WorldWideScience

Sample records for two-photon ionization yield

  1. Two-photon double ionization of the helium atom by ultrashort pulses

    International Nuclear Information System (INIS)

    Palacios, Alicia; Horner, Daniel A.; Rescigno, Thomas N.; McCurdy, C. William

    2010-01-01

    Two-photon double ionization of the helium atom was the subject of early experiments at FLASH and will be the subject of future benchmark measurements of the associated electron angular and energy distributions. As the photon energy of a single femtosecond pulse is raised from the threshold for two-photon double ionization at 39.5 eV to beyond the sequential ionization threshold at 54.4 eV, the electron ejection dynamics change from the highly correlated motion associated with nonsequential absorption to the much less correlated sequential ionization process. The signatures of both processes have been predicted in accurate ab initio calculations of the joint angular and energy distributions of the electrons, and those predictions contain some surprises. The dominant terms that contribute to sequential ionization make their presence apparent several eV below that threshold. In two-color pump probe experiments with short pulses whose central frequencies require that the sequential ionization process necessarily dominates, a two-electron interference pattern emerges that depends on the pulse delay and the spin state of the atom.

  2. Determination of the absolute two-photon ionization cross section of He by an XUV free electron laser

    International Nuclear Information System (INIS)

    Sato, Takahiro; Iwasaki, Atsushi; Ishibashi, Kazuki; Okino, Tomoya; Yamanouchi, Kaoru; Adachi, Junichi; Yagishita, Akira; Yazawa, Hiroki; Aoyma, Makoto; Yabashi, Makina; Nagasono, Mitsuru; Higashiya, Atsushi; Ishikawa, Tetsuya; Kannari, Fumihiko; Yamakawa, Koichi; Midorikawa, Katsumi; Nakano, Hidetoshi

    2011-01-01

    The resonant and non-resonant two-photon single ionization processes of He were investigated using intense free electron laser light in the extreme ultraviolet (XUV) region (53.4-61.4 nm) covering the 1s-2p and 1s-3p resonant transitions of He. On the basis of the dependences of the yield of He + on the XUV light-field intensity at 53.4, 58.4, 56.0 and 61.4 nm, the absolute values of the two-photon ionization cross sections of He at the four different wavelengths and their dependence on the light-field intensity were determined for the first time. (fast track communication)

  3. Studies of photoionization in liquids using a laser two-photon ionization conductivity technique

    International Nuclear Information System (INIS)

    Siomos, K.; Christophorou, L.G.

    1981-01-01

    One-photon ionization studies of solute molecules in a liquid medium are limited by the absorption of the host medium. A laser two-photon ionization (TPI) technique using a frequency tunable dye laser has been developed, whereby the photoionization threshold of a solute molecule was determined from the induced conductivity in the liquid medium under study due to electron-ion pair formation via two-photon ionization of the solute. The two-photon induced electron-ion current is measured as a function of the laser wavelength, lambda/sub laser/. In this paper, results are reported and discussed on the photoionization of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), pyrene and fluoranthene in liquid n-pentane

  4. The general expression for the transition amplitude of two-photon ionization of atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Karule, E [Institute of Atomic Physics and Spectroscopy, University of Latvia, Raina Boulevard 19, Riga, LV-1586 (Latvia); Moine, B [Universite Paris Sud, 91405 Orsay Cedex (France)

    2003-05-28

    Two-photon ionization of atomic hydrogen with an excess photon is revisited. The non-relativistic dipole approximation and Coulomb Green function (CGF) formalism are applied. Using the CGF Sturmian expansion straightforwardly, one gets the radial transition amplitude in the form of an infinite sum over Gauss hypergeometric functions which are polynomials. It is convergent if all intermediate states are in the discrete spectrum. In the case of two-photon ionization with an excess photon, when photoionization is also possible, intermediate states are in the continuum. We performed the explicit summation over intermediate states and got a simple general expression for the radial transition amplitude in the form of a finite sum over Appell hypergeometric functions, which are not polynomials. An Appell function may be expressed as an infinite sum over Gauss functions. In the case of ionization by an excess photon, Gauss functions are transformed to give a convergent radial transition amplitude for the whole region. The generalized cross sections for two-photon above-threshold ionization of atomic hydrogen in the ground state and excited states calculated by us agree very well with results of previous calculations. Generalized cross sections for two-photon ionization of positronium in the ground state are obtained by scaling those for atomic hydrogen.

  5. Resonantly-enhanced two-photon ionization and mass-analyzed threshold ionization (MATI) spectroscopy of 2-hydroxypyridine

    CERN Document Server

    Lee, D H; Choi, K W; Choi, Y S; Kim, S K

    2002-01-01

    Mass-analyzed threshold ionization (MATI) spectra of 2-hydroxypyridines existing as lactims (2-pyridionl) in a molecular beam are obtained via (1+1') two-photon process to give accurate ionization energies of 8.9344 +- 0.0005 and 8.9284 +- 0.0005 eV for 2-pyridinol (2Py-OH) and its deuterated analogue (2Py-OD), respectively. Resonantly-enhanced two-photon ionization spectra of these compounds are also presented to give vibrational structures of their S sub 1 states. Vibrational frequencies of 2Py-OH and 2Py-OD in ionic ground states are accurately determined from MATI spectra taken via various S sub 1 intermediate states, and associated vibrational modes are assigned with the aid of ab initio calculations.

  6. Five-photon ionization of atomic hydrogen at wavelengths around the threshold for four-photon ionization

    International Nuclear Information System (INIS)

    Gontier, Y.; Trahin, M.; Wolff-Rottke, B.; Rottke, H.; Welge, K.H.; Feldmann, D.

    1992-01-01

    Theoretical and experimental studies show the strong influence of the three-photon nearly resonant 2p state on four- and five-photon ionization of atomic hydrogen near the threshold for four-photon ionization. Changes in five-photon ionization occur when the four-photon ionization channel opens. The angular distributions of photoelectrons from five-photon ionization of H are studied at five wavelengths which cover the range from four-photon resonance with high-lying Rydberg states (n≥10) to direct four-photon ionization into the continuum. The role of resonances in this ionization process is discussed. A fair agreement is found in comparing experimental and theoretical results

  7. Multi-photon ionization of atoms in intense short-wavelength radiation fields

    Science.gov (United States)

    Meyer, Michael

    2015-05-01

    The unprecedented characteristics of XUV and X-ray Free Electron Lasers (FELs) have stimulated numerous investigations focusing on the detailed understanding of fundamental photon-matter interactions in atoms and molecules. In particular, the high intensities (up to 106 W/cm2) giving rise to non-linear phenomena in the short wavelength regime. The basic phenomenology involves the production of highly charged ions via electron emission to which both sequential and direct multi-photon absorption processes contribute. The detailed investigation of the role and relative weight of these processes under different conditions (wavelength, pulse duration, intensity) is the key element for a comprehensive understanding of the ionization dynamics. Here the results of recent investigations are presented, performed at the FELs in Hamburg (FLASH) and Trieste (FERMI) on atomic systems with electronic structures of increasing complexity (Ar, Ne and Xe). Mainly, electron spectroscopy is used to obtain quantitative information about the relevance of various multi-photon ionization processes. For the case of Ar, a variety of processes including above threshold ionization (ATI) from 3p and 3s valence shells, direct 2p two-photon ionization and resonant 2p-4p two-photon excitations were observed and their role was quantitatively determined comparing the experimental ionization yields to ab-initio calculations of the cross sections for the multi-photon processes. Using Ar as a benchmark to prove the reliability of the combined experimental and theoretical approach, the more complex and intriguing case of Xe was studied. Especially, the analysis of the two-photon ATI from the Xe 4d shell reveals new insight into the character of the 4d giant resonance, which was unresolved in the linear one-photon regime. Finally, the influence of intense XUV radiation to the relaxation dynamics of the Ne 2s-3p resonance was investigated by angle-resolved electron spectroscopy, especially be observing

  8. Polarization control of direct (non-sequential) two-photon double ionization of He

    International Nuclear Information System (INIS)

    Pronin, E A; Manakov, N L; Marmo, S I; Starace, Anthony F

    2007-01-01

    An ab initio parametrization of the doubly-differential cross section (DDCS) for two-photon double ionization (TPDI) from an s 2 subshell of an atom in a 1 S 0 -state is presented. Analysis of the elliptic dichroism (ED) effect in the DDCS for TPDI of He and its comparison with the same effect in the concurrent process of sequential double ionization shows their qualitative and quantitative differences, thus providing a means to control and to distinguish sequential and non-sequential processes by measuring the relative ED parameter

  9. One color multi-photon ionization of the Gadolinium atom in near UV region

    International Nuclear Information System (INIS)

    Kim, Jin Tae; Yi, Jong Hoon; Lhee, Yong Joo; Lee, Jong Min

    1999-01-01

    We have investigated the states of the gadolinium atom in near ultra-violet (UV) region (∼410 nm) using single photon excitation using resonance ionization mass spectrometry (RIMS). Around 70 transitions among observed 180 single color multi-photon ionization signals have been assigned. Most of the multi-photon processes of the assigned ion signals are through single photon resonant three photon ionization and through two photon resonant three photon ionization. (author)

  10. One- and two-photon ionization of hydrogen atom embedded in Debye plasmas

    International Nuclear Information System (INIS)

    Chang, T. N.; Fang, T. K.; Ho, Y. K.

    2013-01-01

    We present a detailed analysis of the plasma-induced resonance-like atomic structures near the ionization threshold in one- and two-photon ionization of hydrogen atom. Such resonance-like structures result from the migration of the upper bound excited states of bound-bound atomic transitions into the continuum due to the less attractive screened Coulomb potential which simulates the external environmental effect for an atom embedded in Debye plasma. The change from the resonance-like narrow structures into broad continuous spectra as the plasma effect increases could be accounted for by the overlap between the respective wavefunctions of the atomic electron in the initial state and its corresponding outgoing ionized state in the continuum

  11. Effects of autoionizing states on two-photon double ionization of the H2 molecule

    International Nuclear Information System (INIS)

    Guan, Xiaoxu; Bartschat, Klaus; Koesterke, Lars; Schneider, Barry I

    2014-01-01

    We report angle-resolved and angle-integrated cross sections for two-photon double-ionization of H by a strong laser pulse. The effect of doubly excited states on the predicted cross sections is addressed.

  12. Molecular single photon double K-shell ionization

    International Nuclear Information System (INIS)

    Penent, F.; Nakano, M.; Tashiro, M.; Grozdanov, T.P.; Žitnik, M.; Carniato, S.; Selles, P.; Andric, L.; Lablanquie, P.; Palaudoux, J.; Shigemasa, E.; Iwayama, H.; Hikosaka, Y.; Soejima, K.; Suzuki, I.H.; Kouchi, N.; Ito, K.

    2014-01-01

    We have studied single photon double K-shell ionization of small molecules (N 2 , CO, C 2 H 2n (n = 1–3), …) and the Auger decay of the resulting double core hole (DCH) molecular ions thanks to multi-electron coincidence spectroscopy using a magnetic bottle time-of-flight spectrometer. The relative cross-sections for single-site (K −2 ) and two-site (K −1 K −1 ) double K-shell ionization with respect to single K-shell (K −1 ) ionization have been measured that gives important information on the mechanisms of single photon double ionization. The spectroscopy of two-site (K −1 K −1 ) DCH states in the C 2 H 2n (n = 1–3) series shows important chemical shifts due to a strong dependence on the C-C bond length. In addition, the complete cascade Auger decay following single site (K −2 ) ionization has been obtained

  13. Angular anisotropy parameters for sequential two-photon double ionization of helium

    International Nuclear Information System (INIS)

    Ivanov, I A; Kheifets, A S

    2009-01-01

    We evaluate photoelectron angular anisotropy /3-parameters for the process of sequential two-photon double electron ionization of helium within the time-independent lowest order perturbation theory (LOPT). Our results indicate that for the photoelectron energies outside the interval (E slow , E fast ), where E slow = ω - IP He + and E fast ω - IP He , there is a considerable deviation from the dipole angular distribution thus indicating the effect of electron correlation.

  14. One-photon two-electron processes in helium close to the double ionization threshold

    International Nuclear Information System (INIS)

    Bouri, C.

    2007-04-01

    This work presents a study of the 1 P 0 excited states of He that can be reached by absorption of a single photon carrying an energy close to the double ionization threshold (DIT) (79 eV). Above the DIT, these states are the double continuum states; below, they are the double excited states. These two types of states are tightly coupled to the single continuum states with or without excitation of the residual ion He + , owing to their degeneracy in energy. In a one-photon process, these states can only be formed owing to the electronic correlations in the system which must be well described to obtain quantitative good results. Our study is a part of the work which aims at a united description of all these doubly excited, ionized-excited, and double continuum states. We use the Hyperspherical R-Matrix with Semiclassical Outgoing Waves (HRM-SOW) method, initially dedicated to double photoionization studies. We extend it to extract information on the single continuum. This extension allows us to compute cross sections of single photoionization with or without excitation up to n 50 for an excess of 100 meV just above the double ionization threshold. A deep insight into this process is given by a partial waves analysis. The results obtained shed light on the key role of angular and radial correlations. The numerous data we obtain on double and single ionization allow us to establish a continuity relation between these two processes. We show that single ionization with an infinite excitation of the residual ion merges into double photoionization when the excess energy is redistributed between the two electrons. It appears that this relation is valid not only for low but also for high photon energies. Since the HRM-SOW can produce the integrated cross section for double photoionization with high accuracy in the low energy domain, we check the Wannier threshold law. The parameters extracted support strongly this threshold law, and are in good agreement with experimental

  15. K-shell ionization and double-ionization of Au atoms with 1.33 MeV photons

    International Nuclear Information System (INIS)

    Belkacem, A.; Dauvergne, D.; Feinberg, B.; Ionescu, D.; Maddi, J.; Sorensen, A.H.

    2000-01-01

    At relativistic energies, the cross section for the atomic photoelectric effect drops off as does the cross section for liberating any bound electron through Compton scattering. However, when the photon energy exceeds twice the rest mass of the electron, ionization may proceed via electron-positron pair creation. We used 1.33 MeV photons impinging on Au thin foils to study double K-shell ionization and vacuum-assisted photoionization. The preliminary results yield a ratio of vacuum-assisted photoionization and pair creation of 2x10 -3 , a value that is substantially higher than the ratio of photo double ionization to single photoionization that is found to be 0.5-1x10 -4 . Because of the difficulties and large error bars associated with the small cross sections additional measurements are needed to minimize systematic errors

  16. Universal features in sequential and nonsequential two-photon double ionization of helium

    International Nuclear Information System (INIS)

    Pazourek, R.; Nagele, S.; Persson, E.; Burgdoerfer, J.; Feist, J.; Schneider, B. I.; Collins, L. A.

    2011-01-01

    We analyze two-photon double ionization of helium in both the nonsequential ((ℎ/2π)ω 2 ≅54.4 eV) and sequential ((ℎ/2π)ω>I 2 ) regime. We show that the energy spacing ΔE=E 1 -E 2 between the two emitted electrons provides the key parameter that controls both the energy and the angular distribution and reveals the universal features present in both the nonsequential and sequential regime. This universality, i.e., independence of (ℎ/2π)ω, is a manifestation of the continuity across the threshold for sequential double ionization. For all photon energies considered, the energy distribution can be described by a universal shape function that contains only the spectral and temporal information entering second-order time-dependent perturbation theory. Angular correlations and distributions are found to be more sensitive to the value of (ℎ/2π)ω. In particular, shake-up interferences have a large effect on the angular distribution. Energy spectra, angular distributions parametrized by the anisotropy parameters β j , and total cross sections presented in this paper are obtained by fully correlated time-dependent ab initio calculations.

  17. Electron-electron correlation in two-photon double ionization of He-like ions

    Science.gov (United States)

    Hu, S. X.

    2018-01-01

    Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding and strong-field-induced multielectron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photoinduced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions (L i+,B e2 + , and C4 +) exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra as the ionic charge increases, which is opposite to the intuition that the absolute increase of correlation in the ground state should lead to more equal energy sharing in photoionization. These findings indicate that the final-state electron-electron correlation ultimately determines the energy sharing of the two ionized electrons in TPDI.

  18. Non-resonant two and three-photon ionization of the singlet and triplet metastable helium atoms of an atomic jet

    International Nuclear Information System (INIS)

    Mathieu, Bernard.

    1978-01-01

    The three-photon ionization cross-section of the helium metastables He(2 1 S) and He(2 3 S) is determined by means of the linearly polarized radiation of a pulsed ruby laser with an emission wavelength equal to 6946.4 A at 19 0 C. Two-photon ionization, obtained by doubling the laser beam frequency, is also studied [fr

  19. Scintillation and ionization yields produced by α-particles in high-density gaseous xenon

    International Nuclear Information System (INIS)

    Kusano, H.; Ishikawa, T.; Lopes, J.A.M.; Miyajima, M.; Shibamura, E.; Hasebe, N.

    2012-01-01

    The average numbers of scintillation photons and liberated electrons produced by 5.49-MeV α-particles were measured in high-density gaseous xenon. The density range is 0.12–1.32 g/cm 3 for scintillation measurements at zero electric field, and 0.12–1.03 g/cm 3 for the scintillation and ionization measurements under various electric fields. The density dependence of scintillation yield at zero electric field was observed. The W s -value, which is defined as the average energy expended per photon, increases with density and becomes almost constant in the density range above 1.0 g/cm 3 . Anti-correlations between average numbers of scintillation photons and liberated electrons were found to vary with density. It was also found that the total number of scintillation photons and liberated electrons decreases with increasing density. Several possible reasons for the variation in scintillation and ionization yields with density are discussed.

  20. Alignment effects in two-photon double ionization of H2 in femtosecond xuv laser pulses

    International Nuclear Information System (INIS)

    Guan Xiaoxu; Bartschat, Klaus; Schneider, Barry I.

    2011-01-01

    Triple-differential cross sections for two-photon double ionization of the aligned hydrogen molecule at the equilibrium distance are presented for a central photon energy of 30 eV. The temporal response of the laser-driven molecule is investigated by solving the time-dependent Schroedinger equation in full dimensionality using two-center elliptical coordinates and a finite-element discrete-variable-representation approach. The molecular orientation is found to have a strong effect on the emission modes of the two correlated photoelectrons. This molecular effect is most noticeable when the molecular axis and the laser polarization vector are oriented parallel to each other. For intermediate cases between the parallel and perpendicular geometries, the dominant emission modes for two-electron ejection oscillate between those for the two extreme cases. The contributions from different ionization channels are also analyzed in detail. Depending on the emission direction of the reference electron, the interference contributions from the various channels can be constructive or destructive at small alignment angles, while they always contribute constructively to the triple-differential cross sections near the perpendicular geometry.

  1. Single and double ionization of helium by high-energy photon impact

    International Nuclear Information System (INIS)

    Andersson, L.R.; Burgdoerfer, J.

    1993-01-01

    Production of singly and doubly charged helium ions by impact of keV photons is studied. The ratio R ph = σ ph ++ /σ ph + for photoabsorption is calculated in the photon-energy range 2--18 keV using correlated initial- and final- state wave functions. Extrapolation towards symptotic photon energies yields R ph (ω → ∞) = 1.66% in agreement with previous predictions. Ionization due to Compton scattering, which becomes comparable to photoabsorption above ω ∼ 3 keV, is discussed

  2. Effects of autoionizing states on two-photon double ionization of the H2 molecule

    International Nuclear Information System (INIS)

    Guan, Xiaoxu; Bartschat, Klaus; Schneider, Barry I; Koesterke, Lars

    2014-01-01

    Treating the effects of autoionizing intermediate states on two-photon double ionization (DI) of the H 2 molecule using time-dependent laser pulses is a significant computational challenge. Relatively long exposure times are critical to understanding the dynamics. Using the fixed-nuclei approximation, we demonstrate how the doubly excited states enhance the angle-integrated generalized cross sections in H 2 , and how they affect the angular distribution pattern of the ejected electrons. As the energy approaches the threshold for sequential DI, there is a sharp rise in the cross section due to virtual sequential ionization

  3. Few-Photon Multiple Ionization of Ne and Ar by Strong Free-Electron-Laser Pulses

    International Nuclear Information System (INIS)

    Moshammer, R.; Jiang, Y. H.; Rudenko, A.; Ergler, Th.; Schroeter, C. D.; Luedemann, S.; Zrost, K.; Dorn, A.; Ferger, T.; Kuehnel, K. U.; Ullrich, J.; Foucar, L.; Titze, J.; Jahnke, T.; Schoeffler, M.; Doerner, R.; Fischer, D.; Weber, T.; Zouros, T. J. M.; Duesterer, S.

    2007-01-01

    Few-photon multiple ionization of Ne and Ar atoms by strong vacuum ultraviolet laser pulses from the free-electron laser at Hamburg was investigated differentially with the Heidelberg reaction microscope. The light-intensity dependence of Ne 2+ production reveals the dominance of nonsequential two-photon double ionization at intensities of I 12 W/cm 2 and significant contributions of three-photon ionization as I increases. Ne 2+ recoil-ion-momentum distributions suggest that two electrons absorbing ''instantaneously'' two photons are ejected most likely into opposite hemispheres with similar energies

  4. Resonantly-enhanced, four-photon ionization of krypton at laser intensities exceeding 1013 W/cm2

    International Nuclear Information System (INIS)

    Perry, M.D.; Landen, O.L.; Campbell, E.M.

    1987-12-01

    The yield of singly- and multiply- charged ions of krypton and xenon is presented as a function of laser intensity and frequency. The measurements were performed using the second harmonic output of a well-characterized, tunable picosecond dye laser in the range 285 to 310 nm at laser intensities from 1 x 10 12 to 10 14 W/cm 2 . Enhancement of the Kr + yield by two orders of magnitude by three-photon resonant, four-photon ionization is observed in the vicinity of the 4d'[5/2] 3 and the 4d[3/2] 1 intermediate states. A model incorporating line shifts and widths scaling linearly with intensity is in good agreement with the experimental results

  5. Selected cis- and trans-3-fluorostyrene rotamers studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy

    Science.gov (United States)

    Wu, Pei Ying; Tzeng, Wen Bih

    2015-10-01

    We applied two-color resonant two-photon ionization and mass-analyzed threshold ionization techniques to record the vibronic, photoionization efficiency, and cation spectra of the selected rotamers of 3-fluorostyrene. The adiabatic ionization energies of cis- and trans-3-fluorostyrene were determined to be 69 960 ± 5 and 69 856 ± 5 cm-1, respectively. Cation vibrations 10a, 15, 6b, and 12 of both rotamers have been found to have frequencies of 218, 404, 452, and 971 cm-1, respectively. This finding shows that the relative orientation of the vinyl group with respect to the F atom does not affect these vibrations of the 3-fluorostyrene cation. Our one-dimensional potential energy surface calculations support that the cis-trans isomerization of 3-fluorostyrene does not occur under the present experimental conditions.

  6. Photoabsorption and Compton scattering in ionization of helium at high photon energies

    International Nuclear Information System (INIS)

    Andersson, L.R.; Burgdoerfer, J.; Tennessee Univ., Knoxville, TN

    1993-01-01

    Production of singly and doubly charged helium ions by impact of keV photons is studied. The ratio R ph = σ ph ++ /σ ph + for photoabsorption is calculated in the photon-energy range 2--18 keV using correlated initial- and final- state wave functions. Extrapolation towards asymptotic photon energies yields R ph (ω → ∞) = 1.66% in agreement with previous predictions. Ionization due to Compton scattering, which becomes comparable to photoabsorption above ω ∼ 3 keV, is discussed

  7. Alignment effects in two-photon double ionization of H{sub 2} in femtosecond xuv laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Guan Xiaoxu; Bartschat, Klaus [Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311 (United States); Schneider, Barry I. [Office of Cyberinfrastructure, National Science Foundation, Arlington, Virgina 22230 (United States)

    2011-09-15

    Triple-differential cross sections for two-photon double ionization of the aligned hydrogen molecule at the equilibrium distance are presented for a central photon energy of 30 eV. The temporal response of the laser-driven molecule is investigated by solving the time-dependent Schroedinger equation in full dimensionality using two-center elliptical coordinates and a finite-element discrete-variable-representation approach. The molecular orientation is found to have a strong effect on the emission modes of the two correlated photoelectrons. This molecular effect is most noticeable when the molecular axis and the laser polarization vector are oriented parallel to each other. For intermediate cases between the parallel and perpendicular geometries, the dominant emission modes for two-electron ejection oscillate between those for the two extreme cases. The contributions from different ionization channels are also analyzed in detail. Depending on the emission direction of the reference electron, the interference contributions from the various channels can be constructive or destructive at small alignment angles, while they always contribute constructively to the triple-differential cross sections near the perpendicular geometry.

  8. One- and two-photon single ionization of 1D helium: resolving the role of individual decay channels and resonance states

    Energy Technology Data Exchange (ETDEWEB)

    Neimanns, Vera; Zimmermann, Klaus; Joerder, Felix; Buchleitner, Andreas [Albert-Ludwigs-Univ., Freiburg im Breisgau (Germany). Quantum Optics and Statistics; Lugan, Pierre [Laboratory of Theoretical Physics of Nanosystems, Institute of Theoretical Physics, EPF Lausanne (Switzerland)

    2012-07-01

    We combine the method of complex rotation and Floquet theory to analyze the multiphoton ionization of helium atoms in strong laser fields. We focus on 1D Z{sup 2+}e{sup -}e{sup -} helium to highlight the methods that allow us to extract the partial decay rates associated with various decay channels. In the regime of one-photon single ionization, we study the dependence of the partial rates associated with the singly ionized He{sup +}(N) states on the field frequency. We show that the electron-electron interaction provides couplings to higher single-ionization continua. Finally, we examine two-photon single-ionization processes, and analyze the role of the internal electronic structure of the atom, specifically the signature of resonant coupling to intermediate bound states on the decay rates.

  9. Phase and ellipticity dependence of the photoelectron angular distribution in non-resonant two-photon ionization of atomic hydrogen. I

    International Nuclear Information System (INIS)

    Faye, M; Wane, S T

    2011-01-01

    We study the ellipticity and the dependence on the phase lag (lead) (between the semimajor and the semiminor axes of the field components) of the photoelectron angular distribution (PAD) in the non-resonant two-photon ionization of atomic hydrogen. We establish exact analytical expressions for azimuthal PAD for 3s, 3p and 3d excited initial states, marked by the occurrence of an asymmetric term. This term gives rise to elliptic dichroism (ED), which can be obtained in two ways: either with the left (versus right) ellipticity, or with the phase lag (versus lead); for 3s and 3p initial states, it is shown that the quantum phase of continua is directly related to the phase lag, one-photon below-threshold ionization, and indirectly one photon above. Another important result is that the magnetic sublevels, m = 0, for 3p and m = ±1, for 3d, do not contribute to the azimuthal PAD. Our numerical results show, for 3s and 3d, and near-threshold ionization, that the PAD has maxima either along the semimajor or the semiminor axis, while for above-threshold ionization, they are always shifted from these axes. However, the maxima of the corresponding ED coincide with the PAD maxima, while for 3p, they are shifted from the PAD minima. A strong dependence of the ED sign is noted, regardless of the state or the process. However, strong ED signals are obtained for the 3s initial state and below-threshold ionization.

  10. Phase and ellipticity dependence of the photoelectron angular distribution in non-resonant two-photon ionization of atomic hydrogen. I

    Energy Technology Data Exchange (ETDEWEB)

    Faye, M; Wane, S T, E-mail: mamadou.faye@ucad.edu.sn [Departement de Physique, Faculte des Sciences et Techniques, Universite Cheikh Anta Diop, Boulevard Martin Luther King, (Corniche Ouest) BP 5005-Dakar Fann (Senegal)

    2011-03-14

    We study the ellipticity and the dependence on the phase lag (lead) (between the semimajor and the semiminor axes of the field components) of the photoelectron angular distribution (PAD) in the non-resonant two-photon ionization of atomic hydrogen. We establish exact analytical expressions for azimuthal PAD for 3s, 3p and 3d excited initial states, marked by the occurrence of an asymmetric term. This term gives rise to elliptic dichroism (ED), which can be obtained in two ways: either with the left (versus right) ellipticity, or with the phase lag (versus lead); for 3s and 3p initial states, it is shown that the quantum phase of continua is directly related to the phase lag, one-photon below-threshold ionization, and indirectly one photon above. Another important result is that the magnetic sublevels, m = 0, for 3p and m = {+-}1, for 3d, do not contribute to the azimuthal PAD. Our numerical results show, for 3s and 3d, and near-threshold ionization, that the PAD has maxima either along the semimajor or the semiminor axis, while for above-threshold ionization, they are always shifted from these axes. However, the maxima of the corresponding ED coincide with the PAD maxima, while for 3p, they are shifted from the PAD minima. A strong dependence of the ED sign is noted, regardless of the state or the process. However, strong ED signals are obtained for the 3s initial state and below-threshold ionization.

  11. Two-photon excitation of argon

    International Nuclear Information System (INIS)

    Pindzola, P.S.; Payne, M.C.

    1982-01-01

    The authors calculate two photon excitation parameters for various excited states of argon assuming the absorption of near resonance broad-bandwidth laser radiation. Results are given for the case of two photons absorbed for the same laser beam as well as the case of absorbing photons of different frequency from each of two laser beams. The authors use multiconfiguration Hartree-Fock wave functions to evaluate the second-order sums over matrix elements. Various experimental laser schemes are suggested for the efficient excitation and subsequent ionization of argon

  12. Double electron ionization in Compton scattering of high energy photons by helium atoms

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Mikhailov, A.I.

    1995-01-01

    The cross section for double-electron ionization of two-electron atoms and ions in Compton scattering of high energy photons is calculated. It is demonstrated that its dependence on the incoming photon frequency is the same as that for single-electron ionization. The ratio of open-quotes double-to-singleclose quotes ionization in Compton scattering was found to be energy independent and almost identical with the corresponding value for photoionization. For the He atom it is 1.68%. This surprising result deserves experimental verification

  13. Double electron ionization in Compton scattering of high energy photons by helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Y.; Mikhailov, A.I. [St. Petersburg Nuclear Physics Institute, Gatchina (Russian Federation)

    1995-08-01

    The cross section for double-electron ionization of two-electron atoms and ions in Compton scattering of high energy photons is calculated. It is demonstrated that its dependence on the incoming photon frequency is the same as that for single-electron ionization. The ratio of {open_quotes}double-to-single{close_quotes} ionization in Compton scattering was found to be energy independent and almost identical with the corresponding value for photoionization. For the He atom it is 1.68%. This surprising result deserves experimental verification.

  14. Final-photon angular distributions in Compton double-ionization

    International Nuclear Information System (INIS)

    Kornberg, M.A.

    1999-01-01

    Angular distributions of the scattered-photon in two-electron ionization of helium by Compton scattering are reported. Our calculations are performed as a direct integration over Compton profiles. We show that backward scattering is adequately described using an uncorrelated final-state approximation, as compared with impulse approximation (IA) results. The relation dσ c 2+ /dΩ = R c dσ c + /dΩ is fulfilled within IA at high-photon energies, with R c the asymptotic shake-off ratio. (orig.)

  15. Resonance-enhanced two-photon ionization of ions by Lyman alpha radiation in gaseous nebulae.

    Science.gov (United States)

    Johansson, S; Letokhov, V

    2001-01-26

    One of the mysteries of nebulae in the vicinity of bright stars is the appearance of bright emission spectral lines of ions, which imply fairly high excitation temperatures. We suggest that an ion formation mechanism, based on resonance-enhanced two-photon ionization (RETPI) by intense H Lyman alpha radiation (wavelength of 1215 angstroms) trapped inside optically thick nebulae, can produce these spectral lines. The rate of such an ionization process is high enough for rarefied gaseous media where the recombination rate of the ions formed can be 10(-6) to 10(-8) per second for an electron density of 10(3) to 10(5) per cubic centimeter in the nebula. Under such conditions, the photo-ions formed may subsequently undergo further RETPI, catalyzed by intense He i and He ii radiation, which also gets enhanced in optically thick nebulae that contain enough helium.

  16. Non-Liouvillean ion injection via resonantly enhanced two-photon ionization

    Directory of Open Access Journals (Sweden)

    B. A. Knyazev

    2004-03-01

    Full Text Available The charge-exchange method is now one of the main techniques for ion injection into accelerators and storage rings. The disadvantages of conventional methods, based on the atom or ion stripping in a material target, are emittance growth, energy straggling, and production of ions in many charge states. Recently suggested stripping methods based on direct photoionization require employment of hard-UV lasers, which still do not exist and must obviously be very bulky and expensive. An alternative method, suggested for injection of proton beams, employs excitation of the atom to 3p intermediate state with subsequent Lorentz ionization in a magnetic field gradient. This technique applies rigid requirements to laser characteristic and is not free of growing of the beam divergence. In this paper a variant of the stripping technique based on the resonantly enhanced two-photon ionization (RETPI is considered. The technique allows ionization of singly charged ions of the elements from helium to bismuth. A variant of the technique can be used for proton injection. RETPI can be applied for both ion injection and stacking, as well as for diagnostics of ion beam characteristics on the orbit. Stripping efficiency can be about 100% for the singly charged ions having the singlet ground state and decreases for the other ions. Special methods for “cleaning” unwanted atomic states in such ions, that can provide high stripping efficiency, are discussed. Excimer lasers with very moderate parameters can be employed for implementation of this technique for almost all elements. Numerical examples show that for most of the singly charged ions and for hydrogen atom necessary laser-beam energy density is merely 0.5–8  J/cm^{2} for a 1 m interaction region, and is 10 times higher for several light ions.

  17. Inner-shell ionization of atoms by electron, positron and photon impacts

    International Nuclear Information System (INIS)

    Khare, S.P.; Sinha, P.; Wadehra, J.M.

    1994-01-01

    Plane wave Born approximation with Coulomb, relativistic and exchange corrections is employed to obtain L1-, L2- and L3-subshell ionization cross sections of several atoms due to electron and positron impacts for projectile energy varying from the threshold of ionization to 60 times the threshold energy. Photoionization cross sections for all the three L-subshells of the atoms are also calculated using the hydrogenic approximation for the atomic wave functions. For L3-subshell the present cross sections due to electron impact are in good agreement with a number of experimental data for different atoms over the entire energy range investigated. For L1- and L2-subshells the present calculations yield qualitative agreement with the experimental data. The agreement between the present results and the limited experimental data for positron impact is also satisfactory. The hydrogenic approximation for the L-subshell photoionization is found to be good at small photon energies but it underestimates the cross sections at large photon energies. (orig.)

  18. Ionization of atoms by high energy photons

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Ioffe, A.F.

    1994-01-01

    Photoionization of atoms by high energy photons is considered. It is emphasized that in this frequency region the cross section and other characteristics of the process are strongly effected by electron shell polarization and rearrangement effects, including that due to inner vacancy Auger decay. In the effects of nuclear structure could be important and noticeable, i.e. of virtual or real excitation of the nucleus degrees of freedom and of the Quantum Electrodynamics vacuum. Ionization accompanied by secondary photon emission (Compton ionization) is analyzed in the considered domain of energies

  19. Precision two-photon spectroscopy of alkali elements

    Indian Academy of Sciences (India)

    effect is eliminated if the wave vector of the photons is ka = −kb, i.e., the two beams .... atomic cesium, and the metre is (indirectly) defined from the wavelength of .... plasma absorb radiation, the electrical circuit parameters may vary and this .... two-photon excitation followed by an ionization step in Ca [71], Sr [72] and Gd [73] ...

  20. Polarization effects in two-colour ionization of atomic hydrogen with incommensurable frequencies

    International Nuclear Information System (INIS)

    Cionga, A.

    1993-01-01

    The angular distribution of ejected electrons for two-colour ionization of atomic hydrogen are studied using an approach which takes into account the radiative corrections to both bound and the continuum states. One considers the ionization process in which one high-frequency photon has enough energy to ionize the atom, meanwhile, one extra-photon is exchanged between atomic system and the low-frequency field. We focus our attention to the case of two incommensurable frequencies. (Author)

  1. Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration

    DEFF Research Database (Denmark)

    Biagioni, P.; Celebrano, M.; Savoini, M.

    2009-01-01

    Two-photon photoluminescence (TPPL) from gold nanostructures is becoming one of the most relevant tools for plasmon-assisted biological imaging and photothermal therapy as well as for the investigation of plasmonic devices. Here we study the yield of TPPL as a function of the temporal width δ of ...

  2. Theory of the effect of third-harmonic generation on three-photon resonantly enhanced multiphoton ionization in focused beams

    International Nuclear Information System (INIS)

    Payne, M.G.; Garrett, W.R.

    1983-01-01

    Multiphoton ionization in the region near a three-photon resonance is treated for focused, plane-polarized Gaussian beams with diffraction-limited beam divergence. In this situation, a third-harmonic field is generated within the laser beam. At, and very near, three-photon resonance the driving rate for the upper-state probability amplitude due to one-photon absorption of third-harmonic light becomes nearly equal to the corresponding three-photon rate due to the laser field, but these effects are 180 0 out of phase. As a consequence of this cancellation between two pumping terms, the three-photon resonance line essentially disappears at moderate concentrations and the observed ionization has a line shape that is close to the phase-matching curve for third-harmonic generation. The ionization signal, near but not on the resonance, is due almost entirely to absorption of third-harmonic photons plus other laser photons; three-photon resonantly enhanced multiphoton ionization by the laser is much weaker. This is particularly true on the blue side of the three-photon resonance at detunings where phase matching occurs. The problem is treated quite generally with predictions of the full line shape for n-photon ionization and third-harmonic light generation near three-photon resonance, including the rather strong influences of positively dispersive buffer gases. We also show that the cancellation between the one-photon and the three-photon process is partially spoiled in the presence of a counterpropagating beam at the same frequency

  3. Quasi free mechanism in single photon double ionization of helium

    Energy Technology Data Exchange (ETDEWEB)

    Schoeffler, Markus; Stuck, Christian [Frankfurt Univ., Frankfurt am Main (Germany). Inst. fuer Kernphysik; Lawrence Berkeley National Lab, Berkeley, CA (United States); Jahnke, Till; Waitz, Markus; Trinter, Florian; Lenz, Ute; Schmidt-Boecking, Horst; Doerner, Reinhard [Frankfurt Univ., Frankfurt am Main (Germany). Inst. fuer Kernphysik; Jones, Mathew; Landers, Allen [Auburn University, Auburn, AL (United States); Belkacem, Ali; Weber, Thorsten [Lawrence Berkeley National Lab, Berkeley, CA (United States); Cocke, Lew [Kansas State University, Manhattan, KS (United States)

    2012-07-01

    Double ionization of Helium by a single photon is widely believed to proceed through two mechanisms: knock-off (TS1) or shake-off, with the last one dominating at high photon energies. A new mechanism, termed ''Quasi Free Mechanism'' (QFM) was predicted 35 years ago by Amusia and coworkers, but escaped experimental observation till today. Here we provide the first proof of this mechanism using 800 eV photons from the Advanced Light Source. Fragments (electrons and ions) were measured in coincidence using momentum spectroscopy (COLTRIMS). He{sup (}2+) ions with zero momentum were found - the fingerprint for the QFM.

  4. Notes on photon assisted field ionization

    International Nuclear Information System (INIS)

    Niu, B.H.C.; Bryant, P.J.

    1979-01-01

    A response to comments by Viswanathan et al (2) on a previous publication(1) by the authors is given. It is contended that the original hypothesis of photon assisted field ionization at metal surfaces correctly explains the results reported in Ref. 1

  5. Highly selective population of two excited states in nonresonant two-photon absorption

    International Nuclear Information System (INIS)

    Zhang Hui; Zhang Shi-An; Sun Zhen-Rong

    2011-01-01

    A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse. In this paper, we theoretically demonstrate a highly selective population of two excited states in the nonresonant two-photon absorption process by rationally designing a spectral phase distribution. Our results show that one excited state is maximally populated while the other state population is widely tunable from zero to the maximum value. We believe that the theoretical results may play an important role in the selective population of a more complex nonlinear process comprising nonresonant two-photon absorption, such as resonance-mediated (2+1)-three-photon absorption and (2+1)-resonant multiphoton ionization. (atomic and molecular physics)

  6. Simultaneous production of spin-polarized ions/electrons based on two-photon ionization of laser-ablated metallic atoms

    International Nuclear Information System (INIS)

    Nakajima, Takashi; Yonekura, Nobuaki; Matsuo, Yukari; Kobayashi, Tohru; Fukuyama, Yoshimitsu

    2003-01-01

    We demonstrate the simultaneous production of spin-polarized ions/electrons using two-color, two-photon ionization of laser-ablated metallic atoms. Specifically, we have applied the developed technique to laser-ablated Sr atoms, and found that the electron-spin polarization of Sr + ions, and accordingly, the spin polarization of photoelectrons is 64%±9%, which is in good agreement with the theoretical prediction we have recently reported [T. Nakajima and N. Yonekura, J. Chem. Phys. 117, 2112 (2002)]. Our experimental results open up a simple way toward the construction of a spin-polarized dual ion/electron source

  7. Possibilities to reduce the effect of ionizing radiation by interaction of two types of radiation into a matter: ionized and non-ionized radiation

    International Nuclear Information System (INIS)

    Tanvir

    2007-01-01

    Full text: At present it has been accepted that ionized radiation can cause biological effects on the human body and the only way of preventing this effect, is by shielding the source of radiation by absorbing materials. On the other hand, the technology of non-ionizing radiation is upgraded. The canalization of radiation through the wave-guide based structures and optical fiber is well established. This reminds us that passing through benzene non-ionized radiation give the 'Raman' effect, which can ensure the secondary generation of non-ionized radiation with the wave length of nanometer and so far. These types of non-ionized radiation can easily be correlated with the gamma radiation, which is ionized. We know that high-energized photon usually interacts with matter and reduces its energy to the matter and generate electro-magnetic waves into the molecules of the matter. It is also well known that through the wave-guide based structures and optical fiber; the path of energy distribution of photon is likely to be optical energetic modes. If two types of photon from two types of radiation (ionized and non-ionized) interact with matter and pass through the optical fiber, they can generate optical modes with various wavelengths and phase velocities. With 'Raman' effect we can generate secondary electromagnetic waves of nanometer; as well as optical modes into the optical fiber. These optical modes from two types of radiation with various phase velocities, having the similar wavelength, can decrease or accelerate some modes. On the view of signal distribution, we can assume that if two similar signals pass through the circuit with phase difference 180P 0 P, then the result posses no signal. We are also reminded that photon of γ - radiation can spread from 0 deg. to 180 deg. C, where the 'Compton' loss of radiation is minimum. In view of the electro-magnetic theory of Maxwell we can assume the energetic field of optical modes, which are generated into the optical

  8. One-photon mass-analyzed threshold ionization (MATI) spectroscopy of pyridine: Determination of accurate ionization energy and cationic structure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yu Ran; Kang, Do Won; Kim, Hong Lae, E-mail: chkwon@kangwon.ac.kr, E-mail: hlkim@kangwon.ac.kr; Kwon, Chan Ho, E-mail: chkwon@kangwon.ac.kr, E-mail: hlkim@kangwon.ac.kr [Department of Chemistry and Institute for Molecular Science and Fusion Technology, College of Natural Sciences, Kangwon National University, Chuncheon 200-701 (Korea, Republic of)

    2014-11-07

    Ionization energies and cationic structures of pyridine were intensively investigated utilizing one-photon mass-analyzed threshold ionization (MATI) spectroscopy with vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. The present one-photon high-resolution MATI spectrum of pyridine demonstrated a much finer and richer vibrational structure than that of the previously reported two-photon MATI spectrum. From the MATI spectrum and photoionization efficiency curve, the accurate ionization energy of the ionic ground state of pyridine was confidently determined to be 73 570 ± 6 cm{sup −1} (9.1215 ± 0.0007 eV). The observed spectrum was almost completely assigned by utilizing Franck-Condon factors and vibrational frequencies calculated through adjustments of the geometrical parameters of cationic pyridine at the B3LYP/cc-pVTZ level. A unique feature unveiled through rigorous analysis was the prominent progression of the 10 vibrational mode, which corresponds to in-plane ring bending, and the combination of other totally symmetric fundamentals with the ring bending overtones, which contribute to the geometrical change upon ionization. Notably, the remaining peaks originate from the upper electronic state ({sup 2}A{sub 2}), as predicted by high-resolution photoelectron spectroscopy studies and symmetry-adapted cluster configuration interaction calculations. Based on the quantitatively good agreement between the experimental and calculated results, it was concluded that upon ionization the pyridine cation in the ground electronic state should have a planar structure of C{sub 2v} symmetry through the C-N axis.

  9. One-photon two-electron processes in helium close to the double ionization threshold; Diexcitation electronique de l'helium par un photon au voisinage du seuil de double ionisation

    Energy Technology Data Exchange (ETDEWEB)

    Bouri, C

    2007-04-15

    This work presents a study of the {sup 1}P{sup 0} excited states of He that can be reached by absorption of a single photon carrying an energy close to the double ionization threshold (DIT) (79 eV). Above the DIT, these states are the double continuum states; below, they are the double excited states. These two types of states are tightly coupled to the single continuum states with or without excitation of the residual ion He{sup +}, owing to their degeneracy in energy. In a one-photon process, these states can only be formed owing to the electronic correlations in the system which must be well described to obtain quantitative good results. Our study is a part of the work which aims at a united description of all these doubly excited, ionized-excited, and double continuum states. We use the Hyperspherical R-Matrix with Semiclassical Outgoing Waves (HRM-SOW) method, initially dedicated to double photoionization studies. We extend it to extract information on the single continuum. This extension allows us to compute cross sections of single photoionization with or without excitation up to n 50 for an excess of 100 meV just above the double ionization threshold. A deep insight into this process is given by a partial waves analysis. The results obtained shed light on the key role of angular and radial correlations. The numerous data we obtain on double and single ionization allow us to establish a continuity relation between these two processes. We show that single ionization with an infinite excitation of the residual ion merges into double photoionization when the excess energy is redistributed between the two electrons. It appears that this relation is valid not only for low but also for high photon energies. Since the HRM-SOW can produce the integrated cross section for double photoionization with high accuracy in the low energy domain, we check the Wannier threshold law. The parameters extracted support strongly this threshold law, and are in good agreement with

  10. Two-electron one-photon decay rates in doubly ionized atoms

    International Nuclear Information System (INIS)

    Baptista, G.B.

