WorldWideScience

Sample records for two-photon temporal correlation

  1. Correlations of two photons at hadron colliders

    OpenAIRE

    Kozlov, G. A.

    2011-01-01

    We study the Bose-Einstein correlations of two photons and their coherent properties that can provide the information about the space-time structure of the emitting source through the Higgs-boson decays into two photons. We argue that such an investigation could probe the Higgs-boson mass. The model is rather sensitive to the temperature of the environment and to the external distortion effect in medium.

  2. Two-photon interference of temporally separated photons

    Science.gov (United States)

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-10-01

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms.

  3. Selective two-photon excitation of a vibronic state by correlated photons.

    Science.gov (United States)

    Oka, Hisaki

    2011-03-28

    We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.

  4. Atomic Dipole Squeezing in the Correlated Two-Mode Two-Photon Jaynes-Cummings Model

    Science.gov (United States)

    Dong, Zhengchao; Zhao, Yonglin

    1996-01-01

    In this paper, we study the atomic dipole squeezing in the correlated two-mode two-photon JC model with the field initially in the correlated two-mode SU(1,1) coherent state. The effects of detuning, field intensity and number difference between the two field modes are investigated through numerical calculation.

  5. Two-photon light-sheet nanoscopy by fluorescence fluctuation correlation analysis

    Science.gov (United States)

    Chen, Xuanze; Zong, Weijian; Li, Rongqin; Zeng, Zhiping; Zhao, Jia; Xi, Peng; Chen, Liangyi; Sun, Yujie

    2016-05-01

    Advances in light-sheet microscopy have enabled the fast three-dimensional (3D) imaging of live cells and bulk specimens with low photodamage and phototoxicity. Combining light-sheet illumination with super-resolution imaging is expected to resolve subcellular structures. Actually, such kind of super-resolution light-sheet microscopy was recently demonstrated using a single-molecule localization algorithm. However, the imaging depth and temporal resolution of this method are limited owing to the requirements of precise single molecule localization and reconstruction. In this work, we present two-photon super-resolution light-sheet imaging via stochastic optical fluctuation imaging (2PLS-SOFI), which acquires high spatiotemporal resolution and excellent optical sectioning ability. 2PLS-SOFI is based on non-linear excitation of fluctuation/blinking probes using our recently developed fast two-photon three-axis digital scanned light-sheet microscope (2P3A-DSLM), which enables both deep penetration and thin sheet of light. Overall, 2PLS-SOFI demonstrates up to 3-fold spatial resolution enhancement compared with conventional two-photon light-sheet (2PLS) microscopy and about 40-fold temporal resolution enhancement compared with individual molecule localization-selective plane illumination microscopy (IML-SPIM). Therefore, 2PLS-SOFI is promising for 3D long-term, deep-tissue imaging with high spatiotemporal resolution.

  6. In vivo reactive neural plasticity investigation by means of correlative two photon: electron microscopy

    Science.gov (United States)

    Allegra Mascaro, A. L.; Cesare, P.; Sacconi, L.; Grasselli, G.; Mandolesi, G.; Maco, B.; Knott, G.; Huang, L.; De Paola, V.; Strata, P.; Pavone, F. S.

    2013-02-01

    In the adult nervous system, different populations of neurons correspond to different regenerative behavior. Although previous works showed that olivocerebellar fibers are capable of axonal regeneration in a suitable environment as a response to injury1, we have hitherto no details about the real dynamics of fiber regeneration. We set up a model of singularly axotomized climbing fibers (CF) to investigate their reparative properties in the adult central nervous system (CNS) in vivo. Time lapse two-photon imaging has been combined to laser nanosurgery2, 3 to define a temporal pattern of the degenerative event and to follow the structural rearrangement after injury. To characterize the damage and to elucidate the possible formation of new synaptic contacts on the sprouted branches of the lesioned CF, we combined two-photon in vivo imaging with block face scanning electron microscopy (FIB-SEM). Here we describe the approach followed to characterize the reactive plasticity after injury.

  7. Tunable two-photon correlation in a double-cavity optomechanical system

    Directory of Open Access Journals (Sweden)

    Zhi-Bo Feng

    2015-12-01

    Full Text Available Correlated photons are essential sources for quantum information processing. We propose a practical scheme to generate pairs of correlated photons in a controllable fashion from a double-cavity optomechanical system, where the variable optomechanical coupling strength makes it possible to tune the photon correlation at our will. The key operation is based on the repulsive or attractive interaction between the two photons intermediated by the mechanical resonator. The present protocol could provide a potential approach to coherent control of the photon correlation using the optomechanical cavity.

  8. Temporal dynamics of two-photon-pumped amplified spontaneous emission in slab organic crystals

    NARCIS (Netherlands)

    Fang, Hong-Hua; Chen, Qi-Dai; Ding, Ran; Yang, Jie; Ma, Yu-Guang; Wang, Hai-Yu; Gao, Bing-Rong; Feng, Jing; Sun, Hong-Bo; Fang, Honghua

    2010-01-01

    We have studied the ultrafast dynamics of two-photon-pumped amplified spontaneous emission (ASE) from a single crystal by the time-resolved fluorescence upconversion technique. With the increase of two-photon pump intensities, the emission decay time is dramatically shortened by 30 times (from 3 ns

  9. Electron correlation in two-photon double ionization of helium from attosecond to FEL pulses

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Lee [Los Alamos National Laboratory

    2009-01-01

    We investigate the role of electron correlation in the two-photon double ionization of helium for ultrashort pulses in the extreme ultraviolet (XUV) regime with durations ranging from a hundred attoseconds to a few femtoseconds. We perform time-dependent ab initio calculations for pulses with mean frequencies in the so-called 'sequential' regime ({Dirac_h}{omega} > 54.4 eV). Electron correlation induced by the time correlation between emission events manifests itself in the angular distribution of the ejected electrons, which strongly depends on the energy sharing between them. We show that for ultrashort pulses two-photon double ionization probabilities scale non-uniformly with pulse duration depending on the energy sharing between the electrons. Most interestingly we find evidence for an interference between direct ('nonsequential') and indirect ('sequential') double photoionization with intermediate shake-up states, the strength of which is controlled by the pulse duration. This observation may provide a route towards measuring the pulse duration of x-ray free-electron laser (XFEL) pulses.

  10. Temporal behavior of low-amplitude two-photon screening-photovoltaic grey spatial solitons

    Institute of Scientific and Technical Information of China (English)

    JI Xuan-mang; JIANG Qi-chang; WANG Jin-lai; LIU Jin-song

    2011-01-01

    The time-dependent formation of one-dimensional two-photon screening-photovoltaic (PV) grey spatial solitons under low-amplitude conditions is presented theoretically. The time-dependent propagation equation of two-photon screening- photovoltaic solitons is obtained by the numerical method. The results indicate that as the time evolves, the intensity width of grey screening-photovoltaic spatial solitons decreases monotonously to a minimum value towards the steady state. The higher the ratio of soliton peak intensity to the dark irradiation intensity, the narrower the width of grey solitons within the propagation time.

  11. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: A peculiar role of geometry

    Energy Technology Data Exchange (ETDEWEB)

    Aryanpour, Karan [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); Shukla, Alok [Department of Physics, Indian Institute of Technology, Powai, Mumbai 400076 (India); Mazumdar, Sumit [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States)

    2014-03-14

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D{sub 6h} point group symmetry versus ovalene with D{sub 2h} symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D{sub 6h} group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D{sub 2h} ovalene but not in those with D{sub 6h} symmetry.

  12. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: A peculiar role of geometry

    Science.gov (United States)

    Aryanpour, Karan; Shukla, Alok; Mazumdar, Sumit

    2014-03-01

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D6h point group symmetry versus ovalene with D2h symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D6h group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D2h ovalene but not in those with D6h symmetry.

  13. Two-Photon Correlation of Spontaneously Generated Broadband Four Wave Mixing

    CERN Document Server

    Vered, Rafi; Pe'er, Avi

    2011-01-01

    We precisely measure the time-energy correlation of broadband, spontaneously generated four waves mixing (FWM), and demonstrate novel time-frequency coupling effects. By pumping a photonic crystal fiber with narrowband picosecond pulses we generate FWM in a unique regime, where extremely broadband (>100nm), sidebands are generated that are incoherent, yet time-energy correlated. Although conceptually similar to parametric down conversion (PDC), the time-energy correlation in FWM is unique in its dependence on pump intensity due to self and cross phase modulation effects, yielding surprising spectral and temporal structure in the correlations. Specifically, a power dependent splitting of the correlation in both energy and time is observed at high power. While these effects are minute compared to the time duration and bandwidth of the FWM sidebands, they are well observed using sum frequency generation as a precise, ultrafast correlation detector. A theoretical model accounts for the results and highlights the ...

  14. Two-photon upconversion affected by intermolecule correlations near metallic nanostructures

    Science.gov (United States)

    Osaka, Yoshiki; Yokoshi, Nobuhiko; Ishihara, Hajime

    2016-04-01

    We investigate an efficient two-photon upconversion process in more than one molecule coupled to an optical antenna. In the previous paper [Y. Osaka et al., Phys. Rev. Lett. 112, 133601 (2014), 10.1103/PhysRevLett.112.133601], we considered the two-photon upconversion process in a single molecule within one-dimensional input-output theory and revealed that controlling the antenna-molecule coupling enables the efficient upconversion with radiative loss in the antenna suppressed. In this paper, aiming to propose a way to enhance the total probability of antenna-photon scattering, we extend the model to the case of multiple molecules. In general, the presence of more than one molecule decreases the upconversion probability because they equally share the energy of the two photons. However, it is shown that we can overcome the difficulty by controlling the intermolecule coupling. Our result implies that, without increasing the incident photon number (light power), we can enlarge the net probability of the two-photon upconversion.

  15. Two-photon up-conversion affected by inter-molecule correlations near metallic nanostructure

    CERN Document Server

    Osaka, Yoshiki; Ishihara, Hajime

    2016-01-01

    We investigate an efficient two-photon up-conversion process in more than one molecule coupled to an optical antenna. In the previous work [Y. Osaka et al., PRL 112, 133601 (2014)], we considered the two-photon up-conversion process in a single molecule within one-dimensional input-output theory, and revealed that controlling the antenna-molecule coupling enables the efficient up-conversion with radiative loss in the antenna suppressed. In this work, aiming to propose a way to enhance the total probability of antenna-photon scattering, we extend the model to the case of multiple molecules. In general, the presence of more than one molecule decreases the up-conversion probability because they equally share the energy of the two photons. However, it is shown that we can overcome the difficulty by controlling the inter-molecule coupling. Our result implies that, without increasing the incident photon number (light power), we can enlarge the net probability of the two-photon up-conversion.

  16. Comparing temporally-focused GPC and CGH for two-photon excitation and optogenetics in turbid media

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Aabo, Thomas

    2013-01-01

    Inherent inhomogeneity in turbid media not only hinders imaging but also projection of arbitrary light patterns for excitation or optical manipulation. In this work we compare two of the most popular phase modulation-based techniques in beam shaping. The Generalized Phase Contrast (GPC) method uses...... a 4f setup that directly converts phase information to intensity. The GPC method has been used with temporal focusing for excitation in two-photon optogenetics [1-3]. The computer generated hologram (CGH) is also used to generate arbitrary light patterns and has been used for optical manipulation...... and fabrication because of its high diffraction efficiency and axial confinement. We model the effect of the turbid media as a phase randomization process. We compare the quality and asses the degradation of the projected light pattern for both techniques as it propagates in the turbid media....

  17. Correlated two-photon interference in a dual-beam Michelson interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Kwiat, P.G.; Vareka, W.A. (Department of Physics, University of California, Berkeley, California 94720 (USA)); Hong, C.K.; Nathel, H. (University of California, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (USA)); Chiao, R.Y. (Department of Physics, University of California, Berkeley, California 94720 (USA))

    1990-03-01

    We report on an interference effect arising from a two-photon entangled state produced in a potassium dihydrogen phosphate (KDP) crystal pumped by an ultraviolet argon-ion laser. Two conjugate beams of signal and idler photons were injected in a parallel configuration into a single Michelson interferometer, and detected separately by two photomultipliers, while the difference in its arm lengths was slowly scanned. The coincidence rate exhibited fringes with a visibility of nearly 50%, and a period given by half the ultraviolet (not the signal or idler) wavelength, while the singles rate exhibited no fringes.

  18. Quantum correlations in the two-photon decay of few-electron ions

    CERN Document Server

    Fratini, Filippo; Jahrsetz, Thorsten; Buchleitner, Andreas; Fritzsche, Stephan; Surzhykov, Andrey

    2010-01-01

    A theoretical study of the polarization entanglement of two photons emitted in the decay of metastable ionic states is performed within the framework of density matrix theory and second--order perturbative approach. Particular attention is paid to relativistic and non--dipole effects that become important for medium-- and high--$Z$ ions. To analyze these effects, the degree of entanglement is evaluated both in the dipole approximation and within the rigorous relativistic theory. Detailed calculations are performed for the two--photon $2s_{1/2}\\to 1s_{1/2}$ transition in hydrogen--like, as well as for the $1s_{1/2}\\, 2s_{1/2} \\; {}^1S_0 \\to 1s_{1/2}^2 \\; {}^1S_0$, $1s_{1/2} \\, 2s_{1/2} \\; {}^3S_1\\to 1s_{1/2}^2 \\; {}^1S_0$ and $1s_{1/2} \\, 2p_{1/2} \\; {}^3P_0\\to 1s_{1/2}^2 \\; {}^1S_0$ transitions in helium--like ions.

  19. Evidence for strong electron correlations in graphene molecular fragments: Theory and experiments on two-photon absorptions

    Science.gov (United States)

    Aryanpour, Karan; Roberts, Adam; Sandhu, Arvinder; Shukla, Alok; Mazumdar, Sumit

    2013-03-01

    Historically, the occurrence of the lowest two-photon state below the optical one-photon state in linear polyenes, polyacetylenes and polydiacetylenes provided the strongest evidence for strong electron correlations in these linear π-conjugated systems. We demonstrate similar behavior in several molecular fragments of graphene with D6 h symmetry, theoretically and experimentally. Theoretically, we have calculated one versus two-photon absorptions in coronene, two different hexabenzocoronenes and circumcoronene, within the Pariser-Parr-Pople π-electron Hamiltonian using high order configuration interaction. Experimentally, we have performed z-scan measurements using a white light super-continuum source on coronene and hexa-peri-hexabenzocoronene to determine frequency-dependent two-photon absorption coefficients, for comparison to the ground state absorptions. Excellent agreement between experiment and theory in our work gives strong evidence for significant electron correlations between the π-electrons in the graphene molecular fragments. We particularly benchmark high order electron-hole excitations in graphene fragments as a key element behind the agreement between theory and experiment in this work. We acknowledge NSF-CHE-1151475 grant as our funding source.

  20. Femtosecond correlated photon echo in CdS crystal under two-photon excitation by two pairs of crossed laser beams

    Science.gov (United States)

    Samartsev, V. V.; Leontiev, A. V.; Mitrofanova, T. G.

    2015-07-01

    We consider the possibility of observing a femtosecond correlated photon echo (FCPE) under two-photon excitation of CdS crystal by two pairs of crossed laser beams. The peculiarities of FCPE signals and their possible applications are discussed.

  1. Photon Spin and the Shape of the Two-Photon Correlation Function

    CERN Document Server

    Slotta, C; Slotta, Claus; Heinz, Ulrich

    1997-01-01

    We use the covariant current formalism to derive the general form of the 2-photon correlation function for fully chaotic sources. Motivated by the recent discussion in the literature we concentrate on the effects from the photon spin on the correlator. We show that for locally thermalized expanding sources, like those expected to be created in relativistic heavy ion collisions, the only change relative to 2-pion interferometry is a statistical factor 1/2 for the overall strength of the correlation which results from the experimental averaging over the photon spin.

  2. Scattering of two photons on a quantum emitter in a one-dimensional waveguide: exact dynamics and induced correlations

    DEFF Research Database (Denmark)

    Nysteen, Anders; Kristensen, Philip Trøst; McCutcheon, Dara

    2015-01-01

    We develop a wavefunction approach to describe the scattering of two photons on a quantum emitter embedded in a one-dimensional waveguide. Our method allows us to calculate the exact dynamics of the complete system at all times, as well as the transmission properties of the emitter. We show...... that the nonlinearity of the emitter with respect to incoming photons depends strongly on the emitter excitation and the spectral shape of the incoming pulses, resulting in transmission of the photons which depends crucially on their separation and width. In addition, for counter-propagating pulses, we analyze...... the induced level of quantum correlations in the scattered state, and we show that the emitter behaves as a nonlinear beam-splitter when the spectral width of the photon pulses is similar to the emitter decay rate....

  3. The Correlated Two-Photon Transport in a One-Dimensional Waveguide Coupling to a Hybrid Atom-Optomechanical System

    Science.gov (United States)

    Liu, Jingyi; Zhang, Wenzhao; Li, Xun; Yan, Weibin; Zhou, Ling

    2016-10-01

    We investigate the two-photon transport properties inside one-dimensional waveguide side coupled to an atom-optomechanical system, aiming to control the two-photon transport by using the nonlinearity. By generalizing the scheme of Phys. Rev. A 90, 033832, we show that Kerr nonlinearity induced by the four-level atoms is remarkable and can make the photons antibunching, while the nonlinear interaction of optomechanical coupling participates in both the single photon and the two photon processes so that it can make the two photons exhibiting bunching and antibunching.

  4. Direct Vpr-Vpr Interaction in Cells monitored by two Photon Fluorescence Correlation Spectroscopy and Fluorescence Lifetime Imaging

    Directory of Open Access Journals (Sweden)

    Mély Yves

    2008-09-01

    Full Text Available Abstract Background The human immunodeficiency virus type 1 (HIV-1 encodes several regulatory proteins, notably Vpr which influences the survival of the infected cells by causing a G2/M arrest and apoptosis. Such an important role of Vpr in HIV-1 disease progression has fuelled a large number of studies, from its 3D structure to the characterization of specific cellular partners. However, no direct imaging and quantification of Vpr-Vpr interaction in living cells has yet been reported. To address this issue, eGFP- and mCherry proteins were tagged by Vpr, expressed in HeLa cells and their interaction was studied by two photon fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy. Results Results show that Vpr forms homo-oligomers at or close to the nuclear envelope. Moreover, Vpr dimers and trimers were found in the cytoplasm and in the nucleus. Point mutations in the three α helices of Vpr drastically impaired Vpr oligomerization and localization at the nuclear envelope while point mutations outside the helical regions had no effect. Theoretical structures of Vpr mutants reveal that mutations within the α-helices could perturb the leucine zipper like motifs. The ΔQ44 mutation has the most drastic effect since it likely disrupts the second helix. Finally, all Vpr point mutants caused cell apoptosis suggesting that Vpr-mediated apoptosis functions independently from Vpr oligomerization. Conclusion We report that Vpr oligomerization in HeLa cells relies on the hydrophobic core formed by the three α helices. This oligomerization is required for Vpr localization at the nuclear envelope but not for Vpr-mediated apoptosis.

  5. Spatially and Temporally Resolved Atomic Oxygen Measurements in Short Pulse Discharges by Two Photon Laser Induced Fluorescence

    Science.gov (United States)

    Lempert, Walter; Uddi, Mruthunjaya; Mintusov, Eugene; Jiang, Naibo; Adamovich, Igor

    2007-10-01

    Two Photon Laser Induced Fluorescence (TALIF) is used to measure time-dependent absolute oxygen atom concentrations in O2/He, O2/N2, and CH4/air plasmas produced with a 20 nanosecond duration, 20 kV pulsed discharge at 10 Hz repetition rate. Xenon calibrated spectra show that a single discharge pulse creates initial oxygen dissociation fraction of ˜0.0005 for air like mixtures at 40-60 torr total pressure. Peak O atom concentration is a factor of approximately two lower in fuel lean (φ=0.5) methane/air mixtures. In helium buffer, the initially formed atomic oxygen decays monotonically, with decay time consistent with formation of ozone. In all nitrogen containing mixtures, atomic oxygen concentrations are found to initially increase, for time scales on the order of 10-100 microseconds, due presumably to additional O2 dissociation caused by collisions with electronically excited nitrogen. Further evidence of the role of metastable N2 is demonstrated from time-dependent N2 2^nd Positive and NO Gamma band emission spectroscopy. Comparisons with modeling predictions show qualitative, but not quantitative, agreement with the experimental data.

  6. A spatio-temporally compensated acousto-optic scanner for two-photon microscopy providing large field of view.

    Science.gov (United States)

    Kremer, Y; Léger, J-F; Lapole, R; Honnorat, N; Candela, Y; Dieudonné, S; Bourdieu, L

    2008-07-07

    Acousto-optic deflectors (AOD) are promising ultrafast scanners for non-linear microscopy. Their use has been limited until now by their small scanning range and by the spatial and temporal dispersions of the laser beam going through the deflectors. We show that the use of AOD of large aperture (13mm) compared to standard deflectors allows accessing much larger field of view while minimizing spatio-temporal distortions. An acousto-optic modulator (AOM) placed at distance of the AOD is used to compensate spatial and temporal dispersions. Fine tuning of the AOM-AOD setup using a frequency-resolved optical gating (GRENOUILLE) allows elimination of pulse front tilt whereas spatial chirp is minimized thanks to the large aperture AOD.

  7. Correlative two-photon and serial block face scanning electron microscopy in neuronal tissue using 3D near-infrared branding maps.

    Science.gov (United States)

    Lees, Robert M; Peddie, Christopher J; Collinson, Lucy M; Ashby, Michael C; Verkade, Paul

    2017-01-01

    Linking cellular structure and function has always been a key goal of microscopy, but obtaining high resolution spatial and temporal information from the same specimen is a fundamental challenge. Two-photon (2P) microscopy allows imaging deep inside intact tissue, bringing great insight into the structural and functional dynamics of cells in their physiological environment. At the nanoscale, the complex ultrastructure of a cell's environment in tissue can be reconstructed in three dimensions (3D) using serial block face scanning electron microscopy (SBF-SEM). This provides a snapshot of high resolution structural information pertaining to the shape, organization, and localization of multiple subcellular structures at the same time. The pairing of these two imaging modalities in the same specimen provides key information to relate cellular dynamics to the ultrastructural environment. Until recently, approaches to relocate a region of interest (ROI) in tissue from 2P microscopy for SBF-SEM have been inefficient or unreliable. However, near-infrared branding (NIRB) overcomes this by using the laser from a multiphoton microscope to create fiducial markers for accurate correlation of 2P and electron microscopy (EM) imaging volumes. The process is quick and can be user defined for each sample. Here, to increase the efficiency of ROI relocation, multiple NIRB marks are used in 3D to target ultramicrotomy. A workflow is described and discussed to obtain a data set for 3D correlated light and electron microscopy, using three different preparations of brain tissue as examples. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Two-photon physics

    Energy Technology Data Exchange (ETDEWEB)

    Bardeen, W.A.

    1981-10-01

    A new experimental frontier has recently been opened to the study of two photon processes. The first results of many aspects of these reactions are being presented at this conference. In contrast, the theoretical development of research ito two photon processes has a much longer history. This talk reviews the many different theoretical ideas which provide a detailed framework for our understanding of two photon processes.

  9. Two-photon cryomicroscope

    Science.gov (United States)

    Breunig, H. G.; Köhler, C.; König, K.

    2012-03-01

    We report on a new two-photon cryomicroscope which consist of a compact laser-scanning microscope combined with a motorized heating and freezing stage. Samples can be cooled down to -196 °C (77 K) and heated up to 600 °C (873 K) with adjustable heating/freezing rates between 0.01 K / min and 150 K / min. Two-photon imaging is realized by near infrared femtosecond-laser pulse excitation. The abilities of the two-photon cryomicroscope are illustrated in several measurements: imaging of fluorescent microspheres inside a piece of ice illustrates the feasibility of deep-microscopic imaging inside frozen sample. The temperature-dependent structural integrity of collagen is monitored by detection of second harmonic generation signals from porcine cornea. The measurements reveal also the dependence of the collagendenaturation temperature on hydration state of the cornea collagen. Furthermore, the potential of the two-photon cryomicroscope for optimization of freezing and thawing procedures as well as to evaluate the viability of frozen cells and tissue is discussed.

  10. Two-photon imaging of stem cells

    Science.gov (United States)

    Uchugonova, A.; Gorjup, E.; Riemann, I.; Sauer, D.; König, K.

    2008-02-01

    A variety of human and animal stem cells (rat and human adult pancreatic stem cells, salivary gland stem cells, dental pulpa stem cells) have been investigated by femtosecond laser 5D two-photon microscopy. Autofluorescence and second harmonic generation have been imaged with submicron spatial resolution, 270 ps temporal resolution, and 10 nm spectral resolution. In particular, NADH and flavoprotein fluorescence was detected in stem cells. Major emission peaks at 460nm and 530nm with typical mean fluorescence lifetimes of 1.8 ns and 2.0 ns, respectively, were measured using time-correlated single photon counting and spectral imaging. Differentiated stem cells produced the extracellular matrix protein collagen which was detected by SHG signals at 435 nm.

  11. Fano interference in two-photon transport

    Science.gov (United States)

    Xu, Shanshan; Fan, Shanhui

    2016-10-01

    We present a general input-output formalism for the few-photon transport in multiple waveguide channels coupled to a local cavity. Using this formalism, we study the effect of Fano interference in two-photon quantum transport. We show that the physics of Fano interference can manifest as an asymmetric spectral line shape in the frequency dependence of the two-photon correlation function. The two-photon fluorescence spectrum, on the other hand, does not exhibit the physics of Fano interference.

  12. Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption

    Science.gov (United States)

    Hou, Jue; Wright, Heather J.; Chan, Nicole; Tran, Richard; Razorenova, Olga V.; Potma, Eric O.; Tromberg, Bruce J.

    2016-06-01

    Two-photon excited fluorescence (TPEF) imaging of the cellular cofactors nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide is widely used to measure cellular metabolism, both in normal and pathological cells and tissues. When dual-wavelength excitation is used, ratiometric TPEF imaging of the intrinsic cofactor fluorescence provides a metabolic index of cells-the "optical redox ratio" (ORR). With increased interest in understanding and controlling cellular metabolism in cancer, there is a need to evaluate the performance of ORR in malignant cells. We compare TPEF metabolic imaging with seahorse flux analysis of cellular oxygen consumption in two different breast cancer cell lines (MCF-7 and MDA-MB-231). We monitor metabolic index in living cells under both normal culture conditions and, for MCF-7, in response to cell respiration inhibitors and uncouplers. We observe a significant correlation between the TPEF-derived ORR and the flux analyzer measurements (R=0.7901, p<0.001). Our results confirm that the ORR is a valid dynamic index of cell metabolism under a range of oxygen consumption conditions relevant for cancer imaging.

  13. Investigation by two-photon fluorescence correlation spectroscopy of the interaction of the nucleocapsid protein of HIV-1 with hairpin loop DNA sequences

    Science.gov (United States)

    Mely, Yves; Azoulay, Joel; Beltz, Herve; Clamme, Jean-Pierre; Bernacchi, Serena; Ficheux, Damien; Roques, Bernard P.; Darlix, Jean-Luc

    2004-09-01

    The nucleocapsid protein NCp7 of HIV-1 possesses nucleic acid chaperone properties that are critical for the two strand transfer reactions required during reverse transcription. The first DNA strand transfer relies on the destabilization by NCp7 of double-stranded segments of the transactivation response element, TAR sequence, at the 3' end of the genomic RNA and the complementary sequence cTAR at the 3" terminus of the early product of reverse transcription. To characterize NCp7-mediated nucleic acid destabilization, we investigated by steady-state and time-resolved fluorescence spectroscopy and two photon fluorescence correlation spectroscopy, the interaction of a doubly-labelled cTAR sequence with NCp7. The conformational fluctuations observed in the absence of NCp7 were associated with the rapid opening and closing (fraying) of the double stranded terminal segment of cTAR. NCp7 destabilizes cTAR mainly through a large increase of the opening rate constant. Additionally, the various destabilizing structures (bulges, internal loop, mismatches) spread all over cTAR secondary structure were found to be critical for NCp7 chaperone activity. Taken together, our data enabled us to propose a molecular mechanism for the destabilizing activity of NCp7 on cTAR which is crucial for the formation of the cTAR-TAR complex during the first strand transfer reaction.

  14. Two photon physics. Personal recollection

    CERN Document Server

    Ginzburg, Ilya F

    2015-01-01

    The term two--photon processes is used for the reactions in which some system of particles is produced in collision of two photons, either real or virtual. In the study of these processes our main goal was to suggest approach, allowing to extract from the data information on proper two--photon process separating it from mechanism which responsible for the production of photons. Here I present my view for history of two--photon physics. I don't try to give complete review, concentrating mainly on works of our team (which cover essential part of the topic) and some colleagues. My citation is strongly incomplete. I cite here only papers which were essential in our understanding of the problems. The choice of presented details is the result of my discussions with Gleb Kotkin and Valery Serbo. 1. Prehistory. 2. Two photon processes at e^+e^- colliders. 3. Photon colliders. 4. Notes on physical program.

  15. Interferometric two-photon photoemission correlation technique and femtosecond wet-electron dynamics at the TiO2 (110) surface

    Institute of Scientific and Technical Information of China (English)

    Bin LI; Jin ZHAO; Min FENG; Ken ONDA

    2008-01-01

    The femtosecond time-resolved two-photon pho-toemission (TR-2PP) and the ultra high vacuum (UHV) sur-face science techniques are integrated to investigate the elec-tronic structures and the interracial electron transfer dynamics at the atomically ordered adsorbate overlayers on TiO,2single-crystalline surfaces. Our research into the CH,3OH/TiO,2sys-tem exhibits complex dynamics, providing abundant informa-tion with regard to electron transport and solvation processes in the interfacial solvent structures. These represent the fundamentally physical, photochemical, and photocatalytic reactions of protic chemicals covered with metal-oxides.

  16. Observation of single- and two-photon beating between independent Raman scattering

    CERN Document Server

    Chen, Li-Qing; Zhang, Guo-Wan; Ou, Z Y; Zhang, Weiping

    2010-01-01

    By using spontaneous Raman processes in the high gain regime, we produce two independent Raman Stokes fields from an atomic ensemble. Temporal beating is observed between the two directly generated Stokes fields in a single realization. The beat frequency is found to be a result of an AC Stark frequency shift effect. However, due to the spontaneous nature of the process, the phases of the two Stokes fields change from one realization to another so that the beat signal disappears after average over many realizations. On the other hand, the beat signal is recovered in a two-photon correlation measurement, showing a two-photon interference effect. The two-photon beat signal enables us to obtain dephasing information in the Raman process. The dephasing effect is found to depend on the temperature of the atomic medium.

  17. Quantifying Differential Privacy under Temporal Correlations

    Science.gov (United States)

    Cao, Yang; Yoshikawa, Masatoshi; Xiao, Yonghui; Xiong, Li

    2017-01-01

    Differential Privacy (DP) has received increasing attention as a rigorous privacy framework. Many existing studies employ traditional DP mechanisms (e.g., the Laplace mechanism) as primitives, which assume that the data are independent, or that adversaries do not have knowledge of the data correlations. However, continuous generated data in the real world tend to be temporally correlated, and such correlations can be acquired by adversaries. In this paper, we investigate the potential privacy loss of a traditional DP mechanism under temporal correlations in the context of continuous data release. First, we model the temporal correlations using Markov model and analyze the privacy leakage of a DP mechanism when adversaries have knowledge of such temporal correlations. Our analysis reveals that the privacy loss of a DP mechanism may accumulate and increase over time. We call it temporal privacy leakage. Second, to measure such privacy loss, we design an efficient algorithm for calculating it in polynomial time. Although the temporal privacy leakage may increase over time, we also show that its supremum may exist in some cases. Third, to bound the privacy loss, we propose mechanisms that convert any existing DP mechanism into one against temporal privacy leakage. Experiments with synthetic data confirm that our approach is efficient and effective. PMID:28883711

  18. Higgs Decay to Two Photons

    OpenAIRE

    Marciano, William J.; Zhang, Cen; Willenbrock, Scott

    2011-01-01

    The amplitude for Higgs decay to two photons is calculated in renormalizable and unitary gauges using dimensional regularization at intermediate steps. The result is finite, gauge independent, and in agreement with previously published results. The large Higgs mass limit is examined using the Goldstone-boson equivalence theorem as a check on the use of dimensional regularization and to explain the absence of decoupling.

  19. Temporal correlations in social multiplex networks

    CERN Document Server

    Starnini, Michele; Pastor-Satorras, Romualdo

    2016-01-01

    Social interactions are composite, involve different communication layers and evolve in time. However, a rigorous analysis of the whole complexity of social networks has been hindered so far by lack of suitable data. Here we consider both the multi-layer and dynamic nature of social relations by analysing a diverse set of empirical temporal multiplex networks. We focus on the measurement and characterization of inter-layer correlations to investigate how activity in one layer affects social acts in another layer. We define observables able to detect when genuine correlations are present in empirical data, and single out spurious correlation induced by the bursty nature of human dynamics. We show that such temporal correlations do exist in social interactions where they act to depress the tendency to concentrate long stretches of activity on the same layer and imply some amount of potential predictability in the connection patterns between layers. Our work sets up a general framework to measure temporal correl...

  20. Temporal correlation coefficient for directed networks.

    Science.gov (United States)

    Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim

    2016-01-01

    Previous studies dealing with network theory focused mainly on the static aggregation of edges over specific time window lengths. Thus, most of the dynamic information gets lost. To assess the quality of such a static aggregation the temporal correlation coefficient can be calculated. It measures the overall possibility for an edge to persist between two consecutive snapshots. Up to now, this measure is only defined for undirected networks. Therefore, we introduce the adaption of the temporal correlation coefficient to directed networks. This new methodology enables the distinction between ingoing and outgoing edges. Besides a small example network presenting the single calculation steps, we also calculated the proposed measurements for a real pig trade network to emphasize the importance of considering the edge direction. The farm types at the beginning of the pork supply chain showed clearly higher values for the outgoing temporal correlation coefficient compared to the farm types at the end of the pork supply chain. These farm types showed higher values for the ingoing temporal correlation coefficient. The temporal correlation coefficient is a valuable tool to understand the structural dynamics of these systems, as it assesses the consistency of the edge configuration. The adaption of this measure for directed networks may help to preserve meaningful additional information about the investigated network that might get lost if the edge directions are ignored.

  1. Quantum homodyne tomography of a two-photon Fock state

    CERN Document Server

    Ourjoumtsev, A; Grangier, P; Ourjoumtsev, Alexei; Tualle-Brouri, Rosa; Grangier, Philippe

    2006-01-01

    We present a continuous-variable experimental analysis of a two-photon Fock state of free-propagating light. This state is obtained from a pulsed non-degenerate parametric amplifier, which produces two intensity-correlated twin beams. Counting two photons in one beam projects the other beam in the desired two-photon Fock state, which is analyzed by using a pulsed homodyne detection. The Wigner function of the measured state is clearly negative. We developed a detailed analytic model which allows a fast and efficient analysis of the experimental results.

  2. Quantum homodyne tomography of a two-photon Fock state.

    Science.gov (United States)

    Ourjoumtsev, Alexei; Tualle-Brouri, Rosa; Grangier, Philippe

    2006-06-02

    We present a continuous-variable experimental analysis of a two-photon Fock state of free-propagating light. This state is obtained from a pulsed nondegenerate parametric amplifier, which produces two intensity-correlated twin beams. Counting two photons in one beam projects the other beam in the desired two-photon Fock state, which is analyzed by using a pulsed homodyne detection. The Wigner function of the measured state is clearly negative. We developed a detailed analytic model which allows a fast and efficient analysis of the experimental results.

  3. Denoising two-photon calcium imaging data.

    Science.gov (United States)

    Malik, Wasim Q; Schummers, James; Sur, Mriganka; Brown, Emery N

    2011-01-01

    Two-photon calcium imaging is now an important tool for in vivo imaging of biological systems. By enabling neuronal population imaging with subcellular resolution, this modality offers an approach for gaining a fundamental understanding of brain anatomy and physiology. Proper analysis of calcium imaging data requires denoising, that is separating the signal from complex physiological noise. To analyze two-photon brain imaging data, we present a signal plus colored noise model in which the signal is represented as harmonic regression and the correlated noise is represented as an order autoregressive process. We provide an efficient cyclic descent algorithm to compute approximate maximum likelihood parameter estimates by combing a weighted least-squares procedure with the Burg algorithm. We use Akaike information criterion to guide selection of the harmonic regression and the autoregressive model orders. Our flexible yet parsimonious modeling approach reliably separates stimulus-evoked fluorescence response from background activity and noise, assesses goodness of fit, and estimates confidence intervals and signal-to-noise ratio. This refined separation leads to appreciably enhanced image contrast for individual cells including clear delineation of subcellular details and network activity. The application of our approach to in vivo imaging data recorded in the ferret primary visual cortex demonstrates that our method yields substantially denoised signal estimates. We also provide a general Volterra series framework for deriving this and other signal plus correlated noise models for imaging. This approach to analyzing two-photon calcium imaging data may be readily adapted to other computational biology problems which apply correlated noise models.

  4. Two-Photon Flow Cytometry

    Science.gov (United States)

    Zhog, Cheng Frank; Ye, Jing Yong; Norris, Theodore B.; Myc, Andrzej; Cao, Zhengyl; Bielinska, Anna; Thomas, Thommey; Baker, James R., Jr.

    2004-01-01

    Flow cytometry is a powerful technique for obtaining quantitative information from fluorescence in cells. Quantitation is achieved by assuring a high degree of uniformity in the optical excitation and detection, generally by using a highly controlled flow such as is obtained via hydrodynamic focusing. In this work, we demonstrate a two-beam, two- channel detection and two-photon excitation flow cytometry (T(sup 3)FC) system that enables multi-dye analysis to be performed very simply, with greatly relaxed requirements on the fluid flow. Two-photon excitation using a femtosecond near-infrared (NIR) laser has the advantages that it enables simultaneous excitation of multiple dyes and achieves very high signal-to-noise ratio through simplified filtering and fluorescence background reduction. By matching the excitation volume to the size of a cell, single-cell detection is ensured. Labeling of cells by targeted nanoparticles with multiple fluorophores enables normalization of the fluorescence signal and thus ratiometric measurements under nonuniform excitation. Quantitative size measurements can also be done even under conditions of nonuniform flow via a two-beam layout. This innovative detection scheme not only considerably simplifies the fluid flow system and the excitation and collection optics, it opens the way to quantitative cytometry in simple and compact microfluidics systems, or in vivo. Real-time detection of fluorescent microbeads in the vasculature of mouse ear demonstrates the ability to do flow cytometry in vivo. The conditions required to perform quantitative in vivo cytometry on labeled cells will be presented.

  5. 中心对称双光子低振幅亮屏蔽孤子的时间特性%Temporal behavior of the low-amplitude bright spatial soliton in two-photon centrosymmetric photorefractive media

    Institute of Scientific and Technical Information of China (English)

    吉选芒; 王金来; 姜其畅; 刘劲松

    2011-01-01

    To study the temporal properties of the low-amplitude bright spatial solitons in biased two-photon centrosymmetric photorefractive crystals,we present the expressions of the time-dependent spatial charge field and the equation of the spatial profile for the bright solitons as time evolve.The numerical results show that solitons width decreases monotonically to a minimum value toward steady state with the increasing of time.The higher the ratio of soliton peak intensity to the dark irradiation intensity,the narrower the width of bright solitons under within propagation time.The input beam can evolve the steady spatial solitons under different time.The results are benefit for improving the theory of spatial photorefractive solitons.%为了得到中心对称双光子光折变晶体中低振幅亮屏蔽孤子的时间特性的结果,推导出了晶体中空间电荷场的时间特性,得到了亮孤子的归一化空间包络随时间变化的方程.采用数值分析的方法对亮孤子的归一化空间包络及其在晶体中的时间演化特性进行了理论分析.结果表明:孤子的空间包络宽度随时间的演化单调递减一个最小值直至稳态孤子的形成;在相同的演化时间下,孤子的半峰全宽随着孤子峰值强度和暗辐射比值的增大而变小.在不同的时刻,入射光束都可在中心对称双光子光折变晶体中演化成空间孤子.所得结果对完善光折变空间孤子的理论有十分重要的意义.

  6. Two-photon interference with non-identical photons

    Science.gov (United States)

    Liu, Jianbin; Zhou, Yu; Zheng, Huaibin; Chen, Hui; Li, Fu-li; Xu, Zhuo

    2015-11-01

    Two-photon interference with non-identical photons is studied based on the superposition principle in Feynman's path integral theory. The second-order temporal interference pattern is observed by superposing laser and pseudothermal light beams with different spectra. The reason why there is two-photon interference for photons of different spectra is that non-identical photons can be indistinguishable for the detection system when Heisenberg's uncertainty principle is taken into account. These studies are helpful to understand the second-order interference of light in the language of photons.

  7. Holographic Two-Photon Induced Photopolymerization

    Data.gov (United States)

    Federal Laboratory Consortium — Holographic two-photon-induced photopolymerization (HTPIP) offers distinct advantages over conventional one-photon-induced photopolymerization and current techniques...

  8. Temporal and Cross Correlations in Business News

    Science.gov (United States)

    Mizuno, T.; Takei, K.; Ohnishi, T.; Watanabe, T.

    We empirically investigate temporal and cross correlations inthe frequency of news reports on companies, using a dataset of more than 100 million news articles reported in English by around 500 press agencies worldwide for the period 2003--2009. Our first finding is that the frequency of news reports on a company does not follow a Poisson process, but instead exhibits long memory with a positive autocorrelation for longer than one year. The second finding is that there exist significant correlations in the frequency of news across companies. Specifically, on a daily time scale or longer the frequency of news is governed by external dynamics, while on a time scale of minutes it is governed by internal dynamics. These two findings indicate that the frequency of news reports on companies has statistical properties similar to trading volume or price volatility in stock markets, suggesting that the flow of information through company news plays an important role in price dynamics in stock markets.

  9. Temporal correlations in neuronal avalanche occurrence

    Science.gov (United States)

    Lombardi, F.; Herrmann, H. J.; Plenz, D.; de Arcangelis, L.

    2016-04-01

    Ongoing cortical activity consists of sequences of synchronized bursts, named neuronal avalanches, whose size and duration are power law distributed. These features have been observed in a variety of systems and conditions, at all spatial scales, supporting scale invariance, universality and therefore criticality. However, the mechanisms leading to burst triggering, as well as the relationship between bursts and quiescence, are still unclear. The analysis of temporal correlations constitutes a major step towards a deeper understanding of burst dynamics. Here, we investigate the relation between avalanche sizes and quiet times, as well as between sizes of consecutive avalanches recorded in cortex slice cultures. We show that quiet times depend on the size of preceding avalanches and, at the same time, influence the size of the following one. Moreover we evidence that sizes of consecutive avalanches are correlated. In particular, we show that an avalanche tends to be larger or smaller than the following one for short or long time separation, respectively. Our analysis represents the first attempt to provide a quantitative estimate of correlations between activity and quiescence in the framework of neuronal avalanches and will help to enlighten the mechanisms underlying spontaneous activity.

  10. Temporal correlations in neuronal avalanche occurrence.

    Science.gov (United States)

    Lombardi, F; Herrmann, H J; Plenz, D; de Arcangelis, L

    2016-04-20

    Ongoing cortical activity consists of sequences of synchronized bursts, named neuronal avalanches, whose size and duration are power law distributed. These features have been observed in a variety of systems and conditions, at all spatial scales, supporting scale invariance, universality and therefore criticality. However, the mechanisms leading to burst triggering, as well as the relationship between bursts and quiescence, are still unclear. The analysis of temporal correlations constitutes a major step towards a deeper understanding of burst dynamics. Here, we investigate the relation between avalanche sizes and quiet times, as well as between sizes of consecutive avalanches recorded in cortex slice cultures. We show that quiet times depend on the size of preceding avalanches and, at the same time, influence the size of the following one. Moreover we evidence that sizes of consecutive avalanches are correlated. In particular, we show that an avalanche tends to be larger or smaller than the following one for short or long time separation, respectively. Our analysis represents the first attempt to provide a quantitative estimate of correlations between activity and quiescence in the framework of neuronal avalanches and will help to enlighten the mechanisms underlying spontaneous activity.

  11. Two-photon absorbing porphyrins for oxygen microscopy (Conference Presentation)

    Science.gov (United States)

    Esipova, Tatiana V.; Vinogradov, Sergei A.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is invaluable for many areas of the biomedical science, including ophthalmology, neuroscience, cancer and stem biology. An optical method based on oxygen-dependent quenching of phosphorescence is being developed, that allows quantitative minimally invasive real-time imaging of partial pressure of oxygen (pO2) in tissue. In the past, dendritically protected phosphorescent oxygen probes with controllable quenching parameters and defined bio-distributions have been developed. More recently our probe strategy has extended to encompass two-photon excitable oxygen probes, which brought about first demonstrations of two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new valuable information for neuroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as low brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. Here we present an approach to new bright phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to novel proves for 2PLM. In addition to substantial increase in performance, the new probes can be synthesized by much more efficient methods, thereby greatly reducing the cost of the synthesis and making the technique accessible to a broader range of researchers across different fields.

  12. Adiabatic following in two-photon transition

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.; Nayfeh, A.H.

    1977-01-01

    There has been much interest recently in coherent multiphoton transitions in many-level systems. The present work considers the effect of relaxation in the response of a three-level system to a smoothly varying, near-resonant, two-photon field. The relaxation-dependent contributions to the nonlinear refractive index are calculated. It is shown that the coherent interaction of two smoothly varying, near-resonant, two-photon pulses with a three-level system can be described by ''two-photon damped Bloch equations'' which are analogous to those for a one-photon transition in a two-level system except for the presence of a two-photon coupling and a frequency shift. 1 figure. (RWR)

  13. Two-Photon Physics in Hadronic Processes

    Energy Technology Data Exchange (ETDEWEB)

    Carl Carlson; Marc Vanderhaeghen

    2007-11-01

    Two-photon exchange contributions to elastic electron-scattering are reviewed. The apparent discrepancy in the extraction of elastic nucleon form factors between unpolarized Rosenbluth and polarization transfer experiments is discussed, as well as the understanding of this puzzle in terms of two-photon exchange corrections. Calculations of such corrections both within partonic and hadronic frameworks are reviewed. In view of recent spin-dependent electron scattering data, the relation of the two-photon exchange process to the hyperfine splitting in hydrogen is critically examined. The imaginary part of the two-photon exchange amplitude as can be accessed from the beam normal spin asymmetry in elastic electron-nucleon scattering is reviewed. Further extensions and open issues in this field are outlined.

  14. Sideband-Induced Two-Photon Transparency

    Institute of Scientific and Technical Information of China (English)

    CHENG Guang-Ling; HU Xiang-Ming

    2006-01-01

    @@ We show that it is possible to use a single sideband to induce two-photon transparency in a three-level cascade medium. The medium simultaneously absorbs two photons as a one-step process when the middle level is far off one-photon resonance. A resonant sideband coupling on the upper transition and the two-photon one-step process drive the medium into a trapped state, and the dominant component is the ground state. Thus almost all population is trapped in the ground state and the two-photon absorption is dramatically suppressed. We present a numerical calculation for arbitrary values of the atomic and field parameters and also provide an analytic description for the required conditions.

  15. Two-photon path-entangled states in multi-mode waveguides

    CERN Document Server

    Poem, Eilon; Silberberg, Yaron

    2012-01-01

    We experimentally show that two-photon path-entangled states can be coherently manipulated by multi-mode interference in multi-mode waveguides. By measuring the output two-photon spatial correlation function versus the phase of the input state, we show that multi-mode waveguides perform as nearly-ideal multi-port beam splitters at the quantum level, creating a large variety of entangled and separable multi-path two-photon states.

  16. Platinum Acetylide Two-Photon Chromophores (Preprint)

    Science.gov (United States)

    2007-04-01

    the higher energy range that lead to its photodegradation . Secondly, because there is a quadratic dependence of two-photon absorption (2PA) on the...to either an electron donating amino- fluorenyl or electron withdrawing benzothiazolyl-fluorene that are themselves known as two-photon absorbing dyes ...groups in place of phenyl groups have shown a doubling of the intrinsic cr2value at 740 nm.40,41In this paper we describe novel platinum dyes that

  17. Two-photon absorption of Zn(II) octupolar molecules.

    Science.gov (United States)

    Mazzucato, Simone; Fortunati, Ilaria; Scolaro, Sara; Zerbetto, Michele; Ferrante, Camilla; Signorini, Raffaella; Pedron, Danilo; Bozio, Renato; Locatelli, Danika; Righetto, Stefania; Roberto, Dominique; Ugo, Renato; Abbotto, Alessandro; Archetti, Graziano; Beverina, Luca; Ghezzi, Sergio

    2007-06-21

    In this work we present an investigation of the non-linear optical (NLO) properties of two octupolar chromophores: [Zn(4,4'-bis(dibutylaminostyryl)-[2,2']-bipyridine)(3)](2+) and [Zn(4,4'-bis((E)-2-(N-(TEG)pyrrol-2-yl)vinyl)-[2,2']-bipyridine)(3)](2+) with Zn(ii) as the coordination center, using two-photon emission technique (TPE) in fs-pulse temporal regime. Compared to the free ligands, our results do not show a net increase in the two-photon absorption (TPA) cross-section for the octupolar complexes, once normalized to the ligand unit. This is in partial disagreement with a previous theoretical study investigating the first molecule where a significant increase of the TPA cross-section was predicted (X. J. Liu, et al., J. Chem. Phys., 2004, 120, 11 493).

  18. Four-dimensional multi-site two-photon excitation

    CERN Document Server

    Daria, Vincent Ricardo; Bowman, Richard; Redman, Stephen; Bachor, Hans-A

    2009-01-01

    We report the first demonstration of dynamic and arbitrary multi-site two-photon excitation in three-dimensional (3D) space using the holographic projection method. Rapid temporal response (fourth dimension) is achieved through high-speed non-iterative and non-optimized calculation of the hologram using a video graphics accelerator board. We verify that the projected asymmetric spot configurations have sufficient spatiotemporal photon density for localized two-photon excitation. This system is a significant advance and ready for applications such as time-resolved 3D photolysis of complex biological cell and neuronal networks, 3D microscopy, non-linear micro-fabrication and volume holographic optical storage.

  19. Synthesis of Two-Photon Materials and Two-Photon Liquid Crystals

    Science.gov (United States)

    Subramaniam, Girija

    2001-01-01

    The duration of the grant was interrupted by two major accidents that the PI met with-- an auto accident in Pasadena, CA during her second summer at JPL which took almost eight months for recovery and a second accident during Fall 2000 that left her in crutches for the entire semester. Further, the time released agreed by the University was not given in a timely fashion. The candidate has been given post-grant expire time off. In spite of all these problems, the PI synthesized a number of new two-photon materials and studied the structure-activity correlation to arrive at the best-optimized structure. The PI's design proved to be one of the best in the sense that these materials has a hitherto unreported two-photon absorption cross section. Many materials based on PI's design was later made by the NASA colleague. This is Phase 1. Phase II of this grant is to orate liquid crystalline nature into this potentially useful materials and is currently in progress. Recent observations of nano- and pico-second response time of homeotropically aligned liquid crystals suggest their inherent potentials to act as laser hardening materials, i.e., as protective devices against short laser pulses. The objective of the current project is to exploit this potential by the synthesis of liquid crystals with high optical nonlinearity and optimizing their performance. The PI is trying structural variations to bring in liquid crystalline nature without losing the high two-photon cross section. Both Phase I and Phase II led to many invited presentations and publications in reputed journals like 'Science' and 'Molecular Crystals'. The list of presentations and reprints are enclosed. Another important and satisfying outcome of this grant is the opportunity that this grant offered to the budding undergraduate scientists to get involved in a visible research of international importance. All the students had a chance to learn a lot during research, had the opportunity to present their work at

  20. Medical prototyping using two photon polymerization

    Directory of Open Access Journals (Sweden)

    Roger J Narayan

    2010-12-01

    Full Text Available Two photon polymerization involves nearly simultaneous absorption of ultrashort laser pulses for selective curing of photosensitive material. This process has recently been used to create small-scale medical devices out of several classes of photosensitive materials, such as acrylate-based polymers, organically-modified ceramic materials, zirconium sol-gels, and titanium-containing hybrid materials. In this review, the use of two photon polymerization for fabrication of several types of small-scale medical devices, including microneedles, artificial tissues, microfluidic devices, pumps, sensors, and valves, from computer models is described. Necessary steps in the development of two photon polymerization as a commercially viable medical device manufacturing method are also considered.

  1. Two Photon Couplings of Hybrid Mesons

    CERN Document Server

    Page, P R

    1996-01-01

    A new formalism is developed for the two photon production of hybrid mesons via intermediate hadronic decays. In an adiabatic and non--relativistic context with spin 1 pair creation we obtain the first absolute estimates of unmixed hybrid production strengths to be small (0.03 - 3 eV) in relation to experimental meson widths (0.1 - 5 keV). Within this context, two photon collisions therefore strongly discriminate between hybrid and conventional meson wave function components at BaBar, Cleo II, LEP2 and LHC, filtering out non--gluonic components. Decay widths of unmixed hybrids are tiny. The formalism also induces conventional meson two photon widths roughly in agreement with experiment.

  2. Two-photon interference from two blinking quantum emitters

    Science.gov (United States)

    Jöns, Klaus D.; Stensson, Katarina; Reindl, Marcus; Swillo, Marcin; Huo, Yongheng; Zwiller, Val; Rastelli, Armando; Trotta, Rinaldo; Björk, Gunnar

    2017-08-01

    We investigate the effect of blinking on the two-photon interference measurement from two independent quantum emitters. We find that blinking significantly alters the statistics in the Hong-Ou-Mandel second-order intensity correlation function g(2 )(τ ) and the outcome of two-photon interference measurements performed with independent quantum emitters. We theoretically demonstrate that the presence of blinking can be experimentally recognized by a deviation from the gD(2 )(0 ) =0.5 value when distinguishable photons from two emitters impinge on a beam splitter. Our findings explain the significant differences between linear losses and blinking for correlation measurements between independent sources and are experimentally verified using a parametric down-conversion photon-pair source. We show that blinking imposes a mandatory cross-check measurement to correctly estimate the degree of indistinguishability of photons emitted by independent quantum emitters.

  3. Two-photon physics at LEP2

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, Susan; Lehto, Mark [University of Sheffield Department of Physics, Sheffield S3 7RH (United Kingdom); Seymour, Michael H.; Close, Frank; Wright, Alison [Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Affholderbach, Klaus; Cowan, Glen [Universitaet Siegen, Fachbereich Physik, D-57068 Siegen (Germany); Finch, Alex [University of Lancaster, Lancaster LA1 4YB (United Kingdom); Lauber, Jan [University College London, Gower Street, London WC1E 6BT (United Kingdom)

    1998-02-01

    The working group on two-photon physics concentrated on three main subtopics: modelling the hadronic final state of deep inelastic scattering on a photon; unfolding the deep inelastic scattering data to obtain the photon structure function; and resonant production of exclusive final states, particularly of glueball candidates. In all three areas, new results were presented. (author)

  4. Two-photon microscopy for chemical neuroscience.

    Science.gov (United States)

    Ellis-Davies, Graham C R

    2011-04-20

    Microscopes using non-linear excitation of chromophores with pulsed near-IR light can generate highly localized foci of molecules in the electronic singlet state that are concentrated in volumes of less than one femtoliter. The three-dimensional confinement of excitation arises from the simultaneous absorption of two IR photons of approximately half the energy required for linear excitation. Two-photon microscopy is especially useful for two types of interrogation of neural processes. First, uncaging of signaling molecules such as glutamate, as stimulation is so refined it can be used to mimic normal unitary synaptic levels. In addition, uncaging allows complete control of the timing and position of stimulation, so the two-photon light beam provides the chemical neuroscientist with an "optical conductor's baton" which can command synaptic activity at will. A second powerful feature of two-photon microscopy is that when used for fluorescence imaging it enables the visualization of cellular structure and function in living animals at depths far beyond that possible with normal confocal microscopes. In this review I provide a survey of the many important applications of two-photon microscopy in these two fields of neuroscience, and suggest some areas for future technical development.

  5. Transparency induced by two photon interference in a beam splitter

    Institute of Scientific and Technical Information of China (English)

    Wang Kai-Ge; Yang Guo-Jian

    2004-01-01

    We propose a special two-photon state which is completely transparent in a 50/50 beam splitter. This effect is caused by the destructive two-photon interference and shows the signature of photon entanglement. We find that the symmetry of the two-photon spectrum plays the key role for the properties of two-photon interference.

  6. Temporal evolution of financial-market correlations.

    Science.gov (United States)

    Fenn, Daniel J; Porter, Mason A; Williams, Stacy; McDonald, Mark; Johnson, Neil F; Jones, Nick S

    2011-08-01

    We investigate financial market correlations using random matrix theory and principal component analysis. We use random matrix theory to demonstrate that correlation matrices of asset price changes contain structure that is incompatible with uncorrelated random price changes. We then identify the principal components of these correlation matrices and demonstrate that a small number of components accounts for a large proportion of the variability of the markets that we consider. We characterize the time-evolving relationships between the different assets by investigating the correlations between the asset price time series and principal components. Using this approach, we uncover notable changes that occurred in financial markets and identify the assets that were significantly affected by these changes. We show in particular that there was an increase in the strength of the relationships between several different markets following the 2007-2008 credit and liquidity crisis.

  7. Temporal evolution of financial-market correlations

    Science.gov (United States)

    Fenn, Daniel J.; Porter, Mason A.; Williams, Stacy; McDonald, Mark; Johnson, Neil F.; Jones, Nick S.

    2011-08-01

    We investigate financial market correlations using random matrix theory and principal component analysis. We use random matrix theory to demonstrate that correlation matrices of asset price changes contain structure that is incompatible with uncorrelated random price changes. We then identify the principal components of these correlation matrices and demonstrate that a small number of components accounts for a large proportion of the variability of the markets that we consider. We characterize the time-evolving relationships between the different assets by investigating the correlations between the asset price time series and principal components. Using this approach, we uncover notable changes that occurred in financial markets and identify the assets that were significantly affected by these changes. We show in particular that there was an increase in the strength of the relationships between several different markets following the 2007-2008 credit and liquidity crisis.

  8. Two-photon cooling of magnesium atoms

    DEFF Research Database (Denmark)

    Malossi, N.; Damkjær, S.; Hansen, P. L.

    2005-01-01

    A two-photon mechanism for cooling atoms below the Doppler temperature is analyzed. We consider the magnesium ladder system (3s2)S01¿(3s3p)P11 at 285.2nm followed by the (3s3p)P11¿(3s3d)D21 transition at 880.7nm . For the ladder system quantum coherence effects may become important. Combined...... with the basic two-level Doppler cooling process this allows for reduction of the atomic sample temperature by more than a factor of 10 over a broad frequency range. First experimental evidence for the two-photon cooling process is presented and compared to model calculations. Agreement between theory...... and experiment is excellent. In addition, by properly choosing the Rabi frequencies of the two optical transitions a velocity independent atomic dark state is observed....

  9. Magnetic two-photon scattering and two-photon emission - Cross sections and redistribution functions

    Science.gov (United States)

    Alexander, S. G.; Meszaros, P.

    1991-01-01

    The magnetic two-photon scattering cross section is discussed within the framework of QED, and the corresponding scattering redistribution function for this process and its inverse, as well as the scattering source function are calculated explicitly. In a similar way, the magnetic two-photon emission process which follows the radiative excitation of Landau levels above ground is calculated. The two-photon scattering and two-photon emission are of the same order as the single-photon magnetic scattering. All three of these processes, and in optically thick cases also their inverses, are included in radiative transport calculations modeling accreting pulsars and gamma-ray bursters. These processes play a prominent role in determining the relative strength of the first two cyclotron harmonics, and their effects extend also to the higher harmonics.

