclic bandwidth based on semidefinite programming (SDP) relaxations of the quadratic assignment problem. We compare the new bounds with two other SDP bounds reported in [A. Blum, G. Konjevod, R. Ravi, and S. Vempala,

  13. Andreev Bound States Formation and Quasiparticle Trapping in Quench Dynamics Revealed by Time-Dependent Counting Statistics.

    Science.gov (United States)

    Souto, R Seoane; Martín-Rodero, A; Yeyati, A Levy

    2016-12-23

    We analyze the quantum quench dynamics in the formation of a phase-biased superconducting nanojunction. We find that in the absence of an external relaxation mechanism and for very general conditions the system gets trapped in a metastable state, corresponding to a nonequilibrium population of the Andreev bound states. The use of the time-dependent full counting statistics analysis allows us to extract information on the asymptotic population of even and odd many-body states, demonstrating that a universal behavior, dependent only on the Andreev state energy, is reached in the quantum point contact limit. These results shed light on recent experimental observations on quasiparticle trapping in superconducting atomic contacts.

  14. One-way quantum key distribution: Simple upper bound on the secret key rate

    International Nuclear Information System (INIS)

    Moroder, Tobias; Luetkenhaus, Norbert; Curty, Marcos

    2006-01-01

    We present a simple method to obtain an upper bound on the achievable secret key rate in quantum key distribution (QKD) protocols that use only unidirectional classical communication during the public-discussion phase. This method is based on a necessary precondition for one-way secret key distillation; the legitimate users need to prove that there exists no quantum state having a symmetric extension that is compatible with the available measurements results. The main advantage of the obtained upper bound is that it can be formulated as a semidefinite program, which can be efficiently solved. We illustrate our results by analyzing two well-known qubit-based QKD protocols: the four-state protocol and the six-state protocol

  15. Bound state properties of ABC-stacked trilayer graphene quantum dots

    Science.gov (United States)

    Xiong, Haonan; Jiang, Wentao; Song, Yipu; Duan, Luming

    2017-06-01

    The few-layer graphene quantum dot provides a promising platform for quantum computing with both spin and valley degrees of freedom. Gate-defined quantum dots in particular can avoid noise from edge disorders. In connection with the recent experimental efforts (Song et al 2016 Nano Lett. 16 6245), we investigate the bound state properties of trilayer graphene (TLG) quantum dots (QDs) through numerical simulations. We show that the valley degeneracy can be lifted by breaking the time reversal symmetry through the application of a perpendicular magnetic field. The spectrum under such a potential exhibits a transition from one group of Landau levels to another group, which can be understood analytically through perturbation theory. Our results provide insight into the transport property of TLG QDs, with possible applications to study of spin qubits and valleytronics in TLG QDs.

  16. Wegner-type Bounds for a Two-particle Lattice Model with a Generic 'Rough' Quasi-periodic Potential

    International Nuclear Information System (INIS)

    Gaume, Martin

    2010-01-01

    In this paper, we consider a class of two-particle tight-binding Hamiltonians, describing pairs of interacting quantum particles on the lattice Z d , d ≥ 1, subject to a common external potential V(x) which we assume quasi-periodic and depending on auxiliary parameters. Such parametric families of ergodic deterministic potentials ('grands ensembles') have been introduced earlier in Chulaevsky (2007), in the framework of single-particle lattice systems, where it was proved that a non-uniform analog of the Wegner bound holds true for a class of quasi-periodic grands ensembles. Using the approach proposed in Chulaevsky and Suhov (Commun Math Phys 283(2):479-489, 2008), we establish volume-dependent Wegner-type bounds for a class of quasi-periodic two-particle lattice systems with a non-random short-range interaction.

  17. Circumvention of Parker's bound on galactic magnetic monopoles

    International Nuclear Information System (INIS)

    Dicus, D.A.; Teplitz, V.L.; Maryland Univ., College Park

    1983-01-01

    There is a possibility that a magnetic monopole has been observed. The monopole density implied by the observation appears to violate bounds on the density of such particles derived from the total mass density of the Universe and from the existence of galactic magnetic fields. It is shown that the observation is not inconsistent with these bounds if the monopoles and antimonopoles are bound into positronium like states with principal quantum n high enough so that the Earth's magnetic field will break them apart, but small enough so that the weaker galactic magnetic field will not. A range of values for n are determined and show that lifetimes for such bound states are longer than the current age of the Universe. (author)

  18. Bounded Gaussian process regression

    DEFF Research Database (Denmark)

    Jensen, Bjørn Sand; Nielsen, Jens Brehm; Larsen, Jan

    2013-01-01

    We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We...... with the proposed explicit noise-model extension....