    1984-01-01

    The transion rate for the two-electron one-photon and one-electron one-photon decaying processes in atoms bearing initially two K-shell vacancies were evaluated for Ne up to Zr. The two-electron one-photon decay process is considered to be the result of the interaction between the jumping electrons and their interaction with the radiation field. The calculation is performed in second order perturbation theory and the many particle states are constructed from single particle solutions. The present approach allows one to discuss several aspects of the decaying process. The results obtained for the branching ratio between the two processes reproduces reasonably well available experimental data and show an almost linear dependence on the second power of the atomic number. A comparison with other theoretical predictions is also presented for the two decaying processes and the strong dependence of the branching ratio on the initial configuration of the decaying atom is pointed out. (Author) [pt

  11. DWARF GALAXIES WITH IONIZING RADIATION FEEDBACK. I. ESCAPE OF IONIZING PHOTONS

    International Nuclear Information System (INIS)

    Kim, Ji-hoon; Krumholz, Mark R.; Goldbaum, Nathan J.; Wise, John H.; Turk, Matthew J.; Abel, Tom

    2013-01-01

    We describe a new method for simulating ionizing radiation and supernova feedback in the analogs of low-redshift galactic disks. In this method, which we call star-forming molecular cloud (SFMC) particles, we use a ray-tracing technique to solve the radiative transfer equation for ultraviolet photons emitted by thousands of distinct particles on the fly. Joined with high numerical resolution of 3.8 pc, the realistic description of stellar feedback helps to self-regulate star formation. This new feedback scheme also enables us to study the escape of ionizing photons from star-forming clumps and from a galaxy, and to examine the evolving environment of star-forming gas clumps. By simulating a galactic disk in a halo of 2.3 × 10 11 M ☉ , we find that the average escape fraction from all radiating sources on the spiral arms (excluding the central 2.5 kpc) fluctuates between 0.08% and 5.9% during a ∼20 Myr period with a mean value of 1.1%. The flux of escaped photons from these sources is not strongly beamed, but manifests a large opening angle of more than 60° from the galactic pole. Further, we investigate the escape fraction per SFMC particle, f esc (i), and how it evolves as the particle ages. We discover that the average escape fraction f esc is dominated by a small number of SFMC particles with high f esc (i). On average, the escape fraction from an SFMC particle rises from 0.27% at its birth to 2.1% at the end of a particle lifetime, 6 Myr. This is because SFMC particles drift away from the dense gas clumps in which they were born, and because the gas around the star-forming clumps is dispersed by ionizing radiation and supernova feedback. The framework established in this study brings deeper insight into the physics of photon escape fraction from an individual star-forming clump and from a galactic disk

  12. Two- and three-photon excitation of Gd3+ in CaAl12O19

    International Nuclear Information System (INIS)

    Heerdt, M.L.H. ter; Basun, S.A.; Imbusch, G.F.; Yen, W.M.

    2002-01-01

    We have employed two-photon excitation to study the higher energy levels of Gd 3+ ions in CaAl 12 O 19 and we compare the results with those obtained using conventional UV excitation techniques. Under two-photon excitation, the luminescence intensity exhibits an unusual temporal behavior, a very long build-up followed by a decrease by orders of magnitude, ascribed to a recombination-assisted luminescence excitation mechanism assuming photo-ionization of Gd 3+ ions and trapping of free electrons on deep traps. We also find that the two-photon excitation spectra contain an additional broadening contribution which can be attributed to homogeneous broadening of excitation levels caused by excited state absorption into the conduction band. We believe that this may be a general phenomenon whenever participating photons produce ionization of impurity ions from metastable excited states. The phenomenon can manifest itself also in two-photon ionization spectral hole burning and in up-conversion processes (in the latter case, the homogeneous broadening can be caused by an intra-ion excited-state absorption)

  13. Trace detection of organic compounds in complex sample matrixes by single photon ionization ion trap mass spectrometry: real-time detection of security-relevant compounds and online analysis of the coffee-roasting process.

    Science.gov (United States)

    Schramm, Elisabeth; Kürten, Andreas; Hölzer, Jasper; Mitschke, Stefan; Mühlberger, Fabian; Sklorz, Martin; Wieser, Jochen; Ulrich, Andreas; Pütz, Michael; Schulte-Ladbeck, Rasmus; Schultze, Rainer; Curtius, Joachim; Borrmann, Stephan; Zimmermann, Ralf

    2009-06-01

    An in-house-built ion trap mass spectrometer combined with a soft ionization source has been set up and tested. As ionization source, an electron beam pumped vacuum UV (VUV) excimer lamp (EBEL) was used for single-photon ionization. It was shown that soft ionization allows the reduction of fragmentation of the target analytes and the suppression of most matrix components. Therefore, the combination of photon ionization with the tandem mass spectrometry (MS/MS) capability of an ion trap yields a powerful tool for molecular ion peak detection and identification of organic trace compounds in complex matrixes. This setup was successfully tested for two different applications. The first one is the detection of security-relevant substances like explosives, narcotics, and chemical warfare agents. One test substance from each of these groups was chosen and detected successfully with single photon ionization ion trap mass spectrometry (SPI-ITMS) MS/MS measurements. Additionally, first tests were performed, demonstrating that this method is not influenced by matrix compounds. The second field of application is the detection of process gases. Here, exhaust gas from coffee roasting was analyzed in real time, and some of its compounds were identified using MS/MS studies.

  14. Closed form for two-photon free-free transition matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Karule, Erna E-mail: karule@latnet.lv

    2000-08-01

    Two-photon free-free transitions happen in the multiphoton ionization with more than one excess photon and in Bremsstrahlung. Up to now, the configuration space free-free transition amplitudes have not been written in closed form. We propose a modified Coulomb Green's function (CGF) Sturm ian expansion which allows one to obtain expressions for two-photon radial transition matrix elements in the closed form which are easy to continue analytically to calculate free-free transitions in H.

  15. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, M. [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain); Laser Processing Group, Instituto de Óptica “Daza de Valdés,” CSIC, 28006-Madrid (Spain); Fuentes, L. M. [Departamento de Física Aplicada, Universidad de Valladolid, 47011-Valladolid (Spain); Grützmacher, K.; Pérez, C., E-mail: concha@opt.uva.es; Rosa, M. I. de la [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain)

    2014-10-07

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  16. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    International Nuclear Information System (INIS)

    Garcia-Lechuga, M.; Fuentes, L. M.; Grützmacher, K.; Pérez, C.; Rosa, M. I. de la

    2014-01-01

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  17. Laser-induced ionization of Na vapor

    International Nuclear Information System (INIS)

    Wu, R.C.Y.; Judge, D.L.; Roussel, F.; Carre, B.; Breger, P.; Spiess, G.

    1982-01-01

    The production of Na 2 + ions by off-resonant laser excitation in the 5800-6200A region mainly results from two-photon absorption by the Na 2 molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na 2 D 1 PIμ Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na 2 + ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al we estimate that the cross section for producing Na 2 + through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na 2 molecules

  18. The development of efficient two-photon singlet oxygen sensitizers

    DEFF Research Database (Denmark)

    Nielsen, Christian Benedikt

    The development of efficient two-photon singlet oxygen sensitizers is addressed focusing on organic synthesis. Photophysical measurements were carried out on new lipophilic molecules, where two-photon absorption cross sections and singlet oxygen quantumyields were measured. Design principles...... for making efficient two-photon singlet oxygen sensitizers were then constructed from these results. Charge-transfer in the excited state of the prepared molecules was shown to play a pivotal role in the generationof singlet oxygen. This was established through studies of substituent effects on both...... the singlet oxygen yield and the two-photon absorption cross section, where it was revealed that a careful balancing of the amount of charge transfer present in theexcited state of the sensitizer is necessary to obtain both a high singlet oxygen quantum yield and a high two-photon cross section. An increasing...

  19. Two-colour ionization of hydrogen

    International Nuclear Information System (INIS)

    Fifirig, M.; Cionga, A.; Florescu, V.

    1995-01-01

    The studies of different radiative processes in hydrogen continue to be of interest, as they provide a comparison basis for calculations done on many electron atoms. We consider the case of the hydrogen atom interacting simultaneously with two electromagnetic fields of incommensurable frequencies. Our attention is focused on three-photon transitions between the ground state and a final state in the continuum. The existence of compact forms for the first and second-order corrections to the wave functions of a Coulomb-field electron due to the electromagnetic field leads to compact results for the matrix element of the transitions. Numerical results are presented for the total ionization rate and the angular distribution of ejected electrons in a regime in which none of the fields is able to ionize alone the atom. (author)

  20. The ratio of double to single ionization of helium: The relationship of photon and bare charged particle impact ionization

    International Nuclear Information System (INIS)

    Manson, S.T.

    1994-01-01

    In this paper the author derives expressions for the ratio of double to single ionization of helium from its ground state, by both single photons, and charged particle impact. He shows that in the limit of large reduced incident energy T of a charged particle, that the ratio of the double to single ionization cross sections at some energy transfer ΔE is equal to the ratio of photoionization cross sections for a photon of energy hν = ΔE, independent of T. He then goes on to find a relationship for this ionization ratio which is not restricted to some specific energy transfer, and shows that the double to single ionization cross section ratio approaches an asymtotic limit for large enough T

  1. Energy dependence of the air kerma response of a liquid ionization chamber at photon energies between 8 keV and 1250 keV

    International Nuclear Information System (INIS)

    Hilgers, G.; Bahar-Gogani, J.; Wickman, G.

    2002-01-01

    Full text: In its recent reports on cardiovascular brachytherapy the DGMP recommends the source strength of brachytherapy sources being characterized in terms of absorbed dose to water at a distance of 2 mm from the central axis of the source. As a consequence, the response of a detector suitable for characterizing such sources with respect to absorbed dose to water should depend only to a small extent on radiation energy. Additionally, the detection volume of the detector has to be sufficiently small for the necessary spatial resolution to be obtained. The liquid ionization chamber as described in seems to be a promising means for this type of measurements. The two components of the ionization liquid (TMS and isooctane) can be mixed in a ratio which ensures that the mass-energy absorption coefficient of the resulting mixture deviates from that of water by less than ±15 % down to photon energies of 10 keV. Due to the high density of the ionization medium, the spacing between the two electrodes of the ionization chamber can be made as small as a few tenths of a millimeter and still the resulting ionization current is sufficiently large. The ionization chamber used in the present investigation is a plane parallel chamber 5 mm in diameter and of 0.3 mm electrode spacing. The ionization medium is a mixture of 40 % TMS and 60 % isooctane. The irradiations were carried out with the ISO wide spectra series with tube voltages between 10 kV and 300 kV and with 137 Cs and 60 Co γ-radiation. As a first step, the response of the liquid ionization chamber was investigated with respect to air kerma instead of absorbed dose to water. Although the mass-energy absorption coefficient of the liquid deviates from that of air by less than ±10 % over the photon energy range, the measured chamber response varies by a factor of about 3.5. Monte Carlo calculations carried out with EGSnrc show a variation of the chamber response smaller than ±20 %. Measurements of the ion yield of the

  2. Development of a Portable Single Photon Ionization-Photoelectron Ionization Time-of-Flight Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    Yunguang Huang

    2015-01-01

    Full Text Available A vacuum ultraviolet lamp based single photon ionization- (SPI- photoelectron ionization (PEI portable reflecting time-of-flight mass spectrometer (TOFMS was designed for online monitoring gas samples. It has a dual mode ionization source: SPI for analyte with ionization energy (IE below 10.6 eV and PEI for IE higher than 10.6 eV. Two kinds of sampling inlets, a capillary inlet and a membrane inlet, are utilized for high concentration and trace volatile organic compounds, respectively. A mass resolution of 1100 at m/z 64 has been obtained with a total size of 40 × 31 × 29 cm, the weight is 27 kg, and the power consumption is only 70 W. A mixture of benzene, toluene, and xylene (BTX, SO2, and discharging products of SF6 were used to test its performance, and the result showed that the limit of quantitation for BTX is as low as 5 ppbv (S/N = 10 : 1 with linear dynamic ranges greater than four orders of magnitude. The portable TOFMS was also evaluated by analyzing volatile organic compounds from wine and decomposition products of SF6 inside of a gas-insulated switchgear.

  3. High-order multiphoton ionization photoelectron spectroscopy of NO

    International Nuclear Information System (INIS)

    Carman, H.S. Jr.; Compton, R.N.

    1987-01-01

    Photoelectron energy angular distributions of NO following three different high-order multiphoton ionization (MPI) schemes have been measured. The 3 + 3 resonantly enhanced multiphoton ionization (REMPI) via the A 2 Σ + (v=O) level yielded a distribution of electron energies corresponding to all accessible vibrational levels (v + =O-6) of the nascent ion. Angular distributions of electrons corresponding to v + =O and v + =3 were significantly different. The 3 + 2 REMPI via the A 2 Σ + (v=1) level produced only one low-energy electron peak (v + =1). Nonresonant MPI at 532 nm yielded a distribution of electron energies corresponding to both four- and five-photon ionization. Prominent peaks in the five-photon photoelectron spectrum (PES) suggest contributions from near-resonant states at the three-photon level. 4 refs., 3 figs

  4. Multi-photon ionization of the H+2 molecule by an xuv laser pulse

    International Nuclear Information System (INIS)

    Secor, Ethan; Guan Xiaoxu; Bartschat, Klaus; Schneider, Barry I

    2012-01-01

    We present theoretical predictions for one-, two-, and three-photon ionization of H + 2 by an xuv laser pulse. The results were obtained by solving the time-dependent Schrödinger equation in prolate spheroidal coordinates. Good agreement is obtained with results from a time-independent perturbative model.

  5. Simulation study of the photon quality correction factors of ionization chambers for FiR 1 epithermal neutron beam

    International Nuclear Information System (INIS)

    Koivunoro, H.; Uusi-Simola, J.; Savolainen, S.; Kotiluoto, P.; Auterinen, I.; Kosunen, A.

    2006-01-01

    At FiR 1 BNCT facility in Finland, neutron-insensitive Mg(Ar) ionization chambers are used for photon dose measurements in an epithermal neutron beam. Previously, photon sensitivity factors for the chamber for the measurements in a water phantom in FiR 1 beam have been determined experimentally from measurements in 60 Co gamma and in a 6 MV clinical accelerator photon beams. However, the response of the ionization chamber in a water phantom depends on energy spectrum and angle of the photons and the secondary electrons created inside the phantom and may differ depending on type of the irradiation source (accelerator vs. an epithermal neutron beam). Also, the experimental sensitivity factor does not take into account the possible perturbations in the photon production in phantom caused by the ionization chamber materials. Therefore, it is necessary to determine the photon quality correction factors (k Qγ ) for the Mg(Ar) chamber at the FiR 1 beam through computer simulations. In this study, the k Qγ factors have been determined for Mg(Ar) chamber from Monte Carlo calculations of absorbed photon dose at two depths in a water phantom using MCNP code. The k qγ factors obtained with this method are compared to the sensitivity factors determined with measurements in an accelerator photon beam and to the k Qγ factors published previously. (author)

  6. Determination of the 1s-2s two-photon excitation cross-section in atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, G.A.; McRae, G.A

    2000-07-01

    Hydrogen atoms are ablated from zirconium alloys into the gas phase by a pulsed Nd:YAG laser and photo-ionized with three photons at 243 nm via the two-photon 1s {sup 2}S{sub 1/2}-2s {sup 2}S{sub 1/2} resonant transition. A determination of the effective 1s-2s two-photon excitation cross-section is necessary to quantify the hydrogen atom density in the ablation plume. A measurement of the ion signal vs photo-ionization beam energy is fitted to an expression derived from the rate equations. The temporal and spatial properties of the photo-ionization laser beam, transit of the H atoms through the beam, and detector geometry are taken into account. The effective two-photon cross-section for this experimental configuration, derived with the rate equation formalism, is 3.3 {+-} 0.8 X 10{sup -28} cm{sup 4} W{sup -1}. This compares well with the ab initio prediction of 5 {+-} 1 X 10{sup -28} cm{sup 4} W{sup -1} under these experimental conditions. (author)

  7. Determination of the 1s-2s two-photon excitation cross-section in atomic hydrogen

    International Nuclear Information System (INIS)

    Bickel, G.A.; McRae, G.A.

    2000-01-01

    Hydrogen atoms are ablated from zirconium alloys into the gas phase by a pulsed Nd:YAG laser and photo-ionized with three photons at 243 nm via the two-photon 1s 2 S 1/2 -2s 2 S 1/2 resonant transition. A determination of the effective 1s-2s two-photon excitation cross-section is necessary to quantify the hydrogen atom density in the ablation plume. A measurement of the ion signal vs photo-ionization beam energy is fitted to an expression derived from the rate equations. The temporal and spatial properties of the photo-ionization laser beam, transit of the H atoms through the beam, and detector geometry are taken into account. The effective two-photon cross-section for this experimental configuration, derived with the rate equation formalism, is 3.3 ± 0.8 X 10 -28 cm 4 W -1 . This compares well with the ab initio prediction of 5 ± 1 X 10 -28 cm 4 W -1 under these experimental conditions. (author)

  8. VUV photo-processing of PAH cations: quantitative study on the ionization versus fragmentation processes.

    Science.gov (United States)

    Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M

    2016-05-10

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7 - 20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species behave similarly, the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ~18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section, but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them, all are in good agreement with theoretical ones confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.

  9. VUV PHOTO-PROCESSING OF PAH CATIONS: QUANTITATIVE STUDY ON THE IONIZATION VERSUS FRAGMENTATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan [Université de Toulouse, UPS-OMP, Institut de Recherche en Astrophysique et Planétologie, Toulouse (France); Giuliani, Alexandre; Nahon, Laurent [Synchrotron SOLEIL, LOrme des Merisiers, F-91192 Gif sur Yvette Cedex (France); Martin, Serge [Institut Lumière Matière, Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne cedex (France); Champeaux, Jean-Philippe [Laboratoire Collisions Agrégats Réactivité, Université de Toulouse, UPS-IRSAMC, CNRS, 118 Route de Narbonne, Bat 3R1B4, F-31062 Toulouse Cedex 9 (France); Mayer, Paul M., E-mail: christine.joblin@irap.omp.eu [Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5 (Canada)

    2016-05-10

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7–20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ∼13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies all species behave similarly; the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ∼18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them; all are in good agreement with theoretical ones, confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.

  10. VUV PHOTO-PROCESSING OF PAH CATIONS: QUANTITATIVE STUDY ON THE IONIZATION VERSUS FRAGMENTATION PROCESSES

    International Nuclear Information System (INIS)

    Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M.

    2016-01-01

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7–20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ∼13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies all species behave similarly; the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ∼18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them; all are in good agreement with theoretical ones, confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.

  11. VUV photo-processing of PAH cations: quantitative study on the ionization versus fragmentation processes

    Science.gov (United States)

    Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M.

    2016-01-01

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7 – 20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species behave similarly, the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ~18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section, but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them, all are in good agreement with theoretical ones confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models. PMID:27212712

  12. The mean free path of hydrogen ionizing photons during the epoch of reionization

    Science.gov (United States)

    Rahmati, Alireza; Schaye, Joop

    2018-05-01

    We use the Aurora radiation-hydrodynamical simulations to study the mean free path (MFP) for hydrogen ionizing photons during the epoch of reionization. We directly measure the MFP by averaging the distance 1 Ry photons travel before reaching an optical depth of unity along random lines-of-sight. During reionization the free paths tend to end in neutral gas with densities near the cosmic mean, while after reionization the end points tend to be overdense but highly ionized. Despite the increasing importance of discrete, over-dense systems, the cumulative contribution of systems with NHI ≲ 1016.5 cm-2 suffices to drive the MFP at z ≈ 6, while at earlier times higher column densities are more important. After reionization the typical size of HI systems is close to the local Jeans length, but during reionization it is much larger. The mean free path for photons originating close to galaxies, {MFP_{gal}}, is much smaller than the cosmic MFP. After reionization this enhancement can remain significant up to starting distances of ˜1 comoving Mpc. During reionization, however, {MFP_{gal}} for distances ˜102 - 103 comoving kpc typically exceeds the cosmic MFP. These findings have important consequences for models that interpret the intergalactic MFP as the distance escaped ionizing photons can travel from galaxies before being absorbed and may cause them to under-estimate the required escape fraction from galaxies, and/or the required emissivity of ionizing photons after reionization.

  13. Hyphenation of two simultaneously employed soft photo ionization mass spectrometers with thermal analysis of biomass and biochar

    International Nuclear Information System (INIS)

    Fendt, Alois; Geissler, Robert; Streibel, Thorsten

    2013-01-01

    Highlights: ► First simultaneous hyphenation of two time-of-flight mass spectrometers with different soft photo ionization techniques (SPI and REMPI) to Thermal Analysis using a newly developed prototype for EGA is presented. ► Resonance enhanced multi-photon ionization (REMPI) enables sensitive and selective analysis of aromatic species. ► Single photon ionization (SPI) using VUV light supplied by an innovative electron-beam pumped excimer light source (EBEL) comprehensively ionizes (nearly) all organic molecules. ► The resulting mass spectra show distinct patterns for the evolved gases of the miscellaneous biomasses and chars thereof. ► The potential for detailed kinetic studies is apparent on account of the complex pyrolysis gas compositions. - Abstract: Evolved gas analysis (EGA) is a powerful and complementary tool for Thermal Analysis. In this context, two time-of-flight mass spectrometers with different soft photo-ionization techniques are simultaneously hyphenated to a thermo balance and applied in form of a newly developed prototype for EGA of pyrolysis gases from biomass and biochar. Resonance enhanced multi-photon ionization (REMPI) is applied for selective analysis of aromatic species. Furthermore, single photon ionization (SPI) using VUV light supplied by an electron-beam pumped excimer light source (EBEL) was used to comprehensively ionize (nearly) all organic molecules. The soft ionization capability of photo-ionization techniques allows direct and on-line analysis of the evolved pyrolysis gases. Characteristic mass spectra with specific patterns could be obtained for the miscellaneous biomass feeds used. Temperature profiles of the biochars reveal a desorption step, followed by pyrolysis as observed for the biomasses. Furthermore, the potential for kinetic studies is apparent for this instrumental setup.

  14. Effects of four-wave mixing on four-photon resonance excitation and ionization in the presence of a three-photon intermediate state resonance enhancement

    International Nuclear Information System (INIS)

    Payne, M.G.; Miller, J.C.; Hart, R.C.; Garrett, W.R.

    1991-01-01

    We consider effects which occur when four-wave sum frequency generation and multiphoton ionization are induced by lasers tuned near a three-photon resonance and simultaneously near or at a dipole allowed four-photon resonance. In studies with unfocused laser beams, if the phase mismatch of the generated four-wave-mixing field is large and the related two-photon resonance for the absorption of a four-wave-mixing photon and a laser photon results in strong absorption of the four-wave-mixing field, a coherent cancellation occurs between the pumping of the resonance by two- and four-photon processes. This interference effect occurs when the first laser is tuned on either side of the three-photon resonance and |Δk rL |much-gt 1, where Δk r is the mismatch and L is the length of the path of the laser beams in the gas. With focused laser beams large differences occur between ionization with unidirectional beams and with counterpropagating laser beams when |Δk rb |much-gt 1, where b is the confocal parameter of the focused laser beams. Strong absorption of the four-wave-mixing field is shown not to be necessary for strong destructive interference with focused laser beams when the phase mismatch is large. This work also suggests an explanation for earlier experiments where the presence of a four-photon resonance enabled the generation of third-harmonic light in a positively dispersive wavelength region. We argue that this process can occur when the laser used to achieve the four-photon resonance is focused on the small z (z is the coordinate in the direction of propagation) side of the focal point of the laser responsible for the third-harmonic generation

  15. Exploring Redox Properties of Aromatic Amino Acids in Water: Contrasting Single Photon vs Resonant Multiphoton Ionization in Aqueous Solutions.

    Science.gov (United States)

    Roy, Anirban; Seidel, Robert; Kumar, Gaurav; Bradforth, Stephen E

    2018-04-12

    Direct measurements of the valence ionization energies and the reorganization energies of the three aromatic amino acids, l-tyrosine, l-tryptophan, and l-phenylalanine, in aqueous solution using the liquid microjet technique and two different photoemission methods-X-ray photoelectron spectroscopy (XPS) at 175 eV photon energy and resonant two-photon ionization (R2PI) using 2 × 267 nm (2 × 4.64 eV) UV laser light-are reported. l-Tryptophan has the lowest vertical ionization energy, 7.3 eV, followed by tyrosine (7.8 eV) and phenylalanine (∼8.7 eV). Essentially, no variation in recovered orbital energies is observed comparing near threshold ionization to X-ray ionization. Superior sensitivity of the (background-free) R2PI scheme for solutions with very low solute concentration (<2 mM) is demonstrated in contrast to the single-photon XPS measurements, which often requires solute concentrations of 0.1-1 molar. This higher sensitivity along with chemical selectivity of the R2PI technique can be exploited for both spectroscopic assignment and as an analytical tool. The nature of the adiabatic ionization energy for the three aromatic amino acids has been explored by the R2PI approach and by empirically formulating the correlation between the estimated ionization onset with electronic and nuclear relaxation on the excited state surface. Our results have implications for understanding one-electron transfer within enzymes and in redox situations where (ir)reversible deprotonation occurs such as those manifest in the biochemistry of oxidation damage.

  16. All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry.

    Science.gov (United States)

    Yuan, Chengqian; Liu, Xianhu; Zeng, Chenghui; Zhang, Hanyu; Jia, Meiye; Wu, Yishi; Luo, Zhixun; Fu, Hongbing; Yao, Jiannian

    2016-02-01

    We report here the development of a reflectron time-of-flight mass spectrometer utilizing single-photon ionization based on an all-solid-state deep ultraviolet (DUV) laser system. The DUV laser was achieved from the second harmonic generation using a novel nonlinear optical crystal KBe2BO3F2 under the condition of high-purity N2 purging. The unique property of this laser system (177.3-nm wavelength, 15.5-ps pulse duration, and small pulse energy at ∼15 μJ) bears a transient low power density but a high single-photon energy up to 7 eV, allowing for ionization of chemicals, especially organic compounds free of fragmentation. Taking this advantage, we have designed both pulsed nanospray and thermal evaporation sources to form supersonic expansion molecular beams for DUV single-photon ionization mass spectrometry (DUV-SPI-MS). Several aromatic amine compounds have been tested revealing the fragmentation-free performance of the DUV-SPI-MS instrument, enabling applications to identify chemicals from an unknown mixture.

  17. Hyphenation of two simultaneously employed soft photo ionization mass spectrometers with thermal analysis of biomass and biochar

    Energy Technology Data Exchange (ETDEWEB)

    Fendt, Alois [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Joint Mass Spectrometry Centre, Cooperation Group for Analysis of Complex Molecular Systems, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health (GmbH), IngolstaedterLandstr. 1, 85764 Neuherberg (Germany); Analytical Chemistry, Institute of Physics, University of Augsburg, 86159 Augsburg (Germany); Geissler, Robert [Joint Mass Spectrometry Centre, Cooperation Group for Analysis of Complex Molecular Systems, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health (GmbH), IngolstaedterLandstr. 1, 85764 Neuherberg (Germany); Analytical Chemistry, Institute of Physics, University of Augsburg, 86159 Augsburg (Germany); Streibel, Thorsten, E-mail: thorsten.streibel@uni-rostock.de [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Joint Mass Spectrometry Centre, Cooperation Group for Analysis of Complex Molecular Systems, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health (GmbH), IngolstaedterLandstr. 1, 85764 Neuherberg (Germany); and others

    2013-01-10

    Highlights: Black-Right-Pointing-Pointer First simultaneous hyphenation of two time-of-flight mass spectrometers with different soft photo ionization techniques (SPI and REMPI) to Thermal Analysis using a newly developed prototype for EGA is presented. Black-Right-Pointing-Pointer Resonance enhanced multi-photon ionization (REMPI) enables sensitive and selective analysis of aromatic species. Black-Right-Pointing-Pointer Single photon ionization (SPI) using VUV light supplied by an innovative electron-beam pumped excimer light source (EBEL) comprehensively ionizes (nearly) all organic molecules. Black-Right-Pointing-Pointer The resulting mass spectra show distinct patterns for the evolved gases of the miscellaneous biomasses and chars thereof. Black-Right-Pointing-Pointer The potential for detailed kinetic studies is apparent on account of the complex pyrolysis gas compositions. - Abstract: Evolved gas analysis (EGA) is a powerful and complementary tool for Thermal Analysis. In this context, two time-of-flight mass spectrometers with different soft photo-ionization techniques are simultaneously hyphenated to a thermo balance and applied in form of a newly developed prototype for EGA of pyrolysis gases from biomass and biochar. Resonance enhanced multi-photon ionization (REMPI) is applied for selective analysis of aromatic species. Furthermore, single photon ionization (SPI) using VUV light supplied by an electron-beam pumped excimer light source (EBEL) was used to comprehensively ionize (nearly) all organic molecules. The soft ionization capability of photo-ionization techniques allows direct and on-line analysis of the evolved pyrolysis gases. Characteristic mass spectra with specific patterns could be obtained for the miscellaneous biomass feeds used. Temperature profiles of the biochars reveal a desorption step, followed by pyrolysis as observed for the biomasses. Furthermore, the potential for kinetic studies is apparent for this instrumental setup.

  18. Elimination of two atomic electrons by a single high energy photon

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Ioffe, A.F.

    1993-01-01

    This report discusses the following topics: mechanism of two-electron photoionization; multiple photoionization near inner shell thresholds; double ionization accompanying compton-effect; and the investigation of secondary photon emission in coincidence with double charged ion production

  19. Ionization yield from electron tracks in liquid xenon

    International Nuclear Information System (INIS)

    Voronova, T.Ya.; Kipsanov, M.A.; Kruglov, A.A.; Obodovskij, I.M.; Pokachalov, S.G.; Shilov, V.A.; Khristich, E.B.

    1989-01-01

    Methods for calculating coefficients K β , characterizing ionization yield from electron track in liquid xenon are considered. K β calculation is conducted on the base of experimental data on K parameter characterizing ionization yield from a certain combination of photo-, Compton-and Auger electron tracks. K parameter measurements are conducted in liquid xenon at 170 K temperature within 10-30 keV gamma- and X radiation energy ranges. Calculated dependence of K β and K coefficients on the energy in a wide (5-500 keV) range is presented. K β values obtained can be applied for calculating the energy resolution of a gamma-spectrometer and linearity of its calibration characteristics if the electric field intensity in the spectrometer does not exceed some kV/cm

  20. One-, two- and three-photon experiments

    International Nuclear Information System (INIS)

    Caldwell, D.O.; Cumalat, J.P.; Eisner, A.M.

    1977-01-01

    The results of experiments to provide further information about parton structure by getting into the deep inelastic region of π 0 electroproduction are presented. To analyse whether the interference between two- and three- photon exchange would give a difference between e + and e - scattering has been measured using the 20.5 GeV electron and 13.5 GeV positron beams and a hydrogen target. No evidence for the two-photon exchange has been observed within the experimental errors. Although the e + -e - difference in the three-photon experiment has been certainly + → γ/e - → γ= 1.09+-0.03. It yields a rough value of the parton mean cubed charge of 1.1+-0.5. The mere existence of the result provides strong support for the idea of constituent particles

  1. Multiphoton ionization of H2+ in xuv laser pulses

    International Nuclear Information System (INIS)

    Guan Xiaoxu; Secor, Ethan B.; Bartschat, Klaus; Schneider, Barry I.

    2011-01-01

    We consider the ionization of the hydrogen molecular ion after one-, two-, and three-photon absorption over a large range of photon energies between 9 and 40 eV in the fixed-nuclei approximation. The temporal development of the system is obtained in a fully ab initio time-dependent grid-based approach in prolate spheroidal coordinates. The alignment dependence of the one-photon ionization amplitude is highlighted in the framework of time-dependent perturbation theory. For one-photon ionization as a function of the nuclear separation, the calculations reveal a significant minimum in the ionization probability. The suppressed ionization is attributed to a Cooper-type minimum, which is similar, but not identical, to the cancellation effect observed in photoionization cross sections of some noble-gas atoms. The effect of the nonspherical two-center Coulomb potential is analyzed. For two- and three-photon ionization, the angle-integrated cross sections clearly map out intermediate-state resonances, and the predictions of the current computations agree very well with those from time-independent calculations. The dominant emission modes for two-photon ionization are found to be very similar in both resonance and off-resonance regions.

  2. Photon-induced Fission Product Yield Measurements on 235U, 238U, and 239Pu

    Science.gov (United States)

    Krishichayan, Fnu; Bhike, M.; Tonchev, A. P.; Tornow, W.

    2015-10-01

    During the past three years, a TUNL-LANL-LLNL collaboration has provided data on the fission product yields (FPYs) from quasi-monoenergetic neutron-induced fission of 235U, 238U, and 239Pu at TUNL in the 0.5 to 15 MeV energy range. Recently, we have extended these experiments to photo-fission. We measured the yields of fission fragments ranging from 85Kr to 147Nd from the photo-fission of 235U, 238U, and 239Pu using 13-MeV mono-energetic photon beams at the HIGS facility at TUNL. First of its kind, this measurement will provide a unique platform to explore the effect of the incoming probe on the FPYs, i.e., photons vs. neutrons. A dual-fission ionization chamber was used to determine the number of fissions in the targets and these samples (along with Au monitor foils) were gamma-ray counted in the low-background counting facility at TUNL. Details of the experimental set-up and results will be presented and compared to the FPYs obtained from neutron-induced fission at the same excitation energy of the compound nucleus. Work supported in part by the NNSA-SSAA Grant No. DE-NA0001838.

  3. Double ionization of nitrogen molecules in orthogonal two-color femtosecond laser fields

    Science.gov (United States)

    Song, Qiying; Li, Hui; Wang, Junping; Lu, Peifen; Gong, Xiaochun; Ji, Qinying; Lin, Kang; Zhang, Wenbin; Ma, Junyang; Li, Hanxiao; Zeng, Heping; He, Feng; Wu, Jian

    2018-04-01

    Double ionization of nitrogen molecules in orthogonally polarized two-color femtosecond laser fields is investigated by varying the relative intensity between the fundamental wave (FW) and its second harmonic (SH) components. The yield ratios of the double ionization channels, i.e., the non-dissociative {{{{N}}}2}2+ and Coulomb exploded (N+, N+), to the singly charged N2 + channel exhibit distinct dependences on the relative strength between the FW and SH fields. As the intensity ratio of SH to FW increases, the yield ratio of (N+, N+)/N2 + gradually increases, while the ratio of {{{{N}}}2}2+/N2 + first descends and then increases constituting a valley shape which is similar to the behavior of Ar2+/Ar+ observed in the same experimental condition. Based on the classical trajectory simulations, we found that the different characteristics of the two doubly ionized channels stem from two mechanisms, i.e., the {{{{N}}}2}2+ is mostly accessed by the (e, 2e) impact ionization while the recollision-induced excitation with subsequent ionization plays an important role in producing the (N+, N+) channel.

  4. Two-photon emission and multiphoton absorption by atoms

    International Nuclear Information System (INIS)

    Mu, X.

    1988-01-01

    This thesis consists of investigations of two problems concerning photon-atom interactions. The first topic deals with two-photon transitions in atomic inner shells. An independent-particle model has been used to describe the two-photon transitions between different inner-shell electron states. The first relativistic self-consistent-field calculation of these transition rates in Ag, Mo, and Xe has been carried out. The theoretical results are compared with recent measurements. Good agreement with measured rates is found except in some cases where more reliable experiments still need to be done. The second topic is multiphoton multiionization of atoms. The maximum entropy principle has been employed in this theoretical investigation. A detailed statistical analysis of measured ionic charge distributions produced in strong laser pulses has been carried out. The results of this analysis indicates that the charge-state distribution is a Poissonian, rather than the binomial which prevails under infrared radiation, and hence that ionization occurs stepwise during the pulse. This result is shown to be consistent with experimental data

  5. Above threshold ionization of atomic hydrogen in ns states with up to four excess photons

    Energy Technology Data Exchange (ETDEWEB)

    Karule, E [Institute of Physics and Spectroscopy, University of Latvia, Raina blvd. 19, Riga, LV-1586 (Latvia); Gailitis, A, E-mail: karule@latnet.l [Institute of Physics, University of Latvia, Salaspils-1, LV-2169 (Latvia)

    2010-03-28

    In a high-intensity laser field an atom can absorb more photons than the minimum necessary for ionization. It is known as above threshold ionization (ATI). Theoretically it is the most difficult case to handle as we have to consider transitions in continuum. To study ATI we use the perturbation theory and Green's function formalism. We have derived the modified two-term Coulomb Green's function (CGF) Sturmian expansion. In each term explicit summation over all intermediate states is carried out. The transition amplitude may be obtained in a closed form. The generalized cross sections are evaluated for the photoionization of atomic hydrogen in ns states with up to four excess photons. Calculations are performed in a wide range of wavelengths for linear and circular polarization. In the cases for which data are available, our results agree very well with the previous ones.

  6. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    Compton, R.N.; Klots, C.E.; Stockdale, J.A.D.; Cooper, C.D.

    1984-01-01

    We describe experimental studies of resonantly enhanced multi-photon ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photo-electron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photo-ionization signal. For both ns and np states the ''field induced'' MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength

  7. Theory of the effect of odd-photon destructive interference on optical shifts in resonantly enhanced multiphoton excitation and ionization

    International Nuclear Information System (INIS)

    Payne, M.G.; Deng, L.; Garrett, W.R.

    1998-01-01

    We present a theory for two- and three-photon excitation, optical shifting, and four-wave mixing when a first laser is tuned onto, or near, a two-photon resonance and a second much more intense laser is tuned near or on resonance between the two-photon resonance and a second excited state. When the second excited state has a dipole-allowed transition back to the ground state and the concentration is sufficiently high, a destructive interference is produced between three-photon coupling of the ground state and the second excited state and one-photon coupling between the same states by the internally generated four-wave mixing field. This interference leads to several striking effects. For instance, as the onset of the interference occurs, the optical shifts in the two-photon resonance excitation line shape become smaller in copropagating geometry so that the line shapes for multiphoton ionization enhanced by the two-photon resonance eventually become unaffected by the second laser. In the same range of concentrations the four-wave mixing field evolves to a concentration-independent intensity. With counterpropagating laser beams the line shape exhibits normal optical shifts like those observed for both copropagating and counterpropagating laser beams at very low concentrations. The theoretical work presented here extends our earlier works by including the effect of laser bandwidth and by removing the restriction of having the second laser be tuned far from three-photon resonance. In this way we have now included, as a special case, the effect of both laser bandwidth and interference on laser-induced transparency. Unlike other effects related to odd-photon destructive interference, the effect of a broad bandwidth is to bring about the predicted effects at much lower concentrations. Studies in rubidium show good agreement between theory and experiment for both ionization line shapes and four-wave mixing intensity as a function of concentration. copyright 1998 The

  8. Two-dimensional topological photonic systems

    Science.gov (United States)

    Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng

    2017-09-01

    The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.

  9. Multiphoton ionization of H{sub 2}{sup +} in xuv laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Guan Xiaoxu; Secor, Ethan B.; Bartschat, Klaus [Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311 (United States); Schneider, Barry I. [Office of Cyberinfrastructure, National Science Foundation, Arlington, Virgina 22230 (United States)

    2011-09-15

    We consider the ionization of the hydrogen molecular ion after one-, two-, and three-photon absorption over a large range of photon energies between 9 and 40 eV in the fixed-nuclei approximation. The temporal development of the system is obtained in a fully ab initio time-dependent grid-based approach in prolate spheroidal coordinates. The alignment dependence of the one-photon ionization amplitude is highlighted in the framework of time-dependent perturbation theory. For one-photon ionization as a function of the nuclear separation, the calculations reveal a significant minimum in the ionization probability. The suppressed ionization is attributed to a Cooper-type minimum, which is similar, but not identical, to the cancellation effect observed in photoionization cross sections of some noble-gas atoms. The effect of the nonspherical two-center Coulomb potential is analyzed. For two- and three-photon ionization, the angle-integrated cross sections clearly map out intermediate-state resonances, and the predictions of the current computations agree very well with those from time-independent calculations. The dominant emission modes for two-photon ionization are found to be very similar in both resonance and off-resonance regions.

  10. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    Compton, R.N.; Klots, C.E.; Stockdale, J.A.D.; Cooper, C.D.

    1984-01-01

    We describe experimental studies of resonantly enhanced multiphoton ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photoelectron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photoionization signal. For both ns and np states the field induced MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength. Finally, we note that the classical two-photon field-ionization threshold is lower for the case in which the laser polarization and the electric field are parallel than it is when they are perpendicular. 22 references, 11 figures

  11. Systematic trends in photonic reagent induced reactions in a homologous chemical family.

    Science.gov (United States)

    Tibbetts, Katharine Moore; Xing, Xi; Rabitz, Herschel

    2013-08-29

    The growing use of ultrafast laser pulses to induce chemical reactions prompts consideration of these pulses as "photonic reagents" in analogy to chemical reagents. This work explores the prospect that photonic reagents may affect systematic trends in dissociative ionization reactions of a homologous family of halomethanes, much as systematic outcomes are often observed for reactions between homologous families of chemical reagents and chemical substrates. The experiments in this work with photonic reagents of varying pulse energy and linear spectral chirp reveal systematic correlations between observable ion yields and the following set of natural variables describing the substrate molecules: the ionization energy of the parent molecule, the appearance energy of each fragment ion, and the relative strength of carbon-halogen bonds in molecules containing two different halogens. The results suggest that reactions induced by photonic reagents exhibit systematic behavior analogous to that observed in reactions driven by chemical reagents, which provides a basis to consider empirical "rules" for predicting the outcomes of photonic reagent induced reactions.

  12. Differential cross sections for non-sequential double ionization of He by 52 eV photons from the Free Electron Laser in Hamburg, FLASH

    International Nuclear Information System (INIS)

    Kurka, M; Rudenko, A; Jiang, Y H; Kuehnel, K U; Foucar, L; Feist, J; Pazourek, R; Nagele, S; Horner, D A; Rescigno, T N; McCurdy, C W; Schoeffler, M; Belkacem, A; Schulz, M; Herrwerth, O; Lezius, M; Kling, M F; Duesterer, S; Treusch, R; Schneider, B I

    2010-01-01

    Two-photon double ionization of He is studied at the Free Electron Laser in Hamburg (FLASH) by inspecting He 2+ momentum (P-vector(He 2+ )) distributions at 52 eV photon energy. We demonstrate that recoil ion momentum distributions can be used to infer information about highly correlated electron dynamics and find the first experimental evidence for 'virtual sequential ionization'. The experimental data are compared with the results of two calculations, both solving the time-dependent Schroedinger equation. We find good overall agreement between experiment and theory, with significant differences for cuts along the polarization direction that cannot be explained by the experimental resolution alone.

  13. Single-Photon Ionization Soft-X-Ray Laser Mass Spectrometry of Potential Hydrogen Storage Materials

    Science.gov (United States)

    Dong, F.; Bernstein, E. R.; Rocca, J. J.

    A desk-top size capillary discharge 46.9 nm lasear is applied in the gas phase study of nanoclusters. The high photon energy allows for single-photon ionization mass spectrometry with reduced cluster fragmentation. In the present studies, neutral Al m C n and Al m C n H x cluster are investigation for the first time. Single photon ionization through 46.9 nm, 118 nm, 193 nm lasers is used to detect neutral cluster distributions through time of flight mass spectrometry. Al m C n clusters are generated through laser ablation of a mixture of Al and C powders pressed into a disk. An oscillation of the vertical ionization energies (VIEs) of Al m C n clusters is observed in the experiments. The VIEs of Al m C n clusters changes as a function of the numbers of Al and C atoms in the clusters. Al m C n H x clusters are generated through an Al ablation plasma-hydrocarbon reaction, an Al-C ablation plasma reacting with H2 gas, or through cold Al m C n clusters reacting with H2 gas in a fast flow reactor. DFT and ab inito calculations are carried out to explore the structures, IEs, and electronic structures of Al m C n H x clusters. C=C bonds are favored for the lowest energy structures for Al m C n clusters. Be m C n H x are generated through a beryllium ablation plasma-hydrocarbon reaction and detected by single photon ionization of 193 nm laser. Both Al m C n H x and Be m C n H x are considered as potential hydrogen storage materials.

  14. Angular distributions of low kinetic energy photoelectrons in one- and two-photon ionisation of rare gas atoms

    International Nuclear Information System (INIS)

    O'Keeffe, P; Bolognesi, P; Avaldi, L; Richter, R; Moise, A; Cleva, P De; Mihelic, A

    2012-01-01

    The angular distributions of electrons emitted in the photoionisation of rare gas atoms using one and two photons are presented. The one-photon results show that these differential measurements can provide complementary information on the photoionisation event with respect to the measurement of the total absorption cross section while the two photon ionization allows additional parameters to be extracted from the experiments thus permitting a more complete description of the photoionisation dynamics.

  15. Single-photon double and triple ionization of acetaldehyde (ethanal) studied by multi-electron coincidence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zagorodskikh, S. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Zhaunerchyk, V. [Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Mucke, M. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Eland, J.H.D. [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ (United Kingdom); Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Squibb, R.J. [Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Karlsson, L. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Linusson, P. [Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Feifel, R., E-mail: raimund.feifel@gu.se [Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)

    2015-12-16

    Highlights: • The first ever valence double ionization spectrum of acetaldehyde is reported. • The first ever site-selectively extracted Auger spectra of acetaldehyde are reported. • The first ever Auger spectra of acetaldehyde involving shake-up states are reported. • The first ever triple ionization spectra of acetaldehyde are reported. • The first ever energy sharing of electron pairs emitted by acetaldehyde is presented. - Abstract: Single-photon multiple ionization processes of acetaldehyde (ethanal) have been experimentally investigated by utilizing a multi-particle coincidence technique based on the time-of-flight magnetic bottle principle, in combination with either a synchrotron radiation source or a pulsed helium discharge lamp. The processes investigated include double and triple ionization in the valence region as well as single and double Auger decay of core-ionized acetaldehyde. The latter are studied site-selectively for chemically different carbon core vacancies, scrutinizing early theoretical predictions specifically made for the case of acetaldehyde. Moreover, Auger processes in shake-up and core-valence ionized states are investigated. In the cases where the processes involve simultaneous emission of two electrons, the distributions of the energy sharing are presented, emphasizing either the knock-out or shake-off mechanism.

  16. Single photon core ionization with core excitation: a new spectroscopic tool

    International Nuclear Information System (INIS)

    Penent, F; Carniato, S; Lablanquie, P; Selles, P; Palaudoux, J; Andric, L; Žitnik, M; Bučar, K; Shigemasa, E; Nakano, M; Ito, K; Hikosaka, Y

    2015-01-01

    The simultaneous core ionization and core excitation process (or K -2 V process) induced by absorption of a single photon provides the basis of a new spectroscopy that offers both advantages of X-ray Photoelectron Spectroscopy (XPS) and near-edge x-ray absorption fine structures (NEXAFS) spectroscopy (paper)

  17. Two-electron time-delay interference in atomic double ionization by attosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Rescigno, Thomas N

    2009-10-04

    A two-color two-photon atomic double ionization experiment using subfemtosecond UV pulses can be designed such that the sequential two-color process dominates and one electron is ejected by each pulse. Nonetheless, ab initio calculations show that, for sufficiently short pulses, a prominent interference pattern in the joint energy distribution of the sequentially ejected electrons can be observed that is due to their indistinguishability and the exchange symmetry of the wave function.