  10. Two-photon ionization of colliding atoms

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.

    1977-09-01

    Semiclassical expressions of two-photon ionization of two colliding atoms are derived for a wide range of electromagnetic field intensity and detunings from the isolated atom line. The dependence of the ionization yield on the details of the interaction potential of the system is derived. This process promises an extremely sensitive method for studying line broadening on the far wing, especially when absorption or fluorescence becomes very weak.

  11. Two-photon cooling of magnesium atoms

    DEFF Research Database (Denmark)

    Malossi, N.; Damkjær, S.; Hansen, P. L.;

    2005-01-01

    A two-photon mechanism for cooling atoms below the Doppler temperature is analyzed. We consider the magnesium ladder system (3s2)S01¿(3s3p)P11 at 285.2nm followed by the (3s3p)P11¿(3s3d)D21 transition at 880.7nm . For the ladder system quantum coherence effects may become important. Combined...

  12. Chord Recognition Based on Temporal Correlation Support Vector Machine

    OpenAIRE

    Zhongyang Rao; Xin Guan; Jianfu Teng

    2016-01-01

    In this paper, we propose a method called temporal correlation support vector machine (TCSVM) for automatic major-minor chord recognition in audio music. We first use robust principal component analysis to separate the singing voice from the music to reduce the influence of the singing voice and consider the temporal correlations of the chord features. Using robust principal component analysis, we expect the low-rank component of the spectrogram matrix to contain the musical accompaniment and...

  13. Two-Photon Collective Atomic Recoil Lasing

    Directory of Open Access Journals (Sweden)

    James A. McKelvie

    2015-11-01

    Full Text Available We present a theoretical study of the interaction between light and a cold gasof three-level, ladder configuration atoms close to two-photon resonance. In particular, weinvestigate the existence of collective atomic recoil lasing (CARL instabilities in differentregimes of internal atomic excitation and compare to previous studies of the CARL instabilityinvolving two-level atoms. In the case of two-level atoms, the CARL instability is quenchedat high pump rates with significant atomic excitation by saturation of the (one-photoncoherence, which produces the optical forces responsible for the instability and rapid heatingdue to high spontaneous emission rates. We show that in the two-photon CARL schemestudied here involving three-level atoms, CARL instabilities can survive at high pump rateswhen the atoms have significant excitation, due to the contributions to the optical forces frommultiple coherences and the reduction of spontaneous emission due to transitions betweenthe populated states being dipole forbidden. This two-photon CARL scheme may form thebasis of methods to increase the effective nonlinear optical response of cold atomic gases.

  14. Communication activity: temporal correlations, clustering, and growth

    CERN Document Server

    Rybski, Diego; Havlin, Shlomo; Liljeros, Fredrik; Makse, Hernan A

    2010-01-01

    Communication via electronic mail represents a form of human dynamics. Embedded in a social network, the communicating partners interact in a complex fashion, where the act of communication is triggered by internal and external influences. Nevertheless, the timing of communication is not completely random -- on the contrary, communication is dominated by emergent statistical laws. We recently found long-term correlations in the activity of sending messages in social communities and were able to relate non-trivial growth properties to this type of memory. However, the origins of this persistence are unclear: From a statistical physics point of view long-term correlations can be due to (i) power-law distributed inter-event times (Levy correlations) or (ii) dependencies between the activity at different times. Here we investigate the times when messages are sent in two social communities and find evidences indicating a superposition of both scenarios. We apply stretched exponential fits to the inter-event time d...

  15. Two-photon super bunching of thermal light via multiple two-photon-path interference

    CERN Document Server

    Hong, Peilong; Zhang, Guoquan

    2012-01-01

    We propose a novel scheme to achieve two-photon super bunching of thermal light through multiple two-photon-path interference, in which two mutually first-order incoherent optical channels are introduced by inserting a modified Michelson interferometer into a traditional two-photon HBT interferometer, and the bunching peak-to-background ratio can reach 3 theoretically. Experimentally, the super bunching peak-to-background ratio was measured to be 2.4, much larger than the ratio 1.7 measured with the same thermal source in a traditional HBT interferometer. The peak-to-background ratio of two-photon super bunching of thermal light can be increased up to $2\\times1.5^n$ by inserting cascadingly $n$ pairs of mutually first-order incoherent optical channels into the traditional two-photon HBT interferometer. The two-photon super bunching of thermal light should be of great significance in improving the visibility of classical ghost imaging.

  16. Dispersion spreading of biphotons in optical fibres and two-photon interference

    CERN Document Server

    Brida, G; Genovèse, M; Gramegna, M; Krivitsky, L A

    2006-01-01

    We present the first observation of two-photon polarization interference structure in the second-order Glauber's correlation function of two-photon light generated via type-II spontaneous parametric down-conversion. In order to obtain this result, two-photon light is transmitted through an optical fibre and the coincidence distribution is analyzed by means of the START-STOP method. Beyond the experimental demonstration of an interesting effect in quantum optics, these results also have considerable relevance for quantum communications.

  17. Dispersion spreading of biphotons in optical fibers and two-photon interference.

    Science.gov (United States)

    Brida, G; Chekhova, M V; Genovese, M; Gramegna, M; Krivitsky, L A

    2006-04-14

    We present the first observation of two-photon polarization interference structure in the second-order Glauber correlation function of two-photon light generated via type-II spontaneous parametric down-conversion. In order to obtain this result, two-photon light is transmitted through an optical fiber and the coincidence distribution is analyzed by means of the start-stop method. Beyond the experimental demonstration of an interesting effect in quantum optics, these results also have considerable relevance for quantum communications.

  18. Adiabatic following in two-photon transition

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.; Nayfeh, A.H.

    1977-03-01

    The coherent interaction of two smoothly varying, near-resonant, two-photon pulses with a three-level system can be described by ''two-photon damped Bloch equations'' which are analogous to those for a one-photon transition in a two-level system except for the presence of a two-photon coupling and a frequency shift. These equations are solved for the cases ..gamma../sub 1/, ..gamma../sub 2/ very-much-less-than ..cap omega.., ..gamma../sub 1/ = ..gamma../sub 2/, and ..gamma../sub 2/k/sup 2/epsilon/sup 4//..cap omega../sup 2/, ..gamma../sub 1/ very-much-less-than ..cap omega.., where ..gamma../sub 1/ and ..gamma../sub 2/ are the atomic energy and phase relaxation widths, respectively, and ..cap omega.. is the Rabi frequency. The leading contribution to the refractive index is intensity dependent, caused by the level shifts inherent in multiphoton processes; it includes a relaxation dependent part which is important at times shorter than ..gamma../sup -1//sub 1/. The second-order contributions depend on the square of the intensity and the time-integrated square of the intensity. The latter contribution, which is relaxation dependent, causes line asymmetry at the long-wavelength wing; it consists of a term proportional to ..gamma../sub 2/-..gamma../sub 1/ and only important at early times and a term proportional to 2..gamma../sub 2/-..gamma../sub 1/.

  19. Two-photon imaging and analysis of neural network dynamics

    Science.gov (United States)

    Lütcke, Henry; Helmchen, Fritjof

    2011-08-01

    The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to measure and analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behavior. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so-called 'microcircuits') remains comparably poor. Predominantly, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near-millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.

  20. Two-photon imaging and analysis of neural network dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Luetcke, Henry; Helmchen, Fritjof [Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland)

    2011-08-15

    The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to measure and analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behavior. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so-called 'microcircuits') remains comparably poor. Predominantly, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near-millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.

  1. Correlating Temporal Thumbprints for Tracing Intruders

    Directory of Open Access Journals (Sweden)

    Jianhua Yang

    2006-08-01

    Full Text Available The Design of TCP/IP protocol makes it difficult to reliably traceback to the original attackers if they obscure their identities by logging through a chain of multiple hosts. A thumbprint method based on connection content was proposed in 1995 to traceback attackers, but this method is limited to non-encrypted sessions. In this paper, we propose a thumbprint based on time intervals, T-thumbprint, to identify a connection. T-thumbprint is a sequence of time gaps between adjacent TCP 'Send' packets of an interactive terminal session. An algorithm is presented to correlate two T-thumbprints to see if they belong to the same connection chain. We also discuss how to use T-thumbprints to traceback an attacker on the Internet, and how to defeat at-tacker's manipulation. T-thumbprint has advantages of: (1 It can be applied to encrypt sessions; (2 It does not require tightly synchronized clocks; (3 It can defeat attacker's manipulation to some extent; and (4 It is efficient, can be used to trace attackers in real time.

  2. Two-photon tomography using on-chip quantum walks

    CERN Document Server

    Titchener, James; Sukhorukov, Andrey

    2016-01-01

    We present a conceptual approach to quantum tomography based on first expanding a quantum state across extra degrees of freedom and then exploiting the introduced sparsity to perform reconstruction. We formulate its application to photonic circuits, and show that measured spatial photon correlations at the output of a specially tailored discrete-continuous quantum-walk can enable full reconstruction of any two-photon spatially entangled and mixed state at the input. This approach does not require any tunable elements, so is well suited for integration with on-chip superconducting photon detectors.

  3. Temporal coherence and correlation of counterpropagating twin photons

    CERN Document Server

    Gatti, Alessandra; Brambilla, Enrico

    2015-01-01

    This work analyses the temporal coherence and correlation of counterpropagating twin photons generated in a quasi-phase matched nonlinear cristal by spontaneous parametric-down conversion. We find out different pictures depending on the pump pulse duration relative to two characteristic temporal scales, determined respectively by the temporal separation between the counter-propagating and the co-propagating wavepackets. When the pump duration is intermediate between the two scales, we show a transition from a highly entangled state to an almost separable state, with strongly asymmetric spectral properties of the photons.

  4. Theory of Two-Photon Absorptions in Graphene Fragments

    Science.gov (United States)

    Aryanpour, K.; Shukla, A.; Mazumdar, S.; Sandhu, A.; Roberts, A.

    2012-02-01

    Electron-electron correlations in graphene is currently an active field of research [1-3]. The carbon atoms in graphene have the same sp^2 hybridization as in strongly correlated π-conjugated polymer systems. The low energy behavior in graphene however appears to be reasonably described within the one-electron Dirac massless fermions model. Historically, the occurrence of the lowest two-photon state below the optical one-photon state provided the strongest proof for strong electron correlations in linear polyenes [4]. We systematically study the Coulomb interaction effects on the ground state and nonlinear absorptions in graphene fragments as a function of system size, beginning from the smallest stable fragment coronene. We report high order calculations of one- vs two-photon spin singlet and triplet states, in coronene, hexabenzocoronene and other molecular fragments that clearly indicate the strong role of electron-electron interactions. We will discuss the implications of our work on molecular systems for the thermodynamic limit of graphene. [4pt] [1] Siegel David A.; et al., PNAS, v108, 28, 11365-11369 (2011)[0pt] [2] Gr"onqvist J. H.; et al., arXiv: 1107.5653v1[0pt] [3] Uchoa B.; et al., arXiv: 1109.1577v1[0pt] [4] Ramasesha S.; et al., J. Chem. Phys. 80, 3278 (1984)

  5. Two-photon interference : spatial aspects of two-photon entanglement, diffraction, and scattering

    NARCIS (Netherlands)

    Peeters, Wouter Herman

    2010-01-01

    This dissertation contains scientific research within the realm of quantum optics, which is a branch of physics. An experimental and theoretical study is made of two-photon interference phenomena in various optical systems. Spatially entangled photon pairs are produced via the nonlinear optical proc

  6. Two-photon Interference with Non-identical Photons

    CERN Document Server

    Liu, Jianbin; Zheng, Huaibin; Chen, Hui; Li, Fu-Li; Xu, Zhuo

    2014-01-01

    The indistinguishability of non-identical photons is dependent on detection system in quantum physics. If two photons with different wavelengths are indistinguishable for a detection system, there can be two-photon interference when these two photons are incident to two input ports of a Hong-Ou-Mandel interferometer, respectively. The reason why two-photon interference phenomena are different for classical and nonclassical light is not due to interference, but due to the properties of light and detection system. These conclusions are helpful to understand the physics and applications of two-photon interference.

  7. Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration

    DEFF Research Database (Denmark)

    Biagioni, P.; Celebrano, M.; Savoini, M.

    2009-01-01

    Two-photon photoluminescence (TPPL) from gold nanostructures is becoming one of the most relevant tools for plasmon-assisted biological imaging and photothermal therapy as well as for the investigation of plasmonic devices. Here we study the yield of TPPL as a function of the temporal width δ of ...

  8. Temporal discrimination, a cervical dystonia endophenotype: penetrance and functional correlates.

    Science.gov (United States)

    Kimmich, Okka; Molloy, Anna; Whelan, Robert; Williams, Laura; Bradley, David; Balsters, Joshua; Molloy, Fiona; Lynch, Tim; Healy, Daniel G; Walsh, Cathal; O'Riordan, Seán; Reilly, Richard B; Hutchinson, Michael

    2014-05-01

    The pathogenesis of adult-onset primary dystonia remains poorly understood. There is variable age-related and gender-related expression of the phenotype, the commonest of which is cervical dystonia. Endophenotypes may provide insight into underlying genetic and pathophysiological mechanisms of dystonia. The temporal discrimination threshold (TDT)-the shortest time interval at which two separate stimuli can be detected as being asynchronous-is abnormal both in patients with cervical dystonia and in their unaffected first-degree relatives. Functional magnetic resonance imaging (fMRI) studies have shown that putaminal activation positively correlates with the ease of temporal discrimination between two stimuli in healthy individuals. We hypothesized that abnormal temporal discrimination would exhibit similar age-related and gender-related penetrance as cervical dystonia and that unaffected relatives with an abnormal TDT would have reduced putaminal activation during a temporal discrimination task. TDTs were examined in a group of 192 healthy controls and in 158 unaffected first-degree relatives of 84 patients with cervical dystonia. In 24 unaffected first-degree relatives, fMRI scanning was performed during a temporal discrimination task. The prevalence of abnormal TDTs in unaffected female relatives reached 50% after age 48 years; whereas, in male relatives, penetrance of the endophenotype was reduced. By fMRI, relatives who had abnormal TDTs, compared with relatives who had normal TDTs, had significantly less activation in the putamina and in the middle frontal and precentral gyri. Only the degree of reduction of putaminal activity correlated significantly with worsening of temporal discrimination. These findings further support abnormal temporal discrimination as an endophenotype of cervical dystonia involving disordered basal ganglia circuits. © 2014 International Parkinson and Movement Disorder Society.

  9. Dynamics on networks: competition of temporal and topological correlations

    CERN Document Server

    Artime, Oriol; Miguel, Maxi San

    2016-01-01

    Links in many real-world networks activate and deactivate in correspondence to the sporadic interactions between the elements of the system. The activation patterns may be irregular or bursty and play an important role on the dynamics of processes taking place in the network. Social networks and information or disease spreading processes are paradigmatic examples of this situation. Besides the burstiness, several other correlations may appear in the network dynamics. The activation of links connecting to the same node can be synchronized or the existence of communities in the network may mediate the activation patterns of internal an external links. Here we study the competition of topological and temporal correlations in link activation and how they affect the dynamics of systems running on the network. Interestingly, both types of correlations by separate have opposite effects: one (topological) delays the dynamics of processes on the network, while the other (temporal) accelerates it. When they occur toget...

  10. Two-photon assisted clock comparison to picosecond precision

    CERN Document Server

    Zhang, Shi-Wei; Yao, Yin-Ping; Wan, Ren-Gang; Zhang, Tong-Yi

    2015-01-01

    We have experimentally demonstrated a clock comparison scheme utilizing time-correlated photon pairs generated from the spontaneous parametric down conversion process of a laser pumped beta-barium borate crystal. The coincidence of two-photon events are analyzed by the cross correlation of the two time stamp sequences. Combining the coarse and fine part of the time differences at different resolutions, a 64 ps precision for clock synchronization has been realized. We also investigate the effects of hardware devices used in the system on the precision of clock comparison. The results indicate that the detector's time jitter and the background noise will degrade the system performance. With this method, comparison and synchronization of two remote clocks could be implemented with a precision at the level of a few tens of picoseconds.

  11. Unbiased estimation of precise temporal correlations between spike trains.

    Science.gov (United States)

    Stark, Eran; Abeles, Moshe

    2009-04-30

    A key issue in systems neuroscience is the contribution of precise temporal inter-neuronal interactions to information processing in the brain, and the main analytical tool used for studying pair-wise interactions is the cross-correlation histogram (CCH). Although simple to generate, a CCH is influenced by multiple factors in addition to precise temporal correlations between two spike trains, thus complicating its interpretation. A Monte-Carlo-based technique, the jittering method, has been suggested to isolate the contribution of precise temporal interactions to neural information processing. Here, we show that jittering spike trains is equivalent to convolving the CCH derived from the original trains with a finite window and using a Poisson distribution to estimate probabilities. Both procedures over-fit the original spike trains and therefore the resulting statistical tests are biased and have low power. We devise an alternative method, based on convolving the CCH with a partially hollowed window, and illustrate its utility using artificial and real spike trains. The modified convolution method is unbiased, has high power, and is computationally fast. We recommend caution in the use of the jittering method and in the interpretation of results based on it, and suggest using the modified convolution method for detecting precise temporal correlations between spike trains.

  12. Proposal for a Correction to the Temporal Correlation Coefficient Calculation for Temporal Networks

    CERN Document Server

    Pigott, Fiona

    2014-01-01

    Measuring the topological overlap of two graphs becomes important when assessing the changes between temporally adjacent graphs in a time-evolving network. Current methods depend on the fraction of nodes that have persisting edges. This breaks down when there are nodes with no edges, persisting or otherwise. The following outlines a proposed correction to ensure that correlation metrics have the expected behavior.

  13. Two-photon quantum walks in an elliptical direct-write waveguide array

    CERN Document Server

    Owens, J O; Biggerstaff, D N; Goggin, M E; Fedrizzi, A; Linjordet, T; Ams, M; Marshall, G D; Twamley, J; Withford, M J; White, A G

    2011-01-01

    Integrated optics provides an ideal test bed for the emulation of quantum systems via continuous-time quantum walks. Here we study the evolution of two-photon states in an elliptic array of waveguides. We characterise the photonic chip via coherent-light tomography and use the results to predict distinct differences between temporally indistinguishable and distinguishable two-photon inputs which we then compare with experimental observations. Our work highlights the feasibility for emulation of coherent quantum phenomena in three-dimensional waveguide structures.

  14. Dynamics on networks: competition of temporal and topological correlations

    Science.gov (United States)

    Artime, Oriol; Ramasco, José J.; San Miguel, Maxi

    2017-02-01

    Links in many real-world networks activate and deactivate in correspondence to the sporadic interactions between the elements of the system. The activation patterns may be irregular or bursty and play an important role on the dynamics of processes taking place in the network. Information or disease spreading in networks are paradigmatic examples of this situation. Besides burstiness, several correlations may appear in the process of link activation: memory effects imply temporal correlations, but also the existence of communities in the network may mediate the activation patterns of internal an external links. Here we study the competition of topological and temporal correlations in link activation and how they affect the dynamics of systems running on the network. Interestingly, both types of correlations by separate have opposite effects: one (topological) delays the dynamics of processes on the network, while the other (temporal) accelerates it. When they occur together, our results show that the direction and intensity of the final outcome depends on the competition in a non trivial way.

  15. Two-Photon Activation of p-Hydroxyphenacyl Phototriggers: Toward Spatially Controlled Release of Diethyl Phosphate and ATP.

    Science.gov (United States)

    Houk, Amanda L; Givens, Richard S; Elles, Christopher G

    2016-03-31

    Two-photon activation of the p-hydroxyphenacyl (pHP) photoactivated protecting group is demonstrated for the first time using visible light at 550 nm from a pulsed laser. Broadband two-photon absorption measurements reveal a strong two-photon transition (>10 GM) near 4.5 eV that closely resembles the lowest-energy band at the same total excitation energy in the one-photon absorption spectrum of the pHP chromophore. The polarization dependence of the two-photon absorption band is consistent with excitation to the same S3 ((1)ππ*) excited state for both one- and two-photon activation. Monitoring the progress of the uncaging reaction under nonresonant excitation at 550 nm confirms a quadratic intensity dependence and that two-photon activation of the uncaging reaction is possible using visible light in the range 500-620 nm. Deprotonation of the pHP chromophore under mildly basic conditions shifts the absorption band to lower energy (3.8 eV) in both the one- and two-photon absorption spectra, suggesting that two-photon activation of the pHP chromophore may be possible using light in the range 550-720 nm. The results of these measurements open the possibility of spatially and temporally selective release of biologically active compounds from the pHP protecting group using visible light from a pulsed laser.

  16. Using temporal detrending to observe the spatial correlation of traffic.

    Science.gov (United States)

    Ermagun, Alireza; Chatterjee, Snigdhansu; Levinson, David

    2017-01-01

    This empirical study sheds light on the spatial correlation of traffic links under different traffic regimes. We mimic the behavior of real traffic by pinpointing the spatial correlation between 140 freeway traffic links in a major sub-network of the Minneapolis-St. Paul freeway system with a grid-like network topology. This topology enables us to juxtapose the positive and negative correlation between links, which has been overlooked in short-term traffic forecasting models. To accurately and reliably measure the correlation between traffic links, we develop an algorithm that eliminates temporal trends in three dimensions: (1) hourly dimension, (2) weekly dimension, and (3) system dimension for each link. The spatial correlation of traffic links exhibits a stronger negative correlation in rush hours, when congestion affects route choice. Although this correlation occurs mostly in parallel links, it is also observed upstream, where travelers receive information and are able to switch to substitute paths. Irrespective of the time-of-day and day-of-week, a strong positive correlation is witnessed between upstream and downstream links. This correlation is stronger in uncongested regimes, as traffic flow passes through consecutive links more quickly and there is no congestion effect to shift or stall traffic. The extracted spatial correlation structure can augment the accuracy of short-term traffic forecasting models.

  17. Correlations between reading, phonological awareness and auditory temporal processing.

    Science.gov (United States)

    Murphy, Cristina Ferraz Borges; Schochat, Eliane

    2009-01-01

    Auditory temporal processing and reading. To analyse the potential correlations between reading acquisition, phonological awareness, and auditory temporal processing in Brazilian children with dyslexia. This study evaluated sixty children, nine to twelve years of age, divided into two groups: a control group of twenty seven children without dyslexia and a study group of thirty three children with dyslexia. The children in both groups were submitted to tests designed to assess reading skills, phonological awareness, and auditory temporal processing. In the results of all three tests, significant differences were found between the dyslexic children and those in the control group, with poorer results for the dyslexic group. However, for both groups, correlations were found only between the performance on the reading test and the performance on the phonological awareness test. Dyslexic children demonstrated poorer results in all tests when compared to their controls. However, there was no definitive evidence that their poor performance on the auditory temporal processing tests was directly related to their phonological awareness skills, or even to their reading skills.

  18. Visualization of two-photon Rabi oscillations in evanescently coupled optical waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Ornigotti, M; Valle, G Della; Fernandez, T Toney; Laporta, P; Longhi, S [Dipartimento di Fisica and Istituto di Fotonica e Nanotecnologie del CNR, Politecnico di Milano, Piazza L. da Vinci 32, I-20133 Milano (Italy); Coppa, A; Foglietti, V [Istituto di Fotonica e Nanotecnologie del CNR, sezione di Roma, Via Cineto Romano 42, 00156 Roma (Italy)], E-mail: longhi@fisi.polimi.it

    2008-04-28

    An optical analogue of two-photon Rabi oscillations, occurring in a three-level atomic or molecular system coherently driven by two detuned laser fields, is theoretically proposed and experimentally demonstrated using three evanescently coupled optical waveguides realized on an active glass substrate. The optical analogue stems from the formal analogy between spatial propagation of light waves in the three-waveguide structure and the coherent temporal evolution of populations in a three-level atomic medium driven by two laser fields under two-photon resonance. In our optical experiment, two-photon Rabi oscillations are thus visualized as a slow spatial oscillatory exchange of light power between the two outer waveguides of the structure with a small excitation of the central waveguide.

  19. Three-dimensional protein networks assembled by two-photon activation.

    Science.gov (United States)

    Gatterdam, Volker; Ramadass, Radhan; Stoess, Tatjana; Fichte, Manuela A H; Wachtveitl, Josef; Heckel, Alexander; Tampé, Robert

    2014-05-26

    Spatial and temporal control over chemical and biological processes plays a key role in life and material sciences. Here we synthesized a two-photon-activatable glutathione (GSH) to trigger the interaction with glutathione S-transferase (GST) by light at superior spatiotemporal resolution. The compound shows fast and well-confined photoconversion into the bioactive GSH, which is free to interact with GST-tagged proteins. The GSH/GST interaction can be phototriggered, changing its affinity over several orders of magnitude into the nanomolar range. Multiplexed three-dimensional (3D) protein networks are simultaneously generated in situ through two-photon fs-pulsed laser-scanning excitation. The two-photon activation facilitates the three-dimensional assembly of protein structures in real time at hitherto unseen resolution in time and space, thus opening up new applications far beyond the presented examples.

  20. Protecting Locations with Differential Privacy under Temporal Correlations

    OpenAIRE

    Xiao, Yonghui; Xiong, Li

    2014-01-01

    Concerns on location privacy frequently arise with the rapid development of GPS enabled devices and location-based applications. While spatial transformation techniques such as location perturbation or generalization have been studied extensively, most techniques rely on syntactic privacy models without rigorous privacy guarantee. Many of them only consider static scenarios or perturb the location at single timestamps without considering temporal correlations of a moving user's locations, and...

  1. Chord Recognition Based on Temporal Correlation Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhongyang Rao

    2016-05-01

    Full Text Available In this paper, we propose a method called temporal correlation support vector machine (TCSVM for automatic major-minor chord recognition in audio music. We first use robust principal component analysis to separate the singing voice from the music to reduce the influence of the singing voice and consider the temporal correlations of the chord features. Using robust principal component analysis, we expect the low-rank component of the spectrogram matrix to contain the musical accompaniment and the sparse component to contain the vocal signals. Then, we extract a new logarithmic pitch class profile (LPCP feature called enhanced LPCP from the low-rank part. To exploit the temporal correlation among the LPCP features of chords, we propose an improved support vector machine algorithm called TCSVM. We perform this study using the MIREX’09 (Music Information Retrieval Evaluation eXchange Audio Chord Estimation dataset. Furthermore, we conduct comprehensive experiments using different pitch class profile feature vectors to examine the performance of TCSVM. The results of our method are comparable to the state-of-the-art methods that entered the MIREX in 2013 and 2014 for the MIREX’09 Audio Chord Estimation task dataset.

  2. Near infrared two-photon excitation cross-sections of voltage-sensitive dyes.

    Science.gov (United States)

    Fisher, Jonathan A N; Salzberg, Brian M; Yodh, Arjun G

    2005-10-15

    Microscopy based on voltage-sensitive dyes has proven effective for revealing spatio-temporal patterns of neuronal activity in vivo and in vitro. Two-photon microscopy using voltage-sensitive dyes offers the possibility of wide-field visualization of membrane potential on sub-cellular length scales, hundreds of microns below the tissue surface. Very little information is available, however, about the utility of voltage-sensitive dyes for two-photon imaging purposes. Here we report on measurements of two-photon fluorescence excitation cross-sections for nine voltage-sensitive dyes in a solvent, octanol, intended to simulate the membrane environment. Ultrashort light pulses from a Ti:sapphire laser were used for excitation from 790 to 960 nm, and fluorescein dye was used as a calibration standard. Overall, dyes RH795, RH421, RH414, di-8-ANEPPS, and di-8-ANEPPDHQ had the largest two-photon excitation cross-sections ( approximately 15 x 10(-50)cm4 s photon(-1)) in this wavelength region and are therefore potentially useful for two-photon microscopy. Interestingly, di-8-ANEPPDHQ, a chimera constructed from the potentiometric dyes RH795 and di-8-ANEPPS, exhibited larger cross-sections than either of its constituents.

  3. Nuclear two-photon decay in 0 +→0 + transitions

    Science.gov (United States)

    Kramp, J.; Habs, D.; Kroth, R.; Music, M.; Schirmer, J.; Schwalm, D.; Broude, C.

    1987-11-01

    The two-photon decay of the first excited 0 + state of 16O has been measured using the Heidelberg-Darmstadt crystal ball. A branching ratio of {Γ γγ}/{Γ tot} = (6.6±0.5) · 10 -4 was obtained. As in the cases of 40Ca and 90Zr previously reported by us, the 2γ decay of 16O proceeds via double E1 and M1 transitions of similar strength; the evidence is the observed interference term in the 2γ angular correlation. The ratio of the matrix elements {α E1 }/{χ} for 16O was restricted to the two inverse values (-6.2±1.5) or (-0.16±0.04). An interpretation of 2γ matrix elements observed for 16O, 40Ca and 90Zr in terms of the electric polarizabilities and magnetic susceptibility is given leading to a qualitative understanding of this decay mode.

  4. Spatial-temporal subset based digital image correlation considering the temporal continuity of deformation

    Science.gov (United States)

    Wang, Xian; Liu, Xuejin; Zhu, Haibin; Ma, Shaopeng

    2017-03-01

    An improved digital image correlation (DIC) scheme termed spatial-temporal subset-based DIC (STS-DIC) that incorporates the temporal continuity of deformation is proposed. Provided that displacement at a certain physical point on a specimen in several successive frames is temporally continuous and can be expressed as a linear relationship over time, the STS-DIC scheme is constructed between the reference subset and spatial-temporal deformed subset consisting of several subsets from a period of successive frames. The proposed method is verified by simulated speckle images and experimental tests featuring different types of deformation. Compared to the traditional subset-based DIC, the STS-DIC proposed in this paper takes advantage of noise suppression so as to improve the accuracy, especially for speckle images with larger noise. More importantly, it is found that the computational demand of STS-DIC is much lower than that of mesh-based (global) DIC incorporating the temporal continuity, despite achieving comparable accuracy. Therefore, STS-DIC is expected to be useful as a practical and flexible tool in complex-environment measurements with low signal-to-noise-ratio speckle images.

  5. Phosphorescent probes for two-photon microscopy of oxygen (Conference Presentation)

    Science.gov (United States)

    Vinogradov, Sergei A.; Esipova, Tatiana V.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is much needed in many areas of biological research. Our laboratory has been developing the phosphorescence quenching technique for biological oximetry - an optical method that possesses intrinsic microscopic capability. In the past we have developed dendritically protected oxygen probes for quantitative imaging of oxygen in tissue. More recently we expanded our design on special two-photon enhanced phosphorescent probes. These molecules brought about first demonstrations of the two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new information for neouroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as sub-optimal brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. In this paper we discuss principles of 2PLM and address the interplay between the probe chemistry, photophysics and spatial and temporal imaging resolution. We then present a new approach to brightly phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to a new generation of 2PLM probes.

  6. Neural correlates of auditory temporal predictions during sensorimotor synchronization

    Directory of Open Access Journals (Sweden)

    Nadine ePecenka

    2013-08-01

    Full Text Available Musical ensemble performance requires temporally precise interpersonal action coordination. To play in synchrony, ensemble musicians presumably rely on anticipatory mechanisms that enable them to predict the timing of sounds produced by co-performers. Previous studies have shown that individuals differ in their ability to predict upcoming tempo changes in paced finger-tapping tasks (indexed by cross-correlations between tap timing and pacing events and that the degree of such prediction influences the accuracy of sensorimotor synchronization (SMS and interpersonal coordination in dyadic tapping tasks. The current functional magnetic resonance imaging study investigated the neural correlates of auditory temporal predictions during SMS in a within-subject design. Hemodynamic responses were recorded from 18 musicians while they tapped in synchrony with auditory sequences containing gradual tempo changes under conditions of varying cognitive load (achieved by a simultaneous visual n-back working-memory task comprising three levels of difficulty: observation only, 1-back, and 2-back object comparisons. Prediction ability during SMS decreased with increasing cognitive load. Results of a parametric analysis revealed that the generation of auditory temporal predictions during SMS recruits (1 a distributed network in cortico-cerebellar motor-related brain areas (left dorsal premotor and motor cortex, right lateral cerebellum, SMA proper and bilateral inferior parietal cortex and (2 medial cortical areas (medial prefrontal cortex, posterior cingulate cortex. While the first network is presumably involved in basic sensory prediction, sensorimotor integration, motor timing, and temporal adaptation, activation in the second set of areas may be related to higher-level social-cognitive processes elicited during action coordination with auditory signals that resemble music performed by human agents.

  7. Several Organic Salts with High Two-Photon Active

    Institute of Scientific and Technical Information of China (English)

    TIAN, Yu-Peng; JIANG, Min-Hua; WANG, He-Zhou; FANG, Qi

    2001-01-01

    Several organic salts with D-A molecular structure and different counterion have been prepared and experimentally investigated. The two-photon induced frequency-upconverted spectra and two-photon pumped lasing are measured for the organic salt solutions in various solvents. The results indicate that counterions have influence on their stability and lasing property.

  8. Two-photon absorption in arsenic sulfide glasses

    Science.gov (United States)

    Chunaev, D. S.; Snopatin, G. E.; Plotnichenko, V. G.; Karasik, A. Ya.

    2016-10-01

    The two-photon absorption coefficient of 1047-{\\text{nm}} light in {\\text{As}}35{\\text{S}}65 chalcogenide glass has been measured. CW probe radiation has been used to observe the linear absorption in glass induced by two-photon excitation. The induced absorption lifetime was found to be ∼ 2 {\\text{ms}}.

  9. The development of efficient two-photon singlet oxygen sensitizers

    DEFF Research Database (Denmark)

    Nielsen, Christian Benedikt

    The development of efficient two-photon singlet oxygen sensitizers is addressed focusing on organic synthesis. Photophysical measurements were carried out on new lipophilic molecules, where two-photon absorption cross sections and singlet oxygen quantumyields were measured. Design principles...... for making efficient two-photon singlet oxygen sensitizers were then constructed from these results. Charge-transfer in the excited state of the prepared molecules was shown to play a pivotal role in the generationof singlet oxygen. This was established through studies of substituent effects on both...... the singlet oxygen yield and the two-photon absorption cross section, where it was revealed that a careful balancing of the amount of charge transfer present in theexcited state of the sensitizer is necessary to obtain both a high singlet oxygen quantum yield and a high two-photon cross section. An increasing...

  10. Coherent control of non-resonant two-photon transition in molecular system

    Institute of Scientific and Technical Information of China (English)

    Zhang Hui; Zhang Shi-An; Wang Zu-Geng; Sun Zhen-Rong

    2010-01-01

    In this paper,we study theoretically and experimentally the coherent control of non-resonant two-photon transition in a molecular system (Perylene dissolved in chloroform solution) by shaping the femtosecond pulses with simple phase patterns (cosinusoidal and π phase step-function shape).The control efficiency of the two-photon transition probability is correlated with both the laser field and the molecular absorption bandwidth.Our results demonstrate that,the two-photon transition probability in a molecular system can be reduced but not completely eliminated by manipulating the laser field,and the control efficiency is minimal when the molecular absorption bandwidth is larger than twice the laser spectral bandwidth.

  11. Two-photon processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Jahrsetz, Thorsten

    2015-03-05

    Two-photon processes are atomic processes in which an atom interacts simultaneously with two photons. Such processes describe a wide range of phenomena, such as two-photon decay and elastic or inelastic scattering of photons. In recent years two-photon processes involving highly charged heavy ions have become an active area of research. Such studies do not only consider the total transition or scattering rates but also their angular and polarization dependence. To support such examinations in this thesis I present a theoretical framework to describe these properties in all two-photon processes with bound initial and final states and involving heavy H-like or He-like ions. I demonstrate how this framework can be used in some detailed studies of different two-photon processes. Specifically a detailed analysis of two-photon decay of H-like and He-like ions in strong external electromagnetic fields shows the importance of considering the effect of such fields for the physics of such systems. Furthermore I studied the elastic Rayleigh as well as inelastic Raman scattering by heavy H-like ions. I found a number of previously unobserved phenomena in the angular and polarization dependence of the scattering cross-sections that do not only allow to study interesting details of the electronic structure of the ion but might also be useful for the measurement of weak physical effects in such systems.

  12. Scattering of two photons from two distant qubits: exact solution

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, Matti; Pletyukhov, Mikhail [Institute for Theory of Statistical Physics, RWTH Aachen, 52056 Aachen (Germany)

    2015-07-01

    We consider the inelastic scattering of two photons from two qubits separated by an arbitrary distance and coupled to a one-dimensional transmission line. We present an exact, analytical solution to the problem, and use it to explore a particular configuration of qubits which is transparent to single-photon scattering, thus highlighting non-Markovian effects of inelastic two-photon scattering: Strong two-photon interference and momentum dependent photon (anti)bunching. This latter effect can be seen as an inelastic generalization of the Hong-Ou-Mandel effect.

  13. Attribute Invariant Spatial and Spatio-Temporal Correlators

    Science.gov (United States)

    Monjur, Mehjabin Sultana

    PMT based correlators. We also develop the concept and design of an Automatic Event Recognition (AER) System based on a three-dimensional Spatio-Temporal Correlator (STC), that combines the techniques of holographic correlation and photon echo based temporal pattern recognition to match a video-clip contained in a video file, using atoms stored in a porous-glass material. By employing the nonlinear properties of inhomogenous broadened atomic media we show that it is possible to realize an AER system that can recognize rapidly the occurrence of events, the number of events, and the occurrence times. To model the response of such a system, one requires solving the Schrodinger Equation (SE), which is a computationally extensive task. We develop an analytical model to find the response of the STC and show that the analytical model agrees closely with the results obtained via explicit numerical simulation, but at a speed that is many orders of magnitude faster than the numerical model. We also show how such a practical AER system can be realized using a combination of a porous-glass based Rb vapor cell, a holographic video disc, and a lithium niobate crystal.

  14. NLO Electroweak Corrections to Higgs Decay to Two Photons

    OpenAIRE

    Actis, Stefano

    2009-01-01

    The recent calculation of the next-to-leading order electroweak corrections to the decay of the Standard Model Higgs boson to two photons in the framework of the complex-mass scheme is briefly summarized.

  15. Standard Model Higgs decay for two Photons in CMS

    CERN Multimedia

    Daniel Denegri

    2000-01-01

    Simulated two-photon mass distribution for SM Higgs and expected background in the CMS PbW04 crystal calorimeter for an integrated luminosity of 10 . 5 pb-1, with detailed simulation of calorimeter response.

  16. Two-photon pumped lead halide perovskite nanowire lasers

    CERN Document Server

    Gu, Zhiyuan; Sun, Wenzhao; Li, Jinakai; Liu, Shuai; Song, Qinghai; Xiao, Shumin

    2015-01-01

    Solution-processed lead halide perovskites have shown very bright future in both solar cells and microlasers. Very recently, the nonlinearity of perovskites started to attract considerable research attention. Second harmonic generation and two-photon absorption have been successfully demonstrated. However, the nonlinearity based perovskite devices such as micro- & nano- lasers are still absent. Here we demonstrate the two-photon pumped nanolasers from perovskite nanowires. The CH3NH3PbBr3 perovskite nanowires were synthesized with one-step solution self-assembly method and dispersed on glass substrate. Under the optical excitation at 800 nm, two-photon pumped lasing actions with periodic peaks have been successfully observed at around 546 nm. The obtained quality (Q) factors of two-photon pumped nanolasers are around 960, and the corresponding thresholds are about 674?J=cm2. Both the Q factors and thresholds are comparable to conventional whispering gallery modes in two-dimensional polygon microplates. Ou...

  17. Pulse-shaping based two-photon FRET stoichiometry.

    Science.gov (United States)

    Flynn, Daniel C; Bhagwat, Amar R; Brenner, Meredith H; Núñez, Marcos F; Mork, Briana E; Cai, Dawen; Swanson, Joel A; Ogilvie, Jennifer P

    2015-02-09

    Förster Resonance Energy Transfer (FRET) based measurements that calculate the stoichiometry of intermolecular interactions in living cells have recently been demonstrated, where the technique utilizes selective one-photon excitation of donor and acceptor fluorophores to isolate the pure FRET signal. Here, we present work towards extending this FRET stoichiometry method to employ two-photon excitation using a pulse-shaping methodology. In pulse-shaping, frequency-dependent phases are applied to a broadband femtosecond laser pulse to tailor the two-photon excitation conditions to preferentially excite donor and acceptor fluorophores. We have also generalized the existing stoichiometry theory to account for additional cross-talk terms that are non-vanishing under two-photon excitation conditions. Using the generalized theory we demonstrate two-photon FRET stoichiometry in live COS-7 cells expressing fluorescent proteins mAmetrine as the donor and tdTomato as the acceptor.

  18. Synthesis of a Series of Novel Organic Compounds with Two-photon Absorption and Two-photon pumped Lasing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of novel organic compounds named as CSPI, DPASPI, PSPI DEASPI and HEASPI respectively, with large two-photon absorption has been synthesized and their structures have been determined by 1HNMR and elemental analysis. The highest two-photon pumped (TPP) output /input efficiency is as high as 13.4% for PSPI in DMF with d0 = 0.03 mol/L and the effective two-photon absorption cross section is 8.8′10-48 cm4×s/photon for DPASPI in DMF with d0= 0.05mol/L.

  19. Mass distribution for the two-photon channel

    CERN Multimedia

    ATLAS, collaboration

    2012-01-01

    Mass distribution for the two-photon channel. The strongest evidence for this new particle comes from analysis of events containing two photons. The smooth dotted line traces the measured background from known processes. The solid line traces a statistical fit to the signal plus background. The new particle appears as the excess around 126.5 GeV. The full analysis concludes that the probability of such a peak is three chances in a million.

  20. Two-photon autofluorescence spectroscopy of oral mucosa tissue

    Science.gov (United States)

    Edward, Kert; Shilagard, Tuya; Qiu, Suimin; Vargas, Gracie

    2011-03-01

    The survival rate for individuals diagnosed with oral cancer is correlated with the stage of detection. Thus the development of novel techniques for the earliest possible detection of malignancies is of critical importance. Single photon (1P) autofluorescence spectroscopy has proven to be a powerful diagnostic tool in this regard, but 2P (two photon) spectroscopy remains essentially unexplored. In this investigation, a spectroscopic system was incorporated into a custom-built 2P laser scanning microscope. Oral cancer was induced in the buccal pouch of Syrian Golden hamsters by tri-weekly topical application of 9,10-dimethyl-1,2-benzanthracene (DMBA).Three separated sites where investigated in each hamster at four excitation wavelengths from 780 nm to 890 nm. A Total of 8 hamsters were investigated (4 normal and 4 DMBA treated). All investigated sites were imaged via 2p imaging, marked for biopsy, processed for histology and H&E staining, and graded by a pathologist. The in vivo emission spectrum for normal, mild/high grade dysplasia and squamous cell carcinoma is presented. It is shown that the hamsters with various stages of dysplasia are characterized by spectral differences as a function of depth and excitation wavelength, compared to normal hamsters.

  1. Aura in temporal lobe epilepsy: clinical and electroencephalographic correlation.

    OpenAIRE

    1983-01-01

    Patients with temporal lobe epilepsy were evaluated for their aura and the site of EEG abnormality. Autonomic and psychic auras were more frequently associated with right-sided temporal lobe lesions in 290 patients.

  2. Two-Photon Absorption of Metal-Assisted Chromophores.

    Science.gov (United States)

    Li, Xin; Rinkevicius, Zilvinas; Ågren, Hans

    2014-12-09

    Aiming to understand the effect of a metal surface on nonlinear optical properties and the combined effects of surface and solvent environments on such properties, we present a multiscale response theory study, integrated with dynamics of the two-photon absorption of 4-nitro-4'-amino-trans-stilbene physisorbed on noble metal surfaces, considering two such surfaces, Ag(111) and Au(111), and two solvents, cyclohexane and water, as cases for demonstration. A few conclusions of general character could be drawn: While the geometrical change of the chromophore induced by the environment was found to notably alter (diminish) the two-photon absorption cross section in the polar medium, the effects of the metal surface and solvent on the electronic structure of the chromophore surpasses the geometrical effects and leads to a considerably enhanced two-photon absorption cross section in the polar solvent. This enhancement of two-photon absorption arises essentially from the metal charge image induced enlargement of the difference between the dipole moment of the excited state and the ground state. The orientation-dependence of the two-photon absorption is found to connect with the lateral rotation of the chromophore, where the two-photon absorption reaches its maximum when the polarization of the incident light coincides with the long-axis of the chromophore. Our results demonstrate a distinct enhancement of the two-photon absorption by a metal surface and a polar medium and envisage the employment of metal-chromophore composite materials for future development of nonlinear optical materials with desirable properties.

  3. Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration

    Science.gov (United States)

    Biagioni, P.; Celebrano, M.; Savoini, M.; Grancini, G.; Brida, D.; Mátéfi-Tempfli, S.; Mátéfi-Tempfli, M.; Duò, L.; Hecht, B.; Cerullo, G.; Finazzi, M.

    2009-07-01

    Two-photon photoluminescence (TPPL) from gold nanostructures is becoming one of the most relevant tools for plasmon-assisted biological imaging and photothermal therapy as well as for the investigation of plasmonic devices. Here we study the yield of TPPL as a function of the temporal width δ of the excitation laser pulses for a fixed average power. In the δ>1ps regime, the TPPL yield decreases as δ is increased, while for shorter pulse widths it becomes independent of δ and, consequently, of the laser-pulse peak power. This peculiar dynamics is understood and modeled by considering that two-photon absorption in Au is a two-step process governed by the lifetime of the metastable state populated by the first photon absorption.

  4. Two-photon absorption measurements in graphene fragments: Role of electron-electron interactions

    Science.gov (United States)

    Sandhu, A.; Roberts, A.; Aryanpour, K.; Shukla, A.; Mazumdar, S.

    2012-02-01

    Many-body interactions in graphene are an active field of research. There is a clear evidence of strong electron correlation effects in other carbon based materials which have the same sp^2 hybridization as graphene. For example, in linear-polyenes, the electron-electron interactions are considered responsible for the occurrence of lowest two-photon state below the optical one-photon state. The electronic correlation in these linear systems is a strong function of the chain length. Thus, it is pertinent to question if the two-dimensional graphene fragments also exhibit strong correlation effects and how these effects scale with fragment size. Using a white light super-continuum source, we perform z-scan measurements to extract frequency-dependent two-photon absorption coefficients in symmetric molecular fragments of graphene, e.g. coronene and hexabenzocoronene. A comparison of one-photon and two-photon absorption coefficients is then used to uncover the extent of correlation effects. In the smallest fragment, coronene, our results indicate a strong signature of the Coulomb interactions. We will discuss how the importance of electron-electron interaction varies with system size and its implication for the correlation effects in graphene.

  5. Three-dimensional microfabrication using two-photon polymerization

    Science.gov (United States)

    Cumpston, Brian H.; Ehrlich, Jeffrey E.; Kuebler, Stephen M.; Lipson, Matthew; Marder, Seth R.; McCord-Maughon, D.; Perry, Joseph W.; Roeckel, Harold; Rumi, Maria Cristina

    1998-09-01

    Photopolymerization initiated by the simultaneous absorption of two photons is unique in its ability to produce complex three-dimensional (3D) structures from a single, thick photopolymer film. Strong 3D confinement of the polymerization process is not possible in other polymer microfabrication techniques such as LIGA, rapid prototyping, and conventional photoresist technology. Two-photon polymerization also permits the fabrication of 3D structures and the definition of lithographic features on non-planar surfaces. We have developed a wide array of chromophores which hold great promise for 3D microfabrication, as well as other applications, such as two-photon fluorescence imaging and 3D optical data storage. These materials are based on a donor- (pi) -donor, donor-acceptor-donor, or acceptor-donor-acceptor structural motif. The magnitude of the two-photon absorption cross-section, (delta) , and the position of the two-photon absorption maximum, (lambda) (2)max, can be controlled by varying the length of the conjugated bridge and by varying the strength of the donor/acceptor groups. In this way, chromophores have been developed which exhibit strong two- photon absorption in the range of 500 - 975 nm, in some cases as high as 4400 X 10-50 cm4 s/photon-molecule. In the case of donor-(pi) -donor structures, quantum-chemical calculations show that the large absorption cross-sections arise from the symmetric re-distribution of charge from the donor end-groups to the conjugated bridge, resulting in an electronic excited-state which is more delocalized than the ground state. For many of these molecules, two-photon excitation populates a state which is sufficiently reducing that a charge transfer reaction can occur with acrylate monomers. The efficiency of these processes can be described using Marcus theory. Under suitable conditions, such reactions can induce radical polymerization of acrylate resins. Polymerization rates have been measured, and we show that these two-photon

  6. Spatio-temporal correlation of vegetation and temperature patterns

    Science.gov (United States)

    Coppola, R.; D'Emilio, M.; Imbrenda, V.; Lanfredi, M.; Macchiato, M.; Simoniello, T.

    2010-05-01

    Temperature is one of the variables largely influencing vegetation species distributions (biogeographical regions) and plant development (phenological cycle). Anomalies in temperature regional patterns and in microclimate conditions induce modifications in vegetation cover phenology; in particular in European regions, the responsiveness of vegetation to temperature increase is greater in warmer Mediterranean countries. In order to assess the spatial arrangement and the temporal variability of vegetation and temperature patterns in a typical Mediterranean environment, we investigated monthly NDVI-AVHRR and temperature time series over Southern Italy, core of Mediterranean Basin. Temperature data, obtained from 35 meteoclimatic stations, were rasterized by adopting a combined deterministic-stochastic procedure we suitably implemented for the investigated region in order to obtain spatial data comparable with NDVI maps. For the period 1996-1998, monthly MVC data were clusterized on annual basis by means of a classification procedure to aggregate areas with similar phenological cycles. The same procedure was adopted to jointly evaluate temperature and vegetation profiles and identify areas having similar phenological and temperature patterns. The comparison of the identified clusters showed that the classification obtained with and without temperature profiles are very similar enhancing the strong role of this variable in vegetation development. Some exceptions in the cluster arrangement are due to local anomalies in vegetation distribution, such as forest fires. In order to spatially analyze such a dependence, we also elaborated a time correlation map for each year and we found that the correlation patterns are persistent on the year basis and generally follow the land cover distributions. The correlation values are very high and positive for the forested mountainous areas (R>0.8), whereas they are negative for plan coastal areas (R<-0.8). Low correlation values (R

  7. Two-photon flow cytometer with laser scanning Bessel beams

    Science.gov (United States)

    Wang, Yongdong; Ding, Yu; Ray, Supriyo; Paez, Aurelio; Xiao, Chuan; Li, Chunqiang

    2016-03-01

    Flow cytometry is an important technique in biomedical discovery for cell counting, cell sorting and biomarker detection. In vivo flow cytometers, based on one-photon or two-photon excited fluorescence, have been developed for more than a decade. One drawback of laser beam scanning two-photon flow cytometer is that the two-photon excitation volume is fairly small due to the short Rayleigh range of a focused Gaussian beam. Hence, the sampling volume is much smaller than one-photon flow cytometry, which makes it challenging to count or detect rare circulating cells in vivo. Bessel beams have narrow intensity profiles with an effective spot size (FWHM) as small as several wavelengths, making them comparable to Gaussian beams. More significantly, the theoretical depth of field (propagation distance without diffraction) can be infinite, making it an ideal solution as a light source for scanning beam flow cytometry. The trade-off of using Bessel beams rather than a Gaussian beam is the fact that Bessel beams have small concentric side rings that contribute to background noise. Two-photon excitation can reduce this noise, as the excitation efficiency is proportional to intensity squared. Therefore, we developed a two-photon flow cytometer using scanned Bessel beams to form a light sheet that intersects the micro fluidic channel.

  8. Confocal and Two-Photon Microscopy: Foundations, Applications and Advances

    Science.gov (United States)

    Diaspro, Alberto

    2001-11-01

    Confocal and Two-Photon Microscopy Foundations, Applications, and Advances Edited by Alberto Diaspro Confocal and two-photon fluorescence microscopy has provided researchers with unique possibilities of three-dimensional imaging of biological cells and tissues and of other structures such as semiconductor integrated circuits. Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances provides clear, comprehensive coverage of basic foundations, modern applications, and groundbreaking new research developments made in this important area of microscopy. Opening with a foreword by G. J. Brakenhoff, this reference gathers the work of an international group of renowned experts in chapters that are logically divided into balanced sections covering theory, techniques, applications, and advances, featuring: In-depth discussion of applications for biology, medicine, physics, engineering, and chemistry, including industrial applications Guidance on new and emerging imaging technology, developmental trends, and fluorescent molecules Uniform organization and review-style presentation of chapters, with an introduction, historical overview, methodology, practical tips, applications, future directions, chapter summary, and bibliographical references Companion FTP site with full-color photographs The significant experience of pioneers, leaders, and emerging scientists in the field of confocal and two-photon excitation microscopy Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances is invaluable to researchers in the biological sciences, tissue and cellular engineering, biophysics, bioengineering, physics of matter, and medicine, who use these techniques or are involved in developing new commercial instruments.

  9. Applications of temporal kernel canonical correlation analysis in adherence studies.

    Science.gov (United States)

    John, Majnu; Lencz, Todd; Ferbinteanu, Janina; Gallego, Juan A; Robinson, Delbert G

    2015-08-20

    Adherence to medication is often measured as a continuous outcome but analyzed as a dichotomous outcome due to lack of appropriate tools. In this paper, we illustrate the use of the temporal kernel canonical correlation analysis (tkCCA) as a method to analyze adherence measurements and symptom levels on a continuous scale. The tkCCA is a novel method developed for studying the relationship between neural signals and hemodynamic response detected by functional MRI during spontaneous activity. Although the tkCCA is a powerful tool, it has not been utilized outside the application that it was originally developed for. In this paper, we simulate time series of symptoms and adherence levels for patients with a hypothetical brain disorder and show how the tkCCA can be used to understand the relationship between them. We also examine, via simulations, the behavior of the tkCCA under various missing value mechanisms and imputation methods. Finally, we apply the tkCCA to a real data example of psychotic symptoms and adherence levels obtained from a study based on subjects with a first episode of schizophrenia, schizophreniform or schizoaffective disorder. © The Author(s) 2015.

  10. Nonlinear quantitative photoacoustic tomography with two-photon absorption

    CERN Document Server

    Ren, Kui

    2016-01-01

    Two-photon photoacoustic tomography (TP-PAT) is a non-invasive optical molecular imaging modality that aims at inferring two-photon absorption property of heterogeneous media from photoacoustic measurements. In this work, we analyze an inverse problem in quantitative TP-PAT where we intend to reconstruct optical coefficients in a semilinear elliptic PDE, the mathematical model for the propagation of near infra-red photons in tissue-like optical media with two-photon absorption, from the internal absorbed energy data. We derive uniqueness and stability results on the reconstructions of single and multiple optical coefficients, and present some numerical reconstruction results based on synthetic data to complement the theoretical analysis.

  11. Two-photon interference between disparate sources for quantum networking

    Science.gov (United States)

    McMillan, A. R.; Labonté, L.; Clark, A. S.; Bell, B.; Alibart, O.; Martin, A.; Wadsworth, W. J.; Tanzilli, S.; Rarity, J. G.

    2013-06-01

    Quantum networks involve entanglement sharing between multiple users. Ideally, any two users would be able to connect regardless of the type of photon source they employ, provided they fulfill the requirements for two-photon interference. From a theoretical perspective, photons coming from different origins can interfere with a perfect visibility, provided they are made indistinguishable in all degrees of freedom. Previous experimental demonstrations of such a scenario have been limited to photon wavelengths below 900 nm, unsuitable for long distance communication, and suffered from low interference visibility. We report two-photon interference using two disparate heralded single photon sources, which involve different nonlinear effects, operating in the telecom wavelength range. The measured visibility of the two-photon interference is 80 +/- 4%, which paves the way to hybrid universal quantum networks.

  12. Enhanced two-photon absorption using true thermal light

    CERN Document Server

    Jechow, Andreas; Kurzke, Henning; Heuer, Axel; Menzel, Ralf

    2013-01-01

    Two-photon excited fluorescence (TPEF) is a standard technique in modern microscopy but still affected by photo-damage of the probe. It was proposed that TPEF can be enhanced by using entangled photons, but has proven to be challenging. Recently it was shown that some features of entangled photons can be mimicked with thermal light, which finds application in ghost imaging, sub-wavelength lithography and metrology. Here, we utilize true thermal light from a super-luminescence diode to demonstrate enhanced TPEF compared to coherent light using two common fluorophores and luminescent quantum dots. We find that the two-photon absorption rate is directly proportional to the measured degree of second-order coherence, as predicted by theory. Our results show that photon bunching can be exploited in two-photon microscopy with the photon statistic providing a new degree of freedom.

  13. Two-photon gateway in one-atom cavity quantum electrodynamics.

    Science.gov (United States)

    Kubanek, A; Ourjoumtsev, A; Schuster, I; Koch, M; Pinkse, P W H; Murr, K; Rempe, G

    2008-11-14

    Single atoms absorb and emit light from a resonant laser beam photon by photon. We show that a single atom strongly coupled to an optical cavity can absorb and emit resonant photons in pairs. The effect is observed in a photon correlation experiment on the light transmitted through the cavity. We find that the atom-cavity system transforms a random stream of input photons into a correlated stream of output photons, thereby acting as a two-photon gateway. The phenomenon has its origin in the quantum anharmonicity of the energy structure of the atom-cavity system. Future applications could include the controlled interaction of two photons by means of one atom.

  14. Two-Photon Total Annihilation of Molecular Positronium

    CERN Document Server

    Pérez-Ríos, Jesús; Greene, Chris H

    2014-01-01

    The rate for complete two-photon annihilation of molecular positronium Ps$_{2}$ is reported. This decay channel involves a four-body collision among the fermions forming Ps$_{2}$, and two photons of 1.022 MeV, each, as the final state. The quantum electrodynamics result for the rate of this process is found to be $\\Gamma_{Ps_{2} \\rightarrow \\gamma\\gamma}$ = 9.0 $\\times 10^{-12}$ s$^{-1}$. This decay channel completes the most comprehensive decay chart for Ps$_{2}$ up to date.

  15. Two-photon Compton process in pulsed intense laser fields

    CERN Document Server

    Seipt, D

    2012-01-01

    Based on strong-field QED in the Furry picture we use the Dirac-Volkov propagator to derive a compact expression for the differential emission probability of the two-photon Compton process in a pulsed intense laser field. The relation of real and virtual intermediate states is discussed, and the natural regularization of the on-shell contributions due to the finite laser pulse is highlighted. The inclusive two-photon spectrum is two orders of magnitude stronger than expected from a perturbative estimate.

  16. Precision two-photon spectroscopy of alkali elements

    Indian Academy of Sciences (India)

    P V Kiran Kumar; M V Suryanarayana

    2014-08-01

    In this paper, we have briefly reviewed the work on two-photon spectroscopy of alkali elements and its applications. The technique of Doppler-free two-photon spectroscopy is briefly summarized. A review of various techniques adopted for measuring absolute frequencies of the atomic transitions and precision measurements of isotope shifts and hyperfine structures (HFS) is presented. Some of the recent works on precision measurements of HFS constants of 6 ${}^2S_{1/2}$ level of ${}^{39}$K and ${}^{41}$K, 9 ${}^2S_{1/2}$ level and 7 ${}^2D_{3/2}$ level of 133Cs are also discussed.

  17. A fluorescent benzothiazole probe with efficient two-photon absorption

    Science.gov (United States)

    Echevarria, Lorenzo; Moreno, Iván; Camacho, José; Salazar, Mary Carmen; Hernández, Antonio

    2012-11-01

    In this work, we report the two-photon absorption of 2-[4-(dimethylamino)phenyl]-1,3-benzothiazole-6-carbonitrile (DBC) in DMSO solution pumping at 779 nm with a 10 ns pulse laser-Nd:YAG system. The obtained two-photon absorption cross-section in DBC (407 ± 18 GM) is considerably high. Because DBC is a novel compound and have high values of fluorescence quantum yield, this result is expected to have an impact in biomolecules detection, diagnosis and treatment of cancer. Similar structures have previously been reported to show remarkable antitumour effects.