  19. Prediction of new tightly bound-states of H2+(d2+) and ''cold fusion''-experiments

    International Nuclear Information System (INIS)

    Barut, A.O.

    1989-06-01

    It is suggested that in the ''cold-fusion'' experiments of Fleischmann and Pons new tightly-bound molecular states of D 2 + are formed with binding energies predicted to be of the order of 50 keV accounting for the heat released without appreciable fusion. Other tests of the suggested mechanism are proposed and the derivation of the new energy levels is given. (author). 3 refs

  20. Bound states for square well potentials extending to infinity in D ≥ 2

    International Nuclear Information System (INIS)

    Rupertsberger, H.

    1992-01-01

    It is well known that quantum mechanics allows the penetration into classically forbidden regions (tunneling). Less well known seems to be the fact that in some sense the converse is true also. Potentials with classically allowed regions where a particle can move freely to infinity can nevertheless lead to bound states in quantum mechanics due to the stringent requirements of the boundary conditions, thus forbidding an escape to infinity. This effect is demonstrated by using an obvious generalization of the well known one-dimensional (D = 1) square well potential to arbitray space dimensions. (author)

  1. Few-Body Techniques Using Coordinate Space for Bound and Continuum States

    Science.gov (United States)

    Garrido, E.

    2018-05-01

    These notes are a short summary of a set of lectures given within the frame of the "Critical Stability of Quantum Few-Body Systems" International School held in the Max Planck Institute for the Physics of Complex Systems (Dresden). The main goal of the lectures has been to provide the basic ingredients for the description of few-body systems in coordinate space. The hyperspherical harmonic and the adiabatic expansion methods are introduced in detail, and subsequently used to describe bound and continuum states. The expressions for the cross sections and reaction rates for three-body processes are derived. The case of resonant scattering and the complex scaling method as a tool to obtain the resonance energy and width is also introduced.

  2. Relativistic description of quark-antiquark bound states. II. Spin-dependent treatment

    International Nuclear Information System (INIS)

    Gara, A.; Durand, B.; Durand, L.

    1990-01-01

    We present the results of a study of light- and heavy-quark--antiquark bound states in the context of the reduced Bethe-Salpeter equation, including the full spin dependence. We obtain good fits to the observed spin splittings in the b bar b and c bar c systems using a short-distance single-gluon-exchange interaction, and a long-distance scalar confining interaction. However, we cannot obtain satisfactory fits to the centers of gravity of the b bar b and c bar c spin multiplets at the same time, and the splittings calculated for q bar Q mesons containing the lighter quarks are very poor. The difficulty appears to be intrinsic to the reduced Salpeter equation for reasons which we discuss

  3. Andreev reflection properties in a parallel mesoscopic circuit with Majorana bound states

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Jin-Tao; Han, Yu [Physics Department, Liaoning University, Shenyang 110036 (China); Gong, Wei-Jiang, E-mail: gwj@mail.neu.edu.cn [College of Sciences, Northeastern University, Shenyang 110819 (China)

    2017-03-15

    We investigate the Andreev reflection in a parallel mesoscopic circuit with Majorana bound states (MBSs). It is found that in such a structure, the Andreev current can be manipulated in a highly efficient way, by the adjustment of bias voltage, dot levels, inter-MBS coupling, and the applied magnetic flux. Besides, the dot-MBS coupling manner is an important factor to modulate the Andreev current, because it influences the period of the conductance oscillation. By discussing the underlying quantum interference mechanism, the Andreev-reflection property is explained in detail. We believe that all the results can assist to understand the nontrivial role of the MBSs in driving the Andreev reflection.