  18. Two-Electron Time-Delay Interference in Atomic Double Ionization by Attosecond Pulses

    International Nuclear Information System (INIS)

    Palacios, A.; Rescigno, T. N.; McCurdy, C. W.

    2009-01-01

    A two-color two-photon atomic double ionization experiment using subfemtosecond uv pulses can be designed such that the sequential two-color process dominates and one electron is ejected by each pulse. Nonetheless, ab initio calculations show that, for sufficiently short pulses, a prominent interference pattern in the joint energy distribution of the sequentially ejected electrons can be observed that is due to their indistinguishability and the exchange symmetry of the wave function.

  19. Controlling the Branching Ratio of Photoionization Products under Two-Color Excitation: Competition between ac Stark Splitting and Two-Path Interference

    International Nuclear Information System (INIS)

    Nakajima, T.; Zhang, J.; Lambropoulos, P.; Lambropoulos, P.

    1997-01-01

    We investigate the variation of the photoionization yields into different ionic channels by means of the one-photon-near-resonant two-photon ionization scheme under two-color excitation. We present a general formulation and the results of specific calculations pertaining to the Ca atom with realistic parameters. A significant change of the ionization into Ca + 4s , 3d , and 4p channels has been observed as a detuning is varied, which agrees qualitatively well with the observation by Wang, Chen, and Elliott [Phys.Rev.Lett.77, 2416 (1996)] for the Ba atom. The importance of the laser intensity effects is also addressed. copyright 1997 The American Physical Society

  20. Can Two-Photon Interference be Considered the Interference of Two Photons?

    International Nuclear Information System (INIS)

    Pittman, T.B.; Strekalov, D.V.; Migdall, A.; Rubin, M.H.; Sergienko, A.V.; Shih, Y.H.

    1996-01-01

    We report on a open-quote open-quote postponed compensation close-quote close-quote experiment in which the observed two-photon entangled state interference cannot be pictured in terms of the overlap of the two individual photon wave packets of a parametric down-conversion pair on a beam splitter. In the sense of a quantum eraser, the distinguishability of the different two-photon Feynman amplitudes leading to a coincidence detection is removed by delaying the compensation until after the output of an unbalanced two-photon interferometer. copyright 1996 The American Physical Society

  1. Investigation of electron-loss and photon scattering correction factors for FAC-IR-300 ionization chamber

    Science.gov (United States)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-02-01

    The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (ke) and photon scattering correction factor (ksc) are needed. ke factor corrects the charge loss from the collecting volume and ksc factor corrects the scattering of photons into collecting volume. In this work ke and ksc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the ke and ksc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.

  2. Single Photon Double Ionization of Atomic Oxygen

    Science.gov (United States)

    Wickramarathna, Madhushani; Gorczyca, Thomas; Ballance, Connor; Stolte, Wayne

    2017-04-01

    Single photon double ionization cross sections are calculated using an R-matrix with pseudostates (RMPS) method which was recently applied by Gorczyca et al. for the double photoionization of helium. With the convergence of these theoretical calculations for the simple case of helium, we extend this methodology to consider the more complex case of oxygen double photoionization. We compare our calculated results with recent measurements at the Advanced Light Source, as well as earlier experimental measurements. Our RMPS results agree well, qualitatively, with the experimental measurements, but there exist outstanding discrepancies to be addressed. This project is supported by NASA APRA award NNX17AD41G.

  3. Two-photon physics

    International Nuclear Information System (INIS)

    Bardeen, W.A.

    1981-10-01

    A new experimental frontier has recently been opened to the study of two photon processes. The first results of many aspects of these reactions are being presented at this conference. In contrast, the theoretical development of research ito two photon processes has a much longer history. This talk reviews the many different theoretical ideas which provide a detailed framework for our understanding of two photon processes

  4. Alignment and pulse-duration effects in two-photon double ionization of H2 by femtosecond XUV laser pulses

    Science.gov (United States)

    Guan, Xiaoxu; Bartschat, Klaus; Schneider, Barry I.; Koesterke, Lars

    2014-10-01

    We present calculations for the dependence of the two-photon double ionization (DI) of H2 on the relative orientation of the linear laser polarization to the internuclear axis and the length of the pulse. We use the fixed-nuclei approximation at the equilibrium distance of 1.4 a0, where a0=0.529 ×10-10m is the Bohr radius. Central photon energies cover the entire direct DI domain from 26.5 to 34.0 eV. In contrast to the parallel geometry studied earlier [X. Guan, K. Bartschat, B. I. Schneider, and L. Koesterke, Phys. Rev. A 83, 043403 (2011), 10.1103/PhysRevA.83.043403], the effect of the pulse duration is almost negligible for the case when the two axes are perpendicular to each other. This is a consequence of the symmetry rules for dipole excitation in the two cases. In the parallel geometry, doubly excited states of 1Σu+ symmetry affect the cross section, while in the perpendicular geometry only much longer-lived 1Πu states are present. This accounts for the different convergence patterns observed in the calculated cross sections as a function of the pulse length. When the photon energy approaches the threshold of sequential DI, a sharp increase of the generalized total cross section (GTCS) with increasing pulse duration is also observed in the perpendicular geometry, very similar to the case of the molecular axis being oriented along the laser polarization direction. Our results differ from those of Colgan et al. [J. Colgan, M. S. Pindzola, and F. Robicheaux, J. Phys. B 41, 121002 (2008), 10.1088/0953-4075/41/12/121002] and Morales et al. [F. Morales, F. Martín, D. A. Horner, T. N. Rescigno, and C. W. McCurdy, J. Phys. B 42, 134013 (2009), 10.1088/0953-4075/42/13/134013], but are in excellent agreement with the GTCSs of Simonsen et al. [A. S. Simonsen, S. A. Sørngård, R. Nepstad, and M. Førre, Phys. Rev. A 85, 063404 (2012), 10.1103/PhysRevA.85.063404] over the entire domain of direct DI.

  5. Investigation of electron-loss and photon scattering correction factors for FAC-IR-300 ionization chamber

    International Nuclear Information System (INIS)

    Mohammadi, S.M.; Tavakoli-Anbaran, H.; Zeinali, H.Z.

    2017-01-01

    The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (k e ) and photon scattering correction factor (k sc ) are needed. k e factor corrects the charge loss from the collecting volume and k sc factor corrects the scattering of photons into collecting volume. In this work k e and k sc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the k e and k sc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.

  6. Nanoparticles as multimodal photon transducers of ionizing radiation

    Science.gov (United States)

    Pratt, Edwin C.; Shaffer, Travis M.; Zhang, Qize; Drain, Charles Michael; Grimm, Jan

    2018-05-01

    In biomedical imaging, nanoparticles combined with radionuclides that generate Cerenkov luminescence are used in diagnostic imaging, photon-induced therapies and as activatable probes. In these applications, the nanoparticle is often viewed as a carrier inert to ionizing radiation from the radionuclide. However, certain phenomena such as enhanced nanoparticle luminescence and generation of reactive oxygen species cannot be completely explained by Cerenkov luminescence interactions with nanoparticles. Herein, we report methods to examine the mechanisms of nanoparticle excitation by radionuclides, including interactions with Cerenkov luminescence, β particles and γ radiation. We demonstrate that β-scintillation contributes appreciably to excitation and reactivity in certain nanoparticle systems, and that excitation by radionuclides of nanoparticles composed of large atomic number atoms generates X-rays, enabling multiplexed imaging through single photon emission computed tomography. These findings demonstrate practical optical imaging and therapy using radionuclides with emission energies below the Cerenkov threshold, thereby expanding the list of applicable radionuclides.

  7. Nonlinear ionization of many-electron systems over a broad photon-energy range

    International Nuclear Information System (INIS)

    Karamatskou, Antonia

    2015-11-01

    Rapid developments in laser technology and, in particular, the advances in the realm of free-electron lasers have initiated tremendous progress in both theoretical and experimental atomic, molecular and optical physics. Owing to high intensities in combination with short pulse durations we can enter the utterly nonlinear regime of light-matter interaction and study the dynamics and features of matter under extreme conditions. The capabilities of X-ray free-electron laser sources have promoted the importance of nonlinear optics also in the X-ray regime. I show in my thesis how we can exploit the nonlinear response regime to reveal hidden information about resonance structures that are not resolved in the weak-field regime. This prospect points to many applications for future investigations of various complex systems with free-electron lasers. In the present thesis the interaction of atomic closed-shell systems with ultrashort and strong laser pulses is investigated. Over a broad photon-energy range the characteristics of the atomic shell are studied with a particular focus on the nonlinear response regime and on electron correlation effects. Several computational extensions of the XCID package for multi-electron dynamics are presented and their applications in various studies are demonstrated; a completely new capability of the numerical method is realized by implementing the calculation of photoelectron spectra and by calculating eigenstates of the many-electron Hamiltonian. The field of study within the present work encompasses (1) the strong-field regime, where the question of the adiabatic character in tunneling ionization is discussed and analyzed, especially for the case of few-cycle pulses; (2) the XUV regime, in which we show for the first time that the collectivity in resonant excitation reveals new information; and (3) the (hard) x-ray regime, which is highly relevant for x-ray free-electron laser experiments, and where we show how important two-photon

  8. A Thin detector with ionization tubes for high energy electrons and photons

    International Nuclear Information System (INIS)

    Amatuni, Ts. A.; Denisov, S.P.; Krasnokutsky, R.N.; Lebedenko, V.N.; Shuvalov, R.S.

    1981-01-01

    A possibility to measure the energy of electrons and photons with a simple detector, consisting of a lead convertor and ionization tubes filled with pure argon, has been studied. The measurements have been performed in a 26.6 GeV electron beam. The best energy resolution approximately 16% was achieved for the convertor thickness 40 mm and argon pressure > 20 atm. The performance of the detector in magnetic field up to 16 kGs has been also studied. It turned out that the mean pulse height rises approximately linearly with increasing magnetic field and becomes flat at H approximately 10 kGs. This behaviour is the same for magnetic field perpendicular and parallel with respect to the ionization tubes. The energy resolution depends weakly on the magnetic field. Ionization tubes filled with argon or xenon under high pressure may be used for minimum ionizing particle detection [ru

  9. Fission product yield measurements using monoenergetic photon beams

    Science.gov (United States)

    Krishichayan; Bhike, M.; Tonchev, A. P.; Tornow, W.

    2017-09-01

    Measurements of fission products yields (FPYs) are an important source of information on the fission process. During the past couple of years, a TUNL-LANL-LLNL collaboration has provided data on the FPYs from quasi monoenergetic neutron-induced fission on 235U, 238U, and 239Pu and has revealed an unexpected energy dependence of both asymmetric fission fragments at energies below 4 MeV. This peculiar FPY energy dependence was more pronounced in neutron-induced fission of 239Pu. In an effort to understand and compare the effect of the incoming probe on the FPY distribution, we have carried out monoenergetic photon-induced fission experiments on the same 235U, 238U, and 239Pu targets. Monoenergetic photon beams of Eγ = 13.0 MeV were provided by the HIγS facility, the world's most intense γ-ray source. In order to determine the total number of fission events, a dual-fission chamber was used during the irradiation. These irradiated samples were counted at the TUNL's low-background γ-ray counting facility using high efficient HPGe detectors over a period of 10 weeks. Here we report on our first ever photofission product yield measurements obtained with monoenegetic photon beams. These results are compared with neutron-induced FPY data.

  10. Fission product yield measurements using monoenergetic photon beams

    Directory of Open Access Journals (Sweden)

    Krishichayan

    2017-01-01

    Full Text Available Measurements of fission products yields (FPYs are an important source of information on the fission process. During the past couple of years, a TUNL-LANL-LLNL collaboration has provided data on the FPYs from quasi monoenergetic neutron-induced fission on 235U, 238U, and 239Pu and has revealed an unexpected energy dependence of both asymmetric fission fragments at energies below 4 MeV. This peculiar FPY energy dependence was more pronounced in neutron-induced fission of 239Pu. In an effort to understand and compare the effect of the incoming probe on the FPY distribution, we have carried out monoenergetic photon-induced fission experiments on the same 235U, 238U, and 239Pu targets. Monoenergetic photon beams of Eγ = 13.0 MeV were provided by the HIγS facility, the world's most intense γ-ray source. In order to determine the total number of fission events, a dual-fission chamber was used during the irradiation. These irradiated samples were counted at the TUNL's low-background γ-ray counting facility using high efficient HPGe detectors over a period of 10 weeks. Here we report on our first ever photofission product yield measurements obtained with monoenegetic photon beams. These results are compared with neutron-induced FPY data.

  11. Fluorenyl benzothiadiazole and benzoselenadiazole near-IR fluorescent probes for two-photon fluorescence imaging (Conference Presentation)

    Science.gov (United States)

    Belfield, Kevin D.; Yao, Sheng; Kim, Bosung; Yue, Xiling

    2016-03-01

    Imaging biological samples with two-photon fluorescence (2PF) microscopy has the unique advantage of resulting high contrast 3D resolution subcellular image that can reach up to several millimeters depth. 2PF probes that absorb and emit at near IR region need to be developed. Two-photon excitation (2PE) wavelengths are less concerned as 2PE uses wavelengths doubles the absorption wavelength of the probe, which means 2PE wavelengths for probes even with absorption at visible wavelength will fall into NIR region. Therefore, probes that fluoresce at near IR region with high quantum yields are needed. A series of dyes based on 5-thienyl-2, 1, 3-benzothiadiazole and 5-thienyl-2, 1, 3-benzoselenadiazole core were synthesized as near infrared two-photon fluorophores. Fluorescence maxima wavelengths as long as 714 nm and fluorescence quantum yields as high as 0.67 were achieved. The fluorescence quantum yields of the dyes were nearly constant, regardless of solvents polarity. These diazoles exhibited large Stokes shift (GM), and high two-photon fluorescence figure of merit (FM , 1.04×10-2 GM). Cells incubated on a 3D scaffold with one of the new probes (encapsulated in Pluronic micelles) exhibited bright fluorescence, enabling 3D two-photon fluorescence imaging to a depth of 100 µm.

  12. Applications of photon-in, photon-out spectroscopy with third-generation, synchrotron-radiation sources

    International Nuclear Information System (INIS)

    Lindle, D.W.; Perera, R.C.C.

    1991-01-01

    This report discusses the following topics: Mother nature's finest test probe; soft x-ray emission spectroscopy with high-brightness synchrotron radiation sources; anisotropy and polarization of x-ray emission from atoms and molecules; valence-hole fluorescence from molecular photoions as a probe of shape-resonance ionization: progress and prospects; structural biophysics on third-generation synchrotron sources; ultra-soft x-ray fluorescence-yield XAFS: an in situ photon-in, photon-out spectroscopy; and x-ray microprobe: an analytical tool for imaging elemental composition and microstructure

  13. Tunneling ionization and harmonic generation in two-color fields

    International Nuclear Information System (INIS)

    Kondo, K.; Kobayashi, Y.; Sagisaka, A.; Nabekawa, Y.; Watanabe, S.

    1996-01-01

    Tunneling ionization and harmonic generation in two-color fields were studied with a fundamental beam (ω) and its harmonics (2ω,3ω), which were generated by a 100-fs Ti:sapphire laser. Ion yields of atoms and molecules were successfully controlled by means of a change in the relative phase between ω and 3ω pulses. Two-color interference was clearly observed in photoelectron spectra and harmonic spectra. In the ω endash 2ω field even-order harmonics were observed in which the intensity was almost equal to that of the odd harmonics because of an asymmetric optical field. These results were compared with the quasi-static model for ionization and with the quantum theory for harmonic generation. copyright 1996 Optical Society of America

  14. Measurement and model of the infrared two-photon emission spectrum of GaAs.

    Science.gov (United States)

    Hayat, Alex; Ginzburg, Pavel; Orenstein, Meir

    2009-07-10

    Two-photon emission from semiconductors was recently observed, but not fully interpreted. We develop a dressed-state model incorporating intraband scattering-related level broadening, yielding nondivergent emission rates. The spectrum calculations for high carrier concentrations including the time dependence of the screening buildup correspond well to our measured two-photon emission spectrum from GaAs.

  15. The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation

    International Nuclear Information System (INIS)

    Shikazono, Naoya; Noguchi, Miho; Fujii, Kentaro; Urushibara, Ayumi; Yokoya, Akinari

    2009-01-01

    After living cells are exposed to ionizing radiation, a variety of chemical modifications of DNA are induced either directly by ionization of DNA or indirectly through interactions with water-derived radicals. The DNA lesions include single strand breaks (SSB), base lesions, sugar damage, and apurinic/apyrimidinic sites (AP sites). Clustered DNA damage, which is defined as two or more of such lesions within one to two helical turns of DNA induced by a single radiation track, is considered to be a unique feature of ionizing radiation. A double strand break (DSB) is a type of clustered DNA damage, in which single strand breaks are formed on opposite strands in close proximity. Formation and repair of DSBs have been studied in great detail over the years as they have been linked to important biological endpoints, such as cell death, loss of genetic material, chromosome aberration. Although non-DSB clustered DNA damage has received less attention, there is growing evidence of its biological significance. This review focuses on the current understanding of (1) the yield of non-DSB clustered damage induced by ionizing radiation (2) the processing, and (3) biological consequences of non-DSB clustered DNA damage. (author)

  16. Properties of electret ionization chambers for routine dosimetry in photon radiation fields

    International Nuclear Information System (INIS)

    Doerschel, B.; Pretzsch, G.

    1985-01-01

    The main properties of photon routine dosemeters are their energy and angular dependence as well as their measuring range and accuracy. The determination of radiation exposure from dosemeter response is based on the choice of an appropriate conversion factor taking into account the influence of body backscattering on the dosemeter response. Measuring range and accuracy of an electret ionization chamber first of all depend on electret stability, methods of charge measurement, and geometry of the chamber. The dosemeter performance is described for an electret ionization chamber which was designed for application to routine monitoring of radiation workers. (author)

  17. Efficient multi-site two-photon functional imaging of neuronal circuits.

    Science.gov (United States)

    Castanares, Michael Lawrence; Gautam, Vini; Drury, Jack; Bachor, Hans; Daria, Vincent R

    2016-12-01

    Two-photon imaging using high-speed multi-channel detectors is a promising approach for optical recording of cellular membrane dynamics at multiple sites. A main bottleneck of this technique is the limited number of photons captured within a short exposure time (~1ms). Here, we implement temporal gating to improve the two-photon fluorescence yield from holographically projected multiple foci whilst maintaining a biologically safe incident average power. We observed up to 6x improvement in the signal-to-noise ratio (SNR) in Fluorescein and cultured hippocampal neurons showing evoked calcium transients. With improved SNR, we could pave the way to achieving multi-site optical recording of fluorogenic probes with response times in the order of ~1ms.

  18. A user's guide to MICAP: A Monte Carlo Ionization Chamber Analysis Package

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.O.; Gabriel, T.A.

    1988-01-01

    A collection of computer codes entitled MICAP - A Monte Carlo Ionization Chamber Analysis Package has been developed to determine the response of a gas-filled cavity ionization chamber in a mixed neutron and photon radiation environment. In particular, MICAP determines the neutron, photon, and total response of the ionization chamber. The applicability of MICAP encompasses all aspects of mixed field dosimetry analysis including detector design, preexperimental planning and post-experimental analysis. The MICAP codes include: RDNDF for reading and processing ENDF/B-formatted cross section files, MICRO for manipulating microscopic cross section data sets, MACRO for creating macroscopic cross section data sets, NEUTRON for transporting neutrons, RECOMB for calculating correction data due to ionization chamber saturation effects, HEAVY for transporting recoil heavy ions and charged particles, PECSP for generating photon and electron cross section and material data sets, PHOTPREP for generating photon source input tapes, and PHOTON for transporting photons and electrons. The codes are generally tailored to provide numerous input options, but whenever possible, default values are supplied which yield adequate results. All of the MICAP codes function independently, and are operational on the ORNL IBM 3033 computer system. 14 refs., 27 figs., 49 tabs.

  19. Two-photon Microscopy and Polarimetry for Assessment of Myocardial Tissue Organization

    Science.gov (United States)

    Archambault-Wallenburg, Marika

    Optical methods can provide useful tissue characterization tools. For this project, two-photon microscopy and polarized light examinations (polarimetry) were used to assess the organizational state of myocardium in healthy, infarcted, and stem-cell regenerated states. Two-photon microscopy visualizes collagen through second-harmonic generation and myocytes through two-photon excitation autofluorescence, providing information on the composition and structure/organization of the tissue. Polarimetry measurements yield a value of linear retardance that can serve as an indicator of tissue anisotropy, and with a dual-projection method, information about the anisotropy axis orientation can also be extracted. Two-photon microscopy results reveal that stem-cell treated tissue retains more myocytes and structure than infarcted myocardium, while polarimetry findings suggest that the injury caused by temporary ligation of a coronary artery is less severe and more diffuse that than caused by a permanent ligation. Both these methods show potential for tissue characterization.

  20. Tale of two photons

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    A very profitable spinoff from electron- positron collisions is two-photon physics. Rather than the electron and positron interacting directly via an exchanged photon, two virtual (transient) photons, one from each particle, get tangled up. With new electron-positron colliders appearing on the scene, a topical meeting on two-photon physics - 'From DAPHNE to LEP 200 and beyond' - held from 2-4 February in Paris, in the premises of the Ministry of Higher Education and Research, was particularly timely. Some 60 physicists, both experimentalists and theorists, participated, with some thirty speakers

  1. Two-photon interference of polarization-entangled photons in a Franson interferometer.

    Science.gov (United States)

    Kim, Heonoh; Lee, Sang Min; Kwon, Osung; Moon, Han Seb

    2017-07-18

    We present two-photon interference experiments with polarization-entangled photon pairs in a polarization-based Franson-type interferometer. Although the two photons do not meet at a common beamsplitter, a phase-insensitive Hong-Ou-Mandel type two-photon interference peak and dip fringes are observed, resulting from the two-photon interference effect between two indistinguishable two-photon probability amplitudes leading to a coincidence detection. A spatial quantum beating fringe is also measured for nondegenerate photon pairs in the same interferometer, although the two-photon states have no frequency entanglement. When unentangled polarization-correlated photons are used as an input state, the polarization entanglement is successfully recovered through the interferometer via delayed compensation.

  2. Broadband two-photon absorption cross sections of benzothiazole derivatives and benzobisthiazolium salts

    Science.gov (United States)

    Noskovičova, Eva; Lorenc, Dušan; Magdolen, Peter; Sigmundová, Ivica; Zahradník, Pavol; Velič, Dušan

    2018-05-01

    Two-photon absorption (TPA) cross sections of conjugated donor-π-acceptor dipolar structures containing benzothiazole or benzobisthiazolium moieties are determined in a broad spectral range from 700 nm to 1000 nm using two-photon induced fluorescence technique. The TPA cross section values range from 150 GM to 4600 GM. The largest values are observed in near-infrared region. The dipolar derivative of benzothiazole has the largest TPA cross section of 4600 GM at wavelength of 890 nm. A combination of the large TPA in the near-infrared region and the high emission quantum yield makes these compounds excellent candidates for two-photon fluorescence microscopy.

  3. Laser ablation of ceramic Al2O3 at 193 nm and 248 nm: The importance of single-photon ionization processes

    Science.gov (United States)

    Peláez, R. J.; Afonso, C. N.; Bator, M.; Lippert, T.

    2013-06-01

    The aim of this work is to demonstrate that single-photon photoionization processes make a significant difference in the expansion and temperature of the plasma produced by laser ablation of ceramic Al2O3 in vacuum as well as to show their consequences in the kinetic energy distribution of the species that eventually will impact on the film properties produced by pulsed laser deposition. This work compares results obtained by mass spectrometry and optical spectroscopy on the composition and features of the plasma produced by laser ablation at 193 nm and 248 nm, i.e., photon energies that are, respectively, above and below the ionization potential of Al, and for fluences between threshold for visible plasma and up to ≈2 times higher. The results show that the ionic composition and excitation of the plasma as well as the ion kinetic energies are much higher at 193 nm than at 248 nm and, in the latter case, the population of excited ions is even negligible. The comparison of Maxwell-Boltzmann temperature, electron temperatures, and densities of the plasmas produced with the two laser wavelengths suggests that the expansion of the plasma produced at 248 nm is dominated by a single population. Instead, the one produced at 193 nm is consistent with the existence of two populations of cold and hot species, the latter associated to Al+ ions that travel at the forefront and produced by single photon ionization as well as Al neutrals and double ionized ions produced by electron-ion impact. The results also show that the most energetic Al neutrals in the plasma produced at the two studied wavelengths are in the ground state.

  4. Enhancement of intermediate-field two-photon absorption by rationally shaped femtosecond pulses

    International Nuclear Information System (INIS)

    Chuntonov, Lev; Rybak, Leonid; Gandman, Andrey; Amitay, Zohar

    2008-01-01

    We extend the powerful frequency-domain analysis of femtosecond two-photon absorption to the intermediate-field regime of considerable absorption yields, where additionally to the weak-field nonresonant two-photon transitions also four-photon transitions play a role. Consequently, we rationally find that the absorption is enhanced over the transform-limited pulse by any shaped pulse having a spectral phase that is antisymmetric around one-half of the transition frequency and a spectrum that is asymmetric around it (red or blue detuned according to the system). The enhancement increases as the field strength increases. The theoretical results for Na are verified experimentally

  5. Ab-initio validation of a simple heuristic expression for the sequential-double-ionization contribution to the double ionization of helium by ultrashort XUV pulses

    International Nuclear Information System (INIS)

    Liu, Aihua; Thumm, Uwe

    2015-01-01

    We study two-photon double ionization of helium by short XUV pulses by numerically solving the time-dependent Schrodinger equation in full dimensionality within a finite-element discrete-variable-representation scheme. Based on the emission asymmetries in joint photoelectron angular distributions, we identify sequential and non-sequential contributions to two-photon double ionization for ultrashort pulses whose spectrum overlaps the sequential (ħω > 54.4 eV) and non-sequential (39.5 eV < ħω < 54.4 eV) double-ionization regimes. (paper)

  6. Ionization yield and absorption spectra reveal superexcited Rydberg state relaxation processes in H{sub 2}O and D{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Fillion, J-H [LERMA, CNRS-UMR 8112, Observatoire de Paris-Meudon, 5 place J Janssen, F-92195, Meudon (France); Dulieu, F [LERMA, CNRS-UMR 8112, Observatoire de Paris-Meudon, 5 place J Janssen, F-92195, Meudon (France); Baouche, S [LERMA, CNRS-UMR 8112, Observatoire de Paris-Meudon, 5 place J Janssen, F-92195, Meudon (France); Lemaire, J-L [LERMA, CNRS-UMR 8112, Observatoire de Paris-Meudon, 5 place J Janssen, F-92195, Meudon (France); Jochims, H W [Institut fuer Physikalische und Theoretische Chemie der Freien Universitaet Berlin, Takustrasse 3, D-14195 Berlin 33 (Germany); Leach, S [LERMA, CNRS-UMR 8112, Observatoire de Paris-Meudon, 5 place J Janssen, F-92195, Meudon (France)

    2003-07-14

    The absorption cross section and the ionization quantum yield of H{sub 2}O have been measured using a synchrotron radiation source between 9 and 22 eV. Comparison between the two curves highlights competition between relaxation processes for Rydberg states converging to the first A-tilde {sup 2}A{sub 1} and to the second B-tilde {sup 2}B{sub 2} excited states of H{sub 2}O{sup +}. Comparison with D{sub 2}O absorption and ionization yields, derived from Katayama et al (1973 J. Chem. Phys. 59 4309), reveals specific energy-dependent deuteration effects on competitive predissociation and autoionization relaxation channels. Direct ionization was found to be only slightly affected by deuteration.

  7. Ionization of molecular hydrogen in ultrashort intense laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Vanne, Yulian V.

    2010-03-18

    A novel ab initio numerical approach is developed and applied that solves the time-dependent Schroedinger equation describing two-electron diatomic molecules (e.g. molecular hydrogen) exposed to an intense ultrashort laser pulse. The method is based on the fixed-nuclei and the non-relativistic dipole approximations and aims to accurately describe both correlated electrons in full dimensionality. The method is applicable for a wide range of the laser pulse parameters and is able to describe both few-photon and many-photon single ionization processes, also in a non-perturbative regime. A key advantage of the method is its ability to treat the strong-field response of the molecules with arbitrary orientation of the molecular axis with respect to the linear-polarized laser field. Thus, this work reports on the first successful orientation-dependent analysis of the multiphoton ionization of H{sub 2} performed by means of a full-dimensional numerical treatment. Besides the investigation of few-photon regime, an extensive numerical study of the ionization by ultrashort frequency-doubled Ti:sapphire laser pulses (400 nm) is presented. Performing a series of calculations for different internuclear separations, the total ionization yields of H{sub 2} and D{sub 2} in their ground vibrational states are obtained for both parallel and perpendicular orientations. A series of calculations for 800 nm laser pulses are used to test a popular simple interference model. Besides the discussion of the ab initio numerical method, this work considers different aspects related to the application of the strong-field approximation (SFA) for investigation of a strong-field response of an atomic and molecular system. Thus, a deep analysis of the gauge problem of SFA is performed and the quasistatic limit of the velocity-gauge SFA ionization rates is derived. The applications of the length-gauge SFA are examined and a recently proposed generalized Keldysh theory is criticized. (orig.)

  8. Ionization of molecular hydrogen in ultrashort intense laser pulses

    International Nuclear Information System (INIS)

    Vanne, Yulian V.

    2010-01-01

    A novel ab initio numerical approach is developed and applied that solves the time-dependent Schroedinger equation describing two-electron diatomic molecules (e.g. molecular hydrogen) exposed to an intense ultrashort laser pulse. The method is based on the fixed-nuclei and the non-relativistic dipole approximations and aims to accurately describe both correlated electrons in full dimensionality. The method is applicable for a wide range of the laser pulse parameters and is able to describe both few-photon and many-photon single ionization processes, also in a non-perturbative regime. A key advantage of the method is its ability to treat the strong-field response of the molecules with arbitrary orientation of the molecular axis with respect to the linear-polarized laser field. Thus, this work reports on the first successful orientation-dependent analysis of the multiphoton ionization of H 2 performed by means of a full-dimensional numerical treatment. Besides the investigation of few-photon regime, an extensive numerical study of the ionization by ultrashort frequency-doubled Ti:sapphire laser pulses (400 nm) is presented. Performing a series of calculations for different internuclear separations, the total ionization yields of H 2 and D 2 in their ground vibrational states are obtained for both parallel and perpendicular orientations. A series of calculations for 800 nm laser pulses are used to test a popular simple interference model. Besides the discussion of the ab initio numerical method, this work considers different aspects related to the application of the strong-field approximation (SFA) for investigation of a strong-field response of an atomic and molecular system. Thus, a deep analysis of the gauge problem of SFA is performed and the quasistatic limit of the velocity-gauge SFA ionization rates is derived. The applications of the length-gauge SFA are examined and a recently proposed generalized Keldysh theory is criticized. (orig.)

  9. High harmonic generation at the tunneling ionization of atoms by intense laser radiation near the classical cut-off

    Science.gov (United States)

    Gets, A. V.; Krainov, V. P.

    2018-01-01

    The yield of spontaneous photons at the tunneling ionization of atoms by intense low-frequency laser radiation near the classical cut-off is estimated analytically by using the three-step model. The Bell-shaped dependence in the universal photon spectrum is explained qualitatively.

  10. High energy photon reference for radiation protection: technical design of the LINAC beam and ionization chambers; and calculation of monoenergetic conversion coefficients

    Directory of Open Access Journals (Sweden)

    Dusciac D.

    2016-01-01

    Full Text Available In this work, we present the results of the first part of a research project aimed at offering a complete response to dosimeters providers and nuclear physicists’ demands for high-energy (6 – 9 MeV photon beams for radiation protection purposes. Classical facilities allowing the production of high-energy photonic radiation (proton accelerators, nuclear reactors are very rare and need large investment for development and use. A novel solution is proposed, consisting in the use of a medical linear accelerator, allowing a significant decrease of all costs.Using Monte Carlo simulations (MCNP5 and PENELOPE codes, a specifically designed electron-photon conversion target allowing for obtaining a high energy photon beam (with an average energy weighted by fluence of about 6 MeV has been built for radiation protection purposes. Due to the specific design of the target, this “realistic” radiation protection high-energy photon beam presents a uniform distribution of air kerma rate at a distance of 1 m, over a 30 × 30 cm2 surface. Two graphite cavity ionizing chambers for ionometric measurements have been built. For one of these chambers, the charge collection volume has been measured allowing for its use as a primary standard. The second ionizing chamber is used as a transfer standard; as such it has been calibrated in a 60Co beam, and in the high energy photon beam for radiation protection.The measurements with these ionizing chambers allowed for an evaluation of the air kerma rate in the LINAC based high-energy photon beam for radiation protection: the values cover a range between 36 mGy/h and 210 mGy/h, compatible with radiation protection purposes.Finally, using Monte Carlo simulations, conversion coefficients from air kerma to dose equivalent quantities have been calculated in the range between 10 keV and 22.4 MeV, for the spectral distribution of the fluence corresponding to the beam produced by the linear accelerator of the LNE-LNHB.

  11. Investigation of the energy levels of the gadolinium atom using resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Kim, Jin Tae; Yi, Jong Hoon; Rhee, Yong Joo; Lee, Jong Min

    2000-01-01

    We have investigated the ionization processes, the energy values, and the strengths of ion signals by using a dye laser frequency in the ultra-violet range with one-color multi-photon ionization. Also, two color multi-photon ionization by using another near infrared photon has been done to investigate energy levels with odd-parity in the energy range of between 35500 cm -1 and 37700 cm -1

  12. Two-dimensional topological photonics

    Science.gov (United States)

    Khanikaev, Alexander B.; Shvets, Gennady

    2017-12-01

    Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

  13. Multi-photon resonant effects in strong-field ionization: origin of the dip in experimental longitudinal momentum distributions

    International Nuclear Information System (INIS)

    Alnaser, A S; Maharjan, C M; Wang, P; Litvinyuk, I V

    2006-01-01

    We studied ionization of neon and argon by intense linearly polarized femtosecond laser pulses of different wavelengths (400 nm and 800 nm) and peak intensities, and by measuring momentum distributions of singly charged positive ions in the direction parallel to laser polarization. For Ne the momentum distributions exhibited a characteristic dip at zero momentum at 800 nm and a complex multipeak structure at 400 nm. Similarly, for Ar the momentum distributions evolved from a complex multipeak structure with a pronounced dip in the centre at 400 nm, to a smooth distribution characteristic of pure tunneling ionization (800 nm, high intensities). In the intermediate regime (800 nm, medium to low intensities), for both atoms we observed recoil ion momentum distributions modulated by quasi-periodic structures usually seen in the photoelectron energy spectra in a multi-photon regime (ATI spectra). Ne did show a characteristic 'dip' at low momentum, while the longitudinal momentum distribution for Ar exhibited a spike at zero momentum instead. The spectra did dramatically change at 400 nm, where both ions show the pronounced dip near zero momentum. Based on our results, we conclude that the structures observed in Ne and Ar momentum distributions reflect the specifics of atomic structure of the two targets and should not be attributed to effects of electron recollision, as was suggested earlier. Instead, as our results indicate, they are due to the effects of multi-photon resonant enhancement of strong-field ionization. (letter to the editor)

  14. A series of fluorene-based two-photon absorbing molecules: synthesis, linear and nonlinear characterization, and bioimaging

    Science.gov (United States)

    Andrade, Carolina D.; Yanez, Ciceron O.; Rodriguez, Luis; Belfield, Kevin D.

    2010-01-01

    The synthesis, structural, and photophysical characterization of a series of new fluorescent donor–acceptor and acceptor-acceptor molecules, based on the fluorenyl ring system, with two-photon absorbing properties is described. These new compounds exhibited large Stokes shifts, high fluorescent quantum yields, and, significantly, high two-photon absorption cross sections, making them well suited for two-photon fluorescence microscopy (2PFM) imaging. Confocal and two-photon fluorescence microscopy imaging of COS-7 and HCT 116 cells incubated with probe I showed endosomal selectivity, demonstrating the potential of this class of fluorescent probes in multiphoton fluorescence microscopy. PMID:20481596

  15. Data reading with the aid of one-photon and two-photon luminescence in three-dimensional optical memory devices based on photochromic materials

    International Nuclear Information System (INIS)

    Akimov, Denis A; Zheltikov, Aleksei M; Koroteev, Nikolai I; Naumov, A N; Fedotov, Andrei B; Magnitskiy, Sergey A; Sidorov-Biryukov, D A; Sokolyuk, N T

    1998-01-01

    The problem of nondestructive reading of the data stored in the interior of a photochromic sample was analysed. A comparison was made of the feasibility of reading based on one-photon and two-photon luminescence. A model was proposed for the processes of reading the data stored in photochromic molecules with the aid of one-photon and two-photon luminescence. In addition to photochromic transitions, account was taken of the transfer of populations between optically coupled transitions in molecules under the action of the exciting radiation. This model provided a satisfactory description of the kinetics of decay of the coloured form of bulk samples of spiropyran and made it possible to determine experimentally the quantum yield of the reverse photoreaction as well as the two-photon absorption cross section of the coloured form. Measurements were made of the characteristic erasure times of the data stored in a photochromic medium under one-photon and two-photon luminescence reading conditions. It was found that the use of two-photon luminescence made it possible to enhance considerably the contrast and localisation of the optical data reading scheme in three-dimensional optical memory devices. The experimental results were used to estimate the two-photon absorption cross section of the coloured form of a sample of indoline spiropyran in a polymethyl methacrylate matrix. (laser applications and other topics in quantum electronics)

  16. Mitochondria-targeted cationic porphyrin-triphenylamine hybrids for enhanced two-photon photodynamic therapy.

    Science.gov (United States)

    Hammerer, Fabien; Poyer, Florent; Fourmois, Laura; Chen, Su; Garcia, Guillaume; Teulade-Fichou, Marie-Paule; Maillard, Philippe; Mahuteau-Betzer, Florence

    2018-01-01

    The proof of concept for two-photon activated photodynamic therapy has already been achieved for cancer treatment but the efficiency of this approach still heavily relies on the availability of photosensitizers combining high two-photon absorption and biocompatibility. In this line we recently reported on a series of porphyrin-triphenylamine hybrids which exhibit high singlet oxygen production quantum yield as well as high two-photon absorption cross-sections but with a very poor cellular internalization. We present herein new photosensitizers of the same porphyrin-triphenylamine hybrid series but bearing cationic charges which led to strongly enhanced water solubility and thus cellular penetration. In addition the new compounds have been found localized in mitochondria that are preferential target organelles for photodynamic therapy. Altogether the strongly improved properties of the new series combined with their specific mitochondrial localization lead to a significantly enhanced two-photon activated photodynamic therapy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Investigation of the energy levels of the gadolinium atom using resonance ionization mass spectrometry

    CERN Document Server

    Kim, J T; Rhee, Y J; Lee, J M

    2000-01-01

    We have investigated the ionization processes, the energy values, and the strengths of ion signals by using a dye laser frequency in the ultra-violet range with one-color multi-photon ionization. Also, two color multi-photon ionization by using another near infrared photon has been done to investigate energy levels with odd-parity in the energy range of between 35500 cm sup - sup 1 and 37700 cm sup - sup 1

  18. Selective two-photon excitation of a vibronic state by correlated photons.

    Science.gov (United States)

    Oka, Hisaki

    2011-03-28

    We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.

  19. Modeling and simulation of two-step resonance ionization processes using CW and pulsed lasers

    CERN Document Server

    de Groote, Ruben; Flanagan, Kieran

    This thesis derives and discusses equations that describe the evolution of atomic systems subjected to two monochromatic and coherent radiation fields and treats both continuous and temporally pulsed irradiation. This theoretical description is de- veloped mainly to understand the influence of the photon field intensities on experimental ionization spectra. The primary ap- plication of this theoretical framework is on methods that rely on resonant laser excitation and non-resonant laser ionization to extract information on the hyperfine structure of atomic systems. In particular, qualitative and quantitative discussions on the laser-related changes in hyperfine splitting extracted from ion- ization spectra are presented. Also, a method for increasing the resolution of resonance ionization techniques (potentially up un- til the natural linewidth of the electronic transitions) is discussed and theoretically justified. Both topics are illustrated with exper- imental data.

  20. Two-dimensional 'photon fluid': effective photon-photon interaction and physical realizations

    International Nuclear Information System (INIS)

    Chiao, R Y; Hansson, T H; Leinaas, J M; Viefers, S

    2004-01-01

    We describe a recently developed effective theory for atom-mediated photon-photon interactions in a two-dimensional 'photon fluid' confined to a Fabry-Perot resonator. The photons in the lowest longitudinal cavity mode will appear as massive bosons interacting via a renormalized delta-function potential with a strength determined by physical parameters such as the density of atoms and the detuning of the photons relative to the resonance frequency of the atoms. We discuss novel quantum phenomena for photons, such as Bose-Einstein condensation and bound state formation, as well as possible experimental scenarios based on Rydberg atoms in a microwave cavity, or alkali atoms in an optical cavity

  1. Ambient ionization mass spectrometry: A tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Shiea, Jentaie, E-mail: jetea@fac.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Cancer Center, Kaohsiung Medical University, Kaohsiung, Taiwan (China)

    2011-09-19

    Highlights: {yields} Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. {yields} We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. {yields} The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  2. Resonance Enhanced Multi-Photon Ionization and Uv-Uv Hole-Burning Spectroscopic Studies of Jet-Cooled Acetanilide Derivatives

    Science.gov (United States)

    Moon, Ceol Joo; Min, Ahreum; Ahn, Ahreum; Lee, Seung Jun; Choi, Myong Yong; Kim, Seong Keun

    2013-06-01

    Conformational investigations and photochemistry of jet-cooled methacetine (MA) and phenacetine (PA) using one color resonant two-photon ionization (REMPI), UV-UV hole-burning and IR-dip spectroscopy are presented. MA and PA are derivatives of acetanilide, substituted by methoxyl, ethoxyl group in the para position of acetanilide, respectively. Moreover, we have investigated conformational information of the acetanilide derivatives (AAP, MA and PA)-water. In this work, we will present and discuss the solvent effects of the hydroxyl group of acetanilide derivatives in the excited state.

  3. Photoelectron imaging spectroscopy for (2+1) resonance-enhanced multiphoton ionization of atomic bromine

    International Nuclear Information System (INIS)

    Kim, Yong Shin; Jung, Young Jae; Kang, Wee Kyung; Jung, Kyung Hoon

    2002-01-01

    Two-photon resonant third photon ionization of atomic bromine (4p 5 2 P 3/2 and 2 P 1/2 ) has been studied using a photoelectron imaging spectroscopy in the wavelength region 250-278 nm. The technique has yielded simultaneously both relative branching ratios to the three levels of Br + ( 3 P 2 , 3 P 0,1 and 1 D 2 ) with 4p 4 configuration and the angular distributions of outgoing photoelectrons. The product branching ratios reveal a strong propensity to populate particular levels in many cases. Several pathways have been documented for selective formation of Br + ( 3 P 2 ) and Br + ( 3 P 0,1 ) ions. In general, the final ion level distributions are dominated by the preservation of the ion core configuration of a resonant excited state. Some deviations from this simple picture are discussed in terms of the configuration interaction of resonant states and the autoionization in the continuum. The photoelectron angular distributions are qualitatively similar for all transitions, with a positive A 2 anisotropy coefficient of 1.0 - 2.0 and negligible A 4 in most cases, which suggests that the angular distribution is mainly determined by the single-photon ionization process of a resonant excited state induced from the third photon absorption

  4. Two-photon interference : spatial aspects of two-photon entanglement, diffraction, and scattering

    NARCIS (Netherlands)

    Peeters, Wouter Herman

    2010-01-01

    This dissertation contains scientific research within the realm of quantum optics, which is a branch of physics. An experimental and theoretical study is made of two-photon interference phenomena in various optical systems. Spatially entangled photon pairs are produced via the nonlinear optical

  5. A spirobifluorene-based two-photon fluorescence probe for mercury ions and its applications in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Haibo, E-mail: xiaohb@shnu.edu.cn; Zhang, Yanzhen; Zhang, Wu; Li, Shaozhi; Tan, Jingjing; Han, Zhongying

    2017-05-01

    A novel spirobifluorene derivative SPF-TMS, which containing dithioacetal groups and triphenylamine units, was synthesized. The probing behaviors toward various metal ions were investigated via UV/Vis absorption spectra as well as one-photon fluorescence changes. The results indicated that SPF-TMS exhibits high sensitivity and selectivity for mercury ions. The detection limit was at least 8.6 × 10{sup −8}M, which is excellent comparing with other optical sensors for Hg{sup 2+}. When measured by two-photon excited fluorescence technique in THF at 800 nm, the two-photon cross-section of SPF-TMS is 272 GM. Especially, upon reaction with mercury species, SPF-TMS yielded another two-photon dye SPF-DA. Both SPF-TMS and SPF-DA emit strong two-photon induced fluorescence and can be applied in cell imaging by two-photon microscopy. - Highlights: • We report a spirobifluorene-based molecule as two-photon fluorescent probe with large two-photon cross-section. • The molecule has exclusive selectivity and sensitivity for mercury species. • The molecule has large two-photon emission changes before and after addition of Hg{sup 2+}. • Both the probe and the mercury ion-promoted reaction product can be applied in cell imaging by two-photon microscopy.

  6. Fitting methods for constructing energy-dependent efficiency curves and their application to ionization chamber measurements

    International Nuclear Information System (INIS)

    Svec, A.; Schrader, H.

    2002-01-01

    An ionization chamber without and with an iron liner (absorber) was calibrated by a set of radionuclide activity standards of the Physikalisch-Technische Bundesanstalt (PTB). The ionization chamber is used as a secondary standard measuring system for activity at the Slovak Institute of Metrology (SMU). Energy-dependent photon-efficiency curves were established for the ionization chamber in defined measurement geometry without and with the liner, and radionuclide efficiencies were calculated. Programmed calculation with an analytical efficiency function and a nonlinear regression algorithm of Microsoft (MS) Excel for fitting was used. Efficiencies from bremsstrahlung of pure beta-particle emitters were calibrated achieving a 10% accuracy level. Such efficiency components are added to obtain the total radionuclide efficiency of photon emitters after beta decay. The method yields differences of experimental and calculated radionuclide efficiencies for most of the photon-emitting radionuclides in the order of a few percent

  7. Comparing of the yield curve of the pediatric X-ray equipment using thermoluminescent dosimeters and cylindrical ionization chamber

    International Nuclear Information System (INIS)

    Filipov, Danielle; Schelin, Hugo R.; Tilly Junior, Joao G.