  18. Modulation of attosecond beating by resonant two-photon transition

    CERN Document Server

    Galán, Álvaro Jiménez; Martín, Fernando

    2015-01-01

    We present an analytical model that characterizes two-photon transitions in the presence of autoionising states. We applied this model to interpret resonant RABITT spectra, and show that, as a harmonic traverses a resonance, the phase of the sideband beating significantly varies with photon energy. This phase variation is generally very different from the $\\pi$ jump observed in previous works, in which the direct path contribution was negligible. We illustrate the possible phase profiles arising in resonant two-photon transitions with an intuitive geometrical representation.

  19. Dynamical modeling of pulsed two-photon interference

    Science.gov (United States)

    Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Vučković, Jelena

    2016-11-01

    Single-photon sources are at the heart of quantum-optical networks, with their uniquely quantum emission and phenomenon of two-photon interference allowing for the generation and transfer of nonclassical states. Although a few analytical methods have been briefly investigated for describing pulsed single-photon sources, these methods apply only to either perfectly ideal or at least extremely idealized sources. Here, we present the first complete picture of pulsed single-photon sources by elaborating how to numerically and fully characterize non-ideal single-photon sources operating in a pulsed regime. In order to achieve this result, we make the connection between quantum Monte-Carlo simulations, experimental characterizations, and an extended form of the quantum regression theorem. We elaborate on how an ideal pulsed single-photon source is connected to its photocount distribution and its measured degree of second- and first-order optical coherence. By doing so, we provide a description of the relationship between instantaneous source correlations and the typical experimental interferometers (Hanbury-Brown and Twiss, Hong-Ou-Mandel, and Mach-Zehnder) used to characterize such sources. Then, we use these techniques to explore several prototypical quantum systems and their non-ideal behaviors. As an example numerical result, we show that for the most popular single-photon source—a resonantly excited two-level system—its error probability is directly related to its excitation pulse length. We believe that the intuition gained from these representative systems and characters can be used to interpret future results with more complicated source Hamiltonians and behaviors. Finally, we have thoroughly documented our simulation methods with contributions to the Quantum Optics Toolbox in Python in order to make our work easily accessible to other scientists and engineers.

  20. Quantum Teleportation of One-Photon and Two-Photon Superposition States

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ One-photon and two-photon superposition states are the fundamental quantum states, which have shown interesting features, such as squeezing and anti-bunching. In this paper we discuss the quantum teleportation of such quantum states with the continuous-wave EPR states. Fidelity as a function of EPR correlation is obtained. We also compared the results with Fock state and coherent state teleportation.

  1. Nonlinear processes upon two-photon interband picosecond excitation of PbWO4 crystal

    Science.gov (United States)

    Lukanin, V. I.; Karasik, A. Ya

    2016-09-01

    A new experimental method is proposed to study the dynamics of nonlinear processes occurring upon two-photon interband picosecond excitation of a lead tungstate crystal and upon its excitation by cw probe radiation in a temporal range from several nanoseconds to several seconds. The method is applied to the case of crystal excitation by a sequence of 25 high-power picosecond pulses with a wavelength of 523.5 nm and 633-nm cw probe radiation. Measuring the probe beam transmittance during crystal excitation, one can investigate the influence of two-photon interband absorption and the thermal nonlinearity of the refractive index on the dynamics of nonlinear processes in a wide range of times (from several nanoseconds to several seconds). The time resolution of the measuring system makes it possible to distinguish fast and slow nonlinear processes of electronic or thermal nature, including the generation of a thermal lens and thermal diffusion. An alternative method is proposed to study the dynamics of induced absorption transformation and, therefore, the dynamics of the development of nonlinear rocesses upon degenerate two-photon excitation of the crystal in the absence of external probe radiation.

  2. Internal conversions in Higgs decays to two photons

    OpenAIRE

    Firan, Ana; Stroynowski, Ryszard

    2007-01-01

    We evaluate the partial widths for internal conversions in the Higgs decays to two photons. For the Higgs masses of interest at LHC in the range of 100-150 GeV, the conversions to pairs of fermions represent significant fraction of Higgs decays.

  3. Two-Photon-Pumped Perovskite Semiconductor Nanocrystal Lasers.

    Science.gov (United States)

    Xu, Yanqing; Chen, Qi; Zhang, Chunfeng; Wang, Rui; Wu, Hua; Zhang, Xiaoyu; Xing, Guichuan; Yu, William W; Wang, Xiaoyong; Zhang, Yu; Xiao, Min

    2016-03-23

    Two-photon-pumped lasers have been regarded as a promising strategy to achieve frequency up-conversion for situations where the condition of phase matching required by conventional approaches cannot be fulfilled. However, their practical applications have been hindered by the lack of materials holding both efficient two-photon absorption and ease of achieving population inversion. Here, we show that this challenge can be tackled by employing colloidal nanocrystals of perovskite semiconductors. We observe highly efficient two-photon absorption (with a cross section of 2.7 × 10(6) GM) in toluene solutions of CsPbBr3 nanocrystals that can excite large optical gain (>500 cm(-1)) in thin films. We have succeeded in demonstrating stable two-photon-pumped lasing at a remarkable low threshold by coupling CsPbBr3 nanocrystals with microtubule resonators. Our findings suggest perovskite nanocrystals can be used as excellent gain medium for high-performance frequency-up-conversion lasers toward practical applications.

  4. Direct Writing of Photonic Structures by Two-Photon Polymerization

    Directory of Open Access Journals (Sweden)

    Li Yan

    2013-11-01

    Full Text Available Single-mode dielectric-loaded surface plasmon-polariton nanowaveguides with strong mode confinement at excitation wavelength of 830 nm and high-Q polymer whispering gallery mode microcavities with surface roughness less than 12 nm have been directly written by two-photon polymerization, which pave the way to fabricate 3D plasmonic photonic structures by direct laser writing.

  5. Determination of Kerr and two-photon absorption coefficients of indandione derivatives

    Science.gov (United States)

    Bundulis, Arturs; Mihailovs, Igors; Nitiss, Edgars; Busenbergs, Janis; Rutkis, Martins

    2017-05-01

    We studied nonlinear optical properties of two different aminobenziliden-1,3-indandione derivatives - DDMABI and DMABI-OH by employing the Z-scan method. Through this we described how different donor and acceptor groups influence third-order nonlinear optical properties such as Kerr effect and two-photon absorption. During experimental measurements we used 1064 nm Nd:YAG laser with 30 ps pulse duration and 10 Hz repetition rate. From acquired values of Kerr and two-photon absorption coefficients we calculated values for real and imaginary parts of third-order susceptibility, as well as second-order hyperpolarizability. Quantum chemical calculations were carried out for secondorder hyperpolarizability to study how well calculations correlate with experimental values. Acquired data for DDMABI and DMABI-OH were compared with data for other ABI derivatives studied previously.

  6. Cell flow analysis with a two-photon fluorescence fiber probe

    Science.gov (United States)

    Chang, Yu-Chung; Ye, Jing Yong; Thomas, Thommey P.; Baker, James R., Jr.; Norris, Theodore B.

    2010-11-01

    We report the use of a sensitive double-clad fiber (DCF) probe for in situ cell flow velocity measurements and cell analysis by means of two-photon excited fluorescence correlation spectroscopy (FCS). We have demonstrated the feasibility to use this fiber probe for in vivo two-photon flow cytometry previously. However, because of the viscosity of blood and the non-uniform flow nature in vivo, it is problematic to use the detected cell numbers to estimate the sampled blood volume. To precisely calibrate the sampled blood volume, it is necessary to conduct real time flow velocity measurement. We propose to use FCS technique to measure the flow velocity. The ability to measure the flow velocities of labeled cells in whole blood has been demonstrated. Our two-photon fluorescence fiber probe has the ability to monitor multiple fluorescent biomarkers simultaneously. We demonstrate that we can distinguish differently labeled cells by their distinct features on the correlation curves. The ability to conduct in situ cell flow analysis using the fiber probe may be useful in disease diagnosis or further comprehension of the circulation system.

  7. Telecom-band two-photon Michelson interferometer using frequency entangled photon pairs generated by spontaneous parametric down-conversion

    Science.gov (United States)

    Yoshizawa, Akio; Fukuda, Daiji; Tsuchida, Hidemi

    2014-02-01

    We demonstrate a telecom-band fiber-optic two-photon Michelson interferometer using near-degenerate and collinear photon pairs with frequency entanglement. For spontaneous parametric down-conversion (SPDC), a continuous-wave laser diode pumps a periodically poled lithium niobate waveguide. Two threshold single-photon detectors record coincidence counts to observe two-photon interference and evaluate the correlation function. Multi-pair emission events are inevitable in SPDC and photon pairs without frequency entanglement are unintentionally registered as coincidence counts. In the demonstrated experiment, a mixture of photon pairs with and without frequency entanglement is present. The effects of such a mixed state on the correlation function are experimentally investigated. Two-photon interference of photon pairs without frequency entanglement is also measured for comparison.

  8. A New Generation Method for Spatial-Temporal Correlated MIMO Nakagami Fading Channel

    Directory of Open Access Journals (Sweden)

    Qiu-Ming Zhu

    2012-01-01

    Full Text Available A new generation method for spatial and temporal correlated multiple-input multiple-output (MIMO Nakagami fading channel is proposed, which has low complexity and is applicable for arbitrary fading parameters and prespecified correlation coefficients of different subchannel. The new scheme can be divided into two steps: (1 generate independent Nakagami fading sequences for each subchannel based on a novel rejection method; (2 introduce the temporal and spatial correlation based on the relationships between Rayleigh, Gamma, and Nakagami random processes. The analysis and simulation results show that the proposed simulator has a good agreement with the theoretical model on fading envelope distribution, spatial-temporal correlation characteristic.

  9. On the spatial and temporal correlations in experimentation with agricultural| applications

    DEFF Research Database (Denmark)

    Ersbøll, Annette Kjær

    1994-01-01

    The present thesis describes design and analysis of agricultural experiments utilizing the spatial and temporal correlation between the measurements. The thesis is organized in three parts, spatial experimental design in Part 1, analysis of temporally correlated measurements in Part 2 and a brief...... introduction to spatio-temporal models in part 3. Classical statistical analysis normally assumes independent observations. Therefore, knowledge concerning the spatial and temporal relation between plots and between measurements are not included in this kind of analysis. However, agricultural experiments often...... contain spatial correlations due to a spatial layout and/or temporal correlation due to repeated sampling of measurements at the same experimental unit. A method for design of field experiments is proposed in Part 1. The residual variance between plots in different layouts is used to compare different...

  10. Synthesizing arbitrary two-photon polarization mixed states

    CERN Document Server

    Wei, T C; Branning, D; Goldbart, P M; James, D F V; Jeffrey, E; Kwiat, P G; Mukhopadhyay, S; Peters, N A; Wei, Tzu-Chieh; Altepeter, Joseph B.; Branning, David; Goldbart, Paul M.; Jeffrey, Evan; Kwiat, Paul G.; Mukhopadhyay, Swagatam; Peters, Nicholas A.

    2005-01-01

    Two methods for creating arbitrary two-photon polarization pure states are introduced. Based on these, four schemes for creating two-photon polarization mixed states are proposed and analyzed. The first two schemes can synthesize completely arbitrary two-qubit mixed states, i.e., control all 15 free parameters: Scheme I requires several sets of crystals, while Scheme II requires only a single set, but relies on decohering the pump beam. Additionally, we describe two further schemes which are much easier to implement. Although the total capability of these is still being studied, we show that they can synthesize all two-qubit Werner states, maximally entangled mixed states, Collins-Gisin states, and arbitrary Bell-diagonal states.

  11. Direct frequency comb two-photon laser cooling and trapping

    Science.gov (United States)

    Jayich, Andrew; Long, Xueping; Campbell, Wesley C.

    2016-05-01

    Generating and manipulating high energy photons for spectroscopy on electric dipole transitions of atoms and molecules with deeply bound valence electrons is difficult. Further, laser cooling of such species is even more challenging for lack of laser power. A possible solution is to drive two-photon transitions. This may alleviate the photon energy problem and open the door to cold, trapped samples of highly desirable species with tightly bound electrons. We perform a proof of principle experiment with rubidium by driving a two-photon transition with an optical frequency comb. We perform optical cooling and extend this technique to trapping, where we are able to make a magneto-optical trap in one dimension. This work is supported by the National Science Foundation CAREER program.

  12. Modulation of attosecond beating in resonant two-photon ionization

    CERN Document Server

    Galán, Álvaro J; Martín, Fernando

    2014-01-01

    We present a theoretical study of the photoelectron attosecond beating at the basis of RABBIT (Reconstruction of Attosecond Beating By Interference of Two-photon transitions) in the presence of autoionizing states. We show that, as a harmonic traverses a resonance, its sidebands exhibit a peaked phase shift as well as a modulation of the beating frequency itself. Furthermore, the beating between two resonant paths persists even when the pump and the probe pulses do not overlap, thus providing a sensitive non-holographic interferometric means to reconstruct coherent metastable wave packets. We characterize these phenomena quantitatively with a general finite-pulse analytical model that accounts for the effect of both intermediate and final resonances on two-photon processes, at a negligible computational cost. The model predictions are in excellent agreement with those of accurate ab initio calculations for the helium atom in the region of the N=2 doubly excited states.

  13. Two-photon excited ultraviolet photoluminescence of zinc oxide nanorods.

    Science.gov (United States)

    Zhu, Guangping; Xu, Chunxiang; Zhu, Jing; Lu, Changgui; Cui, Yiping; Sun, Xiaowei

    2008-11-01

    High density zinc oxide nanorods with uniform size were synthesized on (100) silicon substrate by vapor-phase transport method. The scanning electron microscopy images reveal that the nanorods have an average diameter of about 400 nm. The X-ray diffraction pattern demonstrates the wurtzite crystalline structure of the ZnO nanorods growing along [0001] direction. The single-photon excited photoluminescence presents a strong ultraviolet emission band at 394 nm and a weak visible emission band at 600 nm. When the ZnO nanorods were respectively pumped by various wavelength lasers from 520 nm to 700 nm, two-photon excited ultraviolet photoluminescence was observed. The dependence of the two-photon excited photoluminescence intensity on the excitation wavelength and power was investigated in detail.

  14. High-order dispersion effects in two-photon interference

    CERN Document Server

    Mazzotta, Z; Cipriani, D; Olivares, S; Paris, M G A

    2016-01-01

    Two-photon interference and Hong-Ou-Mandel (HOM) effect are relevant tools for quantum metrology and quantum information processing. In optical coherence tomography, HOM effect is exploited to achieve high-resolution measurements with the width of the HOM dip being the main parameter. On the other hand, applications like dense coding require high-visibility performances. Here we address high-order dispersion effects in two-photon interference and study, theoretically and experimentally, the dependence of the visibility and the width of the HOM dip on both the pump spectrum and the downconverted photon spectrum. In particular, a spatial light modulator is exploited to experimentally introduce and manipulate a custom phase function to simulate the high-order dispersion effects.

  15. Two-photon interaction between trapped ions and cavity fields

    CERN Document Server

    Semião, F L

    2006-01-01

    In this paper, we generalize the ordinary two-photon Jaynes-Cummings model (TPJCM) by considering the atom (or ion) to be trapped in a simple harmonic well. A typical setup would be an optical cavity containing a single ion in a Paul trap. Due to the inclusion of atomic vibrational motion, the atom-field coupling becomes highly nonlinear what brings out quite different behaviors for the system dynamics when compared to the ordinary TPJCM. In particular, we derive an effective two-photon Hamiltonian with dependence on the number operator of the ion's center-of-mass motion. This dependence occurs both in the cavity induced Stark-shifs and in the ion-field coupling, and its role in the dynamics is illustrated by showing the time evolution of the probability of occupation of the electronic levels for simple initial preparations of the state of the system.

  16. Two-photon microscopy using fiber-based nanosecond excitation.

    Science.gov (United States)

    Karpf, Sebastian; Eibl, Matthias; Sauer, Benjamin; Reinholz, Fred; Hüttmann, Gereon; Huber, Robert

    2016-07-01

    Two-photon excitation fluorescence (TPEF) microscopy is a powerful technique for sensitive tissue imaging at depths of up to 1000 micrometers. However, due to the shallow penetration, for in vivo imaging of internal organs in patients beam delivery by an endoscope is crucial. Until today, this is hindered by linear and non-linear pulse broadening of the femtosecond pulses in the optical fibers of the endoscopes. Here we present an endoscope-ready, fiber-based TPEF microscope, using nanosecond pulses at low repetition rates instead of femtosecond pulses. These nanosecond pulses lack most of the problems connected with femtosecond pulses but are equally suited for TPEF imaging. We derive and demonstrate that at given cw-power the TPEF signal only depends on the duty cycle of the laser source. Due to the higher pulse energy at the same peak power we can also demonstrate single shot two-photon fluorescence lifetime measurements.

  17. Two-photon-induced cycloreversion reaction of chalcone photodimers

    Science.gov (United States)

    Träger, J.; Härtner, S.; Heinzer, J.; Kim, H.-C.; Hampp, N.

    2008-04-01

    The photocleavage reaction of chalcone photodimers has been studied using a two-photon process. For this purpose, a novel chalcone dimer has been synthesized as a low molecular weight model substance for polymer bound chalcones and its photochemistry triggered by two-photon-absorption (2PA) has been investigated using a pulsed frequency-doubled Nd:YAG-laser. The 2PA-induced cycloreversion reaction selectively leads to the cleavage of the chalcone photodimers resulting in the formation of monomeric chalcone molecules. Hence, as an application chalcones can be used as a photosensitive linker which can be cleaved beyond an UV-absorbing barrier. The 2PA cross section of the chalcone photodimer was determined to be of 1.1 × 10 -49 cm 4 s photon -1 (11 GM).

  18. Simultaneous two-photon excitation of photodynamic therapy agents

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, E.A.; Fisher, W.G. [Oak Ridge National Lab., TN (United States)]|[Photogen, Inc., Knoxville, TN (United States); Partridge, W.P. [Oak Ridge National Lab., TN (United States); Dees, H.C. [Photogen, Inc., Knoxville, TN (United States); Petersen, M.G. [Univ. of Tennessee, Knoxville, TN (United States). College of Veterinary Medicine

    1998-01-01

    The spectroscopic and photochemical properties of several photosensitive compounds are compared using conventional single-photon excitation (SPE) and simultaneous two-photon excitation (TPE). TPE is achieved using a mode-locked titanium:sapphire laser, the near infrared output of which allows direct promotion of non-resonant TPE. Excitation spectra and excited state properties of both type 1 and type 2 photodynamic therapy (PDT) agents are examined.

  19. Two-photon gateway in one-atom cavity quantum electrodynamics

    OpenAIRE

    2008-01-01

    Single atoms absorb and emit light from a resonant laser beam photon by photon. We show that a single atom strongly coupled to an optical cavity can absorb and emit resonant photons in pairs. The effect is observed in a photon correlation experiment on the light transmitted through the cavity. We find that the atom-cavity system transforms a random stream of input photons into a correlated stream of output photons, thereby acting as a two-photon gateway. The phenomenon has its origin in the q...

  20. Two-photon imaging through a multimode fiber

    CERN Document Server

    Morales-Delgado, Edgar E; Moser, Christophe

    2015-01-01

    In this work we demonstrate 3D imaging using two-photon excitation through a 20 cm long multimode optical fiber (MMF) of 350 micrometers diameter. The imaging principle is similar to single photon fluorescence through a MMF, except that a focused femtosecond pulse is delivered and scanned over the sample. In our approach, focusing and scanning through the fiber is accomplished by digital phase conjugation using mode selection by time gating with an ultra-fast reference pulse. The excited two-photon emission is collected through the same fiber. We demonstrate depth sectioning by scanning the focused pulse in a 3D volume over a sample consisting of fluorescent beads suspended in a polymer. The achieved resolution is 1 micrometer laterally and 15 micrometers axially. Scanning is performed over an 80x80 micrometers field of view. To our knowledge, this is the first demonstration of high-resolution three-dimensional imaging using two-photon fluorescence through a multimode fiber.

  1. Two-photon production of charged pion and kaon pairs

    CERN Document Server

    Dominick, J; Sanghera, S; Shelkov, V; Skwarnicki, T; Stroynowski, R; Volobuev, I P; Wei, G; Zadorozhny, P; Artuso, M; Goldberg, M; He, D; Horwitz, N; Kennett, R; Mountain, R; Moneti, G C; Muheim, F; Mukhin, Y; Playfer, S; Rozen, Y; Stone, S; Thulasidas, M; Vasseur, G; Zhu, G; Bartelt, J; Csorna, S E; Egyed, Z; Jain, V; Kinoshita, K; Edwards, K W; Ogg, M; Britton, D I; Hyatt, E R F; MacFarlane, D B; Patel, P M; Akerib, D S; Barish, B C; Chadha, M; Chan, S; Cowen, D F; Eigen, G; Miller, J S; O'Grady, C; Urheim, J; Weinstein, A J; Acosta, D; Athanas, M; Masek, G E; Paar, H P; Sivertz, M; Gronberg, J B; Kutschke, R; Menary, S R; Morrison, R J; Nakanishi, S; Nelson, H N; Nelson, T K; Qiao, C; Richman, J D; Ryd, A; Tajima, H; Sperka, D; Witherell, M S; Procario, M; Balest, R; Cho, K; Daoudi, M; Ford, W T; Johnson, D R; Lingel, K; Lohner, M; Rankin, P; Smith, J G; Alexander, J P; Bebek, C; Berkelman, K; Bloom, K; Browder, T E; Cassel, David G; Cho, H A; Coffman, D M; Drell, P S; Ehrlich, R; Gaidarev, P B; Galik, R S; García-Sciveres, M; Geiser, B; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Jones, C D; Jones, S L; Kandaswamy, J; Katayama, N; Kim, P C; Kreinick, D L; Ludwig, G S; Masui, J; Mevissen, J; Mistry, N B; Ng, C R; Nordberg, E; Patterson, J R; Peterson, D; Riley, D; Salman, S; Sapper, M; Würthwein, F; Avery, P; Freyberger, A P; Rodríguez, J; Stephens, R; Yang, S; Yelton, J; Cinabro, D; Henderson, S; Liu, T; Saulnier, M; Wilson, R; Yamamoto, H; Bergfeld, T; Eisenstein, B I; Gollin, G; Ong, B; Palmer, M; Selen, M; Thaler, J J; Sadoff, A J; Ammar, R; Ball, S; Baringer, P; Bean, A; Besson, D; Coppage, D; Copty, N K; Davis, R; Hancock, N; Kelly, M; Kwak, N; Lam, H; Kubota, Y; Lattery, M; Nelson, J K; Patton, S; Perticone, D; Poling, R A; Savinov, V; Schrenk, S; Wang, R; Alam, M S; Kim, I J; Nemati, B; O'Neill, J J; Severini, H; Sun, C R; Zoeller, M M; Crawford, G; Daubenmier, C M; Fulton, R; Fujino, D; Gan, K K; Honscheid, K; Kagan, H; Kass, R; Lee, J; Malchow, R L; Skovpen, Y; Sung, M; White, C; Butler, F; Fu, X; Kalbfleisch, G R; Ross, W R; Skubic, P L; Snow, J; Wang, P L; Wood, M; Brown, D N; Fast, J; McIlwain, R L; Miao, T; Miller, D H; Modesitt, M; Payne, D; Shibata, E I; Shipsey, I P J; Wang Pei Ning; Battle, M; Ernst, J; Kwon, Y; Roberts, S; Thorndike, E H; Wang, C H

    1994-01-01

    A measurement of the cross section for the combined two-photon production of charged pion and kaon pairs is performed using 1.2~\\rm fb^{-1} of data collected by the CLEO II detector at the Cornell Electron Storage Ring. The cross section is measured at invariant masses of the two-photon system between 1.5 and 5.0~GeV/c^2, and at scattering angles more than 53^\\circ away from the \\gamma\\gamma collision axis in the \\gamma\\gamma center-of-mass frame. The large background of leptonic events is suppressed by utilizing the CsI calorimeter in conjunction with the muon chamber system. The reported cross section is compared with leading order QCD models as well as previous experiments. In particular, although the functional dependence of the measured cross section disagrees with leading order QCD at small values of the two-photon invariant mass, the data show a transition to perturbative behavior at an invariant mass of approximately 2.5~GeV/c^2. hardcopies with figures can be obtained by writing to to: Pam Morehouse ...

  2. Two photon exchange in elastic electron-nucleon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Peter Blunden; Wolodymyr Melnitchouk; John Tjon

    2005-06-01

    A detailed study of two-photon exchange in unpolarized and polarized elastic electron-nucleon scattering is presented, taking particular account of nucleon finite size effects. Contributions from nucleon elastic intermediate states are found to have a strong angular dependence, which leads to a partial resolution of the discrepancy between the Rosenbluth and polarization transfer measurements of the proton electric to magnetic form factor ratio. The two-photon exchange contribution to the longitudinal polarization transfer ratio P{sub L} is small, whereas the contribution to the transverse polarization transfer ratio P{sub T} is enhanced at backward angles by several percent, increasing with Q{sup 2}. This gives rise to a several percent enhancement of the polarization transfer ratio P{sub T}/P{sub l} at large Q{sup 2} and backward angles. We compare the two-photon exchange effects with data on the ratio of e{sup +p} to e{sup -p} cross sections, which is predicted to be enhanced at backward angles. Finally, we evaluate the corrections to the form factors of the neutron, and estimate the elastic intermediate state contribution to the {sup 3}He form factors.

  3. Recent two-photon physics results from ARGUS

    Science.gov (United States)

    Živko Representing Argus Collaboration, Tomi

    1995-07-01

    Two photon production of π+π+π0π-π-, K+K-π+π-, K+K-π+π0π-, π+π0π-, and π+π- has been studied using the ARGUS detector at the e+e- storage ring DORIS II at DESY. A partial wave analysis was performed on the five-pion and three-pion final states. In the reaction γγ→ωρ0 is showed that the partial-wave with spin and parity (JP,Jz)=(2+,±2) dominates. The cross section and angular distributions of the reaction γγ→φρ0→K+K-π+π- were measured for the first time. The production of the vector-meson pair φω is observed in the two-photon reaction γγ→K+K-π+π0π-. The two-photon width of the tensor meson a2(1320) was measured in the decay channel π+π0π-. An upper limit, significantly lower than indicated by previous experiments was set on the radiative width of the π2(1670) meson. An upper limit was set on the radiative width of the f0(975)in the decay channel π+π-.

  4. Two-Photon Absorption in Organometallic Bromide Perovskites

    KAUST Repository

    Walters, Grant

    2015-07-21

    Organometallic trihalide perovskites are solution processed semiconductors that have made great strides in third generation thin film light harvesting and light emitting optoelectronic devices. Recently it has been demonstrated that large, high purity single crystals of these perovskites can be synthesized from the solution phase. These crystals’ large dimensions, clean bandgap, and solid-state order, have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW-1 at 800 nm, comparable to epitaxial single crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  5. Exploring control parameters of two photon processes in solutions

    Indian Academy of Sciences (India)

    Debabrata Goswami; Amit Nag

    2012-01-01

    Two-photon microscopy depends extensively on the two-photon absorption cross-sections of biologically relevant chromophores. High repetition rate (HRR) lasers are essential in multiphoton microscopy for generating satisfactory signal to noise at low average powers. However, HRR lasers generate thermal distortions in samples even with the slightest single photon absorption. We use an optical chopper with HRR lasers to intermittently `blank’ irradiation and effectively minimize thermal effects to result in a femtosecond z-scan setup that precisely measures the two-photon absorption (TPA) cross-sections of chromophores. Though several experimental factors impact such TPA measurements, a systematic effort to modulate and influence TPA characteristics is yet to evolve. Here, we present the effect of several control parameters on the TPA process that are independent of chromophore characteristics for femtosecond laser pulse based measurements; and demonstrate how the femtosecond laser pulse repetition rate, chromophore environment and incident laser polarization can become effective control parameters for such nonlinear optical properties.

  6. Two-Photon Absorption in Organometallic Bromide Perovskites.

    Science.gov (United States)

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P; Bakr, Osman M; Sargent, Edward H

    2015-09-22

    Organometallic trihalide perovskites are solution-processed semiconductors that have made great strides in third-generation thin film light-harvesting and light-emitting optoelectronic devices. Recently, it has been demonstrated that large, high-purity single crystals of these perovskites can be synthesized from the solution phase. These crystals' large dimensions, clean bandgap, and solid-state order have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW(-1) at 800 nm, comparable to epitaxial single-crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  7. FocusStack and StimServer: A new open source MATLAB toolchain for visual stimulation and analysis of two-photon calcium neuronal imaging data

    Directory of Open Access Journals (Sweden)

    Dylan Richard Muir

    2015-01-01

    Full Text Available Two-photon calcium imaging of neuronal responses is an increasingly accessible technology for probing population responses in cortex at single cell resolution, and with reasonable and improving temporal resolution. However, analysis of two-photon data is usually performed using ad-hoc solutions. To date, no publicly available software exists for straightforward analysis of stimulus-triggered two-photon imaging experiments. In addition, the increasing data rates of two-photon acquisition systems imply increasing cost of computing hardware required for in-memory analysis. Here we present a Matlab toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging stacks on consumer-level hardware, with minimal memory footprint. We also present a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed to be triggered over a network link from a two-photon acquisition system. FocusStack is compatible out of the box with several existing two-photon acquisition systems, and is simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment for movement correction, automated cell detection and peri-stimulus time histograms are already provided, and further tools can be easily incorporated. Both packages are available as publicly-accessible source-code repositories.

  8. FocusStack and StimServer: a new open source MATLAB toolchain for visual stimulation and analysis of two-photon calcium neuronal imaging data.

    Science.gov (United States)

    Muir, Dylan R; Kampa, Björn M

    2014-01-01

    Two-photon calcium imaging of neuronal responses is an increasingly accessible technology for probing population responses in cortex at single cell resolution, and with reasonable and improving temporal resolution. However, analysis of two-photon data is usually performed using ad-hoc solutions. To date, no publicly available software exists for straightforward analysis of stimulus-triggered two-photon imaging experiments. In addition, the increasing data rates of two-photon acquisition systems imply increasing cost of computing hardware required for in-memory analysis. Here we present a Matlab toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging stacks on consumer-level hardware, with minimal memory footprint. We also present a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed to be triggered over a network link from a two-photon acquisition system. FocusStack is compatible out of the box with several existing two-photon acquisition systems, and is simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment for movement correction, automated cell detection and peri-stimulus time histograms are already provided, and further tools can be easily incorporated. Both packages are available as publicly-accessible source-code repositories.

  9. Generating spatial precipitation ensembles: impact of temporal correlation structure

    Directory of Open Access Journals (Sweden)

    O. Rakovec

    2012-09-01

    Full Text Available Sound spatially distributed rainfall fields including a proper spatial and temporal error structure are of key interest for hydrologists to force hydrological models and to identify uncertainties in the simulated and forecasted catchment response. The current paper presents a temporally coherent error identification method based on time-dependent multivariate spatial conditional simulations, which are conditioned on preceding simulations. A sensitivity analysis and real-world experiment are carried out within the hilly region of the Belgian Ardennes. Precipitation fields are simulated for pixels of 10 km × 10 km resolution. Uncertainty analyses in the simulated fields focus on (1 the number of previous simulation hours on which the new simulation is conditioned, (2 the advection speed of the rainfall event, (3 the size of the catchment considered, and (4 the rain gauge density within the catchment. The results for a sensitivity analysis show for typical advection speeds >20 km h−1, no uncertainty is added in terms of across ensemble spread when conditioned on more than one or two previous hourly simulations. However, for the real-world experiment, additional uncertainty can still be added when conditioning on a larger number of previous simulations. This is because for actual precipitation fields, the dynamics exhibit a larger spatial and temporal variability. Moreover, by thinning the observation network with 50%, the added uncertainty increases only slightly and the cross-validation shows that the simulations at the unobserved locations are unbiased. Finally, the first-order autocorrelation coefficients show clear temporal coherence in the time series of the areal precipitation using the time-dependent multivariate conditional simulations, which was not the case using the time-independent univariate conditional simulations. The presented work can be easily implemented within a hydrological calibration and data assimilation

  10. (Un)determined finite regularization dependent quantum corrections: the Higgs decay into two photons and the two photon scattering examples

    CERN Document Server

    Cherchiglia, A L; Nemes, M C; Sampaio, Marcos

    2012-01-01

    We investigate the appearance of arbitrary, regularization dependent parameters introduced by divergent integrals in two a priori finite but superficially divergent amplitudes: the Higgs decay into two photons and the two photon scattering. We use a general parametrization of ultraviolet divergences which explicitates such ambiguities. Thus we separate in a consistent way using Implicit Regularization the divergent, finite and regularization dependent parts of the amplitudes which in turn are written as surface terms. We find that, although finite, these amplitudes are ambiguous before the imposition of physical conditions namely momentum routing invariance in the loops of Feynman diagrams. In the examples we study momentum routing invariance turns out to be equivalent to gauge invariance. We also discuss the results obtained by different regularizations and show how they can be reproduced within our framework allowing for a clear view on the origin of regularization ambiguities.

  11. Temporal correlation between malaria and rainfall in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Galappaththy Gawrie NL

    2008-05-01

    Full Text Available Abstract Background Rainfall data have potential use for malaria prediction. However, the relationship between rainfall and the number of malaria cases is indirect and complex. Methods The statistical relationships between monthly malaria case count data series and monthly mean rainfall series (extracted from interpolated station data over the period 1972 – 2005 in districts in Sri Lanka was explored in four analyses: cross-correlation; cross-correlation with pre-whitening; inter-annual; and seasonal inter-annual regression. Results For most districts, strong positive correlations were found for malaria time series lagging zero to three months behind rainfall, and negative correlations were found for malaria time series lagging four to nine months behind rainfall. However, analysis with pre-whitening showed that most of these correlations were spurious. Only for a few districts, weak positive (at lags zero and one or weak negative (at lags two to six correlations were found in pre-whitened series. Inter-annual analysis showed strong negative correlations between malaria and rainfall for a group of districts in the centre-west of the country. Seasonal inter-annual analysis showed that the effect of rainfall on malaria varied according to the season and geography. Conclusion Seasonally varying effects of rainfall on malaria case counts may explain weak overall cross-correlations found in pre-whitened series, and should be taken into account in malaria predictive models making use of rainfall as a covariate.

  12. A Temporal Correlation Between Electrocardiogram and Computed Tomography in Acquired Postpneumonectomy Dextrocardia.

    Science.gov (United States)

    Chhabra, Lovely; Chaudhry, Waseem

    2015-01-01

    Herein, we describe a temporal correlation between the electrocardiographic changes and the chest computed tomographic findings in a 73-year-old woman who underwent a right pneumonectomy (RP) for lung adenocarcinoma.

  13. High dynamic range multi-channel cross-correlator for single-shot temporal contrast measurement

    Science.gov (United States)

    Kon, A.; Nishiuchi, M.; Kiriyama, H.; Ogura, K.; Mori, M.; Sakaki, H.; Kando, M.; Kondo, K.

    2016-05-01

    We have developed a multi-channel cross-correlator for high dynamic range (>1010), single-shot temporal contrast measurements. The correlator utilizes a third-order crosscorrelation technique and has a reference channel, to be normalized by the measured peak intensity, and four independent optical delay lines. The measurement results of the shot-to-shot temporal contrast clearly show the intensity fluctuations of short pre-pulses at -4.5 ps and -26 ps before main pulse.

  14. Temporal Correlations of the Running Maximum of a Brownian Trajectory

    Science.gov (United States)

    Bénichou, Olivier; Krapivsky, P. L.; Mejía-Monasterio, Carlos; Oshanin, Gleb

    2016-08-01

    We study the correlations between the maxima m and M of a Brownian motion (BM) on the time intervals [0 ,t1] and [0 ,t2], with t2>t1. We determine the exact forms of the distribution functions P (m ,M ) and P (G =M -m ), and calculate the moments E {(M-m ) k} and the cross-moments E {mlMk} with arbitrary integers l and k . We show that correlations between m and M decay as √{t1/t2 } when t2/t1→∞ , revealing strong memory effects in the statistics of the BM maxima. We also compute the Pearson correlation coefficient ρ (m ,M ) and the power spectrum of Mt, and we discuss a possibility of extracting the ensemble-averaged diffusion coefficient in single-trajectory experiments using a single realization of the maximum process.

  15. Temporal Quantum Correlations in Inelastic Light Scattering from Water

    Science.gov (United States)

    Kasperczyk, Mark; de Aguiar Júnior, Filomeno S.; Rabelo, Cassiano; Saraiva, Andre; Santos, Marcelo F.; Novotny, Lukas; Jorio, Ado

    2016-12-01

    Water is one of the most prevalent chemicals on our planet, an integral part of both our environment and our existence as a species. Yet it is also rich in anomalous behaviors. Here we reveal that water is a novel—yet ubiquitous—source for quantum correlated photon pairs at ambient conditions. The photon pairs are produced through Raman scattering, and the correlations arise from the shared quantum of a vibrational mode between the Stokes and anti-Stokes scattering events. We confirm the nonclassical nature of the produced photon pairs by showing that the cross-correlation and autocorrelations of the signals violate a Cauchy-Schwarz inequality by over 5 orders of magnitude. The unprecedented degree of violating the inequality in pure water, as well as the well-defined polarization properties of the photon pairs, points to its usefulness in quantum information.

  16. Temporal correlations and structural memory effects in break junction measurements

    DEFF Research Database (Denmark)

    Magyarkuti, A.; Lauritzen, Kasper Primdal; Balogh, Zoltan Imre

    2017-01-01

    that correlations between the opening and subsequent closing traces may indicate structural memory effects in atomic-sized metallic and molecular junctions. Applying these methods on measured and simulated gold metallic contacts as a test system, we show that the surface diffusion induced flattening of the broken......-molecule junctions, we demonstrate pronounced contact memory effects and recovery of the molecule for junctions breaking before atomic chains are formed. However, if chains are pulled the random relaxation of the chain and molecule after rupture prevents opening-closing correlations....

  17. Two-photon quantum interference in plasmonics: theory and applications.

    Science.gov (United States)

    Gupta, S Dutta; Agarwal, G S

    2014-01-15

    We report perfect two-photon quantum interference with near-unity visibility in a resonant tunneling plasmonic structure in folded Kretschmann geometry. This is despite absorption-induced loss of unitarity in plasmonic systems. The effect is traced to perfect destructive interference between the squares of amplitude reflection and transmission coefficients. We further highlight yet another remarkable potential of coincidence measurements as a probe with better resolution as compared to standard spectroscopic techniques. The finer features show up in both angle resolved and frequency resolved studies.

  18. Chromophore design for large two-photon absorption

    Science.gov (United States)

    Dudley, Christopher

    2014-11-01

    Conjugated oligothiophene chromophores are compared and studied for designing large linear and nonlinear absorption cross-sections. Optical properties of chromophores synthesized by the Naval Research Laboratory are modeled to construct a design factor of merit to predict and understand two-photon absorption (TPA) designs. Computer modeling to optimize parameters to produce photo active chromophores is conducted. Geometry, π-center (electron relay) and the electron donor or acceptor groups attached to the π-centers are considered for importance in TPA. This work could serve equally well as guide for quick back of the envelop research or industrial design verifications as well as an outline for introducing computation methods to students.

  19. New two-photon based nanoscopic modalities and optogenetics

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    -matter interaction on these scales involves the combination of optimal light-sculpting [4] with the use of optimized shapes in micro-robotics structures [5]. Microfabrication processes such as two-photon photo-polymerization offer three-dimensional resolutions for creating custom-designed monolithic microstructures...... that can be equipped with optical trapping handles for convenient mechanical control using only optical forces [6]. These microstructures illustrated above can be effectively handled with simultaneous top- and side-view on our BioPhotonics Workstation to undertake six-degree-of-freedom optical actuation...

  20. Two-photon polymerization of immune cell scaffolds

    DEFF Research Database (Denmark)

    Olsen, Mark Holm

    and easy to use chip integrated migration platform. Free-form constructs with three-dimensional (3D) microporosity were fabricated by two-photon polymerization inside the closed microchannel of an injection molded commercially available polymer chip for analysis of directed cell migration. Acrylate...... also present a poly (ethylene glycol) diacrylate (PEGDA) based strategy to fabricate soft 3D hydrogel scaffolds. Our experiments with the hydrogel confirm we can control the mechanical properties and introduce biochemical cues on the surface that are recognized by fibroblast cells. Finally we present...

  1. The Nelson Model with Less Than Two Photons

    CERN Document Server

    Galtbayar, A; Yajima, K

    2002-01-01

    We study the spectral and scattering theory of the Nelson model for an atom interacting with a photon field in the subspace with less than two photons. For the free electron-photon system, the spectral property of the reduced Hamiltonian in the center of mass coordinates and the large time dynamics are determined. If the electron is under the influence of the nucleus via spatially decaying potentials, we locate the essential spectrum, prove the absence of singular continuous spectrum and the existence of the ground state, and construct wave operators giving the asymptotic dynamics.

  2. Two Photon Decays of Charmonia from Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Dudek; Robert Edwards

    2006-07-12

    We make the first calculation in lattice QCD of two-photon decays of mesons. Working in the charmonium sector, using the LSZ reduction to relate a photon to a sum of hadronic vector eigenstates, we compute form-factors in both the space-like and time-like domains for the transitions {eta}{sub c} {yields} {gamma}*{gamma}* and {chi}{sub c0} {yields} {gamma}*{gamma}*. At the on-shell point we find approximate agreement with experimental world-average values.

  3. Quantum teleportation of one- and two-photon superposition states

    Institute of Scientific and Technical Information of China (English)

    李英; 张天才; 张俊香; 谢常德

    2003-01-01

    Quantum teleportation of one- and two-photon superposition states based on EPR entanglement of continuouswave two-mode squeezed state is discussed. The fidelities of teleportation are deduced for two different input quantum states. The dependence of the fidelity on the parameters of EPR entanglement and the gain of the classical channels are shown numerically. Comparing with the teleportation of Fock state and coherent state, it is pointed out that for given EPR entanglement and classical gain, the higher the nonclassicality of the input state, the lower the accessible fidelity of teleportation.

  4. Spectral Features of FM Spectroscopy of Two-Photon Interactions

    Institute of Scientific and Technical Information of China (English)

    夏慧荣; JohnL.Hall

    1994-01-01

    The spectral features of FM two-photon resonant interaction processes have been calculated for five different frequency modulation versions of counter-propagating incident fields. It is found that the proposed new modulation version (case b in the text) provides novel spectral features for a completely canceled absorption and a sharp dispersion shape at the fundamental beat note. Moreover, its absorption feature appears at the second harmonic of the RF modulation frequency generated by the joint modes via six interaction pathways without mutual phase shift. Such features persist even when the effects of the second-order sidebands of the incident fields are taken into account. Application potentials are emphasized.

  5. Inclusive $D*^{+-}$ Production in Two-Photon Collisions at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, Michael; Doria, A; Dova, M T; Duchesneau, D; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, Pierre; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van, R T; De Walle, M; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zilizi, G; Zimmermann, B; Zöller, M

    2002-01-01

    Inclusive D^{*+-} production in two-photon collisions is studied with the L3 detector at LEP, using 683 pb^{-1} of data collected at centre-of-mass energies from 183 to 208 GeV. Differential cross sections are determined as functions of the transverse momentum and pseudorapidity of the D^{*+-} mesons in the kinematic region 1 GeV e^+e^-D^{*+-}X)$ in this kinematical region is measured and the sigma(e^+e^- ---> e^+e^- cc{bar}X) cross section is derived. The measurements are compared with next-to-leading order perturbative QCD calculations.

  6. Two-photon photoassociative spectroscopy of ultracold 88-Sr

    CERN Document Server

    de Escobar, Y N Martinez; Pellegrini, P; Nagel, S B; Traverso, A; Yan, M; Côté, R; Killian, T C

    2008-01-01

    We present results from two-photon photoassociative spectroscopy of the least-bound vibrational level of the X$^1\\Sigma_g^+$ state of the $^{88}$Sr$_2$ dimer. Measurement of the binding energy allows us to determine the s-wave scattering length, $a_{88}=-1.4(6) a_0$. For the intermediate state, we use a bound level on the metastable $^1S_0$-$^3P_1$ potential, which provides large Franck-Condon transition factors and narrow one-photon photoassociative lines that are advantageous for observing quantum-optical effects such as Autler-Townes resonance splittings.

  7. Two-photon photoassociative spectroscopy of ultracold Sr88

    Science.gov (United States)

    Martinez de Escobar, Y. N.; Mickelson, P. G.; Pellegrini, P.; Nagel, S. B.; Traverso, A.; Yan, M.; Côté, R.; Killian, T. C.

    2008-12-01

    We present results from two-photon photoassociative spectroscopy of the least-bound vibrational level of the XΣg+1 state of the Sr288 dimer. Measurement of the binding energy allows us to determine the s -wave scattering length a88=-1.4(6)a0 . For the intermediate state, we use a bound level on the metastable S01-P13 potential, which provides large Franck-Condon transition factors and narrow one-photon photoassociative lines that are advantageous for observing quantum-optical effects such as Autler-Townes resonance splittings.

  8. Sensitivity of Average Annual Runoff to Spatial Variability and Temporal Correlation of Rainfall.

    Science.gov (United States)

    Babin, Steven M.

    1995-08-01

    This paper examines the sensitivity of annual area mean runoff calculations to the effects of spatial variability and temporal correlation of rainfall. The model used is based upon the hypothesis that the annual water balance is determined only by rainfall, potential evapotranspiration, and soil water storage. A simple bucket hydrology model with a seasonally varying potential evapotranspiration is used with rainfall data measured at several sites on the Delmarva Peninsula. Annual area mean runoffs are calculated for three cases: 1) actual spatial variability among the rain gauge sites and temporal correlation between consecutive 1-min rainfall amounts are maintained (the actual case); 2) actual spatial variability among the sites is maintained but temporal correlation between the consecutive 1-min rainfall amounts is minimized (the site-shuffled case); and 3) both spatial variability and temporal correlation are ignored (the area-averaged case). The actual case represents the baseline for comparison with the other two cases. The annual a' mean runoffs show little sensitivity to spatial variability and temporal correlation for this model. Therefore, if finite soil permeability effects are ignored in favor of simple water storage capacity, then spatial variability and temporal correlation of rainfall appear to have little impact on the annual area mean runoff for the data considered in this study.

  9. Atom-atom entanglement generated at early times by two-photon emission

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Juan; Sabin, Carlos [Instituto de Fisica Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain)], E-mail: leon@imaff.cfmac.csic.es, E-mail: csl@imaff.cfmac.csic.es

    2009-07-15

    We analyze entanglement generation between a pair of neutral two-level atoms that are initially excited in a common electromagnetic vacuum. The nonlocal correlations that appear due to the interaction with the field can become entanglement when the field state is known. We distinguish two different situations: in the first, the field remains in the vacuum state and in the second, two photons are present in the final state. In both cases, we study the dependence of the entanglement on time and interatomic distance, at ranges related with locality issues.

  10. A superradiant laser based on two-photon Raman transition of caesium atoms

    CERN Document Server

    Liu, Pengfei

    2013-01-01

    We propose a superradiant laser based on two-photon Raman transition of caesium-133 atoms which collectively emit photons on an ultra narrow transition into the mode of a low Q resonator known as optical bad-cavity regime. The spin-spin correlation which characterizes the collective effect is demonstrated. We theoretically predict that the optical radiation has an extremely narrow linewidth in the 98 (1) *10-2 mHz range, smaller than the transition itself due to collective effects, and a power level of 7 (1)*10-10 W is possible, which can provide a possible new way to realize an optical clock with a millihertz linewidth.

  11. One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins.

    OpenAIRE

    2000-01-01

    We have used one- (OPE) and two-photon (TPE) excitation with time-correlated single-photon counting techniques to determine time-resolved fluorescence intensity and anisotropy decays of the wild-type Green Fluorescent Protein (GFP) and two red-shifted mutants, S65T-GFP and RSGFP. WT-GFP and S65T-GFP exhibited a predominant approximately 3 ns monoexponential fluorescence decay, whereas for RSGFP the main lifetimes were approximately 1.1 ns (main component) and approximately 3.3 ns. The anisotr...

  12. All Optical Three Dimensional Spatio-Temporal Correlator for Automatic Event Recognition Using Multiphoton Atomic System

    CERN Document Server

    Monjur, Mehjabin S; Shahriar, Selim M

    2015-01-01

    In this paper, we model and show the simulation results of a three-dimensional spatio-temporal correlator (STC) that combines the technique of holographic correlation and photon echo based temporal pattern recognition. The STC is shift invariant in space and time. It can be used to recognize rapidly an event (e.g., a short video clip) that may be present in a large video file, and determine the temporal location of the event. It can also determine multiple matches automatically if the event occurs more than once. We show how to realize the STC using Raman transitions in Rb atomic vapor.

  13. NIRS-BASED CORTICAL ACTIVATION ANALYSIS BY TEMPORAL CROSS CORRELATION

    Directory of Open Access Journals (Sweden)

    Raul Fernandez-Rojas

    2016-02-01

    Full Text Available In this study we present a method of signal processing to determine dominant channels in near infrared spectroscopy (NIRS. To compare measuring channels and identify delays between them, cross correlation is computed. Furthermore, to find out possible dominant channels, a visual inspection was performed. The outcomes demonstrated that the visual inspection exhibited evoked-related activations in the primary somatosensory cortex (S1 after stimulation which is consistent with comparable studies and the cross correlation study discovered dominant channels on both cerebral hemispheres. The analysis also showed a relationship between dominant channels and adjacent channels. For that reason, our results present a new method to identify dominant regions in the cerebral cortex using near-infrared spectroscopy. These findings have also implications in the decrease of channels by eliminating irrelevant channels for the experiment.

  14. Two-Photon Holographic Stimulation of ReaChR

    Science.gov (United States)

    Chaigneau, Emmanuelle; Ronzitti, Emiliano; Gajowa, Marta A.; Soler-Llavina, Gilberto J.; Tanese, Dimitrii; Brureau, Anthony Y. B.; Papagiakoumou, Eirini; Zeng, Hongkui; Emiliani, Valentina

    2016-01-01

    Optogenetics provides a unique approach to remotely manipulate brain activity with light. Reaching the degree of spatiotemporal control necessary to dissect the role of individual cells in neuronal networks, some of which reside deep in the brain, requires joint progress in opsin engineering and light sculpting methods. Here we investigate for the first time two-photon stimulation of the red-shifted opsin ReaChR. We use two-photon (2P) holographic illumination to control the activation of individually chosen neurons expressing ReaChR in acute brain slices. We demonstrated reliable action potential generation in ReaChR-expressing neurons and studied holographic 2P-evoked spiking performances depending on illumination power and pulse width using an amplified laser and a standard femtosecond Ti:Sapphire oscillator laser. These findings provide detailed knowledge of ReaChR's behavior under 2P illumination paving the way for achieving in depth remote control of multiple cells with high spatiotemporal resolution deep within scattering tissue. PMID:27803649

  15. Inclusive D*(+/-) production in two photon collisions at LEP

    CERN Document Server

    Prokofiev, Denis Olegovich

    2001-01-01

    In this thesis I present my results on the measurement of the open charm production in two-photon collision events done with the L3 detector at Large Electron Positron machine (LEP). The data sample was collected from 1997 through 2000 at center-of-mass energies ranging from 183 GeV to 209 GeV, corresponding to a total integrated luminosity of 683.4pb −1. The open charm production in two-photon collision events extrapolated to the full phase space is estimated to be: s&parl0;e+e-&rarrr;e +e-cc&d1;X&parr0;=9 23±69±109±222pb. The differential cross sections d s /dpT(D*±) and d s /d:η(D*±): are also measured as functions of transverse momentum pT(D*±) and the absolute value of pseudorapidity :η(D*±):, respectively. A fit to the data estimating the relative contributions of Direct and Resolved open charm production mechanisms is performed, giving (28.7 ± 5.6)% and (71.3 ± 8.8)%, respectively. Using those relative fractions, the Direct and Resolved process cross sections yield: s&p...

  16. High-order dispersion effects in two-photon interference

    Science.gov (United States)

    Mazzotta, Zeudi; Cialdi, Simone; Cipriani, Daniele; Olivares, Stefano; Paris, Matteo G. A.

    2016-12-01

    Two-photon interference and Hong-Ou-Mandel (HOM) effect are relevant tools for quantum metrology and quantum information processing. In optical coherence tomography, the HOM effect is exploited to achieve high-resolution measurements with the width of the HOM dip being the main parameter. On the other hand, applications like dense coding require high-visibility performance. Here we address high-order dispersion effects in two-photon interference and study, theoretically and experimentally, the dependence of the visibility and the width of the HOM dip on both the pump spectrum and the downconverted photon spectrum. In particular, a spatial light modulator is exploited to experimentally introduce and manipulate a custom phase function to simulate the high-order dispersion effects. Overall, we show that it is possible to effectively introduce high-order dispersion effects on the propagation of photons and also to compensate for such effect. Our results clarify the role of the different dispersion phenomena and pave the way for optimization procedures in quantum technological applications involving PDC photons and optical fibers.

  17. Nonresonant two-photon transitions in length and velocity gauges

    Science.gov (United States)

    Jentschura, U. D.

    2016-08-01

    We reexamine the invariance of two-photon transition matrix elements and corresponding two-photon Rabi frequencies under the "gauge" transformation from the length to the velocity gauge. It is shown that gauge invariance, in the most general sense, only holds at exact resonance, for both one-color as well as two-color absorption. The arguments leading to this conclusion are supported by analytic calculations which express the matrix elements in terms of hypergeometric functions, and ramified by a "master identity" which is fulfilled by off-diagonal matrix elements of the Schrödinger propagator under the transformation from the velocity to the length gauge. The study of the gauge dependence of atomic processes highlights subtle connections between the concept of asymptotic states, the gauge transformation of the wave function, and infinitesimal damping parameters for perturbations and interaction Hamiltonians that switch off the terms in the infinite past and future [of the form exp(-ɛ |t |)] . We include a pertinent discussion.

  18. Simultaneous two-photon excitation of photodynamic therapy agents

    Science.gov (United States)

    Wachter, Eric A.; Partridge, W. P., Jr.; Fisher, Walter G.; Dees, Craig; Petersen, Mark G.

    1998-07-01

    The spectroscopic and photochemical properties of several photosensitive compounds are compared using conventional single-photon excitation (SPE) and simultaneous two-photon excitation (TPE). TPE is achieved using a mode-locked titanium:sapphire laser, the near infrared output of which allows direct promotion of non-resonant TPE. Excitation spectra and excited state properties of both type I and type II photodynamic therapy (PDT) agents are examined. In general, while SPE and TPE selection rules may be somewhat different, the excited state photochemical properties are equivalent for both modes of excitation. In vitro promotion of a two-photon photodynamic effect is demonstrated using bacterial and human breast cancer models. These results suggest that use of TPE may be beneficial for PDT, since the technique allows replacement of visible or ultraviolet excitation with non- damaging near infrared light. Further, a comparison of possible excitation sources for TPE indicates that the titanium:sapphire laser is exceptionally well suited for non- linear excitation of PDT agents in biological systems due to its extremely short pulse width and high repetition rate; these features combine to effect efficient PDT activation with minimal potential for non-specific biological damage.

  19. A [111]-Cut Si Hemisphere Two-Photon Response Photodetector

    Institute of Scientific and Technical Information of China (English)

    LIU Xiu-Huan; CHEN Zhan-Guo; JIA Gang; WANG Hai-Yan; GAO Yan-Jun; LI Yi1

    2011-01-01

    Properties of two-photon response in a [lll]-cut nearly-intrinsic Si hemisphere photodetector are studied. The measured photocurrent of the photodetector responding to the 1.32μm continuous wave laser shows a quadratic dependence on the coupled optical power and is saturated with the bias voitage. Also, the photocurrent is independent of polarization. Such properties are in good agreement with the theory of two-photon absorption. The isotropic photocurrent generated from the [lll]-cut Si hemisphere is compared to the anisotropic one induced in the [110]-cut Si sample and the ratio of Xxxxx /Xxxyy for silicon performing at 1.32μm is calculated to be 2.4 via the fitted function of the anisotropic photocurrent from the [110]-cut sample.%Properties of two-photon response in a [111]-cut nearly-intrinsic Si hemisphere photodetector are studied.The measured photocurrent of the photodetector responding to the 1.32 μm continuous wave laser shows a quadratic dependence on the coupled optical power and is saturated with the bias voltage.Also,the photocurrent is independent of polarization.Such properties are in good agreement with the theory of two-photon absorption.The isotropic photocurrent generated from the [111]-cut Si hemisphere is compared to the anisotropic one induced in the [110]-cut Si sample and the ratio of Xxxxx /Xxxyy for silicon performing at 1.32μm is calculated to be 2.4via the fitted function of the anisotropic photocurrent from the [110]-cut sample.Silicon materials have a variety of applications in microelectronics and silicon optoelectronics and are still attractive to relevant researchers.Commercial Si photodetectors are largely designed based on singlephoton absorption (SPA).However,nonlinear characteristics have been exhibited in silicon devices.Specifically,two-photon absorption (TPA) has attracted much attention in such devices of Si p-n and p-i-n photodiodes,Si waveguides and Si avalanche diodes,etc.for the autocorrelation measurements of

  20. Two-photon double ionization of neon using an intense attosecond pulse train

    CERN Document Server

    Manschwetus, B; Campi, F; Maclot, S; Coudert-Alteirac, H; Lahl, J; Wikmark, H; Rudawski, P; Heyl, C M; Farkas, B; Mohamed, T; L'Huillier, A; Johnsson, P

    2016-01-01

    We present the first demonstration of two-photon double ionization of neon using an intense extreme ultraviolet (XUV) attosecond pulse train (APT) in a photon energy regime where both direct and sequential mechanisms are allowed. For an APT generated through high-order harmonic generation (HHG) in argon we achieve a total pulse energy close to 1 $\\mu$J, a central energy of 35 eV and a total bandwidth of $\\sim30$ eV. The APT is focused by broadband optics in a neon gas target to an intensity of $3\\cdot10^{12} $W$\\cdot$cm$^{-2}$. By tuning the photon energy across the threshold for the sequential process the double ionization signal can be turned on and off, indicating that the two-photon double ionization predominantly occurs through a sequential process. The demonstrated performance opens up possibilities for future XUV-XUV pump-probe experiments with attosecond temporal resolution in a photon energy range where it is possible to unravel the dynamics behind direct vs. sequential double ionization and the asso...

  1. Properties of two-photon pumped cavity lasing in novel dye doped solid matrices

    Energy Technology Data Exchange (ETDEWEB)

    He, G.S.; Bhawalkar, J.D.; Zhao, C.; Prasad, P.N. [State Univ. of New York, Buffalo, NY (United States). Dept. of Chemistry

    1996-05-01

    Two-photon pumped frequency upconversion cavity lasing at {approximately}600 nm is accomplished in three types of dye-doped solid rods pumped with {approximately}10 ns and 1.06-{micro}m IR laser pulses. The dopant is a new dye, trans-4-[p-(N-ethyl-N-(hydroxyethyl)amino)styryl]-N-methylpyridinium tetraphenylborate, abbreviated as ASPT, which possesses a greater two-photon absorption cross section and stronger upconversion fluorescence emission than common commercial dyes (such as rhodamine). Three different materials were chosen as solid matrices: poly(2-hydroxyethyl methacrylate), VYCOR porous glass, and sol-gel glass. Using a Q-switched Nd:YAG pulse laser as the pump source, strong cavity lasing could be achieved in these three ASPT doped solid rods as well as in ASPT solution in a liquid cell. The spectral, temporal, and spatial characteristics of the cavity lasing output have been systematically investigated. The measured output-input characteristics, lasing lifetime, and damage threshold for the three different rods are presented.