  4. Neutron scattering from elemental indium, the optical model, and the bound-state potential

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, S. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)); Guenther, P.T.; Lawson, R.D.; Smith, A.B. (Argonne National Lab., IL (USA))

    1990-06-01

    Neutron differential elastic-scattering cross sections of elemental indium are measured from 4.5 to 10 MeV at incident-energy intervals of {approx}500 keV. Seventy or more differential values are obtained at each incident energy, distributed between {approx}18{degree} and 160{degree}. These experimental results are combined with lower-energy values previously obtained at this laboratory, and with 11 and 14 MeV results in the literature, to form a comprehensive elastic-scattering database extending from {approx}1.5 to 14 MeV. These data are interpreted in terms of a conventional spherical optical model. The resulting potential is extrapolated to the bound-state regime. It is shown that in the middle of the 50--82 neutron shell, the potential derived from the scattering results adequately describes the binding energies of article states, but does not do well for hole states. The latter shortcoming is attributed to the holes states having occupational probabilities sufficiently different from unity, so that the exclusion principle become a factor, and to the rearrangement of the neutron core. 68 refs.

  5. Neutron scattering from elemental indium, the optical model, and the bound-state potential

    International Nuclear Information System (INIS)

    Chiba, S.; Guenther, P.T.; Lawson, R.D.; Smith, A.B.

    1990-01-01

    Neutron differential elastic-scattering cross sections of elemental indium are measured from 4.5 to 10 MeV at incident-energy intervals of ∼500 keV. Seventy or more differential values are obtained at each incident energy, distributed between ∼18 degree and 160 degree. These experimental results are combined with lower-energy values previously obtained at this laboratory, and with 11 and 14 MeV results in the literature, to form a comprehensive elastic-scattering database extending from ∼1.5 to 14 MeV. These data are interpreted in terms of a conventional spherical optical model. The resulting potential is extrapolated to the bound-state regime. It is shown that in the middle of the 50--82 neutron shell, the potential derived from the scattering results adequately describes the binding energies of article states, but does not do well for hole states. The latter shortcoming is attributed to the holes states having occupational probabilities sufficiently different from unity, so that the exclusion principle become a factor, and to the rearrangement of the neutron core. 68 refs

  6. Electron-electron bound states in Maxwell-Chern-Simons-Proca QED3

    International Nuclear Information System (INIS)

    Belich, H.; Helayel-Neto, J.A.; Ferreira, M.M. Jr.; Maranhao Univ., Sao Luis, MA

    2002-10-01

    We start from a parity-breaking MCS QED 3 model with spontaneous breaking of the gauge symmetry as a framework for evaluation of the electron-electron interaction potential and for attainment of numerical values for the e - e - - bound state. Three expressions V eff↓↓ , V eff↓↑ , V eff↓↓ ) are obtained according to the polarization state of the scattered electrons. In an energy scale compatible with condensed matter electronic excitations, these potentials become degenerated. The resulting potential is implemented in the Schroedinger equation and the variational method is applied to carry out the electronic binding energy. The resulting binding energies in the scale of 10-100 meV and a correlation length in the scale of 10 - 30 Angstrom are possible indications that the MCS-QED 3 model adopted may be suitable to address an eventual case of e - e - pairing in the presence of parity-symmetry breakdown. The data analyzed here suggest an energy scale of 10-100 meV to fix the breaking of the U(1)-symmetry. (author)

  7. Majorana bound state of a Bogoliubov-de Gennes-Dirac Hamiltonian in arbitrary dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Imura, Ken-Ichiro, E-mail: imura@hiroshima-u.ac.jp [Department of Quantum Matter, AdSM, Hiroshima University, 739-8530 (Japan); Fukui, Takahiro; Fujiwara, Takanori [Department of Physics, Ibaraki University, Mito 310-8512 (Japan)

    2012-01-11

    We study a Majorana zero-energy state bound to a hedgehog-like point defect in a topological superconductor described by a Bogoliubov-de Gennes (BdG)-Dirac type effective Hamiltonian. We first give an explicit wave function of a Majorana state by solving the BdG equation directly, from which an analytical index can be obtained. Next, by calculating the corresponding topological index, we show a precise equivalence between both indices to confirm the index theorem. Finally, we apply this observation to reexamine the role of another topological invariant, i.e., the Chern number associated with the Berry curvature proposed in the study of protected zero modes along the lines of topological classification of insulators and superconductors. We show that the Chern number is equivalent to the topological index, implying that it indeed reflects the number of zero-energy states. Our theoretical model belongs to the BDI class from the viewpoint of symmetry, whereas the spatial dimension d of the system is left arbitrary throughout the paper.