    2014-01-01

    The determination of the yield curve of a radiographic equipment should be realized once a year, or when the unit be serviced. Besides being a requirement of ANVISA, through this test is possible to determine the incident air kerma (at a given point in the center of the beam) - INAK. Based on these concepts, the main objective of this work is the comparison of yield curves of the pediatric X-ray apparatus using two different detectors: one cylindrical ionization chamber and thermoluminescent dosimeters type LiF: Mg, Cu, P, as per protocol RLA / 9/057 IAEA. Then the equation of the yield curve (generated by each detector) was used to determine the INAK of 10 pediatric examinations, performed on this equipment. After the process of calibration of both detectors, they were placed side by side at a focus of the tube equipment for determining the performance of the same curve. Finally, using the curves generated by two detectors, INAK values of the 10 tests were calculated (from the kVp values, and mAs focus-patient of each exams), generating difference values at most 5%. As a conclusion, it can be said that the TLD lithium fluoride doped with Mg, Cu and P and the cylindrical ionization chambers may be used satisfactorily to determine the yield curve, whether as quality control or dosimetry

  8. Scintillation properties of semiconducting {sup 6}LiInSe{sub 2} crystals to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Brenden [Y-12 National Security Complex, Oak Ridge, TN (United States); Vanderbilt University, Nashville, TN (United States); Groza, Michael; Tupitsyn, Eugene [Fisk University, Nashville, TN (United States); Lukosi, Eric [University of Tennessee, Knoxville, TN (United States); Stassun, Keivan; Burger, Arnold [Vanderbilt University, Nashville, TN (United States); Fisk University, Nashville, TN (United States); Stowe, Ashley [Y-12 National Security Complex, Oak Ridge, TN (United States); Vanderbilt University, Nashville, TN (United States); University of Tennessee, Knoxville, TN (United States)

    2015-11-21

    {sup 6}LiInSe{sub 2} has gained attention recently as a semiconducting thermal neutron detector. As presented herein, the chalcogenide compound semiconductor also detects incident neutrons via scintillation, making {sup 6}LiInSe{sub 2} the only lithium containing semiconductor to respond to neutrons via both detection mechanisms. Both yellow and red crystals, which appear in the literature, were investigated. Only the yellow crystal responded favorably to ionizing radiation, similar to the semiconducting operation utilizing electrodes. The obtained light yield for yellow crystals is 4400 photons/MeV, referenced to Bi{sub 4}Ge{sub 3}O{sub 12} (BGO).The estimated thermal neutron light yield was 21,000 photons/thermal neutron. The two measured decay time components were found to be 31±1 ns (49%) and 143±9 ns (51%).This crystal provides efficient, robust detection of neutrons via scintillation with respectable light yield and rapid response, enabling its use for a broad array of neutron detection applications.

  9. Laser ablation of ceramic Al{sub 2}O{sub 3} at 193 nm and 248 nm: The importance of single-photon ionization processes

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez, R. J.; Afonso, C. N. [Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, Madrid 28006 (Spain); Bator, M.; Lippert, T. [General Energy Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2013-06-14

    The aim of this work is to demonstrate that single-photon photoionization processes make a significant difference in the expansion and temperature of the plasma produced by laser ablation of ceramic Al{sub 2}O{sub 3} in vacuum as well as to show their consequences in the kinetic energy distribution of the species that eventually will impact on the film properties produced by pulsed laser deposition. This work compares results obtained by mass spectrometry and optical spectroscopy on the composition and features of the plasma produced by laser ablation at 193 nm and 248 nm, i.e., photon energies that are, respectively, above and below the ionization potential of Al, and for fluences between threshold for visible plasma and up to Almost-Equal-To 2 times higher. The results show that the ionic composition and excitation of the plasma as well as the ion kinetic energies are much higher at 193 nm than at 248 nm and, in the latter case, the population of excited ions is even negligible. The comparison of Maxwell-Boltzmann temperature, electron temperatures, and densities of the plasmas produced with the two laser wavelengths suggests that the expansion of the plasma produced at 248 nm is dominated by a single population. Instead, the one produced at 193 nm is consistent with the existence of two populations of cold and hot species, the latter associated to Al{sup +} ions that travel at the forefront and produced by single photon ionization as well as Al neutrals and double ionized ions produced by electron-ion impact. The results also show that the most energetic Al neutrals in the plasma produced at the two studied wavelengths are in the ground state.

  10. Beam-helicity associated electroproduction of real photons ep {yields} e{gamma}{pi}N in the {Delta}-resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). 2. Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Akopov, N. [Yerevan Physics Institute (Argentina); Aschenauer, E.C. [DESY Zeuthen (Germany)] [and others; Collaboration: HERMES Collaboration

    2013-10-15

    The beam-helicity asymmetry in associated electroproduction of real photons, ep {yields} e{gamma}{pi}N, in the {Delta}(1232)-resonance region is measured using the longitudinally polarized HERA positron beam and an unpolarized hydrogen target. Azimuthal Fourier amplitudes of this asymmetry are extracted separately for two channels, ep {yields} e{gamma}{pi}{sup 0}p and ep {yields} e{gamma}{pi}{sup +}n, from a data set collected with a recoil detector. All asymmetry amplitudes are found to be consistent with zero.

  11. Relative dosimetry of photon beam of 6 MV with a liquid ionization chamber

    International Nuclear Information System (INIS)

    Benitez Villegas, E. M.; Casado Villalon, F. J.; Martin-Cueto, J. A.; Caudepon Moreno, F.; Garcia Pareja, S.; Galan Montenegro, P.

    2011-01-01

    The increasing use of reduced size fields in the special techniques of treatment generates regions with high dose gradients. It therefore requires the use of detectors that present high spatial resolution. The aim of this study is to compare the dosimetric measurements obtained with a liquid ionization chamber PTW MicroLion recently acquired with other commonly used detectors for a photon beam of 6 MV linear electron accelerator Varian 600DBX.

  12. Molecular photosensitisers for two-photon photodynamic therapy.

    Science.gov (United States)

    Bolze, F; Jenni, S; Sour, A; Heitz, V

    2017-11-30

    Two-photon excitation has attracted the attention of biologists, especially after the development of two-photon excited microscopy in the nineties. Since then, new applications have rapidly emerged such as the release of biologically active molecules and photodynamic therapy (PDT) using two-photon excitation. PDT, which requires a light-activated drug (photosensitiser), is a clinically approved and minimally invasive treatment for cancer and for non-malignant diseases. This feature article focuses on the engineering of molecular two-photon photosensitisers for PDT, which should bring important benefits to the treatment, increase the treatment penetration depth with near-infrared light excitation, improve the spatial selectivity and reduce the photodamage to healthy tissues. After an overview of the two-photon absorption phenomenon and the methods to evaluate two-photon induced phototoxicity on cell cultures, the different classes of photosensitisers described in the literature are discussed. The two-photon PDT performed with historical one-photon sensitisers are briefly presented, followed by specifically engineered cyclic tetrapyrrole photosensitisers, purely organic photosensitisers and transition metal complexes. Finally, targeted two-photon photosensitisers and theranostic agents that should enhance the selectivity and efficiency of the treatment are discussed.

  13. Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of 3,5-difluorophenol

    Science.gov (United States)

    Peng, Wei Chih; Wu, Pei Ying; Tzeng, Shen Yuan; Tzeng, Wen Bih

    2018-05-01

    The first electronic transition and adiabatic ionization energies of 3,5-difluorophenol (35DFP) have been identified as 37614 cm-1 and 72468 cm-1, respectively. These energy values of 35DFP are marginally higher than those of other positional isomers of difluorophenols (25DFP, 34DFP, and 24DFP). The observed active vibrations are primarily due to the in-plane and out-of-plane ring deformation and substituent-sensitive bending motions in the electronically excited (S1) and cationic ground (D0) states.

  14. Comparison of the PCI distortion effects on the Auger lineshape for electron and photon impact ionization

    International Nuclear Information System (INIS)

    Paripas, B.; Vitez, G.; Vikor, Gy.; Tokesi, K.; Sankari, R.; Calo, A.

    2005-01-01

    The distortion effects of the post-collision interaction (PCI) on the Ar LMM Auger electron lineshape for electron and photon impact ionization have been calculated. The calculations were based on the eikonal model of Kuchiev and Sheinerman [Sov. Phys. - Tech. Phys. 32 (1987) 879]. It is shown that the Auger peak asymmetry depends on the emission angle of the Auger electron relative to the primary beam (and the polarization vector of the photon beam). At a given excess energy, defined as the difference between the impact energy and the binding energy, the absolute value of the Auger peak asymmetry is always larger for electron impact ionization than for photoionization. At the same time, the angular dependence of the PCI distortion is stronger for photoionization. In both cases the Auger peak asymmetry has a maximum when the energy of the ejected electron and that of the Auger electron are nearly equal. The calculations are in good agreement with our previous experimental results

  15. Holographic Two-Photon Induced Photopolymerization

    Data.gov (United States)

    Federal Laboratory Consortium — Holographic two-photon-induced photopolymerization (HTPIP) offers distinct advantages over conventional one-photon-induced photopolymerization and current techniques...

  16. A review of two photon physics

    International Nuclear Information System (INIS)

    Cooper, S.

    1982-08-01

    This talk is intended as an introduction for those not yet expert in two-photon physics, especially those e + e - one-photon physicists who still think of two-photon events as background. I concentrate on the physics questions involved, especially emphasizing the areas where I feel progress can be made in the near future, and of necessity leaving most experimental details to be found in the references. After a quick survey of the field and a few words about kinematics, I discuss in detail two major fields: the photon structure function and resonance production. (orig.)

  17. Photon up-conversion increases biomass yield in Chlorella vulgaris.

    Science.gov (United States)

    Menon, Kavya R; Jose, Steffi; Suraishkumar, Gadi K

    2014-12-01

    Photon up-conversion, a process whereby lower energy radiations are converted to higher energy levels via the use of appropriate phosphor systems, was employed as a novel strategy for improving microalgal growth and lipid productivity. Photon up-conversion enables the utilization of regions of the solar spectrum, beyond the typical photosynthetically active radiation, that are usually wasted or are damaging to the algae. The effects of up-conversion of red light by two distinct sets of up-conversion phosphors were studied in the model microalgae Chlorella vulgaris. Up-conversion by set 1 phosphors led to a 2.85 fold increase in biomass concentration and a 3.2 fold increase in specific growth rate of the microalgae. While up-conversion by set 2 phosphors resulted in a 30% increase in biomass and 12% increase in specific intracellular neutral lipid, while the specific growth rates were comparable to that of the control. Furthermore, up-conversion resulted in higher levels of specific intracellular reactive oxygen species in C. vulgaris. Up-conversion of red light (654 nm) was shown to improve biomass yields in C. vulgaris. In principle, up-conversion can be used to increase the utilization range of the electromagnetic spectrum for improved cultivation of photosynthetic systems such as plants, algae, and microalgae. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Quantum entanglement and phase transition in a two-dimensional photon-photon pair model

    International Nuclear Information System (INIS)

    Zhang Jianjun; Yuan Jianhui; Zhang Junpei; Cheng Ze

    2013-01-01

    We propose a two-dimensional model consisting of photons and photon pairs. In the model, the mixed gas of photons and photon pairs is formally equivalent to a two-dimensional system of massive bosons with non-vanishing chemical potential, which implies the existence of two possible condensate phases. Using the variational method, we discuss the quantum phase transition of the mixed gas and obtain the critical coupling line analytically. Moreover, we also find that the phase transition of the photon gas can be interpreted as enhanced second harmonic generation. We then discuss the entanglement between photons and photon pairs. Additionally, we also illustrate how the entanglement between photons and photon pairs can be associated with the phase transition of the system.

  19. Ionization of cloud and intercloud hydrogen by O and B stars

    International Nuclear Information System (INIS)

    Elmergreen, B.G.

    1975-01-01

    Lyman continuum radiation from OB stars may be the primary source of ionization of interstellar hydrogen. Eighty percent of Lyman continuum photons produced by these stars comes from a very small number of 05 and 06 stars, however, and if this radiation is ionized to interstellar hydrogen with the high degree of uniformity indicated by pulsar dispersion measures or by the diffuse background of Hα emission, then each 05 or 06 star must be able to maintain an H II region over a distance of several hundred parsecs. The cloudy structure of interstellar space prevents such long range ionization, however, and a large fraction of the stellar Lyman continuum photons will be converted to Balmer photons in the high-density ionized surfaces of the exposed clouds. Two questions concerning this cloudy obscuration naturally arise: what will be the consequences of a cloud's exposure to Lyman continuum radiation, and to what extent can low-density, intercloud hydrogen be ionized in the obscured regions. These questions are considered

  20. Two-photon superradiance in extended medium

    International Nuclear Information System (INIS)

    Branzan, V.; Enache, N.

    1993-01-01

    The possibility of collectivization of an ensemble of atoms of an extended system (the distance between atoms is larger or equal to the wave-length of a spontaneous emitted radiation) during two-photon spontaneous decay is theoretically investigated. It is demonstrated that such systems of inverted atoms should emit phase-correlated pairs of photons. The time-space correlation among atoms is realized due to the two-photon exchanging through the electromagnetic field's vacuum. An increase of the spontaneous decay rate of the two-atom inverted ensemble is demonstrated. The dependence of two-photon superradiance on the sample geometry is investigated. A non-equilibrium method of the elimination of the atoms level Fermi-operators is proposed. (Author)

  1. Electron ionization and the Compton effect in double ionization of helium

    International Nuclear Information System (INIS)

    Samson, J.

    1994-01-01

    The author discusses ionization phenomena in helium, both photoionization and electron ionization. In particular he compares double ionization cross sections with total cross sections, as a function of electron energy, and photon energy. Data is discussed over the energy range up to 10 keV

  2. Two Photon Distribution Amplitudes

    International Nuclear Information System (INIS)

    El Beiyad, M.; Pire, B.; Szymanowski, L.; Wallon, S.

    2008-01-01

    The factorization of the amplitude of the process γ*γ→γγ in the low energy and high photon virtuality region is demonstrated at the Born order and in the leading logarithmic approximation. The leading order two photon (generalized) distribution amplitudes exhibit a characteristic ln Q 2 behaviour and obey new inhomogeneous evolution equations

  3. Enhanced two-photon emission from a dressed biexciton

    International Nuclear Information System (INIS)

    Sánchez Muñoz, Carlos; Laussy, Fabrice P; Tejedor, Carlos; Valle, Elena del

    2015-01-01

    Radiative two-photon cascades from biexcitons in semiconductor quantum dots under resonant two-photon excitation are promising candidates for the generation of photon pairs. In this work, we propose a scheme to obtain two-photon emission that allows us to operate under very intense driving fields. This approach relies on the Purcell enhancement of two-photon virtual transitions between states of the biexciton dressed by the laser. The richness provided by the biexcitonic level structure allows to reach a variety of regimes, from antibunched and bunched photon pairs with polarization orthogonal to the driving field, to polarization entangled two-photon emission. This provides evidence that the general paradigm of two-photon emission from a ladder of dressed states can find interesting, particular implementations in a variety of systems. (paper)

  4. Probing the SEB Sensitive Depth of a Power MOSFET Using a Two-Photon Absorption Laser Method

    Science.gov (United States)

    Lauenstein, Jean-Marie; Liu, Sandra; Titus, Jeffrey L.; McMorrow, Dale; Casey, Megan C.; Buchner, Stephen P.; Warner, Jeffrey; Phan, Anthony M.; Topper, Alyson D.; Kim, Hak S.; hide

    2011-01-01

    This paper presents two-photon absorption test results on an engineering single-event burnout- (SEB-) sensitive power MOSFET to verify that the energy deposition/charge ionization in the highly-doped substrate does not contribute to SEB. It is shown that for a vertical power MOSFET, the SEB sensitive volume is the lightly doped epitaxial layer; the most sensitive region is under the polysllicon gate.

  5. Thrust distribution of two-jet like events at a photon-photon collider

    International Nuclear Information System (INIS)

    Kanakubo, Fumiko

    1995-01-01

    One of the advantages of using a photon-photon collision with the same helicity is that the continuum qq-bar production is suppressed at the lowest order (α s 0 ). However, the helicity suppression does not take place for the gluon radiation process, and qq-barg can be two-jet like. We evaluate the cross sections of the two-jet like events in a photon-photon collision, and present the thrust distributions. We take into account the QCD effect to all orders in α s in the leading-double-log approximation, and show the suppression due to this effect. The evaluation with the energy and the polarization distributions of the photon suggests that the contaminating photons with the opposite helicity contribute dominantly to the two-jet like process. (author)

  6. Preparation, one- and two-photon properties of carbazole derivatives containing nitrogen heterocyclic ring

    Science.gov (United States)

    Zhang, Yichi; Wang, Ping; Li, Liang; Chen, Zhimin; He, Chunying; Wu, Yiqun

    Preparation of recording materials with high two-photon absorption activities is one of the important issues to superhigh- density two-photon absorption (TPA) three-dimensional (3D) optical data storage. In this paper, three new carbazole derivatives containing nitrogen heterocyclic ring with symmetric and asymmetric structures are prepared using ethylene as the π bridge between the carbazole unit and nitrogen heterocyclic ring, namely, 9-butyl-3-(2-(1,8- naphthyridin)vinyl)-carbazole (material 1), 9-butyl-3,6-bis(2-(1,8-naphthyl)vinyl)-carbazole (material 2) and 9-butyl-3,6- bis(2-(quinolin)vinyl)-carbazole (material 3). Their one photon properties including linear absorption spectra, fluorescence emission spectra, and fluorescence quantum yields are studied. The fluorescence excited by 120 fs pulse at 800 nm Ti: sapphire laser operating at 1 kHz repetition rate with different incident powers of 9-butyl-3-(2-(quinolin) vinyl)-carbazole (material 3) was investigated, and two-photon absorption cross-sections has been obtained. It is shown that material 3 containing quinoline rings as electron acceptor with symmetric structure exhibit high two-photon absorption activity. The result implies that material 3 (9-butyl-3-(2-(quinolin) vinyl)-carbazole) is a good candidate as a promising recording material for super-high-density two-photon absorption (TPA) three-dimensional (3D) optical data storage. The influence of chemical structure of the materials on the optical properties is discussed.

  7. Multi photon ionization mass spectrometry of carbamate pesticides, herbicides and fungicides

    International Nuclear Information System (INIS)

    Grun, Carsten; Koenig, Marcelle; Grotemeyer, Juergen

    2001-01-01

    Pesticides and herbicides are useful for a wide range of applications today. The determination of these substances either in the pure form or in complex matrices is of high analytical interest. Especially since these substances can by found in every day products. The combination of multi photon ionization (MUPI) and time of flight laser mass spectrometry may be a powerful tool for achieving fast well interpretable mass spectra for analytical purposes. In this paper we will discuss the mass spectra of several pesticides and herbicides accessed by MUPI-time-of-flight mass spectrometry. The influence of the laser pulse duration on the mass spectra are discussed

  8. Photon statistical properties of photon-added two-mode squeezed coherent states

    International Nuclear Information System (INIS)

    Xu Xue-Fen; Wang Shuai; Tang Bin

    2014-01-01

    We investigate photon statistical properties of the multiple-photon-added two-mode squeezed coherent states (PA-TMSCS). We find that the photon statistical properties are sensitive to the compound phase involved in the TMSCS. Our numerical analyses show that the photon addition can enhance the cross-correlation and anti-bunching effects of the PA-TMSCS. Compared with that of the TMSCS, the photon number distribution of the PA-TMSCS is modulated by a factor that is a monotonically increasing function of the numbers of adding photons to each mode; further, that the photon addition essentially shifts the photon number distribution. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  9. Two-photon processes in highly charged ions

    International Nuclear Information System (INIS)

    Jahrsetz, Thorsten

    2015-01-01

    Two-photon processes are atomic processes in which an atom interacts simultaneously with two photons. Such processes describe a wide range of phenomena, such as two-photon decay and elastic or inelastic scattering of photons. In recent years two-photon processes involving highly charged heavy ions have become an active area of research. Such studies do not only consider the total transition or scattering rates but also their angular and polarization dependence. To support such examinations in this thesis I present a theoretical framework to describe these properties in all two-photon processes with bound initial and final states and involving heavy H-like or He-like ions. I demonstrate how this framework can be used in some detailed studies of different two-photon processes. Specifically a detailed analysis of two-photon decay of H-like and He-like ions in strong external electromagnetic fields shows the importance of considering the effect of such fields for the physics of such systems. Furthermore I studied the elastic Rayleigh as well as inelastic Raman scattering by heavy H-like ions. I found a number of previously unobserved phenomena in the angular and polarization dependence of the scattering cross-sections that do not only allow to study interesting details of the electronic structure of the ion but might also be useful for the measurement of weak physical effects in such systems.

  10. Two-photon processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Jahrsetz, Thorsten

    2015-03-05

    Two-photon processes are atomic processes in which an atom interacts simultaneously with two photons. Such processes describe a wide range of phenomena, such as two-photon decay and elastic or inelastic scattering of photons. In recent years two-photon processes involving highly charged heavy ions have become an active area of research. Such studies do not only consider the total transition or scattering rates but also their angular and polarization dependence. To support such examinations in this thesis I present a theoretical framework to describe these properties in all two-photon processes with bound initial and final states and involving heavy H-like or He-like ions. I demonstrate how this framework can be used in some detailed studies of different two-photon processes. Specifically a detailed analysis of two-photon decay of H-like and He-like ions in strong external electromagnetic fields shows the importance of considering the effect of such fields for the physics of such systems. Furthermore I studied the elastic Rayleigh as well as inelastic Raman scattering by heavy H-like ions. I found a number of previously unobserved phenomena in the angular and polarization dependence of the scattering cross-sections that do not only allow to study interesting details of the electronic structure of the ion but might also be useful for the measurement of weak physical effects in such systems.

  11. Investigation of ionization losses of shower electrons in electron-photon shower developed in liquid xenon by gamma quanta in the energy range 1600-3400 MeV

    International Nuclear Information System (INIS)

    Okhrymenko, L.S.; Slowinski, B.; Strugalski, Z.; Sredniawa, B.

    1975-01-01

    Results of the investigation of differential distributions of ionization losses and the corresponding fluctuations for shower electrons in the longitudinal development of electron-photon showers produced by gamma-quanta of energies Esub(γ)=1600-3400 MeV in liquid xenon are given. A simple and convenient from the methodical point of view two-parametric function, approximating the observed distribution has been obtained. The independence of the fluctuations of ionization losses of shower electrons on the energy of gamma-quanta in the investigated interval of Esub(γ) values has been found

  12. Two-photon stimulated emission and pulse amplification

    International Nuclear Information System (INIS)

    Yuen, H.P.

    1975-01-01

    Threshold conditions are given for the sustained operation of standing-wave and long-pulse traveling-wave two-photon lasers. Pulse shortening in long-pulse two-photon amplification, a behavior absent in the one-photon case, is also demonstrated analytically. (U.S.)

  13. Review of Two-Photon Interactions

    International Nuclear Information System (INIS)

    Urner, David

    2004-01-01

    Presented are recent results of two-photon interactions. Topics include photon structure functions, inclusive hadron production, differential cross sections derived from tagged γγ fusion events and results in exclusive hadron production, particularly the observations of the η'c

  14. Ionization chamber with build-up cup spectral sensitivity to megavoltage (0.5-20 MeV) photon fluences in free air

    International Nuclear Information System (INIS)

    Gorlachev, G.E.

    2002-01-01

    In-air measurements of photon beam properties, used in radiation therapy, is common practice for determining radiation output dependence from the field size, known as head scatter factors (HSF). PMMA and brass build-up caps are most popular miniphantoms for providing electron equilibrium. Discrepancies up to 2% in HSF measurements by different combinations of detectors and equilibrium caps have been published. One of the main reasons of those discrepancies is the detector system spectral sensitivity and differences in primary and scatter radiation spectra. In the light of new model based dose calculation methods direct radiation fluence measurement is of great interest. So, understanding of detector spectral sensitivity is important task for modern dosimetry of radiation therapy. In the present study Monte Carlo (MC) method was employed to calculate ionization chamber response to monoenergetic photon fluences, normalized to water kerma units. Simulation was done using EGS4 package. Electron transport was performed with ESTEPE equal to 4%. PEGS cross sections were generated for maximal energy 20 MeV with cutoff kinetic energy 10 KeV both for photons and electrons. Scanditronix RK-05 ionization chamber was chosen as a prototype. Eight cylindrical miniphantoms, representing four materials (PMMA, Al, Cu, Pb) and two front wall thickness, were simulated. Results are presented. Miniphantom front wall thicknesses in each case are shown in the figure. Diameter depends on the material and equal respectively: PMMA - 4, Al - 2.5, Cu - 1.5, and PB - 1.5 cm. Ionization chamber outer diameter is equal to 0.7 cm. Detector sensitivity has considerable energy dependence. Two effects explain it. First is the radiation attenuation in the miniphantom. Second is pair production, which dominates in high atomic number miniphantoms for energies above 5 MeV. Depending on the miniphantom material detector response changes from 1.5 to 5 times in the energy range from 0.5 to 20 MeV. Correct

  15. 2D convolution kernels of ionization chambers used for photon-beam dosimetry in magnetic fields: the advantage of small over large chamber dimensions

    Science.gov (United States)

    Khee Looe, Hui; Delfs, Björn; Poppinga, Daniela; Harder, Dietrich; Poppe, Björn

    2018-04-01

    This study aims at developing an optimization strategy for photon-beam dosimetry in magnetic fields using ionization chambers. Similar to the familiar case in the absence of a magnetic field, detectors should be selected under the criterion that their measured 2D signal profiles M(x,y) approximate the absorbed dose to water profiles D(x,y) as closely as possible. Since the conversion of D(x,y) into M(x,y) is known as the convolution with the ‘lateral dose response function’ K(x-ξ, y-η) of the detector, the ideal detector would be characterized by a vanishing magnetic field dependence of this convolution kernel (Looe et al 2017b Phys. Med. Biol. 62 5131–48). The idea of the present study is to find out, by Monte Carlo simulation of two commercial ionization chambers of different size, whether the smaller chamber dimensions would be instrumental to approach this aim. As typical examples, the lateral dose response functions in the presence and absence of a magnetic field have been Monte-Carlo modeled for the new commercial ionization chambers PTW 31021 (‘Semiflex 3D’, internal radius 2.4 mm) and PTW 31022 (‘PinPoint 3D’, internal radius 1.45 mm), which are both available with calibration factors. The Monte-Carlo model of the ionization chambers has been adjusted to account for the presence of the non-collecting part of the air volume near the guard ring. The Monte-Carlo results allow a comparison between the widths of the magnetic field dependent photon fluence response function K M(x-ξ, y-η) and of the lateral dose response function K(x-ξ, y-η) of the two chambers with the width of the dose deposition kernel K D(x-ξ, y-η). The simulated dose and chamber signal profiles show that in small photon fields and in the presence of a 1.5 T field the distortion of the chamber signal profile compared with the true dose profile is weakest for the smaller chamber. The dose responses of both chambers at large field size are shown to be altered by not

  16. Thermally activated delayed fluorescence organic dots for two-photon fluorescence lifetime imaging

    Science.gov (United States)

    He, Tingchao; Ren, Can; Li, Zhuohua; Xiao, Shuyu; Li, Junzi; Lin, Xiaodong; Ye, Chuanxiang; Zhang, Junmin; Guo, Lihong; Hu, Wenbo; Chen, Rui

    2018-05-01

    Autofluorescence is a major challenge in complex tissue imaging when molecules present in the biological tissue compete with the fluorophore. This issue may be resolved by designing organic molecules with long fluorescence lifetimes. The present work reports the two-photon absorption (TPA) properties of a thermally activated delayed fluorescence (TADF) molecule with carbazole as the electron donor and dicyanobenzene as the electron acceptor (i.e., 4CzIPN). The results indicate that 4CzIPN exhibits a moderate TPA cross-section (˜9 × 10-50 cm4 s photon-1), high fluorescence quantum yield, and a long fluorescence lifetime (˜1.47 μs). 4CzIPN was compactly encapsulated into an amphiphilic copolymer via nanoprecipitation to achieve water-soluble organic dots. Interestingly, 4CzIPN organic dots have been utilized in applications involving two-photon fluorescence lifetime imaging (FLIM). Our work aptly demonstrates that TADF molecules are promising candidates of nonlinear optical probes for developing next-generation multiphoton FLIM applications.

  17. Electrically Induced Two-Photon Transparency in Semiconductor Quantum Wells

    International Nuclear Information System (INIS)

    Hayat, Alex; Nevet, Amir; Orenstein, Meir

    2009-01-01

    We demonstrate experimentally two-photon transparency, achieved by current injection into a semiconductor quantum-well structure which exhibits two-photon emission. The two-photon induced luminescence is progressively reduced by the injected current, reaching the point of two-photon transparency - a necessary condition for semiconductor two-photon gain and lasing. These results agree with our calculations.

  18. Towards Precision Measurement of the 21S0-31D2 Two-Photon Transition in Atomic Helium

    Science.gov (United States)

    Huang, Yi-Jan; Guan, Yu-Chan; Suen, Te-Hwei; Wang, Li-Bang; Shy, Jow-Tsong

    2017-04-01

    We intend to accurately measure the frequency for 2S-3D two-photon transition and to deduce the 2S ionization energy to an accuracy below 100 kHz from the theoretical calculation of the 3D state. In this talk, we present a precision measurement of the 21S0 -31D2 two-photon transition in atomic helium at 1009 nm. A master oscillator power amplifier (MOPA) is seeded by an external cavity diode laser (ECDL) is constructed to generate more than 700 mW laser power with TEM00 beam profile at 1009 nm. To observe the two-photon transition, a helium cell is placed inside a power enhancement optical cavity and the helium atoms at 21S metastable level are prepared by a pulsed RF discharge and monitor the 668 nm 31D2 to 21P1 fluorescence after RF discharge is turned off . The absolute frequency metrology of the ECDL is carried out by an Er-fiber optical frequency comb (OFC). The two-photon spectrum is obtained by tuning the repetition frequency of the OFC. The 21S0-31D2 frequency is determined to be 594414291.967 (80) MHz in He-4. More results will be presented at the annual meeting.

  19. The effect of low-energy electrons on the response of ion chambers to ionizing photon beams

    Science.gov (United States)

    La Russa, Daniel J.

    Cavity ionization chambers are one of the most popular and widely used devices for quantifying ionizing photon beams. This popularity originates from the precision of these devices and the relative ease with which ionization measurements are converted to quantities of interest in therapeutic radiology or radiation protection, collectively referred to as radiation dosimetry. The formalisms used for these conversions, known as cavity theory, make several assumptions about the electron spectrum in the low-energy range resulting from the incident photon beam. These electrons often account for a significant fraction of the ion chamber response. An inadequate treatment of low-energy electrons can therefore significantly effect calculated quantities of interest. This thesis sets out to investigate the effect of low-energy electrons on (1) the use of Spencer-Attix cavity theory with 60Co beams; and (2) the standard temperature-pressure correction factor, P TP, used to relate the measured ionization to a set of reference temperature and pressure conditions for vented ion chambers. Problems with the PTP correction are shown to arise when used with kilovoltage x rays, where ionization measurements are due primarily to electrons that do not have enough energy to cross the cavity. A combination of measurements and Monte Carlo calculations using the EGSnrc Monte Carlo code demonstrate the breakdown of PTP in these situations when used with non-air-equivalent chambers. The extent of the breakdown is shown to depend on cavity size, energy of the incident photons, and the composition of the chamber. In the worst case, the standard P TP factor overcorrects the response of an aluminum chamber by ≈12% at an air density typical of Mexico City. The response of a more common graphite-walled chamber with similar dimensions at the same air density is undercorrected by ≈ 2%. The EGSnrc Monte Carlo code is also used to investigate Spencer-Attix cavity theory as it is used in the

  20. Model planetary nebulae: the effect of shadowed filaments on low ionization potential ion radiation

    International Nuclear Information System (INIS)

    Katz, A.

    1977-01-01

    Previous homogeneous model planetary nebulae calculations No. 4 have yielded emission strengths for low ionization potential No. 4 ions which are considerably lower than those observed. Several attempts were to correct this problem by the inclusion of optically thin condensations, the use of energy flux distributions from stellar model calculations instead of blackbody spectrum stars, and the inclusion of dust in the nebulae. The effect that shadowed filaments have on the ionization and thermal structure of model nebulae and the resultant line strengths are considered. These radial filaments are shielded from the direct stellar ionizing radiation by optically thick condensations in the nebula. Theoretical observational evidence exists for the presence of condensations and filaments. Since the only source of ionizing photons in the shadowed filaments is due to diffuse photons produced by recombination, ions of lower ionization potential are expected to exist there in greater numbers than those found in the rest of the nebula. This leads to increased line strengths from these ions and increases their values to match the observational values. It is shown that these line strengths in the filaments increase by over one to two orders of magnitude relative to values found in homogeneous models. This results in an increase of approximately one order of magnitude for these lines when contributions from both components of the nebula are considered. The parameters that determine the exact value of the increase are the radial location of the filaments in the nebula and the fraction of the nebular volume occupied by the filaments

  1. The study of nonlinear two-photon phenomenon in photonic crystals doped with nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London, N6A 3K7 (Canada)

    2007-02-28

    A theory of the nonlinear two-photon absorption has been developed in a photonic crystal doped with an ensemble of four-level nanoparticles. We have considered that the nanoparticles are interacting with the photonic crystal. An expression of two-photon absorption has been obtained by using the density matrix method. The effect of the dipole-dipole interaction has also been included in the formulation. Interesting new phenomena have been predicted. For example, it is found that the inhibition of two-photon absorption can be turned on and off when the decay resonance energies of the four-level nanoparticles are moved within the energy band.

  2. Silole-Based Red Fluorescent Organic Dots for Bright Two-Photon Fluorescence In vitro Cell and In vivo Blood Vessel Imaging.

    Science.gov (United States)

    Chen, Bin; Feng, Guangxue; He, Bairong; Goh, Chiching; Xu, Shidang; Ramos-Ortiz, Gabriel; Aparicio-Ixta, Laura; Zhou, Jian; Ng, Laiguan; Zhao, Zujin; Liu, Bin; Tang, Ben Zhong

    2016-02-10

    Robust luminescent dyes with efficient two-photon fluorescence are highly desirable for biological imaging applications, but those suitable for organic dots fabrication are still rare because of aggregation-caused quenching. In this work, a red fluorescent silole, 2,5-bis[5-(dimesitylboranyl)thiophen-2-yl]-1-methyl-1,3,4-triphenylsilole ((MesB)2 DTTPS), is synthesized and characterized. (MesB)2 DTTPS exhibits enhanced fluorescence efficiency in nanoaggregates, indicative of aggregation-enhanced emission (AEE). The organic dots fabricated by encapsulating (MesB)2 DTTPS within lipid-PEG show red fluorescence peaking at 598 nm and a high fluorescence quantum yield of 32%. Upon excitation at 820 nm, the dots show a large two-photon absorption cross section of 3.43 × 10(5) GM, which yields a two-photon action cross section of 1.09 × 10(5) GM. These (MesB)2 DTTPS dots show good biocompatibility and are successfully applied to one-photon and two-photon fluorescence imaging of MCF-7 cells and two-photon in vivo visualization of the blood vascular of mouse muscle in a high-contrast and noninvasive manner. Moreover, the 3D blood vasculature located at the mouse ear skin with a depth of over 100 μm can also be visualized clearly, providing the spatiotemporal information about the whole blood vascular network. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source

    International Nuclear Information System (INIS)

    Migdall, A.L.; Branning, D.; Castelletto, S.

    2002-01-01

    As typically implemented, single-photon sources cannot be made to produce single photons with high probability, while simultaneously suppressing the probability of yielding two or more photons. Because of this, single-photon sources cannot really produce single photons on demand. We describe a multiplexed system that allows the probabilities of producing one and more photons to be adjusted independently, enabling a much better approximation of a source of single photons on demand

  4. Mass spectrometric characterization of a pyrolytic radical source using femtosecond ionization

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H M; Beaud, P; Mischler, B; Radi, P P; Tzannis, A P; Gerber, T [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Radicals play, as reactive species, an important role in the chemistry of combustion. In contrast to atmospheric flames where spectra are congested due to high vibrational and rotational excitation, experiments in the cold environment of a molecular beam (MB) yield clean spectra that can be easily attributed to one species by Resonantly Enhanced Multi Photon Ionization (REMP). A pyrolytic radical source has been set up. To characterize the efficiency of the source `soft` ionization with femto second pulses is applied which results in less fragmentation, simplifying the interpretation of the mass spectrum. (author) figs., tabs., refs.

  5. Monte carlo calculation of energy deposition and ionization yield for high energy protons

    International Nuclear Information System (INIS)

    Wilson, W.E.; McDonald, J.C.; Coyne, J.J.; Paretzke, H.G.

    1985-01-01

    Recent calculations of event size spectra for neutrons use a continuous slowing down approximation model for the energy losses experienced by secondary charged particles (protons and alphas) and thus do not allow for straggling effects. Discrepancies between the calculations and experimental measurements are thought to be, in part, due to the neglect of straggling. A tractable way of including stochastics in radiation transport calculations is via the Monte Carlo method and a number of efforts directed toward simulating positive ion track structure have been initiated employing this technique. Recent results obtained with our updated and extended MOCA code for charged particle track structure are presented here. Major emphasis has been on calculating energy deposition and ionization yield spectra for recoil proton crossers since they are the most prevalent event type at high energies (>99% at 14 MeV) for small volumes. Neutron event-size spectra can be obtained from them by numerical summing and folding techniques. Data for ionization yield spectra are presented for simulated recoil protons up to 20 MeV in sites of diameters 2-1000 nm

  6. Possibility of producing the event-ready two-photon polarization entangled state with normal photon detectors

    International Nuclear Information System (INIS)

    Wang Xiangbin

    2003-01-01

    We propose a scheme to produce the maximally two-photon polarization entangled state with single-photon sources and the passive linear optics devices. In particular, our scheme only requires the normal photon detectors which distinguish the vacuum and non-vacuum Fock number states. A sophisticated photon detector distinguishing between one-photon state and two-photon state is unnecessary in the scheme

  7. Influence of ionization on ultrafast gas-based nonlinear fiber optics.

    Science.gov (United States)

    Chang, W; Nazarkin, A; Travers, J C; Nold, J; Hölzer, P; Joly, N Y; Russell, P St J

    2011-10-10

    We numerically investigate the effect of ionization on ultrashort high-energy pulses propagating in gas-filled kagomé-lattice hollow-core photonic crystal fibers by solving an established uni-directional field equation. We consider the dynamics of two distinct regimes: ionization induced blue-shift and resonant dispersive wave emission in the deep-UV. We illustrate how the system evolves between these regimes and the changing influence of ionization. Finally, we consider the effect of higher ionization stages.

  8. Coherent effects on two-photon correlation and directional emission of two two-level atoms

    International Nuclear Information System (INIS)

    Ooi, C. H. Raymond; Kim, Byung-Gyu; Lee, Hai-Woong

    2007-01-01

    Sub- and superradiant dynamics of spontaneously decaying atoms are manifestations of collective many-body systems. We study the internal dynamics and the radiation properties of two atoms in free space. Interesting results are obtained when the atoms are separated by less than half a wavelength of the atomic transition, where the dipole-dipole interaction gives rise to new coherent effects, such as (a) coherence between two intermediate collective states, (b) oscillations in the two-photon correlation G (2) , (c) emission of two photons by one atom, and (d) the loss of directional correlation. We compare the population dynamics during the two-photon emission process with the dynamics of single-photon emission in the cases of a Λ and a V scheme. We compute the temporal correlation and angular correlation of two successively emitted photons using the G (2) for different values of atomic separation. We find antibunching when the atomic separation is a quarter wavelength λ/4. Oscillations in the temporal correlation provide a useful feature for measuring subwavelength atomic separation. Strong directional correlation between two emitted photons is found for atomic separation larger than a wavelength. We also compare the directionality of a photon spontaneously emitted by the two atoms prepared in phased-symmetric and phased-antisymmetric entangled states vertical bar ±> k 0 =e ik 0 ·r 1 vertical bar a 1 ,b 2 >±e ik 0 ·r 2 vertical bar b 1 ,a 2 > by a laser pulse with wave vector k 0 . Photon emission is directionally suppressed along k 0 for the phased-antisymmetric state. The directionality ceases for interatomic distances less than λ/2

  9. Determination of Nerve Agent Metabolites by Ultraviolet Femtosecond Laser Ionization Mass Spectrometry.

    Science.gov (United States)

    Hamachi, Akifumi; Imasaka, Tomoko; Nakamura, Hiroshi; Li, Adan; Imasaka, Totaro

    2017-05-02

    Nerve agent metabolites, i.e., isopropyl methylphosphonic acid (IMPA) and pinacolyl methylphosphonic acid (PMPA), were derivatized by reacting them with 2,3,4,5,6-pentafluorobenzyl bromide (PFBBr) and were determined by mass spectrometry using an ultraviolet femtosecond laser emitting at 267 and 200 nm as the ionization source. The analytes of the derivatized compounds, i.e., IMPA-PFB and PMPA-PFB, contain a large side-chain, and molecular ions are very weak or absent in electron ionization mass spectrometry. The use of ultraviolet femtosecond laser ionization mass spectrometry, however, resulted in the formation of a molecular ion, even for compounds such as these that contain a highly bulky functional group. The signal intensity was larger at 200 nm due to resonance-enhanced two-photon ionization. In contrast, fragmentation was suppressed at 267 nm (nonresonant two-photon ionization) especially for PMPA-PFB, thus resulting in a lower background signal. This favorable result can be explained by the small excess energy in ionization at 267 nm and by the low-frequency vibrational mode of a bulky trimethylpropyl group in PMPA.

  10. Two-Dimentional Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim

    1999-01-01

    possible a novel class of optical microcavities, whereas line defects make possible a novel class of waveguides. In this paper we will analyze two-dimensional photonic crystal waveguides based on photonic crystals with rods arranged on a triangular and a square lattice using a plane-wave expansion method......In the recent years a new class of periodic high-index contrast dielectric structures, known as photonic bandgap structures, has been discovered. In these structures frequency intervals, known as photonic bandgaps, where propagation of electromagnetic waves is not allowed, exist due to the periodic...... dielectric function. This is analogous to semiconductors, where electronic bandgaps exist due to the periodic arrangement of atoms. As is also the case for semiconductor structures, photonic bandgap structures may become of even greater value when defects are introduced. In particular, point defects make...

  11. Quarkonium two-photon decays in QCD

    International Nuclear Information System (INIS)

    Dulyan, L.S.; Khodjamirian, A.Yu.; Magakian, A.D.

    1989-01-01

    The two-photon decay of tensor charmonium χ c2 → 2 γ is calculated with account of gluon condensate effects. The result is in good agreement with experiment. The two-photon width of pseudoscalar b-quarkonium η b → 2 γ is estimated. 19 refs.; 1 fig.; 1 tab

  12. Photoelectron Yield and Photon Reflectivity from Candidate LHC Vacuum Chamber Materials with Implications to the Vacuum Chamber Design

    CERN Document Server

    Baglin, V; Gröbner, Oswald

    1998-01-01

    Studies of the photoelectron yield and photon reflectivity at grazing incidence (11 mrad) from candidate LHC vacuum chamber materials have been made on a dedicated beam line on the Electron Positron A ccumulator (EPA) ring at CERN. These measurements provide realistic input toward a better understanding of the electron cloud phenomena expected in the LHC. The measurements were made using synchrotro n radiation with critical photon energies of 194 eV and 45 eV; the latter corresponding to that of the LHC at the design energy of 7 TeV. The test materials are mainly copper, either, i) coated by co- lamination or by electroplating onto stainless steel, or ii) bulk copper prepared by special machining. The key parameters explored were the effect of surface roughness on the reflectivity and the pho toelectron yield at grazing photon incidence, and the effect of magnetic field direction on the yields measured at normal photon incidence. The implications of the results on the electron cloud phenom ena, and thus the L...

  13. Multi-photon ionization of atoms and molecules by intense XUV-FEL light. Application to methanol and ethanol molecules

    International Nuclear Information System (INIS)

    Sato, Takahiro; Iwasaki, Atsushi; Okino, Tomoya; Yamanouchi, Kaoru; Yagishita, Akira; Yazawa, Hiroki; Kannari, Fumihiko; Aoyama, Makoto; Yamakawa, Koichi; Midorikawa, Katsumi; Nakano, Hidetoshi; Yabashi, Makina; Nagasono, Mitsuru; Higashiya, Atsushi; Togashi, Tadashi; Ishikawa, Tetsuya

    2009-01-01

    The photo-ionization processes of methanol (CH 3 OH, CD 3 OH) and ethanol (C 2 H 5 OH) and their dependences on the wavelength and the light-field intensity were investigated using intense XUV light at 51 and 61 nm at the XUV free electron laser facility of RIKEN SPring-8 Center. The light field intensity achieved at 51 nm was found to be intense enough to generate Ar 7+ from Ar. It was confirmed that (1) the stable dications, CH 2 OH 2+ and CH 2 OD 2+ , were produced respectively from CH 3 OH and CD 3 OH, and C 2 H 2 OH 2+ from CH 2 H 5 OH via the direct and/or stepwise two-photon absorption, and (2) C + and CH + were produced from C 2 H 5 OH via the stepwise two-photon absorption of the XUV light. It was also confirmed by the formation of H 3 O + from CH 3 OH and C 2 H 5 OH, and HOD 2 + from CD 3 OH that hydrogen migration processes were induced by the irradiation of the intense XUV light. (author)

  14. Two-photon decay in heavy atoms and ions

    International Nuclear Information System (INIS)

    Mokler, P.H.; Dunford, R.W

    2003-08-01

    We review the status of and comment on current developments in the field of two-photon decay in atomic physics research. Recent work has focused on two-photon decays in highly-charged ions and two-photon decay of inner-shell vacancies in heavy neutral atoms. We emphasize the importance of measuring the shape of the continuum emission in two-photon decay as a probe of relativistic effects in the strong central fields found in heavy atomic systems. New experimental approaches and their consequences will be discussed. (orig.)

  15. New coherent cancellation effect involving four-photon excitation and the related ionization

    International Nuclear Information System (INIS)

    Payne, M.G.; Garrett, W.R.; Judish, J.P.; McCann, M.P.