  2. Measurement of Ultra-Short Single-Photon Pulse Duration with Two-Photon Interference

    Institute of Scientific and Technical Information of China (English)

    LV Fan; SUN Fang-Wen; ZOU Chang-Ling; HAN Zheng-Fu; GUO Guang-Can

    2011-01-01

    We proposed a protocol of measuring the duration of ultra-short single-photon pulse with two-photon interference.The pulse duration can be obtained from the width of the visibility of two-photon Hong-Ou-Mandel interference or the indistinguishability of the two photons. Moreover, the shape of a single-photon pulse can be measured with ultra-short single-photon pulses through the two-photon interference.%@@ We proposed a protocol of measuring the duration of ultra-short single-photon pulse with two-photon interference.The pulse duration can be obtained from the width of the visibility of two-photon Hong-Ou-Mandel interference or the indistinguishability of the two photons.Moreover, the shape of a single-photon pulse can be measured with ultra-short single-photon pulses through the two-photon interference.

  3. Temporal mesonic correlators at NLO for any quark mass

    CERN Document Server

    Burnier, Y

    2013-01-01

    We present NLO results for thermal imaginary-time correlators in the vector and scalar channels as a function of the quark mass. The range of quark masses for which a non-relativistic approximation works in the temperature range considered is estimated, and charm quarks turn out to be a borderline case. Comparing with simulation data from fine lattices, we find good agreement in the vector channel but a substantial discrepancy in the scalar one. An explanation for the discrepancy is suggested in terms of physics of the quark-antiquark threshold region. Perturbative predictions for the bottom scalar spectral function around the threshold are also briefly reviewed.

  4. Temporal intensity correlation of light scattered by a hot atomic vapor

    CERN Document Server

    Dussaux, A; Guerin, W; Alibart, O; Tanzilli, S; Vakili, F; Kaiser, R

    2016-01-01

    We present temporal intensity correlation measurements of light scattered by a hot atomic vapor. Clear evidence of photon bunching is shown at very short time-scales (ns) imposed by the Doppler broadening of the hot vapor. Moreover, we demonstrate that some relevant information about the scattering process, such as the ratio of single to multiple scattering, can be deduced from the measured intensity correlation function. These measurements confirm the interest of temporal intensity correlation measurements to access non-trivial spectral features, with potential applications in astrophysics.

  5. On temporal correlations in high-resolution frequency counting

    CERN Document Server

    Dunker, Tim; Rønningen, Ole Petter

    2016-01-01

    We analyze noise properties of time series of frequency data from different counting modes of a Keysight 53230A frequency counter. We use a 10 MHz reference signal from a passive hydrogen maser connected via phase-stable Huber+Suhner Sucoflex 104 cables to the reference and input connectors of the counter. We find that the high resolution gap-free (CONT) frequency counting process imposes long-term correlations in the output data, resulting in a modified Allan deviation that is characteristic of random walk phase noise. Equally important, the CONT mode results in a frequency bias. In contrast, the counter's undocumented raw continuous mode (RCON) yields unbiased frequency stability estimates with white phase noise characteristics, and of a magnitude consistent with the counter's 20 ps single-shot resolution. Furthermore, we demonstrate that a 100-point running average filter in conjunction with the RCON mode yields resolution enhanced frequency estimates with flicker phase noise characteristics. For instance,...

  6. Electromagnetically induced absorption and transparency in an optical-rf two-photon coupling configuration

    Energy Technology Data Exchange (ETDEWEB)

    Fu Guangsheng [College of Physical Science and Technology, Hebei University, Baoding 071002 (China); Li Xiaoli [College of Physical Science and Technology, Hebei University, Baoding 071002 (China)], E-mail: xiaolixiaoli001@yahoo.com.cn; Zhuang Zhonghong; Zhang Lianshui; Yang Lijun; Li Xiaowei; Han Li [College of Physical Science and Technology, Hebei University, Baoding 071002 (China); Manson, Neil B.; Wei Changjiang [Laser Physics Center, Research School of Physical Sciences and Engineering, Australian Nation University, Canberra, ACT 0200 (Australia)

    2008-01-07

    We study electromagnetically induced absorption (EIA) and transparency (EIT) in an optical-rf two-photon coupling configuration. It is shown that the interference effect due to interacting dark resonances results in an EIA for a resonant two-photon coupling and this EIA is observed to evolve into an EIT when there is a detuning in the two-photon coupling.

  7. Effects of temporal correlations on cascades: Threshold models on temporal networks

    CERN Document Server

    Backlund, Ville-Pekka; Pan, Raj Kumar

    2014-01-01

    A person's decision to adopt an idea or product is often driven by the decisions of peers, mediated through a network of social ties. A common way of modeling adoption dynamics is to use threshold models, where a node may become an adopter given a high enough rate of contacts with adopted neighbors. We study the dynamics of threshold models that take both the network topology and the timings of contacts into account, using empirical contact sequences as substrates. The models are designed such that adoption is driven by the number of contacts with different adopted neighbors within a chosen time. We find that while some networks support cascades leading to network-level adoption, some do not: the propagation of adoption depends on several factors from the frequency of contacts to burstiness and timing correlations of contact sequences. More specifically, burstiness is seen to suppress cascades sizes when compared to randomised contact timings, while timing correlations between contacts on adjacent links facil...

  8. Clinical multiphoton tomography and clinical two-photon microendoscopy

    Science.gov (United States)

    König, Karsten; Bückle, Rainer; Weinigel, Martin; Elsner, Peter; Kaatz, Martin

    2009-02-01

    We report on applications of high-resolution clinical multiphoton tomography based on the femtosecond laser system DermaInspectTM with its flexible mirror arm in Australia, Asia, and Europe. Applications include early detection of melanoma, in situ tracing of pharmacological and cosmetical compounds including ZnO nanoparticles in the epidermis and upper dermis, the determination of the skin aging index SAAID as well as the study of the effects of anti-aging products. In addition, first clinical studies with novel rigid high-NA two-photon 1.6 mm GRIN microendoscopes have been conducted to study the effect of wound healing in chronic wounds (ulcus ulcera) as well as to perform intrabody imaging with subcellular resolution in small animals.

  9. Two-Photon Micromaser with Initial Atomic Coherence

    Institute of Scientific and Technical Information of China (English)

    SUN Wei-Hui; DU Si-De; CHEN Xiao-Shuang

    2005-01-01

    @@ We investigate the quantum dynamics ora two-photon micromaser pumped by atoms injected in the superpositionstate of the upper and intermediate levels. We simulate a master equation governing the system by the MonteCarlo wavefunction approach and analyse the steady-state behaviour as a function of the atomic transit time.The atomic coherence can effectively enhance the intensity and sub-Poissonian of the cavity field as comparedwith the atomic mixture. It is also discovered that the phase of the cavity field can be shifted by adjusting thedetuning between the atom and field. This result shows that it is possible to manipulate the phase of the cavityfield by detuning, due to atomic coherence.

  10. Two-photon resonant, stimulated processes in krypton and xenon

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.C.

    1988-11-01

    Both on-axis and conical emissions have been observed following two-photon pumping of the 5p states of krypton and the 6p', 7p, 8p, and 4f states of xenon. In the former case, coherent emissions from the 5p states to the 5s are observed, and in the latter case, many p..-->..s, d..-->..p, and f..-->..d cascade emissions are observed. By analogy to the well-studied alkali and alkaline earth examples, the emissions are discussed in terms of amplified spontaneous emission (ASE), stimulated hyper-Raman scattering, and parametric four-wave mixing. The physical processes responsible for the conical emission and for intensity anomalies in the xenon p..-->..s emissions are not understood at present. Interference effects due to coherent cancellation between competing excitation pathways may be occurring. 4 refs., 3 figs.

  11. Whole brain imaging with Serial Two-Photon Tomography

    Directory of Open Access Journals (Sweden)

    Stephen P Amato

    2016-03-01

    Full Text Available Imaging entire mouse brains at submicron resolution has historically been a challenging undertaking and largely confined to the province of dedicated atlasing initiatives. The has limited systematic investigations into important areas of neuroscience, such as neural circuits, brain mapping and neurodegeneration. In this paper, we describe in detail Serial Two-Photon (STP tomography, a robust, reliable method for imaging entire brains with histological detail. We provide examples of how the basic methodology can be extended to other imaging modalities, such as optical coherence tomography, in order to provide unique contrast mechanisms. Furthermore we provide a survey of the research that STP tomography has enabled in the field of neuroscience, provide examples of how this technology enables quantitative whole brain studies, and discuss the current limitations of STP tomography-based approaches

  12. Measurement of bottom quark production in two photon collisions

    CERN Document Server

    Saremi, Sepehr

    2001-01-01

    The cross section for bottom quark production in two-photon collisions, sigma( e+e- → e+e- bb¯X), is measured for the first time. The measurement is performed with the L3 detector at the Large Electron Positron (LEP) collider at the European Center for Nuclear and Particle Physics (CERN). The data corresponds to 410 pb-1 taken at center-of-mass energies from 189 GeV to 202 GeV. Hadrons containing a bottom quark are identified by detecting electrons or muons from their semi-leptonic decays. The measured cross section is in excess of the Next to Leading Order QCD prediction by a factor of three.

  13. High contrast two-photon imaging of fingermarks

    Science.gov (United States)

    Stoltzfus, Caleb R.; Rebane, Aleksander

    2016-04-01

    Optically-acquired fingermarks are widely used as evidence across law enforcement agencies as well as in the courts of law. A common technique for visualizing latent fingermarks on nonporous surfaces consists of cyanoacrylate fuming of the fingerprint material, followed by impregnation with a fluorescent dye, which under ultra violet (UV) illumination makes the fingermarks visible and thus accessible for digital recording. However, there exist critical circumstances, when the image quality is compromised due to high background scattering, high auto-fluorescence of the substrate material, or other detrimental photo-physical and photo-chemical effects such as light-induced damage to the sample. Here we present a novel near-infrared (NIR), two-photon induced fluorescence imaging modality, which significantly enhances the quality of the fingermark images, especially when obtained from highly reflective and/or scattering surfaces, while at the same time reducing photo-damage to sensitive forensic samples.

  14. Anomalous two-photon spectral features in warm rubidium vapor

    Science.gov (United States)

    Perrella, C.; Light, P. S.; Milburn, T. J.; Kielpinski, D.; Stace, T. M.; Luiten, A. N.

    2016-09-01

    We report observation of anomalous fluorescence spectral features in the environs of a two-photon transition in a rubidium vapor when excited with two different wavelength lasers that are both counterpropagating through the vapor. These features are characterized by an unusual trade-off between the detunings of the driving fields. Three different hypothetical processes are presented to explain the observed spectra: a simultaneous three-atom and four-photon collision, a four-photon excitation involving a light field produced via amplified spontaneous emission, and population pumping perturbing the expected steady-state spectra. Numerical modeling of each hypothetical process is presented, supporting the population pumping process as the most plausible mechanism.

  15. Two-photon transition form factor of c ¯ quarkonia

    Science.gov (United States)

    Chen, Jing; Ding, Minghui; Chang, Lei; Liu, Yu-xin

    2017-01-01

    The two-photon transition of c ¯c quarkonia are studied within a covariant approach based on the consistent truncation scheme of the quantum chromodynamics Dyson-Schwinger equation for the quark propagator and the Bethe-Salpeter equation for the mesons. We find the decay widths of ηc→γ γ and χc 0 ,2→γ γ in good agreement with experimental data. The obtained transition form factor of ηc→γ γ* for a wide range of spacelike photon-momentum-transfer squared is also in agreement with the experimental findings of the BABAR experiment. As a by-product, the decay widths of ηb,χb 0 ,2→γ γ and the transition form factor of ηb,χc 0 ,b 0→γ γ* are predicted, which await experimental testing.

  16. In-vivo two-photon imaging of the honey bee antennal lobe

    CERN Document Server

    Haase, Albrecht; Trona, Federica; Anfora, Gianfranco; Vallortigara, Giorgio; Antolini, Renzo; Vinegoni, Claudio

    2010-01-01

    Due to the honey bee's importance as a simple neural model, there is a great need for new functional imaging modalities. Herein we report on the use of two-photon microscopy for in-vivo functional and morphological imaging of the honey bee's olfactory system focusing on its primary centers, the antennal lobes (ALs). Our imaging platform allows for simultaneously obtaining both morphological measurements of the AL and in-vivo calcium recording of neural activities. By applying external odor stimuli to the bee's antennas, we were able to record the characteristic odor response maps. Compared to previous works where conventional fluorescence microscopy is used, our approach offers all the typical advantages of multi-photon imaging, providing substantial enhancement in both spatial and temporal resolutions while minimizing photo-damages and autofluorescence contribution with a four-fold improvement in the functional signal. Moreover, the multi-photon associated extended penetration depth allows for functional ima...

  17. Two Photon Induced Lasing in 1550 nm Quantum Dash Optical Gain Media

    DEFF Research Database (Denmark)

    Capua, Amir; Saal, Abigael; Reithmaier, Johann Peter

    2011-01-01

    We report on a unique lasing mechanism observed in quantum dash Gain media. While the gain media is electrically pumped below lasing threshold, a strong optical pulse excites carriers by two photon absorption into high energy states of the quantum dashes and wetting layer. Fast inter band carrier...... by the XFROG scheme is performed. We show the lasing mechanism to be governed mainly by the wetting layer dynamics and extract a direct measurement of the carrier-carrier scattering time constant....... relaxation and capture processes into the ground states of the quantum dashes result in increased gain followed by lasing at the gain peak irrespective of the stimulating pulse wavelength. The temporal response of the lasing line is examined on a 40 GHz scope and full characterization of the pulse...

  18. Two-photon microscopy with diffractive optical elements and spatial light modulators

    Directory of Open Access Journals (Sweden)

    Brendon O Watson

    2010-09-01

    Full Text Available Two-photon microscopy is often performed at slow frame rates, due to the need to serially scan all points in a field of view with a single laser beam. To overcome this problem, we have developed two optical methods that split and multiplex a laser beam across the sample. In the first method a diffractive optical element (DOE generates a fixed number of beamlets that are scanned in parallel, resulting in a corresponding increase in speed, or in signal-to-noise ratio, in time-lapse measurements. The second method uses a computer-controlled spatial light modulator (SLM, to generate any arbitrary spatio-temporal light pattern. With an SLM one can image or photostimulate any predefined region of the image, such as neurons or dendritic spines. In addition, SLMs can be used to mimic a large number of optical transfer functions, including light path corrections or as adaptive optical devices.

  19. Temporal pole activity during perception of sad faces, but not happy faces, correlates with neuroticism trait.

    Science.gov (United States)

    Jimura, Koji; Konishi, Seiki; Miyashita, Yasushi

    2009-03-27

    It is known that the temporal cortex is involved in perception of emotional facial expressions, and the involvement is relatively independent of the emotional valence of those expressions. The present study revealed a valence-dependent aspect of the temporal cortex through individual differences analyses involving the neuroticism trait, one of the representative affective personality traits. Functional MRI was administered while subjects classified expressions of faces, and neuroticism scores were obtained from individual subjects. Significant brain activity was observed in the temporal pole (TP) during perception of both happy and sad expressions relative to neutral expressions. Correlational analyses revealed that TP activity during perception of sad expressions, but not happy expressions, correlated with the neuroticism scores. These results demonstrate differential roles for the temporal cortex in perception of happy and sad faces, and suggest that TP recruitment during understanding of negative emotions is dependent on the personality of the individuals.

  20. Two-photon time-lapse microscopy of BODIPY-cholesterol reveals anomalous sterol diffusion in chinese hamster ovary cells

    Directory of Open Access Journals (Sweden)

    Lund Frederik W

    2012-10-01

    Full Text Available Abstract Background Cholesterol is an important membrane component, but our knowledge about its transport in cells is sparse. Previous imaging studies using dehydroergosterol (DHE, an intrinsically fluorescent sterol from yeast, have established that vesicular and non-vesicular transport modes contribute to sterol trafficking from the plasma membrane. Significant photobleaching, however, limits the possibilities for in-depth analysis of sterol dynamics using DHE. Co-trafficking studies with DHE and the recently introduced fluorescent cholesterol analog BODIPY-cholesterol (BChol suggested that the latter probe has utility for prolonged live-cell imaging of sterol transport. Results We found that BChol is very photostable under two-photon (2P-excitation allowing the acquisition of several hundred frames without significant photobleaching. Therefore, long-term tracking and diffusion measurements are possible. Two-photon temporal image correlation spectroscopy (2P-TICS provided evidence for spatially heterogeneous diffusion constants of BChol varying over two orders of magnitude from the cell interior towards the plasma membrane, where D ~ 1.3 μm2/s. Number and brightness (N&B analysis together with stochastic simulations suggest that transient partitioning of BChol into convoluted membranes slows local sterol diffusion. We observed sterol endocytosis as well as fusion and fission of sterol-containing endocytic vesicles. The mobility of endocytic vesicles, as studied by particle tracking, is well described by a model for anomalous subdiffusion on short time scales with an anomalous exponent α ~ 0.63 and an anomalous diffusion constant of Dα = 1.95 x 10-3 μm2/sα. On a longer time scale (t > ~5 s, a transition to superdiffusion consistent with slow directed transport with an average velocity of v ~ 6 x 10-3 μm/s was observed. We present an analytical model that bridges the two regimes and fit this model to vesicle

  1. Prediction of spatio-temporal patterns of neural activity from pairwise correlations

    OpenAIRE

    Marre, Olivier; Boustani, Sami El; Fregnac, Yves; Destexhe, Alain

    2009-01-01

    We designed a model-based analysis to predict the occurrence of population patterns in distributed spiking activity. Using a maximum entropy principle with a Markovian assumption, we obtain a model that accounts for both spatial and temporal pairwise correlations among neurons. This model is tested on data generated with a Glauber spin-glass system and is shown to correctly predict the occurrence probabilities of spatio-temporal patterns significantly better than Ising models taking into acco...

  2. Two-color two-photon excited fluorescence of indole: Determination of wavelength-dependent molecular parameters

    Energy Technology Data Exchange (ETDEWEB)

    Herbrich, Sebastian; Al-Hadhuri, Tawfik; Gericke, Karl-Heinz, E-mail: k.Gericke@tu-bs.de [Institut für Physikalische und Theoretische Chemie, TU Braunschweig, Hans-Sommer-Straße 10, 38106 Braunschweig (Germany); Shternin, Peter S., E-mail: pshternin@gmail.com; Vasyutinskii, Oleg S., E-mail: osv@pms.ioffe.ru [Ioffe Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); St. Petersburg Polytechnic University, Politekhnicheskaya 29, St. Petersburg 195251 (Russian Federation); Smolin, Andrey G. [Ioffe Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation)

    2015-01-14

    We present a detailed study of two-color two-photon excited fluorescence in indole dissolved in propylene glycol. Femtosecond excitation pulses at effective wavelengths from 268 to 293.33 nm were used to populate the two lowest indole excited states {sup 1}L{sub a} and {sup 1}L{sub b} and polarized fluorescence was then detected. All seven molecular parameters and the two-photon polarization ratio Ω containing information on two-photon absorption dynamics, molecular lifetime τ{sub f}, and rotation correlation time τ{sub rot} have been determined from experiment and analyzed as a function of the excitation wavelength. The analysis of the experimental data has shown that {sup 1}L{sub b}–{sup 1}L{sub a} inversion occurred under the conditions of our experiment. The two-photon absorption predominantly populated the {sup 1}L{sub a} state at all excitation wavelengths but in the 287–289 nm area which contained an absorption hump of the {sup 1}L{sub b} state 0-0 origin. The components of the two-photon excitation tensor S were analyzed giving important information on the principal tensor axes and absorption symmetry. The results obtained are in a good agreement with the results reported by other groups. The lifetime τ{sub f} and the rotation correlation time τ{sub rot} showed no explicit dependence on the effective excitation wavelength. Their calculated weighted average values were found to be τ{sub f} = 3.83 ± 0.14 ns and τ{sub rot} = 0.74 ± 0.06 ns.

  3. Theoretical analysis on two-photon absorption spectroscopy in a confined four-level atomic system

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan Li; Jintao Bai; Li Li; Yanpeng Zhang; Xun Hou

    2009-01-01

    We investigate theoretically two-photon absorption spectroscopy modified by a control field in a confined Y-type four-level system. Dicke-narrowing effect occurs both in two-photon absorption lines and the dips of transparency against two-photon absorption due to enhanced contribution of slow atoms. We also find that the suppression and the enhancement of two-photon absorption can be modified by changing the strength of the control field and the detuning of three laser fields. This control of two-photon absorption may have some applications in information processing and optical devices.

  4. Two-photon STED spectral determination for a new V-shaped organic fluorescent probe with efficient two-photon absorption.

    Science.gov (United States)

    Belfield, Kevin D; Bondar, Mykhailo V; Morales, Alma R; Padilha, Lazaro A; Przhonska, Olga V; Wang, Xuhua

    2011-10-24

    Two-photon stimulated emission depletion (STED) cross sections were determined over a broad spectral range for a novel two-photon absorbing organic molecule, representing the first such report. The synthesis, comprehensive linear photophysical, two-photon absorption (2PA), and stimulated emission properties of a new fluorene-based compound, (E)-2-{3-[2-(7-(diphenylamino)-9,9-diethyl-9H-fluoren-2-yl)vinyl]-5-methyl-4-oxocyclohexa-2,5-dienylidene} malononitrile (1), are presented. Linear spectral parameters, including excitation anisotropy and fluorescence lifetimes, were obtained over a broad range of organic solvents at room temperature. The degenerate two-photon absorption (2PA) spectrum of 1 was determined with a combination of the direct open-aperture Z-scan and relative two-photon-induced fluorescence methods using 1 kHz femtosecond excitation. The maximum value of the 2PA cross section ~1700 GM was observed in the main, long wavelength, one-photon absorption band. One- and two-photon stimulated emission spectra of 1 were obtained over a broad spectral range using a femtosecond pump-probe technique, resulting in relatively high two-photon stimulated emission depletion cross sections (~1200 GM). A potential application of 1 in bioimaging was demonstrated through one- and two-photon fluorescence microscopy images of HCT 116 cells incubated with micelle-encapsulated dye.

  5. Accounting for PMD Temporal Correlation During Lightpath Set Up in Transparent Optical Networks

    DEFF Research Database (Denmark)

    Sambo, Nicola; Secondini, Marco; Andriolli, Nicola

    2010-01-01

    . In this paper we propose a novel lightpath provisioning scheme based on a PMD prediction model which accounts for PMD temporal correlation properties. The proposed PMD-temporal-correlation (PTC) based lightpath provisioning scheme is compared with a scheme based on a classical PMD model. Simulation results show...... stochastic characteristics. Moreover, PMD depends on time-variant factors, such as the temperature and the fiber stress. When implementing a dynamic GMPLS-controlled transparent optical network, the GMPLS protocol suite must take into account physical impairment information in order to establish lightpaths...... that the instantaneous DGD is not detrimental. Additionally, given PMD temporal correlation properties, once that the instantaneous DGD is not detrimental, it continues to be not detrimental within considerable time ranges. Therefore, more accurate models can be implemented in the GMPLS control plane to account for PMD...

  6. Activity Changes Induced by Spatio-Temporally Correlated Stimuli in Cultured Cortical Networks

    Science.gov (United States)

    Takayama, Yuzo; Moriguchi, Hiroyuki; Jimbo, Yasuhiko

    Activity-dependent plasticity probably plays a key role in learning and memory in biological information processing systems. Though long-term potentiation and depression have been extensively studied in the filed of neuroscience, little is known on the mechanisms for integrating these modifications on network-wide activity changes. In this report, we studied effects of spatio-temporally correlated stimuli on the neuronal network activity. Rat cortical neurons were cultured on substrates with 64 embedded micro-electrodes and the evoked responses were extracellularly recorded and analyzed. We compared spatio-temporal patterns of the responses between before and after repetitive application of correlated stimuli. After the correlated stimuli, the networks showed significantly different responses from those in the initial states. The modified activity reflected structures of the repeatedly applied correlated stimuli. The results suggested that spatiotemporally correlated inputs systematically induced modification of synaptic strengths in neuronal networks, which could serve as an underlying mechanism of associative memory.

  7. Accurate reconstruction of temporal correlation for neuronal sources using the enhanced dual-core MEG beamformer.

    Science.gov (United States)

    Diwakar, Mithun; Tal, Omer; Liu, Thomas T; Harrington, Deborah L; Srinivasan, Ramesh; Muzzatti, Laura; Song, Tao; Theilmann, Rebecca J; Lee, Roland R; Huang, Ming-Xiong

    2011-06-15

    Beamformer spatial filters are commonly used to explore the active neuronal sources underlying magnetoencephalography (MEG) recordings at low signal-to-noise ratio (SNR). Conventional beamformer techniques are successful in localizing uncorrelated neuronal sources under poor SNR conditions. However, the spatial and temporal features from conventional beamformer reconstructions suffer when sources are correlated, which is a common and important property of real neuronal networks. Dual-beamformer techniques, originally developed by Brookes et al. to deal with this limitation, successfully localize highly-correlated sources and determine their orientations and weightings, but their performance degrades at low correlations. They also lack the capability to produce individual time courses and therefore cannot quantify source correlation. In this paper, we present an enhanced formulation of our earlier dual-core beamformer (DCBF) approach that reconstructs individual source time courses and their correlations. Through computer simulations, we show that the enhanced DCBF (eDCBF) consistently and accurately models dual-source activity regardless of the correlation strength. Simulations also show that a multi-core extension of eDCBF effectively handles the presence of additional correlated sources. In a human auditory task, we further demonstrate that eDCBF accurately reconstructs left and right auditory temporal responses and their correlations. Spatial resolution and source localization strategies corresponding to different measures within the eDCBF framework are also discussed. In summary, eDCBF accurately reconstructs source spatio-temporal behavior, providing a means for characterizing complex neuronal networks and their communication.

  8. Stronger cortisol response to acute psychosocial stress is correlated with larger decrease in temporal sensitivity

    Directory of Open Access Journals (Sweden)

    Zhuxi Yao

    2016-05-01

    Full Text Available As a fundamental dimension of cognition and behavior, time perception has been found to be sensitive to stress. However, how one’s time perception changes with responses to stress is still unclear. The present study aimed to investigate the relationship between stress-induced cortisol response and time perception. A group of 40 healthy young male adults performed a temporal bisection task before and after the Trier Social Stress Test for a stress condition. A control group of 27 male participants completed the same time perception task without stress induction. In the temporal bisection task, participants were first presented with short (400 ms and long (1,600 ms visual signals serving as anchor durations and then required to judge whether the intermediate probe durations were more similar to the short or the long anchor. The bisection point and Weber ratio were calculated and indicated the subjective duration and the temporal sensitivity, respectively. Data showed that participants in the stress group had significantly increased salivary cortisol levels, heart rates, and negative affects compared with those in the control group. The results did not show significant group differences for the subjective duration or the temporal sensitivity. However, the results showed a significant positive correlation between stress-induced cortisol responses and decreases in temporal sensitivity indexed by increases in the Weber ratio. This correlation was not observed for the control group. Changes in subjective duration indexed by temporal bisection points were not correlated with cortisol reactivity in both the groups. In conclusion, the present study found that although no significant change was observed in time perception after an acute stressor on the group-level comparison (i.e., stress vs. nonstress group, individuals with stronger cortisol responses to stress showed a larger decrease in temporal sensitivity. This finding may provide insight into the

  9. Two-photon autofluorescence lifetime and SHG imaging of healthy and diseased human corneas

    Science.gov (United States)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Seitz, Berthold; Morgado, António Miguel; König, Karsten

    2015-03-01

    Corneal function can be drastically affected by several degenerations and dystrophies, leading to blindness. Early diagnosis of corneal disease is of major importance and it may be accomplished by monitoring changes of the metabolic state and structural organization, the first detectable pathological signs, by two-photon excitation autofluorescence lifetime and second-harmonic generation imaging. In this study, we propose to use these imaging techniques to differentiate between healthy and pathological corneas. Images were acquired using a laser-scanning microscope with a broadband sub-15 femtosecond near-infrared pulsed laser and a 16-channel photomultiplier tube detector for signal collection. This setup allows the simultaneous excitation of metabolic co-factors and to identify them based on their fluorescence spectra. We were able to discriminate between healthy and pathological corneas using two-photon excitation autofluorescence lifetime and second-harmonic generation imaging from corneal epithelium and stroma. Furthermore, differences between different pathologies were observed. Alterations in the metabolic state of corneal epithelial cells were observed using the autofluorescence lifetime of the metabolic co-factors. In the corneal stroma, we observed not only alterations in the collagen fibril structural organization but also alterations in the autofluorescence lifetime. Further tests are required as the number of pathological samples must be increased. In the future, we intend to establish a correlation between the metabolic and structural changes and the disease stage. This can be a step forward in achieving early diagnosis.

  10. Controlling nonclassical properties of the two-photon process by a time-varying field

    Institute of Scientific and Technical Information of China (English)

    Jia Fei; Xie Shuang-Yuan; Yang Ya-Ping

    2009-01-01

    The interactions between a two-level atom and a field via two-photon transition without rotating wave approx imation have been investigated.We emphasize the dynamic behaviors of the atomic population inversion,the field squeezing,and the atomic dipole squeezing numerically when the field frequency varies with time in the forms of sine and rectangle.Some interesting phenomena axe discovered and discussed.The good periodic character of the atomic population inversion in the standard two-photon Jaynes-Cummings model is weakened by the influence of the sine field frequency modulation.The rectangular field frequency modulation can change the correlation among different oscillations suddenly and induce new collapse-revival processes of the atomic population inversion.The field squeezing increases at the beginning of time,but then decreases and loses as the time increases after it reaches the maximum due to the sine modulation.The effects of the rectangular modulation on the field squeezing depend mostly on the appear ance time of the modulation.The atomic dipole squeezing is weakened under the influence of the sine or rectangular modulation.Our results indicate that it is possible to perform the dynamic controlling of the system properties by changing the parameters of the system with time.This implies that one can dynamically control a quantum information process by choosing the system modulation properly.

  11. Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement

    CERN Document Server

    Romero, J; Franke-Anold, S; Barnett, S M; Padgett, M J

    2012-01-01

    Any practical experiment utilising the innate D-dimensional entanglement of the orbital angular momentum (OAM) state space of photons is subject to the modal capacity of the detection system. We show that given such a constraint, the number of measured, entangled OAM modes in photon pairs generated by spontaneous parametric down-conversion (SPDC) can be maximised by tuning the phase-matching conditions in the SPDC process. We demonstrate a factor of 2 increase on the half-width of the OAM-correlation spectrum, from 10 to 20, the latter implying \\approx 50 -dimensional two-photon OAM entanglement. Exploiting correlations in the conjugate variable, angular position, we measure concurrence values 0.96 and 0.90 for two phase-matching conditions, indicating bipartite, D-dimensional entanglement where D is tuneable.

  12. Ultrabroadband ghost imaging exploiting optoelectronic amplified spontaneous emission and two-photon detection.

    Science.gov (United States)

    Hartmann, Sébastien; Molitor, Andreas; Elsäßer, Wolfgang

    2015-12-15

    Ghost imaging (GI) is one of the recent fascinating and probably counterintuitive topics of quantum optics. Here, we present an alternative classical GI scheme using spectrally ultrabroadband amplified spontaneous emission from an optoelectronic quantum dot based superluminescent diode source. This light source exhibits highly incoherent properties regarding both first- and second-order correlations with a 70 nm-wide optical spectrum as well as thermal-like photon statistics. Exploiting a two-photon-absorption detection method, we demonstrate for the first time, to the best of our knowledge, a GI experiment handling the corresponding femtosecond correlation timescales. By introducing compact broadband light sources to GI, this work contributes toward practical application of GI.

  13. Two-photon calcium imaging during fictive navigation in virtual environments

    Directory of Open Access Journals (Sweden)

    Misha Benjamin Ahrens

    2013-06-01

    Full Text Available A full understanding of nervous system function requires recording from large populations of neurons during naturalistic behaviors. Here we enable paralyzed larval zebrafish to fictively navigate two-dimensional virtual environments while we record optically from many neurons with two-photon imaging. Electrical recordings from motor nerves in the tail are decoded into intended forward swims and turns, which are used to update a virtual environment displayed underneath the fish. Several behavioral features - such as turning responses to whole-field motion and dark avoidance - are well-replicated in this virtual setting. We readily observed neuronal populations in the hindbrain with laterally selective responses that correlated with right or left optomotor behavior. We also observed neurons in the habenula, pallium, and midbrain with response properties specific to environmental features. Beyond single-cell correlations, the classification of network activity in such virtual settings promises to reveal principles of brainwide neural dynamics during behavior.

  14. Two-photon calcium imaging during fictive navigation in virtual environments.

    Science.gov (United States)

    Ahrens, Misha B; Huang, Kuo Hua; Narayan, Sujatha; Mensh, Brett D; Engert, Florian

    2013-01-01

    A full understanding of nervous system function requires recording from large populations of neurons during naturalistic behaviors. Here we enable paralyzed larval zebrafish to fictively navigate two-dimensional virtual environments while we record optically from many neurons with two-photon imaging. Electrical recordings from motor nerves in the tail are decoded into intended forward swims and turns, which are used to update a virtual environment displayed underneath the fish. Several behavioral features-such as turning responses to whole-field motion and dark avoidance-are well-replicated in this virtual setting. We readily observed neuronal populations in the hindbrain with laterally selective responses that correlated with right or left optomotor behavior. We also observed neurons in the habenula, pallium, and midbrain with response properties specific to environmental features. Beyond single-cell correlations, the classification of network activity in such virtual settings promises to reveal principles of brainwide neural dynamics during behavior.

  15. Two-Photon Ghost Image and Interference-Diffraction

    Science.gov (United States)

    Shih, Y. H.; Sergienko, A. V.; Pittman, T. B.; Strekalov, D. V.; Klyshko, D. N.

    1996-01-01

    One of the most surprising consequences of quantum mechanics is entanglement of two or more distance particles. The two-particle entangled state was mathematically formulated by Schrodinger. Based on this unusual quantum behavior, EPR defined their 'physical reality' and then asked the question: 'Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?' One may not appreciate EPR's criterion of physical reality and insist that 'no elementary quantum phenomenon is a phenomenon until it is a recorded phenomenon'. Optical spontaneous parametric down conversion (SPDC) is the most effective mechanism to generate an EPR type entangled two-photon state. In SPDC, an optical beam, called the pump, is incident on a birefringent crystal. The pump is intense enough so that nonlinear effects lead to the conversion of pump photons into pairs of photons, historically called signal and idler. Technically, the SPDC is said to be type-1 or type-2, depending on whether the signal and idler beams have parallel or orthogonal polarization. The SPDC conversion efficiency is typically on the order of 10(exp -9) to 10(exp -11), depending on the SPDC nonlinear material. The signal and idler intensities are extremely low, only single photon detection devices can register them. The quantum entanglement nature of SPDC has been demonstrated in EPR-Bohm experiments and Bell's inequality measurements. The following two experiments were recently performed in our laboratory, which are more closely related to the original 1935 EPR gedankenezperiment. The first experiment is a two-photon optical imaging type experiment, which has been named 'ghost image' by the physics community. The signal and idler beams of SPDC are sent in different directions, so that the detection of the signal and idler photons can be performed by two distant photon counting detectors. An aperture object (mask) is placed in front of the signal photon detector and illuminated by the signal beam through a

  16. Characteristic measurement for femtosecond laser pulses using a GaAs PIN photodiode as a two-photon photovoltaic receiver

    Science.gov (United States)

    Chen, Junbao; Xia, Wei; Wang, Ming

    2017-06-01

    Photodiodes that exhibit a two-photon absorption effect within the spectral communication band region can be useful for building an ultra-compact autocorrelator for the characteristic inspection of optical pulses. In this work, we develop an autocorrelator for measuring the temporal profile of pulses at 1550 nm from an erbium-doped fiber laser based on the two-photon photovoltaic (TPP) effect in a GaAs PIN photodiode. The temporal envelope of the autocorrelation function contains two symmetrical temporal side lobes due to the third order dispersion of the laser pulses. Moreover, the joint time-frequency distribution of the dispersive pulses and the dissimilar two-photon response spectrum of GaAs and Si result in different delays for the appearance of the temporal side lobes. Compared with Si, GaAs displays a greater sensitivity for pulse shape reconstruction at 1550 nm, benefiting from the higher signal-to-noise ratio of the side lobes and the more centralized waveform of the autocorrelation trace. We also measure the pulse width using the GaAs PIN photodiode, and the resolution of the measured full width at half maximum of the TPP autocorrelation trace is 0.89 fs, which is consistent with a conventional second-harmonic generation crystal autocorrelator. The GaAs PIN photodiode is shown to be highly suitable for real-time second-order autocorrelation measurements of femtosecond optical pulses. It is used both for the generation and detection of the autocorrelation signal, allowing the construction of a compact and inexpensive intensity autocorrelator.

  17. Polarization control efficiency manipulation in resonance-mediated two-photon absorption by femtosecond spectral frequency modulation

    Science.gov (United States)

    Yao, Yunhua; Cheng, Wenjing; Zheng, Ye; Xu, Cheng; Liu, Pei; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong; Zhang, Shian

    2017-04-01

    The femtosecond laser polarization modulation is considered as a very simple and efficient method to control the multi-photon absorption process. In this work, we theoretically and experimentally show that the polarization control efficiency in the resonance-mediated two-photon absorption can be artificially manipulated by modulating the femtosecond spectral frequency components. We theoretically demonstrate that the on- and near-resonant parts in the resonance-mediated two-photon absorption process depend on the different femtosecond spectral frequency components, and therefore their contributions in the whole excitation process can be controlled by properly designing the femtosecond spectral frequency components. The near-resonant two-photon absorption is correlated with the femtosecond laser polarization while the on-resonant two-photon absorption is independent of it, and thus the polarization control efficiency in the resonance-mediated two-photon absorption can be manipulated by the femtosecond spectral frequency modulation. We experimentally verify these theoretical results by performing the laser polarization control experiment in the Dy3+-doped glass sample under the modulated femtosecond spectral frequency components, and the experimental results show that the polarization control efficiency can be increased when the central spectral frequency components are cut off, while it is decreased when both the low and high spectral frequency components are cut off, which is in good agreement with the theoretical predictions. Our works can provide a feasible pathway to understand and control the resonance-mediated multi-photon absorption process under the femtosecond laser field excitation, and also may open a new opportunity to the related application areas.

  18. The relation between the statistics of open ocean currents and the temporal correlations of the wind

    CERN Document Server

    Bel, Golan

    2013-01-01

    We study the statistics of wind-driven open ocean currents. Using the Ekman layer model for the integrated currents, we investigate, analytically and numerically, the relation between the wind distribution and its temporal correlations and the statistics of the open ocean currents. We find that temporally long-range correlated wind results in currents whose statistics is proportional to the wind-stress statistics. On the other hand, short-range correlated wind leads to Gaussian distributions of the current components, regardless of the stationary distribution of the winds, and therefore, to a Rayleigh distribution of the current amplitude if the wind stress is isotropic. An interesting result is the existence of an optimum in the amplitude of the ocean currents as a function of the correlation time of the wind stress. The results were validated using an oceanic general circulation model.

  19. High-dynamic-range cross-correlator for shot-to-shot measurement of temporal contrast

    Science.gov (United States)

    Kon, Akira; Nishiuchi, Mamiko; Kiriyama, Hiromitsu; Ogura, Koichi; Mori, Michiaki; Sakaki, Hironao; Kando, Masaki; Kondo, Kiminori

    2017-01-01

    The temporal contrast of an ultrahigh-intensity laser is a crucial parameter for laser plasma experiments. We have developed a multichannel cross-correlator (MCCC) for single-shot measurements of the temporal contrast in a high-power laser system. The MCCC is based on third-order cross-correlation, and has four channels and independent optical delay lines. We have experimentally demonstrated that the MCCC system achieves a high dynamic range of ˜1012 and a large temporal window of ˜1 ns. Moreover, we were able to measure the shot-to-shot fluctuations of a short-prepulse intensity at -26 ps and long-pulse (amplified spontaneous emission, ASE) intensities at -30, -450, and -950 ps before the arrival of the main pulse at the interaction point.

  20. Spin squeezing, entanglement, and coherence in two driven, dissipative, nonlinear cavities coupled with single- and two-photon exchange

    OpenAIRE

    Müstecaplıoğlu, Özgür; Hardal, Ali Ümit

    2014-01-01

    We investigate spin squeezing, quantum entanglement, and second-order coherence in two coupled, driven, dissipative, nonlinear cavities. We compare these quantum statistical properties for the cavities coupled with either single- or two-photon exchange. Solving the quantum optical master equation of the system numerically in the steady state, we calculate the zero-time delay second-order correlation function for the coherent, genuine two-mode entanglement parameters, an optimal spin squeezing...

  1. Two-photon polymerization for fabrication of biomedical devices

    Science.gov (United States)

    Ovsianikov, Aleksandr; Doraiswamy, Anand; Narayan, R.; Chichkov, B. N.

    2007-01-01

    Two-photon polymerization (2PP) is a novel technology which allows the fabrication of complex three-dimensional (3D) microstructures and nanostructures. The number of applications of this technology is rapidly increasing; it includes the fabrication of 3D photonic crystals [1-4], medical devices, and tissue scaffolds [5-6]. In this contribution, we discuss current applications of 2PP for microstructuring of biomedical devices used in drug delivery. While in general this sector is still dominated by oral administration of drugs, precise dosing, safety, and convenience are being addressed by transdermal drug delivery systems. Currently, main limitations arise from low permeability of the skin. As a result, only few types of pharmacological substances can be delivered in this manner [7]. Application of microneedle arrays, whose function is to help overcome the barrier presented by the epidermis layer of the skin, provides a very promising solution. Using 2PP we have fabricated arrays of hollow microneedles with different geometries. The effect of microneedle geometry on skin penetration is examined. Our results indicate that microneedles created using 2PP technique are suitable for in vivo use, and for integration with the next generation of MEMS- and NEMS-based drug delivery devices.

  2. Review of two-photon exchange in electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    J. Arrington, P. G. Blunden, W. Melnitchouk

    2011-10-01

    We review the role of two-photon exchange (TPE) in electron-hadron scattering, focusing in particular on hadronic frameworks suitable for describing the low and moderate Q^2 region relevant to most experimental studies. We discuss the effects of TPE on the extraction of nucleon form factors and their role in the resolution of the proton electric to magnetic form factor ratio puzzle. The implications of TPE on various other observables, including neutron form factors, electroproduction of resonances and pions, and nuclear form factors, are summarized. Measurements seeking to directly identify TPE effects, such as through the angular dependence of polarization measurements, nonlinear epsilon contributions to the cross sections, and via e+p to e-p cross section ratios, are also outlined. In the weak sector, we describe the role of TPE and gamma-Z interference in parity-violating electron scattering, and assess their impact on the extraction of the strange form factors of the nucleon and the weak charge of the proton.

  3. Higgs decay into two photons in a warped extra dimension

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Juliane; Hoerner, Clara; Malm, Raoul; Novotny, Kristiane; Schmell, Christoph [Johannes Gutenberg University, PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Mainz (Germany); Neubert, Matthias [Johannes Gutenberg University, PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Mainz (Germany); Cornell University, Department of Physics, LEPP, Ithaca, NY (United States)

    2014-05-15

    A detailed five-dimensional calculation of the Higgs-boson decay into two photons is performed in both the minimal and the custodially protected Randall-Sundrum (RS) model, where the Standard Model (SM) fields propagate in the bulk and the scalar sector lives on or near the IR brane. It is explicitly shown that the R{sub ξ} gauge invariance of the sum of diagrams involving bosonic fields in the SM also applies to the case of these RS scenarios. An exact expression for the h → γγ amplitude in terms of the five-dimensional (5D) gauge-boson and fermion propagators is presented, which includes the full dependence on the Higgs-boson mass. Closed expressions for the 5D W-boson propagators in theminimal and the custodial RS model are derived, which are valid to all orders in v{sup 2}/M{sup 2}{sub KK}. In contrast to the fermion case, the result for the bosonic contributions to the h → γγ amplitude is insensitive to the details of the localization of the Higgs profile on or near the IR brane. The various RS predictions for the rate of the pp → h → γγ process are compared with the latest LHC data, and exclusion regions for the RS model parameters are derived. (orig.)

  4. Two-Photon-Absorption Scheme for Optical Beam Tracking

    Science.gov (United States)

    Ortiz, Gerardo G.; Farr, William H.

    2011-01-01

    A new optical beam tracking approach for free-space optical communication links using two-photon absorption (TPA) in a high-bandgap detector material was demonstrated. This tracking scheme is part of the canonical architecture described in the preceding article. TPA is used to track a long-wavelength transmit laser while direct absorption on the same sensor simultaneously tracks a shorter-wavelength beacon. The TPA responsivity was measured for silicon using a PIN photodiode at a laser beacon wavelength of 1,550 nm. As expected, the responsivity shows a linear dependence with incident power level. The responsivity slope is 4.5 x 10(exp -7) A/W2. Also, optical beam spots from the 1,550-nm laser beacon were characterized on commercial charge coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) imagers with as little as 13.7 microWatts of optical power (see figure). This new tracker technology offers an innovative solution to reduce system complexity, improve transmit/receive isolation, improve optical efficiency, improve signal-to-noise ratio (SNR), and reduce cost for free-space optical communications transceivers.

  5. Two-photon excited photoconversion of cyanine-based dyes

    Science.gov (United States)

    Kwok, Sheldon J. J.; Choi, Myunghwan; Bhayana, Brijesh; Zhang, Xueli; Ran, Chongzhao; Yun, Seok-Hyun

    2016-03-01

    The advent of phototransformable fluorescent proteins has led to significant advances in optical imaging, including the unambiguous tracking of cells over large spatiotemporal scales. However, these proteins typically require activating light in the UV-blue spectrum, which limits their in vivo applicability due to poor light penetration and associated phototoxicity on cells and tissue. We report that cyanine-based, organic dyes can be efficiently photoconverted by nonlinear excitation at the near infrared (NIR) window. Photoconversion likely involves singlet-oxygen mediated photochemical cleavage, yielding blue-shifted fluorescent products. Using SYTO62, a biocompatible and cell-permeable dye, we demonstrate photoconversion in a variety of cell lines, including depth-resolved labeling of cells in 3D culture. Two-photon photoconversion of cyanine-based dyes offer several advantages over existing photoconvertible proteins, including use of minimally toxic NIR light, labeling without need for genetic intervention, rapid kinetics, remote subsurface targeting, and long persistence of photoconverted signal. These findings are expected to be useful for applications involving rapid labeling of cells deep in tissue.

  6. Two-Photon Absorption in Conjugated Energetic Molecules.

    Science.gov (United States)

    Bjorgaard, Josiah A; Sifain, Andrew E; Nelson, Tammie; Myers, Thomas W; Veauthier, Jacqueline M; Chavez, David E; Scharff, R Jason; Tretiak, Sergei

    2016-07-07

    Time-dependent density functional theory (TD-DFT) was used to investigate the relationship between molecular structure and the one- and two-photon absorption (OPA and TPA, respectively) properties of novel and recently synthesized conjugated energetic molecules (CEMs). The molecular structures of CEMs can be strategically altered to influence the heat of formation and oxygen balance, two factors that can contribute to the sensitivity and strength of an explosive material. OPA and TPA are sensitive to changes in molecular structure as well, influencing the optical range of excitation. We found calculated vertical excitation energies to be in good agreement with experiment for most molecules. Peak TPA intensities were found to be significant and on the order of 10(2) GM. Natural transition orbitals for essential electronic states defining TPA peaks of relatively large intensity were used to examine the character of relevant transitions. Modification of molecular substituents, such as additional oxygen or other functional groups, produces significant changes in electronic structure, OPA, and TPA and improves oxygen balance. The results show that certain molecules are apt to undergo nonlinear absorption, opening the possibility for controlled, direct optical initiation of CEMs through photochemical pathways.

  7. Two-Photon-Exchange Effects and $\\Delta(1232)$ Deformation

    CERN Document Server

    Zhou, Hai-Qing

    2016-01-01

    The two-photon-exchange (TPE) contribution in $ep\\rightarrow ep\\pi ^0$ with $W=M_{\\Delta}$ and small $Q^2$ is calculated and its corrections to the ratios of electromagnetic transition form factors $R_{EM} = E_{1+}^{(3/2)}/M_{1+}^{(3/2)} $ and $R_{SM} = S_{1+}^{(3/2)}/M_{1+}^{(3/2)}$, are analysed. A simple hadronic model is used to estimate the TPE amplitude. Two phenomenological models, MAID2007 and SAID, are used to approximate the full $ep\\rightarrow ep\\pi ^0$ cross sections which contain both the TPE and the one-photon-exchange (OPE) contributions. The genuine the OPE amplitude is then extracted from an integral equation by iteration. We find that the TPE contribution is not sensitive to whether MAID or SAID is used as input in the region with $Q^2<2$ GeV$^2$. It gives small correction to $R_{EM}$ while for $R_{SM}$, the correction is about -10\\% at small $\\epsilon$ and about $1\\%$ at large $\\epsilon$ for $Q^2\\approx2.5$ GeV$^2$. The large correction from TPE at small $\\epsilon$ must be included in th...

  8. Time-resolved two-photon photoemission from metal surfaces

    CERN Document Server

    Weinelt, M

    2002-01-01

    The Rydberg-like series of image-potential states is a prototype system for loosely bound electrons at a metal surface. The electronic structure and the femtosecond dynamics of these states is studied by high-resolution energy-and time-resolved two-photon photoemission spectroscopy. The electron trapped in the image potential moves virtually freely laterally to the surface where it is subject to inelastic and quasielastic scattering processes which cause decay of population and phase relaxation. The influence of surface corrugation on these processes has been investigated for adsorbates on Cu(001) and stepped Cu(117) and Cu(119) surfaces which are vicinal to Cu(001). The dynamics depend on both the distance of the electron in front of the surface and the parallel momentum. For CO molecules on Cu(001) inelastic scattering into bulk states and adsorbate-induced resonances determine the decay rate. For small numbers of Cu adatoms on Cu(001) and the vicinal surfaces the decay rate of image-potential states is sig...

  9. Synergistic Two-Photon Absorption Enhancement in Photosynthetic Light Harvesting

    Science.gov (United States)

    Chen, Kuo-Mei; Chen, Yu-Wei; Gao, Ting-Fong

    2012-06-01

    The grand scale fixation of solar energies into chemical substances by photosynthetic reactions of light-harvesting organisms provides Earth's other life forms a thriving environment. Scientific explorations in the past decades have unraveled the fundamental photophysical and photochemical processes in photosynthesis. Higher plants, green algae, and light-harvesting bacteria utilize organized pigment-protein complexes to harvest solar power efficiently and the resultant electronic excitations are funneled into a reaction center, where the first charge separation process takes place. Here we show experimental evidences that green algae (Chlorella vulgaris) in vivo display a synergistic two-photon absorption enhancement in their photosynthetic light harvesting. Their absorption coefficients at various wavelengths display dramatic dependence on the photon flux. This newly found phenomenon is attributed to a coherence-electronic-energy-transfer-mediated (CEETRAM) photon absorption process of light-harvesting pigment-protein complexes of green algae. Under the ambient light level, algae and higher plants can utilize this quantum mechanical mechanism to create two entangled electronic excitations adjacently in their light-harvesting networks. Concerted multiple electron transfer reactions in the reaction centers and oxygen evolving complexes can be implemented efficiently by the coherent motion of two entangled excitons from antennae to the charge separation reaction sites. To fabricate nanostructured, synthetic light-harvesting apparatus, the paramount role of the CEETRAM photon absorption mechanism should be seriously considered in the strategic guidelines.

  10. Two-photon holographic optogenetics of neural circuits (Conference Presentation)

    Science.gov (United States)

    Yang, Weijian; Carrillo-Reid, Luis; Peterka, Darcy S.; Yuste, Rafael

    2016-03-01

    Optical manipulation of in vivo neural circuits with cellular resolution could be important for understanding cortical function. Despite recent progress, simultaneous optogenetic activation with cellular precision has either been limited to 2D planes, or a very small numbers of neurons over a limited volume. Here we demonstrate a novel paradigm for simultaneous 3D activation using a low repetition rate pulse-amplified fiber laser system and a spatial light modulator (SLM) to project 3D holographic excitation patterns on the cortex of mice in vivo for targeted volumetric 3D photoactivation. This method is compatible with two-photon imaging, and enables the simultaneous activation of multiple cells in 3D, using red-shifted opsins, such as C1V1 or ReaChR, while simultaneously imaging GFP-based sensors such as GCaMP6. This all-optical imaging and 3D manipulation approach achieves simultaneous reading and writing of cortical activity, and should be a powerful tool for the study of neuronal circuits.

  11. Strong-field QED processes in short laser pulses. One- and two-photon Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Seipt, Daniel

    2012-12-20

    The purpose of this thesis is to advance the understanding of strong-field QED processes in short laser pulses. The processes of non-linear one-photon and two-photon Compton scattering are studied, that is the scattering of photons in the interaction of relativistic electrons with ultra-short high-intensity laser pulses. These investigations are done in view of the present and next generation of ultra-high intensity optical lasers which are supposed to achieve unprecedented intensities of the order of 10{sup 24} W/cm{sup 2} and beyond, with pulse lengths in the order of some femtoseconds. The ultra-high laser intensity requires a non-perturbative description of the interaction of charged particles with the laser field to allow for multi-photon interactions, which is beyond the usual perturbative expansion of QED organized in powers of the fine structure constant. This is achieved in strong-field QED by employing the Furry picture and non-perturbative solutions of the Dirac equation in the presence of a background laser field as initial and final state wave functions, as well as the laser dressed Dirac-Volkov propagator. The primary objective is a realistic description of scattering processes with regard to the finite laser pulse duration beyond the common approximation of infinite plane waves, which is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear finite size effects are identified, which are a result of the interplay between the ultra-high intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal photon emission spectra are studied emphasizing the differences between pulsed and infinite laser fields. The proper description of the finite temporal duration of the laser pulse leads to a regularization of unphysical infinities (due to the infinite plane-wave description) of the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of two-photon Compton

  12. Exploiting temporal correlation of speech for error robust and bandwidth flexible distributed speech recognition

    DEFF Research Database (Denmark)

    Tan, Zheng-Hua; Dalsgaard, Paul; Lindberg, Børge

    2007-01-01

    In this paper the temporal correlation of speech is exploited in front-end feature extraction, client based error recovery and server based error concealment (EC) for distributed speech recognition. First, the paper investigates a half frame rate (HFR) front-end that uses double frame shifting...

  13. Effects of autocorrelation and temporal sampling schemes on estimates of trend and spatial correlation

    Energy Technology Data Exchange (ETDEWEB)

    Tiao, G.C.; Daming, Xu; Pedrick, J.H.; Xiaodong, Zhu (Univ. of Chicago, IL (USA)); Reinsel, G.C. (Univ. of Wisconsin, Madison (USA)); Miller, A.J.; DeLuisi, J.J. (National Oceanic and Atmospheric Administration, Boulder, CO (USA)); Mateer, C.L. (Atmospheric Environment Service, Ottawa, Ontario (Canada)); Wuebbles, D.J. (Lawrence Livermore National Lab., CA (USA))

    1990-11-20

    This paper is concerned with temporal data requirements for the assessment of trends and for estimating spatial correlations of atmospheric species. The authors examine statistically three basic issues: (1) the effect of autocorrelations in monthly observations and the effect of the length of data record on the precision of trend estimates, (2) the effect of autocorrelations in the daily data on the sampling frequency requirements with respect to the representativeness of monthly averages for trend estimation, and (3) the effect of temporal sampling schemes on estimating spatial correlations of atmospheric species in neighboring stations. The principal findings are (1) the precision of trend estimates depends critically on the magnitude of auto-correlations in the monthly observations, (2) this precision is insensitive to the temporal sampling rates of daily measurements under systematic sampling, and (3) the estimate of spatial correlation between two neighboring stations is insensitive to temporal sampling rate under systematic sampling, but is sensitive to the time lag between measurements taken at the two stations. These results are based on methodological considerations as well as on empirical analysis of total and profile ozone and rawinsonde temperature data from selected ground stations.

  14. Effect of the coherent cancellation of the two-photon resonance on the generation of vacuum ultraviolet light by two-photon reasonantly enhanced four-wave mixing

    Energy Technology Data Exchange (ETDEWEB)

    Payne, M.G.; Garrett, W.R.; Judish, J.P.; Wunderlich, R.

    1988-11-01

    Many of the most impressive demonstrations of the efficient generation of vacuum ultraviolet (VUV) light have made use of two- photon resonantly enhanced four-wave mixing to generate light at ..omega../sub VUV/ = 2..omega../sub L1/ +- ..omega../sub L2/. The two-photon resonance state is coupled to the ground state both by two photons from the first laser, or by a photon from the second laser and one from the generated VUV beam. We show here that these two coherent pathways destructively interfere once the second laser is made sufficiently intense, thereby leading to an important limiting effect on the achievable conversion efficiency. 4 refs.

  15. Ab initio study of the one- and two-photon circular dichroism of R-(+)-3-methyl-cyclopentanone

    Science.gov (United States)

    Rizzo, Antonio; Lin, Na; Ruud, Kenneth

    2008-04-01

    One- and two-photon circular dichroism spectra of R-(+)-3-methyl-cyclopentanone, a system that has been the subject of recent experimental studies of (2+1) resonance-enhanced multiphoton ionization circular dichroism, have been calculated with an origin-invariant density functional theory approximation in the region of the lowest electronic excited states, both for the gas phase and for a selection of solvents. A polarizable continuum model is used in the calculations performed on the solvated system. Two low-lying conformers are analyzed, and a comparison of the intensities and characteristic features is made with the corresponding two-photon absorption for each species, also for the Boltzmann-averaged spectra. The effect of the choice of geometry, basis set, and exchange-correlation functional is carefully analyzed. It is found that a density functional theory approach using the Coulomb attenuating method variant of Becke's three-parameter exchange and the Lee-Yang-Parr correlation functionals with correlation-consistent basis sets of double-zeta quality can reproduce the experimental electronic circular dichroism spectra very well. The features appearing in experiment are characterized in terms of molecular excitations, and the differences in the response of each state in the one- and two-photon processes are highlighted.

  16. Autocorrelation measurement of femtosecond laser pulses based on two-photon absorption in GaP photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Chong, E. Z.; Watson, T. F.; Festy, F., E-mail: frederic.festy@kcl.ac.uk [Biomaterials, Biomimetics and Biophotonics Division, King' s College London—Dental Institute, SE1 9RT London (United Kingdom)

    2014-08-11

    Semiconductor materials which exhibit two-photon absorption characteristic within a spectral region of interest can be useful in building an ultra-compact interferometric autocorrelator. In this paper, we report on the evidence of a nonlinear absorption process in GaP photodiodes which was exploited to measure the temporal profile of femtosecond Ti:sapphire laser pulses with a tunable peak wavelength above 680 nm. The two-photon mediated conductivity measurements were performed at an average laser power of less than a few tenths of milliwatts. Its suitability as a single detector in a broadband autocorrelator setup was assessed by investigating the nonlinear spectral sensitivity bandwidth of a GaP photodiode. The highly favourable nonlinear response was found to cover the entire tuning range of our Ti:sapphire laser and can potentially be extended to wavelengths below 680 nm. We also demonstrated the flexibility of GaP in determining the optimum compensation value of the group delay dispersion required to restore the positively chirped pulses inherent in our experimental optical system to the shortest pulse width possible. With the rise in the popularity of nonlinear microscopy, the broad two-photon response of GaP and the simplicity of this technique can provide an alternative way of measuring the excitation laser pulse duration at the focal point of any microscopy systems.