  8. Coherent Behavior and the Bound State of Water and K(+) Imply Another Model of Bioenergetics: Negative Entropy Instead of High-energy Bonds.

    Science.gov (United States)

    Jaeken, Laurent; Vasilievich Matveev, Vladimir

    2012-01-01

    Observations of coherent cellular behavior cannot be integrated into widely accepted membrane (pump) theory (MT) and its steady state energetics because of the thermal noise of assumed ordinary cell water and freely soluble cytoplasmic K(+). However, Ling disproved MT and proposed an alternative based on coherence, showing that rest (R) and action (A) are two different phases of protoplasm with different energy levels. The R-state is a coherent metastable low-entropy state as water and K(+) are bound to unfolded proteins. The A-state is the higher-entropy state because water and K(+) are free. The R-to-A phase transition is regarded as a mechanism to release energy for biological work, replacing the classical concept of high-energy bonds. Subsequent inactivation during the endergonic A-to-R phase transition needs an input of metabolic energy to restore the low entropy R-state. Matveev's native aggregation hypothesis allows to integrate the energetic details of globular proteins into this view.

  9. O{sup -} bound small polarons in oxide materials

    Energy Technology Data Exchange (ETDEWEB)

    Schirmer, O F [Department of Physics, University of Osnabrueck, D-49076 Osnabrueck (Germany)

    2006-11-01

    Holes bound to acceptor defects in oxide crystals are often localized by lattice distortion at just one of the equivalent oxygen ligands of the defect. Such holes thus form small polarons in symmetric clusters of a few oxygen ions. An overview on mainly the optical manifestations of those clusters is given. The article is essentially divided into two parts: the first one covers the basic features of the phenomena and their explanations, exemplified by several paradigmatic defects; in the second part numerous oxide materials are presented which exhibit bound small polaron optical properties. The first part starts with summaries on the production of bound hole polarons and the identification of their structure. It is demonstrated why they show strong, wide absorption bands, usually visible, based on polaron stabilization energies of typically 1 eV. The basic absorption process is detailed with a fictitious two-well system. Clusters with four, six and twelve equivalent ions are realized in various oxide compounds. In these cases several degenerate optically excited polaron states occur, leading to characteristic final state resonance splittings. The peak energies of the absorption bands as well as the sign of the transfer energy depend on the topology of the clusters. A special section is devoted to the distinction between interpolaron and intrapolaron optical transitions. The latter are usually comparatively weak. The oxide compounds exhibiting bound hole small polaron absorptions include the alkaline earth oxides (e.g. MgO), BeO and ZnO, the perovskites BaTiO{sub 3} and KTaO{sub 3}, quartz, the sillenites (e.g. Bi{sub 12}TiO{sub 20}), Al{sub 2}O{sub 3}, LiNbO{sub 3}, topaz and various other materials. There are indications that the magnetic crystals NiO, doped with Li, and LaMnO{sub 3}, doped with Sr, also show optical features caused by bound hole polarons. Beyond being elementary paradigms for the properties of small polarons in general, the defect species treated

  10. Line bundle twisted chiral de Rham complex and bound states of D-branes on toric manifolds

    International Nuclear Information System (INIS)

    Parkhomenko, S.E.

    2014-01-01

    In this note we calculate elliptic genus in various examples of twisted chiral de Rham complex on two-dimensional toric compact manifolds and Calabi–Yau hypersurfaces in toric manifolds. At first the elliptic genus is calculated for the line bundle twisted chiral de Rham complex on a compact smooth toric manifold and K3 hypersurface in P 3 . Then we twist chiral de Rham complex by sheaves localized on positive codimension submanifolds in P 2 and calculate in each case the elliptic genus. In the last example the elliptic genus of chiral de Rham complex on P 2 twisted by SL(N) vector bundle with instanton number k is calculated. In all the cases considered we find the infinite tower of open string oscillator contributions and identify directly the open string boundary conditions of the corresponding bound state of D-branes

  11. Bound states emerging from below the continuum in a solvable PT-symmetric discrete Schrodinger equation

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2017-01-01

    Roč. 96, č. 1 (2017), č. článku 012127. ISSN 2469-9926 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : non-Hermitian * PT symmetric * bound states Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.925, year: 2016