    1988-11-01

    We describe here an effect which occurs when a first laser is tuned near a dipole allowed three-photon resonance and a second laser is used to complete a dipole allowed four-photon resonance between the ground state 0 > and an excited state 2 >. In this process three photons are absorbed from the first laser and one photon from the second; so that if the 0 >--2 > transition is two-photon allowed the transition is also pumped resonantly by the third harmonic field due to the first laser and the second laser field. When the second laser is strong enough to cause strong absorption of the third harmonic light, and the phase mismatch, /DELTA/κ is large and dominated by the nearby resonance, a destructive interference occurs between the pumping of the 0 >--2 > transition by two- and four-photon process. 7 refs

  16. Two-photon quantum interference in a Michelson interferometer

    International Nuclear Information System (INIS)

    Odate, Satoru; Wang Haibo; Kobayashi, Takayoshi

    2005-01-01

    We have observed two-photon quantum interference in a Michelson interferometer. For the first time, we experimentally demonstrated two-photon quantum interference patterns, which show the transition from nonsubwavelength interference fringes to the general subwavelength interference. At the same time, a photon bunching effect was also shown by a postselection. The |1, 1> state with a single photon in a mode corresponding to each arm of the interferometer was exclusively postselected by using path difference between two arms

  17. Coherence revivals in two-photon frequency combs

    International Nuclear Information System (INIS)

    Torres-Company, Victor; Lancis, Jesus; Lajunen, Hanna; Friberg, Ari T.

    2011-01-01

    We describe and theoretically analyze the self-imaging Talbot effect of entangled photon pairs in the time domain. Rich phenomena are observed in coherence propagation along dispersive media of mode-locked two-photon states with frequency entanglement exhibiting a comblike correlation function. Our results can be used to remotely transfer frequency standards through optical fiber networks with two-photon light, avoiding the requirement of dispersion compensation.

  18. Tuning Ag29 nanocluster light emission from red to blue with one and two-photon excitation.

    Science.gov (United States)

    Russier-Antoine, Isabelle; Bertorelle, Franck; Hamouda, Ramzi; Rayane, Driss; Dugourd, Philippe; Sanader, Željka; Bonačić-Koutecký, Vlasta; Brevet, Pierre-François; Antoine, Rodolphe

    2016-02-07

    We demonstrate that the tuning of the light emission from red to blue in dihydrolipoic acid (DHLA) capped Ag29 nanoclusters can be trigged with one and two photon excitations. The cluster stoichiometry was determined with mass spectrometry and found to be Ag29(DHLA)12. In a detailed optical investigation, we show that these silver nanoclusters exhibit a strong red photoluminescence visible to the naked eye and characterized by a quantum yield of nearly ∼2% upon one-photon excitation. In the nonlinear optical (NLO) study of the properties of the clusters, the two-photon excited fluorescence spectra were recorded and their first hyperpolarizability obtained. The two-photon absorption cross-section at ∼800 nm for Ag29(DHLA)12 is higher than 10(4) GM and the hyperpolarizability is 106 × 10(-30) esu at the same excitation wavelength. The two-photon excited fluorescence spectrum appears strongly blue-shifted as compared to the one-photon excited spectrum, displaying a broad band between 400 and 700 nm. The density functional theory (DFT) provides insight into the structural and electronic properties of Ag29(DHLA)12 as well as into interplay between metallic subunit or core and ligands which is responsible for unique optical properties.

  19. Theory of two-photon interactions with broadband down-converted light and entangled photons

    International Nuclear Information System (INIS)

    Dayan, Barak

    2007-01-01

    When two-photon interactions are induced by down-converted light with a bandwidth that exceeds the pump bandwidth, they can obtain a behavior that is pulselike temporally, yet spectrally narrow. At low photon fluxes this behavior reflects the time and energy entanglement between the down-converted photons. However, two-photon interactions such as two-photon absorption (TPA) and sum-frequency generation (SFG) can exhibit such a behavior even at high power levels, as long as the final state (i.e., the atomic level in TPA, or the generated light in SFG) is narrow-band enough. This behavior does not depend on the squeezing properties of the light, is insensitive to linear losses, and has potential applications. In this paper we describe analytically this behavior for traveling-wave down conversion with continuous or pulsed pumping, both for high- and low-power regimes. For this we derive a quantum-mechanical expression for the down-converted amplitude generated by an arbitrary pump, and formulate operators that represent various two-photon interactions induced by broadband light. This model is in excellent agreement with experimental results of TPA and SFG with high-power down-converted light and with entangled photons [Dayan et al., Phys. Rev. Lett. 93, 023005 (2004); 94, 043602 (2005); Pe'er et al., ibid. 94, 073601 (2005)

  20. Single photon simultaneous K-shell ionization and K-shell excitation. II. Specificities of hollow nitrogen molecular ions

    International Nuclear Information System (INIS)

    Carniato, S.; Selles, P.; Andric, L.; Palaudoux, J.; Penent, F.; Lablanquie, P.; Žitnik, M.; Bučar, K.; Nakano, M.; Hikosaka, Y.; Ito, K.

    2015-01-01

    The formalism developed in the companion Paper I is used here for the interpretation of spectra obtained recently on the nitrogen molecule. Double core-hole ionization K −2 and core ionization-core excitation K −2 V processes have been observed by coincidence electron spectroscopy after ionization by synchrotron radiation at different photon energies. Theoretical and experimental cross sections reported on an absolute scale are in satisfactory agreement. The evolution with photon energy of the relative contribution of shake-up and conjugate shake-up processes is discussed. The first main resonance in the K −2 V spectrum is assigned to a K −2 π ∗ state mainly populated by the 1s→ lowest unoccupied molecular orbital dipolar excitation, as it is in the K −1 V NEXAFS (Near-Edge X-ray Absorption Fine Structure) signals. Closer to the K −2 threshold Rydberg resonances have been also identified, and among them a K −2 σ ∗ resonance characterized by a large amount of 2s/2p hybridization, and double K −2 (2σ ∗ /1π/3σ) −1 1π ∗2 shake-up states. These resonances correspond in NEXAFS spectra to, respectively, the well-known σ ∗ shape resonance and double excitation K −1 (2σ ∗ /1π/3σ) −1 1π ∗2 resonances, all being positioned above the threshold

  1. Measurements of the Influence of Thermoplastic Mask in High Energy Photon Beams: Gel Dosimeter or Ionizing Chamber?

    Science.gov (United States)

    Moreira, M. V.; Petchevist, C. D.; de Almeida, A.

    2009-12-01

    The influence of the immobilization mask material on the absorbed dose distribution in patients exposed to radiotherapy treatment with photon beams has been investigated for photons from a 60Co source and a 6 MV Linac. Absorbed dose values have been inferred at different depths and in the build-up region. Dose measurements were obtained using Fricke Xylenol Gel dosimeter and the cylindrical PTW Freiburg TM 31016-0.016 cc ionizing micro chamber; their discrepancies are discussed. The affinities of FXG and PTW ICMicro for measurements with high energy photons and the difference in the effective atomic numbers due to their compositions are most likely the most important factors that contribute to the measured dose in the build-up region. The measured values show that the use of the mask material contributes to increase the absorbed doses near the surface of the tissue. The result also shows that the build-up effect for 60Co is significantly smaller than that for 6 MV photons; however, the variations noted in the final doses of the radiotherapic treatments with photons of high energy do not represent alterations in the total doses received by the patients submitted to the radiotherapy.

  2. Time-resolved statistics of photon pairs in two-cavity Josephson photonics

    Energy Technology Data Exchange (ETDEWEB)

    Dambach, Simon; Kubala, Bjoern; Ankerhold, Joachim [Institute for Complex Quantum Systems and IQST, Ulm University (Germany)

    2017-06-15

    We analyze the creation and emission of pairs of highly nonclassical microwave photons in a setup where a voltage-biased Josephson junction is connected in series to two electromagnetic oscillators. Tuning the external voltage such that the Josephson frequency equals the sum of the two mode frequencies, each tunneling Cooper pair creates one additional photon in both of the two oscillators. The time-resolved statistics of photon emission events from the two oscillators is investigated by means of single- and cross-oscillator variants of the second-order correlation function g{sup (2)}(τ) and the waiting-time distribution w(τ). They provide insight into the strongly correlated quantum dynamics of the two oscillator subsystems and reveal a rich variety of quantum features of light including strong antibunching and the presence of negative values in the Wigner function. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. uv laser induced molecular multiphoton ionization and fragmentation. [Intensity dependence, ion properties and yield

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, S; Reilly, J P; Hohla, K; Kompa, K L

    1979-02-01

    It has been demonstrated that the output from a discharge pumped KrF laser (249 nm) is capable of ionizing a variety of molecules. The nature and yield of ions generated in this process, which were identified by time-of-flight mass spectrometry, exhibit a striking intensity dependence. 12 references, 3 figures.

  4. Inclusive D*(+/-) production in two photon collisions at LEP

    CERN Document Server

    Prokofiev, Denis Olegovich

    2001-01-01

    In this thesis I present my results on the measurement of the open charm production in two-photon collision events done with the L3 detector at Large Electron Positron machine (LEP). The data sample was collected from 1997 through 2000 at center-of-mass energies ranging from 183 GeV to 209 GeV, corresponding to a total integrated luminosity of 683.4pb −1. The open charm production in two-photon collision events extrapolated to the full phase space is estimated to be: s&parl0;e+e-&rarrr;e +e-cc&d1;X&parr0;=9 23±69±109±222pb. The differential cross sections d s /dpT(D*±) and d s /d:η(D*±): are also measured as functions of transverse momentum pT(D*±) and the absolute value of pseudorapidity :η(D*±):, respectively. A fit to the data estimating the relative contributions of Direct and Resolved open charm production mechanisms is performed, giving (28.7 ± 5.6)% and (71.3 ± 8.8)%, respectively. Using those relative fractions, the Direct and Resolved process cross sections yield: s&p...

  5. Photon echo with a few photons in two-level atoms

    International Nuclear Information System (INIS)

    Bonarota, M; Dajczgewand, J; Louchet-Chauvet, A; Le Gouët, J-L; Chanelière, T

    2014-01-01

    To store and retrieve signals at the single photon level, various photon echo schemes have resorted to complex preparation steps involving ancillary shelving states in multi-level atoms. For the first time, we experimentally demonstrate photon echo operation at such a low signal intensity without any preparation step, which allows us to work with mere two-level atoms. This simplified approach relies on the so-coined ‘revival of silenced echo’ (ROSE) scheme. Low noise conditions are obtained by returning the atoms to the ground state before the echo emission. In the present paper we manage ROSE in photon counting conditions, showing that very strong control fields can be compatible with extremely weak signals, making ROSE consistent with quantum memory requirements. (paper)

  6. Exciton molecule in semiconductors by two-photon absorption

    International Nuclear Information System (INIS)

    Arya, K.; Hassan, A.R.

    1976-07-01

    Direct creation of bi-exciton states by two-photon absorption in direct gap semiconductors is investigated theoretically. A numerical application to the case of CuCl shows that the two-photon absorption coefficient for bi-excitonic transitions is larger than that for two-photon interband transitions by three orders of magnitude. It becomes comparable to that for one-photon excitonic transitions for available laser intensities. The main contribution to this enhancement of the absorption coefficient for the transitions to the bi-exciton states is found to be from the resonance effect

  7. Two-Photon Fluorescence Microscope for Microgravity Research

    Science.gov (United States)

    Fischer, David G.; Zimmerli, Gregory A.; Asipauskas, Marius

    2005-01-01

    A two-photon fluorescence microscope has been developed for the study of biophysical phenomena. Two-photon microscopy is a novel form of laser-based scanning microscopy that enables three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon optical microscopy, two-photon microscopy utilizes the simultaneous nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption, so an ultra-fast pulsed laser source is typically employed. On the other hand, the critical energy threshold for two-photon absorption leads to fluorophore excitation that is intrinsically localized to the focal volume. Consequently, two-photon microscopy enables optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction (relative to one-photon optical microscopy) in photon-induced damage because of the longer excitation wavelength. This reduction is especially advantageous for in vivo studies. Relative to confocal microscopy, there is also a reduction in background fluorescence, and, because of a reduction in Rayleigh scattering, there is a 4 increase of penetration depth. The prohibitive cost of a commercial two-photon fluorescence-microscope system, as well as a need for modularity, has led to the construction of a custom-built system (see Figure 1). This system includes a coherent mode-locked titanium: sapphire laser emitting 120-fs-duration pulses at a repetition rate of 80 MHz. The pulsed laser has an average output power of 800 mW and a wavelength tuning range of 700 to 980 nm, enabling the excitation of a variety of targeted fluorophores. The output from the laser is attenuated, spatially filtered, and then directed into a confocal scanning head that has been modified to provide for side entry of the laser beam. The laser output coupler has been replaced with a dichroic filter that reflects the

  8. Electron-impact-induced K plus M shell ionization in solid targets of medium-Z elements studied by means of high-resolution x-ray spectroscopy

    International Nuclear Information System (INIS)

    Ludziejewski, T.; Rymuza, P.; Sujkowski, Z.; Borchert, G.; Dousse, J.; Rheme, C.; Polasik, M.

    1996-01-01

    The Kβ 2 x-ray spectra of zirconium, niobium, molybdenum, and palladium bombarded by 150 and 300 keV electrons were measured with a high-resolution transmission curved crystal spectrometer. Multiconfiguration Dirac-Fock calculations were used for the decomposition of the experimental spectra into the Kβ 2 M 0 (diagram) and Kβ 2 M 1 (satellite) components. The probabilities of energy dependent (direct Coulomb and two-step) processes were estimated from the differences in the satellite line yields for electrons and photons. The satellite yields are found to be considerably enhanced in comparison with those for the proton-induced ionization recently measured and analyzed in the same way [T. Ludziejewski et al., Phys. Rev. A 52, 2791 (1995)]. This result indicates the importance of multielectron effects in the K plus M shell ionization by energetic projectiles. copyright 1996 The American Physical Society

  9. Simple and double two-colour photoionization of rare gas atoms

    International Nuclear Information System (INIS)

    Guyetand, O.

    2008-05-01

    The present work deals with simple and double ionization of rare gases by harmonic radiation produced by, and combined with, an intense femtosecond infrared laser. Technical aspects related to the use of harmonic generation and to the detection of ions and electrons in coincidence are exposed. Theoretical background for two colour, few-photon, single and double ionization is detailed. Spectra and angular distributions of the photoelectrons measured in helium are described and compared with TDSE (time-dependent Schroedinger equation) theoretical calculations, for various conditions of the harmonic photons. The shape of the angular distributions can be explained within the frame of two distinct analytic approaches: the perturbation theory and the soft-photon approximation. The double ionization measurements have been performed on xenon, a complex atom characterized by many possible routes leading to double ionization. The analysis of energy and angular correlations of the two photoelectrons proves the feasibility of such experiments that combines harmonic and infrared radiations. It shows that two step processes are dominant in the case of xenon. This work appeals for extending few-photon, double ionization experiments to lighter rare gases. (author)

  10. Highly sensitive measurement in two-photon absorption cross section and investigation of the mechanism of two-photon-induced polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Lu Youmei E-mail: luym19@cc.tuat.ac.jp; Hasegawa, Fuyuki; Goto, Takamichi; Ohkuma, Satoshi; Fukuhara, Setsuko; Kawazu, Yukie; Totani, Kenro; Yamashita, Takashi; Watanabe, Toshiyuki E-mail: toshi@cc.tuat.ac.jp

    2004-10-01

    A novel two-photon initiator, 4,4'-bis[4-(di-n-butylamino)styryl]-benzene with the side-group methyl (Me) (abbreviated as Chromophore 1), was synthesized in comparison with the chromophore with the side group methoxy (MeO) (abbreviated as Chromophore 2). Femtosecond laser-induced fluorescence intensity was used to evaluate two-photon absorption (TPA) cross section, {delta}, by means of a charge-coupled device, USB-2000 (abbreviated as CCD). Results showed that changing the side group from Me to MeO led to a significant red-shift of the two-photon absorption ({sup 2}{lambda}{sub max}). However, the microstructures obtained by two-photon-induced polymerization (TPIP) demonstrated that the sensitivities of Chromophore 1 increased despite a two-fold decrease in the two-photon cross section {delta}{sub max,} relative to Chromophore 2. Correlated with the appearance that the long-lived charge transfer emission of the chromophore in the monomer bulk, we suggest that the intramolecular charge transfer (intra-CT) takes place within the excited dye. Then intermolecular charge transfer was successive as a result of the formation of an exciplex between the dye and the monomer. The Me group was favorable for the intra-CT, relative to MeO, which contributed to the enhancement of the sensitivity of TPIP.

  11. Yield and enrichment studies of C-13 isotope by multi-photon ...

    Indian Academy of Sciences (India)

    Abstract. Multi-photon dissociation of Freon-22 (CF2HCl) at low temperatures has been carried out to separate the C-13 isotope using a TEA CO2 laser. Yield and enrichment of C-13 isotope in the product C2F4 are studied at 9P(22) laser line as a function of temperature (–50°C to 30°C). It is observed that at a given fluence ...

  12. Quantum theory of two-photon wavepacket interference in a beamsplitter

    International Nuclear Information System (INIS)

    Wang, Kaige

    2006-01-01

    A general theory is derived for the interference of a two-photon wavepacket in a beamsplitter. The theory is presented in the Schroedinger picture so that the quantum nature of the two-photon interference is explicitly revealed. We find that the topological symmetry of the probability-amplitude spectrum of the two-photon wavepacket dominates the nature of the two-photon interference, which may be distinguished by the increase or decrease of the coincidence probability in the absence of interference. However, two-photon entanglement can be identified by the nature of the interference. We demonstrate the necessary and sufficient conditions for perfect two-photon interference. It is shown that a two-photon entangled state with an anti-symmetric spectrum passes through a 50/50 beamsplitter with perfect transparency. The theory provides us with a unified understanding of the various two-photon interference effects. (topical review)

  13. Microsphere imaging with confocal microscopy and two photon microscopy

    International Nuclear Information System (INIS)

    Chun, Hyung Su; An, Kyung Won; Lee, Jai Hyung

    2002-01-01

    We have acquired images of polystyrene and fused-silica microsphere by using conventional optical microscopy, confocal microscopy and two-photon microscopy, and performed comparative analysis of these images. Different from conventional optical microscopy, confocal and two-photon microscopy had good optical sectioning capability. In addition, confocal microscopy and two-photon microscopy had better lateral resolution than conventional optical microscopy. These results are attributed to confocality and nonlinearity of confocal microscopy and two photon microscopy, respectively.

  14. On the kinematics of the two-photon Cherenkov effect

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.; Stepanovskij, Yu.P.

    2003-01-01

    We study the kinematics of the two-photon Cherenkov effect. In the general case, the emission angles of two photons satisfy certain inequalities and the corresponding radiation intensities are rather diffused. In special cases, when the above inequalities reduce to equalities, the emission angles of two photons are fixed and the corresponding radiation intensities should have sharp maxima at these angles. This makes easier the experimental study of the two-photon Cherenkov effect

  15. Two-Photon-Excited Silica and Organosilica Nanoparticles for Spatiotemporal Cancer Treatment.

    Science.gov (United States)

    Croissant, Jonas G; Zink, Jeffrey I; Raehm, Laurence; Durand, Jean-Olivier

    2018-04-01

    Coherent two-photon-excited (TPE) therapy in the near-infrared (NIR) provides safer cancer treatments than current therapies lacking spatial and temporal selectivities because it is characterized by a 3D spatial resolution of 1 µm 3 and very low scattering. In this review, the principle of TPE and its significance in combination with organosilica nanoparticles (NPs) are introduced and then studies involving the design of pioneering TPE-NIR organosilica nanomaterials are discussed for bioimaging, drug delivery, and photodynamic therapy. Organosilica nanoparticles and their rich and well-established chemistry, tunable composition, porosity, size, and morphology provide ideal platforms for minimal side-effect therapies via TPE-NIR. Mesoporous silica and organosilica nanoparticles endowed with high surface areas can be functionalized to carry hydrophobic and biologically unstable two-photon absorbers for drug delivery and diagnosis. Currently, most light-actuated clinical therapeutic applications with NPs involve photodynamic therapy by singlet oxygen generation, but low photosensitizing efficiencies, tumor resistance, and lack of spatial resolution limit their applicability. On the contrary, higher photosensitizing yields, versatile therapies, and a unique spatial resolution are available with engineered two-photon-sensitive organosilica particles that selectively impact tumors while healthy tissues remain untouched. Patients suffering pathologies such as retinoblastoma, breast, and skin cancers will greatly benefit from TPE-NIR ultrasensitive diagnosis and therapy. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Uniform silica nanoparticles encapsulating two-photon absorbing fluorescent dye

    International Nuclear Information System (INIS)

    Wu Weibing; Liu Chang; Wang Mingliang; Huang Wei; Zhou Shengrui; Jiang Wei; Sun Yueming; Cui Yiping; Xu Chunxinag

    2009-01-01

    We have prepared uniform silica nanoparticles (NPs) doped with a two-photon absorbing zwitterionic hemicyanine dye by reverse microemulsion method. Obvious solvatochromism on the absorption spectra of dye-doped NPs indicates that solvents can partly penetrate into the silica matrix and then affect the ground and excited state of dye molecules. For dye-doped NP suspensions, both one-photon and two-photon excited fluorescence are much stronger and recorded at shorter wavelength compared to those of free dye solutions with comparative overall dye concentration. This behavior is possibly attributed to the restricted twisted intramolecular charge transfer (TICT), which reduces fluorescence quenching when dye molecules are trapped in the silica matrix. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells with low cytotoxicity. - Graphical abstract: Water-soluble silica NPs doped with a two-photon absorbing zwitterionic hemicyanine dye were prepared. They were found of enhanced one-photon and two-photon excited fluorescence compared to free dye solutions. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells.

  17. Limitations of two-level emitters as nonlinearities in two-photon controlled-PHASE gates

    DEFF Research Database (Denmark)

    Nysteen, Anders; McCutcheon, Dara P. S.; Heuck, Mikkel

    2017-01-01

    We investigate the origin of imperfections in the fidelity of a two-photon controlled-PHASE gate based on two-level-emitter nonlinearities. We focus on a passive system that operates without external modulations to enhance its performance. We demonstrate that the fidelity of the gate is limited...... by opposing requirements on the input pulse width for one-and two-photon-scattering events. For one-photon scattering, the spectral pulse width must be narrow compared with the emitter linewidth, while two-photon-scattering processes require the pulse width and emitter linewidth to be comparable. We find...

  18. Two-Photon Ghost Image and Interference-Diffraction

    Science.gov (United States)

    Shih, Y. H.; Sergienko, A. V.; Pittman, T. B.; Strekalov, D. V.; Klyshko, D. N.

    1996-01-01

    One of the most surprising consequences of quantum mechanics is entanglement of two or more distance particles. The two-particle entangled state was mathematically formulated by Schrodinger. Based on this unusual quantum behavior, EPR defined their 'physical reality' and then asked the question: 'Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?' One may not appreciate EPR's criterion of physical reality and insist that 'no elementary quantum phenomenon is a phenomenon until it is a recorded phenomenon'. Optical spontaneous parametric down conversion (SPDC) is the most effective mechanism to generate an EPR type entangled two-photon state. In SPDC, an optical beam, called the pump, is incident on a birefringent crystal. The pump is intense enough so that nonlinear effects lead to the conversion of pump photons into pairs of photons, historically called signal and idler. Technically, the SPDC is said to be type-1 or type-2, depending on whether the signal and idler beams have parallel or orthogonal polarization. The SPDC conversion efficiency is typically on the order of 10(exp -9) to 10(exp -11), depending on the SPDC nonlinear material. The signal and idler intensities are extremely low, only single photon detection devices can register them. The quantum entanglement nature of SPDC has been demonstrated in EPR-Bohm experiments and Bell's inequality measurements. The following two experiments were recently performed in our laboratory, which are more closely related to the original 1935 EPR gedankenezperiment. The first experiment is a two-photon optical imaging type experiment, which has been named 'ghost image' by the physics community. The signal and idler beams of SPDC are sent in different directions, so that the detection of the signal and idler photons can be performed by two distant photon counting detectors. An aperture object (mask) is placed in front of the signal photon detector and illuminated by the signal beam through a

  19. Three-photon resonances due to autoionizing states in calcium

    Energy Technology Data Exchange (ETDEWEB)

    Zawadzka, A.; Dygdala, R.S.; Raczynski, A.; Zaremba, J.; Kobus, J. [Instytut Fizyki, Uniwersytet M Kopernika w Toruniu, Torun (Poland)

    2002-04-28

    In the present study we have investigated three-photon ionization in Ca in which autoionizing states are engaged. The two-photon resonant process (from the Ca ground state 4s{sup 2} {sup 1}S{sub 0}) occurred through or at least in the vicinity of one of the following states: 4s4d {sup 1}D{sub 2}, 4p{sup 2} {sup 3}P{sub 2}, 4s6s {sup 1}S{sub 0}, 4p{sup 2} {sup 1}D{sub 2} and 4p{sup 2} {sup 1}S{sub 0}, with the third photon either reaching the continuum directly or one of the autoionizing states. The three-photon resonant transitions to 3dmp, mf: {sup 1}P{sub 1}, {sup 3}P{sub 1} and {sup 3}D{sub 1} autoionizing states for m up to 21 have been observed. Some of the autoionizing resonances which we have found had not been observed before in a high-resolution one-photon absorption experiment (for J=1) and in multiphoton experiments (for J=3). We have compared the ionization signal as a function of the laser detuning and the laser intensity with theoretical curves obtained within a simple model (three-level atom + one-mode laser field). This gives information about the order of magnitude of the three-photon ionization probability through autoionizing states. (author)

  20. Squeezing via two-photon transitions

    Science.gov (United States)

    Savage, C. M.; Walls, D. F.

    1986-05-01

    The squeezing spectrum for a cavity field mode interacting with an ensemble of three-level 'Lambda-configuration' atoms by an effective two-photon transition is calculated. The advantage of the three-level Lambda system as a squeezing medium, that is, optical nonlinearity without atomic saturation, has recently been pointed out by Reid, Walls, and Dalton. Perfect squeezing is predicted at the turning points for dispersive optical bistability and good squeezing for a range of other cases. Three-level ladder atoms interacting by an effective two-photon transition are also shown to give perfect squeezing in the dispersive limit.

  1. Exclusive hadron production in two photon reactions

    International Nuclear Information System (INIS)

    Poppe, M.

    1986-02-01

    This paper summarises experimental results on exclusive hadron production in two photon collisions at electron positron storage rings and attempts some interpretation. Experimental know how is described and new suggestions are made for future analyses. New model calculations on resonance form factors and pair production amplitudes are presented. The two photon vertex is decomposed such that experiments can be parameterised with the minimal number of free parameters. Selection rules for off shell photon collisions are given in addition to Yang's theorems. (orig.)

  2. Ionization due to the interaction between two Rydberg atoms

    International Nuclear Information System (INIS)

    Robicheaux, F

    2005-01-01

    Using a classical trajectory Monte Carlo method, we have computed the ionization resulting from the interaction between two cold Rydberg atoms. We focus on the products resulting from close interaction between two highly excited atoms. We give information on the distribution of ejected electron energies, the distribution of internal atom energies and the velocity distribution of the atoms and ions after the ionization. If the potential for the atom is not purely Coulombic, the average interaction between two atoms can change from attractive to repulsive giving a Van de Graaff-like mechanism for accelerating atoms. In a small fraction of ionization cases, we find that the ionization leads to a positive molecular ion where all of the distances are larger than 1000 Bohr radii

  3. The use of plane parallel ionization chambers in high energy electron and photon beams. An international code of practice for dosimetry

    International Nuclear Information System (INIS)

    1997-01-01

    Research on plane-parallel ionization chambers since the IAEA code of practice (TRS-277) was published in 1987 has explained our knowledge on perturbation and other correction factors in ionization chamber, and also constructional details of these chambers have been shown to be important. Different countries have published, or are in the process of publishing, dosimetry recommendations which include specific procedures for the use of plan parallel ionization chambers. An international working group was formed under the auspieces of the IAEA, first to review the status and the actual validity of the code of practice and second to develop an international code of practice of the use of plane parallel ionization chambers in high energy electron and photon beams used in radiotherapy. This document fulfills the second taste. 153 refs, 21 figs, 18 tabs

  4. Forward two-photon exchange in elastic lepton-proton scattering and hyperfine-splitting correction

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, Oleksandr [Johannes Gutenberg Universitaet, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)

    2017-08-15

    We relate the forward two-photon exchange (TPE) amplitudes to integrals of the inclusive lepton-proton scattering cross sections. These relations yield an alternative way for the evaluation of the TPE correction to hyperfine-splitting (HFS) in the hydrogen-like atoms with an equivalent to the standard approach (Iddings, Drell and Sullivan) result implying the Burkhardt-Cottingham sum rule. For evaluation of the individual effects (e.g., elastic contribution) our approach yields a distinct result. We compare both methods numerically on examples of the elastic contribution and the full TPE correction to HFS in electronic and muonic hydrogen. (orig.)

  5. Spectral, energy, and time parameters of two-photon fluorescence of 2,5-diphenyloxazole polycrystals

    International Nuclear Information System (INIS)

    Agal'tsov, A.M.; Gorelik, V.S.; Rakhmatullaev, I.A.

    1995-01-01

    Two-photon fluorescence (TPF) spectra of 2,5-diphenyloxazole polycrystals (known in the literature as PPO) were obtained and studied as a function of the pump power and time delay. The fluorescence spectrum shape observed upon two-photon excitation is shown to be distinctly different from that observed upon electron-beam excitation. It is shown that high pump powers result in stimulated fluorescence. PPO exhibits a high TPF quantum yield, the integrated conversion efficiency of exciting radiation to TPF being 40%. The TPF decay time is measured to be 20 ns. The spectral data obtained for PPO polycrystals can be used in the development of new TPF light sources tunable in the UV region. 10 refs., 4 figs., 1 tab

  6. Polarized two-photon photoselection in EGFP: Theory and experiment.

    Science.gov (United States)

    Masters, T A; Marsh, R J; Blacker, T S; Armoogum, D A; Larijani, B; Bain, A J

    2018-04-07

    In this work, we present a complete theoretical description of the excited state order created by two-photon photoselection from an isotropic ground state; this encompasses both the conventionally measured quadrupolar (K = 2) and the "hidden" degree of hexadecapolar (K = 4) transition dipole alignment, their dependence on the two-photon transition tensor and emission transition dipole moment orientation. Linearly and circularly polarized two-photon absorption (TPA) and time-resolved single- and two-photon fluorescence anisotropy measurements are used to determine the structure of the transition tensor in the deprotonated form of enhanced green fluorescent protein. For excitation wavelengths between 800 nm and 900 nm, TPA is best described by a single element, almost completely diagonal, two-dimensional (planar) transition tensor whose principal axis is collinear to that of the single-photon S 0 → S 1 transition moment. These observations are in accordance with assignments of the near-infrared two-photon absorption band in fluorescent proteins to a vibronically enhanced S 0 → S 1 transition.

  7. Polarized two-photon photoselection in EGFP: Theory and experiment

    Science.gov (United States)

    Masters, T. A.; Marsh, R. J.; Blacker, T. S.; Armoogum, D. A.; Larijani, B.; Bain, A. J.

    2018-04-01

    In this work, we present a complete theoretical description of the excited state order created by two-photon photoselection from an isotropic ground state; this encompasses both the conventionally measured quadrupolar (K = 2) and the "hidden" degree of hexadecapolar (K = 4) transition dipole alignment, their dependence on the two-photon transition tensor and emission transition dipole moment orientation. Linearly and circularly polarized two-photon absorption (TPA) and time-resolved single- and two-photon fluorescence anisotropy measurements are used to determine the structure of the transition tensor in the deprotonated form of enhanced green fluorescent protein. For excitation wavelengths between 800 nm and 900 nm, TPA is best described by a single element, almost completely diagonal, two-dimensional (planar) transition tensor whose principal axis is collinear to that of the single-photon S0 → S1 transition moment. These observations are in accordance with assignments of the near-infrared two-photon absorption band in fluorescent proteins to a vibronically enhanced S0 → S1 transition.

  8. Two-photon spin generation and detection

    International Nuclear Information System (INIS)

    Miah, M Idrish

    2009-01-01

    A time- and polarization-resolved two-photon pump-probe investigation is performed in lightly doped GaAs. We generate spin-polarized electrons in bulk GaAs at various temperatures using right-circularly polarized two-photon excitation and detect them by probing the spin-dependent transmission of the sample. The spin polarization (P) of conduction band electrons, as measured using probe pulses with the same (right) and opposite (left) circular polarization, is measured in dependences of pump-probe delay (Δt), lattice temperature (T L ), doping density (n) as well as of the excess photon energy ΔE 2ω = ℎ2ω - E g , where E g is the band gap energy. P is found to be decayed with Δt and enhanced with the decrease in T L or the increase in n. It is also found that P decreases with the increase in ΔE 2ω and depolarizes rapidly for ΔE 2ω > ΔE SO , where ΔE SO is the spin-orbit splitting energy. The results demonstrate that due to a much longer absorption depth highly polarized spins can be generated optically by two-photon pumping of bulk semiconductors.

  9. Electromagnetically induced two-photon transparency in rubidium atoms

    International Nuclear Information System (INIS)

    Wang, D.; Gao, J.Y.; Xu, J.H.; Bassani, F.; La Rocca, G.C.; Salerno Univ.

    2001-01-01

    We present an experimental demonstration of electromagnetically induced two-photon transparency (EITT) in room temperature rubidium vapor. The 8S 1/2 to 5P 1/2 fluorescence is used to monitor the 5S 1/2 (F = 3) to 8S 1/2 (F = 3) two-photon absorption near resonance with the intermediate state 5P 3/2 . A controlling pump laser beam is employed to coherently couple the 5P 3/2 and 5D 5/2 states, thus producing two dressed intermediate states which give rise to destructive interference in the two-photon transition. An induced two-photon transparency of about 80% has been obtained at resonance; our experimental findings are in good agreement with the general theory of Agarwal et al. (1996), when the appropriate spectroscopic parameters are used. (orig.)

  10. Two-Photon Autofluorescence Imaging Reveals Cellular Structures Throughout the Retina of the Living Primate Eye.

    Science.gov (United States)

    Sharma, Robin; Williams, David R; Palczewska, Grazyna; Palczewski, Krzysztof; Hunter, Jennifer J

    2016-02-01

    Although extrinsic fluorophores can be introduced to label specific cell types in the retina, endogenous fluorophores, such as NAD(P)H, FAD, collagen, and others, are present in all retinal layers. These molecules are a potential source of optical contrast and can enable noninvasive visualization of all cellular layers. We used a two-photon fluorescence adaptive optics scanning light ophthalmoscope (TPF-AOSLO) to explore the native autofluorescence of various cell classes spanning several layers in the unlabeled retina of a living primate eye. Three macaques were imaged on separate occasions using a custom TPF-AOSLO. Two-photon fluorescence was evoked by pulsed light at 730 and 920 nm excitation wavelengths, while fluorescence emission was collected in the visible range from several retinal layers and different locations. Backscattered light was recorded simultaneously in confocal modality and images were postprocessed to remove eye motion. All retinal layers yielded two-photon signals and the heterogeneous distribution of fluorophores provided optical contrast. Several structural features were observed, such as autofluorescence from vessel walls, Müller cell processes in the nerve fibers, mosaics of cells in the ganglion cell and other nuclear layers of the inner retina, as well as photoreceptor and RPE layers in the outer retina. This in vivo survey of two-photon autofluorescence throughout the primate retina demonstrates a wider variety of structural detail in the living eye than is available through conventional imaging methods, and broadens the use of two-photon imaging of normal and diseased eyes.

  11. SU-E-T-05: Comparing DNA Strand Break Yields for Photons under Different Irradiation Conditions with Geant4-DNA.

    Science.gov (United States)

    Pater, P; Bernal, M; Naqa, I El; Seuntjens, J

    2012-06-01

    To validate and scrutinize published DNA strand break data with Geant4-DNA and a probabilistic model. To study the impact of source size, electronic equilibrium and secondary electron tracking cutoff on direct relative biological effectiveness (DRBE). Geant4 (v4.9.5) was used to simulate a cylindrical region of interest (ROI) with r = 15 nm and length = 1.05 mm, in a slab of liquid water of 1.06 g/cm 3 density. The ROI was irradiated with mono-energetic photons, with a uniformly distributed volumetric isotropic source (0.28, 1.5 keV) or a plane beam (0.662, 1.25 MeV), of variable size. Electrons were tracked down to 50 or 10 eV, with G4-DNA processes and energy transfer greater than 10.79 eV was scored. Based on volume ratios, each scored event had a 0.0388 probability of happening on either DNA helix (break). Clusters of at least one break on each DNA helix within 3.4 nm were found using a DBSCAN algorithm and categorized as double strand breaks (DSB). All other events were categorized as single strand breaks (SSB). Geant4-DNA is able to reproduce strand break yields previously published. Homogeneous irradiation conditions should be present throughout the ROI for DRBE comparisons. SSB yields seem slightly dependent on the primary photon energy. DRBEs show a significant increasing trend for lower energy incident photons. A lower electron cutoff produces higher SSB yields, but decreases the SSB/DSB yields ratio. The probabilistic and geometrical DNA models can predict equivalent results. Using Geant4, we were able to reproduce previously published results on the direct strand break yields of photon and study the importance of irradiation conditions. We also show an ascending trend for DRBE with lower incident photon energies. A probabilistic model coupled with track structure analysis can be used to simulate strand break yields. NSERC, CIHR. © 2012 American Association of Physicists in Medicine.

  12. Laser ionization of molecular clusters

    International Nuclear Information System (INIS)

    Desai, S.; Feigerle, C.S.

    1995-01-01

    Multiphoton ionization coupled with mass spectrometry was used to investigate molecular cluster distributions. Three examples will be discussed in this presentation. First, in studies of neat nitric oxide clusters, (NO) m , an interesting odd-even intensity alternation was observed and will be discussed in terms of electron-pairing considerations. In a separate study, the binary clusters comprising nitric oxide and methane preferentially form a stoichiometric cluster made up of repeating units of (NO) 2 CH 4 . These presumably represent a particularly strongly bound open-quotes van der Waalsclose quotes subunit. Finally, in similar studies of neat carbon disulfide clusters, (CS 2 ) m , additional photon absorption after the two-photon ionization step stimulates a series of intracluster ion-molecular reactions leading to formation of S m + and (CS) m + polymers, as well as intermediate species such as S m + (CS 2 ). This molecular cluster analogue of open-quotes laser snowclose quotes will be described in detail

  13. Single-photon two-qubit entangled states: Preparation and measurement

    International Nuclear Information System (INIS)

    Kim, Yoon-Ho

    2003-01-01

    We implement experimentally a deterministic method to prepare and measure the so-called single-photon two-qubit entangled states or single-photon Bell states, in which the polarization and the spatial modes of a single photon each represent a quantum bit. All four single-photon Bell states can be easily prepared and measured deterministically using linear optical elements alone. We also discuss how this method can be used for the recently proposed single-photon two-qubit quantum cryptography scheme

  14. Recent results on two-photon physics from Tasso and a review of measurements of the two-photon total cross section

    International Nuclear Information System (INIS)

    Kolanoski, H.

    1983-03-01

    Recent results on two-photon physics from the Tasso experiment are presented: the measurement of the two-photon production of Kanti K with the determination of the #betta##betta#-width of the f'(1515), an analysis of the angular correlations in the reaction #betta##betta#->rho 0 rho 0 ->π + π - π + π - and the observation of a narrow structure in the four pion mass spectrum around 2.1 GeV. In a separate part the experimental results on the total cross section for hadron production by two photons are reviewed. (orig.)

  15. Exploratory study of fission product yield determination from photofission of 239Pu at 11 MeV with monoenergetic photons

    Science.gov (United States)

    Bhike, Megha; Tornow, W.; Krishichayan, Tonchev, A. P.

    2017-02-01

    Measurements of fission product yields play an important role for the understanding of fundamental aspects of the fission process. Recently, neutron-induced fission product-yield data of 239Pu at energies below 4 MeV revealed an unexpected energy dependence of certain fission fragments. In order to investigate whether this observation is prerogative to neutron-induced fission, a program has been initiated to measure fission product yields in photoinduced fission. Here we report on the first ever photofission product yield measurement with monoenergetic photons produced by Compton back-scattering of FEL photons. The experiment was performed at the High-Intensity Gamma-ray Source at Triangle Universities Nuclear Laboratory on 239Pu at Eγ=11 MeV. In this exploratory study the yield of eight fission products ranging from 91Sr to 143Ce has been obtained.

  16. Experimental determination of beam quality factors, kQ, for two types of Farmer chamber in a 10 MV photon and a 175 MeV proton beam.

    Science.gov (United States)

    Medin, Joakim; Ross, Carl K; Klassen, Norman V; Palmans, Hugo; Grusell, Erik; Grindborg, Jan-Erik

    2006-03-21

    Absorbed doses determined with a sealed water calorimeter operated at 4 degrees C are compared with the results obtained using ionization chambers and the IAEA TRS-398 code of practice in a 10 MV photon beam (TPR(20,10) = 0.734) and a 175 MeV proton beam (at a depth corresponding to the residual range, R(res) = 14.7 cm). Three NE 2571 and two FC65-G ionization chambers were calibrated in terms of absorbed-dose-to-water in (60)Co at the Swedish secondary standard dosimetry laboratory, directly traceable to the BIPM. In the photon beam quality, calorimetry was found to agree with ionometry within 0.3%, confirming the k(Q) values tabulated in TRS-398. In contrast, a 1.8% deviation was found in the proton beam at 6 g cm(-2) depth, suggesting that the TRS-398 tabulated k(Q) values for these two ionization chamber types are too high. Assuming no perturbation effect in the proton beam for the ionization chambers, a value for (w(air)/e)(Q) of 33.6 J C(-1) +/- 1.7% (k = 1) can be derived from these measurements. An analytical evaluation of the effect from non-elastic nuclear interactions in the ionization chamber wall indicates a perturbation effect of 0.6%. Including this estimated result in the proton beam would increase the determined (w(air)/e)(Q) value by the same amount.

  17. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    Science.gov (United States)

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  18. NIR-emitting molecular-based nanoparticles as new two-photon absorbing nanotools for single particle tracking

    Science.gov (United States)

    Daniel, J.; Godin, A. G.; Clermont, G.; Lounis, B.; Cognet, L.; Blanchard-Desce, M.

    2015-07-01

    In order to provide a green alternative to QDs for bioimaging purposes and aiming at designing bright nanoparticles combining both large one- and two-photon brightness, a bottom-up route based on the molecular engineering of dedicated red to NIR emitting dyes that spontaneously form fluorescent organic nanoparticles (FONs) has been implemented. These fully organic nanoparticles built from original quadrupolar dyes are prepared using a simple, expeditious and green protocol that yield very small molecular-based nanoparticles (radius ~ 7 nm) suspension in water showing a nice NIR emission (λem=710 nm). These FONs typically have absorption coefficient more than two orders larger than popular NIR-emitting dyes (such as Alexa Fluor 700, Cy5.5 ….) and much larger Stokes shift values (i.e. up to over 5500 cm-1). They also show very large two-photon absorption response in the 800-1050 nm region (up to about 106 GM) of major promise for two-photon excited fluorescence microscopy. Thanks to their brightness and enhanced photostability, these FONs could be imaged as isolated nanoparticles and tracked using wide-field imaging. As such, thanks to their size and composition (absence of heavy metals), they represent highly promising alternatives to NIR-emitting QDs for use in bioimaging and single particle tracking applications. Moreover, efficient FONs coating was achieved by using a polymeric additive built from a long hydrophobic (PPO) and a short hydrophilic (PEO) segment and having a cationic head group able to interact with the highly negative surface of FONs. This electrostatically-driven interaction promotes both photoluminescence and two-photon absorption enhancement leading to an increase of two-photon brightness of about one order of magnitude. This opens the way to wide-field single particle tracking under two-photon excitation

  19. Molecular engineering of two-photon fluorescent probes for bioimaging applications

    Science.gov (United States)

    Liu, Hong-Wen; Liu, Yongchao; Wang, Peng; Zhang, Xiao-Bing

    2017-03-01

    During the past two decades, two-photon microscopy (TPM), which utilizes two near-infrared photons as the excitation source, has emerged as a novel, attractive imaging tool for biological research. Compared with one-photon microscopy, TPM offers several advantages, such as lowering background fluorescence in living cells and tissues, reducing photodamage to biosamples, and a photobleaching phenomenon, offering better 3D spatial localization, and increasing penetration depth. Small-molecule-based two-photon fluorescent probes have been well developed for the detection and imaging of various analytes in biological systems. In this review, we will give a general introduction of molecular engineering of two-photon fluorescent probes based on different fluorescence response mechanisms for bioimaging applications during the past decade. Inspired by the desired advantages of small-molecule two-photon fluorescent probes in biological imaging applications, we expect that more attention will be devoted to the development of new two-photon fluorophores and applications of TPM in areas of bioanalysis and disease diagnosis.

  20. Characterization of scintillating CaWO{sub 4} crystals for the CRESST experiment using two-photon excitation

    Energy Technology Data Exchange (ETDEWEB)

    Hampf, Raphael; Dandl, Thomas; Muenster, Andrea; Oberauer, Lothar; Roth, Sabine; Schoenert, Stefan; Ulrich, Andreas [Physik-Department and Excellence Cluster Universe, Technische Universitaet Muenchen, D-85747 Garching (Germany)

    2016-07-01

    In the CRESST experiment for direct dark matter search, phonon and photon signals from cryogenic CaWO{sub 4} crystals are used to search for WIMP-induced nuclear recoil events. We present a novel table-top setup in which the scintillation of CaWO{sub 4} is induced by 0.7 ns laser pulses of 355 nm wavelength. The excitation occurs via two-photon absorption in the bulk material. The scintillation light is observed by time resolved optical spectroscopy. By varying the focusing of the laser-beam the excitation density can be made high enough to study quenching effects due to exciton-exciton annihilation. This allows to perform experiments to test models for the quenching factors of different ionizing projectiles in CaWO{sub 4} which are used to identify these projectiles on an event by event basis.

  1. Sample-averaged biexciton quantum yield measured by solution-phase photon correlation.

    Science.gov (United States)

    Beyler, Andrew P; Bischof, Thomas S; Cui, Jian; Coropceanu, Igor; Harris, Daniel K; Bawendi, Moungi G

    2014-12-10

    The brightness of nanoscale optical materials such as semiconductor nanocrystals is currently limited in high excitation flux applications by inefficient multiexciton fluorescence. We have devised a solution-phase photon correlation measurement that can conveniently and reliably measure the average biexciton-to-exciton quantum yield ratio of an entire sample without user selection bias. This technique can be used to investigate the multiexciton recombination dynamics of a broad scope of synthetically underdeveloped materials, including those with low exciton quantum yields and poor fluorescence stability. Here, we have applied this method to measure weak biexciton fluorescence in samples of visible-emitting InP/ZnS and InAs/ZnS core/shell nanocrystals, and to demonstrate that a rapid CdS shell growth procedure can markedly increase the biexciton fluorescence of CdSe nanocrystals.