  17. Travel cost inference from sparse, spatio-temporally correlated time series using markov models

    DEFF Research Database (Denmark)

    Yang, B.; Guo, C.; Jensen, C.S.

    2013-01-01

    of such time series offers insight into the underlying system and enables prediction of system behavior. While the techniques presented in the paper apply more generally, we consider the case of transportation systems and aim to predict travel cost from GPS tracking data from probe vehicles. Specifically, each......The monitoring of a system can yield a set of measurements that can be modeled as a collection of time series. These time series are often sparse, due to missing measurements, and spatiotemporally correlated, meaning that spatially close time series exhibit temporal correlation. The analysis...... road segment has an associated travel-cost time series, which is derived from GPS data. We use spatio-temporal hidden Markov models (STHMM) to model correlations among different traffic time series. We provide algorithms that are able to learn the parameters of an STHMM while contending...

  18. Distribution of quantum information between an atom and two photons

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Bernhard

    2008-11-03

    The construction of networks consisting of optically interconnected processing units is a promising way to scale up quantum information processing systems. To store quantum information, single trapped atoms are among the most proven candidates. By placing them in high finesse optical resonators, a bidirectional information exchange between the atoms and photons becomes possible with, in principle, unit efficiency. Such an interface between stationary and ying qubits constitutes a possible node of a future quantum network. The results presented in this thesis demonstrate the prospects of a quantum interface consisting of a single atom trapped within the mode of a high-finesse optical cavity. In a two-step process, we distribute entanglement between the stored atom and two subsequently emitted single photons. The long atom trapping times achieved in the system together with the high photon collection efficiency of the cavity make the applied protocol in principle deterministic, allowing for the creation of an entangled state at the push of a button. Running the protocol on this quasi-stationary quantum interface, the internal state of the atom is entangled with the polarization state of a single emitted photon. The entanglement is generated by driving a vacuum-stimulated Raman adiabatic passage between states of the coupled atom-cavity system. In a second process, the atomic part of the entangled state is mapped onto a second emitted photon using a similar technique and resulting in a polarization-entangled two-photon state. To verify and characterize the photon-photon entanglement, we measured a violation of a Bell inequality and performed a full quantum state tomography. The results prove the prior atom-photon entanglement and demonstrate a quantum information transfer between the atom and the two emitted photons. This reflects the advantages of a high-finesse cavity as a quantum interface in future quantum networks. (orig.)

  19. Voltage-sensitive rhodol with enhanced two-photon brightness.

    Science.gov (United States)

    Kulkarni, Rishikesh U; Kramer, Daniel J; Pourmandi, Narges; Karbasi, Kaveh; Bateup, Helen S; Miller, Evan W

    2017-03-14

    We have designed, synthesized, and applied a rhodol-based chromophore to a molecular wire-based platform for voltage sensing to achieve fast, sensitive, and bright voltage sensing using two-photon (2P) illumination. Rhodol VoltageFluor-5 (RVF5) is a voltage-sensitive dye with improved 2P cross-section for use in thick tissue or brain samples. RVF5 features a dichlororhodol core with pyrrolidyl substitution at the nitrogen center. In mammalian cells under one-photon (1P) illumination, RVF5 demonstrates high voltage sensitivity (28% ΔF/F per 100 mV) and improved photostability relative to first-generation voltage sensors. This photostability enables multisite optical recordings from neurons lacking tuberous sclerosis complex 1, Tsc1, in a mouse model of genetic epilepsy. Using RVF5, we show that Tsc1 KO neurons exhibit increased activity relative to wild-type neurons and additionally show that the proportion of active neurons in the network increases with the loss of Tsc1. The high photostability and voltage sensitivity of RVF5 is recapitulated under 2P illumination. Finally, the ability to chemically tune the 2P absorption profile through the use of rhodol scaffolds affords the unique opportunity to image neuronal voltage changes in acutely prepared mouse brain slices using 2P illumination. Stimulation of the mouse hippocampus evoked spiking activity that was readily discerned with bath-applied RVF5, demonstrating the utility of RVF5 and molecular wire-based voltage sensors with 2P-optimized fluorophores for imaging voltage in intact brain tissue.

  20. Determining the Quark Charges by One and Two Photon Processes.

    Science.gov (United States)

    Janah, Arjun

    1982-05-01

    Testable predictions are presented, which may be used to decide between the gauge theories of integer and fractionally charged quarks (icq and fcq). Two distinctive features of icq are exploited, namely (a) presence of color non-singlet components in weak and electromagnetic currents and (b) possible liberation of color non-singlet states above a threshold energy. Consequences are sought in lepton-hadron interaction processes, taking into account the known "color-suppression" effect. Single photon/weak-boson processes such as (nu)N (--->) (nu)X distinguish between icq and fcq only above color-threshold. Experimental consequences of color-liberation in the above process are obtained. It is found that the gluon-parton contribution survives color-suppression to produce a significant rise in the structure functions when color-threshold is exceeded. Two-photon processes such as e('+)e('-) (--->) e('+)e('-) + 2 jets distinguish between the two theories even below color threshold. To obtain the icq predictions for this process, one must take into account (a) the (momentum -dependent) color suppression and (b) the added contribution from pair production of charged gluons. This is done, and it is observed that: (i) in icq, the ratio R('(gamma)(gamma)(2 jet)) is not simply a number given by the quark charges; it depends on the gluon mass, on kinematics and on the particular differential cross-section considered; (ii) the deviation of icq cross-sections from the fcq values depends crucially on whether one includes "untagged" events; if this is done, the deviation is large; the charged gluon contribution is mainly responsible for this deviation; the quark contribution is smaller than naively expected. Finally, comparison is made with experimental data on e('+)e('-) (--->) e('+)e('-) + 2 jets. Here, icq is found to be in better agreement than fcq, for a broad range of gluon masses. A suitably modified equivalent photon approximation is employed.

  1. Two-photon excitation photodynamic therapy with Photofrin

    Science.gov (United States)

    Karotki, Aliaksandr; Khurana, Mamta; Lepock, James R.; Wilson, Brian C.

    2005-09-01

    Photodynamic therapy (PDT) based on simultaneous two-photon (2-γ) excitation has a potential advantage of highly targeted treatment by means of nonlinear localized photosensitizer excitation. One of the possible applications of 2-γ PDT is a treatment of exodus age-related macular degeneration where highly targeted excitation of photosensitizer in neovasculature is vital for reducing collateral damage to healthy surrounding tissue. To investigate effect of 2-γ PDT Photofrin was used as an archetypal photosensitizer. First, 2-γ absorption properties of Photofrin in the 750 - 900 nm excitation wavelength range were investigated. It was shown that above 800 nm 2-γ interaction was dominant mode of excitation. The 2-γ cross section of Photofrin was rather small and varied between 5 and 10 GM (1 GM = 10-50 cm4s/photon) in this wavelength range. Next, endothelial cells treated with Photofrin were used to model initial effect of 2-γ PDT on neovasculature. Ultrashort laser pulses provided by mode-locked Ti:sapphire laser (pulse duration at the sample 300 fs, repetition rate 90 MHz, mean laser power 10 mW, excitation wavelength 850 nm) were used for the excitation of the photosensitizer. Before 2-γ excitation of the Photofrin cells formed a single continuous sheet at the bottom of the well. The tightly focused laser light was scanned repeatedly over the cell layer. After irradiation the cell layer of the control cells stayed intact while cells treated with photofrin became clearly disrupted. The light doses required were high (6300 Jcm(-2) for ~ 50% killing), but 2-γ cytotoxicity was unequivocally demonstrated.

  2. A Two- Photon Femtosecond Laser System for Three-Dimensional Microfabrication and Data Storage

    Institute of Scientific and Technical Information of China (English)

    蒋中伟; 周拥军; 袁大军; 黄文浩; 夏安东

    2003-01-01

    Utilizing the well-focused femtosecond laser with extreme high pulse intensity, we built a two-photon microfabrication and data storage system, which was introduced through several functional parts. Based on this homemade system, several three-dimensional microstructures were fabricated by two-photon polymerization, and three-dimensional data storage of six-layers was achieved by two-photon excitation with a photochromic material.

  3. Two-photon approximation in the theory of the electron recombination in hydrogen

    OpenAIRE

    Solovyev, D.; Labzowsky, L.

    2010-01-01

    A rigorous QED theory of the multiphoton decay of excited states in hydrogen atom is presented. The "two-photon" approximation is formulated which is limited by the one-photon and two-photon transitions including cascades transitions with two-photon links. This may be helpful for the strict description of the recombination process in hydrogen atom and, in principle, for the history of the hydrogen recombination in the early Universe.

  4. A novel Kalman filter based video image processing scheme for two-photon fluorescence microscopy

    Science.gov (United States)

    Sun, Wenqing; Huang, Xia; Li, Chunqiang; Xiao, Chuan; Qian, Wei

    2016-03-01

    Two-photon fluorescence microscopy (TPFM) is a perfect optical imaging equipment to monitor the interaction between fast moving viruses and hosts. However, due to strong unavoidable background noises from the culture, videos obtained by this technique are too noisy to elaborate this fast infection process without video image processing. In this study, we developed a novel scheme to eliminate background noises, recover background bacteria images and improve video qualities. In our scheme, we modified and implemented the following methods for both host and virus videos: correlation method, round identification method, tree-structured nonlinear filters, Kalman filters, and cell tracking method. After these procedures, most of noises were eliminated and host images were recovered with their moving directions and speed highlighted in the videos. From the analysis of the processed videos, 93% bacteria and 98% viruses were correctly detected in each frame on average.

  5. Non-invasive imaging of skin cancer with fluorescence lifetime imaging using two photon tomography

    Science.gov (United States)

    Patalay, Rakesh; Talbot, Clifford; Alexandrov, Yuriy; Munro, Ian; Breunig, Hans Georg; König, Karsten; Warren, Sean; Neil, Mark A. A.; French, Paul M. W.; Chu, Anthony; Stamp, Gordon W.; Dunsby, Christopher

    2011-07-01

    Multispectral fluorescence lifetime imaging (FLIM) using two photon microscopy as a non-invasive technique for the diagnosis of skin lesions is described. Skin contains fluorophores including elastin, keratin, collagen, FAD and NADH. This endogenous contrast allows tissue to be imaged without the addition of exogenous agents and allows the in vivo state of cells and tissues to be studied. A modified DermaInspect® multiphoton tomography system was used to excite autofluorescence at 760 nm in vivo and on freshly excised ex vivo tissue. This instrument simultaneously acquires fluorescence lifetime images in four spectral channels between 360-655 nm using time-correlated single photon counting and can also provide hyperspectral images. The multispectral fluorescence lifetime images were spatially segmented and binned to determine lifetimes for each cell by fitting to a double exponential lifetime model. A comparative analysis between the cellular lifetimes from different diagnoses demonstrates significant diagnostic potential.

  6. Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors.

    Science.gov (United States)

    Salomé, R; Kremer, Y; Dieudonné, S; Léger, J-F; Krichevsky, O; Wyart, C; Chatenay, D; Bourdieu, L

    2006-06-30

    Two-photon scanning microscopy (TPSM) is a powerful tool for imaging deep inside living tissues with sub-cellular resolution. The temporal resolution of TPSM is however strongly limited by the galvanometric mirrors used to steer the laser beam. Fast physiological events can therefore only be followed by scanning repeatedly a single line within the field of view. Because acousto-optic deflectors (AODs) are non-mechanical devices, they allow access at any point within the field of view on a microsecond time scale and are therefore excellent candidates to improve the temporal resolution of TPSM. However, the use of AOD-based scanners with femtosecond pulses raises several technical difficulties. In this paper, we describe an all-digital TPSM setup based on two crossed AODs. It includes in particular an acousto-optic modulator (AOM) placed at 45 degrees with respect to the AODs to pre-compensate for the large spatial distortions of femtosecond pulses occurring in the AODs, in order to optimize the spatial resolution and the fluorescence excitation. Our setup allows recording from freely selectable point-of-interest at high speed (1kHz). By maximizing the time spent on points of interest, random-access TPSM (RA-TPSM) constitutes a promising method for multiunit recordings with millisecond resolution in biological tissues.

  7. Dynamic characterization of hydrophobic and hydrophilic solutes in oleic-acid enhanced transdermal delivery using two-photon fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Te-Yu; Yang, Chiu-Sheng; Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Tsai, Tsung-Hua [Department of Dermatology, Far Eastern Memorial Hospital, New Taipei City, Taiwan (China); Dong, Chen-Yuan, E-mail: cydong@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Center for Quantum Science and Engineering, National Taiwan University, Taipei, Taiwan (China); Center for Optoelectronic Biomedicine, National Taiwan University, Taipei, Taiwan (China)

    2014-10-20

    In this letter, we propose an efficient methodology of investigating dynamic properties of sulforhodamine B and rhodamine B hexyl ester molecules transporting across ex-vivo human stratum corneum with and without oleic acid enhancement. Three-dimensional, time-lapse fluorescence images of the stratum corneum can be obtained using two-photon fluorescence microscopy. Furthermore, temporal quantifications of transport enhancements in diffusion parameters can be achieved with the use of Fick's second law. Dynamic characterization of solutes transporting across the stratum corneum is an effective method for understanding transient phenomena in transdermal delivery of probe molecules, leading to improved delivery strategies of molecular species for therapeutic purposes.

  8. Description of the states of two-photon interference in an optical gating Michelson interferometer

    Science.gov (United States)

    Pongophas, Ekkarat; Sriklin, Watthana; Sinsarp, Asawin; Suwanna, Sujin; Chunwachirasiri, Withoon; Singhsomroje, Wisit

    2016-01-01

    We investigate the interference of two photons in an optical gating Michelson interferometer. The phenomenon is studied using two different representations of photons: the space-time domain and a step-by-step two-photon state evolution. Both representations lead to identical results. The evolution analysis describes the result by the interference of four two-photon traveling states, whereas the space-time domain analysis reveals that the classical interference of the high-intensity light source is identical to two-photon interference in the quantum regime, except for a multiplicative factor of (n2), where n is the number of photons.

  9. Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles.

    Science.gov (United States)

    Jiang, Cuifeng; Zhao, Tingting; Yuan, Peiyan; Gao, Nengyue; Pan, Yanlin; Guan, Zhenping; Zhou, Na; Xu, Qing-Hua

    2013-06-12

    Metal nanoparticles have potential applications as bioimaging and photosensitizing agents. Aggregation effects are generally believed to be adverse to their biomedical applications. Here we have studied the aggregation effects on two-photon induced photoluminescence and singlet oxygen generation of Au nanospheres and Au nanorods of two different aspect ratios. Aggregated Au nanospheres and short Au nanorods were found to display enhanced two-photon induced photoluminescence and singlet oxygen generation capabilities compared to the unaggregated ones. The two-photon photoluminescence of Au nanospheres and short Au nanorods were enhanced by up to 15.0- and 2.0-fold upon aggregation, and the corresponding two-photon induced singlet oxygen generation capabilities were enhanced by 8.3 and 1.8-fold, respectively. The two-photon induced photoluminescence and singlet oxygen generation of the aggregated long Au nanorods were found to be lower than the unaggregated ones. These results support that the change in their two-photon induced photoluminescence and singlet oxygen generation originate from aggregation modulated two-photon excitation efficiency. This finding is expected to foster more biomedical applications of metal nanoparticles as Au nanoparticles normally exist in an aggregated form in the biological environments. Considering their excellent biocompatibility, high inertness, ready conjugation, and easy preparation, Au nanoparticles are expected to find more applications in two-photon imaging and two-photon photodynamic therapy.

  10. Synthesis of two carbazole-based dyes and application of two-photon initiating polymerization

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two carbazole-based polymerization initiators possessing blue fluorescence emission have been synthesized via Wittig reaction in the solid phase at room temperature.Two-photon excited fluorescence(TPEF) spectra for them were investigated under 800 nm fs laser pulse and two-photon absorption cross sections were determined by the Z-scan technique.Then two-photon initiating polymerization(TPIP) microfabrication experiments were successfully carried out.Three-dimensional lattice and artificial defects were gained,indicating that they were viable candidates for the two-photon polymerization initiator in practical application of microfabrication.

  11. Time-reversed two-photon interferometry for phase super-resolution

    CERN Document Server

    Ogawa, Kazuhisa; Kobayashi, Hirokazu; Nakanishi, Toshihiro; Kitano, Masao

    2013-01-01

    We observed two-photon phase super-resolution in an unbalanced Michelson interferometer with classical Gaussian laser pulses. Our work is a time-reversed version of a two-photon interference experiment using an unbalanced Michelson interferometer. A measured interferogram exhibits two-photon phase super-resolution with a high visibility of 97.9% \\pm 0.4%. Its coherence length is about 22 times longer than that of the input laser pulses. It is a classical analogue to the large difference between the one- and two-photon coherence lengths of entangled photon pairs.

  12. Synthesis of two carbazole-based dyes and application of two-photon initiating polymerization

    Institute of Scientific and Technical Information of China (English)

    HU RenTao; LU LiangFei; RUAN BanFeng; WANG Peng; ZHANG MingLiang; ZHOU HongPing; LI ShengLi; WU JieYing; TIAN YuPeng

    2009-01-01

    Two carbazole-based polymerization initiators possessing blue fluorescence emission have been synthesized via Wittig reaction in the solid phase at room temperature.Two-photon excited fluorescence (TPEF) spectra for them were investigated under 800 nm fs laser pulse and two-photon absorption cross sections were determined by the Z-scan technique.Then two-photon initiating polymerization (TPIP) microfabrication experiments were successfully carried out.Three-dimensional lattice and artificial defects were gained,indicating that they were viable candidates for the two-photon polymerization initiator in practical application of microfabrication.

  13. Temporal lobe cortical thickness correlations differentiate the migraine brain from the healthy brain.

    Directory of Open Access Journals (Sweden)

    Todd J Schwedt

    Full Text Available Interregional cortical thickness correlations reflect underlying brain structural connectivity and functional connectivity. A few prior studies have shown that migraine is associated with atypical cortical brain structure and atypical functional connectivity amongst cortical regions that participate in sensory processing. However, the specific brain regions that most accurately differentiate the migraine brain from the healthy brain have yet to be determined. The aim of this study was to identify the brain regions that comprised interregional cortical thickness correlations that most differed between migraineurs and healthy controls.This was a cross-sectional brain magnetic resonance imaging (MRI investigation of 64 adults with migraine and 39 healthy control subjects recruited from tertiary-care medical centers and their surrounding communities. All subjects underwent structural brain MRI imaging on a 3T scanner. Cortical thickness was determined for 70 brain regions that cover the cerebral cortex and cortical thickness correlations amongst these regions were calculated. Cortical thickness correlations that best differentiated groups of six migraineurs from controls and vice versa were identified.A model containing 15 interregional cortical thickness correlations differentiated groups of migraineurs from healthy controls with high accuracy. The right temporal pole was involved in 13 of the 15 interregional correlations while the right middle temporal cortex was involved in the other two.A model consisting of 15 interregional cortical thickness correlations accurately differentiates the brains of small groups of migraineurs from those of healthy controls. Correlations with the right temporal pole were highly represented in this classifier, suggesting that this region plays an important role in migraine pathophysiology.

  14. Two-photon absorption and spectroscopy of the lowest two-photon transition in small donor-acceptor-substituted organic molecules

    Science.gov (United States)

    Beels, Marten T.; Biaggio, Ivan; Reekie, Tristan; Chiu, Melanie; Diederich, François

    2015-04-01

    We determine the dispersion of the third-order polarizability of small donor-acceptor substituted organic molecules using wavelength-dependent degenerate four-wave mixing experiments in solutions with varying concentrations. We find that donor-acceptor-substituted molecules that are characterized by extremely efficient off-resonant nonlinearities also have a correspondingly high two-photon absorption cross section. The width and shape of the first two-photon resonance for these noncentrosymmetric molecules follows what is expected from their longest wavelength absorption peak, and the observed two-photon absorption cross sections are record high when compared to the available literature data, the size of the molecule, and the fundamental limit for two-photon absorption to the lowest excited state, which is essentially determined by the number of conjugated electrons and the excited-state energies. The two-photon absorption of the smallest molecule, which only has 16 electrons in its conjugated system, is one order of magnitude larger than for the molecule called AF-50, a reference molecule for two-photon absorption [O.-K. Kim et al., Chem. Mater. 12, 284 (2000), 10.1021/cm990662r].

  15. Beyond the Peak - Tactile Temporal Discrimination Does Not Correlate with Individual Peak Frequencies in Somatosensory Cortex.

    Science.gov (United States)

    Baumgarten, Thomas J; Schnitzler, Alfons; Lange, Joachim

    2017-01-01

    The human sensory systems constantly receive input from different stimuli. Whether these stimuli are integrated into a coherent percept or segregated and perceived as separate events, is critically determined by the temporal distance of the stimuli. This temporal distance has prompted the concept of temporal integration windows or perceptual cycles. Although this concept has gained considerable support, the neuronal correlates are still discussed. Studies suggested that neuronal oscillations might provide a neuronal basis for such perceptual cycles, i.e., the cycle lengths of alpha oscillations in visual cortex and beta oscillations in somatosensory cortex might determine the length of perceptual cycles. Specifically, recent studies reported that the peak frequency (the frequency with the highest spectral power) of alpha oscillations in visual cortex correlates with subjects' ability to discriminate two visual stimuli. In the present study, we investigated whether peak frequencies in somatosensory cortex might serve as the correlate of perceptual cycles in tactile discrimination. Despite several different approaches, we were unable to find a significant correlation between individual peak frequencies in the alpha- and beta-band and individual discrimination abilities. In addition, analysis of Bayes factor provided evidence that peak frequencies and discrimination thresholds are unrelated. The results suggest that perceptual cycles in the somatosensory domain are not necessarily to be found in the peak frequency, but in other frequencies. We argue that studies based solely on analysis of peak frequencies might thus miss relevant information.

  16. Long-Range Temporal Correlations Reflect Treatment Response in the Electroencephalogram of Patients with Infantile Spasms.

    Science.gov (United States)

    Smith, Rachel J; Sugijoto, Amanda; Rismanchi, Neggy; Hussain, Shaun A; Shrey, Daniel W; Lopour, Beth A

    2017-09-13

    Infantile spasms syndrome is an epileptic encephalopathy in which prompt diagnosis and treatment initiation are critical to therapeutic response. Diagnosis of the disease heavily depends on the identification of characteristic electroencephalographic (EEG) patterns, including hypsarrhythmia. However, visual assessment of the presence and characteristics of hypsarrhythmia is challenging because multiple variants of the pattern exist, leading to poor inter-rater reliability. We investigated whether a quantitative measurement of the control of neural synchrony in the EEGs of infantile spasms patients could be used to reliably distinguish the presence of hypsarrhythmia and indicate successful treatment outcomes. We used autocorrelation and Detrended Fluctuation Analysis (DFA) to measure the strength of long-range temporal correlations in 21 infantile spasms patients before and after treatment and 21 control subjects. The strength of long-range temporal correlations was significantly lower in patients with hypsarrhythmia than control patients, indicating decreased control of neural synchrony. There was no difference between patients without hypsarrhythmia and control patients. Further, the presence of hypsarrhythmia could be classified based on the DFA exponent and intercept with 92% accuracy using a support vector machine. Successful treatment was marked by a larger increase in the DFA exponent compared to those in which spasms persisted. These results suggest that the strength of long-range temporal correlations is a marker of pathological cortical activity that correlates with treatment response. Combined with current clinical measures, this quantitative tool has the potential to aid objective identification of hypsarrhythmia and assessment of treatment efficacy to inform clinical decision-making.

  17. Long-range temporal correlations in the EEG bursts of human preterm babies.

    Directory of Open Access Journals (Sweden)

    Caroline Hartley

    Full Text Available The electrical activity in the very early human preterm brain, as recorded by scalp EEG, is mostly discontinuous and has bursts of high-frequency oscillatory activity nested within slow-wave depolarisations of high amplitude. The temporal organisation of the occurrence of these EEG bursts has not been previously investigated. We analysed the distribution of the EEG bursts in 11 very preterm (23-30 weeks gestational age human babies through two estimates of the Hurst exponent. We found long-range temporal correlations (LRTCs in the occurrence of these EEG bursts demonstrating that even in the very immature human brain, when the cerebral cortical structure is far from fully developed, there is non-trivial temporal structuring of electrical activity.

  18. Gas monitoring data anomaly identification based on spatio-temporal correlativity analysis

    Institute of Scientific and Technical Information of China (English)

    Shi-song ZHU; Yun-jia WANG; Lian-jiang WEI

    2013-01-01

    Based on spatio-temporal correlativity analysis method,the automatic identification techniques for data anomaly monitoring of coal mining working face gas are presented.The asynchronous correlative characteristics of gas migration in working face airflow direction are qualitatively analyzed.The calculation method of asynchronous correlation delay step and the prediction and inversion formulas of gas concentration changing with time and space after gas emission in the air return roadway are provided.By calculating one hundred and fifty groups of gas sensors data series from a coal mine which have the theoretical correlativity,the correlative coefficient values range of eight kinds of data anomaly is obtained.Then the gas monitoring data anomaly identification algorithm based on spatio-temporal correlativity analysis is accordingly presented.In order to improve the efficiency of analysis,the gas sensors code rules which can express the spatial topological relations are suggested.The experiments indicate that methods presented in this article can effectively compensate the defects of methods based on a single gas sensor monitoring data.

  19. Correlation among external auditory canal anomaly, temporal bone malformation, and hearing levels in patients with microtia.

    Science.gov (United States)

    Chen, Kun; Liu, Liu; Shi, Runjie; Wang, Peihua; Chen, Dong; Xiao, Hua

    2017-06-01

    We conducted a retrospective study to evaluate the relationship between external auditory canal (EAC) anomaly, temporal bone abnormality, and hearing levels using objective scoring systems in Chinese patients with microtia. The study population consisted of 106 ears of 94 Chinese patients (67 male and 27 female) aged 5 to 45 years (mean: 12.6) with microtia. The EAC abnormalities were classified into 4 types according to Schuknecht's criteria: type A, type B, type C, and type D. Developmental anomalies of the temporal bone were evaluated by Jahrsdoerfer computed tomography (CT) scoring system using high-resolution CT scans of the temporal bone. Temporal bone malformation parameters were divided into 4 subgroups: ossicular chain development, windows connected to the cochlea, aeration development of the middle ear, and facial nerve aberration. Hearing levels (air conduction and bone conduction) were examined. Outcomes parameters included correlation coefficients (r) and a number of other variables. The total points (10 points) and subtotal points related to ossicles (4 points), windows (2 points), aeration (2 points), and facial nerve (1 point) correlated inversely with the EAC abnormalities. The hearing levels (air conduction, r = 0.396, p serve as an indicator to determine whether a patient will be suitable for reconstructive surgery.

  20. Improved Side Information Generation for Distributed Video Coding by Exploiting Spatial and Temporal Correlations

    Directory of Open Access Journals (Sweden)

    Ye Shuiming

    2009-01-01

    Full Text Available Distributed video coding (DVC is a video coding paradigm allowing low complexity encoding for emerging applications such as wireless video surveillance. Side information (SI generation is a key function in the DVC decoder, and plays a key-role in determining the performance of the codec. This paper proposes an improved SI generation for DVC, which exploits both spatial and temporal correlations in the sequences. Partially decoded Wyner-Ziv (WZ frames, based on initial SI by motion compensated temporal interpolation, are exploited to improve the performance of the whole SI generation. More specifically, an enhanced temporal frame interpolation is proposed, including motion vector refinement and smoothing, optimal compensation mode selection, and a new matching criterion for motion estimation. The improved SI technique is also applied to a new hybrid spatial and temporal error concealment scheme to conceal errors in WZ frames. Simulation results show that the proposed scheme can achieve up to 1.0 dB improvement in rate distortion performance in WZ frames for video with high motion, when compared to state-of-the-art DVC. In addition, both the objective and perceptual qualities of the corrupted sequences are significantly improved by the proposed hybrid error concealment scheme, outperforming both spatial and temporal concealments alone.

  1. Travel cost inference from sparse, spatio-temporally correlated time series using markov models

    DEFF Research Database (Denmark)

    Yang, B.; Guo, C.; Jensen, C.S.

    2013-01-01

    of such time series offers insight into the underlying system and enables prediction of system behavior. While the techniques presented in the paper apply more generally, we consider the case of transportation systems and aim to predict travel cost from GPS tracking data from probe vehicles. Specifically, each...... road segment has an associated travel-cost time series, which is derived from GPS data. We use spatio-temporal hidden Markov models (STHMM) to model correlations among different traffic time series. We provide algorithms that are able to learn the parameters of an STHMM while contending...... with the sparsity, spatio-temporal correlation, and heterogeneity of the time series. Using the resulting STHMM, near future travel costs in the transportation network, e.g., travel time or greenhouse gas emissions, can be inferred, enabling a variety of routing services, e.g., eco-routing. Empirical studies...

  2. Limited Feedback Over Temporally Correlated Channels for the Downlink of a Femtocell Network

    CERN Document Server

    Akoum, Salam; Heath, Robert W

    2011-01-01

    Heterogeneous networks are a {\\ss}exible deployment model that rely on low power nodes to improve the user broadband experience in a cost effective manner. Femtocells are an integral part of heterogeneous networks, whose main purpose is to improve the indoor capacity. When restricting access to home users, femtocells cause a substantial interference problem that cannot be mitigated through coordination with the macrocell base station. In this paper, we analyze multiple antenna communication on the downlink of a macrocell network, with femtocell overlay. We evaluate the feasibility of limited feedback beamforming given delay on the feedback channel, quantization error and uncoordinated interference from the femtocells. We model the femtocell spatial distribution as a Poisson point process and the temporal correlation of the channel according to a Gauss-Markov model. We derive the probability of outage at the macrocell users as a function of the temporal correlation, the femtocell density, and the feedback rate...

  3. Exploiting temporal correlation of speech for error robust and bandwidth flexible distributed speech recognition

    DEFF Research Database (Denmark)

    Tan, Zheng-Hua; Dalsgaard, Paul; Lindberg, Børge

    2007-01-01

    In this paper the temporal correlation of speech is exploited in front-end feature extraction, client based error recovery and server based error concealment (EC) for distributed speech recognition. First, the paper investigates a half frame rate (HFR) front-end that uses double frame shifting at....... Lastly, to understand the effects of applying various EC techniques, this paper introduces three approaches consisting of speech feature, dynamic programming distance and hidden Markov model state duration comparison.......In this paper the temporal correlation of speech is exploited in front-end feature extraction, client based error recovery and server based error concealment (EC) for distributed speech recognition. First, the paper investigates a half frame rate (HFR) front-end that uses double frame shifting...

  4. Mirage in Temporal Correlation functions for Baryon-Baryon Interactions in Lattice QCD

    CERN Document Server

    Iritani, Takumi; Aoki, Sinya; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji

    2016-01-01

    Single state saturation of the temporal correlation function is a key condition to extract physical observables such as energies and matrix elements of hadrons from lattice QCD simulations. A method commonly employed to check the saturation is to seek for a plateau of the observables for large Euclidean time. Identifying the plateau in the cases having nearby states, however, is non-trivial and one may even be misled by a fake plateau. Such a situation takes place typically for the system with two or more baryons. In this study, we demonstrate explicitly the danger from a possible fake plateau in the temporal correlation functions mainly for two baryons ($\\Xi\\Xi$ and $NN$), and three and four baryons ($^3{\\rm He}$ and $^4{\\rm He})$ as well, employing (2+1)-flavor lattice QCD at $m_{\\pi}=0.51$ GeV on four lattice volumes with $L=$ 2.9, 3.6, 4.3 and 5.8 fm. Caution is given for drawing conclusion on the bound $NN$, $3N$ and $4N$ systems only based on the temporal correlation functions.

  5. Temporal variations of serial correlations of trading volume in the US stock market

    Science.gov (United States)

    Alvarez-Ramírez, José; Rodríguez, Eduardo

    2012-08-01

    Serial correlations in the trading volume of the US stock market are investigated in this paper. The use of the detrended fluctuation analysis implemented within a rolling window indicated that, for the period 1929-2011, the strength of correlations exhibits important temporal variations with a trend shift by the 1990s, and 4-year and 21-year cycles. These empirical findings are compared to those obtained for mature international stock markets (FTSE-100 and Nikkei) and discussed in terms of potential economic and financial implications.

  6. Enhancement of Squeezing in Two-Photon Jaynes-Cummings Model with Atomic Measurement

    Institute of Scientific and Technical Information of China (English)

    YE Sai-Yun

    2006-01-01

    We investigate the squeezing properties of the cavity field in the degenerate two-photon Jaynes-Cummings model. Compared with the one-photon Jaynes-Cummings model, the squeezing is more pronounced in the case of two-photon Jaynes-Cummings model under certain conditions.

  7. Event-by-event simulation of nonclassical effects in two-photon interference experiments

    NARCIS (Netherlands)

    Michielsen, K.; Jin, F.; Delina, M.; Raedt, H. De

    2012-01-01

    A corpuscular simulation model for second-order intensity interference phenomena is discussed. It is shown that both the visibility V = 1/2 predicted for two-photon interference experiments with two independent sources and the visibility V = 1 predicted for two-photon interference experiments with a

  8. Integrated single- and two-photon light sheet microscopy using accelerating beams

    DEFF Research Database (Denmark)

    Piksarv, Peeter; Marti, Dominik; Le, Tuan

    2017-01-01

    We demonstrate the first light sheet microscope using propagation invariant, accelerating Airy beams that operates both in single- and two-photon modes. The use of the Airy beam permits us to develop an ultra compact, high resolution light sheet system without beam scanning. In two-photon mode, a...

  9. Two-photon fluorescence probes for imaging of mitochondria and lysosomes.

    Science.gov (United States)

    Yang, Wanggui; Chan, Pui Shan; Chan, Miu Shan; Li, King Fai; Lo, Pik Kwan; Mak, Nai Ki; Cheah, Kok Wai; Wong, Man Shing

    2013-04-28

    Novel biocompatible cyanines show not only a very large two-photon cross-section of up to 5130 GM at 910 nm in aqueous medium for high-contrast and -brightness two-photon fluorescence live cell imaging but also highly selective subcellular localization properties including localization of mitochondria and lysosomes.

  10. Effect of morphology and solvent on two-photon absorption of nano zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, M.K. [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India); Haripadmam, P.C.; Gopinath, Pramod; Krishnan, Bindu [Department of Physics, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India); John, Honey, E-mail: honey@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India)

    2013-05-15

    Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novel precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.

  11. Production of e, $\\mu$ and $\\tau$ Pairs in Untagged Two-Photon Collisions at LEP

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Boucham, A; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dorne, I; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hong, S J; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Janssen, H; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Rind, O; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sassowsky, M; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1997-01-01

    The two-photon collision reaction e+e- --> e+e-l+l- has been studied at root(s) ~ 91 GeV using the L3 detector at LEP for l = e, muon , tau. We have analysed untagged configurations where the two photons are quasi-real. Good agreement is found between our measurements and the order alpha**4 QED expectation.

  12. Two-Photon Interference with the Type Ⅱ Spontaneous Parametric Down-Conversion

    Institute of Scientific and Technical Information of China (English)

    江云坤; 史保森; 李剑; 段开敏; 范晓锋; 郭光灿

    2001-01-01

    The two-photon polarized entangled state is generated from the type Ⅱ spontaneous parametric down-conversion pumped by a femtosecond pulse. The two-photon interference is observed in the Hong-Ou-Mandel interferometer. The high visibility of the interference is restored with narrow band interference filters placed in front of the detectors.

  13. Probing temporal correlation in ventricular interbeat intervals during atrial fibrillation with local continuous DFA

    Science.gov (United States)

    Heinrichs, Stefan; Struzik, Zbigniew R.; Hayano, Junichiro; Yamamoto, Yoshiharu

    2004-05-01

    Using the method of local Continuous Detrended Fluctuation Analysis CDFA) we analyze the correlations of ventricular interbeat intervals of patients with Atrial Fibrillation (AF). CDFA yields a local Hoelder exponent h for a neighborhood around each point in the time series by determining the scaling of fluctuations with window size after detrending. We compare the histograms of Hoelder exponents for original data with those of randomly shuffled data and find some correlations not only in long-range windows but also at short time scales where interbeat intervals during AF have been believed to be random in nature. Furthermore, we find unique temporal correlation structures to occur only in the heart rate of patients who were in the survivor group when a follow up was conducted at least one year after data acquisition. We conclude that ventricular interbeat intervals during AF contain richer information than previously considered and the study of the local correlations may be useful in predicting mortality of the patients.

  14. A new approach to dual-color two-photon microscopy with fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Rebane Aleks

    2010-02-01

    Full Text Available Abstract Background Two-photon dual-color imaging of tissues and cells labeled with fluorescent proteins (FPs is challenging because most two-photon microscopes only provide one laser excitation wavelength at a time. At present, methods for two-photon dual-color imaging are limited due to the requirement of large differences in Stokes shifts between the FPs used and their low two-photon absorption (2PA efficiency. Results Here we present a new method of dual-color two-photon microscopy that uses the simultaneous excitation of the lowest-energy electronic transition of a blue fluorescent protein and a higher-energy electronic transition of a red fluorescent protein. Conclusion Our method does not require large differences in Stokes shifts and can be extended to a variety of FP pairs with larger 2PA efficiency and more optimal imaging properties.

  15. Description of states of two-photon interference in optical gating Michelson interferometer

    Science.gov (United States)

    Pongophas, Ekkarat; Sinsarp, Asawin; Suwanna, Sujin; Chunwachirasiri, Withoon; Singhsomroje, Wisit

    2015-07-01

    The interference of two photons in the optical gating Michelson interferometer is investigated. The phenomenon is studied using two different representations of photons: the space-time domain and a step-by-step two photon state evolution. Both representations lead to an equivalent description of the two-photon states which is the interference of four cases of two-photon traveling states, as implied by the evolution analysis. Additionally, the space-time domain analysis reveals that the classical interference of high-intensity light source is identical to the two-photon interference in the quantum regime except for a multiplicative factor of (n 2), where n is the number of photons.

  16. Imaging theory and resolution improvement of two-photon confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    唐志列; 杨初平; 裴红津; 梁瑞生; 刘颂豪

    2002-01-01

    The nonlinear effect of two-photon excitation on the imaging property of two-photonconfocal microscopy has been analyzed by the two-photon fluorescence intensity transfer functionderived in this paper. The two-photon fluorescence intensity transfer function in a confocal micros-copy is given. Furthermore the three-dimensional point spread function (3D-PSF) and thethree-dimensional optical transfer function (3D-OTF) of two-photon confocal microscopy are de-rived based on the nonlinear effect of two-photon excitation. The imaging property of two-photonconfocal microscopy is discussed in detail based on 3D-OTF. Finally the spatial resolution limit oftwo-photon confocal microscopy is discussed according to the uncertainty principle.

  17. Goal-dependent modulation of declarative memory: neural correlates of temporal recency decisions and novelty detection.

    Science.gov (United States)

    Dudukovic, Nicole M; Wagner, Anthony D

    2007-06-18

    Declarative memory allows an organism to discriminate between previously encountered and novel items, and to place past encounters in time. Numerous imaging studies have investigated the neural processes supporting item recognition, whereas few have examined retrieval of temporal information. In the present study, functional magnetic resonance imaging (fMRI) was conducted while subjects engaged in temporal recency and item novelty decisions. Subjects encountered three-alternative forced-choice retrieval trials, each consisting of two words from a preceding study phase and one novel word, and were instructed to either identify the novel item (Novelty trials) or the more recently presented study item (Recency trials). Relative to correct Novelty decisions, correct Recency decisions elicited greater activation in a network of left-lateralized regions, including frontopolar and dorsolateral prefrontal cortex and intraparietal sulcus. A conjunction analysis revealed that these left-lateralized regions overlapped with those previously observed to be engaged during source recollection versus novelty detection, suggesting that during Recency trials subjects attempted to recollect event details. Consistent with this interpretation, correct Recency decisions activated posterior hippocampus and parahippocampal cortex, whereas incorrect Recency decisions elicited greater anterior cingulate activation. The magnitude of this latter effect positively correlated with activation in right dorsolateral prefrontal cortex. Finally, correct Novelty decisions activated the anterior medial temporal lobe to a greater extent than did correct Recency decisions, suggesting that medial temporal novelty responses are not obligatory but rather can be modulated by the goal-directed allocation of attention. Collectively, these findings advance understanding of how subjects strategically engage frontal and parietal mechanisms in the service of attempting to remember the temporal order of events

  18. Adaption of the temporal correlation coefficient calculation for temporal networks (applied to a real-world pig trade network).

    Science.gov (United States)

    Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim

    2016-01-01

    The average topological overlap of two graphs of two consecutive time steps measures the amount of changes in the edge configuration between the two snapshots. This value has to be zero if the edge configuration changes completely and one if the two consecutive graphs are identical. Current methods depend on the number of nodes in the network or on the maximal number of connected nodes in the consecutive time steps. In the first case, this methodology breaks down if there are nodes with no edges. In the second case, it fails if the maximal number of active nodes is larger than the maximal number of connected nodes. In the following, an adaption of the calculation of the temporal correlation coefficient and of the topological overlap of the graph between two consecutive time steps is presented, which shows the expected behaviour mentioned above. The newly proposed adaption uses the maximal number of active nodes, i.e. the number of nodes with at least one edge, for the calculation of the topological overlap. The three methods were compared with the help of vivid example networks to reveal the differences between the proposed notations. Furthermore, these three calculation methods were applied to a real-world network of animal movements in order to detect influences of the network structure on the outcome of the different methods.

  19. Two-photon microscopy measurement of CMRO2 using periarteriolar PO2 gradients(Conference Presentation)

    Science.gov (United States)

    Sakadžić, Sava; Yaseen, Mohammad A.; Jaswal, Rajeshwer S.; Roussakis, Emmanuel; Dale, Anders M.; Buxton, Richard B.; Vinogradov, Sergei A.; Boas, David A.; Devor, Anna

    2017-02-01

    The cerebral metabolic rate of oxygen (CMRO2) is an essential parameter for evaluating brain function and pathophysiology. Measurements of CMRO2 with high spatio-temporal resolution are critically important for understanding how the brain copes with metabolic and blood perfusion changes associated with various clinical conditions, such as stroke, periinfarct depolarizations, and various microvasculopathies (e.g., Alzheimer's disease, chronic hypertension). CMRO2 measurements are also important for understanding the physiological underpinnings of functional Magnetic Resonance Imaging signals. However, the currently available approaches for quantifying CMRO2 rely on complex multimodal imaging and mathematical modeling. Here, we introduce a novel method that allows estimation of CMRO2 based on a single measurement modality - two-photon phosphorescence lifetime microscopy (2PLM) imaging of the partial pressure of oxygen (PO2) in cortical tissue. CMRO2 is estimated by fitting the changes of tissue PO2 around cortical penetrating arterioles with the Krogh cylinder model of oxygen diffusion. We measured the baseline CMRO2 in anesthetized rats, and modulated tissue PO2 levels by manipulating the depth of anesthesia. This method has a spatial resolution of approximately 200 μm and it may provide CMRO2 measurements in individual cortical layers or within confined cortical regions such as in ischemic penumbra and the foci of functional activation.

  20. Effect of Two-Photon Stark Shift on the Multi-Frequency Raman Spectra

    Directory of Open Access Journals (Sweden)

    Hao Yan

    2014-09-01

    Full Text Available High order Raman generation has received considerable attention as a possible method for generating ultrashort pulses. A large number of Raman orders can be generated when the Raman-active medium is pumped by two laser pulses that have a frequency separation equal to the Raman transition frequency. High order Raman generation has been studied in the different temporal regimes, namely: adiabatic, where the pump pulses are much longer than the coherence time of the transition; transient, where the pulse duration is comparable to the coherence time; and impulsive, where the bandwidth of the ultrashort pulse is wider than the transition frequency. To date, almost all of the work has been concerned with generating as broad a spectrum as possible, but we are interested in studying the spectra of the individual orders when pumped in the transient regime. We concentrate on looking at extra peaks that are generated when the Raman medium is pumped with linearly chirped pulses. The extra peaks are generated on the low frequency side of the Raman orders. We discuss how linear Raman scattering from two-photon dressed states can lead to the generation of these extra peaks.

  1. Single particle tracking through highly scattering media with multiplexed two-photon excitation

    Science.gov (United States)

    Perillo, Evan; Liu, Yen-Liang; Liu, Cong; Yeh, Hsin-Chih; Dunn, Andrew K.

    2015-03-01

    3D single-particle tracking (SPT) has been a pivotal tool to furthering our understanding of dynamic cellular processes in complex biological systems, with a molecular localization accuracy (10-100 nm) often better than the diffraction limit of light. However, current SPT techniques utilize either CCDs or a confocal detection scheme which not only suffer from poor temporal resolution but also limit tracking to a depth less than one scattering mean free path in the sample (typically validated our microscope by tracking (1) fluorescent nanoparticles in a prescribed motion inside gelatin gel (with 1% intralipid) and (2) labeled single EGFR complexes inside skin cancer spheroids (at least 8 layers of cells thick) for ~10 minutes. Furthermore we discuss future capabilities of our multiplexed two-photon microscope design, specifically to the extension of (1) simultaneous multicolor tracking (i.e. spatiotemporal co-localization analysis) and (2) FRET studies (i.e. lifetime analysis). The high resolution, high depth penetration, and multicolor features of this microscope make it well poised to study a variety of molecular scale dynamics in the cell, especially related to cellular trafficking studies with in vitro tumor models and in vivo.

  2. Highly efficient and two-photon excited stimulated Rayleigh-Bragg scattering in organic solutions

    Energy Technology Data Exchange (ETDEWEB)

    He, Guang S., E-mail: gshe@buffalo.edu; Prasad, Paras N. [The Institute for Lasers, Photonics and Biophotonics, State University of New York at Buffalo, Buffalo, New York 14260-3000 (United States); Kannan, Ramamurthi; Tan, Loon-Seng [Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/RX, Wright-Patterson AFB, Ohio 45433-7750 (United States)

    2015-07-21

    The properties of backward stimulated Rayleigh-Bragg scattering (SRBS) in three highly two-photon active AF-chromophores solutions in tetrahydrofuran (THF) have been investigated using 816-nm and 8-ns pump laser beam. The nonlinear reflectivity R, spectral structure, temporal behavior, and phase-conjugation capability of the backward SRBS output have been measured, respectively. Under the same experimental condition, the pump threshold for SRBS in three solution samples can be significantly (∼one order of magnitude) lower than that for stimulated Brillouin scattering (SBS) in the pure solvent (THF). With the optimized concentration value and at a moderate pump energy (∼1.5 mJ) level, the measured nonlinear reflectivity was R ≥ 35% for the 2 cm-long solution sample, while for the SBS from a pure solvent sample of the same length was R ≈ 4.7%. The peculiar features of very low pump threshold, no spectral shift, tolerant pump spectral linewidth requirement (≤1 cm{sup −1}), and phase-conjugation capability are favorable for those nonlinear photonics applications, such as highly efficiency phase-conjugation reflectors for high-brightness laser oscillator/amplifier systems, special imaging through turbid medium, self-adaptive remote optical sensing, as well as for optical rangefinder and lidar systems.

  3. Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics.

    Science.gov (United States)

    Carroll, Elizabeth C; Berlin, Shai; Levitz, Joshua; Kienzler, Michael A; Yuan, Zhe; Madsen, Dorte; Larsen, Delmar S; Isacoff, Ehud Y

    2015-02-17

    Mammalian neurotransmitter-gated receptors can be conjugated to photoswitchable tethered ligands (PTLs) to enable photoactivation, or photoantagonism, while preserving normal function at neuronal synapses. "MAG" PTLs for ionotropic and metabotropic glutamate receptors (GluRs) are based on an azobenzene photoswitch that is optimally switched into the liganding state by blue or near-UV light, wavelengths that penetrate poorly into the brain. To facilitate deep-tissue photoactivation with near-infrared light, we measured the efficacy of two-photon (2P) excitation for two MAG molecules using nonlinear spectroscopy. Based on quantitative characterization, we find a recently designed second generation PTL, L-MAG0460, to have a favorable 2P absorbance peak at 850 nm, enabling efficient 2P activation of the GluK2 kainate receptor, LiGluR. We also achieve 2P photoactivation of a metabotropic receptor, LimGluR3, with a new mGluR-specific PTL, D-MAG0460. 2P photoswitching is efficiently achieved using digital holography to shape illumination over single somata of cultured neurons. Simultaneous Ca(2+)-imaging reports on 2P photoswitching in multiple cells with high temporal resolution. The combination of electrophysiology or Ca(2+) imaging with 2P activation by optical wavefront shaping should make second generation PTL-controlled receptors suitable for studies of intact neural circuits.

  4. Coarse-Grained Theory of Biological Charge Transfer with Spatially and Temporally Correlated Noise.

    Science.gov (United States)

    Liu, Chaoren; Beratan, David N; Zhang, Peng

    2016-04-21

    System-environment interactions are essential in determining charge-transfer (CT) rates and mechanisms. We developed a computationally accessible method, suitable to simulate CT in flexible molecules (i.e., DNA) with hundreds of sites, where the system-environment interactions are explicitly treated with numerical noise modeling of time-dependent site energies and couplings. The properties of the noise are tunable, providing us a flexible tool to investigate the detailed effects of correlated thermal fluctuations on CT mechanisms. The noise is parametrizable by molecular simulation and quantum calculation results of specific molecular systems, giving us better molecular resolution in simulating the system-environment interactions than sampling fluctuations from generic spectral density functions. The spatially correlated thermal fluctuations among different sites are naturally built-in in our method but are not readily incorporated using approximate spectral densities. Our method has quantitative accuracy in systems with small redox potential differences (temporal correlations of site energies are critical in determining the coherent-incoherent transition, while the role of spatial correlations depends on the nature of the systems. In a system with repeated bridge units of the same chemistry, spatially correlated fluctuations enhance the charge delocalization and charge-transfer rates; however, in a system of units with different site energies, spatial correlations slow the fluctuations to bring units into degeneracy, in turn, slowing the charge-transfer rates. The spatial and temporal correlations of condensed phase medium fluctuations provide another source to control and tune the kinetics and dynamics of charge-transfer systems.

  5. MRI in patients with temporal lobe epilepsy; Correlation between MRI findings and clinical features

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Kazuhiro (Chiba Univ. (Japan). School of Medicine)

    1992-04-01

    The present study investigated magnetic resonance imaging (MRI) features in temporal lobe epilepsy and correlated them with clinical variables, such as age, illness duration, past history, and the frequency of seizure. Cerebral MRI was performed in 45 patients with temporal lobe epilepsy of unknown etiology, using a 0.5 T and/or a 1.5 T MRI systems. The temporal lobe was seen as high signal intensity on T2-weighted images and/or proton density-weighted images in 6 patients, although it was missed on CT and T1-weighted images. The high intensity area seemed to reflect sclerosis of the temporal lobe. This finding was significantly associated with partial seizure. Of these patients, 3 had a history of febrile convulsions. Ten patients had slight dilatation of the inferior horn of the lateral ventricle. They were significantly old at the time of onset and examination, as compared with those without dilatation. Furthermore, 6 patients with unilateral dilatation were significantly younger than the other 4 with bilateral dilatation. Nine patients had small multiple high signal areas in white matter, mainly in the parietal lobe, which suggested vascular origin. These patients were significantly old at the time of onset and examination, as compared with those having no such findings. In depicting high signal intensity areas, a 1.5 T MRI system was not always superior to a 0.5 T MRI system. Proton density-weighted images were better than T2-weighted images in some patients. (N.K.).

  6. Recurrent network models for perfect temporal integration of fluctuating correlated inputs.

    Directory of Open Access Journals (Sweden)

    Hiroshi Okamoto

    2009-06-01

    Full Text Available Temporal integration of input is essential to the accumulation of information in various cognitive and behavioral processes, and gradually increasing neuronal activity, typically occurring within a range of seconds, is considered to reflect such computation by the brain. Some psychological evidence suggests that temporal integration by the brain is nearly perfect, that is, the integration is non-leaky, and the output of a neural integrator is accurately proportional to the strength of input. Neural mechanisms of perfect temporal integration, however, remain largely unknown. Here, we propose a recurrent network model of cortical neurons that perfectly integrates partially correlated, irregular input spike trains. We demonstrate that the rate of this temporal integration changes proportionately to the probability of spike coincidences in synaptic inputs. We analytically prove that this highly accurate integration of synaptic inputs emerges from integration of the variance of the fluctuating synaptic inputs, when their mean component is kept constant. Highly irregular neuronal firing and spike coincidences are the major features of cortical activity, but they have been separately addressed so far. Our results suggest that the efficient protocol of information integration by cortical networks essentially requires both features and hence is heterotic.

  7. Dramatyping: a generic algorithm for detecting reasonable temporal correlations between drug administration and lab value alterations

    Directory of Open Access Journals (Sweden)

    Axel Newe

    2016-03-01

    Full Text Available According to the World Health Organization, one of the criteria for the standardized assessment of case causality in adverse drug reactions is the temporal relationship between the intake of a drug and the occurrence of a reaction or a laboratory test abnormality. This article presents and describes an algorithm for the detection of a reasonable temporal correlation between the administration of a drug and the alteration of a laboratory value course. The algorithm is designed to process normalized lab values and is therefore universally applicable. It has a sensitivity of 0.932 for the detection of lab value courses that show changes in temporal correlation with the administration of a drug and it has a specificity of 0.967 for the detection of lab value courses that show no changes. Therefore, the algorithm is appropriate to screen the data of electronic health records and to support human experts in revealing adverse drug reactions. A reference implementation in Python programming language is available.

  8. Dramatyping: a generic algorithm for detecting reasonable temporal correlations between drug administration and lab value alterations.

    Science.gov (United States)

    Newe, Axel

    2016-01-01

    According to the World Health Organization, one of the criteria for the standardized assessment of case causality in adverse drug reactions is the temporal relationship between the intake of a drug and the occurrence of a reaction or a laboratory test abnormality. This article presents and describes an algorithm for the detection of a reasonable temporal correlation between the administration of a drug and the alteration of a laboratory value course. The algorithm is designed to process normalized lab values and is therefore universally applicable. It has a sensitivity of 0.932 for the detection of lab value courses that show changes in temporal correlation with the administration of a drug and it has a specificity of 0.967 for the detection of lab value courses that show no changes. Therefore, the algorithm is appropriate to screen the data of electronic health records and to support human experts in revealing adverse drug reactions. A reference implementation in Python programming language is available.

  9. Temporal pole activity during understanding other persons' mental states correlates with neuroticism trait.

    Science.gov (United States)

    Jimura, Koji; Konishi, Seiki; Asari, Tomoki; Miyashita, Yasushi

    2010-04-30

    Comprehension of other persons' mental states is one of the representative cognitive functions involved in social situations. It has been suggested that this function sometimes recruits emotional processes. The present fMRI study examined the neural mechanisms associated with understanding others' mental states, and the conditions that determine the recruitment of the emotional processes. The false belief paradigm, a traditional behavioral paradigm to investigate comprehension of others, was applied to an event-related fMRI analysis, allowing for the extraction of brain activity time-locked to successful understanding of others' mental states. Prominent brain activity was observed in multiple cortical regions including the medial prefrontal cortex, temporo-parietal junction, precuneus, and temporal pole. Then, correlational analyses were performed between the activations and individuals' scores of neuroticism, a personality trait that reflects emotional instability in daily life. It was revealed that the neuroticism scores were positively correlated with the activity in the temporal pole region, but not in the other regions. These results suggest that the emotional processes implemented in the temporal pole are recruited during successful understanding of other persons' mental states, and that the recruitment may be modulated by an emotional personality trait of individual subjects.

  10. Community detection in temporal multilayer networks, and its application to correlation networks

    CERN Document Server

    Bazzi, Marya; Williams, Stacy; McDonald, Mark; Fenn, Daniel J; Howison, Sam D

    2015-01-01

    Networks are a convenient way to represent complex systems of interacting entities. Many networks contain "communities" of nodes that are more densely connected to each other than to nodes in the rest of the network. In this paper, we investigate the detection of communities in temporal networks represented as multilayer networks. As a focal example, we study time-dependent financial-asset correlation networks. We first argue that the use of the "modularity" quality function---which is defined by comparing edge weights in an observed network to expected edge weights in a "null network"---is application-dependent. We differentiate between "null networks" and "null models" in our discussion of modularity maximization, and we highlight that the same null network can correspond to different null models. We then investigate a multilayer modularity-maximization problem to identify communities in temporal networks. Our multilayer analysis only depends on the form of the maximization problem and not on the specific q...

  11. Two-photon absorption and two-photon circular dichroism of L-tryptophan in the near to far UV region

    Science.gov (United States)

    Vesga, Yuly; Hernandez, Florencio E.

    2017-09-01

    Herein we report on the first measurements of the two-photon absorption (TPA) spectrum of L-tryptophan in DMSO solution in the near to far UV region and the two-photon circular dichroism (TPCD) signal corresponding to a transition at 200 nm. We demonstrate the application of the Double L-scan technique in the near to far UV region to perform polarization dependent TPA measurements of chiral molecules. TPCD measurements below 400 nm reveal that chiral molecules in solution, such as tryptophan/DMSO, can undergo photochemical reactions in front of prolonged exposure to UV radiation.

  12. Towards a Computable Data Corpus of Temporal Correlations between Drug Administration and Lab Value Changes.

    Directory of Open Access Journals (Sweden)

    Axel Newe

    Full Text Available The analysis of electronic health records for an automated detection of adverse drug reactions is an approach to solve the problems that arise from traditional methods like spontaneous reporting or manual chart review. Algorithms addressing this task should be modeled on the criteria for a standardized case causality assessment defined by the World Health Organization. One of these criteria is the temporal relationship between drug intake and the occurrence of a reaction or a laboratory test abnormality. Appropriate data that would allow for developing or validating related algorithms is not publicly available, though.In order to provide such data, retrospective routine data of drug administrations and temporally corresponding laboratory observations from a university clinic were extracted, transformed and evaluated by experts in terms of a reasonable time relationship between drug administration and lab value alteration.The result is a data corpus of 400 episodes of normalized laboratory parameter values in temporal context with drug administrations. Each episode has been manually classified whether it contains data that might indicate a temporal correlation between the drug administration and the change of the lab value course, whether such a change is not observable or whether a decision between those two options is not possible due to the data. In addition, each episode has been assigned a concordance value which indicates how difficult it is to assess. This is the first open data corpus of a computable ground truth of temporal correlations between drug administration and lab value alterations.The main purpose of this data corpus is the provision of data for further research and the provision of a ground truth which allows for comparing the outcome of other assessments of this data with the outcome of assessments made by human experts. It can serve as a contribution towards systematic, computerized ADR detection in retrospective data. With

  13. Coalescence and Anti-Coalescence Interference of Two-Photon Wavepacket in a Beam Splitter

    Institute of Scientific and Technical Information of China (English)

    WANG Kai-Ge; YANG Guo-Jian

    2004-01-01

    @@ We study theoretically the interference of a two-photon wavepacket in a beam splitter. We find that the spectrum symmetry for the two-photon wavepacket dominates the perfect coalescence and anti-coalescence interference.The coalescence interference is unrelated to photon entanglement. Only the anti-coalescence interference has evidence of photon entanglement. We prove that the two-photon wavepacket with an anti-symmetric spectrum is transparent to pass the 50/50 beam splitter, showing perfect anti-coalescence interference.

  14. The two-photon exchange contribution to elastic electron-nucleon scattering at large momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Andrei V. Afanasev; Stanley J. Brodsky; Carl E. Carlson; Yu-Chun Chen; Marc Vanderhaeghen

    2005-01-01

    We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer by using a quark-parton representation of virtual Compton scattering. We thus can relate the two-photon exchange amplitude to the generalized parton distributions which also enter in other wide angle scattering processes. We find that the interference of one- and two-photon exchange contribution is able to substantially resolve the difference between electric form factor measurements from Rosenbluth and polarization transfer experiments.