  12. Ultimate Bound of a 3D Chaotic System and Its Application in Chaos Synchronization

    Directory of Open Access Journals (Sweden)

    Jiezhi Wang

    2014-01-01

    Full Text Available Two ellipsoidal ultimate boundary regions of a special three-dimensional (3D chaotic system are proposed. To this chaotic system, the linear coefficient of the ith state variable in the ith state equation has the same sign; it also has two one-order terms and one quadratic cross-product term in each equation. A numerical solution and an analytical expression of the ultimate bounds are received. To get the analytical expression of the ultimate boundary region, a new result of one maximum optimization question is proved. The corresponding ultimate boundary regions are demonstrated through numerical simulations. Utilizing the bounds obtained, a linear controller is proposed to achieve the complete chaos synchronization. Numerical simulation exhibits the feasibility of the designed scheme.

  13. Optical transitions in two-dimensional topological insulators with point defects

    Science.gov (United States)

    Sablikov, Vladimir A.; Sukhanov, Aleksei A.

    2016-12-01

    Nontrivial properties of electronic states in topological insulators are inherent not only to the surface and boundary states, but to bound states localized at structure defects as well. We clarify how the unusual properties of the defect-induced bound states are manifested in optical absorption spectra in two-dimensional topological insulators. The calculations are carried out for defects with short-range potential. We find that the defects give rise to the appearance of specific features in the absorption spectrum, which are an inherent property of topological insulators. They have the form of two or three absorption peaks that are due to intracenter transitions between electron-like and hole-like bound states.

  14. Possible circumvention of Parker's bound on galactic magnetic monopoles

    International Nuclear Information System (INIS)

    Dicus, D.A.; Teplitz, V.L.

    1983-04-01

    There is a possibility that a magnetic monople has observed. The monopole density implied by the observation appears to violate bounds on the density of such particles derived from the total mass density of the universe and from the existence of galactic magnetic fields. We show that the observation is not inconsistent with these bounds if the monopoles and antimonopoles are bound into positronium - like states with principal quantum n high enough so that the earth's magnetic field will break them apart, but small enough so that the weaker galactic mangetic field will not. We determine a range of values for n and show that lifetimes for such bound states are longer than the current age of the universe

  15. Upper Bounds on Performance Measures of Heterogeneous // Queues

    Directory of Open Access Journals (Sweden)

    F. S. Q. Alves

    2011-01-01

    Full Text Available In many real-life queueing systems, the servers are often heterogeneous, namely they work at different rates. This paper provides a simple method to compute tight upper bounds on two important performance measures of single-class heterogeneous multi-server Markovian queueing systems, namely the average number in queue and the average waiting time in queue. This method is based on an expansion of the state space that is followed by an approximate reduction of the state space, only considering the most probable states. In most cases tested, we were able to approximate the actual behavior of the system with smaller errors than those obtained from traditional homogeneous multiserver Markovian queues, as shown by GPSS simulations. In addition, we have correlated the quality of the approximation with the degree of heterogeneity of the system, which was evaluated using its Gini index. Finally, we have shown that the bounds are robust and still useful, even considering quite different allocation strategies. A large number of simulation results show the accuracy of the proposed method that is better than that of classical homogeneous multiserver Markovian formulae in many situations.

  16. Bionic Control of Cheetah Bounding with a Segmented Spine.

    Science.gov (United States)

    Wang, Chunlei; Wang, Shigang

    2016-01-01

    A cheetah model is built to mimic real cheetah and its mechanical and dimensional parameters are derived from the real cheetah. In particular, two joints in spine and four joints in a leg are used to realize the motion of segmented spine and segmented legs which are the key properties of the cheetah bounding. For actuating and stabilizing the bounding gait of cheetah, we present a bioinspired controller based on the state-machine. The controller mainly mimics the function of the cerebellum to plan the locomotion and keep the body balance. The haptic sensor and proprioception system are used to detect the trigger of the phase transition. Besides, the vestibular modulation could perceive the pitching angle of the trunk. At last, the cerebellum acts as the CPU to operate the information from the biological sensors. In addition, the calculated results are transmitted to the low-level controller to actuate and stabilize the cheetah bounding. Moreover, the delay feedback control method is employed to plan the motion of the leg joints to stabilize the pitching motion of trunk with the stability criterion. Finally, the cyclic cheetah bounding with biological properties is realized. Meanwhile, the stability and dynamic properties of the cheetah bounding gait are analyzed elaborately.