  2. Two-photon spin generation and detection

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M Idrish, E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)

    2009-02-21

    A time- and polarization-resolved two-photon pump-probe investigation is performed in lightly doped GaAs. We generate spin-polarized electrons in bulk GaAs at various temperatures using right-circularly polarized two-photon excitation and detect them by probing the spin-dependent transmission of the sample. The spin polarization (P) of conduction band electrons, as measured using probe pulses with the same (right) and opposite (left) circular polarization, is measured in dependences of pump-probe delay ({Delta}t), lattice temperature (T{sub L}), doping density (n) as well as of the excess photon energy {Delta}E{sub 2{omega}}= {h_bar}2{omega} - E{sub g}, where E{sub g} is the band gap energy. P is found to be decayed with {Delta}t and enhanced with the decrease in T{sub L} or the increase in n. It is also found that P decreases with the increase in {Delta}E{sub 2{omega}}and depolarizes rapidly for {Delta}E{sub 2{omega}}> {Delta}E{sub SO}, where {Delta}E{sub SO} is the spin-orbit splitting energy. The results demonstrate that due to a much longer absorption depth highly polarized spins can be generated optically by two-photon pumping of bulk semiconductors.

  3. Resonance-enhanced multiphoton ionization photoelectron spectroscopy of even-parity autoionizing Rydberg states of atomic sulphur

    NARCIS (Netherlands)

    Woutersen, S.; de Milan, J.B.; de Lange, C.A.; Buma, W.J.

    1997-01-01

    Several previously unobserved Rydberg states of the sulphur atom above the lowest ionization threshold are identified and assigned using (2 + 1) resonance-enhanced multiphoton-ionization photoelectron spectroscopy. All states were accessed by two-photon transitions from either the 3P ground or the

  4. Photon W value for krypton in the M-shell transition region.

    Science.gov (United States)

    Saito, N; Suzuki, I H

    2001-09-01

    Absolute W values for krypton have been measured for incident X rays with energies in the range of 85 to 1000 eV, using monochromatic synchrotron radiation and a multiple-electrode ion chamber technique that yields the absolute intensity of the X-ray beam and the photoabsorption cross section. To improve the purity of the incident X rays, the electron storage ring was operated at an energy lower than the normal mode, and thin filters were used. The W values are derived from the measured photon intensity and photoabsorption cross section, using the mean charges of the residual ions obtained in previous work. A considerable oscillation of the W values with the photon energy was found in the region near the krypton 3d electron ionization edge. The results are discussed and compared with data in the literature for low-energy electrons and with the calculations from a model that includes multiple photoionization effects related to inner-shell ionization.

  5. Interference of two photons in parametric down conversion

    International Nuclear Information System (INIS)

    Ghosh, R.; Hong, C.K.; Ou, Z.Y.; Mandel, L.

    1986-01-01

    A theoretical treatment is given of the process in which the two photons produced simultaneously in the parametric frequency splitting of light are allowed to interfere. It is shown that, while there is no interference in the usual sense involving quantities that are of the second order in the field, fourth-order interference effects are present. These may be revealed by measuring the joint probability of detecting two photons at two points x,x' in the interference plane with photoelectric detectors as a function of the separation x-x'. The probability exhibits a cosine modulation with x-x', with visibility that can approach 100%, even though the integration time in the experiment may greatly exceed the reciprocal bandwidth of the photons. The interference effect has a nonclassical origin and implies a violation of local realism in the highly correlated two-photon state

  6. Charge dependence of the ratio of double to total ionization of a helium-like ion by Compton scattering of a high energy photon

    International Nuclear Information System (INIS)

    Suric, T.; Pisk, K.; Pratt, R.H.

    1996-01-01

    We examine the charge (Z) dependence of the nonrelativistic high energy limit for the double to total ionization ratio by Compton scattering of a photon, as well as by the photoeffect, utilizing our approach based on the impulse approximation or on the generalized shake-off theory. For all Z our high energy Compton ratio is about half the corresponding photoeffect ratio, calculated using the same assumptions or, alternatively, the ratio of double ionization by Compton scattering to double ionization by the photoeffect is about half the ratio for single ionization. We conclude that all current Compton calculations are consistent with this result, and we show that the recent calculation of Amusia and Mikhailov [Phys. Lett. A 199 (1995) 209] corresponds to our high Z results. (orig.)

  7. Search for Dark Matter Interactions using Ionization Yield in Liquid Xenon

    Science.gov (United States)

    Uvarov, Sergey

    Cosmological observations overwhelmingly support the existence of dark matter which constitutes 87% of the universe's total mass. Weakly Interacting Massive Particles (WIMPs) are a prime candidate for dark matter, and the Large Underground Xenon (LUX) experiment aims to a direct-detection of a WIMP-nucleon interaction. The LUX detector is a dual-phase xenon time-projection chamber housed 4,850 feet underground at Sanford Underground Research Facility in Lead, South Dakota. We present the ionization-only analysis of the LUX 2013 WIMP search data. In the 1.04 x 104 kg-days exposure, thirty events were observed out of the 24.8 expected from radioactive backgrounds. We employ a cut-and-count method to set a 1-sided 90% C.L. upper limit for spin-independent WIMP-nucleon cross-sections. A zero charge yield for nuclear-recoils below 0.7 keV is included upper limit calculation. This ionization-only analysis excludes an unexplored region of WIMP-nucleon cross-section for low-mass WIMPs achieving 1.56 x 10-43 cm2 WIMP-nucleon cross-section exclusion for a 5.1 GeV/ c2 WIMP.

  8. Ion and electron spectroscopy of strontium in the vicinity of the two-photon-excited 5p2 1S0 state

    Science.gov (United States)

    Dimitriou, A.; Cohen, S.

    2014-07-01

    Two-photon ionization of ground-state strontium is investigated experimentally in the 360-370-nm spectral range with dye laser pulses of long (˜ns) duration and low (˜1010W cm-2) intensity. The Sr+ spectra recorded with linear laser polarization are dominated by the presence of the highly correlated 5p21S0 state and by the even parity [4d6d

  9. Mapping of the atomic hydrogen density in combustion processes at atmospheric pressure by two-photon polarization spectroscopy

    International Nuclear Information System (INIS)

    Steiger, A.; Gruetzmacher, K.; Steiger, M.; Gonzalo, A.B.; Rosa, M.I. de la

    2001-01-01

    With laser spectroscopic techniques used so far, quantitative measurements of atomic number densities in flames and other combustion processes at atmospheric pressure yield no satisfying results because high quenching rates remarkably reduce the signal size and the results suffer from large uncertainties. Whereas, two-photon polarization spectroscopy is not limited by quenching, as the polarization signal is a direct measure of the two-photon absorption. This sensitive laser technique with high spatial and temporal resolution has been applied to determine absolute number densities and the kinetic temperatures of atomic hydrogen in flames for the first time. The great potential of this method of measurement comes into its own only in conjunction with laser radiation of highest possible spectral quality, i.e. single-frequency ns-pulses with peak irradiance of up to 1 GW/cm 2 tunable around 243 nm for 1S-2S two-photon transition of atomic hydrogen

  10. Absorbed dose to water determination with ionization chamber dosimetry and calorimetry in restricted neutron, photon, proton and heavy-ion radiation fields.

    Science.gov (United States)

    Brede, H J; Greif, K-D; Hecker, O; Heeg, P; Heese, J; Jones, D T L; Kluge, H; Schardt, D

    2006-08-07

    Absolute dose measurements with a transportable water calorimeter and ionization chambers were performed at a water depth of 20 mm in four different types of radiation fields, for a collimated (60)Co photon beam, for a collimated neutron beam with a fluence-averaged mean energy of 5.25 MeV, for collimated proton beams with mean energies of 36 MeV and 182 MeV at the measuring position, and for a (12)C ion beam in a scanned mode with an energy per atomic mass of 430 MeV u(-1). The ionization chambers actually used were calibrated in units of air kerma in the photon reference field of the PTB and in units of absorbed dose to water for a Farmer-type chamber at GSI. The absorbed dose to water inferred from calorimetry was compared with the dose derived from ionometry by applying the radiation-field-dependent parameters. For neutrons, the quantities of the ICRU Report 45, for protons the quantities of the ICRU Report 59 and for the (12)C ion beam, the recommended values of the International Atomic Energy Agency (IAEA) protocol (TRS 398) were applied. The mean values of the absolute absorbed dose to water obtained with these two independent methods agreed within the standard uncertainty (k = 1) of 1.8% for calorimetry and of 3.0% for ionometry for all types and energies of the radiation beams used in this comparison.

  11. Two photon versus one photon fluorescence excitation in whispering gallery mode microresonators

    International Nuclear Information System (INIS)

    Pastells, Carme; Marco, M.-Pilar; Merino, David; Loza-Alvarez, Pablo; Pasquardini, Laura; Lunelli, Lorenzo; Pederzolli, Cecilia; Daldosso, Nicola; Farnesi, Daniele; Berneschi, Simone; Righini, Giancarlo C.; Quercioli, Franco; Nunzi Conti, Gualtiero; Soria, Silvia

    2016-01-01

    We investigate the feasibility of both one photon and two photon fluorescence excitation using whispering gallery mode microresonators. We report the linear and non linear fluorescence real-time detection of labeled IgG covalently bonded to the surface of a silica whispering gallery mode resonator (WGMR). The immunoreagents have been immobilized onto the surface of the WGMR sensor after being activated with an epoxy silane and an orienting layer. The developed immunosensor presents great potential as a robust sensing device for fast and early detection of immunoreactions. We also investigate the potential of microbubbles as nonlinear enhancement platform. The dyes used in these studies are dylight800, tetramethyl rhodamine isothiocyanate, rhodamine 6G and fluorescein. All measurements were performed in a modified confocal microscope. - Highlights: • One photon fluorescence overlaps with the semiconductor pump laser gain bandwidth. • We report on the feasibility to excite two photon fluorescence in microbubble resonators. • Our functionalization process maintains a good quality factor of the microresonator.

  12. Two photon versus one photon fluorescence excitation in whispering gallery mode microresonators

    Energy Technology Data Exchange (ETDEWEB)

    Pastells, Carme; Marco, M.-Pilar [Nanobiotechnology for Diagnostics Group (Nb4Dg), IQAC-CSIC, 08034 Barcelona (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina, 08034 Barcelona (Spain); Merino, David; Loza-Alvarez, Pablo [ICFO-Institut de Ciències Fotòniques, Castelldefels, 08860 Barcelona (Spain); Pasquardini, Laura [Fondazione Bruno Kessler, 38123 Povo, TN (Italy); Lunelli, Lorenzo [Fondazione Bruno Kessler, 38123 Povo, TN (Italy); IBF-CNR, 38123 Povo, TN (Italy); Pederzolli, Cecilia [Fondazione Bruno Kessler, 38123 Povo, TN (Italy); Daldosso, Nicola [Department of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona (Italy); Farnesi, Daniele [CNR-IFAC “Nello Carrara” Institute of Applied Physics, 50019 Sesto Fiorentino, FI (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, 00184 Roma (Italy); Berneschi, Simone [CNR-IFAC “Nello Carrara” Institute of Applied Physics, 50019 Sesto Fiorentino, FI (Italy); Righini, Giancarlo C. [CNR-IFAC “Nello Carrara” Institute of Applied Physics, 50019 Sesto Fiorentino, FI (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, 00184 Roma (Italy); Quercioli, Franco [CNR-INO National Institute of Optics, Sesto Fiorentino, FI (Italy); Nunzi Conti, Gualtiero [CNR-IFAC “Nello Carrara” Institute of Applied Physics, 50019 Sesto Fiorentino, FI (Italy); Soria, Silvia, E-mail: s.soria@ifac.cnr.it [CNR-IFAC “Nello Carrara” Institute of Applied Physics, 50019 Sesto Fiorentino, FI (Italy)

    2016-02-15

    We investigate the feasibility of both one photon and two photon fluorescence excitation using whispering gallery mode microresonators. We report the linear and non linear fluorescence real-time detection of labeled IgG covalently bonded to the surface of a silica whispering gallery mode resonator (WGMR). The immunoreagents have been immobilized onto the surface of the WGMR sensor after being activated with an epoxy silane and an orienting layer. The developed immunosensor presents great potential as a robust sensing device for fast and early detection of immunoreactions. We also investigate the potential of microbubbles as nonlinear enhancement platform. The dyes used in these studies are dylight800, tetramethyl rhodamine isothiocyanate, rhodamine 6G and fluorescein. All measurements were performed in a modified confocal microscope. - Highlights: • One photon fluorescence overlaps with the semiconductor pump laser gain bandwidth. • We report on the feasibility to excite two photon fluorescence in microbubble resonators. • Our functionalization process maintains a good quality factor of the microresonator.

  13. Correlated Keldysh-Faisal-Reiss theory of above-threshold double ionization of He in intense laser fields

    International Nuclear Information System (INIS)

    Becker, A.; Faisal, F.H.M.

    1994-01-01

    We have developed a correlated Keldysh-Faisal-Reiss theory of laser-induced double ionization of a two-electron atom. The basic N-photon T matrix and the expression for N-photon triple-differential rates or cross sections (TDCS's) are derived. The theory is applied to investigate the TDCS's for very-high-order multiphoton double ionization of He with lasers of wavelength λ=248 nm and λ=617 nm. Comparison with the uncorrelated results reveals a dramatic influence of the final-state e-e correlation on the above-threshold TDCS's to be measured in coincidence experiments in intense laser fields. The limiting case of the TDCS's for weak-field double ionization of He by a synchrotron photon is also investigated; the results confirm the earlier theoretical findings and recent experimental results in that case

  14. Wavelength dependent photoelectron circular dichroism of limonene studied by femtosecond multiphoton laser ionization and electron-ion coincidence imaging

    Science.gov (United States)

    Rafiee Fanood, Mohammad M.; Janssen, Maurice H. M.; Powis, Ivan

    2016-09-01

    Enantiomers of the monoterpene limonene have been investigated by (2 + 1) resonance enhanced multiphoton ionization and photoelectron circular dichroism employing tuneable, circularly polarized femtosecond laser pulses. Electron imaging detection provides 3D momentum measurement while electron-ion coincidence detection can be used to mass-tag individual electrons. Additional filtering, by accepting only parent ion tagged electrons, can be then used to provide discrimination against higher energy dissociative ionization mechanisms where more than three photons are absorbed to better delineate the two photon resonant, one photon ionization pathway. The promotion of different vibrational levels and, tentatively, different electronic ion core configurations in the intermediate Rydberg states can be achieved with different laser excitation wavelengths (420 nm, 412 nm, and 392 nm), in turn producing different state distributions in the resulting cations. Strong chiral asymmetries in the lab frame photoelectron angular distributions are quantified, and a comparison made with a single photon (synchrotron radiation) measurement at an equivalent photon energy.

  15. Multi-photon ionization of atoms and molecules by intense XUV-FEL light. Application to methanol and ethanol molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Takahiro; Iwasaki, Atsushi; Okino, Tomoya; Yamanouchi, Kaoru [Tokyo Univ., School of Science, Tokyo (Japan); Yagishita, Akira [Institute of Materials Structure Science, Photon Factory, Tsukuba, Ibaraki (Japan); Yazawa, Hiroki; Kannari, Fumihiko [Keio Univ., Graduate School of Science and Technology, Yokohama, Kanagawa (Japan); Aoyama, Makoto; Yamakawa, Koichi [Japan Atomic Energy Agency, Kansai Photon Science Inst., Kizugawa, Kyoto (Japan); Midorikawa, Katsumi [RIKEN, Laser Technology Laboratory, Wako, Saitama (Japan); Nakano, Hidetoshi [NTT Corp., NTT Basic Research Laboratories, Atsugi, Kanagawa (Japan); Yabashi, Makina; Nagasono, Mitsuru; Higashiya, Atsushi; Togashi, Tadashi; Ishikawa, Tetsuya [RIKEN SPring-8 XFEL Project, Sayo, Hyogo (Japan)

    2009-12-15

    The photo-ionization processes of methanol (CH{sub 3}OH, CD{sub 3}OH) and ethanol (C{sub 2}H{sub 5}OH) and their dependences on the wavelength and the light-field intensity were investigated using intense XUV light at 51 and 61 nm at the XUV free electron laser facility of RIKEN SPring-8 Center. The light field intensity achieved at 51 nm was found to be intense enough to generate Ar{sup 7+} from Ar. It was confirmed that (1) the stable dications, CH{sub 2}OH{sup 2+} and CH{sub 2}OD{sup 2+}, were produced respectively from CH{sub 3}OH and CD{sub 3}OH, and C{sub 2}H{sub 2}OH{sup 2+} from CH{sub 2}H{sub 5}OH via the direct and/or stepwise two-photon absorption, and (2) C{sup +} and CH{sup +} were produced from C{sub 2}H{sub 5}OH via the stepwise two-photon absorption of the XUV light. It was also confirmed by the formation of H{sub 3}O{sup +} from CH{sub 3}OH and C{sub 2}H{sub 5}OH, and HOD{sub 2}{sup +} from CD{sub 3}OH that hydrogen migration processes were induced by the irradiation of the intense XUV light. (author)

  16. Di-photon cross section measurement and Higgs sensitivity study in the two-photon final state with the ATLAS detector

    CERN Document Server

    Yuan, Li

    2011-01-01

    This work is done with the ATLAS collaboration. Three independent methods are proposed to measure the photon trigger efficiency. They are first evaluated using Monte Carlo simulation and then applied on 2010 data. The two photon-based methods show consistent results, with efficiency discrepancy at a few % level. For the method based on electron sample, the statistics is too low to draw conclusion. A detailed QCD di-photon cross-section measurement is performed on a data sample corresponding to a luminosity of 37.2 ±1.2 pb−1, in which a 2D fit method is introduced to extract the signal yields. The differential distributions of the observables Mγγ , pT γγ and Δϕγγ are derived and compared with the predictions from the DIPHOX and RESBOS generators. A good agreement is found for the Mγγ distribution, whereas discrepancies are observed in the pT γγ and Δϕγγ distributions. In the study of the H → γγ channel based on a simulated sample, a deterioration of 4% in the exclusion limit is observed ...

  17. Lithium atoms on helium nanodroplets: Rydberg series and ionization dynamics

    Science.gov (United States)

    Lackner, Florian; Krois, Günter; Ernst, Wolfgang E.

    2017-11-01

    The electronic excitation spectrum of lithium atoms residing on the surface of helium nanodroplets is presented and analyzed employing a Rydberg-Ritz approach. Utilizing resonant two-photon ionization spectroscopy, two different Rydberg series have been identified: one assigned to the nS(Σ) series and the other with predominantly nP(Π) character. For high Rydberg states, which have been resolved up to n = 13, the surrounding helium effectively screens the valence electron from the Li ion core, as indicated by the apparent red-shift of Li transitions and lowered quantum defects on the droplet with respect to their free atom counterparts. For low n states, the screening effect is weakened and the prevailing repulsive interaction gives rise to strongly broadened and blue-shifted transitions. The red-shifts originate from the polarization of nearby He atoms by the positive Li ion core. As a consequence of this effect, the ionization threshold is lowered by 116 ± 10 cm-1 for Li on helium droplets with a radius of about 40 Å. Upon single-photon ionization, heavy complexes corresponding to Li ions attached to intact helium droplets are detected. We conclude that ionization close to the on-droplet ionization threshold triggers a dynamic process in which the Li ion core undergoes a transition from a surface site into the droplet.

  18. Two-Photon Absorption in Organometallic Bromide Perovskites

    KAUST Repository

    Walters, Grant

    2015-07-21

    Organometallic trihalide perovskites are solution processed semiconductors that have made great strides in third generation thin film light harvesting and light emitting optoelectronic devices. Recently it has been demonstrated that large, high purity single crystals of these perovskites can be synthesized from the solution phase. These crystals’ large dimensions, clean bandgap, and solid-state order, have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW-1 at 800 nm, comparable to epitaxial single crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  19. Two-Photon Absorption in Organometallic Bromide Perovskites

    KAUST Repository

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P.; Bakr, Osman; Sargent, Edward H.

    2015-01-01

    Organometallic trihalide perovskites are solution processed semiconductors that have made great strides in third generation thin film light harvesting and light emitting optoelectronic devices. Recently it has been demonstrated that large, high purity single crystals of these perovskites can be synthesized from the solution phase. These crystals’ large dimensions, clean bandgap, and solid-state order, have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW-1 at 800 nm, comparable to epitaxial single crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  20. Monte Carlo simulation of two-photon processes

    International Nuclear Information System (INIS)

    Daverveldt, P.H.W.M.

    1985-01-01

    During the last two decades e + e - collider experiments provided physicists with a wealth of important discoveries concerning elementary particle physics. This thesis explains in detail how the Monte Carlo approach can be applied to establish the comparison between two-photon experiments and theory. The author describes the main motives for and objectives of two-photon research. He defines the kinematics and pays attention to some special kinematical regions. Also a popular approximation for the exact differential cross section is reviewed. Next he discusses the calculation of the complete lowest order cross section for processes with four leptons in the final state and for reactions such as e + e - →e + e - qanti q, e + e - →μ + μ - qanti q. Radiative corrections to the multiperipheral diagrams are considered. The author explains in detail the distinction between soft and hard photon corrections which turns out to be somewhat more tricky than in the case of radiative corrections to one-photon processes. Finally, he presents some results which were obtained by using the event generators. (Auth.)

  1. Probing temporal aspects of high-order harmonic pulses via multi-colour, multi-photon ionization processes

    Energy Technology Data Exchange (ETDEWEB)

    Mauritsson, J [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Johnsson, P [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); Lopez-Martens, R [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); Varju, K [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); L' Huillier, A [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); Gaarde, M B [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Schafer, K J [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States)

    2005-07-14

    High-order harmonics generated through the interaction of atoms and strong laser fields are a versatile, laboratory-scale source of extreme ultraviolet (XUV) radiation on a femtosecond or even attosecond time-scale. In order to be a useful experimental tool, however, this radiation has to be well characterized, both temporally and spectrally. In this paper we discuss how multi-photon, multi-colour ionization processes can be used to completely characterize either individual harmonics or attosecond pulse trains. In particular, we discuss the influence of the intensity and duration of the probe laser, and how these parameters effect the accuracy of the XUV characterization.

  2. Probing temporal aspects of high-order harmonic pulses via multi-colour, multi-photon ionization processes

    International Nuclear Information System (INIS)

    Mauritsson, J; Johnsson, P; Lopez-Martens, R; Varju, K; L'Huillier, A; Gaarde, M B; Schafer, K J

    2005-01-01

    High-order harmonics generated through the interaction of atoms and strong laser fields are a versatile, laboratory-scale source of extreme ultraviolet (XUV) radiation on a femtosecond or even attosecond time-scale. In order to be a useful experimental tool, however, this radiation has to be well characterized, both temporally and spectrally. In this paper we discuss how multi-photon, multi-colour ionization processes can be used to completely characterize either individual harmonics or attosecond pulse trains. In particular, we discuss the influence of the intensity and duration of the probe laser, and how these parameters effect the accuracy of the XUV characterization

  3. Photon-momentum transfer in molecular photoionization

    Science.gov (United States)

    Chelkowski, Szczepan; Bandrauk, André D.

    2018-05-01

    In most models and theoretical calculations describing multiphoton ionization by infrared light, the dipole approximation is used. This is equivalent to setting the very small photon momentum to zero. Using numerical solutions of the (nondipole) three-dimensional time-dependent Schrödinger equation for one electron in a H2+ molecular ion we investigate the effect the photon-momentum transfer to the photoelectron in an H2+ ion in various regimes. We find that the photon-momentum transfer in a molecule is very different from the transfer in atoms due to two-center interference effects. The photon-momentum transfer is very sensitive to the symmetry of the initial electronic state and is strongly dependent on the internuclear distance and on the ellipticity of the laser.

  4. Multiphoton ionization processes in strong laser

    International Nuclear Information System (INIS)

    Krstic, P.

    1982-01-01

    Multiphoton ionization of hydrogen in ultrastrong laser fields is studied. The previous calculations of this process yield differing result for the transition rate. We show the relations between them and difficulties with each of them. One difficulty is that the finite spatial and time extent of the laser field has been omitted. It is also found that a laser field, which is sufficiently intense to be labeled ultrastrong, makes the electron move relativistically so that it becomes necessary to use Volkov states to describe the electron in the laser field. The transition rate is obtained, using a CO laser as an example, and it is found that the transition rate rises as the laser intensity rises. This is a consequence of the use of relativistic kinematics and is not true nonrelativistically. We also discuss the multiple peaks observed in the energy spectrum of electrons resulting from multiphoton ionization of atoms by lasers. When the laser intensity is large enough for the ponderomotive force to result in appreciable broading of the peaks we show the shape of the broadened peaks contains useful information. We show that the multiphoton ionization probability as a function of laser intensity can be obtained but that the free-free cross sections, which are in principle also obtainable, are probably not obtainable in practice. Finally, we describe the theory of the absorption of more than minimum numbers of photons needed to ionize an atom by an intense laser. The basic approximation used is that the atom is adiabatically deformed by the laser and an impulsive interaction then results in multiphoton absorption. In our first calculation we allow only one resonant excited state to be included in the adiabatic deformation. In our second we also allow the lowest energy continuum to be included. The two results are then compared

  5. Using DNA origami nanostructures to determine absolute cross sections for UV photon-induced DNA strand breakage.

    Science.gov (United States)

    Vogel, Stefanie; Rackwitz, Jenny; Schürman, Robin; Prinz, Julia; Milosavljević, Aleksandar R; Réfrégiers, Matthieu; Giuliani, Alexandre; Bald, Ilko

    2015-11-19

    We have characterized ultraviolet (UV) photon-induced DNA strand break processes by determination of absolute cross sections for photoabsorption and for sequence-specific DNA single strand breakage induced by photons in an energy range from 6.50 to 8.94 eV. These represent the lowest-energy photons able to induce DNA strand breaks. Oligonucleotide targets are immobilized on a UV transparent substrate in controlled quantities through attachment to DNA origami templates. Photon-induced dissociation of single DNA strands is visualized and quantified using atomic force microscopy. The obtained quantum yields for strand breakage vary between 0.06 and 0.5, indicating highly efficient DNA strand breakage by UV photons, which is clearly dependent on the photon energy. Above the ionization threshold strand breakage becomes clearly the dominant form of DNA radiation damage, which is then also dependent on the nucleotide sequence.

  6. Stimulated emission depletion following two photon excitation

    OpenAIRE

    Marsh, R. J.; Armoogum, D. A.; Bain, A. J.

    2002-01-01

    The technique of stimulated emission depletion of fluorescence (STED) from a two photon excited molecular population is demonstrated in the S, excited state of fluorescein in ethylene glycol and methanol. Two photon excitation (pump) is achieved using the partial output of a regeneratively amplified Ti:Sapphire laser in conjunction with an optical parametric amplifier whose tuneable output provides a synchronous depletion (dump) pulse. Time resolved fluorescence intensity and anisotropy measu...

  7. Photonic crystal fibre enables short-wavelength two-photon laser scanning fluorescence microscopy with fura-2

    International Nuclear Information System (INIS)

    McConnell, Gail; Riis, Erling

    2004-01-01

    We report on a novel and compact reliable laser source capable of short-wavelength two-photon laser scanning fluorescence microscopy based on soliton self-frequency shift effects in photonic crystal fibre. We demonstrate the function of the system by performing two-photon microscopy of smooth muscle cells and cardiac myocytes from the rat pulmonary vein and Chinese hamster ovary cells loaded with the fluorescent calcium indicator fura-2/AM

  8. DOSIS: a computer program for the calculation of absorbed dose in photon and electron beams from ionization measurements in a phantom

    Energy Technology Data Exchange (ETDEWEB)

    Andreo, P [Kungliga Karolinska Mediko-Kirurgiska Inst., Stockholm (Sweden). Radiofysiska Institutionen; Zaragoza Univ. (Spain). Dept. de Radiologia)

    1983-06-15

    A computer program has been developed to facilitate the calculation of the absorbed dose in photon and electron beams from measurements with an ionization chamber in a phantom. The generalized Bragg-Gray theory, introduced in the latest recommendations of the Nordic Association of Clinical Physics (NACP), is used throughout the code, including more updated parameter values than those included in the NACP protocol. The calibration factor of the ionization chamber in units of absorbed dose in the air of the cavity can be derived for most of the chambers available today by using experimental data or fitted relations to Monte Carlo results.

  9. One-bit photon polarization in two-photon experiments. An information mechanics perspective

    International Nuclear Information System (INIS)

    Kantor, F.W.

    1991-01-01

    In this paper is presented a detailed treatment of amount and representation of photon polarization information in the two-photon experiments of Aspect, Grangier, and Roger, seeking to test Einstein, Podolsky, and Rosen's thought experiment. Newton's mechanics, Einstein's relativistic mechanics, and quantum mechanics do not treat as fundamental the amount and representation of information in physical systems. The line of reasoning presented here was reached via Kantor's information mechanics. The information bookkeeping presented here appears to offer a simple, physical insight into what the apparatus and the photons are doing together

  10. Application of pyrolysis–mass spectrometry and pyrolysis–gas chromatography–mass spectrometry with electron-ionization or resonance-enhanced-multi-photon ionization for characterization of crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Stefan [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Streibel, Thorsten, E-mail: thorsten.streibel@uni-rostock.de [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Joint Mass Spectrometry Centre, Cooperation Group Comprehensive Molecular Analytics, Institute of Ecological Chemistry, Helmholtz Zentrum München-German Research Center of Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764 Neuherberg (Germany); Erdmann, Sabrina [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Sklorz, Martin [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Joint Mass Spectrometry Centre, Cooperation Group Comprehensive Molecular Analytics, Institute of Ecological Chemistry, Helmholtz Zentrum München-German Research Center of Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764 Neuherberg (Germany); Schulz-Bull, Detlef [Marine Chemistry, Leibniz Institute for Baltic Sea Research, Warnemünde, Seestrasse 15, 18119 Rostock (Germany); Zimmermann, Ralf [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Joint Mass Spectrometry Centre, Cooperation Group Comprehensive Molecular Analytics, Institute of Ecological Chemistry, Helmholtz Zentrum München-German Research Center of Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764 Neuherberg (Germany)

    2015-01-15

    Highlights: • Gas chromatography setup with two MS detectors applying different ionization methods. • In parallel structural information and sensitive detection of aromatic species. • Characterization of setup and application for crude oil samples. • Detection of polycyclic aromatic hydrocarbons next to sulfur containing aromatics. - Abstract: A novel analytical system for gas-chromatographic investigation of complex samples has been developed, that combines the advantages of several analytical principles to enhance the analytical information. Decomposition of high molecular weight structures is achieved by pyrolysis and a high separation capacity due to the chromatographic step provides both an universal as well as a selective and sensitive substance detection. The latter is achieved by simultaneously applying electron ionization quadrupole mass spectrometry (EI-QMS) for structural elucidation and [1 + 1]-resonance-enhanced-multi-photon ionization (REMPI) combined with time-of-flight mass spectrometry (ToFMS). The system has been evaluated and tested with polycyclic aromatic hydrocarbon (PAH) standards. It was applied to crude oil samples for the first time. In such highly complex samples several thousands of compounds are present and the identification especially of low concentrated chemical species such as PAH or their polycyclic aromatic sulfur containing heterocyclic (PASH) derivatives is often difficult. Detection of unalkylated and alkylated PAH together with PASH is considerably enhanced by REMPI–ToFMS, at times revealing aromatic structures which are not observable by EI-QMS due to their low abundance. On the other hand, the databased structure proposals of the EI-QMS analysis are needed to confirm structural information and isomers distinction. The technique allows a complex structure analysis as well as selective assessment of aromatic substances in one measurement. Information about the content of sulfur containing compounds plays a

  11. Application of pyrolysis–mass spectrometry and pyrolysis–gas chromatography–mass spectrometry with electron-ionization or resonance-enhanced-multi-photon ionization for characterization of crude oils

    International Nuclear Information System (INIS)

    Otto, Stefan; Streibel, Thorsten; Erdmann, Sabrina; Sklorz, Martin; Schulz-Bull, Detlef; Zimmermann, Ralf

    2015-01-01

    Highlights: • Gas chromatography setup with two MS detectors applying different ionization methods. • In parallel structural information and sensitive detection of aromatic species. • Characterization of setup and application for crude oil samples. • Detection of polycyclic aromatic hydrocarbons next to sulfur containing aromatics. - Abstract: A novel analytical system for gas-chromatographic investigation of complex samples has been developed, that combines the advantages of several analytical principles to enhance the analytical information. Decomposition of high molecular weight structures is achieved by pyrolysis and a high separation capacity due to the chromatographic step provides both an universal as well as a selective and sensitive substance detection. The latter is achieved by simultaneously applying electron ionization quadrupole mass spectrometry (EI-QMS) for structural elucidation and [1 + 1]-resonance-enhanced-multi-photon ionization (REMPI) combined with time-of-flight mass spectrometry (ToFMS). The system has been evaluated and tested with polycyclic aromatic hydrocarbon (PAH) standards. It was applied to crude oil samples for the first time. In such highly complex samples several thousands of compounds are present and the identification especially of low concentrated chemical species such as PAH or their polycyclic aromatic sulfur containing heterocyclic (PASH) derivatives is often difficult. Detection of unalkylated and alkylated PAH together with PASH is considerably enhanced by REMPI–ToFMS, at times revealing aromatic structures which are not observable by EI-QMS due to their low abundance. On the other hand, the databased structure proposals of the EI-QMS analysis are needed to confirm structural information and isomers distinction. The technique allows a complex structure analysis as well as selective assessment of aromatic substances in one measurement. Information about the content of sulfur containing compounds plays a

  12. Spin and Angular Momentum in Strong-Field Ionization

    Science.gov (United States)

    Trabert, D.; Hartung, A.; Eckart, S.; Trinter, F.; Kalinin, A.; Schöffler, M.; Schmidt, L. Ph. H.; Jahnke, T.; Kunitski, M.; Dörner, R.

    2018-01-01

    The spin polarization of electrons from multiphoton ionization of Xe by 395 nm circularly polarized laser pulses at 6 ×1013 W /cm2 has been measured. At this photon energy of 3.14 eV the above-threshold ionization peaks connected to Xe+ ions in the ground state (J =3 /2 , ionization potential Ip=12.1 eV ) and the first excited state (J =1 /2 , Ip=13.4 eV ) are clearly separated in the electron energy distribution. These two combs of above-threshold ionization peaks show opposite spin polarizations. The magnitude of the spin polarization is a factor of 2 higher for the J =1 /2 than for the J =3 /2 final ionic state. In turn, the data show that the ionization probability is strongly dependent on the sign of the magnetic quantum number.

  13. Entanglement of two-qubit photon beam by magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Levin, A.D.; Castro, R.A. [University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo (Brazil); Gitman, D.M. [University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo (Brazil); P.N. Lebedev Physical Institute, Moscow (Russian Federation); Tomsk State University, Tomsk (Russian Federation)

    2014-09-15

    We study the possibility of affecting the entanglement in a two-qubit system consisting of two photons with different fixed frequencies but with two arbitrary linear polarizations, moving in the same direction, with the help of an applied external magnetic field. The interaction between the magnetic field and the photons in our model is achieved through intermediate electrons that interact both with the photons and the magnetic field. The possibility of an exact theoretical analysis of this scheme is based on well-known exact solutions that describe the interaction of an electron subjected to an external magnetic field (or a medium of electrons not interacting with each other) with a quantized field of two photons. We adapt these exact solutions to the case under consideration. Using explicit wave functions for the resulting electromagnetic field, we calculate the entanglement measures (the information and the Schmidt ones) of the photon beam as functions of the applied magnetic field and the parameters of the electron medium. (orig.)

  14. Mass distribution for the two-photon channel

    CERN Multimedia

    ATLAS, collaboration

    2012-01-01

    Mass distribution for the two-photon channel. The strongest evidence for this new particle comes from analysis of events containing two photons. The smooth dotted line traces the measured background from known processes. The solid line traces a statistical fit to the signal plus background. The new particle appears as the excess around 126.5 GeV. The full analysis concludes that the probability of such a peak is three chances in a million.

  15. ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Soler, R.; Ballester, J. L.; Terradas, J. [Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, M., E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: jaume.terradas@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matematiques i Informatica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2013-04-20

    Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.

  16. Radiation damage to tetramethylsilane and tetramethylgermanium ionization chambers

    International Nuclear Information System (INIS)

    Hoshi, Y.; Higuchi, M.; Oyama, K.

    1994-01-01

    Two detector media suitable for a warm liquid, ionization chamber filled with tetramethylsilane (TMS) and tetramethylgermanium (TMG) were exposed to γ radiation form a 60 Co source up to dose 579 Gray and 902 Gray, respectively. The electron lifetimes and the free ion yields were measured as a function of accumulated radiation dose. A similar behavior of the electron lifetimes and the free ion yields with increasing radiation does was observed between the TMS and TMG ionization chambers

  17. Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters

    Science.gov (United States)

    Roy, Dibyendu

    2013-01-01

    We propose and theoretically investigate a model to realize cascaded optical nonlinearity with few atoms and photons in one-dimension (1D). The optical nonlinearity in our system is mediated by resonant interactions of photons with two-level emitters, such as atoms or quantum dots in a 1D photonic waveguide. Multi-photon transmission in the waveguide is nonreciprocal when the emitters have different transition energies. Our theory provides a clear physical understanding of the origin of nonreciprocity in the presence of cascaded nonlinearity. We show how various two-photon nonlinear effects including spatial attraction and repulsion between photons, background fluorescence can be tuned by changing the number of emitters and the coupling between emitters (controlled by the separation). PMID:23948782

  18. CERN: A tale of two photons

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    When precision data from the several million Zs carefully collected over several years by the four big experiments - Aleph, Delphi, L3 and Opal - at CERN's LEP electron-positron collider have otherwise consistently underlined conventional physics, a hint of something unexplained quickly packs the seminar rooms. In 1991, the L3 experiment turned up two examples of Z decays producing a muon pair accompanied by a widely separated pair of high energy photons, with the photon pair in each case taking some 60 GeV of energy (actually 58.8 and 59.0 GeV). Nothing to get excited about at the time, but ongoing data analysis tuned into this channel. This year two more events turned up, one again with a muon pair accompanied by a 60 GeV photon pair, the other with an electron (electron-positron) pair and a 62 GeV photon pair. At first L3 preferred to keep this quiet, and the news was not announced at the major international meeting in Dallas last August. The first public announcement of the four unexplained events (out of a total of 1.6 million Z decays) came in a LEP Experiments Committee session at CERN in October

  19. Multiphoton ionization and fragmentation study of acetone using 308 nm laser radiation

    Science.gov (United States)

    Liu Houxiang, Li Shutao, Han Jingcheng, Zhu Rong, Guan Yifu, Wu Cunkai

    1988-10-01

    Multiphoton ionization and fragmentation (MPI-F) of acetone molecules using 308 nm laser radiation was studied by using a molecular beam and quadrupole mass spectrometer. The ion peaks of acetone molecule appear at m/e=15 and 43, corresponding to the two fragments CH3+ and CH3CO+. It is considered that these two ions are, respectively, formed by direct (2+1) and 2-photon ionization of methyl and acetyl radicals, generated by photodissociation of acetone molecule.

  20. Two-dimensional plasma photonic crystals in dielectric barrier discharge

    International Nuclear Information System (INIS)

    Fan Weili; Dong Lifang; Zhang Xinchun

    2010-01-01

    A series of two-dimensional plasma photonic crystals have been obtained by filaments' self-organization in atmospheric dielectric barrier discharge with two water electrodes, which undergo the transition from square to square superlattice and finally to the hexagon. The spatio-temporal behaviors of the plasma photonic crystals in nanosecond scale have been studied by optical method, which show that the plasma photonic crystal is actually an integration of different transient sublattices. The photonic band diagrams of the transverse electric (TE) mode and transverse magnetic mode for each sublattice of these plasma photonic crystals have been investigated theoretically. A wide complete band gap is formed in the hexagonal plasma photonic crystal with the TE mode. The changes of the band edge frequencies and the band gap widths in the evolvement of different structures are studied. A kind of tunable plasma photonic crystal which can be controlled both in space and time is suggested.

  1. Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters.

    Science.gov (United States)

    Reindl, Marcus; Jöns, Klaus D; Huber, Daniel; Schimpf, Christian; Huo, Yongheng; Zwiller, Val; Rastelli, Armando; Trotta, Rinaldo

    2017-07-12

    Photonic quantum technologies are on the verge of finding applications in everyday life with quantum cryptography and quantum simulators on the horizon. Extensive research has been carried out to identify suitable quantum emitters and single epitaxial quantum dots have emerged as near-optimal sources of bright, on-demand, highly indistinguishable single photons and entangled photon-pairs. In order to build up quantum networks, it is essential to interface remote quantum emitters. However, this is still an outstanding challenge, as the quantum states of dissimilar "artificial atoms" have to be prepared on-demand with high fidelity and the generated photons have to be made indistinguishable in all possible degrees of freedom. Here, we overcome this major obstacle and show an unprecedented two-photon interference (visibility of 51 ± 5%) from remote strain-tunable GaAs quantum dots emitting on-demand photon-pairs. We achieve this result by exploiting for the first time the full potential of a novel phonon-assisted two-photon excitation scheme, which allows for the generation of highly indistinguishable (visibility of 71 ± 9%) entangled photon-pairs (fidelity of 90 ± 2%), enables push-button biexciton state preparation (fidelity of 80 ± 2%) and outperforms conventional resonant two-photon excitation schemes in terms of robustness against environmental decoherence. Our results mark an important milestone for the practical realization of quantum repeaters and complex multiphoton entanglement experiments involving dissimilar artificial atoms.

  2. Experimental determination of the beam quality dependence factors, kQ, for ionization chambers used in photon and electron dosimetry

    International Nuclear Information System (INIS)

    Guerra, A.S.; Laitano, R.F.; Pimpinella, M.

    1995-01-01

    Dosimetry in radiotherapy with ionization chambers calibrated in 60 Co gamma beams in terms of absorbed dose to water, D W , can be performed if a factor conventionally denoted as k Q is known. The factor k Q depends on the beam quality and the chamber characteristics. Calculated values of the k Q factors for many types of ionization chamber have been recently published. In this work the experimental determination of the k Q factors for various ionization chambers was performed for 6 MV and 15 MV photon beams and for a 14 MeV electron beam. The k Q factors were determined by a procedure based on relative measurements performed with the ionization chamber and ferrous sulphate solution in 60 Co gamma radiation and accelerator beams, respectively. The experimental k Q values are compared with the calculated values so far published. Theoretical and experimental k Q values are in fairly good agreement. The uncertainty in the experimental k Q factors determined in this work is less than about 1%, that is, appreciably smaller than the uncertainty of about 1.5% reported for the calculated values. (Author)

  3. Sources of ionizing radiation and their interactions with matter

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Particles or photons are said to be ionizing if they are capable of removing electrons from matter. For this to happen, the energy per photon or the kinetic energy per particle must be greater than the minimum binding energy of the electrons of the medium. Radiation is thus ionizing relative to the medium. The main constituents of organic matter are carbon, oxygen, nitrogen, and hydrogen. The values of the primary ionization potentials (minimum energy required to remove the least bound electron from an atom) of these elements are: C : 11.24 eV; H : 13.60 eV; O : 13.57 eV; and N : 14.20 eV. The minimum energy required to remove an electron from a biological medium may in fact be less than these values; the binding energy of electrons in a molecule may be of the order of 10 eV, or even lower. The most energetic UV photons, those of wavelength 0.1 μm, have an energy of 12.4 eV, which is enough to ionize biological media. Similarly, X- and γ-rays are ionizing. However, the near UV, visible, IR, micro and radio waves are non-ionizing. In general, particles possessing a kinetic energy larger than 10 eV are ionizing

  4. Thermalization of a two-dimensional photonic gas in a `white wall' photon box

    Science.gov (United States)

    Klaers, Jan; Vewinger, Frank; Weitz, Martin

    2010-07-01

    Bose-Einstein condensation, the macroscopic accumulation of bosonic particles in the energetic ground state below a critical temperature, has been demonstrated in several physical systems. The perhaps best known example of a bosonic gas, blackbody radiation, however exhibits no Bose-Einstein condensation at low temperatures. Instead of collectively occupying the lowest energy mode, the photons disappear in the cavity walls when the temperature is lowered-corresponding to a vanishing chemical potential. Here we report on evidence for a thermalized two-dimensional photon gas with a freely adjustable chemical potential. Our experiment is based on a dye-filled optical microresonator, acting as a `white wall' box for photons. Thermalization is achieved in a photon-number-conserving way by photon scattering off the dye molecules, and the cavity mirrors provide both an effective photon mass and a confining potential-key prerequisites for the Bose-Einstein condensation of photons. As a striking example of the unusual system properties, we demonstrate a yet unobserved light concentration effect into the centre of the confining potential, an effect with prospects for increasing the efficiency of diffuse solar light collection.

  5. Gas ionization by focused laser beams

    International Nuclear Information System (INIS)

    Brito, A.L. de.

    1984-01-01

    It is shown that the effect of line broadening by focusing may considerably contribute to the observed laser-induced ionization of gases when the ionization energy of the gas molecules is well above the mean photon energy of the laser radiation. (Author) [pt

  6. Investigation of direct photon production in 200 A GeV S + Au reactions

    International Nuclear Information System (INIS)

    1994-01-01

    Direct thermal photons in the p T range of 0--5 GeV/c are expected to provide a sensitive probe of the early conditions of the Quark Gluon Plasma which may be formed in relativistic heavy ion collisions. The production of single photons in 200 A GeV S + Au reactions has been investigated using the 3,800 element Pbglass calorimeter of CERN experiment WA80. Neutral π 0 and η cross sections have been measured via their two-photon decay branch yields. The measured π 0 and η cross sections have been used to calculate the expected inclusive yield of decay photons. Excess photon yield, beyond that attributed to radiative decays and background sources, may be associated with thermal photon emission. Excess, ''direct'' photon yields have been extracted from high-statistics S + Au photon data for different event centrality classes. A slight excess photon yield above that which may be accounted for by hadronic decays was observed for central events

  7. Zak phase induced multiband waveguide by two-dimensional photonic crystals.

    Science.gov (United States)

    Yang, Yuting; Xu, Tao; Xu, Yun Fei; Hang, Zhi Hong

    2017-08-15

    Interface states in photonic crystals provide efficient approaches to control the flow of light. Photonic Zak phase determines the bulk band properties of photonic crystals, and, by assembling two photonic crystals with different bulk band properties together, deterministic interface states can be realized. By translating each unit cell of a photonic crystal by half the lattice constant, another photonic crystal with identical common gaps but a different Zak phase at each photonic band can be created. By assembling these two photonic crystals together, multiband waveguide can thus be easily created and then experimentally characterized. Our experimental results have good agreement with numerical simulations, and the propagation properties of these measured interface states indicate that this new type of interface state will be a good candidate for future applications of optical communications.

  8. Multiply excited molecules produced by photon and electron interactions

    International Nuclear Information System (INIS)

    Odagiri, T.; Kouchi, N.