  15. Search for a Higgs boson decaying into two photons in the CMS detector

    Indian Academy of Sciences (India)

    Roberta Volpe; on behalf of the CMS Collaboration

    2012-11-01

    A search for a Higgs boson decaying into two photons in collisions at the LHC at a centre-of-mass energy of 7 TeV is presented. The analysis is performed on a dataset corresponding to 1.66 fb-1 of data recorded in 2011 by the CMS experiment. Limits are set on the cross-section of a Standard Model Higgs boson decaying into two photons, and on the cross-section of a fermiophobic Higgs boson decaying into two photons.

  16. Two-photon absorption of [2.2]paracyclophane derivatives in solution: A theoretical investigation

    Science.gov (United States)

    Ferrighi, Lara; Frediani, Luca; Fossgaard, Eirik; Ruud, Kenneth

    2007-12-01

    The two-photon absorption of a class of [2.2]paracyclophane derivatives has been studied using quadratic response and density functional theories. For the molecules investigated, several effects influencing the two-photon absorption spectra have been investigated, such as side-chain elongation, hydrogen bonding, the use of ionic species, and solvent effects, the latter described by the polarizable continuum model. The calculations have been carried out using a recent parallel implementation of the polarizable continuum model in the DALTON code. Special attention is given to those aspects that could explain the large solvent effect on the two-photon absorption cross sections observed experimentally for this class of compounds.

  17. Cyanines as new fluorescent probes for DNA detection and two-photon excited bioimaging.

    Science.gov (United States)

    Feng, Xin Jiang; Wu, Po Lam; Bolze, Frédéric; Leung, Heidi W C; Li, King Fai; Mak, Nai Ki; Kwong, Daniel W J; Nicoud, Jean-François; Cheah, Kok Wai; Wong, Man Shing

    2010-05-21

    A series of cyanine fluorophores based on fused aromatics as an electron donor for DNA sensing and two-photon bioimaging were synthesized, among which the carbazole-based biscyanine exhibits high sensitivity and efficiency as a fluorescent light-up probe for dsDNA, which shows selective binding toward the AT-rich regions. The synergetic effect of the bischromophoric skeleton gives a several-fold enhancement in a two-photon absorption cross-section as well as a 25- to 100-fold enhancement in two-photon excited fluorescence upon dsDNA binding.

  18. Four-State Model for Three-Branch Molecule's Two-Photon Absorption Properties

    Institute of Scientific and Technical Information of China (English)

    SU Yan; WANG Pei-Ji; ZHAO Peng; RONG Zhen-Yu

    2006-01-01

    @@ We present a four-state model for calculating the two-photon absorption of multi-branched molecules by using the time-depended function method. The numerical results indicate that the two-photon absorption cross section has a strong enhancement for three-branch molecules compared to two-branch structures. The maximal two-photon-absorption cross section is 2.358 × 10-47 cm 4 s/photon. At the same time, the charge-transfer process for the charge-transfer states is visualized in order to explain mechanism about the maximal TPA cross section.

  19. Dicke Coherent Narrowing in Two-Photon and Raman Spectroscopy of Thin Vapour Cells

    CERN Document Server

    Dutier, G; Hamdi, I; Maurin, I; Saltiel, S; Bloch, D; Ducloy, M; Dutier, Gabriel; Todorov, Petko; Hamdi, Ismah\\`{e}ne; Maurin, Isabelle; Saltiel, Solomon; Bloch, Daniel; Ducloy, Martial

    2005-01-01

    The principle of coherent Dicke narrowing in a thin vapour cell, in which sub-Doppler spectral lineshapes are observed under a normal irradiation for a l/2 thickness, is generalized to two-photon spectroscopy. Only the sum of the two wave vectors must be normal to the cell, making the two-photon scheme highly versatile. A comparison is provided between the Dicke narrowing with copropagating fields, and the residual Doppler-broadening occurring with counterpropagating geometries. The experimental feasibility is discussed on the basis of a first observation of a two-photon resonance in a 300 nm-thick Cs cell. Extension to the Raman situation is finally considered.

  20. Correlation between hippocampal volumes and medial temporal lobe atrophy in patients with Alzheimer's disease.

    Science.gov (United States)

    Dhikav, Vikas; Duraiswamy, Sharmila; Anand, Kuljeet Singh

    2017-01-01

    Hippocampus undergoes atrophy in patients with Alzheimer's disease (AD). Calculation of hippocampal volumes can be done by a variety of methods using T1-weighted images of magnetic resonance imaging (MRI) of the brain. Medial temporal lobes atrophy (MTL) can be rated visually using T1-weighted MRI brain images. The present study was done to see if any correlation existed between hippocampal volumes and visual rating scores of the MTL using Scheltens Visual Rating Method. We screened 84 subjects presented to the Department of Neurology of a Tertiary Care Hospital and enrolled forty subjects meeting the National Institute of Neurological and Communicative Disorders and Stroke, AD related Disease Association criteria. Selected patients underwent MRI brain and T1-weighted images in a plane perpendicular to long axis of hippocampus were obtained. Hippocampal volumes were calculated manually using a standard protocol. The calculated hippocampal volumes were correlated with Scheltens Visual Rating Method for Rating MTL. A total of 32 cognitively normal age-matched subjects were selected to see the same correlation in the healthy subjects as well. Sensitivity and specificity of both methods was calculated and compared. There was an insignificant correlation between the hippocampal volumes and MTL rating scores in cognitively normal elderly (n = 32; Pearson Correlation coefficient = 0.16, P > 0.05). In the AD Group, there was a moderately strong correlation between measured hippocampal volumes and MTL Rating (Pearson's correlation coefficient = -0.54; P correlation between hippocampal volume and Mini-Mental Status Examination in the AD group. Manual delineation was superior compared to the visual method (P correlation was present between manual hippocampal volume measurements and MTL scores. Sensitivity and specificity of manual measurement of hippocampus was higher compared to visual rating scores for MTL in patients with AD.

  1. Dynamics of two-photon photoluminescence in gold nanostructures

    Science.gov (United States)

    Biagioni, P.; Brida, D.; Huang, J.-S.; Kern, J.; Duò, L.; Hecht, B.; Finazzi, M.; Cerullo, G.

    2012-03-01

    We introduce the possibility of performing two-pulse correlation measurements in order to probe the dynamics of twophoton photoluminescence in Au nanostructures. Our preliminary results obtained from single-crystal Au nanorods are consistent with the two-step model for the photoluminescence process.

  2. Temporal correlator in YM^2_3 and reflection-positivity violation

    CERN Document Server

    Taurines, A R; Mendes, T

    2004-01-01

    We consider numerical data for the lattice Landau gluon propagator obtained at very large lattice volumes in three-dimensional pure SU(2) Yang-Mills gauge theory (YM^2_3). We find that the temporal correlator C(t) shows an oscillatory pattern and is negative for several values of t. This is an explicit violation of reflection positivity and can be related to gluon confinement. We also obtain a good fit for this quantity in the whole time interval using a sum of Stingl-like propagators.

  3. Facilitated temporal summation of pain correlates with clinical pain intensity after hip arthroplasty

    DEFF Research Database (Denmark)

    Izumi, Masashi; Petersen, Kristian Kjær; Laursen, Mogens Berg;

    2017-01-01

    scale (VAS). Bilateral cuff algometry from the thighs were used to assess the cuff pressure pain thresholds (cPPT), pressure values at VAS scores equal with 6 cm (PVAS6), cuff pressure tolerance (cPTT), and temporal summation of pain (TSP) quantified by an increase in VAS scores to repeated phasic cuff...... stimulations. Correlations between hip pain VAS post-THA and preoperative QST results were analyzed. Post-THA hip pain VAS scores decreased (PPVAS6, and cPTT were significantly lower bilaterally in both pre-THA and post-THA patients compared with controls (P

  4. Cooperativity Leads to Temporally-Correlated Fluctuations in the Bacteriophage Lambda Genetic Switch

    Directory of Open Access Journals (Sweden)

    Jacob Quinn Shenker

    2015-04-01

    Full Text Available Cooperative interactions are widespread in biochemical networks, providing the nonlinear response that underlies behavior such as ultrasensitivity and robust switching. We introduce a temporal correlation function—the conditional activity—to study the behavior of these phenomena. Applying it to the bistable genetic switch in bacteriophage lambda, we find that cooperative binding between binding sites on the prophage DNA lead to non-Markovian behavior, as quantified by the conditional activity. Previously, the conditional activity has been used to predict allosteric pathways in proteins; here, we show that it identifies the rare unbinding events which underlie induction from lysogeny to lysis.

  5. More Severe Insomnia Complaints in People with Stronger Long-Range Temporal Correlations in Wake Resting-State EEG

    NARCIS (Netherlands)

    Colombo, Michele A; Wei, Yishul; Ramautar, Jennifer R; Linkenkaer-Hansen, Klaus; Tagliazucchi, Enzo; Van Someren, Eus J W

    2016-01-01

    The complaints of people suffering from Insomnia Disorder (ID) concern both sleep and daytime functioning. However, little is known about wake brain temporal dynamics in people with ID. We therefore assessed possible alterations in Long-Range Temporal Correlations (LRTC) in the amplitude

  6. Enhancement of Neocortical-Medial Temporal EEG Correlations during Non-REM Sleep

    Directory of Open Access Journals (Sweden)

    Nikolai Axmacher

    2008-01-01

    Full Text Available Interregional interactions of oscillatory activity are crucial for the integrated processing of multiple brain regions. However, while the EEG in virtually all brain structures passes through substantial modifications during sleep, it is still an open question whether interactions between neocortical and medial temporal EEG oscillations also depend on the state of alertness. Several previous studies in animals and humans suggest that hippocampal-neocortical interactions crucially depend on the state of alertness (i.e., waking state or sleep. Here, we analyzed scalp and intracranial EEG recordings during sleep and waking state in epilepsy patients undergoing presurgical evaluation. We found that the amplitudes of oscillations within the medial temporal lobe and the neocortex were more closely correlated during sleep, in particular during non-REM sleep, than during waking state. Possibly, the encoding of novel sensory inputs, which mainly occurs during waking state, requires that medial temporal dynamics are rather independent from neocortical dynamics, while the consolidation of memories during sleep may demand closer interactions between MTL and neocortex.

  7. Two-photon vibrational excitation of air by long-wave infrared laser pulses

    CERN Document Server

    Palastro, J P; Johnson, L A; Hafizi, B; Wahlstrand, J K; Milchberg, H M

    2016-01-01

    Ultrashort long-wave infrared (LWIR) laser pulses can resonantly excite vibrations in N2 and O2 through a two-photon transition. The absorptive, vibrational component of the ultrafast optical nonlinearity grows in time, starting smaller than, but quickly surpassing, the electronic, rotational, and vibrational refractive components. The growth of the vibrational component results in a novel mechanism of 3rd harmonic generation, providing an additional two-photon excitation channel, fundamental + 3rd harmonic. The original and emergent two-photon excitations drive the resonance exactly out of phase, causing spatial decay of the absorptive, vibrational nonlinearity. This nearly eliminates two-photon vibrational absorption. Here we present simulations and analytical calculations demonstrating how these processes modify the ultrafast optical nonlinearity in air. The results reveal nonlinear optical phenomena unique to the LWIR regime of ultrashort pulse propagation in atmosphere.

  8. Plasmonic-enhanced two-photon fluorescence with single gold nanoshell

    Science.gov (United States)

    Zhang, TianYue; Lu, GuoWei; Shen, HongMing; Perriat, P.; Martini, M.; Tillement, O.; Gong, QiHuang

    2014-06-01

    Single gold nanoshell with mutilpolar plasmon resonances is proposed to enhance two-photon fluorescence efficiently. The single emitter single nanoshell configuration is studied systematically by employing the finite-difference time-domain method. The emitter located inside or outside the nanoshell at various positions leads to a significantly different enhancement effect. The fluorescent emitter placed outside the nanoshell can achieve large fluorescence intensity given that both the position and orientation of the emission dipole are optimally controlled. In contrast, for the case of the emitter placed inside the nanoshell, it can experience substantial two-photon fluorescence enhancement without strict requirements upon the position and dipole orientations. Metallic nanoshell encapsulating many fluorescent emitters should be a promising nanocomposite configuration for bright two-photon fluorescence label. The results provide a comprehensive understanding about the plasmonic-enhanced two-photon fluorescence behaviors, and the nanocomposite configuration has great potential for optical detecting, imaging and sensing in biological applications.

  9. LANTHANIDE ENHANCE LUMINESCENCE (LEL) WITH ONE AND TWO PHOTON EXCITATION OF QUANTUM DYES LANTHANIDE (III) - MACROCYCLES

    Science.gov (United States)

    Title: Lanthanide Enhance Luminescence (LEL) with one and two photon excitation of Quantum Dyes? Lanthanide(III)-Macrocycles Principal Author:Robert C. Leif, Newport InstrumentsSecondary Authors:Margie C. Becker, Phoenix Flow Systems Al Bromm, Virginia Commonw...

  10. A compact two photon light sheet microscope for applications in neuroscience

    DEFF Research Database (Denmark)

    Piksarv, Peeter; Marti, Dominik; Le, Tuan

    2016-01-01

    We present a compact setup for two photon light sheet microscopy. By using pulsed Airy beam illumination we demonstrate eight-fold increase of the FOV compared to Gaussian light sheet with the same axial resolution....

  11. Solving Two Kinds of JC Models Relating to Two-Photon Process by Supersymmetric Transformation

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; Wei-Jun

    2004-01-01

    We propose two kinds of new Jaynes Cummings models relating to two-photon process by using the supersymmetric unitary transformation. The corresponding energy eigenvalues and eigenvectors are obtained.

  12. Two-photon absorption properties of a new series of 2CTσ chromophores

    Science.gov (United States)

    Zhou, Yu-fang; Meng, Fan-qing; Zhao, Xian; Xu, Dong; Jiang, Min-hu

    2000-10-01

    We have designed and synthesized a new series of two-photon ASPT-like charge transfer moieties linked by σ-bond spacers to N-position of pyridine cycle. Both theoretical and experimental results show there is no linear absorption in 600-1300 nm, so two-photon properties can be expected in this range. Two-photon absorption (TPA) cross-sections were calculated by using INDO/CI and SOS methods. The results show that those compounds possess large cross-sections as well as appropriate absorption wavelengths. Also the magnitude of the cross-section changes regularly with the number of the σ-bond spacers. These imply that they are good candidates for two-photon devices.

  13. LANTHANIDE ENHANCE LUMINESCENCE (LEL) WITH ONE AND TWO PHOTON EXCITATION OF QUANTUM DYES LANTHANIDE (III) - MACROCYCLES

    Science.gov (United States)

    Title: Lanthanide Enhance Luminescence (LEL) with one and two photon excitation of Quantum Dyes? Lanthanide(III)-Macrocycles Principal Author:Robert C. Leif, Newport InstrumentsSecondary Authors:Margie C. Becker, Phoenix Flow Systems Al Bromm, Virginia Commonw...

  14. Observation of Nondegenerate Two-Photon Gain in GaAs

    CERN Document Server

    Reichert, Matthew; Salamo, Greg; Hagan, David J; Van Stryland, Eric W

    2016-01-01

    Two-photon lasers require materials with large two-photon gain (2PG) coefficients and low linear and nonlinear losses. Our previous demonstration of large enhancement of two-photon absorption in semiconductors for very different photon energies translates directly into enhancement of 2PG. We experimentally demonstrate nondegenerate 2PG in optically excited bulk GaAs via femtosecond pump-probe measurements. 2PG is isolated from other pump induced effects through the difference between measurements performed with parallel and perpendicular polarizations of pump and probe. An enhancement in the 2PG coefficient of nearly two orders-of-magnitude is reported. The results point a possible way toward two-photon semiconductor lasers.

  15. A Hidden Markov Model Representing the Spatial and Temporal Correlation of Multiple Wind Farms

    DEFF Research Database (Denmark)

    Fang, Jiakun; Su, Chi; Hu, Weihao

    2015-01-01

    To accommodate the increasing wind energy with stochastic nature becomes a major issue on power system reliability. This paper proposes a methodology to characterize the spatiotemporal correlation of multiple wind farms. First, a hierarchical clustering method based on self-organizing maps...... is adopted to categorize the similar output patterns of several wind farms into joint states. Then the hidden Markov model (HMM) is then designed to describe the temporal correlations among these joint states. Unlike the conventional Markov chain model, the accumulated wind power is taken into consideration....... The proposed statistical modeling framework is compatible with the sequential power system reliability analysis. A case study on optimal sizing and location of fast-response regulation sources is presented....

  16. Exploiting Spatio-Temporal Correlation for Reliable Information Transport in WSNs

    Directory of Open Access Journals (Sweden)

    Faisal Karim Shaikh

    2011-01-01

    Full Text Available Delivering reliable services in service oriented architectures entails the underlying basis of having communication network models and well structured systems. With the rapid proliferation of ad-hoc mode of communication the reliable delivery of services increasingly encounter new communication and network perturbations. Empirically the core of service delivery in WSNs (Wireless Sensor Networks is information transport from the sensor nodes to the sink node where the service resides. In this work we provide a reliable information transport for enhanced service delivery by using spatio-temporal correlation in WSN. The classification for different types of information required by the services is also presented. To overcome dynamic network conditions and evolving service requirements an adaptive retransmission mechanism based on spatial correlation is utilized. Simulation results show that the proposed solutions provide service specific reliability and save expensive retransmissions and thus provide energy efficient solution.

  17. Absolute Frequency Measurement of Rubidium 5S-7S Two-Photon Transitions

    CERN Document Server

    Morzynski, Piotr; Ablewski, Piotr; Gartman, Rafal; Gawlik, Wojciech; Maslowski, Piotr; Nagorny, Bartlomiej; Ozimek, Filip; Radzewicz, Czeslaw; Witkowski, Marcin; Ciurylo, Roman; Zawada, Michal

    2013-01-01

    We report the absolute frequency measurements of rubidium 5S-7S two-photon transitions with a cw laser digitally locked to an atomic transition and referenced to an optical frequency comb. The narrow, two-photon transition, 5S-7S (760 nm) insensitive to first order in a magnetic field, is a promising candidate for frequency reference. The performed tests yield the transition frequency with accuracy better than reported previously.

  18. Fast two-photon neuronal imaging and control using a spatial light modulator and ruthenium compounds

    Science.gov (United States)

    Peterka, Darcy S.; Nikolenko, Volodymyr; Fino, Elodie; Araya, Roberto; Etchenique, Roberto; Yuste, Rafael

    2010-02-01

    We have developed a spatial light modulator (SLM) based microscope that uses diffraction to shape the incoming two-photon laser source to any arbitrary light pattern. This allows the simultaneous imaging or photostimulation of different regions of a sample with three-dimensional precision at high frame rates. Additionally, we have combined this microscope with a new class of two photon active neuromodulators with Ruthenium BiPyridine (RuBi) based cages that offer great flexibility for neuronal control.

  19. Influence of Two Photon Absorption on Soliton Self-Frequency Shift

    DEFF Research Database (Denmark)

    Steffensen, Henrik; Rottwitt, Karsten; Jepsen, Peter Uhd;

    2011-01-01

    The creation of mid-infrared supercontinua necessitates the use of soft-glass fibers. However, some materials, like chalcogenide, have a substantial two photon absorption. We introduce a model for soliton self-frequency shift that successfully includes this effect.......The creation of mid-infrared supercontinua necessitates the use of soft-glass fibers. However, some materials, like chalcogenide, have a substantial two photon absorption. We introduce a model for soliton self-frequency shift that successfully includes this effect....

  20. Two-photon ionization of atomic hydrogen with elliptically polarized light

    Science.gov (United States)

    Kassaee, A.; Rustgi, M. L.; Long, S. A. T.

    1988-01-01

    The theory of two-photon ionization of a hydrogenic state in the nonrelativistic dipole approximation is generalized for elliptically polarized light. An application to the metastable 2S state of atomic hydrogen is made. Significant differences in the angular distribution of the outgoing electrons are found depending upon the polarization of the photons. It is claimed that two-photon ionization employing elliptically polarized photons from lasers may provide an additional test for the theories of multiphoton ionization.

  1. Two-photon neuronal and astrocytic stimulation with azobenzene-based photoswitches.

    Science.gov (United States)

    Izquierdo-Serra, Mercè; Gascón-Moya, Marta; Hirtz, Jan J; Pittolo, Silvia; Poskanzer, Kira E; Ferrer, Èric; Alibés, Ramon; Busqué, Félix; Yuste, Rafael; Hernando, Jordi; Gorostiza, Pau

    2014-06-18

    Synthetic photochromic compounds can be designed to control a variety of proteins and their biochemical functions in living cells, but the high spatiotemporal precision and tissue penetration of two-photon stimulation have never been investigated in these molecules. Here we demonstrate two-photon excitation of azobenzene-based protein switches and versatile strategies to enhance their photochemical responses. This enables new applications to control the activation of neurons and astrocytes with cellular and subcellular resolution.

  2. Three-Dimensional Control of DNA Hybridization by Orthogonal Two-Color Two-Photon Uncaging.

    Science.gov (United States)

    Fichte, Manuela A H; Weyel, Xenia M M; Junek, Stephan; Schäfer, Florian; Herbivo, Cyril; Goeldner, Maurice; Specht, Alexandre; Wachtveitl, Josef; Heckel, Alexander

    2016-07-25

    We successfully introduced two-photon-sensitive photolabile groups ([7-(diethylamino)coumarin-4-yl]methyl and p-dialkylaminonitrobiphenyl) into DNA strands and demonstrated their suitability for three-dimensional photorelease. To visualize the uncaging, we used a fluorescence readout based on double-strand displacement in a hydrogel and in neurons. Orthogonal two-photon uncaging of the two cages is possible, thus enabling complex scenarios of three-dimensional control of hybridization with light.

  3. Two-photon cooperative emission in the presence of athermal electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Enaki, N.A.; Mihalache, D

    1997-05-15

    The possibility of cooperative spontaneous two-photon emission of an extended radiators system and the influence of the external thermal electromagnetic field on the spontaneous emission rate, in such a system, are investigated. It is concluded that, in an external electromagnetic field, the two-photon cooperative emission rate increases significantly. The importance of this effect on the emission of gamma rays from inverted long-lived isomers triggered by X-ray thermal fields, is emphasized.

  4. Engineering Two-Atom Thermal Entanglement via Two-Photon Process

    Institute of Scientific and Technical Information of China (English)

    GUO Yan-Qing; ZHOU Ling; SONG He-Shan; YI Xue-Xi

    2004-01-01

    We study that two atoms simultaneously interact with a single mode thermal field via different couplings and different spontaneous emission rates when two-photon process is involved. It is found that we indeed can employ the different couplings to produce the two-atom thermal entanglement in two-photon process. The different atomic spontaneous emission rates are also utilizable in generating thermal entanglement. We also investigate the effect of the can obtain a strong and steady entanglement.

  5. Two-Photon Exchange Corrections to Single Spin Asymmetry of Neutron and 3He

    Institute of Scientific and Technical Information of China (English)

    CHEN Dian-Yong; DONG Yu-Bing

    2011-01-01

    In a simple hadronic model, the two-photon exchange contributions to the single spin asymmetries for the nucleon and the 3He are estimated. The results show that the elastic contributions of two-photon exchange to the single spin asymmetries for the nucleon are rather small while those for the 3He are relatively large. Besides the strong angular dependence, the twophoton contributions to the single spin asymmetry for the 3He are very sensitive to the momentum transfer.

  6. Two-photon absorption laser induced fluorescence measurement of atomic oxygen density in an air atmospheric pressure plasma jet

    Science.gov (United States)

    Conway, Jim; Gogna, Gurusharan; Daniels, Stephen

    2016-09-01

    Two-photon Absorption Laser Induced Fluorescence (TALIF) is used to measure atomic oxygen number density [O] in an air Atmospheric Pressure Plasma Jet (APPJ). A novel technique based on photolysis of O2 is used to calibrate the TALIF system ensuring the same species (O) is probed during calibration and measurement. As a result, laser intensity can be increased outside the TALIF quadratic laser power region without affecting calibration reliability as any high intensity saturation effects will be identical for calibration and experiment. Higher laser intensity gives stronger TALIF signals helping overcome weak TALIF signals often experienced at atmospheric pressure due to collisional quenching. O2 photo-dissociation and two-photon excitation of the resulting [O] are both achieved within the same laser pulse. The photolysis [O] is spatially non-uniform and time varying. To allow valid comparison with [O] in a plasma, spatial and temporal correction factors are required. Knowledge of the laser pulse intensity I0(t), and wavelength allows correction factors to be found using a rate equation model. The air flow into the jet was fixed and the RF power coupled into the system varied. The resulting [O] was found to increase with RF power.

  7. Spatio-temporal correlations in models of collective motion ruled by different dynamical laws

    Science.gov (United States)

    Cavagna, Andrea; Conti, Daniele; Giardina, Irene; Grigera, Tomas S.; Melillo, Stefania; Viale, Massimiliano

    2016-12-01

    Information transfer is an essential factor in determining the robustness of biological systems with distributed control. The most direct way to study the mechanisms ruling information transfer is to experimentally observe the propagation across the system of a signal triggered by some perturbation. However, this method may be inefficient for experiments in the field, as the possibilities to perturb the system are limited and empirical observations must rely on natural events. An alternative approach is to use spatio-temporal correlations to probe the information transfer mechanism directly from the spontaneous fluctuations of the system, without the need to have an actual propagating signal on record. Here we test this method on models of collective behaviour in their deeply ordered phase by using ground truth data provided by numerical simulations in three dimensions. We compare two models characterized by very different dynamical equations and information transfer mechanisms: the classic Vicsek model, describing an overdamped noninertial dynamics and the inertial spin model, characterized by an underdamped inertial dynamics. By using dynamic finite-size scaling, we show that spatio-temporal correlations are able to distinguish unambiguously the diffusive information transfer mechanism of the Vicsek model from the linear mechanism of the inertial spin model.

  8. Neuronal correlate of visual associative long-term memory in the primate temporal cortex

    Science.gov (United States)

    Miyashita, Yasushi

    1988-10-01

    In human long-term memory, ideas and concepts become associated in the learning process1. No neuronal correlate for this cognitive function has so far been described, except that memory traces are thought to be localized in the cerebral cortex; the temporal lobe has been assigned as the site for visual experience because electric stimulation of this area results in imagery recall,2 and lesions produce deficits in visual recognition of objects3-9. We previously reported that in the anterior ventral temporal cortex of monkeys, individual neurons have a sustained activity that is highly selective for a few of the 100 coloured fractal patterns used in a visual working-memory task10. Here I report the development of this selectivity through repeated trials involving the working memory. The few patterns for which a neuron was conjointly selective were frequently related to each other through stimulus-stimulus association imposed during training. The results indicate that the selectivity acquired by these cells represents a neuronal correlate of the associative long-term memory of pictures.

  9. Understanding structure of urban traffic network based on spatial-temporal correlation analysis

    Science.gov (United States)

    Yang, Yanfang; Jia, Limin; Qin, Yong; Han, Shixiu; Dong, Honghui

    2017-08-01

    Understanding the structural characteristics of urban traffic network comprehensively can provide references for improving road utilization rate and alleviating traffic congestion. This paper focuses on the spatial-temporal correlations between different pairs of traffic series and proposes a complex network-based method of constructing the urban traffic network. In the network, the nodes represent road segments, and an edge between a pair of nodes is added depending on the result of significance test for the corresponding spatial-temporal correlation. Further, a modified PageRank algorithm, named the geographical weight-based PageRank algorithm (GWPA), is proposed to analyze the spatial distribution of important segments in the road network. Finally, experiments are conducted by using three kinds of traffic series collected from the urban road network in Beijing. Experimental results show that the urban traffic networks constructed by three traffic variables all indicate both small-world and scale-free characteristics. Compared with the results of PageRank algorithm, GWPA is proved to be valid in evaluating the importance of segments and identifying the important segments with small degree.

  10. Local Temporal Correlation Common Spatial Patterns for Single Trial EEG Classification during Motor Imagery

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2013-01-01

    Full Text Available Common spatial pattern (CSP is one of the most popular and effective feature extraction methods for motor imagery-based brain-computer interface (BCI, but the inherent drawback of CSP is that the estimation of the covariance matrices is sensitive to noise. In this work, local temporal correlation (LTC information was introduced to further improve the covariance matrices estimation (LTCCSP. Compared to the Euclidean distance used in a previous CSP variant named local temporal CSP (LTCSP, the correlation may be a more reasonable metric to measure the similarity of activated spatial patterns existing in motor imagery period. Numerical comparisons among CSP, LTCSP, and LTCCSP were quantitatively conducted on the simulated datasets by adding outliers to Dataset IVa of BCI Competition III and Dataset IIa of BCI Competition IV, respectively. Results showed that LTCCSP achieves the highest average classification accuracies in all the outliers occurrence frequencies. The application of the three methods to the EEG dataset recorded in our laboratory also demonstrated that LTCCSP achieves the highest average accuracy. The above results consistently indicate that LTCCSP would be a promising method for practical motor imagery BCI application.

  11. MRI changes and complement activation correlate with epileptogenicity in a mouse model of temporal lobe epilepsy.

    Science.gov (United States)

    Kharatishvili, Irina; Shan, Zuyao Y; She, David T; Foong, Samuel; Kurniawan, Nyoman D; Reutens, David C

    2014-03-01

    The complex pathogenesis of temporal lobe epilepsy includes neuronal and glial pathology, synaptic reorganization, and an immune response. However, the spatio-temporal pattern of structural changes in the brain that provide a substrate for seizure generation and modulate the seizure phenotype is yet to be completely elucidated. We used quantitative magnetic resonance imaging (MRI) to study structural changes triggered by status epilepticus (SE) and their association with epileptogenesis and with activation of complement component 3 (C3). SE was induced by injection of pilocarpine in CD1 mice. Quantitative diffusion-weighted imaging and T2 relaxometry was performed using a 16.4-Tesla MRI scanner at 3 h and 1, 2, 7, 14, 28, 35, and 49 days post-SE. Following longitudinal MRI examinations, spontaneous recurrent seizures and interictal spikes were quantified using continuous video-EEG monitoring. Immunohistochemical analysis of C3 expression was performed at 48 h, 7 days, and 4 months post-SE. MRI changes were dynamic, reflecting different outcomes in relation to the development of epilepsy. Apparent diffusion coefficient changes in the hippocampus at 7 days post-SE correlated with the severity of the evolving epilepsy. C3 activation was found in all stages of epileptogenesis within the areas with significant MRI changes and correlated with the severity of epileptic condition.

  12. Evolution of spatial and temporal correlations in the solar wind - Observations and interpretation

    Science.gov (United States)

    Klein, L. W.; Matthaeus, W. H.; Roberts, D. A.; Goldstein, M. L.

    1992-01-01

    Observations of solar wind magnetic field spectra from 1-22 AU indicate a distinctive structure in frequency which evolves with increasing heliocentric distance. At 1 AU extremely low frequency correlations are associated with temporal variations at the solar period and its first few harmonics. For periods of l2-96 hours, a l/f distribution is observed, which we interpret as an aggregate of uncorrelated coronal structures which have not dynamically interacted by 1 AU. At higher frequencies the familiar Kolmogorov-like power law is seen. Farther from the sun the frequency break point between the shallow l/f and the steeper Kolmogorov spectrum evolves systematically towards lower frequencies. We suggest that the Kolmogorov-like spectra emerge due to in situ turbulence that generates spatial correlations associated with the turbulent cascade and that the background l/f noise is a largely temporal phenomenon, not associated with in situ dynamical processes. In this paper we discuss these ideas from the standpoint of observations from several interplanetary spacecraft.

  13. Temporal evolution of helix hydration in a light-gated ion channel correlates with ion conductance.

    Science.gov (United States)

    Lórenz-Fonfría, Víctor A; Bamann, Christian; Resler, Tom; Schlesinger, Ramona; Bamberg, Ernst; Heberle, Joachim

    2015-10-27

    The discovery of channelrhodopsins introduced a new class of light-gated ion channels, which when genetically encoded in host cells resulted in the development of optogenetics. Channelrhodopsin-2 from Chlamydomonas reinhardtii, CrChR2, is the most widely used optogenetic tool in neuroscience. To explore the connection between the gating mechanism and the influx and efflux of water molecules in CrChR2, we have integrated light-induced time-resolved infrared spectroscopy and electrophysiology. Cross-correlation analysis revealed that ion conductance tallies with peptide backbone amide I vibrational changes at 1,665(-) and 1,648(+) cm(-1). These two bands report on the hydration of transmembrane α-helices as concluded from vibrational coupling experiments. Lifetime distribution analysis shows that water influx proceeded in two temporally separated steps with time constants of 10 μs (30%) and 200 μs (70%), the latter phase concurrent with the start of ion conductance. Water efflux and the cessation of the ion conductance are synchronized as well, with a time constant of 10 ms. The temporal correlation between ion conductance and hydration of helices holds for fast (E123T) and slow (D156E) variants of CrChR2, strengthening its functional significance.

  14. MRI in temporal lobe epilepsy. Correlation between EEG, SPECT and clinical features

    Energy Technology Data Exchange (ETDEWEB)

    Uesugi, Hideji; Onuma, Teiichi; Matsuda, Hiroshi; Ishida, Shiro [National Center Hospital for Mental, Nervous and Muscular Disorders, National Center of Neurology and Psychiatry, Kodaira, Tokyo (Japan)

    1996-02-01

    The relationship between MRI, SPECT, EEG and clinical features in temporal lobe epilepsy was investigated. Subjects were 162 patients (84 males, 78 females) whose average age was 38.1{+-}12.1 years. SPECT was carried out in 45 patients. The results were as follows: abnormal MR images were obtained in 36% of the group without epileptic discharge, and in 42% of the group with temporal spikes. There was no correlation between epileptic discharge in EEG and MRI abnormality. The lateralities of epileptic discharge and MRI were in disagreement in 9 of 39 patients (23%), indicating that determining the epileptic focus from scalp EEG was difficult. There was no correlation between the basic activity in EEG and abnormality in MRI. The rate of abnormal SPECT (89%) was higher than that of abnormal MRI (40%). The rate of the group with ictal automatism (52%) was higher than that of the group without ictal automatism (35%). The rate of abnormal MR images was high in the group with encephalitis (73%). The rate was higher in the group with febrile convulsion (62%) than in the group without it (28%). The rate of the abnormal MR images was higher in the group with a seizure frequency of at least several mal/month (48%) than in the group with a seizure frequency of less than several mal/year (29%). (author).

  15. Two-Photon and Second Harmonic Microscopy in Clinical and Translational Cancer Research

    Science.gov (United States)

    PERRY, SETH W.; BURKE, RYAN M.; BROWN, EDWARD B.

    2012-01-01

    Application of two-photon microscopy (TPM) to translational and clinical cancer research has burgeoned over the last several years, as several avenues of pre-clinical research have come to fruition. In this review, we focus on two forms of TPM—two-photon excitation fluorescence microscopy, and second harmonic generation microscopy—as they have been used for investigating cancer pathology in ex vivo and in vivo human tissue. We begin with discussion of two-photon theory and instrumentation particularly as applicable to cancer research, followed by an overview of some of the relevant cancer research literature in areas that include two-photon imaging of human tissue biopsies, human skin in vivo, and the rapidly developing technology of two-photon microendoscopy. We believe these and other evolving two-photon methodologies will continue to help translate cancer research from the bench to the bedside, and ultimately bring minimally invasive methods for cancer diagnosis and treatment to therapeutic reality. PMID:22258888

  16. Changes in cortical microvasculature during misery perfusion measured by two-photon laser scanning microscopy.

    Science.gov (United States)

    Tajima, Yosuke; Takuwa, Hiroyuki; Kokuryo, Daisuke; Kawaguchi, Hiroshi; Seki, Chie; Masamoto, Kazuto; Ikoma, Yoko; Taniguchi, Junko; Aoki, Ichio; Tomita, Yutaka; Suzuki, Norihiro; Kanno, Iwao; Saeki, Naokatsu; Ito, Hiroshi

    2014-08-01

    This study aimed to examine the cortical microvessel diameter response to hypercapnia in misery perfusion using two-photon laser scanning microscopy (TPLSM). We evaluated whether the vascular response to hypercapnia could represent the cerebrovascular reserve. Cerebral blood flow (CBF) during normocapnia and hypercapnia was measured by laser-Doppler flowmetry through cranial windows in awake C57/BL6 mice before and at 1, 7, 14, and 28 days after unilateral common carotid artery occlusion (UCCAO). Diameters of the cortical microvessels during normocapnia and hypercapnia were also measured by TPLSM. Cerebral blood flow and the vascular response to hypercapnia were decreased after UCCAO. Before UCCAO, vasodilation during hypercapnia was found primarily in arterioles (22.9%±3.5%). At 14 days after UCCAO, arterioles, capillaries, and venules were autoregulatorily dilated by 79.5%±19.7%, 57.2%±32.3%, and 32.0%±10.8%, respectively. At the same time, the diameter response to hypercapnia in arterioles was significantly decreased to 1.9%±1.5%. A significant negative correlation was observed between autoregulatory vasodilation and the diameter response to hypercapnia in arterioles. Our findings indicate that arterioles play main roles in both autoregulatory vasodilation and hypercapnic vasodilation, and that the vascular response to hypercapnia can be used to estimate the cerebrovascular reserve.

  17. Broadband Two-Photon Absorption Characteristics of Highly Photostable Fluorenyl-Dicyanoethylenylated [60]Fullerene Dyads

    Directory of Open Access Journals (Sweden)

    Seaho Jeon

    2016-05-01

    Full Text Available We synthesized four C60-(light-harvesting antenna dyads C60 (>CPAF-Cn (n = 4, 9, 12, or 18 1-Cn for the investigation of their broadband nonlinear absorption effect. Since we have previously demonstrated their high function as two-photon absorption (2PA materials at 1000 nm, a different 2PA wavelength of 780 nm was applied in the study. The combined data taken at two different wavelength ranges substantiated the broadband characteristics of 1-Cn. We proposed that the observed broadband absorptions may be attributed by a partial π-conjugation between the C60 > cage and CPAF-Cn moieties, via endinitrile tautomeric resonance, giving a resonance state with enhanced molecular conjugation. This transient state could increase its 2PA and excited-state absorption at 800 nm. In addition, a trend of concentration-dependent 2PA cross-section (σ2 and excited-state absorption magnitude was detected showing a higher σ value at a lower concentration that was correlated to increasing molecular separation with less aggregation for dyads C60(>CPAF-C18 and C60(>CPAF-C9, as better 2PA and excited-state absorbers.

  18. Multispot two-photon imaging of mice heart tissue detecting calcium waves

    Science.gov (United States)

    de Mauro, C.; Cecchetti, C. A.; Alfieri, D.; Borile, G.; Mongillo, M.; Pavone, F. S.

    2012-06-01

    High rate, full field image acquisition in multiphoton imaging is achievable by parallelization of the excitation and of the detection paths. Via a Diffractive Optical Elements (DOEs) which splits a pulsed laser, and a spatial resolved descanned detection path, a new approach to microscopy has been developed. By exploiting the three operating mode, single beam, 16 beamlets or 64 beamlets, the best experimental conditions can be found by adapting the power per beamlet. This Multiphoton Multispot system (MCube) has been characterized in thick tissue samples, and subsequently used for the first time for Ca2+ imaging of acute heart slices. A test sample with fixed mice heart slices with embedded sub-resolution fluorescent beads has been used to test the capability of optical axial resolution up to ~200 microns in depth. Radial and axial resolutions of 0.6 microns and 3 microns have been respectively obtained with a 40X water immersion objective, getting close to the theoretical limit. Then images of heart slices cardiomyocites, loaded with Fluo4-AM have been acquired. The formation of Ca2+ waves during electrostimulated beating has been observed, and the possibility of easily acquire full frame images at 15 Hz (16 beamlets) has been demonstrated, towards the in vivo study of time resolved cellular dynamics and arrhythmia trigger mechanisms in particular. A very high speed two-photon Random Access system for in vivo electrophysiological studies, towards the correlation of voltage and calcium signals in arrhythmia phenomena, is now under developing at Light4tech.

  19. In situ imaging of the mouse cochlea using two-photon microscopy

    Science.gov (United States)

    Yang, Xin; Pu, Ye; Psaltis, Demetri; Stankovic, Konstantina M.

    2013-04-01

    Intracochlear imaging is of great interest clinically because cochlea is the central organ of hearing. However, intracochlear imaging is technologically challenging due to the cochlea's small size and encasement in bone. The state-of- the-art imaging techniques are not adequate for high resolution cellular imaging to establish diagnosis without destroying the cochlea. We report in situ imaging of intact mouse cochlea using endogenous two-photon excitation fluorescence (TPEF) as the contrast mechanism. TPEF eliminates the need for exogenous labeling and eradicating the staining-induced artifacts. We used a natural, membranous opening into the cochlea, the round window, as the optical access to reach the organ of Corti, requiring no additional slicing or opening. Our approach provides the maximum non-invasiveness in the imaging process. TPEF exhibits strong contrast allowing deep imaging of mouse cochlea with cellular and even subcellular resolution. Inner hair cell, outer hair cell and supporting cell are clearly identifiable in TPEF images. Distinct morphological differences are observed between healthy and noise-exposed cochleae, allowing detection of specific, noise-induced pathologic changes. The TPEF images taken through the round window are correlated with the whole mount sections, verifying their reliability. Compared with one-photon excitation fluorescence (OPEF) confocal microscope and wide-field transmission microscope images taken under the same magnification and resolution, TPEF images demonstrate clear advantages in terms of sharpness, signal to noise ratio and contrast. These capabilities provide a working foundation for microendoscopy-based clinical diagnostics of sensorineural hearing loss.

  20. Measurement of drug-target engagement in live cells by two-photon fluorescence anisotropy imaging.

    Science.gov (United States)

    Vinegoni, Claudio; Fumene Feruglio, Paolo; Brand, Christian; Lee, Sungon; Nibbs, Antoinette E; Stapleton, Shawn; Shah, Sunil; Gryczynski, Ignacy; Reiner, Thomas; Mazitschek, Ralph; Weissleder, Ralph

    2017-07-01

    The ability to directly image and quantify drug-target engagement and drug distribution with subcellular resolution in live cells and whole organisms is a prerequisite to establishing accurate models of the kinetics and dynamics of drug action. Such methods would thus have far-reaching applications in drug development and molecular pharmacology. We recently presented one such technique based on fluorescence anisotropy, a spectroscopic method based on polarization light analysis and capable of measuring the binding interaction between molecules. Our technique allows the direct characterization of target engagement of fluorescently labeled drugs, using fluorophores with a fluorescence lifetime larger than the rotational correlation of the bound complex. Here we describe an optimized protocol for simultaneous dual-channel two-photon fluorescence anisotropy microscopy acquisition to perform drug-target measurements. We also provide the necessary software to implement stream processing to visualize images and to calculate quantitative parameters. The assembly and characterization part of the protocol can be implemented in 1 d. Sample preparation, characterization and imaging of drug binding can be completed in 2 d. Although currently adapted to an Olympus FV1000MPE microscope, the protocol can be extended to other commercial or custom-built microscopes.

  1. Nuclear two-photon decay in 0/sup +/ -> 0/sup +/ transitions

    Energy Technology Data Exchange (ETDEWEB)

    Kramp, J.; Habs, D.; Kroth, R.; Music, M.; Schirmer, J.; Schwalm, D.; Broude, C.

    1987-11-23

    The two-photon decay of the first excited 0/sup +/ state of /sup 16/O has been measured using the Heidelberg-Darmstadt crystal ball. A branching ratio of GAMMA/sub ..gamma gamma..//GAMMA/sub tot/ = (6.6+-0.5).10/sup -4/ was obtained. As in the cases of /sup 40/Ca and /sup 90/Zr previously reported by us, the 2..gamma.. decay of /sup 16/O proceeds via double E1 and M1 transitions of similar strength; the evidence is the observed interference term in the 2..gamma.. angular correlation. The ratio of the matrix elements ..cap alpha../sub E1//chi for /sup 16/O was restricted to the two inverse values (-6.2+-1.5) or (-0.16+-0.04). An interpretation of 2..gamma.. matrix elements observed for /sup 16/O, /sup 40/Ca and /sup 90/Zr in terms of the electric polarizabilities and magnetic susceptibility is given leading to a qualitative understanding of this decay mode.

  2. Nearest neighbor imputation using spatial-temporal correlations in wireless sensor networks.

    Science.gov (United States)

    Li, YuanYuan; Parker, Lynne E

    2014-01-01

    Missing data is common in Wireless Sensor Networks (WSNs), especially with multi-hop communications. There are many reasons for this phenomenon, such as unstable wireless communications, synchronization issues, and unreliable sensors. Unfortunately, missing data creates a number of problems for WSNs. First, since most sensor nodes in the network are battery-powered, it is too expensive to have the nodes retransmit missing data across the network. Data re-transmission may also cause time delays when detecting abnormal changes in an environment. Furthermore, localized reasoning techniques on sensor nodes (such as machine learning algorithms to classify states of the environment) are generally not robust enough to handle missing data. Since sensor data collected by a WSN is generally correlated in time and space, we illustrate how replacing missing sensor values with spatially and temporally correlated sensor values can significantly improve the network's performance. However, our studies show that it is important to determine which nodes are spatially and temporally correlated with each other. Simple techniques based on Euclidean distance are not sufficient for complex environmental deployments. Thus, we have developed a novel Nearest Neighbor (NN) imputation method that estimates missing data in WSNs by learning spatial and temporal correlations between sensor nodes. To improve the search time, we utilize a kd-tree data structure, which is a non-parametric, data-driven binary search tree. Instead of using traditional mean and variance of each dimension for kd-tree construction, and Euclidean distance for kd-tree search, we use weighted variances and weighted Euclidean distances based on measured percentages of missing data. We have evaluated this approach through experiments on sensor data from a volcano dataset collected by a network of Crossbow motes, as well as experiments using sensor data from a highway traffic monitoring application. Our experimental results

  3. Enhanced two-photon fluorescence imaging and therapy of cancer cells via Gold@bridged silsesquioxane nanoparticles.

    Science.gov (United States)

    Croissant, Jonas; Maynadier, Marie; Mongin, Olivier; Hugues, Vincent; Blanchard-Desce, Mireille; Chaix, Arnaud; Cattoën, Xavier; Wong Chi Man, Michel; Gallud, Audrey; Gary-Bobo, Magali; Garcia, Marcel; Raehm, Laurence; Durand, Jean-Olivier

    2015-01-21

    A two-photon photosensitizer with four triethoxysilyl groups is synthesized through the click reaction. This photosensitizer allows the design of bridged silsesquioxane (BS) nanoparticles through a sol-gel process; moreover, gold core BS shells or BS nanoparticles decorated with gold nanospheres are synthesized. An enhancement of the two-photon properties is noted with gold and the nanoparticles are efficient for two-photon imaging and two-photon photodynamic therapy of cancer cells.

  4. Correlation between spectral and temporal mechanomyography features during functional electrical stimulation

    Directory of Open Access Journals (Sweden)

    Eddy Krueger

    Full Text Available Abstract Introduction: Signal analysis involves time and/or frequency domains, and correlations are described in the literature for voluntary contractions. However, there are few studies about those correlations using mechanomyography (MMG response during functional electrical stimulation (FES elicited contractions in spinal cord injured subjects. This study aimed to determine the correlation between spectral and temporal MMG features during FES application to healthy (HV and spinal cord injured volunteers (SCIV. Methods: Twenty volunteers participated in the research divided in two groups: HV (N=10 and SCIV (N=10. The protocol consisted of four FES profiles transcutaneously applied to quadriceps femoris muscle via femoral nerve. Each application produced a sustained knee extension greater than 65º up to 2 min without adjusting FES intensity. The investigation involved the correlation between MMG signal root mean square (RMS and mean frequency (MF. Results: HV and SCIV indicated that MMGRMS and MMGMF variations were inversely related with -0.12 ≥ r ≥ -0.82. The dispersion between MMGMF and MMGRMS reached 0.50 ≤ r2 ≤ 0.64. Conclusion The increase in MMGRMS and the decrease in MMGMF may be explained by the motor units coherence during fatigue state or by motor neuron adaptation (habituation along FES application (without modification on parameters.

  5. Temporal trends and recent correlates in sedentary behaviours in Chinese children

    Directory of Open Access Journals (Sweden)

    Dibley Michael J

    2011-08-01

    Full Text Available Abstract Background Sedentary behaviours (television, video and computer are related to health outcomes independent of physical activity. Few studies have examined trends and correlates of sedentary behaviours among youth in developing nations. The current study is to examine temporal trends in sedentary behaviours and recent correlates of screen use in Chinese children during a period of economic transition. Methods Secondary analysis of China Health and Nutrition Surveys. Cross-sectional data on sedentary behaviours including screen use among children aged 6-18 years from four surveys in 1997 (n = 2,469, 2000 (n = 1,838, 2004 (n = 1,382 and 2006 (n = 1,128. Temporal trends in screen use by socio-demographic characteristics were examined. The correlates of spending more than 2 hours per day on screen time in the most recent survey data (2006, n = 986 were analysed using survey logistic regression analysis. Results Daily screen time significantly increased in each subgroup by age, sex and urban/rural residence, with the largest increase for urban boys aged 13-18 years from 0.5 hours to 1.7 hours, and for rural boys aged 6-12 years from 0.7 hours to 1.7 hours (p Conclusion This study confirms sedentary behaviour has increased over the last decade in Chinese children. Efforts to ensure Chinese youth meet screen time guidelines include limiting access to screen technologies and encouraging parents to monitor their own screen time and to set limits on their child's screen time.

  6. High-accuracy reference standards for two-photon absorption in the 680-1050 nm wavelength range.

    Science.gov (United States)

    de Reguardati, Sophie; Pahapill, Juri; Mikhailov, Alexander; Stepanenko, Yuriy; Rebane, Aleksander

    2016-04-18

    Degenerate two-photon absorption (2PA) of a series of organic fluorophores is measured using femtosecond fluorescence excitation method in the wavelength range, λ2PA = 680-1050 nm, and ~100 MHz pulse repetition rate. The function of relative 2PA spectral shape is obtained with estimated accuracy 5%, and the absolute 2PA cross section is measured at selected wavelengths with the accuracy 8%. Significant improvement of the accuracy is achieved by means of rigorous evaluation of the quadratic dependence of the fluorescence signal on the incident photon flux in the whole wavelength range, by comparing results obtained from two independent experiments, as well as due to meticulous evaluation of critical experimental parameters, including the excitation spatial- and temporal pulse shape, laser power and sample geometry. Application of the reference standards in nonlinear transmittance measurements is discussed.

  7. Temporal correlation of optical coherence tomography in-vivo images of rabbit airway for the diagnosis of edema

    Science.gov (United States)

    Kang, DongYel; Wang, Alex; Tjoa, Tjoson; Volgger, Veronika; Hamamoto, Ashley; Su, Erica; Jing, Joseph; Chen, Zhongping; Wong, Brian J. F.

    2014-03-01

    Recently, full-range optical coherence tomography (OCT) systems have been developed to image the human airway. These novel systems utilize a fiber-based OCT probe which acquires three-dimensional (3-D) images with micrometer resolution. Following an airway injury, mucosal edema is the first step in the body's inflammatory response, which occasionally leads to airway stenosis, a life-threatening condition for critically ill newborns. Therefore, early detection of edema is vital for airway management and prevention of stenosis. In order to examine the potential of the full-range OCT to diagnose edema, we investigated temporal correlation of OCT images obtained from the subglottic airway of live rabbits. Temporally correlated OCT images were acquired at fixed locations in the rabbit subglottis of either artificially induced edema or normal tissues. Edematous tissue was experimentally modeled by injecting saline beneath the epithelial layer of the subglottic mucosa. The calculated cross temporal correlations between OCT images of normal airway regions show periodicity that correlates with the respiratory motion of the airway. However, the temporal correlation functions calculated from OCT images of the edematous regions show randomness without the periodic characteristic. These in-vivo experimental results of temporal correlations between OCT images show the potential of a computer-based or -aided diagnosis of edema in the human respiratory mucosa with a full-range OCT system.

  8. Breakdown of long-range temporal correlations in brain oscillations during general anesthesia.

    Science.gov (United States)

    Krzemiński, Dominik; Kamiński, Maciej; Marchewka, Artur; Bola, Michał

    2017-07-24

    Consciousness has been hypothesized to emerge from complex neuronal dynamics, which prevails when brain operates in a critical state. Evidence supporting this hypothesis comes mainly from studies investigating neuronal activity on a short time-scale of seconds. However, a key aspect of criticality is presence of scale-free temporal dependencies occurring across a wide range of time-scales. Indeed, robust long-range temporal correlations (LRTCs) are found in neuronal oscillations during conscious states, but it is not known how LRTCs are affected by loss of consciousness. To further test a relation between critical dynamics and consciousness, we investigated LRTCs in electrocorticography signals recorded from four macaque monkeys during resting wakefulness and general anesthesia induced by various anesthetics (ketamine, medetomidine, or propofol). Detrended Fluctuation Analysis was used to estimate LRTCs in amplitude fluctuations (envelopes) of band-pass filtered signals. We demonstrate two main findings. First, during conscious states all lateral cortical regions are characterized by significant LRTCs of alpha-band activity (7-14 Hz). LRTCs are stronger in the eyes-open than eyes-closed state, but in both states they form a spatial gradient, with anterior brain regions exhibiting stronger LRTCs than posterior regions. Second, we observed a substantial decrease of LRTCs during loss of consciousness, the magnitude of which was associated with the baseline (i.e. pre-anesthesia) state of the brain. Specifically, brain regions characterized by strongest LRTCs during a wakeful baseline exhibited greatest decreases during anesthesia (i.e. "the rich got poorer"), which consequently disturbed the posterior-anterior gradient. Therefore, our results suggest that general anesthesia affects mainly brain areas characterized by strongest LRTCs during wakefulness, which might account for lack of capacities for extensive temporal integration during loss of consciousness. Copyright

  9. A fast and accurate method for the simulation of the diffusing temporal light correlation in multi-layered turbid media

    Institute of Scientific and Technical Information of China (English)

    LUO Bin; LI Jun; HE Sai-ling

    2005-01-01

    Monte Carlo simulation of the diffusing temporal light correlation in a multi-layered turbid medium is considered.A straightforward formula is introduced to calculate accurately and efficiently the autocorrelation function at any detector position.The simulation results are in an excellent agreement with an analytical solution of the correlation diffusion equation.

  10. Improving Prediction Accuracy for WSN Data Reduction by Applying Multivariate Spatio-Temporal Correlation

    Directory of Open Access Journals (Sweden)

    José Neuman de Souza

    2011-10-01

    Full Text Available This paper proposes a method based on multivariate spatial and temporal correlation to improve prediction accuracy in data reduction for Wireless Sensor Networks (WSN. Prediction of data not sent to the sink node is a technique used to save energy in WSNs by reducing the amount of data traffic. However, it may not be very accurate. Simulations were made involving simple linear regression and multiple linear regression functions to assess the performance of the proposed method. The results show a higher correlation between gathered inputs when compared to time, which is an independent variable widely used for prediction and forecasting. Prediction accuracy is lower when simple linear regression is used, whereas multiple linear regression is the most accurate one. In addition to that, our proposal outperforms some current solutions by about 50% in humidity prediction and 21% in light prediction. To the best of our knowledge, we believe that we are probably the first to address prediction based on multivariate correlation for WSN data reduction.

  11. Using temporal correlations and full distributions to separate intrinsic and extrinsic fluctuations in biological systems

    Science.gov (United States)

    Hilfinger, Andreas; Chen, Mark; Paulsson, Johan

    2013-01-01

    Studies of stochastic biological dynamics typically compare observed fluctuations to theoretically predicted variances, sometimes after separating the intrinsic randomness of the system from the enslaving influence of changing environments. But variances have been shown to discriminate surprisingly poorly between alternative mechanisms, while for other system properties no approaches exist that rigorously disentangle environmental influences from intrinsic effects. Here we apply the theory of generalized random walks in random environments to derive exact rules for decomposing time series and higher statistics rather than just variances. We show for which properties and for which classes of systems intrinsic fluctuations can be analyzed without accounting for extrinsic stochasticity and vice versa. We derive two independent experimental methods to measure the separate noise contributions, and show how to use the additional information in temporal correlations to detect multiplicative effects in dynamical systems. PMID:23368387

  12. Spatio-temporal correlations in models of collective motion ruled by different dynamical laws

    CERN Document Server

    Cavagna, Andrea; Giardina, Irene; Grigera, Tomas S; Melillo, Stefania; Viale, Massimiliano

    2016-01-01

    Information transfer is an essential factor in determining the robustness of collective behaviour in biological systems with distributed control. The most direct way to study the information transfer mechanisms is to experimentally detect the propagation across the system of a signal triggered by some perturbation. However, for field experiments this method is inefficient, as the possibilities of the observer to perturb the group are limited and empirical observations must rely on rare natural perturbations. An alternative way is to use spatio-temporal correlations to assess the information transfer mechanism directly from the spontaneous fluctuations of the system, without the need to have an actual propagating signal on record. We test the approach on ground truth data provided by numerical simulations in three dimensions of two models of collective behaviour characterized by very different dynamical equations and information transfer mechanisms: the classic Vicsek model, describing an overdamped noninertia...

  13. Spatio-temporal correlation between topographic ERP mapping and positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Ken [Research Inst. for Brain and Blood Vessels, Akita (Japan); Yaguchi, Kiyoshi

    2001-01-01

    Simultaneous measurement of PET excellent for spatial resolution and event-related potential (ERP) for temporal resolution was performed during the visual recognition task. Subjects were 12 normal adult males having given the informed consent. MRI was done for the morphological indicator of the PET results. PET was conducted by Shimadzu HEADTOME V after bolus injection of {sup 15}O-water to measure the cerebral blood flow (CBF). Electroencephalography was recorded simultaneously. The recognition task with the word, figure and human face was given during the measurements. At recognition of a famous person's face, ERP exhibited the negative peak around the occipital region after the latent time of 164 msec and PET exhibited the increased CBF in the gyruses of parahippocampus and fusiform, thus suggesting the correlation between electro-physiological activity and CBF change. (K.H.)

  14. Note: Derivation of two-photon circular dichroism - Addendum to "two-photon circular dichroism" [J. Chem. Phys. 62, 1006 (1975)

    OpenAIRE

    Friese, Daniel Henrik

    2015-01-01

    Published version, also available at http://dx.doi.org/10.1063/1.4930017 This addendum shows the detailed derivation of the fundamental equations for two-photon circular dichroism which are given in a very condensed form in the original publication [I. Tinoco, J. Chem. Phys. 62, 1006 (1975)]. In addition, some minor errors are corrected and some of the derivations in the original publication are commented.

  15. Two-photon Photoemission of Organic Semiconductor Molecules on Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Aram [Univ. of California, Berkeley, CA (United States)

    2008-05-01

    Angle- and time-resolved two-photon photoemission (2PPE) was used to study systems of organic semiconductors on Ag(111). The 2PPE studies focused on electronic behavior specific to interfaces and ultrathin films. Electron time dynamics and band dispersions were characterized for ultrathin films of a prototypical n-type planar aromatic hydrocarbon, PTCDA, and representatives from a family of p-type oligothiophenes.In PTCDA, electronic behavior was correlated with film morphology and growth modes. Within a fewmonolayers of the interface, image potential states and a LUMO+1 state were detected. The degree to which the LUMO+1 state exhibited a band mass less than a free electron mass depended on the crystallinity of the layer. Similarly, image potential states were measured to have free electron-like effective masses on ordered surfaces, and the effective masses increased with disorder within the thin film. Electron lifetimes were correlated with film growth modes, such that the lifetimes of electrons excited into systems created by layer-by-layer, amorphous film growth increased by orders of magnitude by only a few monolayers from the surface. Conversely, the decay dynamics of electrons in Stranski-Krastanov systems were limited by interaction with the exposed wetting layer, which limited the barrier to decay back into the metal.Oligothiophenes including monothiophene, quaterthiophene, and sexithiophene were deposited on Ag(111), and their electronic energy levels and effective masses were studied as a function of oligothiophene length. The energy gap between HOMO and LUMO decreased with increasing chain length, but effective mass was found to depend on domains from high- or low-temperature growth conditions rather than chain length. In addition, the geometry of the molecule on the surface, e.g., tilted or planar, substantially affected the electronic structure.