  17. Bionic Control of Cheetah Bounding with a Segmented Spine

    Directory of Open Access Journals (Sweden)

    Chunlei Wang

    2016-01-01

    Full Text Available A cheetah model is built to mimic real cheetah and its mechanical and dimensional parameters are derived from the real cheetah. In particular, two joints in spine and four joints in a leg are used to realize the motion of segmented spine and segmented legs which are the key properties of the cheetah bounding. For actuating and stabilizing the bounding gait of cheetah, we present a bioinspired controller based on the state-machine. The controller mainly mimics the function of the cerebellum to plan the locomotion and keep the body balance. The haptic sensor and proprioception system are used to detect the trigger of the phase transition. Besides, the vestibular modulation could perceive the pitching angle of the trunk. At last, the cerebellum acts as the CPU to operate the information from the biological sensors. In addition, the calculated results are transmitted to the low-level controller to actuate and stabilize the cheetah bounding. Moreover, the delay feedback control method is employed to plan the motion of the leg joints to stabilize the pitching motion of trunk with the stability criterion. Finally, the cyclic cheetah bounding with biological properties is realized. Meanwhile, the stability and dynamic properties of the cheetah bounding gait are analyzed elaborately.

  18. Capacity Bounds for Parallel Optical Wireless Channels

    KAUST Repository

    Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim

    2016-01-01

    A system consisting of parallel optical wireless channels with a total average intensity constraint is studied. Capacity upper and lower bounds for this system are derived. Under perfect channel-state information at the transmitter (CSIT), the bounds have to be optimized with respect to the power allocation over the parallel channels. The optimization of the lower bound is non-convex, however, the KKT conditions can be used to find a list of possible solutions one of which is optimal. The optimal solution can then be found by an exhaustive search algorithm, which is computationally expensive. To overcome this, we propose low-complexity power allocation algorithms which are nearly optimal. The optimized capacity lower bound nearly coincides with the capacity at high SNR. Without CSIT, our capacity bounds lead to upper and lower bounds on the outage probability. The outage probability bounds meet at high SNR. The system with average and peak intensity constraints is also discussed.

  19. Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state.

    Science.gov (United States)

    Kanai, Ryuta; Ogawa, Haruo; Vilsen, Bente; Cornelius, Flemming; Toyoshima, Chikashi

    2013-10-10

    Na(+),K(+)-ATPase pumps three Na(+) ions out of cells in exchange for two K(+) taken up from the extracellular medium per ATP molecule hydrolysed, thereby establishing Na(+) and K(+) gradients across the membrane in all animal cells. These ion gradients are used in many fundamental processes, notably excitation of nerve cells. Here we describe 2.8 Å-resolution crystal structures of this ATPase from pig kidney with bound Na(+), ADP and aluminium fluoride, a stable phosphate analogue, with and without oligomycin that promotes Na(+) occlusion. These crystal structures represent a transition state preceding the phosphorylated intermediate (E1P) in which three Na(+) ions are occluded. Details of the Na(+)-binding sites show how this ATPase functions as a Na(+)-specific pump, rejecting K(+) and Ca(2+), even though its affinity for Na(+) is low (millimolar dissociation constant). A mechanism for sequential, cooperative Na(+) binding can now be formulated in atomic detail.

  20. Dynamic current susceptibility as a probe of Majorana bound states in nanowire-based Josephson junctions

    Science.gov (United States)

    Trif, Mircea; Dmytruk, Olesia; Bouchiat, Hélène; Aguado, Ramón; Simon, Pascal

    2018-02-01

    We theoretically study a Josephson junction based on a semiconducting nanowire subject to a time-dependent flux bias. We establish a general density-matrix approach for the dynamical response of the Majorana junction and calculate the resulting flux-dependent susceptibility using both microscopic and effective low-energy descriptions for the nanowire. We find that the diagonal component of the susceptibility, associated with the dynamics of the Majorana state populations, dominates over the standard Kubo contribution for a wide range of experimentally relevant parameters. The diagonal term, explored, in this Rapid Communication, in the context of Majorana physics, allows probing accurately the presence of Majorana bound states in the junction.