    2006-01-01

    The photon and electron interactions with molecules resulting in the formation of multiply excited molecules and the subsequent decay are subjects of great interest because the independent electron model and Born-Oppenheimer approximation are much less reliable for the multiply excited states of molecules than for the ground and lower excited electronic states. We have three methods to observe and investigate multiply excited molecules: 1) Measurements of the cross sections for the emission of fluorescence emitted by neutral fragments in the photoexcitation of molecules as a function of incident photon energy [1-3], 2) Measurements of the electron energy-loss spectra tagged with the fluorescence photons emitted by neutral fragments [4], 3) Measurements of the cross sections for generating a pair of photons in absorption of a single photon by a molecule as a function of incident photon energy [5-7]. Multiply excited states degenerate with ionization continua, which make a large contribution in the cross section curve involving ionization processes. The key point of our methods is hence that we measure cross sections free from ionization. The feature of multiply excited states is noticeable in such a cross section curve. Recently we have measured: i) the cross sections for the emission of the Lyman- fluorescence in the photoexcitation of CH 4 as a function of incident photon energy in the range 18-51 eV, ii) the electron energy-loss spectrum of CH 4 tagged with the Lyman-photons at 80 eV incident electron energy and 10 electron scattering angle in the range of the energy loss 20-45 eV, in order to understand the formation and decay of the doubly excited methane in photon and electron interactions. [8] The results are summarized in this paper and the simultaneous excitation of two electrons by electron interaction is compared with that by photon interaction in terms of the oscillator strength. (authors)

  9. Photonic Structure-Integrated Two-Dimensional Material Optoelectronics

    Directory of Open Access Journals (Sweden)

    Tianjiao Wang

    2016-12-01

    Full Text Available The rapid development and unique properties of two-dimensional (2D materials, such as graphene, phosphorene and transition metal dichalcogenides enable them to become intriguing candidates for future optoelectronic applications. To maximize the potential of 2D material-based optoelectronics, various photonic structures are integrated to form photonic structure/2D material hybrid systems so that the device performance can be manipulated in controllable ways. Here, we first introduce the photocurrent-generation mechanisms of 2D material-based optoelectronics and their performance. We then offer an overview and evaluation of the state-of-the-art of hybrid systems, where 2D material optoelectronics are integrated with photonic structures, especially plasmonic nanostructures, photonic waveguides and crystals. By combining with those photonic structures, the performance of 2D material optoelectronics can be further enhanced, and on the other side, a high-performance modulator can be achieved by electrostatically tuning 2D materials. Finally, 2D material-based photodetector can also become an efficient probe to learn the light-matter interactions of photonic structures. Those hybrid systems combine the advantages of 2D materials and photonic structures, providing further capacity for high-performance optoelectronics.

  10. A bistriphenylamine-substituted spirobifluorene derivative exhibiting excellent nonlinearity/transparency/thermal stability trade-off and strong two-photon induced blue fluorescence

    International Nuclear Information System (INIS)

    Yin, Hongyao; Xiao, Haibo; Ding, Lei; Zhang, Chun; Ren, Aiming; Li, Bo

    2015-01-01

    A spirobifluorene-bridged donor/donor chromophore, 2,7-bis-(4-(N,N-diphenylamino)phen-1-yl)-9,9′-spirobifluorene (SPF-TP), was found to combine excellent transparency in the near UV–visible region (λ cut-off  ≤ 420 nm), large two-photon absorption cross-section (4.5 × 10 3 GM) and high thermal stability (T d  = 501 °C). In comparison to the reported two-photon absorption molecules, SPF-TP represents the best thermal stability so far described in the literature. The main electronic factors explaining the high two-photon absorption activities of SPF-TP were analyzed by theoretical calculations. Cyclic voltammograms were employed to explore the causes of the excellent transparency of SPF-TP. It was found that the spiroconjugation effect is responsible for the excellent nonlinearity/transparency/thermal stability trade-off in SPF-TP. In addition, SPF-TP is also a good two-photon induced blue fluorescent material with high fluorescence quantum yield (Φ = 0.90, in THF). - Highlights: • We report a molecule exhibiting excellent transparency. • The two-photon absorption cross-section is as large as 4.5 × 10 3 GM. • The molecule exhibits excellent thermal stability. • The molecule is a good two-photon induced blue fluorescent material. • The spiroconjugation effect explains the excellent properties

  11. A bistriphenylamine-substituted spirobifluorene derivative exhibiting excellent nonlinearity/transparency/thermal stability trade-off and strong two-photon induced blue fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Hongyao [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Xiao, Haibo, E-mail: xiaohb@shnu.edu.cn [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Ding, Lei [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Zhang, Chun; Ren, Aiming [State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023 (China); Li, Bo [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241 (China)

    2015-02-01

    A spirobifluorene-bridged donor/donor chromophore, 2,7-bis-(4-(N,N-diphenylamino)phen-1-yl)-9,9′-spirobifluorene (SPF-TP), was found to combine excellent transparency in the near UV–visible region (λ{sub cut-off} ≤ 420 nm), large two-photon absorption cross-section (4.5 × 10{sup 3}GM) and high thermal stability (T{sub d} = 501 °C). In comparison to the reported two-photon absorption molecules, SPF-TP represents the best thermal stability so far described in the literature. The main electronic factors explaining the high two-photon absorption activities of SPF-TP were analyzed by theoretical calculations. Cyclic voltammograms were employed to explore the causes of the excellent transparency of SPF-TP. It was found that the spiroconjugation effect is responsible for the excellent nonlinearity/transparency/thermal stability trade-off in SPF-TP. In addition, SPF-TP is also a good two-photon induced blue fluorescent material with high fluorescence quantum yield (Φ = 0.90, in THF). - Highlights: • We report a molecule exhibiting excellent transparency. • The two-photon absorption cross-section is as large as 4.5 × 10{sup 3}GM. • The molecule exhibits excellent thermal stability. • The molecule is a good two-photon induced blue fluorescent material. • The spiroconjugation effect explains the excellent properties.

  12. Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap

    Energy Technology Data Exchange (ETDEWEB)

    Povinelli, M. L.; Johnson, Steven G.; Fan, Shanhui; Joannopoulos, J. D.

    2001-08-15

    Using numerical simulations, we demonstrate the construction of two-dimensional- (2D-) like defect modes in a recently proposed 3D photonic crystal structure. These modes, which are confined in all three dimensions by a complete photonic band gap, bear a striking similarity to those in 2D photonic crystals in terms of polarization, field profile, and projected band structures. It is expected that these results will greatly facilitate the observation of widely studied 2D photonic-crystal phenomena in a realistic, 3D physical system.

  13. Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap

    International Nuclear Information System (INIS)

    Povinelli, M. L.; Johnson, Steven G.; Fan, Shanhui; Joannopoulos, J. D.

    2001-01-01

    Using numerical simulations, we demonstrate the construction of two-dimensional- (2D-) like defect modes in a recently proposed 3D photonic crystal structure. These modes, which are confined in all three dimensions by a complete photonic band gap, bear a striking similarity to those in 2D photonic crystals in terms of polarization, field profile, and projected band structures. It is expected that these results will greatly facilitate the observation of widely studied 2D photonic-crystal phenomena in a realistic, 3D physical system

  14. Polarimetric, Two-Color, Photon-Counting Laser Altimeter Measurements of Forest Canopy Structure

    Science.gov (United States)

    Harding, David J.; Dabney, Philip W.; Valett, Susan

    2011-01-01

    Laser altimeter measurements of forest stands with distinct structures and compositions have been acquired at 532 nm (green) and 1064 nm (near-infrared) wavelengths and parallel and perpendicular polarization states using the Slope Imaging Multi-polarization Photon Counting Lidar (SIMPL). The micropulse, single photon ranging measurement approach employed by SIMPL provides canopy structure measurements with high vertical and spatial resolution. Using a height distribution analysis method adapted from conventional, 1064 nm, full-waveform lidar remote sensing, the sensitivity of two parameters commonly used for above-ground biomass estimation are compared as a function of wavelength. The results for the height of median energy (HOME) and canopy cover are for the most part very similar, indicating biomass estimations using lidars operating at green and near-infrared wavelengths will yield comparable estimates. The expected detection of increasing depolarization with depth into the canopies due to volume multiple-scattering was not observed, possibly due to the small laser footprint and the small detector field of view used in the SIMPL instrument. The results of this work provide pathfinder information for NASA's ICESat-2 mission that will employ a 532 nm, micropulse, photon counting laser altimeter.

  15. A humidity sensitive two-dimensional tunable amorphous photonic structure in the outer layer of bivalve ligament from Sunset Siliqua

    International Nuclear Information System (INIS)

    Zhang, Weigang; Zhang, Gangsheng

    2015-01-01

    A humidity sensitive two-dimensional tunable amorphous photonic structure (2D TAPS) in the outer layer of bivalve ligament from Sunset Siliqua (OLLS) was reported in this paper. The structural color and microstructure of OLLS were investigated by reflection spectra and scanning electron microscopy, respectively. The results indicate that the reflection peak wavelength of the wet OLLS blue-shifts from 454 nm to 392 nm with the increasing of air drying time from 0 to 40 min, while the reflectivity decreases gradually and vanishes at last, relevant color changes from blue to black background color. The structural color in the OLLS is produced by a two-dimensional amorphous photonic structure consisting of aligned protein fibers, in which the diameter of protein fiber and the inter-fiber spacing are 101 ± 12 nm. Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure, and the regulation achieved through dynamically tuning the interaction between inter-fiber spacing and average refractive index. - Highlights: • A humidity sensitive two-dimensional tunable amorphous photonic structure • Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure. • This photonic structure may yield very useful template for artificial structures

  16. A humidity sensitive two-dimensional tunable amorphous photonic structure in the outer layer of bivalve ligament from Sunset Siliqua

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weigang, E-mail: abczwg15@163.com [College of Materials and Chemical Engineering, Chuzhou University, Chuzhou 239000 (China); Zhang, Gangsheng [College of Material Science and Technology, Guangxi University, Nanning 530004 (China)

    2015-07-01

    A humidity sensitive two-dimensional tunable amorphous photonic structure (2D TAPS) in the outer layer of bivalve ligament from Sunset Siliqua (OLLS) was reported in this paper. The structural color and microstructure of OLLS were investigated by reflection spectra and scanning electron microscopy, respectively. The results indicate that the reflection peak wavelength of the wet OLLS blue-shifts from 454 nm to 392 nm with the increasing of air drying time from 0 to 40 min, while the reflectivity decreases gradually and vanishes at last, relevant color changes from blue to black background color. The structural color in the OLLS is produced by a two-dimensional amorphous photonic structure consisting of aligned protein fibers, in which the diameter of protein fiber and the inter-fiber spacing are 101 ± 12 nm. Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure, and the regulation achieved through dynamically tuning the interaction between inter-fiber spacing and average refractive index. - Highlights: • A humidity sensitive two-dimensional tunable amorphous photonic structure • Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure. • This photonic structure may yield very useful template for artificial structures.

  17. Dirac tensor with heavy photon

    Energy Technology Data Exchange (ETDEWEB)

    Bytev, V.V.; Kuraev, E.A. [Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Scherbakova, E.S. [Hamburg Univ. (Germany). 1. Inst. fuer Theoretische Physik

    2012-01-15

    For the large-angles hard photon emission by initial leptons in process of high energy annihilation of e{sup +}e{sup -} {yields} to hadrons the Dirac tensor is obtained, taking into account the lowest order radiative corrections. The case of large-angles emission of two hard photons by initial leptons is considered. This result is being completed by the kinematics case of collinear hard photons emission as well as soft virtual and real photons and can be used for construction of Monte-Carlo generators. (orig.)

  18. Two-photon Anderson localization in a disordered quadratic waveguide array

    International Nuclear Information System (INIS)

    Bai, Y F; Xu, P; Lu, L L; Zhong, M L; Zhu, S N

    2016-01-01

    We theoretically investigate two-photon Anderson localization in a χ (2) waveguide array with off-diagonal disorder. The nonlinear parametric down-conversion process would enhance both the single-photon and the two-photon Anderson localization. In the strong disorder regime, the two-photon position correlation exhibits a bunching distribution around the pumped waveguides, which is independent of pumping conditions and geometrical structures of waveguide arrays. Quadratic nonlinearity can be supplied as a new ingredient for Anderson localization. Also, our results pave the way for engineering quantum states through nonlinear quantum walks. (paper)

  19. Two-Photon Exchange Effects in Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Myriam James [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-08-01

    Two methods, Rosenbluth separation and polarization transfer, can be used to extract the proton form factor ratio μp GEp/GMp, but they do not yield the same results. It is thought that the disagreement is due to two photon exchange corrections to the differential cross sections. High precision proton Rosenbluth extractions were carried out at 102 kinematics points spanning 16 values of momentum transfer Q2, from 0.40 to 5.76 GeV2. Reduced cross sections were found to 1.1% or better for Q2 less than 3 GeV2 increasing to 4% at 5.76 GeV2 The form factor ratios were determined to 1:5-3% for Q2 < 1.5 GeV2, increasing to 9% by 3 GeV2 and rapidly above. Our data agrees with prior Rosenbluth, improving upon it the 1.0 - 2.0 GeV2 range to conclusively show a separation from polarization transfer where it had not been certain before. In addition, reduced cross sections at each Q2 were tested for nonlinearity in the angular variable. Such a departure from linearity would be a signature of two photon exchange effects, and prior data had not been sufficiently precise to show nonzero curvature. Our data begins to hint at negative curvature but does not yet show a significant departure from zero.

  20. Excitation and ionization of hydrogen and helium atoms by femtosecond laser pulses: theoretical approach by Coulomb-Volkov states

    International Nuclear Information System (INIS)

    Guichard, R.

    2007-12-01

    We present a theoretical approach using Coulomb-Volkov states that appears useful for the study of atomic multi-photonic processes induced by intense XUV femtosecond laser pulses. It predicts hydrogen ionization spectra when it is irradiated by laser pulses in perturbations conditions. Three ways have been investigated. Extension to strong fields when ℎω > I p : it requires to include the hydrogen ground state population, introducing it in standard Coulomb-Volkov amplitude leads to saturated multi-photonic ionization. Extension to multi-photonic transitions with ℎω p : new quantum paths are open by the possibility to excite the lower hydrogen bound states. Multiphoton excitation of these states is investigated using a Coulomb-Volkov approach. Extension to helium: two-photon double ionization study shows the influence of electronic correlations in both ground and final state. Huge quantity of information such as angular and energetic distributions as well as total cross sections is available. (author)

  1. The study of multiphoton ionization processes in hydrogen atoms

    International Nuclear Information System (INIS)

    Mohammad, M.A.

    1981-01-01

    In this thesis we investigate theoretically the multiphoton ionization of hydrogen atoms based on perturbation theory.The main problem in the numorical evaluation is the appearance of infinite summation over the matrix element and energy denominators of the intermediate state in the formula for ionization cross section.Our numerical result is in excellent agreement with other workers.In the last part of the thesis we have again calculated the two photon ionization of hydrogen atoms using momentum translation approximation of Reiss.The method in general is in fair agreement with other calculations but dose not show the resonance behaviour.(2 tabs., 1 fig., 45 refs.)

  2. Two-photon absorption and two-photon circular dichroism of hexahelicene derivatives: a study of the effect of the nature of intramolecular charge transfer

    Czech Academy of Sciences Publication Activity Database

    Díaz, C.; Vesga, Y.; Echevarria, L.; Stará, Irena G.; Starý, Ivo; Anger, E.; Shen, C.; Moussa, M. E. S.; Vanthuyne, N.; Crassous, J.; Rizzo, A.; Hernández, F. E.

    2015-01-01

    Roč. 5, č. 23 (2015), s. 17429-17437 ISSN 2046-2069 Institutional support: RVO:61388963 Keywords : [6]helicene * two photon absorption * two photon CD Subject RIV: CC - Organic Chemistry Impact factor: 3.289, year: 2015

  3. Two-photon excited fluorescence emission from hemoglobin

    Science.gov (United States)

    Sun, Qiqi; Zeng, Yan; Zhang, Wei; Zheng, Wei; Luo, Yi; Qu, Jianan Y.

    2015-03-01

    Hemoglobin, one of the most important proteins in blood, is responsible for oxygen transportation in almost all vertebrates. Recently, we discovered two-photon excited hemoglobin fluorescence and achieved label-free microvascular imaging based on the hemoglobin fluorescence. However, the mechanism of its fluorescence emission still remains unknown. In this work, we studied the two-photon excited fluorescence properties of the hemoglobin subunits, heme/hemin (iron (II)/(III) protoporphyrin IX) and globin. We first studied the properties of heme and the similar spectral and temporal characteristics of heme and hemoglobin fluorescence provide strong evidence that heme is the fluorophore in hemoglobin. Then we studied the fluorescence properties of hemin, globin and methemoglobin, and found that the hemin may have the main effect on the methemoglobin fluorescence and that globin has tryptophan fluorescence like other proteins. Finally, since heme is a centrosymmetric molecule, that the Soret band fluorescence of heme and hemoglobin was not observed in the single photon process in the previous study may be due to the parity selection rule. The discovery of heme two-photon excited fluorescence may open a new window for heme biology research, since heme as a cofactor of hemoprotein has many functions, including chemical catalysis, electron transfer and diatomic gases transportation.

  4. Dosimetry of small circular beams of high energy photons for stereotactic radiosurgery and radiotherapy: the use of small ionization chambers

    International Nuclear Information System (INIS)

    Mazal, A.; Gaboriauid, G.; Zefkili, S.; Rosenwald, J.C.; Boutaudon, S.; Pontvert, D.

    1999-01-01

    The irradiation of small targets in the brain in a singe fraction (radiosurgery) or with a fractionated approach (stereotactic radiosurgery) with small beams of photons requires specific conditions to measure and to model the dosimetric data needed for treatment planning. In this work we present the method and materials adopted in our institution since 1988 to perform the dosimetry of high energy (6-23) circular photon beams with diameters ranging from 10 to 40 mm at the isocenter of linear accelerators, and its evolution as new dosimetric material became commercially available. in circular ionization chambers of small dimensions. We want to answer the following questions: Which are the minimal basic data needed to model small circular beams of high energy photons? Can we extrapolate or convert data from conventional data of larger beams? Which are the detectors well adapted for these kind of measurements and for which range of beam sizes?

  5. Broadband high-resolution two-photon spectroscopy with laser frequency combs

    OpenAIRE

    Hipke, Arthur; Meek, Samuel A.; Ideguchi, Takuro; Hänsch, Theodor W.; Picqué, Nathalie

    2013-01-01

    Two-photon excitation spectroscopy with broad spectral span is demonstrated at Doppler-limited resolution. We describe first Fourier transform two-photon spectroscopy of an atomic sample with two mode-locked laser oscillators in a dual-comb technique. Each transition is uniquely identified by the modulation imparted by the interfering comb excitations. The temporal modulation of the spontaneous two-photon fluorescence is monitored with a single photodetector, and the spectrum is revealed by a...

  6. How a single photon can mediate entanglement between two others

    Energy Technology Data Exchange (ETDEWEB)

    Lima Bernardo, Bertúlio de, E-mail: bertulio.fisica@gmail.com

    2016-10-15

    We describe a novel quantum information protocol, which probabilistically entangles two distant photons that have never interacted. Different from the entanglement swapping protocol, which requires two pairs of maximally entangled photons as the input states, as well as a Bell-state measurement (BSM), the present scheme only requires three photons: two to be entangled and another to mediate the correlation, and no BSM, in a process that we call “entanglement mediation”. Furthermore, in analyzing the paths of the photons in our arrangement, we conclude that one of them, the mediator, exchanges information with the two others simultaneously, which seems to be a new quantum-mechanical feature.

  7. Microscopic theory of cavity-enhanced single-photon emission from optical two-photon Raman processes

    Science.gov (United States)

    Breddermann, Dominik; Praschan, Tom; Heinze, Dirk; Binder, Rolf; Schumacher, Stefan

    2018-03-01

    We consider cavity-enhanced single-photon generation from stimulated two-photon Raman processes in three-level systems. We compare four fundamental system configurations, one Λ -, one V-, and two ladder (Ξ -) configurations. These can be realized as subsystems of a single quantum dot or of quantum-dot molecules. For a new microscopic understanding of the Raman process, we analyze the Heisenberg equation of motion applying the cluster-expansion scheme. Within this formalism an exact and rigorous definition of a cavity-enhanced Raman photon via its corresponding Raman correlation is possible. This definition for example enables us to systematically investigate the on-demand potential of Raman-transition-based single-photon sources. The four system arrangements can be divided into two subclasses, Λ -type and V-type, which exhibit strongly different Raman-emission characteristics and Raman-emission probabilities. Moreover, our approach reveals whether the Raman path generates a single photon or just induces destructive quantum interference with other excitation paths. Based on our findings and as a first application, we gain a more detailed understanding of experimental data from the literature. Our analysis and results are also transferable to the case of atomic three-level-resonator systems and can be extended to more complicated multilevel schemes.

  8. Experimental confirmation of photon-induced spin-flip transitions in helium via triplet metastable yield spectra

    International Nuclear Information System (INIS)

    Rubensson, Jan-Erik; Moise, Angelica; Richter, Robert; Mihelic, Andrej; Bucar, Klemen; Zitnik, Matjaz

    2010-01-01

    Doubly excited states below the N=2 ionization threshold are populated by exciting helium atoms in a supersonic beam with monochromatized synchrotron radiation. The fluorescence decay of these states triggers a radiative cascade back to the ground state with large probability to populate long lived singlet and triplet helium metastable states. The yield of metastables is measured using a multichannel plate detector after the beam has passed a singlet-quenching discharge lamp. The variation of the yield observed with the lamp switched on or off is related to the triplet-singlet mixing of the doubly excited states.

  9. Nucleon Compton Scattering with Two Space-Like Photons

    International Nuclear Information System (INIS)

    Andrei Afanasev; I. Akushevich; N.P. Merenkov

    2002-01-01

    We calculate two-photon exchange effects for elastic electron-proton scattering at high momentum transfers. The corresponding nucleon Compton amplitude is defined by two space-like virtual photons that appear to have significant virtualities. We make predictions for (a) a single-spin beam asymmetry, and (b) a single-spin target asymmetry or recoil proton polarization caused by an unpolarized electron beam

  10. Femtosecond Light Source for Phase-Controlled Multiphoton Ionization

    International Nuclear Information System (INIS)

    Sokolov, A. V.; Walker, D. R.; Yavuz, D. D.; Yin, G. Y.; Harris, S. E.

    2001-01-01

    We describe a femtosecond Raman light source with more than an octave of optical bandwidth. We use this source to demonstrate phase control of multiphoton ionization under conditions where ionization requires eleven photons of the lowest frequency of the spectrum or five photons of the highest frequency. The nonlinearity of the photoionization process allows us to characterize the light source. Experiment-to-theory comparison implies generation of a near single-cycle waveform

  11. Resonant production in two photon collisions

    International Nuclear Information System (INIS)

    Butler, F.

    1988-12-01

    Using 220 picobarn/sup /minus/1/ of data collected by the Mark II detector at PEP, we have measured the width of the /eta/' for quasi real photons. The width is separately measured in the three reactions e + e/sup /minus// → e + e/sup /minus///eta/ 0 π + π/sup /minus//; /eta/ 0 → γγ, e + e/sup /minus// → e + e/sup /minus///eta/ 0 π + π/sup /minus//; /eta/ 0 → π + π/sup /minus//(π 0 ,γ) and e + e/sup /minus// → e + e/sup /minus///rho/ 0 γ, giving a statistically weighted average two-photon width of Γ/sub /eta/'→γγ/ = 5. 21+-0.28 keV. As a by-product of the measurement of Γ/sub /eta/'→γγ/ using the decay mode /eta/' → /rho/γ, we also measured a two-photon decay width for the a 2 (1320) of Γ/sub a 2(1320)→γγ/ = 1.17+-0. 15+-0.25 keV. 47 refs., 50 figs., 8 tabs

  12. Folate receptor targeting silica nanoparticle probe for two-photon fluorescence bioimaging

    Science.gov (United States)

    Wang, Xuhua; Yao, Sheng; Ahn, Hyo-Yang; Zhang, Yuanwei; Bondar, Mykhailo V.; Torres, Joseph A.; Belfield, Kevin D.

    2010-01-01

    Narrow dispersity organically modified silica nanoparticles (SiNPs), diameter ~30 nm, entrapping a hydrophobic two-photon absorbing fluorenyl dye, were synthesized by hydrolysis of triethoxyvinylsilane and (3-aminopropyl)triethoxysilane in the nonpolar core of Aerosol-OT micelles. The surface of the SiNPs were functionalized with folic acid, to specifically deliver the probe to folate receptor (FR) over-expressing Hela cells, making these folate two-photon dye-doped SiNPs potential candidates as probes for two-photon fluorescence microscopy (2PFM) bioimaging. In vitro studies using FR over-expressing Hela cells and low FR expressing MG63 cells demonstrated specific cellular uptake of the functionalized nanoparticles. One-photon fluorescence microscopy (1PFM) imaging, 2PFM imaging, and two-photon fluorescence lifetime microscopy (2P-FLIM) imaging of Hela cells incubated with folate-modified two-photon dye-doped SiNPs were demonstrated. PMID:21258480

  13. Two-step laser ionization schemes for in-gas laser ionization and spectroscopy of radioactive isotopesa

    OpenAIRE

    Kudryavtsev, Yuri; Ferrer, Rafael; Huyse, Mark; Van den Bergh, Paul; Van Duppen, Piet; Vermeeren, L.

    2014-01-01

    The in-gas laser ionization and spectroscopy technique has been developed at the Leuven isotope separator on-line facility for the production and in-source laser spectroscopy studies of short-lived radioactive isotopes. In this article, results from a study to identify efficient optical schemes for the two-step resonance laser ionization of 18 elements are presented. © 2013 AIP Publishing LLC.

  14. Effect of the coherent cancellation of the two-photon resonance on the generation of vacuum ultraviolet light by two-photon reasonantly enhanced four-wave mixing

    International Nuclear Information System (INIS)

    Payne, M.G.; Garrett, W.R.; Judish, J.P.; Wunderlich, R.

    1988-11-01

    Many of the most impressive demonstrations of the efficient generation of vacuum ultraviolet (VUV) light have made use of two- photon resonantly enhanced four-wave mixing to generate light at ω/sub VUV/ = 2ω/sub L1/ +- ω/sub L2/. The two-photon resonance state is coupled to the ground state both by two photons from the first laser, or by a photon from the second laser and one from the generated VUV beam. We show here that these two coherent pathways destructively interfere once the second laser is made sufficiently intense, thereby leading to an important limiting effect on the achievable conversion efficiency. 4 refs

  15. Two-Photon Absorbing Molecules as Potential Materials for 3D Optical Memory

    Directory of Open Access Journals (Sweden)

    Kazuya Ogawa

    2014-01-01

    Full Text Available In this review, recent advances in two-photon absorbing photochromic molecules, as potential materials for 3D optical memory, are presented. The investigations introduced in this review indicate that 3D data storage processing at the molecular level is possible. As 3D memory using two-photon absorption allows advantages over existing systems, the use of two-photon absorbing photochromic molecules is preferable. Although there are some photochromic molecules with good properties for memory, in most cases, the two-photon absorption efficiency is not high. Photochromic molecules with high two-photon absorption efficiency are desired. Recently, molecules having much larger two-photon absorption cross sections over 10,000 GM (GM= 10−50 cm4 s molecule−1 photon−1 have been discovered and are expected to open the way to realize two-photon absorption 3D data storage.

  16. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  17. One Photon Can Simultaneously Excite Two or More Atoms.

    Science.gov (United States)

    Garziano, Luigi; Macrì, Vincenzo; Stassi, Roberto; Di Stefano, Omar; Nori, Franco; Savasta, Salvatore

    2016-07-22

    We consider two separate atoms interacting with a single-mode optical or microwave resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between one photon and two atoms, via intermediate virtual states connected by counterrotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with a probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission process can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems.

  18. Dynamical modeling of pulsed two-photon interference

    International Nuclear Information System (INIS)

    Fischer, Kevin A; Lagoudakis, Konstantinos G; Vučković, Jelena; Müller, Kai

    2016-01-01

    Single-photon sources are at the heart of quantum-optical networks, with their uniquely quantum emission and phenomenon of two-photon interference allowing for the generation and transfer of nonclassical states. Although a few analytical methods have been briefly investigated for describing pulsed single-photon sources, these methods apply only to either perfectly ideal or at least extremely idealized sources. Here, we present the first complete picture of pulsed single-photon sources by elaborating how to numerically and fully characterize non-ideal single-photon sources operating in a pulsed regime. In order to achieve this result, we make the connection between quantum Monte-Carlo simulations, experimental characterizations, and an extended form of the quantum regression theorem. We elaborate on how an ideal pulsed single-photon source is connected to its photocount distribution and its measured degree of second- and first-order optical coherence. By doing so, we provide a description of the relationship between instantaneous source correlations and the typical experimental interferometers (Hanbury-Brown and Twiss, Hong–Ou–Mandel, and Mach–Zehnder) used to characterize such sources. Then, we use these techniques to explore several prototypical quantum systems and their non-ideal behaviors. As an example numerical result, we show that for the most popular single-photon source—a resonantly excited two-level system—its error probability is directly related to its excitation pulse length. We believe that the intuition gained from these representative systems and characters can be used to interpret future results with more complicated source Hamiltonians and behaviors. Finally, we have thoroughly documented our simulation methods with contributions to the Quantum Optics Toolbox in Python in order to make our work easily accessible to other scientists and engineers. (paper)

  19. Two-photon couplings of quarkonia with arbitrary JPC

    International Nuclear Information System (INIS)

    Barnes, T.; Tennessee Univ., Knoxville, TN

    1992-01-01

    We present theoretical results for the two-photon widths of relativistic quarkonium states with arbitrary angular momenta. These relativistic formulas are required to obtain reasonable agreement with the absolute scale of quarkonium decay rates to two photons, and have previously only been derived for spin-singlet q bar q states. We also evaluate these formulas numerically for ell ≤3 q = u, d states in a Coulomb-plus-linear q bar q potential model. Light-quark higher-ell and radially-excited q bar q states should be observable experimentally, as their two-photon widths are typically found to be ∼1 KeV. The radially-excited 1 S 0 higher-mass quarkonium states such as c bar c and b bar b should also be observable in γγ, but orbitally-excited c bar c states with ell>1 and b bar b states with ell>0 are expected to have very small two-photon widths. The helicity structure of the higher-ell q bar q couplings is predicted to be nontrivial, with both λ=0 and λ=2γγ final states contributing significantly; these results may be useful as signatures for q bar q states

  20. Numerical study on characteristic of two-dimensional metal/dielectric photonic crystals

    International Nuclear Information System (INIS)

    Zong Yi-Xin; Xia Jian-Bai; Wu Hai-Bin

    2017-01-01

    An improved plan-wave expansion method is adopted to theoretically study the photonic band diagrams of two-dimensional (2D) metal/dielectric photonic crystals. Based on the photonic band structures, the dependence of flat bands and photonic bandgaps on two parameters (dielectric constant and filling factor) are investigated for two types of 2D metal/dielectric (M/D) photonic crystals, hole and cylinder photonic crystals. The simulation results show that band structures are affected greatly by these two parameters. Flat bands and bandgaps can be easily obtained by tuning these parameters and the bandgap width may reach to the maximum at certain parameters. It is worth noting that the hole-type photonic crystals show more bandgaps than the corresponding cylinder ones, and the frequency ranges of bandgaps also depend strongly on these parameters. Besides, the photonic crystals containing metallic medium can obtain more modulation of photonic bands, band gaps, and large effective refractive index, etc. than the dielectric/dielectric ones. According to the numerical results, the needs of optical devices for flat bands and bandgaps can be met by selecting the suitable geometry and material parameters. (paper)

  1. Experimental two-dimensional quantum walk on a photonic chip.

    Science.gov (United States)

    Tang, Hao; Lin, Xiao-Feng; Feng, Zhen; Chen, Jing-Yuan; Gao, Jun; Sun, Ke; Wang, Chao-Yue; Lai, Peng-Cheng; Xu, Xiao-Yun; Wang, Yao; Qiao, Lu-Feng; Yang, Ai-Lin; Jin, Xian-Min

    2018-05-01

    Quantum walks, in virtue of the coherent superposition and quantum interference, have exponential superiority over their classical counterpart in applications of quantum searching and quantum simulation. The quantum-enhanced power is highly related to the state space of quantum walks, which can be expanded by enlarging the photon number and/or the dimensions of the evolution network, but the former is considerably challenging due to probabilistic generation of single photons and multiplicative loss. We demonstrate a two-dimensional continuous-time quantum walk by using the external geometry of photonic waveguide arrays, rather than the inner degree of freedoms of photons. Using femtosecond laser direct writing, we construct a large-scale three-dimensional structure that forms a two-dimensional lattice with up to 49 × 49 nodes on a photonic chip. We demonstrate spatial two-dimensional quantum walks using heralded single photons and single photon-level imaging. We analyze the quantum transport properties via observing the ballistic evolution pattern and the variance profile, which agree well with simulation results. We further reveal the transient nature that is the unique feature for quantum walks of beyond one dimension. An architecture that allows a quantum walk to freely evolve in all directions and at a large scale, combining with defect and disorder control, may bring up powerful and versatile quantum walk machines for classically intractable problems.

  2. Cross two photon absorption in a silicon photonic crystal waveguide fiber taper coupler with a physical junction

    Energy Technology Data Exchange (ETDEWEB)

    Sarkissian, Raymond, E-mail: RaymondSark@gmail.com; O' Brien, John [Electrophysics department, University of Southern California, Los Angeles, California 90089 (United States)

    2015-01-21

    Cross two photon absorption in silicon is characterized using a tapered fiber photonic crystal silicon waveguide coupler. There is a physical junction between the tapered fiber and the waveguide constituting a stand-alone device. This device is used to obtain the spectrum for cross two photon absorption coefficient per unit volume of interaction between photons of nondegenerate energy. The corresponding Kerr coefficient per unit volume of interaction is also experimentally extracted. The thermal resistance of the device is also experimentally determined and the response time of the device is estimated for on-chip all-optical signal processing and data transfer between optical signals of different photon energies.

  3. Bulky Counterions: Enhancing the Two-Photon Excited Fluorescence of Gold Nanoclusters.

    Science.gov (United States)

    Bertorelle, Franck; Moulin, Christophe; Soleilhac, Antonin; Comby-Zerbino, Clothilde; Dugourd, Philippe; Russier-Antoine, Isabelle; Brevet, Pierre-François; Antoine, Rodolphe

    2018-01-19

    Increasing fluorescence quantum yields of ligand-protected gold nanoclusters has attracted wide research interest. The strategy consisting in using bulky counterions has been found to dramatically enhance the fluorescence. In this Communication, we push forward this concept to the nonlinear optical regime. We show that by an appropriate choice of bulky counterions and of solvent, a 30-fold increase in two-photon excited fluorescence (TPEF) signal at ≈600 nm for gold nanoclusters can be obtained. This would correspond to a TPEF cross-section in the range of 0.1 to 1 GM. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Diffractive Photon Dissociation in a High Pressure Hydrogen Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Gregory Roy [Rockefeller Univ., New York, NY (United States)

    1983-11-01

    We have performed an experiment at the Tagged Photon Facility of Fermilab to study the diffraction dissociation of high energy photons on hydrogen y + p -+ x + p in the region 0.02 < $\\mid t \\mid$ < 0.1 $(GeV/c)^2$, $M_x$ $^2/s$ < 0.1. In this process, incident photons whose energies range from 70 to 140 GeV transform coherently to massive hadronic states in the mass range M < 5 GeV/c 2 • x We measure the inclusive differential cross section$\\frac{d^20}{dt dM_x ^2}$) The behavior of this cross section, especially when compared to the corresponding cross sections for the diffraction dissociation of incident hadrons (pions, kaons, and protons), reveals some fundamental characteristics of photon hadronic interactions. We use the Recoil Technique to determine the missing mass, $M_x$, and the square of the 4-momentum transfer, t. The recoil detector, TREAD, is a cylindrical time projection chamber filled with high pressure hydrogen gas which serves both as the target and as the drift medium for the ionization track created by recoil protons. The ionization drifts up to 75 cm in a high axial electric field. Concentric sense wires mounted on endplates sample different parts of the track, yielding the polar angle of the recoil. The energy of the recoil is determined by stopping the proton in scintillation counters located inside the high pressure vessel....

  5. Scanless two-photon excitation of channelrhodopsin-2

    DEFF Research Database (Denmark)

    Papagiakoumou, E.; Anselmi, F.; Bègue, A.

    2010-01-01

    developed a method that combines generalized phase contrast with temporal focusing (TF-GPC) to shape two-photon excitation for this purpose. The illumination patterns are generated automatically from fluorescence images of neurons and shaped to cover the cell body or dendrites, or distributed groups...... of cells. The TF-GPC two-photon excitation patterns generated large photocurrents in Channelrhodopsin-2–expressing cultured cells and neurons and in mouse acute cortical slices. The amplitudes of the photocurrents can be precisely modulated by controlling the size and shape of the excitation volume and...

  6. Optical Imaging of Ionizing Radiation from Clinical Sources.

    Science.gov (United States)

    Shaffer, Travis M; Drain, Charles Michael; Grimm, Jan

    2016-11-01

    Nuclear medicine uses ionizing radiation for both in vivo diagnosis and therapy. Ionizing radiation comes from a variety of sources, including x-rays, beam therapy, brachytherapy, and various injected radionuclides. Although PET and SPECT remain clinical mainstays, optical readouts of ionizing radiation offer numerous benefits and complement these standard techniques. Furthermore, for ionizing radiation sources that cannot be imaged using these standard techniques, optical imaging offers a unique imaging alternative. This article reviews optical imaging of both radionuclide- and beam-based ionizing radiation from high-energy photons and charged particles through mechanisms including radioluminescence, Cerenkov luminescence, and scintillation. Therapeutically, these visible photons have been combined with photodynamic therapeutic agents preclinically for increasing therapeutic response at depths difficult to reach with external light sources. Last, new microscopy methods that allow single-cell optical imaging of radionuclides are reviewed. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  7. Space-time description of the two-photon decay

    International Nuclear Information System (INIS)

    Hrasko, P.

    1981-09-01

    The time correlation of photons in a two-photon decay is shown to depend on the instantaneous nature of the wave-function collapse in an essential way so the latter hypothesis can be verified by the experimental study of these correlations. (author)

  8. Frequency dependence of coherently amplified two-photon emission from hydrogen molecules

    Science.gov (United States)

    Hara, Hideaki; Miyamoto, Yuki; Hiraki, Takahiro; Masuda, Takahiko; Sasao, Noboru; Uetake, Satoshi; Yoshimi, Akihiro; Yoshimura, Koji; Yoshimura, Motohiko

    2017-12-01

    We investigate how the efficiency of coherently amplified two-photon emission depends on the frequency of one of the two emitted photons, namely the signal photon. This is done over the wavelength range of 5.048-10.21 μ m by using the vibrational transition of parahydrogen. The efficiency increases with the frequency of the signal photon. Considering experimental errors, our results are consistent with the theoretical prediction for the present experimental conditions. This study is an experimental demonstration of the frequency dependence of coherently amplified two-photon emission, and also presents its potential as a light source.

  9. Helicity dependence of the {gamma}{yields}p{yields}{yields}n{pi}{sup +}{pi}{sup 0} reaction in the second resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, J.; Altieri, S.; Annand, J.R.M.; Anton, G.; Arends, H.-J.; Aulenbacher, K.; Beck, R.; Bradtke, C.; Braghieri, A.; Degrande, N.; D' Hose, N.; Dutz, H.; Goertz, S.; Grabmayr, P.; Hansen, K.; Harmsen, J.; Harrach, D. von; Hasegawa, S.; Hasegawa, T.; Heid, E.; Helbing, K.; Holvoet, H.; Van Hoorebeke, L.; Horikawa, N.; Iwata, T.; Jahn, O.; Jennewein, P.; Kageya, T.; Kiel, B.; Klein, F.; Kondratiev, R.; Kossert, K.; Krimmer, J.; Lang, M.; Lannoy, B.; Leukel, R.; Lisin, V.; Matsuda, T.; McGeorge, J.C.; Meier, A.; Menze, D.; Meyer, W.; Michel, T.; Naumann, J.; Panzeri, A.; Pedroni, P.; Pinelli, T.; Preobrajenski, I.; Radtke, E.; Reichert, E.; Reicherz, G.; Rohlof, Ch.; Rosner, G.; Rostomyan, T.; Rovelli, C.; Ryckbosch, D.; Sauer, M.; Schoch, B.; Schumacher, M.; Seitz, B.; Speckner, T.; Takabayashi, N.; Tamas, G.; Thomas, A.; Vyver, R. van de; Wakai, A.; Weihofen, W.; Wissmann, F.; Zapadtka, F.; Zeitler, G

    2003-01-02

    The helicity dependence of the total cross section for the {gamma}{yields}p{yields}{yields}n{pi}{sup +}{pi}{sup 0} reaction has been measured for the first time at incident photon energies from 400 to 800 MeV. The measurement was performed with the large acceptance detector DAPHNE at the tagged photon beam facility of the MAMI accelerator in Mainz. This channel is found to be excited predominantly when the photon and proton have a parallel spin orientation, due to the intermediate production of the D{sub 13} resonance.

  10. Doppler-free two-photon excitation of 238U

    International Nuclear Information System (INIS)

    Hodgkinson, D.P.; Wort, D.J.H.

    1981-04-01

    A theory of resonantly enhanced two-photon absorption is presented and tested in a number of experiments in which 238 U vapour is excited by two continuous wave dye lasers. Good quantitative agreement between theory and experiment is found. In particular the central prediction of the theory, that antiparallel laser beams of modest intensity can pump an appreciable fraction of the Maxwell velocity distribution, has been checked directly by measuring the spectral width of the fluorescence from the two-photon excited level. (author)

  11. Manipulation of a two-photon pump in superconductor - semiconductor heterostructures

    Science.gov (United States)

    Orth, Peter P.; Baireuther, Paul; Vekhter, Ilya; Schmalian, Joerg

    2014-03-01

    We investigate the photon statistics, entanglement and squeezing of a pn-junction sandwiched between two superconducting leads, and show that such an electrically-driven photon pump generates correlated and entangled pairs of photons. In particular, we demonstrate that the squeezing of the fluctuations in the quadrature amplitudes of the emitted light can be manipulated by changing the relative phase of the order parameters of the superconductors. This reveals how macroscopic coherence of the superconducting state can be used to tailor the properties of a two-photon state.

  12. Water-Soluble Triarylborane Chromophores for One- and Two-Photon Excited Fluorescence Imaging of Mitochondria in Cells.

    Science.gov (United States)

    Griesbeck, Stefanie; Zhang, Zuolun; Gutmann, Marcus; Lühmann, Tessa; Edkins, Robert M; Clermont, Guillaume; Lazar, Adina N; Haehnel, Martin; Edkins, Katharina; Eichhorn, Antonius; Blanchard-Desce, Mireille; Meinel, Lorenz; Marder, Todd B

    2016-10-04

    Three water-soluble tetracationic quadrupolar chromophores comprising two three-coordinate boron π-acceptor groups bridged by thiophene-containing moieties were synthesised for biological imaging applications. Compound 3 containing the bulkier 5-(3,5-Me2 C6 H2 )-2,2'-(C4 H2 S)2 -5'-(3,5-Me2 C6 H2 ) bridge is stable over a long period of time, exhibits a high fluorescence quantum yield and strong one- and two-photon absorption (TPA), and has a TPA cross section of 268 GM at 800 nm in water. Confocal laser scanning fluorescence microscopy studies in live cells indicated localisation of the chromophore at the mitochondria; moreover, cytotoxicity measurements proved biocompatibility. Thus, chromophore 3 has excellent potential for one- and two-photon-excited fluorescence imaging of mitochondrial function in cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Electron impact ionization of the gas-phase sorbitol

    Science.gov (United States)

    Chernyshova, Irina; Markush, Pavlo; Zavilopulo, Anatoly; Shpenik, Otto

    2015-03-01

    Ionization and dissociative ionization of the sorbitol molecule by electron impact have been studied using two different experimental methods. In the mass range of m/ z = 10-190, the mass spectra of sorbitol were recorded at the ionizing electron energies of 70 and 30 eV. The ion yield curves for the fragment ions have been analyzed and the appearance energies of these ions have been determined. The relative total ionization cross section of the sorbitol molecule was measured using monoenergetic electron beam. Possible fragmentation pathways for the sorbitol molecule were proposed.

  14. Luminosity measurements at LHCb using dimuon pairs produced via elastic two photon fusion.

    CERN Document Server

    Anderson, J

    2010-01-01

    This note outlines the feasibility of using the elastic two photon process pp$\\rightarrow$ p+$\\mu^{+}\\mu^{-}+p$ to make luminosity measurements at LHCb. The overall efficiency at LHCb for recording and selecting pp$\\rightarrow$ p+$\\mu^{+}\\mu^{-}+p$ events produced within 1.6<$\\eta$<5 has been determined using Monte-Carlo to be 0.0587 $\\pm$ 0.0008, yielding 5210$\\pm$71(stat.) events for an integrated luminosity of 1fb$^{-1}$. The main background processes where dimuons are produced via inelastic two-photon fusion and double Pomeron exchange have been studied using the full LHCb detector simulation while the other background sources, including backgrounds caused by K/$\\pi$ mis-identification, have been studied at four vector level. The background is estimated to be (4.1 $\\pm$ 0.5(stat.) $\\pm$ 0.6(syst.))% of the signal level. Most of this background comes from K/$\\pi$ mis-identification, although the largest source of uncertainty in the estimation is due to knowledge of the number of events produced via d...

  15. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor is gr...... is gradually enhanced and the resonant frequency converges to that of the corresponding surface mode in the photonic crystals. These structures have potential applications such as sensing.......Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor...

  16. Resonance Enhanced Multi-photon Spectroscopy of DNA

    Science.gov (United States)

    Ligare, Marshall Robert

    For over 50 years DNA has been studied to better understand its connection to life and evolution. These past experiments have led to our understanding of its structure and function in the biological environment but the interaction of DNA with UV radiation at the molecular level is still not very well understood. Unique mechanisms in nucleobase chromaphores protect us from adverse chemical reactions after UV absorption. Studying these processes can help develop theories for prebiotic chemistry and the possibility of alternative forms of DNA. Using resonance enhanced multi-photon spectroscopic techniques in the gas phase allow for the structure and dynamics of individual nucleobases to be studied in detail. Experiments studying different levels of structure/complexity with relation to their biological function are presented. Resonant IR multiphoton dissociation spectroscopy in conjunction with molecular mechanics and DFT calculations are used to determine gas phase structures of anionic nucleotide clusters. A comparison of the identified structures with known biological function shows how the hydrogen bonding of the nucleotides and their clusters free of solvent create favorable structures for quick incorporation into enzymes such as DNA polymerase. Resonance enhanced multi-photon ionization (REMPI) spectroscopy techniques such as resonant two photon ionization (R2PI) and IR-UV double resonance are used to further elucidate the structure and excited state dynamics of the bare nucleobases thymine and uracil. Both exhibit long lived excited electronic states that have been implicated in DNA photolesions which can ultimately lead to melanoma and carcinoma. Our experimental data in comparison with many quantum chemical calculations suggest a new picture for the dynamics of thymine and uracil in the gas phase. A high probability of UV absorption from a vibrationally hot ground state to the excited electronic state shows that the stability of thymine and uracil comes from

  17. Probing two-photon exchange with OLYMPUS

    International Nuclear Information System (INIS)

    Kohl, M.