  16. Improved efficiency of maximum likelihood analysis of time series with temporally correlated errors

    Science.gov (United States)

    Langbein, John O.

    2017-01-01

    Most time series of geophysical phenomena have temporally correlated errors. From these measurements, various parameters are estimated. For instance, from geodetic measurements of positions, the rates and changes in rates are often estimated and are used to model tectonic processes. Along with the estimates of the size of the parameters, the error in these parameters needs to be assessed. If temporal correlations are not taken into account, or each observation is assumed to be independent, it is likely that any estimate of the error of these parameters will be too low and the estimated value of the parameter will be biased. Inclusion of better estimates of uncertainties is limited by several factors, including selection of the correct model for the background noise and the computational requirements to estimate the parameters of the selected noise model for cases where there are numerous observations. Here, I address the second problem of computational efficiency using maximum likelihood estimates (MLE). Most geophysical time series have background noise processes that can be represented as a combination of white and power-law noise, 1/fα">1/fα1/fα with frequency, f. With missing data, standard spectral techniques involving FFTs are not appropriate. Instead, time domain techniques involving construction and inversion of large data covariance matrices are employed. Bos et al. (J Geod, 2013. doi:10.1007/s00190-012-0605-0) demonstrate one technique that substantially increases the efficiency of the MLE methods, yet is only an approximate solution for power-law indices >1.0 since they require the data covariance matrix to be Toeplitz. That restriction can be removed by simply forming a data filter that adds noise processes rather than combining them in quadrature. Consequently, the inversion of the data covariance matrix is simplified yet provides robust results for a wider range of power-law indices.

  17. Temporal bone trauma: correlative study between CT findings and clinical manifestations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Hee; Kim, Hyung Jin; Kim, Jae Hyoung [College of Medicine, Gyeongsang National University, Jinju (Korea, Republic of)

    1994-11-15

    To assess how accurately computed tomography (CT) can demonstrate the abnormal findings which are believed to cause the clinical signs and symptoms of hearing loss (HL), vertigo and facial paralysis (FP) in patients with temporal bone trauma. The authors studied CT scans of 39 ears in 35 patients with temporal bone trauma. CT scans were performed with 1-1.5 mm slice thickness and table incrementation. Both axial and coronal scans were obtained in 32 patients and in three patients only axial scans were obtained. We analyzed CT with special reference to the structural abnormalities of the external auditory canal, middle ear cavity, bony labyrinth, and facial nerve canal, and correlated these findings with the actual clinical signs and symptoms. As to hearing loss, we evaluated 32 ears in which pure tone audiometry or brainstem evoked response audiometry had been performed. With respect to the specific types of HL, CT accurately showed the abnormalities in 84% (16/19) in conductive HL, 100% (2/2) in sensorineural HL, and 25% (2/8) for mixed HL. When we categorized HL simply as conductive and sensorineural, assuming that mixed be the result of combined conductive and sensorineural HL, CT demonstrated the abnormalities in 89% (24/27) for conductive HL and 50% (5/10) for sensorineural HL. Concerning vertigo and FP, CT demonstrated abnormalities in 67%(4/6), and 29% (4/14), respectively. Except for conductive HL, CT seems to have a variable degree of limitation for the demonstration of the structural abnormalities resulting sensorineural HL, vertigo or facial paralysis. It is imperative to correlate the CT findings with the signs and symptoms in those clinical settings.

  18. Improved efficiency of maximum likelihood analysis of time series with temporally correlated errors

    Science.gov (United States)

    Langbein, John

    2017-02-01

    Most time series of geophysical phenomena have temporally correlated errors. From these measurements, various parameters are estimated. For instance, from geodetic measurements of positions, the rates and changes in rates are often estimated and are used to model tectonic processes. Along with the estimates of the size of the parameters, the error in these parameters needs to be assessed. If temporal correlations are not taken into account, or each observation is assumed to be independent, it is likely that any estimate of the error of these parameters will be too low and the estimated value of the parameter will be biased. Inclusion of better estimates of uncertainties is limited by several factors, including selection of the correct model for the background noise and the computational requirements to estimate the parameters of the selected noise model for cases where there are numerous observations. Here, I address the second problem of computational efficiency using maximum likelihood estimates (MLE). Most geophysical time series have background noise processes that can be represented as a combination of white and power-law noise, 1/f^{α } with frequency, f. With missing data, standard spectral techniques involving FFTs are not appropriate. Instead, time domain techniques involving construction and inversion of large data covariance matrices are employed. Bos et al. (J Geod, 2013. doi: 10.1007/s00190-012-0605-0) demonstrate one technique that substantially increases the efficiency of the MLE methods, yet is only an approximate solution for power-law indices >1.0 since they require the data covariance matrix to be Toeplitz. That restriction can be removed by simply forming a data filter that adds noise processes rather than combining them in quadrature. Consequently, the inversion of the data covariance matrix is simplified yet provides robust results for a wider range of power-law indices.

  19. Improved efficiency of maximum likelihood analysis of time series with temporally correlated errors

    Science.gov (United States)

    Langbein, John

    2017-08-01

    Most time series of geophysical phenomena have temporally correlated errors. From these measurements, various parameters are estimated. For instance, from geodetic measurements of positions, the rates and changes in rates are often estimated and are used to model tectonic processes. Along with the estimates of the size of the parameters, the error in these parameters needs to be assessed. If temporal correlations are not taken into account, or each observation is assumed to be independent, it is likely that any estimate of the error of these parameters will be too low and the estimated value of the parameter will be biased. Inclusion of better estimates of uncertainties is limited by several factors, including selection of the correct model for the background noise and the computational requirements to estimate the parameters of the selected noise model for cases where there are numerous observations. Here, I address the second problem of computational efficiency using maximum likelihood estimates (MLE). Most geophysical time series have background noise processes that can be represented as a combination of white and power-law noise, 1/f^{α } with frequency, f. With missing data, standard spectral techniques involving FFTs are not appropriate. Instead, time domain techniques involving construction and inversion of large data covariance matrices are employed. Bos et al. (J Geod, 2013. doi: 10.1007/s00190-012-0605-0) demonstrate one technique that substantially increases the efficiency of the MLE methods, yet is only an approximate solution for power-law indices >1.0 since they require the data covariance matrix to be Toeplitz. That restriction can be removed by simply forming a data filter that adds noise processes rather than combining them in quadrature. Consequently, the inversion of the data covariance matrix is simplified yet provides robust results for a wider range of power-law indices.

  20. Dispersion-tolerant two-photon Michelson interferometer using telecom-band frequency-entangled photon pairs generated by spontaneous parametric downconversion

    Science.gov (United States)

    Yoshizawa, Akio; Fukuda, Daiji; Tsuchida, Hidemi; Yamamoto, Noritsugu

    2015-05-01

    The chromatic group velocity dispersion tolerance of a fiber-optic two-photon interferometer is characterized for telecom-band photon pairs that are frequency entangled. Two indium-gallium-arsenide single-photon detectors are used to record the coincidence counts. A single-wavelength laser diode continuously pumps a periodically poled lithium niobate waveguide of 1-mm length. For near-degenerate spontaneous parametric downconversion, it generates wideband entangled collinear photon pairs. The spectral width of 115.8 nm is centered at 1550 nm. It is restricted by the performance of the single-photon detectors whose efficiency is poor beyond 1610 nm. Using a Michelson interferometer, two-photon interference signals are recorded with and without frequency entanglement. The frequency-entangled photon pairs are found to exhibit dispersion-tolerant two-photon interference, even though the two paths through the interferometer have different group velocity dispersion. The observed two-photon interference signal has a correlation time of 42.7 fs, in good agreement with calculations for a 115.8-nm spectral width. For comparison, results are also presented for photon pairs lacking frequency entanglement.

  1. Measurement of degenerate two-photon absorption spectra of a series of developed two-photon initiators using a dispersive white light continuum Z-scan

    Science.gov (United States)

    Ajami, Aliasghar; Husinsky, Wolfgang; Tromayer, Maximilian; Gruber, Peter; Liska, Robert; Ovsianikov, Aleksandr

    2017-08-01

    To achieve efficient micro- and nanostructuring based on two-photon polymerization (2PP), the development and evaluation of specialized two-photon initiators (2PIs) are essential. Hence, a reliable method to determine the two-photon absorption (2PA) spectra of the synthesized 2PIs used for 2PP structuring is crucial. A technique by which absolute visible-to-near-infrared 2PA spectra of degenerate nature can be determined via performing a single dispersive white-light continuum (WLC) Z-scan has been realized. Using a dispersed white light beam containing 8 fs pulses at wavelengths ranging from 650 nm to 950 nm, the nonlinear transmittance as a function of the sample position can be measured for all spectral components by performing a single scan along the laser beam propagation direction. In this work, the 2PA spectrum of three different 2PIs was determined using this technique. 2PP structuring was also accomplished using the developed 2PIs at different wavelengths. Tuning the wavelength of the laser to match the peak of the 2PA spectra of the developed 2PIs resulted in lower intensity thresholds and facilitated higher structuring speeds. As an example, using M2CMK 2PI for 2PP, the scanning speed can be increased up to 5 folds when the laser wavelength is tuned to 760 nm (i.e., 2PA maximum) instead of the conventionally used 800 nm.

  2. Pseudopotential calculations and photothermal lensing measurements of two-photon absorption in solids

    Energy Technology Data Exchange (ETDEWEB)

    White, W.T. III

    1985-11-04

    We have studied two-photon absorption in solids theoretically and experimentally. We have shown that it is possible to use accurate band structure techniques to compute two-photon absorption spectra within 15% of measured values in a wide band-gap material, ZnS. The empirical pseudopotential technique that we used is significantly more accurate than previous models of two-photon absorption in zinc blende materials, including present tunneling theories (which are essentially parabolic-band results in disguise) and the nonparabolic-band formalism of Pidgeon et al. and Weiler. The agreement between our predictions and previous measurements allowed us to use ZnS as a reference material in order to validate a technique for measuring two-photon absorption that was previously untried in solids, pulsed dual-beam thermal lensing. With the validated technique, we examined nonlinear absorption in one other crystal (rutile) and in several glasses, including silicates, borosilicates, and one phosphate glass. Initially, we believed that the absorption edges of all the materials were comparable; however, subsequent evidence suggested that the effective band-gap energies of the glasses were above the energy of two photons in our measurement. Therefore, we attribute the nonlinear absorption that we observed in glasses to impurities or defects. The measured nonlinear absorption coefficients were of the order of a few cm/TW in the glasses and of the order of 10 cm/GW in the crystals, four orders of magnitude higher than in glasses. 292 refs.

  3. Simultaneous Two-photon in Vivo Imaging of Synaptic Inputs and Postsynaptic Targets in the Mouse Retrosplenial Cortex.

    Science.gov (United States)

    Łukasiewicz, Kacper; Robacha, Magdalena; Bożycki, Łukasz; Radwanska, Kasia; Czajkowski, Rafał

    2016-01-01

    This video shows the craniotomy procedure that allows chronic imaging of neurons in the mouse retrosplenial cortex (RSC) using in vivo two-photon microscopy in Thy1-GFP transgenic mouse line. This approach creates a possibility to investigate the correlation of behavioural manipulations with changes in neuronal morphology in vivo. The cranial window implantation procedure was considered to be limited only to the easily accessible cortex regions such as the barrel field. Our approach allows visualization of neurons in the highly vascularized RSC. RSC is an important element of the brain circuit responsible for spatial memory, previously deemed to be problematic for in vivo two-photon imaging. The cranial window implantation over the RSC is combined with an injection of mCherry-expressing recombinant adeno-associated virus (rAAV(mCherry)) into the dorsal hippocampus. The expressed mCherry spreads out to axonal projections from the hippocampus to RSC, enabling the visualization of changes in both presynaptic axonal boutons and postsynaptic dendritic spines in the cortex. This technique allows long-term monitoring of experience-dependent structural plasticity in RSC.

  4. Theoretical Studies on the One- and Two-Photon Absorption Properties of Double-bis(styryl)benzene Derivatives

    Institute of Scientific and Technical Information of China (English)

    HAN,De-Ming; FENG,Ji-Kang; REN,Ai-Min; SHANG,Xiao-Hong; ZHANG,Xiang-Biao; MA,Yu-Guang; HE,Feng

    2008-01-01

    Two series of bis(styryl)benzene derivatives (BSBD), namely the single-BSBD and the double-BSBD, were investigated. The equilibrium geometries and electronic structures were obtained by using the density functional theory B3LYP and 6-31G basis set. In succession, the one- and two-photon absorption properties of all the molecules were studied theoretically with a ZINDO-SOS (sum-over-states) method in detail. It can be seen that the double-BSBDs have larger two-photon absorption (TPA) cross sections in the visible-IR range than the corresponding single-BSBDs,demonstrating that increasing the molecular dimension is a very effective method to enhance the values of the TPA cross sections. On the other hand, it can be also noticed that the values of the TPA cross sections are correlative with the ability of donating (accepting) electrons of the terminal substituent groups R[N(CH3)2, CH3, H and CF3] in these molecules. That is, the intramolecular charge transfer is also a factor for the enhancement of the TPA efficiency. To sum up, the idea of increasing the molecular dimension to enhance the TPA cross section value is a helpful direction to explore better TPA materials for practical applications. And the double-BSBD molecules are promising TPA materials for the further investigation from the standpoint of the high transparency and the larger TPA cross sections.

  5. Polycyclic aromatic hydrocarbons increase in Athabasca River Delta sediment: temporal trends and environmental correlates.

    Science.gov (United States)

    Timoney, Kevin P; Lee, Peter

    2011-05-15

    The Athabasca River in Alberta, Canada, flows north through an area undergoing extensive bitumen resource extraction and processing before discharging its water and sediments into the Athabasca Delta and Lake Athabasca. Polycyclic aromatic hydrocarbons (PAHs) have been identified as an environmental concern in the region. We analyzed environmental data collected by the Regional Aquatics Monitoring Program and government agencies to determine whether temporal trends exist in the concentration of sediment PAHs in the Athabasca River Delta. We then determined what environmental factors related to the trends in sediment PAH concentrations. Total PAH concentrations in the sediment of the Athabasca River Delta increased between 1999 and 2009 at a rate of 0.05 mg/kg/yr ± 0.02 s.e. Annual bitumen production and mined sand volume, extent of landscape disturbance, and particulate emissions were correlated with sediment PAH concentrations as were total organic carbon in sediment and discharge of the Clearwater River, a major tributary of the Athabasca River. Within four tributaries of the Athabasca River, only the Clearwater River showed a significant correlation between discharge and sediment PAH concentration at their river mouths. Carefully designed studies are required to further investigate which factors best explain variability in sediment PAH concentrations.

  6. Localized Polymerization Using Single Photon Photoinitiators in Two-photon process for Fabricating Subwavelength Structures

    CERN Document Server

    Ummethala, Govind; Chaudhary, Raghvendra P; Hawal, Suyog; Saxena, Sumit; Shukla, Shobha

    2016-01-01

    Localized polymerization in subwavelength volumes using two photon dyes has now become a well-established method for fabrication of subwavelength structures. Unfortunately, the two photon absorption dyes used in such process are not only expensive but also proprietary. LTPO-L is an inexpensive, easily available single photon photoinitiator and has been used extensively for single photon absorption of UV light for polymerization. These polymerization volumes however are not localized and extend to micron size resolution having limited applications. We have exploited high quantum yield of radicals of LTPO-Lfor absorption of two photons to achieve localized polymerization in subwavelength volumes, much below the diffraction limit. Critical concentration (10wt%) of LTPO-Lin acrylate (Sartomer) was found optimal to achieve subwavelength localized polymerization and has been demonstrated by fabricating 2D/3D complex nanostructures and functional devices such as variable polymeric gratings with nanoscaled subwavelen...

  7. In vivo two-photon calcium imaging in the visual system.

    Science.gov (United States)

    Ohki, Kenichi; Reid, R Clay

    2014-04-01

    Two-photon imaging of calcium-sensitive dyes in vivo has become a common tool used by neuroscientists, largely because of the development of bolus loading techniques, which can label every neuron in a local circuit with calcium-sensitive dye. Like multielectrode recordings, two-photon imaging paired with bolus loading provides a method for monitoring many neurons at once, but, in addition, it provides a means for determining the precise location of every neuron. Thus, it is an ideal method for studying the fine-scale functional architecture of the cortex and guiding the experimenter to individual neurons that can be targeted for further anatomical study. Two-photon calcium imaging enables study of the fine structure of functional maps in the visual cortex in cats and rodents. In mice, it can allow the characterization of specific cell types when paired with transgenic or retrograde labeling.

  8. Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore.

    Science.gov (United States)

    Li, Changwei; Yang, Kun; Feng, Yan; Su, Xinyan; Yang, Junyi; Jin, Xiao; Shui, Min; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin; Xu, Hongyao

    2009-12-03

    Two-photon absorption induced excited state absorption in the solution of a new fluorenyl-based chromophore is investigated by a time-resolved pump-probe technique using femtosecond pulses. With the help of an additional femtosecond open-aperture Z-scan technique, numerical simulations based on a three-energy level model are used to interpret the experimental results, and we determine the nonlinear optical parameters of this new chromophore uniquely. Large two-photon absorption cross section and excited state absorption cross section for singlet excited state are obtained, indicating a good candidate for optical limiting devices. Moreover, the influence of two-beam coupling induced energy transfer in neat N,N'-dimethylformamide solvent is also considered, although this effect is strongly restrained by the instantaneous two-photon absorption.

  9. Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, I. V.; Doronina-Amitonova, L. V. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Kurchatov Institute National Research Center, Moscow (Russian Federation); Sidorov-Biryukov, D. A.; Fedotov, A. B. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Anokhin, K. V. [Kurchatov Institute National Research Center, Moscow (Russian Federation); P.K. Anokhin Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow (Russian Federation); Kilin, S. Ya. [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus); Sakoda, K. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Zheltikov, A. M. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Center of Photochemistry, Russian Academy of Sciences, ul. Novatorov 7a, Moscow 117421 (Russian Federation)

    2014-02-24

    Two-photon excitation is shown to substantially enhance the locality of fiber-based optical interrogation of strongly scattering biotissues. In our experiments, a high-numerical-aperture, large-core-are fiber probe is used to deliver the 200-fs output of a 100-MHz mode-locked ytterbium fiber laser to samples of live mouse brain, induce two-photon fluorescence of nitrogen–vacancy centers in diamond markers in brain sample. Fiber probes with a high numerical aperture and a large core area are shown to enable locality enhancement in fiber-laser–fiber-probe two-photon brain excitation and interrogation without sacrificing the efficiency of fluorescence response collection.

  10. Design, synthesis, and characterization of photoinitiators for two-photon polymerization

    Science.gov (United States)

    Whitby, Reece; MacMillan, Ryan; Janssens, Stefaan; Raymond, Sebastiampillai; Clarke, Dave; Kay, Andrew; Jin, Jianyong; Simpson, Cather M.

    2016-09-01

    A series of dipolar and quadrupolar two-photon absorption (2PA) photoinitiators (PIs) based around the well-known triphenylamine (TPA) core and tricyanofuran (TCF) acceptors have been prepared for use in two-photon polymerisation (TPP). The synthesised dipolar species are designated as 5 and 7, and the remaining quadrupolar species are 6, 8, 9 and 10. Large two-photon absorption cross-sections (δ2PA) ranging between 333 - 507 GM were measured at 780 nm using the z-scan technique. Fluorescence quantum yields (ΦF) were below 3% across the series when compared to Rhodamine 6G as a reference standard. Finally, TPP tests were conducted on PIs 7 and 8 to assess their ability to initiate the polymerisation of acrylate monomers using an 800 nm femtosecond Ti:Sapphire laser system.

  11. Two-photon calcium imaging in mice navigating a virtual reality environment.

    Science.gov (United States)

    Leinweber, Marcus; Zmarz, Pawel; Buchmann, Peter; Argast, Paul; Hübener, Mark; Bonhoeffer, Tobias; Keller, Georg B

    2014-02-20

    In recent years, two-photon imaging has become an invaluable tool in neuroscience, as it allows for chronic measurement of the activity of genetically identified cells during behavior(1-6). Here we describe methods to perform two-photon imaging in mouse cortex while the animal navigates a virtual reality environment. We focus on the aspects of the experimental procedures that are key to imaging in a behaving animal in a brightly lit virtual environment. The key problems that arise in this experimental setup that we here address are: minimizing brain motion related artifacts, minimizing light leak from the virtual reality projection system, and minimizing laser induced tissue damage. We also provide sample software to control the virtual reality environment and to do pupil tracking. With these procedures and resources it should be possible to convert a conventional two-photon microscope for use in behaving mice.

  12. Polarization properties of optical phase conjugation by two-photon resonant degenerate four-wave mixing

    Science.gov (United States)

    Kauranen, Martti; Gauthier, Daniel J.; Malcuit, Michelle S.; Boyd, Robert W.

    1989-08-01

    We develop a semiclassical theory of the polarization properties of phase conjugation by two-photon resonant degenerate four-wave mixing. The theory includes the effects of saturation by the pump waves. We solve the density-matrix equations of motion in steady state for a nonlinear medium consisting of stationary atoms with a ground and excited state connected by two-photon transitions. As an illustration of the general results, we consider an S0-->S0 two-photon transition, which is known to lead to perfect polarization conjugation in the limit of third-order theory. We show that the fidelity of the polarization-conjugation process is degraded for excessively large pump intensities. The degradation can occur both due to transfer of population to the excited state and due to nonresonant Stark shifts. Theoretical results are compared to those of a recent experiment [Malcuit, Gauthier, and Boyd, Opt. Lett. 13, 663 (1988)].

  13. Highly selective population of two excited states in nonresonant two-photon absorption

    Institute of Scientific and Technical Information of China (English)

    Zhang Hui; Zhang Shi-An; Sun Zhen-Rong

    2011-01-01

    A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse.In this paper,we theoretically demonstrate a highly selective population of two excited states in the nonresonant two-photon absorption process by rationally designing a spectral phase distribution.Our results show that one excited state is maximally populated while the other state population is widely tunable from zero to the maximum value.We believe that the theoretical results may play an important role in the selective population of a more complex nonlinear process comprising nonresonant two-photon absorption,such as resonance-mediated(2+1)-three-photon absorption and (2+1)-resonant multiphoton ionization.

  14. Two-Photon Absorption Properties of Mn-Doped ZnS Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jia-Jin; ZHANG Gui-Lan; GUO Yang-Xue; WANG Xiao-Yan; CHEN Wen-Ju; ZHANG Xiao-Song; HUA Yu-Lin

    2006-01-01

    @@ We investigate the two-photon absorption and nonlinear refractive index properties of a quantum dot material based on ZnS nanocrystals doped with Mn isoelectronic impurities, using the Z-scan technique with 532nm picosecond laser pulses. The Mn-doped ZnS quantum dots have an average two-photon absorption cross section as high as 13600 Goeppert-Mayer units, which turn it into a very promising material for fluorescent label and imaging in biological samples. In addition, we also found that the two-photon absorption coeflicient initially increases and then decreases with increasing pulse irradiance, which demonstrates the presence of the higherorder nonlinearity under the strong excitation.

  15. Scanless functional imaging of hippocampal networks using patterned two-photon illumination through GRIN lenses

    KAUST Repository

    Moretti, Claudio

    2016-09-12

    Patterned illumination through the phase modulation of light is increasingly recognized as a powerful tool to investigate biological tissues in combination with two-photon excitation and light-sensitive molecules. However, to date two-photon patterned illumination has only been coupled to traditional microscope objectives, thus limiting the applicability of these methods to superficial biological structures. Here, we show that phase modulation can be used to efficiently project complex two-photon light patterns, including arrays of points and large shapes, in the focal plane of graded index (GRIN) lenses. Moreover, using this approach in combination with the genetically encoded calcium indicator GCaMP6, we validate our system performing scanless functional imaging in rodent hippocampal networks in vivo ~1.2 mm below the brain surface. Our results open the way to the application of patterned illumination approaches to deep regions of highly scattering biological tissues, such as the mammalian brain.

  16. Robust spatial-polarization hyperentanglement distribution of two-photon systems against collective noise

    Science.gov (United States)

    Gao, Cheng-Yan; Wang, Guan-Yu; Alzahrani, Faris; Hobiny, Aatef; Deng, Fu-Guo

    2017-03-01

    Hyperentanglement is a significant resource for high-capacity quantum communication. Here we present a robust spatial-polarization hyperentanglement distribution scheme for two-photon systems. The error on the polarization states of two-photon systems transmitted from two paths can be corrected resorting to the robust time-bin entanglement which suffers little from the channel noise. The spatial bit-flip error takes place with a very small probability and the spatial phase-flip error can be precluded by adjusting the path-length of spatial modes. Using this scheme, the two parties in quantum communication can share a maximally hyperentangled state of two-photon systems in a deterministic way, which will improve the efficiency of quantum communication largely.

  17. Spatial-Temporal Correlation Properties of the 3GPP Spatial Channel Model and the Kronecker MIMO Channel Model

    Directory of Open Access Journals (Sweden)

    Wu Hanguang

    2007-01-01

    Full Text Available The performance of multiple-input multiple-output (MIMO systems is greatly influenced by the spatial-temporal correlation properties of the underlying MIMO channels. This paper investigates the spatial-temporal correlation characteristics of the spatial channel model (SCM in the Third Generation Partnership Project (3GPP and the Kronecker-based stochastic model (KBSM at three levels, namely, the cluster level, link level, and system level. The KBSM has both the spatial separability and spatial-temporal separability at all the three levels. The spatial-temporal separability is observed for the SCM only at the system level, but not at the cluster and link levels. The SCM shows the spatial separability at the link and system levels, but not at the cluster level since its spatial correlation is related to the joint distribution of the angle of arrival (AoA and angle of departure (AoD. The KBSM with the Gaussian-shaped power azimuth spectrum (PAS is found to fit best the 3GPP SCM in terms of the spatial correlations. Despite its simplicity and analytical tractability, the KBSM is restricted to model only the average spatial-temporal behavior of MIMO channels. The SCM provides more insights of the variations of different MIMO channel realizations, but the implementation complexity is relatively high.

  18. Spatial-Temporal Correlation Properties of the 3GPP Spatial Channel Model and the Kronecker MIMO Channel Model

    Directory of Open Access Journals (Sweden)

    Cheng-Xiang Wang

    2007-02-01

    Full Text Available The performance of multiple-input multiple-output (MIMO systems is greatly influenced by the spatial-temporal correlation properties of the underlying MIMO channels. This paper investigates the spatial-temporal correlation characteristics of the spatial channel model (SCM in the Third Generation Partnership Project (3GPP and the Kronecker-based stochastic model (KBSM at three levels, namely, the cluster level, link level, and system level. The KBSM has both the spatial separability and spatial-temporal separability at all the three levels. The spatial-temporal separability is observed for the SCM only at the system level, but not at the cluster and link levels. The SCM shows the spatial separability at the link and system levels, but not at the cluster level since its spatial correlation is related to the joint distribution of the angle of arrival (AoA and angle of departure (AoD. The KBSM with the Gaussian-shaped power azimuth spectrum (PAS is found to fit best the 3GPP SCM in terms of the spatial correlations. Despite its simplicity and analytical tractability, the KBSM is restricted to model only the average spatial-temporal behavior of MIMO channels. The SCM provides more insights of the variations of different MIMO channel realizations, but the implementation complexity is relatively high.

  19. One- and two-photon scattering from generalized V-type atoms

    OpenAIRE

    Sánchez-Burillo, Eduardo; Martín-Moreno, Luis; Zueco, David; García-Ripoll, Juan José

    2016-01-01

    The one- and two-photon scattering matrix S is obtained analytically for a one-dimensional waveguide and a point-like scatterer with N excited levels (generalized V -type atom). We argue that the two-photon scattering matrix contains sufficient information to distinguish between different level structures which are equivalent for single-photon scattering, such as a V -atom with N = 2 excited levels and two two-level systems. In particular, we show that the scattering with the V -type atom exh...

  20. A direct frequency comb for two-photon transition spectroscopy in a cesium vapor

    Institute of Scientific and Technical Information of China (English)

    Zhang Yi-Chi; Wu Ji-Zhou; Li Yu-Qing; Jin Li; Ma Jie; Wang Li-Rong; Zhao Yan-Ting; Xiao Lian-Tuan; Jia Suo-Tang

    2012-01-01

    A phase-stabilized femtosecond frequency comb is used to measure high-resolution spectra of two-photon transition 62S1/2-62P1/2,3/2-82S1/2 in a cesium vapor.The broadband laser output from a femtosecond frequency comb is split into counter-propagating parts,shaped in an original way,and focused into a room-temperature cesium vapor.We obtain high-resolution two-photon spectroscopy by scanning the repetition rate of femtosecond frequency comb,and through absolute frequency measurements.

  1. Manipulation of multiple electromagnetically induced two-photon transparency in a six-level atomic system

    Institute of Scientific and Technical Information of China (English)

    Jia Wen-Zhi; Wang Shun-Jin

    2009-01-01

    In the five-level K-type atomic system, by using another control field to couple the excited level of the coupling transition to the sixth higher excited level, a six-level atomic system is constructed. In this system, the multiple electromagnetically induced two-photon transparency has been investigated. What is more, if choosing the parameters of the control fields properly the triple transparency window will reduce to a double one which means that the multiple electromagnetically induced two-photon transparency can be manipulated in this system. The physical interpretation of these phenomena is given in terms of the dressed states and the dark states.

  2. Insights into esophagus tissue architecture using two-photon confocal microscopy

    Science.gov (United States)

    Liu, Nenrong; Wang, Yue; Feng, Shangyuan; Chen, Rong

    2013-08-01

    In this paper, microstructures of human esophageal mucosa were evaluated using the two-photon laser scanning confocal microscopy (TPLSCM), based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). The distribution of epithelial cells, muscle fibers of muscularis mucosae has been distinctly obtained. Furthermore, esophageal submucosa characteristics with cancer cells invading into were detected. The variation of collagen, elastin and cancer cells is very relevant to the pathology in esophagus, especially early esophageal cancer. Our experimental results indicate that the MPM technique has the much more advantages for label-free imaging, and has the potential application in vivo in the clinical diagnosis and monitoring of early esophageal cancer.

  3. Axial range of conjugate adaptive optics in two-photon microscopy

    CERN Document Server

    Paudel, Hari P; Mertz, Jerome; Bifano, Thomas

    2015-01-01

    We describe an adaptive optics technique for two-photon microscopy in which the deformable mirror used for aberration compensation is positioned in a plane conjugate to the plane of the aberration. We demonstrate in a proof-of-principle experiment that this technique yields a large field of view advantage in comparison to standard pupil-conjugate adaptive optics. Further, we show that the extended field of view in conjugate AO is maintained over a relatively large axial translation of the deformable mirror with respect to the conjugate plane. We conclude with a discussion of limitations and prospects for the conjugate AO technique in two-photon biological microscopy.

  4. Arduino Due based tool to facilitate in vivo two-photon excitation microscopy.

    Science.gov (United States)

    Artoni, Pietro; Landi, Silvia; Sato, Sebastian Sulis; Luin, Stefano; Ratto, Gian Michele

    2016-04-01

    Two-photon excitation spectroscopy is a powerful technique for the characterization of the optical properties of genetically encoded and synthetic fluorescent molecules. Excitation spectroscopy requires tuning the wavelength of the Ti:sapphire laser while carefully monitoring the delivered power. To assist laser tuning and the control of delivered power, we developed an Arduino Due based tool for the automatic acquisition of high quality spectra. This tool is portable, fast, affordable and precise. It allowed studying the impact of scattering and of blood absorption on two-photon excitation light. In this way, we determined the wavelength-dependent deformation of excitation spectra occurring in deep tissues in vivo.

  5. Two-photon luminescence microscopy of field enhancement at gold nanoparticles

    DEFF Research Database (Denmark)

    Beermann, Jonas; Bozhevolnyi, Sergey I.

    2005-01-01

    Using a reflection scanning optical microscope detecting two-photon luminescence (TPL) we have imaged square gold bumps positioned in a periodic array either on a smooth gold film or directly on a glass substrate. The second-harmonic (SH) and TPL response from these structures show both polarizat......Using a reflection scanning optical microscope detecting two-photon luminescence (TPL) we have imaged square gold bumps positioned in a periodic array either on a smooth gold film or directly on a glass substrate. The second-harmonic (SH) and TPL response from these structures show both...

  6. Two-photon laser fabrication of three-dimensional silver microstructures with submicron scale linewidth

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, Naoto; Nagata, Kazuya; Sakai, Wataru [Kyoto Institute of Technology, Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto (Japan)

    2011-05-15

    We show three-dimensional silver microstructures with a submicron scale linewidth fabricated via two-photon photoreduction of silver ions in a poly(N-vinylpyrrolidone) (PVP) matrix. Femtosecond laser at 508 nm directly excites the carbonyl group of PVP via two-photon excitation to reduce silver ions. Lone pair electrons in PVP stabilized silver ions and lower molecular weight of PVP prevented silver clusters growing larger. The effect of molecular weight of PVP on linewidth of silver nanowire is investigated. (orig.)

  7. Threshold Property of Photoresist Film for Two-photon Optical Memory

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jiangying; MING Hai; LIANG Zhongcheng; WANG Pei; XIE Jianping; XIE Aifang; ZHANG Zebo

    2001-01-01

    Two-photon threshold property of photoresist films have been studied by changing exposure energy. When photoresist film is irradiated by Ti∶Sapphire laser with wavelength 770 nm, pulse width 130 fs, repetition rate 82 MHz, the damage and recording thresholds of the material are 9.15×105 J/cm2 and below 5.57×105 J/cm2, respectively. The principle experiments of two-photon optical memory are demonstrated in photoresist film. The patterns of optical bit data storage are realized at different input power density. The corresponding 3-D tomographies of these recorded spots are scanned under near-field optical microscope.

  8. Two-photon photoemission from metals induced by picosecond laser pulses

    Science.gov (United States)

    Bechtel, J. H.; Smith, W. L.; Bloembergen, N.

    1977-01-01

    We have measured the two-photon photoemission current density from tungsten, tantalum, and molybdenum when irradiated by 532-nm wavelength radiation. This wavelength was produced by the second-harmonic radiation of single picosecond laser pulses from a mode-locked neodymium-doped yttrium-aluminum-garnet laser. The results are interpreted in terms of both a simple temperature-independent two-photon photoemission effect and a generalization of the Fowler-DuBridge theory of photoemission. The laser polarization dependence of the emitted current is also reported.

  9. THE TWO-PHOTON DEGENERATE JAYNES-CUMMINGS MODEL WITH AND WITHOUT ROTATING-WAVE APPROXIMATION

    Institute of Scientific and Technical Information of China (English)

    ZHOU LING; SONG HE-SHAN; YAO LI

    2001-01-01

    We take into account the two-photon process and generalize the Jaynes-Cummings (JC) model to the case of atomic level degenerate in the projections of the angular momenta, and we establish two-photon degenerate JC models with and without the rotating-wave approximation (RWA) quantum theory. Comparing the atom population inversion of the generalized JC model with that of the original JC model, we found that the revival period of the degenerate JC model becomes longer and the maximum amplitude of atomic inversion decreases with RWA. Without RWA, the quantum chaos of the generalized JC model is much weaker than that of the original JC model

  10. Dynamics of Two-Photon Lasers with Λ Atomic Level Configuration

    Institute of Scientific and Technical Information of China (English)

    YANG Peng; QIAN Feng; HUANG Hong-Bin; XIE Xia; ZHANG Ya-Jun

    2006-01-01

    We derive the dimensionless dynamic equations of two-photon lasers with A atomic level configuration by using the quantum Langevin equation method with the considerations of atomic coherence and injected classical fields.Then we analyze the stability and the chaotic dynamics of the two-photon laser by calculating the bifurcation diagram and the maximum Lyapunov exponent (MLE). Our results show that the Lorenz strange attractors and one-focus strange attractors can exist in this system, and the chaos can be induced or inhibited by the injected classical fields via Hopfbifurcations or crises, while the atomic coherence induces chaos via crises, and inhibit chaos via Hopf bifurcation or crises.

  11. Two-photon exchange correction to $2S$-$2P$ splitting in muonic helium

    CERN Document Server

    Carlson, Carl E; Vanderhaeghen, Marc

    2016-01-01

    We calculate the two-photon exchange correction to the Lamb shift in muonic helium atoms within the dispersion relations framework. Part of the effort entailed making analytic fits to the electron-$^3$He quasielastic scattering data set, for purposes of doing the dispersion integrals. Our result is that the energy of the 2$S$ state is shifted downwards by two-photon exchange effects by 15.14(49) meV, in good accord with the result obtained from a potential model and effective field theory calculation.

  12. Nonsequential Two-Photon Double Ionization of Atoms: Identifying the Mechanism

    CERN Document Server

    F\\orre, Morten; Nepstad, Raymond

    2010-01-01

    We develop an approximate model for the process of direct (nonsequential) two-photon double ionization of atoms. Employing the model, we calculate (generalized) total cross sections as well as energy-resolved differential cross sections of helium for photon energies ranging from 39 to 54 eV. A comparison with results of \\textit{ab initio} calculations reveals that the agreement is at a quantitative level. We thus demonstrate that this complex ionization process is fully described by the simple model, providing insight into the underlying physical mechanism. Finally, we use the model to calculate generalized cross sections for the two-photon double ionization of neon in the nonsequential regime.

  13. Near IR two photon absorption of cyanines dyes: application to optical power limiting at telecommunication wavelengths

    Science.gov (United States)

    Bouit, Pierre-Antoine; Wetzel, Guillaume; Feneyrou, Patrick; Bretonnière, Yann; Kamada, Kenji; Maury, Olivier; Andraud, Chantal

    2008-02-01

    The design and synthesis of symmetrical and unsymmetrical heptamethine cyanines is reported. These chromophores present significant two-photon cross section in the 1400-1600 nm spectral range. In addition, they display optical power limiting (OPL) properties. OPL curves were interpreted on the basis of two-photon absorption (2PA) followed by excited state absorption (ESA). Finally, these molecules present several relevant properties (nonlinear absorption properties, two-step gram scale synthesis, high solubility, good thermal stability), which could lead to numerous practical applications in material science (solid state optical limiting, signal processing) or in biology (imaging).

  14. New insight in boron chemistry: Application in two-photon absorption

    Science.gov (United States)

    Bolze, F.; Hayek, A.; Sun, X. H.; Baldeck, P. L.; Bourgogne, C.; Nicoud, J.-F.

    2011-07-01

    Two groups of one-dimensional (1D) boron containing two-photon absorbing fluorophores have been prepared and characterized. One group includes boron atoms incorporated in the conjugated or pseudo conjugated central core and the other contain a boron cluster as an acceptor group at one end of the fluorophores. Two boron containing central cores (with two boron atoms) have been explored: the cyclodiborazane and the pyrazabole moieties. The chosen boron cluster, p-carborane, contains 10 boron atoms. All the prepared fluorophores present high two-photon absorption cross-sections. Some water-soluble as well as lipophylic dyes have been prepared and used in bio-imaging.

  15. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    Science.gov (United States)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  16. Synthesis,structure and nonlinear optical properties of two novel two-photon absorption chromophores

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two triphenylamine-based derivatives that can be used as two-photon absorption chromophore,tris{4-[4-(3-trifluoromethyl-3-oxopanoyl)]phenyl}amine (1) and tris{4-[4-(3-phenyl-3-oxopanoyl)] phenyl} amine (2) were successfully synthesized and fully characterized by elemental analysis,IR,1H NMR and MS. The single crystal X-ray diffraction analysis showed that the molecules possess D-(π-A)3 structures. One-and two-photon absorption and fluorescence in various solvents were experimentally investigated. A data recording experiment proved the potential application of these chromophores.

  17. Fluorenyl porphyrins for combined two-photon excited fluorescence and photosensitization

    Science.gov (United States)

    Mongin, Olivier; Hugues, Vincent; Blanchard-Desce, Mireille; Merhi, Areej; Drouet, Samuel; Yao, Dandan; Paul-Roth, Christine

    2015-04-01

    The two-photon absorption (2PA), the luminescence and the photosensitization properties of porphyrin-cored fluorenyl dendrimers and meso-substituted fluorenylporphyrin monomer, dimer and trimer are described. In comparison with model tetraphenylporphyrin, these compounds combine enhanced (non-resonant) 2PA cross-sections in the near infrared and enhanced fluorescence quantum yields, together with maintained singlet oxygen generation quantum yields. 'Semi-disconnection' between fluorenyl groups and porphyrins (i.e. direct meso substitution) proved to be more efficient than non-conjugated systems (based on efficient FRET between fluorenyl antennae and porphyrins). These results are of interest for combined two-photon imaging and photodynamic therapy.

  18. Two-Photon Absorption-Induced Emission Properties of Dye HMASPS Doped Polymer

    Institute of Scientific and Technical Information of China (English)

    王东; 周广勇; 任燕; 杨胜军; 许心光; 邵宗书; 蒋民华

    2002-01-01

    The 0.01M two-photon absorption dye trans-4-[p-(N-hydroxyethyl-N-methylamino)styryl]-N-methyl-pyridinium p-toluene sulfonate (HMASPS) doped polymer has been prepared. When pumped by the picosecond pulse from the pulsed mode-locked Nd: YAG laser, the polymer emits more intense upconverted fluorescence and superradiance compared to the solution sample of the dye. The two-photon pumped lasing with oscillating pulses has also been obtained. Compared to the dye in its solution state, the emission spectra of the polymer are all blueshifted.The polymer has a long upconverted fluorescent lifetime of about 4.041 ± 0.04 ns.

  19. Free electron laser induced two-photon photoconductivity in Hg1-xCdxTe

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Beijing free electron laser (BFEL) has been employed for the first time to study the nonlinear photoconductivity characteristics of the typical infrared photoelectronic material Hg1-xCdxTe. Taking advantage of the high photon flux density of BFEL, we have investigated the photoconductivity characteristics in Hg1-xCdxTe induced by two-photon absorption by means of the photoconductivity technique, observed the photoconductivity signals saturation, and studied the two-photon photoconductivity characteristics on different bias voltages across the sample.

  20. Simultaneous two-photon imaging and photo-stimulation with structured light illumination.

    Science.gov (United States)

    Dal Maschio, Marco; Difato, Francesco; Beltramo, Riccardo; Blau, Axel; Benfenati, Fabio; Fellin, Tommaso

    2010-08-30

    Holographic microscopy is increasingly recognized as a promising tool for the study of the central nervous system. Here we present a "holographic module", a simple optical path that can be combined with commercial scanheads for simultaneous imaging and uncaging with structured two-photon light. The present microscope is coupled to two independently tunable lasers and has two principal configurations: holographic imaging combined with galvo-steered uncaging and holographic uncaging combined with conventional scanning imaging. We applied this flexible system for simultaneous two-photon imaging and photostimulation of neuronal cells with complex light patterns, opening new perspectives for the study of brain function in situ and in vivo.

  1. Search for a Higgs Boson Decaying into Two Photons at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, Michael; Doria, A; Dova, M T; Duchesneau, D; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, Pierre; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zilizi, G; Zimmermann, B; Zöller, M

    2002-01-01

    A Higgs particle produced in association with a Z boson and decaying into two photons is searched for in the data collected by the L3 experiment at LEP. All possible decay modes of the Z boson are investigated. No signal is observed in 447.5 pb^-1 of data recorded at centre-of-mass energies up to 209 GeV. Limits on the branching fraction of the Higgs boson decay into two photons as a function of the Higgs mass are derived. A lower limit on the mass of a fermiophobic Higgs boson is set at 105.4 GeV at 95% confidence level.

  2. Two-photon excited fluorescence spectroscopy and imaging of melanin in vitro and in vivo

    Science.gov (United States)

    Krasieva, Tatiana B.; Liu, Feng; Sun, Chung-Ho; Kong, Yu; Balu, Mihaela; Meyskens, Frank L.; Tromberg, Bruce J.

    2012-03-01

    The ability to detect early melanoma non-invasively would improve clinical outcome and reduce mortality. Recent advances in two-photon excited fluorescence (TPEF) in vivo microscopy offer a powerful tool in early malignant melanoma diagnostics. The goal of this work was to develop a TPEF optical index for measuring relative concentrations of eumelanin and pheomelanin since ex vivo studies show that changes in this ratio have been associated with malignant transformation. We acquired TPEF emission spectra (λex=1000 nm) of melanin from several specimens, including human hair, malignant melanoma cell lines, and normal melanocytes and keratinocytes in different skin layers (epidermis, papillary dermis) in five healthy volunteers in vivo. We found that the pheomelanin emission peaks at around 620 nm and is blue-shifted from the eumelanin with broad maximum at 640-680nm. We defined "optical melanin index" (OMI) as a ratio of fluorescence signal intensities measured at 645 nm and 615nm. The measured OMI for a melanoma cell line MNT-1 was 1.6+/-0.2. The MNT-46 and MNT-62 lines (Mc1R gene knockdown) showed an anticipated change in melanins production ratio and had OMI of 0.55+/-0.05 and 0.17+/-0.02, respectively, which strongly correlated with HPLC data obtained for these lines. Average OMI measured for basal cells layers (melanocytes and keratinocytes) in normal human skin type I, II-III (not tanned and tanned) in vivo was 0.5, 1.05 and 1.16 respectively. We could not dependably detect the presence of pheomelanin in highly pigmented skin type V-VI. These data suggest that a non-invasive TPEF index could potentially be used for rapid melanin ratio characterization both in vitro and in vivo, including pigmented lesions.

  3. Two-photon microscopy with double-circle trajectories for in vivo cerebral blood flow measurements

    Science.gov (United States)

    Landolt, Andrin; Obrist, Dominik; Wyss, Matthias; Barrett, Matthew; Langer, Dominik; Jolivet, Renaud; Soltysinski, Tomasz; Roesgen, Thomas; Weber, Bruno

    2013-05-01

    Scanning microscopes normally use trajectories which produce full-frame images of an object at a low frame rate. Time-resolved measurements are possible if scans along a single line are repeated at a high rate. In conjunction with fluorescence labeling techniques, in vivo recording of blood flow in single capillaries is possible. The present work investigates scanning with double-circle trajectories to measure blood flow simultaneously in several vessels of a capillary network. With the trajectory centered near a bifurcation, a double circle crosses each vessel twice, creating a sensing gate for passing dark red blood cells in fluorescently labeled plasma. From the stack of scans repeated at 1,300 Hz, the time-resolved velocity is retrieved using an image correlation approach. Single bifurcation events can be identified from a few fluorescently labeled red blood cells. The applicability of the method for in vivo measurements is illustrated on the basis of two-photon laser scanning microscopy of the cerebral capillary network of mice. Its performance is assessed with synthetic data generated from a two-phase model for the perfusion in a capillary network. The calculation of velocities is found to be sufficiently robust for a wide range of conditions. The achievable limits depend significantly on the experimental conditions and are estimated to be in the 1 μm/s (velocity) and 0.1 s (time resolution) ranges, respectively. Some manual fine-tuning is required for optimal performance in terms of accuracy and time resolution. Further work may lead to improved reliability with which bifurcation events are identified in the algorithm and to include red blood cell flux and hematocrit measurements. With the capability for time-resolved measurements in all vessels of a bifurcation, double-circle scanning trajectories allow a detailed study of the dynamics in vascular networks.

  4. Assessing the temporal aspects of attention and its correlates in aging and chronic stroke patients.

    Science.gov (United States)

    Shalev, Nir; Humphreys, Glyn; Demeyere, Nele

    2016-11-01

    Temporal dynamics of attention have been in the spotlight of research since the earliest days of cognitive psychology. Typically, researchers describe two different aspects of the temporal fluctuations of attention: one is in intervals of milliseconds (phasic alertness), and the other over minutes or even hours (tonic alertness or sustained attention). In order to evaluate individual capacities for sustained attention and phasic alertness, most studies rely on variations of the Continuous Performance Task (CPT). Indices of sustained attention and phasic alertness are typically based on reaction times to targets; phasic alertness is related to the change in reaction times following a cue, and sustained attention is related to variability of reaction times during the task. In the following study, we attempted to establish a new approach for studying sustained attention and phasic alertness, not reliant solely on reaction time measures. We developed a new variation of the CPT with conjunctive feature targets and forward and backward masking to induce a higher variability in accuracy. This allowed us to assess an individual's ability to maintain the same level of sensitivity to targets (d-prime) across a ten minute period on the task as an index for sustained attention. We also assessed reaction times as a function of previous trial type, and suggest previous trial RT benefit might be a marker for an individual's phasic alertness. We demonstrated the use of this task with healthy aging controls and stroke survivors. As a demonstration of external validity of the novel paradigm, we present a correlation between how individual performance drops over time and individual reports of distractibility in everyday life on the Cognitive Failures Questionnaire. In addition, we found significant differences between the patient and control groups in our proposed marker of phasic alertness. We discuss the implications of our study for current assessment tools, as well as general

  5. Temporal correlation between auditory neurons and the hippocampal theta rhythm induced by novel stimulations in awake guinea pigs.

    Science.gov (United States)

    Liberman, Tamara; Velluti, Ricardo A; Pedemonte, Marisa

    2009-11-17

    The hippocampal theta rhythm is associated with the processing of sensory systems such as touch, smell, vision and hearing, as well as with motor activity, the modulation of autonomic processes such as cardiac rhythm, and learning and memory processes. The discovery of temporal correlation (phase locking) between the theta rhythm and both visual and auditory neuronal activity has led us to postulate the participation of such rhythm in the temporal processing of sensory information. In addition, changes in attention can modify both the theta rhythm and the auditory and visual sensory activity. The present report tested the hypothesis that the temporal correlation between auditory neuronal discharges in the inferior colliculus central nucleus (ICc) and the hippocampal theta rhythm could be enhanced by changes in sensory stimulation. We presented chronically implanted guinea pigs with auditory stimuli that varied over time, and recorded the auditory response during wakefulness. It was observed that the stimulation shifts were capable of producing the temporal phase correlations between the theta rhythm and the ICc unit firing, and they differed depending on the stimulus change performed. Such correlations disappeared approximately 6 s after the change presentation. Furthermore, the power of the hippocampal theta rhythm increased in half of the cases presented with a stimulation change. Based on these data, we propose that the degree of correlation between the unitary activity and the hippocampal theta rhythm varies with--and therefore may signal--stimulus novelty.

  6. Visualizing heterogeneity of photosynthetic properties of plant leaves with two-photon fluorescence lifetime imaging microscopy

    NARCIS (Netherlands)

    Iermak, Ievgeniia; Vink, Jochem; Bader, Arjen N.; Wientjes, Emilie; Amerongen, van Herbert

    2016-01-01

    Two-photon fluorescence lifetime imaging microscopy (FLIM) was used to analyse the distribution and properties of Photosystem I (PSI) and Photosystem II (PSII) in palisade and spongy chloroplasts of leaves from the C3 plant Arabidopsis thaliana and the C4 plant Miscanthus x giganteus. This was ac

  7. Enhancement of two-photon photoluminescence and SERS for low-coverage gold films

    DEFF Research Database (Denmark)

    Novikov, Sergey M.; Beermann, Jonas; Frydendahl, Christian

    2016-01-01

    Electromagnetic field enhancement (FE) effects occurring in thin gold films 3-12-nm are investigated with two-photon photoluminescence (TPL) and Raman scanning optical microscopies. The samples are characterized using scanning electron microscopy images and linear optical spectroscopy. TPL images...

  8. Imaging marine virus CroV and its host Cafeteria roenbergensis with two-photon microscopy

    Science.gov (United States)

    Cao, Bin; Chakraborty, Sayan; Sun, Wenqing; Aghvami, Seyedmohammadali; Fischer, Matthias G.; Qian, Wei; Xiao, Chuan; Li, Chunqiang

    2014-02-01

    We use two-photon microscopy to monitor the infection process of marine zooplankton, Cafeteria roenbergensis (C.roenbergensis), by Cafeteria roenbergensis virus (CroV), a giant DNA virus named after its host. Here, we image C.roenbergensis in culture by two-photon excited NADH autofluorescence at video-rate (30 frame/s), and the movement of C.roenbergensis is recorded in live videos. Moreover, CroV is stained with DNA dye SYBR gold and recorded simultaneously with this two-photon microscope. We observed the initial infection moment with this method. The result demonstrates the potential use of two-photon microscopy to investigate the fast dynamic interaction between C.roenbergensis with virus CroV. After catching this initial moment, we will freeze the sample in liquid nitrogen for cryo-electron microscopy (EM) study to resolve the virus-host interaction at molecular level. The long-term goal is to study similar fast moving pathogen-host interaction process which could lead to important medical applications.

  9. Gold Core Mesoporous Organosilica Shell Degradable Nanoparticles for Two-Photon Imaging and Gemcitabine Monophosphate Delivery

    KAUST Repository

    Rhamani, Saher

    2017-09-12

    The synthesis of gold core degradable mesoporous organosilica shell nanoparticles is described. The nanopaticles were very efficient for two-photon luminescence imaging of cancer cells and for in vitro gemcitabine monophosphate delivery, allowing promising theranostic applications in the nanomedicine field.

  10. Experimental method for the determination of two-photon cross sections using four-wave mixing

    Science.gov (United States)

    Burris, J.; Mcilrath, T. J.

    1985-01-01

    The two-photon absorption cross section for the R22 + S12(J double prime = 9 1/2) transition in nitric oxide's gamma band has been determined. The value is in good agreement with previous measurements on several other NO transitions. The technique described here can be used to obtain accurate cross sections for other diatomic molecules.

  11. Higgs decay into two photons from a 3HDM with flavor symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Aranda, Alfredo, E-mail: fefo@ucol.mx [Facultad de Ciencias, CUICBAS, Universidad de Colima, Colima (Mexico); Dual C-P Institute of High Energy Physics (Mexico); Bonilla, Cesar, E-mail: rasec.cmbd@gmail.com [Facultad de Ciencias Físico–Matemáticas, Benemérita Universidad Autónoma de Puebla (Mexico); Anda, Francisco de, E-mail: franciscojosedea@gmail.com [Departamento de Fisica, CUCEI, Universidad de Guadalajara (Mexico); Delgado, Antonio, E-mail: antonio.delgado@nd.edu [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Hernández-Sánchez, Jaime, E-mail: jaimeh@ece.buap.mx [Dual C-P Institute of High Energy Physics (Mexico); Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, 72570 Puebla, Puebla (Mexico)

    2013-08-09

    In this short Letter we show that the excess of events in the decay of Higgs to two photons reported by ATLAS and CMS can be easily accommodated in a flavor renormalizable three Higgs doublet model (3HDM). The model is consistent with all fermion masses, mixing angles, and flavor changing neutral current constraints.

  12. One-bit photon polarization in two-photon experiments. An information mechanics perspective

    Science.gov (United States)

    Kantor, Frederick W.

    1991-03-01

    Two-photon experiments of Aspect, Grangier, and Roger, directed toward testing Einstein, Podolsky, and Rosen's thought experiment, are seen in the context of Kantor's information mechanics as illustrating some consequences of the fact that the amount of information represented by the photon's polarization is one bit.

  13. Higgs boson decay into two photons in an electromagnetic background field

    DEFF Research Database (Denmark)

    Nielsen, N. K.

    2014-01-01

    The amplitude for Higgs boson decay into two photons in a homogeneous and time-independent magnetic field is investigated by proper-time regularization in a gauge-invariant manner and is found to be singular at large field values. The singularity is caused by the component of the charged vector...

  14. Fabrication of 3D nano/microelectrodes via two-photon-polymerization

    DEFF Research Database (Denmark)

    Abaddi, Mohammed Al-; Sasso, Luigi; Dimaki, Maria

    2012-01-01

    The integration of two-photon polymerization technology with standard microfabrication techniques is imperative for the use of this tool in micro- and nanotechnology and especially for the future commercialization of the technology. In this work, we report a novel method for the fabrication of 3D...

  15. Solvent effects on optical properties of a newly synthesized two-photon polymerization initiator: BPYPA

    Institute of Scientific and Technical Information of China (English)

    Guo Ya-Hui; Sun Yuan-Hong; Tao Li-Min; Zhao Ke; Wang Chuan-Kui

    2005-01-01

    Time-dependent hybrid density functional theory in combination with polarized continuum model is applied to study the solvent effects on the geometrical and electronic structures as well as one- and two-photon absorption processes,of a newly synthesized asymmetrical charge-transfer organic molecule bis-(4-bromo-phenyl)-[4-(2-pyridin-4-yl-vinyl)phenyl]-amine (BPYPA). There exist two charge-transfer states for the compound in visible region. The two-photon absorption cross section calculated by a three-state model and solvatochromic shift of the charge-transfer states are found to be solvent-dependent, where a nonmonotonic behaviour with respect to the polarity of the solvents is observed. The numerical results show that the organic molecule exhibits a rather large two-photon absorption cross section as compared with the compound 4-trans-[p-(N, N-Di-n-butylamino)-p-stilbenyl vinyl] pyridine (DBASVP) reported previously, and is predicted to be a good two-photon polymerization initiator. The hydrogen-bond effect is analysed. The computational results are in good agreement with the measurements.

  16. Decay and coherence of two-photon excited yellow orthoexcitons in Cu2O

    NARCIS (Netherlands)

    Karpinska, Katarzyna; Mostovoy, M; van der Vegte, MA; Revcolevschi, A; van Loosdrecht, PHM

    2005-01-01

    Photoluminescence excitation spectroscopy has revealed a highly efficient two-photon excitation method to produce a cold, uniformly distributed high density excitonic gas in bulk cuprous oxide. A study of the time evolution of the density, temperature, and chemical potential of the exciton gas shows

  17. Polarization-resolved two-photon luminescence microscopy of V-groove arrays

    DEFF Research Database (Denmark)

    Beermann, J.; Novikov, S. M.; Holmgaard, T.

    2012-01-01

    Using two-photon luminescence (TPL) microscopy and local reflection spectroscopy we investigate electromagnetic field enhancement effects from a mu m-sized composition of 450-nm-deep V-grooves milled by focused ion beam in a thick gold film and assembled to feature, within the same structure...

  18. Mitigating thermal mechanical damage potential during two-photon dermal imaging.

    Science.gov (United States)

    Masters, Barry R; So, Peter T C; Buehler, Christof; Barry, Nicholas; Sutin, Jason D; Mantulin, William W; Gratton, Enrico

    2004-01-01

    Two-photon excitation fluorescence microscopy allows in vivo high-resolution imaging of human skin structure and biochemistry with a penetration depth over 100 microm. The major damage mechanism during two-photon skin imaging is associated with the formation of cavitation at the epidermal-dermal junction, which results in thermal mechanical damage of the tissue. In this report, we verify that this damage mechanism is of thermal origin and is associated with one-photon absorption of infrared excitation light by melanin granules present in the epidermal-dermal junction. The thermal mechanical damage threshold for selected Caucasian skin specimens from a skin bank as a function of laser pulse energy and repetition rate has been determined. The experimentally established thermal mechanical damage threshold is consistent with a simple heat diffusion model for skin under femtosecond pulse laser illumination. Minimizing thermal mechanical damage is vital for the potential use of two-photon imaging in noninvasive optical biopsy of human skin in vivo. We describe a technique to mitigate specimen thermal mechanical damage based on the use of a laser pulse picker that reduces the laser repetition rate by selecting a fraction of pulses from a laser pulse train. Since the laser pulse picker decreases laser average power while maintaining laser pulse peak power, thermal mechanical damage can be minimized while two-photon fluorescence excitation efficiency is maximized.

  19. Experimental method for the determination of two-photon cross sections using four-wave mixing

    Science.gov (United States)

    Burris, J.; Mcilrath, T. J.

    1985-01-01

    The two-photon absorption cross section for the R22 + S12(J double prime = 9 1/2) transition in nitric oxide's gamma band has been determined. The value is in good agreement with previous measurements on several other NO transitions. The technique described here can be used to obtain accurate cross sections for other diatomic molecules.

  20. Selective two-photon collagen crosslinking in situ measured by Brillouin microscopy (Conference Presentation)

    Science.gov (United States)

    Kwok, Sheldon J. J.; Kuznetsov, Ivan A.; Kim, Moonseok; Choi, Myunghwan; Scarcelli, Giuliano; Yun, Seok-Hyun

    2017-02-01

    Two-photon polymerization and crosslinking are commonly used methods for microfabrication of three-dimensional structures with applications spanning from photonic microdevices, drug delivery systems, to cellular scaffolds. However, the use of two-photon processes for precise, internal modification of biological tissues has not yet been reported. One of the major challenges has been a lack of appropriate tools to monitor and characterize crosslinked regions nondestructively. Here, we demonstrate spatially selective two-photon collagen crosslinking (2P-CXL) in intact tissue for the first time. Using riboflavin photosensitizer and femtosecond laser irradiation, we crosslinked a small volume of tissue within animal corneas. Collagen fiber orientations and photobleaching were characterized by second harmonic generation and two-photon fluorescence imaging, respectively. Using confocal Brillouin microscopy, we measured local changes in longitudinal mechanical moduli and visualized the cross-linked pattern without perturbing surrounding non-irradiated regions. 2P-CXL-induced tissue stiffening was comparable to that achieved with conventional one-photon CXL. Our results demonstrate the ability to selectively stiffen biological tissue in situ at high spatial resolution, with broad implications in ophthalmology, laser surgery, and tissue engineering.

  1. Two-photon imaging and spectroscopy of fresh human colon biopsies

    Science.gov (United States)

    Cicchi, R.; Sturiale, A.; Nesi, G.; Tonelli, F.; Pavone, F. S.

    2012-03-01

    Two-photon fluorescence (TPEF) microscopy is a powerful tool to image human tissues up to 200 microns depth without any exogenously added probe. TPEF can take advantage of the autofluorescence of molecules intrinsically contained in a biological tissue, as such NADH, elastin, collagen, and flavins. Two-photon microscopy has been already successfully used to image several types of tissues, including skin, muscles, tendons, bladder. Nevertheless, its usefulness in imaging colon tissue has not been deeply investigated yet. In this work we have used combined two-photon excited fluorescence (TPEF), second harmonic generation microscopy (SHG), fluorescence lifetime imaging microscopy (FLIM), and multispectral two-photon emission detection (MTPE) to investigate different kinds of human ex-vivo fresh biopsies of colon. Morphological and spectroscopic analyses allowed to characterize both healthy mucosa, polyp, and colon samples in a good agreement with common routine histology. Even if further analysis, as well as a more significant statistics on a large number of samples would be helpful to discriminate between low, mild, and high grade cancer, our method is a promising tool to be used as diagnostic confirmation of histological results, as well as a diagnostic tool in a multiphoton endoscope or colonoscope to be used in in-vivo imaging applications.

  2. Efficient two-photon sensitized luminescence of europium (Ⅲ) complex based on hypersensitive transitions

    Institute of Scientific and Technical Information of China (English)

    Meng Shi; Hua Li; Mei Pan; Fufang Su; Lili Ma; Peigao Han; Hezhou Wang

    2011-01-01

    Red frequency-upconversion fluorescence emission is observed in europium(Ⅲ) complex with encapsulating polybenzimidazole tripodal ligands, pumped with 930- and 1070-nm picosecond laser pulses. The luminescence of transition 5D0 →7F2 (612 nm) is induced by two-photon absorption of hypersensitive transitions 7F0 →5D2 (465 nm) and 7F1 →5D1 (535 nm). Analysis results suggest that the two-photon excitation strength of these hypersensitive transitions is increased dramatically owing to the C3 symmetry of the coordination field.%@@ Red frequency-upconversion fluorescence emission is observed in europium(Ⅲ) complex with encapsulating polybenzimidazole tripodal ligands, pumped with 930- and 1070-nm picosecond laser pulses.The luminescence of transition 5D0 →7F2 (612 nm) is induced by two-photon absorption of hypersensitive transitions 7F0 →5D2 (465 nm) and 7F1 →5D1 (535 nm).Analysis results suggest that the two-photon excitation strength of these hypersensitive transitions is increased dramatically owing to the Ca symmetry of the coordination field.

  3. Long vs. short distance dispersive two-photon $K_{L} \\to \\mu^{+} \\mu^{-}$ amplitude

    CERN Document Server

    Eeg, Jan O; Picek, I

    1999-01-01

    We report on the calculation of the two-loop electroweak, two-photon mediated short-distance dispersive K_L \\to \\mu^+\\mu^- decay amplitude. QCD corrections change the sign of this contribution and reduce it by an order of magnitude. The resulting amplitude enables us to provide a constraint on the otherwise uncertain long-distance dispersive amplitude.

  4. Observation of high-$p_{T}$ jets in two-photon interactions

    CERN Document Server

    Bartel, Wulfrin; Dittmann, P; Eichler, R; Felst, R; Haidt, Dieter; Krehbiel, H; Meier, K; Naroska, Beate; O'Neill, L H; Steffen, P; Wenninger, Horst; Zhang, Y; Elsen, E E; Helm, M; Petersen, A; Warming, P; Weber, G; Bethke, Siegfried; Drumm, H; Heintze, J; Heinzelmann, G; Hellenbrand, K H; Heuer, R D; Von Krogh, J; Lennert, P; Kawabata, S; Matsumura, H; Nozaki, T; Olsson, J; Rieseberg, H; Wagner, A; Bell, A; Foster, F; Hughes, G; Wriedt, H; Allison, J; Ball, A H; Bamford, G; Barlow, R; Bowdery, C K; Duerdoth, I P; Hassard, J F; King, B T; Loebinger, F K; MacBeth, A A; McCann, H; Mills, H E; Murphy, P G; Stephens, K; Clarke, D; Goddard, M C; Marshall, R; Pearce, G F; Kobayashi, T; Komamiya, S; Koshiba, M; Minowa, M; Nosaki, M; Orito, S; Sato, A; Suda, T; Takeda, H; Totsuka, Y; Watanabe, Y; Yamada, S; Yanagisawa, C

    1981-01-01

    Events with a characteristic two-jet topology have been observed in two-photon interactions. The production cross section is found to be higher than the point-like gamma gamma -qq cross section, which is approached only at transverse momenta larger than 3 GeV/c. (11 refs).

  5. Measurement Induced Enhancement of Squeezing in Nondegenerate Two-Photon Jaynes-Cummings Model

    Institute of Scientific and Technical Information of China (English)

    YE Sai-Yun

    2006-01-01

    Squeezing properties in the nondegenerate two-photon Jaynes-Cummings model are investigated. The effects of direct selective atomic measurement and the application of the classical field followed by atomic measurement are analyzed. Different values of the parameters of the classical field are taken into account. It is found that the field squeezing can be enhanced by measurement.

  6. Two-photon excited highly polarized and directional upconversion emission from slab organic crystals

    NARCIS (Netherlands)

    Fang, Hong-Hua; Chen, Qi-Dai; Yang, Jie; Xia, Hong; Ma, Yu-Guang; Wang, Hai-Yu; Sun, Hong-Bo; Fang, Honghua

    2010-01-01

    Effective upconversion emission from an organic crystal of cyano-substituted oligo (p-phenylenevinylene) (CNDPASDB) based on two-photon absorption is presented. Frequency upconverted cavityless lasing, or amplified spontaneous emission, from the crystal pumped by a femtosecond laser of 800 nm was ob

  7. Carbon quantum dot-NO photoreleaser nanohybrids for two-photon phototherapy of hypoxic tumors.

    Science.gov (United States)

    Fowley, Colin; McHale, Anthony P; McCaughan, Bridgeen; Fraix, Aurore; Sortino, Salvatore; Callan, John F

    2015-01-04

    We report a conjugate between carbon quantum dots and a NO photoreleaser able to photogenerate the anticancer NO radical via an energy transfer mechanism. This nanohybrid proved toxic to cancer cells in vitro and significantly reduced tumor volume in mice bearing human xenograft BxPC-3 pancreatic tumors upon two-photon excitation with the highly biocompatible 800 nm light.

  8. Probing Electron-Phonon Interaction through Two-Photon Interference in Resonantly Driven Semiconductor Quantum Dots

    DEFF Research Database (Denmark)

    Reigue, Antoine; Iles-Smith, Jake; Lux, Fabian

    2017-01-01

    We investigate the temperature dependence of photon coherence properties through two-photon interference (TPI) measurements from a single quantum dot (QD) under resonant excitation. We show that the loss of indistinguishability is related only to the electron-phonon coupling and is not affected...

  9. Sub-diffraction positioning of a two-photon excited and optically trapped quantum dot

    DEFF Research Database (Denmark)

    Jauffred, L.; Kyrsting, A.; Christensen, Eva Arnspang;

    2014-01-01

    Colloidal quantum dots are luminescent long-lived probes that can be two-photon excited and manipulated by a single laser beam. Therefore, quantum dots can be used for simultaneous single molecule visualization and force manipulation using an infra-red laser. Here, we show that even a single opti...

  10. [Intensity loss of two-photon excitation fluorescence microscopy images of mouse oocyte chromosomes].

    Science.gov (United States)

    Zhao, Feng-Ying; Wu, Hong-Xin; Chen, Die-Yan; Ma, Wan-Yun

    2014-07-01

    As an optical microscope with high resolution, two-photon excitation (TPE) fluorescence microscope is widely used in noninvasive 3D optical imaging of biological samples. Compared with confocal laser scanning microscope, TPE fluorescence microscope provides a deeper detecting depth. In spite of that, the image quality of sample always declines as the detecting depth increases when a noninvasive 3D optical imaging of thicker samples is performed. Mouse oocytes with a large diameter, which play an important role in clinical and biological fields, have obvious absorption and scattering effects. In the present paper, we performed compensation for two-photon fluorescence images of mouse oocyte chromosomes. Using volume as a parameter, the attenuation degree of these chromosomes was also studied. The result of our data suggested that there exists a severe axial intensity loss in two-photon microscopic images of mouse oocytes due to the absorption and scattering effects. It is necessary to make compensation for these images of mouse oocyte chromosomes obtained from two-photon microscopic system. It will be specially needed in studying the quantitative three-dimensional information of mouse oocytes.

  11. A two-photon activatable amino acid linker for the induction of fluorescence.

    Science.gov (United States)

    Friedrich, Felix; Klehs, Kathrin; Fichte, Manuela A H; Junek, Stephan; Heilemann, Mike; Heckel, Alexander

    2015-10-28

    A new one- and two-photon activatable fluorophore based on ATTO565 was developed using a photolabile linker that simultaneously acts as a quencher. It is especially interesting for protein and peptide applications because it can be incorporated by standard peptide chemistry. The application of the new fluorogenic construct in super-resolution microscopy of antibody conjugates is shown.

  12. Engineering two-photon high-dimensional states through quantum interference

    CSIR Research Space (South Africa)

    Zhang, YI

    2016-02-01

    Full Text Available the storage and processing potential of quantum information systems. We demonstrate the controlled engineering of two-photon high-dimensional states entangled in their orbital angular momentum through Hong-Ou-Mandel interference. We prepare a large range...

  13. New cubic perovskites for one- and two-photon water splitting using the computational materials repository

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Landis, David; Thygesen, Kristian Sommer

    2012-01-01

    screening of around 19 000 oxides, oxynitrides, oxysulfides, oxyfluorides, and oxyfluoronitrides in the cubic perovskite structure with PEC applications in mind. We address three main applications: light absorbers for one- and two-photon water splitting and high-stability transparent shields to protect...

  14. Two-photon excitation spectra of Cr3 :K2NaScF6

    Science.gov (United States)

    Bartram, R. H.; Wein, G. R.; Hamilton, D. S.; Sliwczuk, U.; Rinzler, A. G.

    Two-photon excitation (TPE) spectra of Cr3+:K2NaScF6 exhibit unexpected features including a forbidden transition, extended progressions, a split zero-phonon line and anomalous polarization anisotropy. These features are explained by departures from standard approximations.

  15. A study of Two Photon Decays of Charmonium Resonances Formed in Proton Anti-Proton Annihilations

    Energy Technology Data Exchange (ETDEWEB)

    Pedlar, Todd Kristofer [Northwestern Univ., Evanston, IL (United States)

    1999-06-01

    In this dissertation we describe the results of an investigation of the production of charmonium states (ηc, η'c, χ0 and χ2) in Fermilab experiment E835 via antiproton-proton annihilation and their detection via their decay into two photons.

  16. Background-Free Optical Sampling System Using Si Avalanche Photodiode as Two-Photon Absorber

    Institute of Scientific and Technical Information of China (English)

    Kenji; Taira; Ryo; Ohta; Yasuyuki; Ozeki; Yutaka; Fukuchi; Kazuhiro; Katoh; Kazuro; Kikuchi

    2003-01-01

    The introduction of a double-chopping scheme eliminates the background level in the optical sampling system, where a Si avalanche photodiode acts as a two-photon absorber. We successfully demonstrate background-free optical sampling of 40-GHz and 160-GHz pulse trains.

  17. Simultaneous two-photon activation of type-I photodynamic therapy agents.

    Science.gov (United States)

    Fisher, W G; Partridge, W P; Dees, C; Wachter, E A

    1997-08-01

    The excitation and emission properties of several psoralen derivatives are compared using conventional single-photon excitation and simultaneous two-photon excitation (TPE). Two-photon excitation is effected using the output of a mode-locked titanium: sapphire laser, the near infrared output of which is used to promote nonresonant TPE directly. Specifically, the excitation spectra and excited-state properties of 8-methoxypsoralen and 4'-aminomethyl-4,5,8-trimethylpsoralen are shown to be equivalent using both modes of excitation. Further, in vitro feasibility of two-photon photodynamic therapy (PDT) is demonstrated using Salmonella typhimurium. Two-photon excitation may be beneficial in the practice of PDT because it would allow replacement of visible or UV excitation light with highly penetrating, nondamaging near infrared light and could provide a means for improving localization of therapy. Comparison of possible laser excitation sources for PDT reveals the titanium: sapphire laser to be exceptionally well suited for nonlinear excitation of PDT agents in biological systems due to its extremely short pulse width and high repetition rate that together provide efficient PDT activation and greatly reduced potential for biological damage.

  18. Rapid Prototyping of Chemical Microsensors Based on Molecularly Imprinted Polymers Synthesized by Two-Photon Stereolithography.

    Science.gov (United States)

    Gomez, Laura Piedad Chia; Spangenberg, Arnaud; Ton, Xuan-Anh; Fuchs, Yannick; Bokeloh, Frank; Malval, Jean-Pierre; Tse Sum Bui, Bernadette; Thuau, Damien; Ayela, Cédric; Haupt, Karsten; Soppera, Olivier

    2016-07-01

    Two-photon stereolithography is used for rapid prototyping of submicrometre molecularly imprinted polymer-based 3D structures. The structures are evaluated as chemical sensing elements and their specific recognition properties for target molecules are confirmed. The 3D design capability is exploited and highlighted through the fabrication of an all-organic molecularly imprinted polymeric microelectromechanical sensor.

  19. Superradiant dye solution laser with two-photon picosecond optical pumping

    Energy Technology Data Exchange (ETDEWEB)

    Prokhorenko, V.I.; Tikhonov, E.A.; Shpak, M.T.

    1981-01-01

    A superradiant (superfluorescent) dye solution laser with two-photon picosecond pumping was constructed for the first time. A preliminary study was made of the principal characteristics of the output radiation of this laser which performed up-conversion of the frequency of the pump radiation. The physical mechanisms governing the operation of lasers of this type were analyzed.

  20. Two-photon photoemission from a copper cathode in an X -band photoinjector

    Science.gov (United States)

    Li, H.; Limborg-Deprey, C.; Adolphsen, C.; McCormick, D.; Dunning, M.; Jobe, K.; Raubenheimer, T.; Vrielink, A.; Vecchione, T.; Wang, F.; Weathersby, S.

    2016-02-01

    This paper presents two-photon photoemission from a copper cathode in an X -band photoinjector. We experimentally verified that the electron bunch charge from photoemission out of a copper cathode scales with laser intensity (I) square for 400 nm wavelength photons. We compare this two-photon photoemission process with the single photon process at 266 nm. Despite the high reflectivity (R ) of the copper surface for 400 nm photons (R =0.48 ) and higher thermal energy of photoelectrons (two-photon at 200 nm) compared to 266 nm photoelectrons, the quantum efficiency of the two-photon photoemission process (400 nm) exceeds the single-photon process (266 nm) when the incident laser intensity is above 300 GW /cm2 . At the same laser pulse energy (E ) and other experimental conditions, emitted charge scales inversely with the laser pulse duration. A thermal emittance of 2.7 mm-mrad per mm root mean square (rms) was measured on our cathode which exceeds by sixty percent larger compared to the theoretical predictions, but this discrepancy is similar to previous experimental thermal emittance on copper cathodes with 266 nm photons. The damage of the cathode surface of our first-generation X -band gun from both rf breakdowns and laser impacts mostly explains this result. Using a 400 nm laser can substantially simplify the photoinjector system, and make it an alternative solution for compact pulsed electron sources.

  1. Applying two-photon excitation fluorescence lifetime imaging microscopy to study photosynthesis in plant leaves

    NARCIS (Netherlands)

    Broess, K.; Borst, J.W.; Amerongen, van H.

    2009-01-01

    This study investigates to which extent two-photon excitation (TPE) fluorescence lifetime imaging microscopy can be applied to study picosecond fluorescence kinetics of individual chloroplasts in leaves. Using femtosecond 860 nm excitation pulses, fluorescence lifetimes can be measured in leaves of

  2. A scheme to realize time-bin entanglement between two photons that never interacted

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We propose a scheme of entangling two photons from two separated sources.Our proposal which is inspired by the time-bin entanglement developed recently,provides a novel alternative for revealing contradiction between quantum nonlocality and local realism based on two independent single photon sources.

  3. A new approach to post-seismic decay with temporal correlation

    Science.gov (United States)

    Klos, A.; Bos, M. S.; Fernandes, R.; Bogusz, J.

    2016-12-01

    An accurate estimation of the linear velocity at Global Navigation Satellite System (GNSS) stations is highly desirable. This station velocity is used in geodynamic analyses and for the realization of reference frames. To obtain the best results, it should be estimated simultaneously with all disturbances that are present in time series. In this research we use the HECTOR software package to study on post-seismic deformation and model it in a form of logarithmic and exponential functions. This approach avoids the need that the time of post-seismic relaxation has to be removed prior to analysis of the GNSS data. We describe a standard linear trajectory model starting with Constant Velocity Model (CVM), continuing with CVM with jumps and oscillation and ending with Extended Trajectory Model (ETM). In this new method the parameters of post-seismic deformation are being estimated simultaneously with the data model (velocity, seasonal signals and noise) using a Maximum Likelihood Estimation (MLE) approach that takes the temporal correlations of the noise into account. This produces the most probable values for the vertical and horizontal velocities and associated parameters such as offsets, amplitude of the exponential/logarithmic decay and seasonal signal as well realistic uncertainties. In this research, we show the advantages of novel approach we propose on GNSS position time series affected by Tohoku undersea megathrust earthquake off the coast of Japan, with a magnitude of Mw 9.0 which took place on 11 March 2011.

  4. Interindividual variability in functional connectivity as long-term correlate of temporal discounting.

    Directory of Open Access Journals (Sweden)

    Cinzia Calluso

    Full Text Available During intertemporal choice (IT future outcomes are usually devaluated as a function of the delay, a phenomenon known as temporal discounting (TD. Based on task-evoked activity, previous neuroimaging studies have described several networks associated with TD. However, given its relevance for several disorders, a critical challenge is to define a specific neural marker able to predict TD independently of task execution. To this aim, we used resting-state functional connectivity MRI (fcMRI and measured TD during economic choices several months apart in 25 human subjects. We further explored the relationship between TD, impulsivity and decision uncertainty by collecting standard questionnaires on individual trait/state differences. Our findings indicate that fcMRI within and between critical nodes of task-evoked neural networks associated with TD correlates with discounting behavior measured a long time afterwards, independently of impulsivity. Importantly, the nodes form an intrinsic circuit that might support all the mechanisms underlying TD, from the representation of subjective value to choice selection through modulatory effects of cognitive control and episodic prospection.

  5. Stepwise Two-Photon-Induced Fast Photoswitching via Electron Transfer in Higher Excited States of Photochromic Imidazole Dimer.

    Science.gov (United States)

    Kobayashi, Yoichi; Katayama, Tetsuro; Yamane, Takuya; Setoura, Kenji; Ito, Syoji; Miyasaka, Hiroshi; Abe, Jiro

    2016-05-11

    Stepwise two-photon excitations have been attracting much interest because of their much lower power thresholds compared with simultaneous two-photon processes and because some stepwise two-photon processes can be initiated by a weak incoherent excitation light source. Here we apply stepwise two-photon optical processes to the photochromic bridged imidazole dimer, whose solution instantly changes color upon UV irradiation and quickly reverts to the initial color thermally at room temperature. We synthesized a zinc tetraphenylporphyrin (ZnTPP)-substituted bridged imidazole dimer, and wide ranges of time-resolved spectroscopic studies revealed that a ZnTPP-linked bridged imidazole dimer shows efficient visible stepwise two-photon-induced photochromic reactions upon excitation at the porphyrin moiety. The fast photoswitching property combined with stepwise two-photon processes is important not only for the potential for novel photochromic materials that are sensitive to the incident light intensity but also for fundamental photochemistry using higher excited states.

  6. Sensing for intracellular thiols by water-insoluble two-photon fluorescent probe incorporating nanogel

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xudong; Zhang, Xin; Wang, Shuangqing; Li, Shayu [Beijing National Laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hu, Rui, E-mail: hurui@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Li, Yi, E-mail: yili@mail.ipc.ac.cn [Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Guoqiang, E-mail: gqyang@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-04-15

    Highlights: • A novel “turn-on” two-photon fluorescent probe based on a π-conjugated triarylboron luminogen was designed and synthesized. • Fast, selective and sensitive detection of biothiols in 100% aqueous solution by simply loaded on a nanogel. • Single-photon and two-photon fluorescent bioimaging of biothiols in NIH/3T3 fibroblasts. - Abstract: A novel “turn-on” two-photon fluorescent probe containing a π-conjugated triarylboron luminogen and a maleimide moiety DMDP-M based on the photo-induced electron transfer (PET) mechanism for biothiol detection was designed and synthesized. By simply loading the hydrophobic DMDP-M on a cross-linked Pluronic{sup ®} F127 nanogel (CL-F127), a probing system DMDP-M/CL-F127 was established, which shows quick response, high selectivity and sensitivity to cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) in aqueous phase. The DMDP-M/CL-F127 system presented the fastest response to Cys with a rate constant of 0.56 min{sup −1}, and the detection limit to Cys was calculated to be as low as 0.18 μM. The DMDP-M/CL-F127 system has been successfully applied to the fluorescence imaging of biothiols in NIH/3T3 fibroblasts either with single-photon or two-photon excitation because of its high biocompatibility and cell-membrane permeability. The present work provides a general, simple and efficient strategy for the application of hydrophobic molecules to sensing biothiols in aqueous phase, and a novel sensing system for intracellular biothiols fitted for both single-photon and two-photon fluorescence imaging.

  7. Violation of local realism in a high-dimensional two-photon setup with non-integer spiral phase plates

    CERN Document Server

    Oemrawsingh, S S R; Eliel, E R; Woerdman, J P

    2004-01-01

    We propose a novel setup to investigate the quantum non-locality of orbital angular momentum states living in a high-dimensional Hilbert space. We incorporate non-integer spiral phase plates in spatial analyzers, enabling us to use only two detectors. The resulting setup is somewhat reminiscent of that used to measure polarization entanglement. However, the two-photon states that are produced, are not confined to a 2X2-dimensional Hilbert space, and the setup allows the probing of correlations in a high-dimensional space. For the special case of half-integer spiral phase plates, we predict a violation of the Clauser-Horne-Shimony-Holt version of the Bell inequality (S<=2), that is even stronger than achievable for two qubits (S=2*(2^1/2)), namely S=16/5

  8. Two-photon autofluorescence/FLIM/SHG endoscopy to study the oral cavity and wound healing in humans (Conference Presentation)

    Science.gov (United States)

    König, Karsten

    2016-03-01

    Monitoring the oral cavity noninvasively with superior 3D resolution is realized by clinical multiphoton tomography and high NA two-photon endoscopy without the need of additional contrast agents. The technology behind this investigation is based on nonlinear optical contrast of the multiphoton tomograph MPTflex®. Furthermore, the miniaturized GRIN endoscope was used to realize more accessibility for more demanding wound conditions in skin. The MPTflex® distinguishes autofluorescence (AF) signals from second harmonic generation (SHG) signals simultaneously. Fluorescence lifetime imaging (FLIM) based on time correlated single photon counting (TCSPC) technology offers additional information on the functional level of the intratissue fluorophores, their binding status, and the contribution of SHG signals in chronic wounds.

  9. In vivo spectral imaging of different cell types in the small intestine by two-photon excited autofluorescence

    Science.gov (United States)

    Orzekowsky-Schroeder, Regina; Klinger, Antje; Martensen, Björn; Blessenohl, Maike; Gebert, Andreas; Vogel, Alfred; Hüttmann, Gereon

    2011-11-01

    Spectrally resolved two-photon excited autofluorescence imaging is used to distinguish different cell types and functional areas during dynamic processes in the living gut. Excitation and emission spectra of mucosal tissue and tissue components are correlated to spectra of endogenous chromophores. We show that selective excitation with only two different wavelengths within the tuning range of a Ti:sapphire femtosecond laser system yields excellent discrimination between enterocytes, antigen presenting cells and lysosomes based on the excitation and emission properties of their autofluorescence. The method is employed for time-lapse microscopy over up to 8 h. Changes of the spectral signature with the onset of photodamage are demonstrated, and their origin is discussed.

  10. Decoherent histories and measurement of temporal correlation functions for Leggett-Garg inequalities

    Science.gov (United States)

    Halliwell, J. J.

    2016-11-01

    We consider two protocols for the measurement of the temporal correlation functions of a dichotomic variable Q appearing in Leggett-Garg-type inequalities. The protocols measure solely whether Q has the same or a different sign at the end of a given time interval, thereby measuring no more than is required for determination of the correlation function. They are inspired, in part, by a decoherent histories analysis of the two-time histories of Q , which yields a number of useful insights, although the protocols are ultimately expressed in macrorealistic form independent of quantum theory. The first type involves an ancilla coupled to the system with two sequential controlled-not (cnot) gates, and the two-time histories of the system (whose probabilities yield the correlation function) are determined in a single final time measurement of the ancilla. It is noninvasive for special choices of initial system states and partially invasive for more general choices. Modified Leggett-Garg-type inequalities which accommodate the partial invasiveness are discussed. The quantum picture of the protocol shows that for certain choices of the primary system initial state, the final state is unaffected by the two cnot gate interactions, hence the protocol is undetectable with respect to final system-state measurements, although it is still invasive at intermediate times. This invasiveness can be reduced with different choices of ancilla states and the protocol is then similar in flavor to a weak measurement. The second type of protocol is based on the fact that the behavior of Q over a time interval can be determined from knowledge of the dynamics together with a measurement of certain initial (or final) data. Its quantum version corresponds to the known fact that when sets of histories are decoherent, their probabilities may be expressed in terms of a record projector, hence the two-time histories in which Q has the same or a different sign can be determined by a single projective

  11. Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope

    Science.gov (United States)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten

    2016-03-01

    Five dimensional microscopy with a 12-fs laser scanning microscope based on spectrally resolved two-photon autofluorescence lifetime and second-harmonic generation (SHG) imaging was used to characterize all layers of the porcine cornea. This setup allowed the simultaneous excitation of both metabolic cofactors, NAD(P)H and flavins, and their discrimination based on their spectral emission properties and fluorescence decay characteristics. Furthermore, the architecture of the stromal collagen fibrils was assessed by SHG imaging in both forward and backward directions. Information on the metabolic state and the tissue architecture of the porcine cornea were obtained with subcellular resolution, and high temporal and spectral resolutions.

  12. De-correlated combination of two low-low Satellite-to-Satellite tracking pairs according to temporal aliasing

    Science.gov (United States)

    Murböck, Michael; Pail, Roland

    2014-05-01

    The monitoring of the temporal changes in the Earth's gravity field is of great scientific and societal importance. Within several days a homogeneous global coverage of gravity observations can be obtained with satellite missions. Temporal aliasing of background model errors into global gravity field models will be one of the largest restrictions in future satellite temporal gravity recovery. The largest errors are due to high-frequent tidal and non-tidal atmospheric and oceanic mass variations. Having a double pair low-low Satellite-to-Satellite tracking (SST) scenario on different inclined orbits reduces temporal aliasing errors significantly. In general temporal aliasing effects for a single (-pair) mission strongly depend on the basic orbital rates (Murböck et al. 2013). These are the rates of the argument of the latitude and of the longitude of the ascending node. This means that the revolution time and the length of one nodal day determine how large the temporal aliasing error effects are for each SH order. The combination of two low-low SST missions based on normal equations requires an adequate weighting of the two components. This weighting shall ensure the full de-correlation of each of the two parts. Therefore it is necessary to take the temporal aliasing errors into account. In this study it is analyzed how this can be done based on the resonance orders of the two orbits. Different levels of approximation are applied to the de-correlation approach. The results of several numerical closed-loop simulations are shown including stochastic modeling of realistic future instrument noise. It is shown that this de-correlation approach is important for maximizing the benefit of a double-pair low-low SST mission for temporal gravity recovery. Murböck M, Pail R, Daras I and Gruber T (2013) Optimal orbits for temporal gravity recovery regarding temporal aliasing. Journal of Geodesy, Springer Berlin Heidelberg, ISSN 0949-7714, DOI 10.1007/s00190-013-0671-y

  13. Effects of torsional disorder and position isomerism on two-photon absorption properties of polar chromophore dimers

    Science.gov (United States)

    Jia, Hai-Hong; Zhao, Ke; Wu, Xiang-Lian

    2014-09-01

    Two-photon absorption properties of a push-pull molecule and its covalent dimers have been studied by density functional response theory in combination with polarizable continuum model. A set of constrained geometries with different torsional angles are optimized and used to calculate two-photon absorption spectra. It is found that the torsional disorder could possibly produce the experimental two-photon absorption additive behavior. We have also designed a series of covalent dimers and investigated the effects of position isomerism. Our results suggest that the cooperative two-photon absorption enhancement can be achieved when the subunits are substituted in closer proximity and have larger interchromophore angle.

  14. A spirobifluorene-based two-photon fluorescence probe for mercury ions and its applications in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Haibo, E-mail: xiaohb@shnu.edu.cn; Zhang, Yanzhen; Zhang, Wu; Li, Shaozhi; Tan, Jingjing; Han, Zhongying

    2017-05-01

    A novel spirobifluorene derivative SPF-TMS, which containing dithioacetal groups and triphenylamine units, was synthesized. The probing behaviors toward various metal ions were investigated via UV/Vis absorption spectra as well as one-photon fluorescence changes. The results indicated that SPF-TMS exhibits high sensitivity and selectivity for mercury ions. The detection limit was at least 8.6 × 10{sup −8}M, which is excellent comparing with other optical sensors for Hg{sup 2+}. When measured by two-photon excited fluorescence technique in THF at 800 nm, the two-photon cross-section of SPF-TMS is 272 GM. Especially, upon reaction with mercury species, SPF-TMS yielded another two-photon dye SPF-DA. Both SPF-TMS and SPF-DA emit strong two-photon induced fluorescence and can be applied in cell imaging by two-photon microscopy. - Highlights: • We report a spirobifluorene-based molecule as two-photon fluorescent probe with large two-photon cross-section. • The molecule has exclusive selectivity and sensitivity for mercury species. • The molecule has large two-photon emission changes before and after addition of Hg{sup 2+}. • Both the probe and the mercury ion-promoted reaction product can be applied in cell imaging by two-photon microscopy.

  15. Multifractal temporally weighted detrended cross-correlation analysis to quantify power-law cross-correlation and its application to stock markets

    Science.gov (United States)

    Wei, Yun-Lan; Yu, Zu-Guo; Zou, Hai-Long; Anh, Vo

    2017-06-01

    A new method—multifractal temporally weighted detrended cross-correlation analysis (MF-TWXDFA)—is proposed to investigate multifractal cross-correlations in this paper. This new method is based on multifractal temporally weighted detrended fluctuation analysis and multifractal cross-correlation analysis (MFCCA). An innovation of the method is applying geographically weighted regression to estimate local trends in the nonstationary time series. We also take into consideration the sign of the fluctuations in computing the corresponding detrended cross-covariance function. To test the performance of the MF-TWXDFA algorithm, we apply it and the MFCCA method on simulated and actual series. Numerical tests on artificially simulated series demonstrate that our method can accurately detect long-range cross-correlations for two simultaneously recorded series. To further show the utility of MF-TWXDFA, we apply it on time series from stock markets and find that power-law cross-correlation between stock returns is significantly multifractal. A new coefficient, MF-TWXDFA cross-correlation coefficient, is also defined to quantify the levels of cross-correlation between two time series.

  16. Exact steady-state of a Kerr resonator with one- and two-photon driving-dissipation: controllable Wigner-function multimodality and dissipative phase transitions

    CERN Document Server

    Bartolo, Nicola; Casteels, Wim; Ciuti, Cristiano

    2016-01-01

    We present exact results for the steady-state density matrix of a general class of driven-dissipative systems consisting of a nonlinear Kerr resonator in the presence of both coherent (one-photon) and parametric (two-photon) driving and dissipation. Thanks to the analytical solution, obtained via the complex P-representation formalism, we are able to explore any regime, including photon blockade, multi-photon resonant effects, and a mesoscopic regime with large photon density and quantum correlations. We show how the interplay between one- and two-photon driving provides a way to control the multi-modality of the Wigner function in regimes where the semiclassical theory exhibits multistability. We also study the emergence of dissipative phase transitions in the thermodynamic limit of large photon numbers.

  17. Temporal changes in native-exotic richness correlations during early post-fire succession

    Science.gov (United States)

    Qinfeng Guo

    2017-01-01

    The relationship between native and exotic richness has mostly been studied with respect to space (i.e., positive at larger scales, but negative or more variable at smaller scales) and its temporal patterns have rarely been investigated. Although some studies have monitored the temporal trends of both native and exotic richness, how these two groups of species might be...

  18. Functional integration of the posterior superior temporal sulcus correlates with facial expression recognition.

    Science.gov (United States)

    Wang, Xu; Song, Yiying; Zhen, Zonglei; Liu, Jia

    2016-05-01

    Face perception is essential for daily and social activities. Neuroimaging studies have revealed a distributed face network (FN) consisting of multiple regions that exhibit preferential responses to invariant or changeable facial information. However, our understanding about how these regions work collaboratively to facilitate facial information processing is limited. Here, we focused on changeable facial information processing, and investigated how the functional integration of the FN is related to the performance of facial expression recognition. To do so, we first defined the FN as voxels that responded more strongly to faces than objects, and then used a voxel-based global brain connectivity method based on resting-state fMRI to characterize the within-network connectivity (WNC) of each voxel in the FN. By relating the WNC and performance in the "Reading the Mind in the Eyes" Test across participants, we found that individuals with stronger WNC in the right posterior superior temporal sulcus (rpSTS) were better at recognizing facial expressions. Further, the resting-state functional connectivity (FC) between the rpSTS and right occipital face area (rOFA), early visual cortex (EVC), and bilateral STS were positively correlated with the ability of facial expression recognition, and the FCs of EVC-pSTS and OFA-pSTS contributed independently to facial expression recognition. In short, our study highlights the behavioral significance of intrinsic functional integration of the FN in facial expression processing, and provides evidence for the hub-like role of the rpSTS for facial expression recognition. Hum Brain Mapp 37:1930-1940, 2016. © 2016 Wiley Periodicals, Inc.

  19. Spatial and Temporal Patterns of Global NDVI Trends: Correlations with Climate and Human Factors

    Science.gov (United States)

    LIU, Y.; Li, S.

    2015-12-01

    Abstract: Changes in vegetation activity are driven by multiple natural and anthropogenic factors, which can be reflected by Normalized Difference Vegetation Index (NDVI) derived from satellite. In this paper, NDVI trends from 1982 to 2012 are first estimated by the Theil-Sen median slope method to explore their spatial and temporal patterns. Then the impact of climate variables and human activity on the observed NDVI trends is analyzed. Our results show on average NDVI increased by 0.46×10-3 per year from 1982 to 2012 globally with decadal variations. For most regions of the world, a greening (increasing) - browning(decreasing) - greening (G-B-G) trend is observed over the periods 1982-2004, 1995-2004, and 2005-2012, respectively. A positive partial correlation of NDVI and temperature is observed in the first period but it decreases and occasionally becomes negative in the following periods, especially in the Humid Temperate and Dry Domain Regions. This suggests a weakened effect of temperature on vegetation growth. Precipitation, on the other hand, is found to have a positive impact on the NDVI trend. This effect becomes stronger in the third period of 1995-2004, especially in the Dry Domain Region. Anthropogenic effects and human activities, derived here from the Human Footprint Dataset and the associated Human Influence Index (HII), have varied impacts on the magnitude (absolute value) of the NDVI trends across continents. Significant positive effects are found in Asia, Africa, and Europe, suggesting that intensive human activity could accelerate the change in NDVI and vegetation. A more accurate attribution of vegetation change to specific climatic and anthropogenic factors is instrumental to understand vegetation dynamics and requires further research.

  20. Hippocampal CA3 transcriptome signature correlates with initial precipitating injury in refractory mesial temporal lobe epilepsy.

    Directory of Open Access Journals (Sweden)

    Silvia Y Bando

    Full Text Available BACKGROUND: Prolonged febrile seizures constitute an initial precipitating injury (IPI commonly associated with refractory mesial temporal lobe epilepsy (RMTLE. In order to investigate IPI influence on the transcriptional phenotype underlying RMTLE we comparatively analyzed the transcriptomic signatures of CA3 explants surgically obtained from RMTLE patients with (FS or without (NFS febrile seizure history. Texture analyses on MRI images of dentate gyrus were conducted in a subset of surgically removed sclerotic hippocampi for identifying IPI-associated histo-radiological alterations. METHODOLOGY/PRINCIPAL FINDINGS: DNA microarray analysis revealed that CA3 global gene expression differed significantly between FS and NFS subgroups. An integrative functional genomics methodology was used for characterizing the relations between GO biological processes themes and constructing transcriptional interaction networks defining the FS and NFS transcriptomic signatures and its major gene-gene links (hubs. Co-expression network analysis showed that: i CA3 transcriptomic profiles differ according to the IPI; ii FS distinctive hubs are mostly linked to glutamatergic signalization while NFS hubs predominantly involve GABAergic pathways and neurotransmission modulation. Both networks have relevant hubs related to nervous system development, what is consistent with cell genesis activity in the hippocampus of RMTLE patients. Moreover, two candidate genes for therapeutic targeting came out from this analysis: SSTR1, a relevant common hub in febrile and afebrile transcriptomes, and CHRM3, due to its putative role in epilepsy susceptibility development. MRI texture analysis allowed an overall accuracy of 90% for pixels correctly classified as belonging to FS or NFS groups. Histological examination revealed that granule cell loss was significantly higher in FS hippocampi. CONCLUSIONS/SIGNIFICANCE: CA3 transcriptional signatures and dentate gyrus morphology fairly

  1. Dynamics of multifractal and correlation characteristics of the spatio-temporal distribution of regional seismicity before the strong earthquakes

    Directory of Open Access Journals (Sweden)

    D. Kiyashchenko

    2003-01-01

    Full Text Available Investigations of the distribution of regional seismicity and the results of numerical simulations of the seismic process show the increase of inhomogenity in spatio-temporal distribution of the seismicity prior to large earthquakes and formation of inhomogeneous clusters in a wide range of scales. Since that, the multifractal approach is appropriate to investigate the details of such dynamics. Here we analyze the dynamics of the seismicity distribution before a number of strong earthquakes occurred in two seismically active regions of the world: Japan and Southern California. In order to study the evolution of spatial inhomogeneity of the seismicity distribution, we consider variations of two multifractal characteristics: information entropy of multifractal measure generation process and the higher-order generalized fractal dimension of the continuum of the earthquake epicenters. Also we studied the dynamics of the level of spatio-temporal correlations in the seismicity distribution. It is found that two aforementioned multifractal characteristics tend to decrease and the level of spatio-temporal correlations tends to increase before the majority of considered strong earthquakes. Such a tendency can be considered as an earthquake precursory signature. Therefore, the results obtained show the possibility to use multifractal and correlation characteristics of the spatio-temporal distribution of regional seismicity for seismic hazard risk evaluation.

  2. Two-Photon Processor and SeNeCA: a freely available software package to process data from two-photon calcium imaging at speeds down to several milliseconds per frame.

    Science.gov (United States)

    Tomek, Jakub; Novak, Ondrej; Syka, Josef

    2013-07-01

    Two-Photon Processor (TPP) is a versatile, ready-to-use, and freely available software package in MATLAB to process data from in vivo two-photon calcium imaging. TPP includes routines to search for cell bodies in full-frame (Search for Neural Cells Accelerated; SeNeCA) and line-scan acquisition, routines for calcium signal calculations, filtering, spike-mining, and routines to construct parametric fields. Searching for somata in artificial in vivo data, our algorithm achieved better performance than human annotators. SeNeCA copes well with uneven background brightness and in-plane motion artifacts, the major problems in simple segmentation methods. In the fast mode, artificial in vivo images with a resolution of 256 × 256 pixels containing ≈ 100 neurons can be processed at a rate up to 175 frames per second (tested on Intel i7, 8 threads, magnetic hard disk drive). This speed of a segmentation algorithm could bring new possibilities into the field of in vivo optophysiology. With such a short latency (down to 5-6 ms on an ordinary personal computer) and using some contemporary optogenetic tools, it will allow experiments in which a control program can continuously evaluate the occurrence of a particular spatial pattern of activity (a possible correlate of memory or cognition) and subsequently inhibit/stimulate the entire area of the circuit or inhibit/stimulate a different part of the neuronal system. TPP will be freely available on our public web site. Similar all-in-one and freely available software has not yet been published.

  3. $\\chi_{c2}$ formation in two-photon collisions at LEP

    CERN Document Server

    Acciarri, M; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Balandras, A; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brochu, F; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Déglon, P L; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duinker, P; Durán, I; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Goldfarb, S; Gong, Z F; Grünewald, M W; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hofer, H; Holzner, G; Hoorani, H; Hou, S R; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Kamrad, D; Kapustinsky, J S; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Marchesini, P A; Marian, G; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Migani, D; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moulik, T; Muanza, G S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pedace, M; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Sakar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tauscher, Ludwig; Taylor, L; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E

    1999-01-01

    Two-photon formation of the charmonium resonance $\\chi_{{\\rm c}2}$ has been studied with the L3 detector at LEP. The $\\chi_{{\\rm c}2}$ is identified through its decay $\\chi_{{\\rm c}2} \\rightarrow \\gamma {\\rm J}$, with a subsequent decay ${\\rm J} \\rightarrow {\\mathrm{e^+ e^-}}$ or ${\\rm J} \\rightarrow {\\mathrm{\\mu^+ \\mu^-}}$. With an integrated luminosity of 140 pb$^{-1}$ at $\\sqrt{s} \\simeq$ 91~\\textrm{Ge\\kern -0.1em V} and 52 pb$^{-1}$ at $\\sqrt{s} \\simeq$ {Ge\\kern -0.1em V}, we measure the two-photon width of the $\\chi_{{\\rm c}2}$ to be \\begin{center} $\\Gamma_{\\gamma\\gamma}(\\chi_{{\\rm c}2})=1.02 \\pm 0.40 \\mbox{$\\;$(stat.)} \\pm 0.15 \\mbox{$\\;$(sys.)} \\pm 0.09(\\rm{BR.}) {\\mathrm{\\ ke\\kern -0.1em V}}$.

  4. Relativistic calculations of the non-resonant two-photon ionization of neutral atoms

    CERN Document Server

    Hofbrucker, Jiri; Fritzsche, Stephan

    2016-01-01

    The non-resonant two-photon one-electron ionization of neutral atoms is studied theoretically in the framework of relativistic second-order perturbation theory and independent particle approximation. In particular, the importance of relativistic and screening effects in the total two-photon ionization cross section is investigated. Detailed computations have been carried out for the K-shell ionization of neutral Ne, Ge, Xe, and U atoms. The relativistic effects significantly decrease the total cross section, for the case of U, for example, they reduce the total cross section by a factor of two. Moreover, we have found that the account for the screening effects of the remaining electrons leads to occurrence of an unexpected minimum in the total cross section at the total photon energies equal to the ionization threshold, for the case of Ne, for example, the cross section drops there by a factor of three.

  5. In Vivo Monitoring of Multiple Circulating Cell Populations Using Two-photon Flow Cytometry.

    Science.gov (United States)

    Tkaczyk, Eric R; Zhong, Cheng Frank; Ye, Jing Yong; Myc, Andrzej; Thomas, Thommey; Cao, Zhengyi; Duran-Struuck, Raimon; Luker, Kathryn E; Luker, Gary D; Norris, Theodore B; Baker, James R

    2008-02-15

    To detect and quantify multiple distinct populations of cells circulating simultaneously in the blood of living animals, we developed a novel optical system for two-channel, two-photon flow cytometry in vivo. We used this system to investigate the circulation dynamics in live animals of breast cancer cells with low (MCF-7) and high (MDA-MB-435) metastatic potential, showing for the first time that two different populations of circulating cells can be quantified simultaneously in the vasculature of a single live mouse. We also non-invasively monitored a population of labeled, circulating red blood cells for more than two weeks, demonstrating that this technique can also quantify the dynamics of abundant cells in the vascular system for prolonged periods of time. These data are the first in vivo application of multichannel flow cytometry utilizing two-photon excitation, which will greatly enhance our capability to study circulating cells in cancer and other disease processes.

  6. Evaluation of human sclera after femtosecond laser ablation using two photon and confocal microscopy

    Science.gov (United States)

    Sun, Hui; Kurtz, Ronald; Juhasz, Tibor

    2012-08-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial thickness intrascleral channels can be created with a femtosecond laser operating at a wavelength of 1700 nm. Such channels have the potential to increase outflow facility and reduce elevated IOP. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in human cadaver eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such channels. This demonstrates that concept of integrating femtosecond laser surgery, and two-photon and confocal imaging has the future potential for image-guided high-precision surgery in transparent and translucent tissue.

  7. Adaptive optics for in vivo two-photon calcium imaging of neuronal networks

    Science.gov (United States)

    Meimon, Serge; Conan, Jean-Marc; Mugnier, Laurent M.; Michau, Vincent; Cossart, Rosa; Malvache, Arnaud

    2014-03-01

    The landscape of biomedical research in neuroscience has changed dramatically in recent years as a result of spectacular progress in dynamic microscopy. However, the optical accessibility of deep brain structures or deeper regions of the surgically exposed hippocampus (a few 100 microns typically) remains limited, due to volumic aberrations created by the sample inhomogeneities. Adaptive optics can correct for these aberrations. Our goal is to realize a novel adaptive optics module dedicated to in vivo two-photon calcium imaging of the hippocampus. The key issue in adaptive optics is the ability to perform an accurate and reliable wavefront sensing. In two- photon microscopy indirect methods are required. Two families of approaches have been proposed so far, the modal sensorless technique and a method based on pupil segmentation. We present here a formal comparison of these approaches, in particular as a function of the amount of aberrations.

  8. Resonant two-photon annihilation of an electron-positron pair in a pulsed electromagnetic wave

    Science.gov (United States)

    Voroshilo, A. I.; Roshchupkin, S. P.; Nedoreshta, V. N.

    2016-09-01

    Two-photon annihilation of an electron-positron pair in the field of a plane low-intensity circularly polarized pulsed electromagnetic wave was studied. The conditions for resonance of the process which are related to an intermediate particle that falls within the mass shell are studied. In the resonant approximation the probability of the process was obtained. It is demonstrated that the resonant probability of two-photon annihilation of an electron-positron pair may be several orders of magnitude higher than the probability of this process in the absence of the external field. The obtained results may be experimentally verified by the laser facilities of the international megaprojects, for example, SLAC (National Accelerator Laboratory), FAIR (Facility for Antiproton and Ion Research), and XFEL (European X-Ray Free-Electron Laser).

  9. Coincidence in the two-photon spectra of Li and Li2 at 735 nm

    Science.gov (United States)

    DeGraffenreid, W.; Sansonetti, Craig J.

    2005-02-01

    A coincidence between the 22S1/2-32S1/2 two-photon transition in the atomic spectrum of 6Li and the X 1Σ+g→ E 1Σ+g two-photon ro-vibrational series of 7Li2 was observed near 735 nm in a heat pipe oven using a tunable laser and thermionic diode detection scheme. The molecular transition obscures one component of the 6Li atomic transition. Selective detection of the atomic transition was obtained by adding an intensity-modulated laser that drives atoms from the 3S to 16P state. The coincident molecular transition and four nearby molecular lines were identified using previously determined Dunham coefficients.

  10. Two-Photon or Higher-Order Absorbing Optical Materials for Generation of Reactive Species

    Science.gov (United States)

    Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R. (Inventor); Perry, Joseph W. (Inventor)

    2013-01-01

    Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.

  11. Two-photon spectroscopy of trapped HD$^+$ ions in the Lamb-Dicke regime

    CERN Document Server

    Tran, Vu Quang; Douillet, Albane; Koelemeij, Jeroen C J; Hilico, Laurent

    2013-01-01

    We study the feasibility of nearly-degenerate two-photon rovibrational spectroscopy in ensembles of trapped, sympathetically cooled hydrogen molecular ions using a resonance-enhanced multiphoton dissociation (REMPD) scheme. Taking advantage of quasi-coincidences in the rovibrational spectrum, the excitation lasers are tuned close to an intermediate level to resonantly enhance two-photon absorption. Realistic simulations of the REMPD signal are obtained using a four-level model that takes into account saturation effects, ion trajectories, laser frequency noise and redistribution of population by blackbody radiation. We show that the use of counterpropagating laser beams enables optical excitation in an effective Lamb-Dicke regime. Sub-Doppler lines having widths in the 100 Hz range can be observed with good signal-to-noise ratio for an optimal choice of laser detunings. Our results indicate the feasibility of molecular spectroscopy at the $10^{-14}$ accuracy level for improved tests of molecular QED, a new det...

  12. Two-photon excited fluorescence microendoscopic imaging using a GRIN lens

    Science.gov (United States)

    Yan, Wei; Peng, Xiao; Lin, Danying; Wang, Qi; Gao, Jian; Zhou, Jie; Ye, Tong; Qu, Junle; Niu, Hanben

    2015-03-01

    With the rapid development of life sciences, there is an increasing demand for intravital fluorescence imaging of small animals. However, large dimensions and limited working distances of objective lenses in traditional fluorescence microscopes have limited the imaging applications mostly to superficial tissues. To overcome this disadvantage, researchers have developed the graded-index (GRIN) probes with small diameters for imaging internal organs of small animals in a minimally invasive fashion. Here, we present the development of a fluorescence endoscopic imaging system based on a GRIN lens using two-photon excitation. Experimental results showed that this system could perform dynamic fluorescence microendoscopic imaging and monitor the blood flow in anesthetized living mice using two-photon excitation.

  13. Slow reflection and two-photon generation of microcavity exciton-polaritons

    CERN Document Server

    Steger, Mark; Snoke, David W; Pfeiffer, Loren; West, Ken

    2014-01-01

    We resonantly inject polaritons into a microcavity and track them in time and space as they feel a force due to the cavity gradient. This is an example of "slow reflection," as the polaritons, which can be viewed as renormalized photons, slow down to zero velocity and then move back in the opposite direction. These measurements accurately measure the lifetime of the polaritons in our samples, which is 180 $\\pm$ 10 ps, corresponding to a cavity leakage time of 135 ps and a cavity $Q$ of 320,000. Such long-lived polaritons propagate millimeters in these wedge-shaped microcavities. Additionally, we generate polaritons by two-photon excitation directly into the polariton states, allowing the possibility of modulation of the two-photon absorption by a polariton condensate.

  14. Two-photon interference from independent cavity-coupled emitters on-a-chip

    CERN Document Server

    Kim, Je-Hyung; Leavitt, Richard P; Waks, Edo

    2016-01-01

    Interactions between solid-state quantum emitters and cavities are important for a broad range of applications in quantum communication, linear optical quantum computing, nonlinear photonics, and photonic quantum simulation. These applications often require combining many devices on a single chip with identical emission wavelengths in order to generate two-photon interference, the primary mechanism for achieving effective photon-photon interactions. Such integration remains extremely challenging due to inhomogeneous broadening and fabrication errors that randomize the resonant frequencies of both the emitters and cavities. In this letter we demonstrate two-photon interference from independent cavity-coupled emitters on the same chip, providing a potential solution to this long-standing problem. We overcome spectral mismatch between different cavities due to fabrication errors by depositing and locally evaporating a thin layer of condensed nitrogen. We integrate optical heaters to tune individual dots within e...

  15. Terahertz-visible two-photon rotational spectroscopy of cold OD-

    CERN Document Server

    Lee, Seunghyun; Lakhmanskaya, Olga; Spieler, Steffen; Endres, Eric S; Geistlinger, Katharina; Kumar, Sunil S; Wester, Roland

    2016-01-01

    We present a method to measure rotational transitions of molecular anions in the terahertz domain by sequential two-photon absorption. Ion excitation by bound-bound terahertz absorption is probed by absorption in the visible on a bound-free transition. The visible frequency is tuned to a state-selective photodetachment transition of the excited anions. This provides a terahertz action spectrum for just few hundred molecular ions. To demonstrate this we measure the two lowest rotational transitions, J=1<-0 and J =2<-1 of OD- anions in a cryogenic 22-pole trap. We obtain rotational transition frequencies of 598596.08(19) MHz for J=1<-0 and 1196791.57(27) MHz for J=2<-1 of OD-, in good agreement with their only previous measurement. This two-photon scheme opens up terahertz rovibrational spectroscopy for a range of molecular anions, in particular for polyatomic and cluster anions.

  16. Functional screening of intracardiac cell transplants using two-photon fluorescence microscopy.

    Science.gov (United States)

    Tao, Wen; Soonpaa, Mark H; Field, Loren J; Chen, Peng-Sheng; Firulli, Anthony B; Shou, Weinian; Rubart, Michael

    2012-08-01

    Although the adult mammalian myocardium exhibits a limited ability to undergo regenerative growth, its intrinsic renewal rate is insufficient to compensate for myocyte loss during cardiac disease. Transplantation of donor cardiomyocytes or cardiomyogenic stem cells is considered a promising strategy for reconstitution of cardiac mass, provided the engrafted cells functionally integrate with host myocardium and actively contribute to its contractile force. The authors previously developed a two-photon fluorescence microscopy-based assay that allows in situ screening of donor cell function after intracardiac delivery of the cells. This report reviews the techniques of two-photon fluorescence microscopy and summarizes its application for quantifying the extent to which a variety of donor cell types stably and functionally couple with the recipient myocardium.

  17. Diagnostics of MCF plasmas using Lyman-{alpha} fluorescence excited by one or two photons

    Energy Technology Data Exchange (ETDEWEB)

    Voslamber, D

    1998-11-01

    Laser-induced Lyman-{alpha} fluorescence of the hydrogen isotopes is investigated with regard to diagnostic applications in magnetically confined fusion plasmas. A formal analysis is presented for two excitation schemes: one-photon and Doppler-free two-photon excitation. The analysis includes estimates of the expected experimental errors arising from the photon noise and from the sensitivity of the observed fluorescence signals to variations of the plasma and laser parameters. Both excitation schemes are suitable primarily for application in the plasma edge, but even in the plasma bulk of large machines they can still be applied in combination with a diagnostic neutral beam. The two-photon excitation scheme is particularly attractive because it involves absorption spectra that are resolved within the Doppler width. This implies a large diagnostic potential and in particular offers a way to measure the deuterium-tritium fuel mix in fusion reactors. (author) 37 refs.

  18. Two-Photon Photodynamic Therapy by Water-Soluble Self-Assembled Conjugated Porphyrins

    Directory of Open Access Journals (Sweden)

    Kazuya Ogawa

    2013-01-01

    Full Text Available Studies on two-photon absorption (2PA photodynamic therapy (PDT by using three water-soluble porphyrin self-assemblies consisting of ethynylene-linked conjugated bis (imidazolylporphyrin are reviewed. 2PA cross-section values in water were obtained by an open aperture Z-scan measurement, and values were extremely large compared with those of monomeric porphyrins such as hematoporphyrin. These compounds were found to generate singlet oxygen efficiently upon one- as well as two-photon absorption as demonstrated by the time-resolved luminescence measurement at the characteristic band of singlet oxygen at 1270 nm and by using its scavenger. Photocytotoxicities for HeLa cancer cells were examined and found to be as high as those of hematoporphyrin, demonstrating that these compounds are potential candidates for 2PA-photodynamic therapy agents.

  19. Mitochondrial Dynamics Tracking with Two-Photon Phosphorescent Terpyridyl Iridium(III) Complexes

    Science.gov (United States)

    Huang, Huaiyi; Zhang, Pingyu; Qiu, Kangqiang; Huang, Juanjuan; Chen, Yu; Ji, Liangnian; Chao, Hui

    2016-02-01

    Mitochondrial dynamics, including fission and fusion, control the morphology and function of mitochondria, and disruption of mitochondrial dynamics leads to Parkinson’s disease, Alzheimer’s disease, metabolic diseases, and cancers. Currently, many types of commercial mitochondria probes are available, but high excitation energy and low photo-stability render them unsuitable for tracking mitochondrial dynamics in living cells. Therefore, mitochondrial targeting agents that exhibit superior anti-photo-bleaching ability, deep tissue penetration and intrinsically high three-dimensional resolutions are urgently needed. Two-photon-excited compounds that use low-energy near-infrared excitation lasers have emerged as non-invasive tools for cell imaging. In this work, terpyridyl cyclometalated Ir(III) complexes (Ir1-Ir3) are demonstrated as one- and two-photon phosphorescent probes for real-time imaging and tracking of mitochondrial morphology changes in living cells.

  20. In vitro imaging of thyroid tissues using two-photon excited fluorescence and second harmonic generation.

    Science.gov (United States)

    Huang, Zufang; Li, Zuanfang; Chen, Rong; Lin, Juqiang; Li, Yongzeng; Li, Chao

    2010-08-01

    To evaluate the feasibility of two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) imaging to discriminate the normal, nodular goiter and papillary cancerous thyroid tissue. In total, 45 fresh thyroid specimens (normal, 15; nodular goiter, 12; and papillary cancerous, 18) from 31 subjects were directly imaged by the TPEF and SHG combination method. The microstructure of follicle and collagen structure in thyroid tissue were clearly identified, morphologic changes between normal, nodular goiter, and papillary cancerous thyroid tissue were well characterized by using two-photon excitation fluorescence. SHG imaging of the collagen matrix also revealed the differences between normal and abnormal. Our preliminary study suggests that the TPEF and SHG combination method might be a useful tool in revealing pathologic changes in thyroid tissue.