    2014-01-01

    Two-photon exchange is believed to be responsible for the discrepancies in the proton electric to magnetic form factor ratio found with the Rosenbluth and polarization transfer methods. If this explanation is correct, one expects significant differences in the lepton-proton cross sections between positrons and electrons. The OLYMPUS experiment at DESY in Hamburg, Germany was designed to measure the ratio of unpolarized positron-proton and electron-proton elastic scattering cross sections over a wide kinematic range with high precision, in order to quantify the effect of two-photon exchange. The experiment used intense beams of electrons and positrons stored in the DORIS ring at 2.0 GeV interacting with an internal windowless hydrogen gas target. The current status of OLYMPUS will be discussed. (authors)

  18. Novel triphenylamine-cored two-photon absorbing dyes for labeling of biomolecules

    International Nuclear Information System (INIS)

    Xiao Haibo; Mei Chong; Wang Yaochuan; Li, Hui; Qian Shixiong; Yin Hongyao; Xu Zhisong

    2011-01-01

    Highlights: → Two novel triphenylamine-cored chromophores were synthesized. → These two dyes have sizable two-photon absorption cross-section at 800 nm. → They possess reasonable water solubility and are suitable as labels in aqueous biological environments. → These dyes have strong chelating ability. → They display a large set of reactivity for coupling to biomolecules. - Abstract: Two novel, V-shaped and Y-shaped dipicolinate derivatives branched from triphenylamine, {4-[(E)-2-(2,6-dimethoxycarbonylpyridin-4-yl)vinyl]}-N-phenyl-N-{4- [(E)-2-(2,6-dimethoxycarbonylpyridin-4-yl)vinylphenyl]}aniline (1) and {4-[(E)-2-(2,6-dimethoxycarbonylpyridin-4-yl) vinyl]}-N,N-bis {4-[(E)-2-(2,6-dimethoxycarbonyl pyridin-4-yl)vinylphenyl]}aniline (2) were synthesized. These compounds were designed for large two-photon absorption and in particular for labeling of biomolecules. Their linear absorption, fluorescence properties and their two-photon absorption properties as well as two-photon fluorescence cell imaging were examined. When excited at 800 nm, the two-photon absorption cross-section values of chromophores 1 and 2 in THF were 208 GM, 376 GM, respectively. These two-photon absorbing dyes possess reasonable water solubility, strong chelating ability and display a large set of reactivity for coupling to biomolecules, which are apparently due to the two methoxycarbonyl groups in pyridine ring. This work suggests that chromophores 1 and 2 are promising labels potentially applicable for the tracking of biomolecules using two-photon scanning microscopy.

  19. Numerical study on characteristic of two-dimensional metal/dielectric photonic crystals

    Science.gov (United States)

    Zong, Yi-Xin; Xia, Jian-Bai; Wu, Hai-Bin

    2017-04-01

    An improved plan-wave expansion method is adopted to theoretically study the photonic band diagrams of two-dimensional (2D) metal/dielectric photonic crystals. Based on the photonic band structures, the dependence of flat bands and photonic bandgaps on two parameters (dielectric constant and filling factor) are investigated for two types of 2D metal/dielectric (M/D) photonic crystals, hole and cylinder photonic crystals. The simulation results show that band structures are affected greatly by these two parameters. Flat bands and bandgaps can be easily obtained by tuning these parameters and the bandgap width may reach to the maximum at certain parameters. It is worth noting that the hole-type photonic crystals show more bandgaps than the corresponding cylinder ones, and the frequency ranges of bandgaps also depend strongly on these parameters. Besides, the photonic crystals containing metallic medium can obtain more modulation of photonic bands, band gaps, and large effective refractive index, etc. than the dielectric/dielectric ones. According to the numerical results, the needs of optical devices for flat bands and bandgaps can be met by selecting the suitable geometry and material parameters. Project supported by the National Basic Research Program of China (Grant No. 2011CB922200) and the National Natural Science Foundation of China (Grant No. 605210010).

  20. Atomic Evolution and Entanglement of Two Qubits in Photon Superfluid

    Science.gov (United States)

    Yin, Miao; Zhang, Xiongfeng; Deng, Yunlong; Deng, Huaqiu

    2018-03-01

    By using reservoir theory, we investigate the evolution of an atom placed in photon superfluid and study the entanglement properties of two qubits interacting with photon superfluid. It is found that the atomic decay rate in photon superfluid changes periodically with position of the atom and the decay rate can be inhibited compared to that in usual electromagnetic environment without photon superfluid. It is also found that when two atoms are separately immersed in their own local photon-superfluid reservoir, the entanglement sudden death or birth occurs or not only depends on the initial state of the qubits. What is more, we find a possible case that the concurrence between two qubits can remain a constant value by choosing proper values of parameters of the system, which may provide a new way to preserve quantum entanglement.

  1. Double-Tag Events in Two-Photon Collisions at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duinker, P.; Echenard, B.; Eline, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Ewers, A.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Palomares, C.; Pandoulas, D.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wallraff, W.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.

    2002-01-01

    Double-tag events in two-photon collisions are studied using the L3 detector at LEP centre-of-mass energies from root(s)=189 GeV to 209 GeV. The cross sections of the e+e- -> e+e- hadrons and gamma*gamma* -> hadrons processes are measured as a function of the photon virtualities, Q2_1 and Q2_2, of the two-photon mass, W_gammagamma, and of the variable Y=ln(W2_gammagamma/(Q_1Q_2)), for an average photon virtuality = 16 GeV2. The results are in agreement with next-to-leading order calculations for the process gamma*gamma* -> q qbar in the interval 2 <= Y <= 5. An excess is observed in the interval 5 < Y <= 7, corresponding to W_gammagamma greater than 40 GeV . This may be interpreted as a sign of resolved photon QCD processes or the onset of BFKL phenomena.

  2. Distribution of quantum information between an atom and two photons

    International Nuclear Information System (INIS)

    Weber, Bernhard

    2008-01-01

    The construction of networks consisting of optically interconnected processing units is a promising way to scale up quantum information processing systems. To store quantum information, single trapped atoms are among the most proven candidates. By placing them in high finesse optical resonators, a bidirectional information exchange between the atoms and photons becomes possible with, in principle, unit efficiency. Such an interface between stationary and ying qubits constitutes a possible node of a future quantum network. The results presented in this thesis demonstrate the prospects of a quantum interface consisting of a single atom trapped within the mode of a high-finesse optical cavity. In a two-step process, we distribute entanglement between the stored atom and two subsequently emitted single photons. The long atom trapping times achieved in the system together with the high photon collection efficiency of the cavity make the applied protocol in principle deterministic, allowing for the creation of an entangled state at the push of a button. Running the protocol on this quasi-stationary quantum interface, the internal state of the atom is entangled with the polarization state of a single emitted photon. The entanglement is generated by driving a vacuum-stimulated Raman adiabatic passage between states of the coupled atom-cavity system. In a second process, the atomic part of the entangled state is mapped onto a second emitted photon using a similar technique and resulting in a polarization-entangled two-photon state. To verify and characterize the photon-photon entanglement, we measured a violation of a Bell inequality and performed a full quantum state tomography. The results prove the prior atom-photon entanglement and demonstrate a quantum information transfer between the atom and the two emitted photons. This reflects the advantages of a high-finesse cavity as a quantum interface in future quantum networks. (orig.)

  3. Distribution of quantum information between an atom and two photons

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Bernhard

    2008-11-03

    The construction of networks consisting of optically interconnected processing units is a promising way to scale up quantum information processing systems. To store quantum information, single trapped atoms are among the most proven candidates. By placing them in high finesse optical resonators, a bidirectional information exchange between the atoms and photons becomes possible with, in principle, unit efficiency. Such an interface between stationary and ying qubits constitutes a possible node of a future quantum network. The results presented in this thesis demonstrate the prospects of a quantum interface consisting of a single atom trapped within the mode of a high-finesse optical cavity. In a two-step process, we distribute entanglement between the stored atom and two subsequently emitted single photons. The long atom trapping times achieved in the system together with the high photon collection efficiency of the cavity make the applied protocol in principle deterministic, allowing for the creation of an entangled state at the push of a button. Running the protocol on this quasi-stationary quantum interface, the internal state of the atom is entangled with the polarization state of a single emitted photon. The entanglement is generated by driving a vacuum-stimulated Raman adiabatic passage between states of the coupled atom-cavity system. In a second process, the atomic part of the entangled state is mapped onto a second emitted photon using a similar technique and resulting in a polarization-entangled two-photon state. To verify and characterize the photon-photon entanglement, we measured a violation of a Bell inequality and performed a full quantum state tomography. The results prove the prior atom-photon entanglement and demonstrate a quantum information transfer between the atom and the two emitted photons. This reflects the advantages of a high-finesse cavity as a quantum interface in future quantum networks. (orig.)

  4. Dosimetric Uncertainties in Verification of Intensity Modulated Photon Beams

    International Nuclear Information System (INIS)

    Jurkovic, S.

    2010-01-01

    The doctoral thesis presents method for the calculation of the compensators' shape to modulate linear accelerators' beams. Characteristic of the method is more strict calculation of the scattered radiation in beams with an inhomogeneous cross-section than it was before. Method could be applied in various clinical situations. It's dosimetric verification was made in phantoms, measuring dose distributions using ionization chambers as well as radiographic film. Therefore, ionization chambers were used for the evaluation of modulator shape and film was used for the evaluation of two-dimensional dose distributions. It is well known that dosimetry of the intensity modulated photon beams is rather complicated regarding inhomogeneity of the dose distribution. The main reason for that is the beam modulator which changes spectral distribution of the beam. Possibility of use different types of detectors for the measurements of dose distributions in modulated photon beams and their accuracy were examined. Small volume ionization chambers, different diodes and amorphus silicon detector and radigraphic film were used. Measured dose distributions were compared between each other as well as with distributions simulated using Monte Carlo particle transport algorithm. In this way the most accurate method for the verification of modulate photon beams is suggested. (author)

  5. Conceptual basis of resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Payne, M.G.

    1984-04-01

    Resonance Ionization Spectroscopy (RIS) can b defined as a state-selective detection process in which tunable lasers are used to promote transitions from the selected state of the atoms or molecules in question to higher states, one of which will be ionized by the absorption of another photon. At least one resonance step is used in the stepwise ionization process, and it has been shown that the ionization probability of the spectroscopically selected species can nearly always be made close to unity. Since measurements of the number of photoelectrons or ions can be made very precisely and even one electron (or under vacuum conditions, one ion) can be detected, the technique can be used to make quantitative measurements of very small populations of the state-selected species. Counting of individual atoms has special meaning for detection of rare events. The ability to make saturated RIS measurements opens up a wide variety of applications to both basic and applied research. We view RIS as a specific type of multi-photon ionization in which the goal is to make quantitative measurements of quantum-selected populations in atomic or molecular systems. 16 references

  6. Cosmic Metal Production and the Contribution of QSO Absorption Systems to the Ionizing Background

    Science.gov (United States)

    Madau, Piero; Shull, J. Michael

    1996-01-01

    The recent discovery by Cowie et al. (1995) and Tytler et al. (1995) of metals in the Ly alpha clouds shows that the intergalactic medium (IGM) at high redshift is contaminated by the products of stars and suggests that ionizing photons from massive star formation may be a significant contributor to the UV background radiation at early epochs. We assess the validity of the stellar photoionization hypothesis. Based on recent computations of metal yields and 0-star Lyman continuum (Lyc) fluxes, we find that 0.2 percent of the rest-mass energy of the metals produced is radiated as Lyc. By modeling the transfer of ionizing radiation through the IGM and the rate of chemical enrichment, we demonstrate that the background intensity of photons at 1 ryd that accompanies the production of metals in the Ly alpha forest clouds may be significant, approaching 0.5 x 10(exp -21) ergs cm squared s(-1) Hz(-1) sr(-1) at z approximately equals 3 if the Lyc escape fraction is greater than of equal to 0.25. Together with quasars, massive stars could then, in principle, provide the hydrogen and helium Lyc photons required to ionize the universe at high redshifts. We propose that observations of the He2 Gunn-Peterson effect and of the metal ionization states of the Ly alpha forest and Lyman-limit absorbers should show the signature of a stellar spectrum. We also note that the stellar photoionization model fails if a large fraction of the UV radiation emitted from stars cannot escape into the IGM, as suggested by the recent Hopkins Ultraviolet Telescope observations by Leitherer et al. (1995) of low-redshift starburst galaxies, or if most of the metals observed at z is approximately 3 were produced at much earlier epochs.

  7. Virtual-pion and two-photon production in pp scattering

    International Nuclear Information System (INIS)

    Scholten, O.; Korchin, A.Yu.

    2002-01-01

    Two-photon production in pp scattering is proposed as a means of studying virtual-pion emission. Such a process is complementary to real-pion emission in pp scattering. The virtual-pion signal is embedded in a background of double-photon bremsstrahlung. We have developed a model to describe this background process and show that in certain parts of phase space the virtual-pion signal gives significant contributions. In addition, through interference with the two-photon bremsstrahlung background, one can determine the relative phase of the virtual-pion process

  8. Two-photon patterning of a polymer containing Y-shaped azochromophores

    International Nuclear Information System (INIS)

    Ambrosio, A.; Orabona, E.; Maddalena, P.; Camposeo, A.; Polo, M.; Neves, A. A. R.; Pisignano, D.; Carella, A.; Borbone, F.; Roviello, A.

    2009-01-01

    We report on the patterning of the free surface of azo-based polymer films by means of mass migration driven by one- or two-photon absorption. A symmetric donor-acceptor-donor structured Y-shaped azochromophore is specifically synthesized to enhance two-photon absorption in the polymer. The exposure of the polymer film to a focused laser beam results in light-driven mass migration for both one- and two-photon absorptions. Features with subdiffraction resolution (250 nm) are realized and the patterning dynamics is investigated as a function of the light dose. Furthermore, functional photonic structures, such as diffraction gratings with periods ranging between 0.5 and 2.0 μm, have been realized

  9. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.

    Science.gov (United States)

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong

    2018-01-25

    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  10. Doppler-free two-photon spectroscopy of Yb atoms and efficient generation of a cascade of two photons at 611.3 nm and 555.8 nm

    International Nuclear Information System (INIS)

    Song, Minsoo; Yoon, Duseong; Yoon, Taihyun

    2011-01-01

    We performed high-resolution Doppler-free two-photon spectroscopy of Yb atoms in an effusive atomic beam and generated a cascade of two photons at 611.3 nm (idler) and 555.8 nm (signal) with a narrow bandwidth of 37 MHz. Efficient population transfer from the ground state (6s 2 1 S 0 ) to the upper state (6s7s 1 S 0 ), where direct transition at 291.1 nm is dipole forbidden, was achieved through a resonant two-photon excitation enhanced by the electromagnetically-induced transparency mediated by the intermediate state (6s6p 1 P 1 ). From the upper state, a cascade of two photons in sequence was emitted via the spin triplet state (6s 2 3 P 1 ). Numerical calculations of the density matrix equations taking into account the residual Doppler effect and strong driving fields explain quantitatively the experimental results for the dependences of the idler and the signal beam intensities on the various parameters of the driving fields. We report on the generation of a cascade of two photons with fluxes at the level of a few times 10 6 photons/s detected at a solid angle of 0.01 sr.

  11. Doppler-free two-photon spectroscopy of Yb atoms and efficient generation of a cascade of two photons at 611.3 nm and 555.8 nm

    Energy Technology Data Exchange (ETDEWEB)

    Song, Minsoo; Yoon, Duseong; Yoon, Taihyun [Korea University, Seoul (Korea, Republic of)

    2011-10-15

    We performed high-resolution Doppler-free two-photon spectroscopy of Yb atoms in an effusive atomic beam and generated a cascade of two photons at 611.3 nm (idler) and 555.8 nm (signal) with a narrow bandwidth of 37 MHz. Efficient population transfer from the ground state (6s{sup 2} {sup 1}S{sub 0}) to the upper state (6s7s {sup 1}S{sub 0}), where direct transition at 291.1 nm is dipole forbidden, was achieved through a resonant two-photon excitation enhanced by the electromagnetically-induced transparency mediated by the intermediate state (6s6p {sup 1}P{sub 1}). From the upper state, a cascade of two photons in sequence was emitted via the spin triplet state (6s{sup 2} {sup 3}P{sub 1}). Numerical calculations of the density matrix equations taking into account the residual Doppler effect and strong driving fields explain quantitatively the experimental results for the dependences of the idler and the signal beam intensities on the various parameters of the driving fields. We report on the generation of a cascade of two photons with fluxes at the level of a few times 10{sup 6} photons/s detected at a solid angle of 0.01 sr.

  12. Quantum-correlated two-photon transitions to excitons in semiconductor quantum wells.

    Science.gov (United States)

    Salazar, L J; Guzmán, D A; Rodríguez, F J; Quiroga, L

    2012-02-13

    The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers.

  13. F--Ray: A new algorithm for efficient transport of ionizing radiation

    Science.gov (United States)

    Mao, Yi; Zhang, J.; Wandelt, B. D.; Shapiro, P. R.; Iliev, I. T.

    2014-04-01

    We present a new algorithm for the 3D transport of ionizing radiation, called F2-Ray (Fast Fourier Ray-tracing method). The transfer of ionizing radiation with long mean free path in diffuse intergalactic gas poses a special challenge to standard numerical methods which transport the radiation in position space. Standard methods usually trace each individual ray until it is fully absorbed by the intervening gas. If the mean free path is long, the computational cost and memory load are likely to be prohibitive. We have developed an algorithm that overcomes these limitations and is, therefore, significantly more efficient. The method calculates the transfer of radiation collectively, using the Fast Fourier Transform to convert radiation between position and Fourier spaces, so the computational cost will not increase with the number of ionizing sources. The method also automatically combines parallel rays with the same frequency at the same grid cell, thereby minimizing the memory requirement. The method is explicitly photon-conserving, i.e. the depletion of ionizing photons is guaranteed to equal the photoionizations they caused, and explicitly obeys the periodic boundary condition, i.e. the escape of ionizing photons from one side of a simulation volume is guaranteed to be compensated by emitting the same amount of photons into the volume through the opposite side. Together, these features make it possible to numerically simulate the transfer of ionizing photons more efficiently than previous methods. Since ionizing radiation such as the X-ray is responsible for heating the intergalactic gas when first stars and quasars form at high redshifts, our method can be applied to simulate thermal distribution, in addition to cosmic reionization, in three-dimensional inhomogeneous cosmological density field.

  14. Two-photon decay of K-shell vacancy states in heavy atoms

    International Nuclear Information System (INIS)

    Ilakovac, K.; Uroic, M.; Majer, M.; Pasic, S.; Vukovic, B.

    2006-01-01

    Two-photon decay has been extensively studied in atomic, nuclear and particle physics since the 1930s when the problem of stability of the 2s state of the hydrogen atom emerged. Since then, many theoretical and experimental investigations have been made on hydrogen and one-electron (H-like) ions and on helium and two-electron (He-like) ions. The work on two-photon decay in many-electron systems involving inner shells started about 30 years ago and, in the meantime, two-photon decay of the K-shell vacancy state has been the subject of many theoretical and experimental studies. Experimental results have been obtained for 2s->1s and higher-state electron ->1s two-photon transitions in molybdenum, and for 2s -> 1s, 3s -> 1s, 3d -> 1s and 4sd -> 1s two-photon transitions in silver, xenon, hafnium and mercury. Nonrelativistic and relativistic calculations of the processes have been made. The relativistic calculations for transitions in molybdenum, silver and xenon atoms are in a reasonable agreement with the experimental results, but some problems remain to be solved. A review of investigations of two-photon transitions in atomic systems is presented

  15. Time-resolved measurement of the quantum states of photons using two-photon interference with short-time reference pulses

    International Nuclear Information System (INIS)

    Ren Changliang; Hofmann, Holger F.

    2011-01-01

    To fully utilize the energy-time degree of freedom of photons for optical quantum-information processes, it is necessary to control and characterize the temporal quantum states of the photons at extremely short time scales. For measurements of the temporal coherence of the quantum states beyond the time resolution of available detectors, two-photon interference with a photon in a short-time reference pulse may be a viable alternative. In this paper, we derive the temporal measurement operators for the bunching statistics of a single-photon input state with a photon from a weak coherent reference pulse. It is shown that the effects of the pulse shape of the reference pulse can be expressed in terms of a spectral filter selecting the bandwidth within which the measurement can be treated as an ideal projection on eigenstates of time. For full quantum tomography, temporal coherence can be determined by using superpositions of reference pulses at two different times. Moreover, energy-time entanglement can be evaluated based on the two-by-two entanglement observed in the coherences between pairs of detection times.

  16. Two improved Monte Carlo photon cross section techniques

    International Nuclear Information System (INIS)

    Scudiere, M.B.

    1978-01-01

    Truncated series of Legendre coefficients and polynomials are often used in multigroup transport computer codes to describe group-to-group angular density transfer functions. Imposition of group structure on the energy continuum may create discontinuities in the first derivative of these functions. Because of the nature of these discontinuities efficient and accurate full-range polynomial expansions are not practically obtainable. Two separate and distinct methods for Monte Carlo photon transport are presented which eliminate essentially all major disadvantages of truncated expansions. In the first method, partial-range expansions are applied between the discontinuities. Here accurate low-order representations are obtained, which yield modest savings in computer charges. The second method employs unique properties of functions to replace them with a few smooth well-behaved representations. This method brings about a considerable savings in computer memory requirements. In addition, accuracy of the first method is maintained, while execution times are reduced even further

  17. New constraints on the escape of ionizing photons from starburst galaxies using ionization-parameter mapping

    International Nuclear Information System (INIS)

    Zastrow, Jordan; Oey, M. S.; Veilleux, Sylvain; McDonald, Michael

    2013-01-01

    The fate of ionizing radiation in starburst galaxies is key to understanding cosmic reionization. However, the galactic parameters on which the escape fraction of ionizing radiation depend are not well understood. Ionization-parameter mapping provides a simple, yet effective, way to study the radiative transfer in starburst galaxies. We obtain emission-line ratio maps of [S III]/[S II] for six, nearby, dwarf starbursts: NGC 178, NGC 1482, NGC 1705, NGC 3125, NGC 7126, and He 2-10. The narrowband images are obtained with the Maryland-Magellan Tunable Filter at Las Campanas Observatory. Using these data, we previously reported the discovery of an optically thin ionization cone in NGC 5253, and here we also discover a similar ionization cone in NGC 3125. This latter cone has an opening angle of 40° ± 5° (0.4 sr), indicating that the passageways through which ionizing radiation may travel correspond to a small solid angle. Additionally, there are three sample galaxies that have winds and/or superbubble activity, which should be conducive to escaping radiation, yet they are optically thick. These results support the scenario that an orientation bias limits our ability to directly detect escaping Lyman continuum in many starburst galaxies. A comparison of the star formation properties and histories of the optically thin and thick galaxies is consistent with the model that high escape fractions are limited to galaxies that are old enough (≳3 Myr) for mechanical feedback to have cleared optically thin passageways in the interstellar medium, but young enough (≲5 Myr) that the ionizing stars are still present.

  18. An integrated single- and two-photon non-diffracting light-sheet microscope

    Science.gov (United States)

    Lau, Sze Cheung; Chiu, Hoi Chun; Zhao, Luwei; Zhao, Teng; Loy, M. M. T.; Du, Shengwang

    2018-04-01

    We describe a fluorescence optical microscope with both single-photon and two-photon non-diffracting light-sheet excitations for large volume imaging. With a special design to accommodate two different wavelength ranges (visible: 400-700 nm and near infrared: 800-1200 nm), we combine the line-Bessel sheet (LBS, for single-photon excitation) and the scanning Bessel beam (SBB, for two-photon excitation) light sheet together in a single microscope setup. For a transparent thin sample where the scattering can be ignored, the LBS single-photon excitation is the optimal imaging solution. When the light scattering becomes significant for a deep-cell or deep-tissue imaging, we use SBB light-sheet two-photon excitation with a longer wavelength. We achieved nearly identical lateral/axial resolution of about 350/270 nm for both imagings. This integrated light-sheet microscope may have a wide application for live-cell and live-tissue three-dimensional high-speed imaging.

  19. Production of highly ionized recoil ions in heavy ion impact

    International Nuclear Information System (INIS)

    Tawara, H.; Tonuma, T.; Be, S.H.; Shibata, H.; Kase, M.; Kambara, T.; Kumagai, H.; Kohno, I.

    1985-01-01

    The production mechanisms of highly ionized recoil ions in energetic, highly charged heavy ion impact are compared with those in photon and electron impact. In addition to the innershell ionization processes which are important in photon and electron impact, the electron transfer processes are found to play a key role in heavy ion impact. In molecular targets are also observed highly ionized monoatomic ions which are believed to be produced through production of highly ionized molecular ions followed by prompt dissociation. The observed N 6+ ions produced in 1.05MeV/amu Ar 12+ ions on N 2 molecules are produced through, for example, N 2 12+ *→N 6+ +N 6+ process. (author)

  20. Investigation of the two-photon decay following the neutron capture in hydrogen

    International Nuclear Information System (INIS)

    Wuest, N.

    1978-01-01

    The continuous two-photon radiation, resulting from thermal neutron capture in hydrogen, has been measured. This reaction can be described in second order perturbation theory and occurs besides the dominating 2223.4 keV single-photon radiation. The theoretical ratio between two-photon and one-photon process is 2.8 10 -7 for the case considered here, so coincidence experiments with extremely high sensitivity have to be performed. In order to exclude systematical errors, three measurements with a different experimental set-up have been performed. Besides the total cross section for the two-photon process, the differential cross section has been studied in one of the experiments as a function of the energy ratio of the two photons. For the branching ratio between the two- and one-photon process an upper limit of 2 x 10 -5 could be obtained. So the hypothesis that the neutron capture state and the deuterium ground state one non-orthogonal, is shown to be false. (orig.) [de

  1. Radiative corrections to two photon physics

    International Nuclear Information System (INIS)

    Neervan, W.L. van; Vermaseren, J.A.M.

    1983-06-01

    The authors develop a method to calculate radiative corrections to two photon reactions of the type e + e - →e + e - X where X is an arbitrary final state. To illustrate this they take the example where X stands for a point-like pseudoscalar. It will be shown that the method is an improvement on the standard way in adding real and virtual photon contributions to the (differential) cross-sections. This makes it possible to compute differential and total cross-sections to a very high precision and with a minimum of computer time which is not possible by using more conventional methods. (Auth.)

  2. Absolute photonic band gap in 2D honeycomb annular photonic crystals

    International Nuclear Information System (INIS)

    Liu, Dan; Gao, Yihua; Tong, Aihong; Hu, Sen

    2015-01-01

    Highlights: • A two-dimensional honeycomb annular photonic crystal (PC) is proposed. • The absolute photonic band gap (PBG) is studied. • Annular PCs show larger PBGs than usual air-hole PCs for high refractive index. • Annular PCs with anisotropic rods show large PBGs for low refractive index. • There exist optimal parameters to open largest band gaps. - Abstract: Using the plane wave expansion method, we investigate the effects of structural parameters on absolute photonic band gap (PBG) in two-dimensional honeycomb annular photonic crystals (PCs). The results reveal that the annular PCs possess absolute PBGs that are larger than those of the conventional air-hole PCs only when the refractive index of the material from which the PC is made is equal to 4.5 or larger. If the refractive index is smaller than 4.5, utilization of anisotropic inner rods in honeycomb annular PCs can lead to the formation of larger PBGs. The optimal structural parameters that yield the largest absolute PBGs are obtained

  3. Surface dose measurements and comparison of unflattened and flattened photon beams

    Directory of Open Access Journals (Sweden)

    Ashokkumar Sigamani

    2016-01-01

    Full Text Available The purpose of this study was to evaluate the central axis dose in the build-up region and the surface dose of a 6 MV and 10 MV flattened photon beam (FB and flattening filter free (FFF therapeutic photon beam for different square field sizes (FSs for a Varian Truebeam linear accelerator using parallel-plate ionization chamber and Gafchromic film. Knowledge of dosimetric characteristics in the build-up region and surface dose of the FFF is essential for clinical care. The dose measurements were also obtained empirically using two different commonly used dosimeters: a p-type photon semiconductor dosimeter and a cylindrical ionization chamber. Surface dose increased linearly with FS for both FB and FFF photon beams. The surface dose values of FFF were higher than the FB FSs. The measured surface dose clearly increases with increasing FS. The FFF beams have a modestly higher surface dose in the build-up region than the FB. The dependence of source to skin distance (SSD is less significant in FFF beams when compared to the flattened beams at extended SSDs.

  4. ALFVÉN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    International Nuclear Information System (INIS)

    Soler, R.; Ballester, J. L.; Terradas, J.; Carbonell, M.

    2013-01-01

    Alfvén waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfvén waves is affected by the interaction between ionized and neutral species. Here we study Alfvén waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfvén waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.

  5. Double-mode Two-photon Absorption and Enhanced Photon Antibunching Due to Interference

    Science.gov (United States)

    Bandilla, A.; Ritze, H.-H.

    Inspired by results of interfering signal and idler from a nondegenerate parametric amplifier we investigate the photon statistics of the resulting field after interference of two components subjected to double-mode two-photon absorption. This absorption process leads to a strong correlation of the participating modes, which can be used to generate fields with photon antibunching in interference experiments. In addition the photon number can be made small, which produces enhanced antibunching.Translated AbstractZwei-Photonen-Absorption aus zwei Moden und durch Interferenz verstärktes photon antibunchingDie quantenmechanische Betrachtung der Interferenz führt zu neuen Ergebnissen, wenn Felder ohne klassisches Analogon betrachtet werden. Insbesondere ergibt sich durch die Reduktion der Photonenzahl durch Interferenz eine effektive Verstärkung des Photon Antibunching, wie von den Verfassern in vorhergehenden Arbeiten gezeigt wurde. Die vorliegende Untersuchung betrachtet die Interferenz von zwei korrelierten Moden, wobei die Korrelation durch Zwei-Photonen-Absorption aus den beiden Moden zustande kommt. In jeder einzelnen Mode ergibt sich lediglich ein gewisses Bunching, wenn man mit kohärentem Licht in beiden Moden beginnt. Es wird die Interferenz der Feldstärke-Komponenten in bestimmten Polarisationsrichtungen untersucht. Zur Vereinfachung wird in den betrachteten Moden die gleiche Anfangsphotonenzahl vorausgesetzt und der Analysator auf minimale Transmittanz gebracht. Das eigentliche Signal entsteht dann durch Einführung einer endlichen Phasenverschiebung zwischen den beiden Moden. Dieses Signal zeigt Antibunching und kann in seiner Intensität beliebig variiert werden, was wegen des (1/n)-Charakters des Antibunching zu seiner Verstärkung führt. Ferner wird gezeigt, daß die zunächst für zwei linear polarisierte Moden durchgeführte Rechnung auf zwei zirkulare Moden sowie auf zwei gegenläufige Strahlen bei der dopplerfreien Zwei-Quanten-Absorption

  6. In vivo two-photon imaging of retina in rabbits and rats.

    Science.gov (United States)

    Jayabalan, Gopal Swamy; Wu, Yi-Kai; Bille, Josef F; Kim, Samuel; Mao, Xiao Wen; Gimbel, Howard V; Rauser, Michael E; Fan, Joseph T

    2018-01-01

    The purpose of this study was to evaluate the retina using near-infrared (NIR) two-photon scanning laser ophthalmoscopy. New Zealand white rabbits, albino rats, and brown Norway rats were used in this study. An autofluorescence image of the retina, including the retinal cells and its associated vasculatures was obtained by a real-time scan using the ophthalmoscope. Furthermore, the retinal vessels, nerve fiber layers and the non-pigmented retina were recorded with two-photon fluorescein angiography (FA); and the choroidal vasculatures were recorded using two-photon indocyanine green angiography (ICGA). Two-photon ICGA was achieved by exciting a second singlet state at ∼398 nm. Simultaneous two-photon FA and two-photon ICGA were performed to characterize the retinal and choroidal vessels with a single injection. The minimum laser power threshold required to elicit two-photon fluorescence was determined. The two-photon ophthalmoscope could serve as a promising tool to detect and monitor the disease progression in animal models. Moreover, these high-resolution images of retinal and choroidal vessels can be acquired in a real-time scan with a single light source, requiring no additional filters for FA or ICGA. The combination of FA and ICGA using the two-photon ophthalmoscope will help researchers to characterize the retinal diseases in animal models, and also to classify the types (classic, occult or mixed) of choroidal neovascularization (CNV) in macular degeneration. Furthermore, the prototype can be adapted to image the retina of rodents and rabbits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Two-dimensionally confined topological edge states in photonic crystals

    International Nuclear Information System (INIS)

    Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-01-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters. (paper)

  8. Nonlinear shaping of a two-dimensional ultrashort ionizing pulse

    International Nuclear Information System (INIS)

    Sergeev, A.; Vanin, E.; Stenflo, L.; Anderson, D.; Lisak, M.; Quiroga-Teixeiro, M.L.

    1992-01-01

    A theoretical description of ultrashort ionizing wave pulses is presented by means of two different models where the ionization rate increases or decreases, respectively, as a function of the electric field amplitude. We show that the pulse evolves either into a horse-shoe or a horn-type structure in the time-space domain. In some parameter regions the intensity of the pulse can also increase. (au)

  9. Pion-pair production by two photons

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1994-07-01

    The cross section for pion-pair production by two photons is calculated approximately by using the low energy theorem previously derived from partially-conserved-axial-vector-current hypothesis and current algebra, and found to agree very well with the experimental data recently obtained by the Mark II, TPC/Two-Gamma and CLEO Collaborations. (author)

  10. First measurement of the ionization yield of nuclear recoils in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, T. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sangiorgio, Samuele [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Bernstein, A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Foxe, Michael P. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Hagmann, Chris [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Jovanovic, Igor [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Kazkaz, K. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Mozin, Vladimir V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Norman, E. B. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pereverzev, S. V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Rebassoo, Finn O. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sorensen, Peter F. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)

    2014-05-01

    Liquid phase argon has long been used as a target medium for particle detection via scintillation light. Recently there has been considerable interest in direct detection of both hypothetical darkmatter particles and coherent elastic neutrino nucleus scattering. These as-yet unobserved neutral particle interactions are expected to result in a recoiling argon atom O(keV), generally referred to in the literature as a nuclear recoil. This prompts the question of the available electromagnetic signal in a liquid argon detector. In this Letter we report the first measurement of the ionization yield (Qy), detected electrons per unit energy, resulting from nuclear recoils in liquid argon, measured at 6.7 keV. This is also the lowest energy measurement of nuclear recoils in liquid argon.

  11. Effects of uniform dc electric fields on multiphoton ionization of cesium atoms

    International Nuclear Information System (INIS)

    Klots, C.E.; Compton, R.N.

    1985-01-01

    Multiphoton ionization of cesium atoms shows pronounced two-photon resonances at the nd states and, to a much smaller extent, at the ns states. A dc electric field augments the ns resonances and, for a complementary reason, induces resonances at the np and nf levels. A scaling law for field-induced signals, as a function of principal quantum number, is reported. Field ionization of high Rydberg states is also conveniently studied and quantified with our technique

  12. Two-color ghost interference with photon pairs generated in hot atoms

    Directory of Open Access Journals (Sweden)

    Dong-Sheng Ding

    2012-09-01

    Full Text Available We report on an experimental observation of a two-photon ghost interference experiment. A distinguishing feature of our experiment is that the photons are generated via a non-degenerated spontaneous four-wave mixing process in a hot atomic ensemble; therefore the photon has narrow bandwidth. Besides, there is a large difference in frequency between two photons in a pair. Our works may be important to achieve more secure, large transmission capacity long-distance quantum communication.

  13. Charm production in two-photon collisions

    International Nuclear Information System (INIS)

    Linde, F.L.

    1988-01-01

    The analysis focuses on the production of charmonium resonances η c , χ 0 and χ 2 in two-photon interactions. The measurement of the inclusive production of charged D* mesons is described. 97 refs.; 54 figs.; 15 tabs

  14. Probabilistically cloning two single-photon states using weak cross-Kerr nonlinearities

    International Nuclear Information System (INIS)

    Zhang, Wen; Rui, Pinshu; Zhang, Ziyun; Yang, Qun

    2014-01-01

    By using quantum nondemolition detectors (QNDs) based on weak cross-Kerr nonlinearities, we propose an experimental scheme for achieving 1→2 probabilistic quantum cloning (PQC) of a single-photon state, secretly choosing from a two-state set. In our scheme, after a QND is performed on the to-be-cloned photon and the assistant photon, a single-photon projection measurement is performed by a polarization beam splitter (PBS) and two single-photon trigger detectors (SPTDs). The measurement is to judge whether the PQC should be continued. If the cloning fails, a cutoff is carried out and some operations are omitted. This makes our scheme economical. If the PQC is continued according to the measurement result, two more QNDs and some unitary operations are performed on the to-be-cloned photon and the cloning photon to achieve the PQC in a nearly deterministic way. Our experimental scheme for PQC is feasible for future technology. Furthermore, the quantum logic network of our PQC scheme is presented. In comparison with similar networks, our PQC network is simpler and more economical. (paper)

  15. The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    Science.gov (United States)

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2014-11-01

    A novel, gas-tight API interface for gas chromatography-mass spectrometry was used to study the ionization mechanism in direct and dopant-assisted atmospheric pressure photoionization (APPI) and atmospheric pressure laser ionization (APLI). Eight analytes (ethylbenzene, bromobenzene, naphthalene, anthracene, benzaldehyde, pyridine, quinolone, and acridine) with varying ionization energies (IEs) and proton affinities (PAs), and four common APPI dopants (toluene, acetone, anisole, and chlorobenzene) were chosen. All the studied compounds were ionized by direct APPI, forming mainly molecular ions. Addition of dopants suppressed the signal of the analytes with IEs above the IE of the dopant. For compounds with suitable IEs or Pas, the dopants increased the ionization efficiency as the analytes could be ionized through dopant-mediated gas-phase reactions, such as charge exchange, proton transfer, and other rather unexpected reactions, such as formation of [M + 77](+) in the presence of chlorobenzene. Experiments with deuterated toluene as the dopant verified that in case of proton transfer, the proton originated from the dopant instead of proton-bound solvent clusters, as in conventional open or non-tight APPI sources. In direct APLI using a 266 nm laser, a narrower range of compounds was ionized than in direct APPI, because of exceedingly high IEs or unfavorable two-photon absorption cross-sections. Introduction of dopants in the APLI system changed the ionization mechanism to similar dopant-mediated gas-phase reactions with the dopant as in APPI, which produced mainly ions of the same form as in APPI, and ionized a wider range of analytes than direct APLI.

  16. Two-Photon Excitation Microscopy for the Study of Living Cells and Tissues

    Science.gov (United States)

    Benninger, Richard K.P.; Piston, David W.

    2013-01-01

    Two-photon excitation microscopy is an alternative to confocal microscopy that provides advantages for three-dimensional and deep tissue imaging. This unit will describe the basic physical principles behind two-photon excitation and discuss the advantages and limitations of its use in laser-scanning microscopy. The principal advantages of two-photon microscopy are reduced phototoxicity, increased imaging depth, and the ability to initiate highly localized photochemistry in thick samples. Practical considerations for the application of two-photon microscopy will then be discussed, including recent technological advances. This unit will conclude with some recent applications of two-photon microscopy that highlight the key advantages over confocal microscopy and the types of experiments which would benefit most from its application. PMID:23728746

  17. Correction factors for photon beam quality for cylindrical ionization chambers: Monte Carlo calculations by using the PENELOPE code

    International Nuclear Information System (INIS)

    Barreras Caballero, A. A.; Hernandez Garcia, J.J.; Alfonso Laguardia, R.

    2009-01-01

    Were directly determined correction factors depending on the type camera beam quality, k, Q, and kQ, Qo, instead of the product (w, air p) Q, for three type cylindrical ionization chambers Pinpoint and divergent monoenergetic beams of photons in a wide range of energies (4-20 MV). The method of calculation used dispenses with the approaches taken in the classic procedure considered independent of braking power ratios and the factors disturbance of the camera. A detailed description of the geometry and materials chambers were supplied by the manufacturer and used as data input for the system 2006 of PENELOPE Monte Carlo calculation using a User code that includes correlated sampling, and forced interactions division of particles. We used a photon beam Co-60 as beam reference for calculating the correction factors for beam quality. No data exist for the cameras PTW 31014, 31015 and 31016 in the TRS-398 at they do not compare the results with data calculated or determined experimentally by other authors. (author)

  18. Flatness of two-dimensional beam profile measured with an ionization chamber array

    International Nuclear Information System (INIS)

    Stefanovski, Z.

    2006-01-01

    Open beam profiles are basic dosimetric characteristics for the formation of the dose calculation algorithms parameters and for determination of beam quality. One characteristic of the beam profiles as a measure for the beam quality is the field flatness defined as ratio of the difference of maximum and minimum dose in central 80% of the field to the sum of these doses in the part of the field. The measurements, instead with an ordinary ionization chamber, were performed with a chamber array in two depths (1.6 cm and 10 cm) in water phantom. Nominal photon beam energy was 6 MV and field size was 25 cm x 25 cm on the water surface. Field flatness was in the range of 1-2 % which is in accordance with the data acquired during the acceptance testing and commissioning of the accelerators. with the array chamber the beam profiles can be performed quickly and preciously. These features recommend a chamber array as an excellent tool for periodic quality control of beam profiles. (Author)

  19. Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly

    International Nuclear Information System (INIS)

    Belfield, Kevin D.; Bondar, Mykhailo V.; Hernandez, Florencio E.; Przhonska, Olga V.; Yao, Sheng

    2006-01-01

    Linear spectral properties, including excitation anisotropy, of pseudoisocyanine or 1,1'-diethyl-2,2'-cyanine iodide (PIC) J-aggregates in aqueous solutions with J-band position at 573 nm were investigated. Two-photon absorption of PIC J-aggregates and monomer molecules was studied using an open aperture Z-scan technique. A strong enhancement of the two-photon absorption cross-section of PIC in the supramolecular J-aggregate assembly was observed in aqueous solution. This enhancement is attributed to a strong coupling of the molecular transition dipoles. No two-photon absorption at the peak of the J-band was detected

  20. Direct inner shell ionization accompanying heavy ion fusion reactions

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    1987-07-01

    51 V+ 40 Ar (180 MeV) fusion reaction is studied by means of K X-ray-particle-γ-ray coincidences. K X-ray yields associated with various evaporation residues are determined separately for two ionization processes: the direct ionization by the projectile prior to the nuclear interaction and the postcollisional ionization due to the internal conversion of γ-rays. Implications for possible measurements of nuclear reaction times are discussed. 24 refs., 9 figs., 2 tabs. (author)

  1. Photonomics: automation approaches yield economic aikido for photonics device manufacture

    Science.gov (United States)

    Jordan, Scott

    2002-09-01

    In the glory days of photonics, with exponentiating demand for photonics devices came exponentiating competition, with new ventures commencing deliveries seemingly weekly. Suddenly the industry was faced with a commodity marketplace well before a commodity cost structure was in place. Economic issues like cost, scalability, yield-call it all "Photonomics" -now drive the industry. Automation and throughput-optimization are obvious answers, but until now, suitable modular tools had not been introduced. Available solutions were barely compatible with typical transverse alignment tolerances and could not automate angular alignments of collimated devices and arrays. And settling physics served as the insoluble bottleneck to throughput and resolution advancement in packaging, characterization and fabrication processes. The industry has addressed these needs in several ways, ranging from special configurations of catalog motion devices to integrated microrobots based on a novel mini-hexapod configuration. This intriguing approach allows tip/tilt alignments to be automated about any point in space, such as a beam waist, a focal point, the cleaved face of a fiber, or the optical axis of a waveguide- ideal for MEMS packaging automation and array alignment. Meanwhile, patented new low-cost settling-enhancement technology has been applied in applications ranging from air-bearing long-travel stages to subnanometer-resolution piezo positioners to advance resolution and process cycle-times in sensitive applications such as optical coupling characterization and fiber Bragg grating generation. Background, examples and metrics are discussed, providing an up-to-date industry overview of available solutions.

  2. Three-photon laser spectroscopy of even-parity bound states of samarium atom

    International Nuclear Information System (INIS)

    Gomonaj, O.Yi.; Kudelich, O.Yi.

    2002-01-01

    The energy spectrum of highly-excited even-parity bound states of a Sm atom, lying in the energy range 34421.1 - 36031.8 cm -1 , is investigated using three-photon resonance-ionization spectroscopy. The energies and total momenta of 48 levels are determined. Eight new levels not observed before are discovered. Thirteen intense two-photon transitions, which can be used in the schemes of Sm atom effective photoionization, are observed

  3. Tunable two-photon correlation in a double-cavity optomechanical system

    Directory of Open Access Journals (Sweden)

    Zhi-Bo Feng

    2015-12-01

    Full Text Available Correlated photons are essential sources for quantum information processing. We propose a practical scheme to generate pairs of correlated photons in a controllable fashion from a double-cavity optomechanical system, where the variable optomechanical coupling strength makes it possible to tune the photon correlation at our will. The key operation is based on the repulsive or attractive interaction between the two photons intermediated by the mechanical resonator. The present protocol could provide a potential approach to coherent control of the photon correlation using the optomechanical cavity.

  4. Identification of CW two-photon transitions in Na2 and NaK

    International Nuclear Information System (INIS)

    Morgan, G.P.

    1983-01-01

    This thesis reports on the two-photon visible excitation spectra of sodium and potassium vapors. In the past, similar work has been performed on sodium and many atomic two-photon transitions have been characterized. However, many extra signals exist which do not possess the ground, 3S, state hyperfine splitting. These extra transitions are due to the sodium dimer Na 2 . 79 such transitions, from 5800A - 6500A, which lie within the resolution of the apparatus have been studied. The molecules are excited with a lowpower narrow band counterpropagating cw dye laser beam and two-photon fluorescence. The fluorescence intensities of many of these transitions are greater than the 3S to 5S and 3S to 4D atomic signals, where the 3P enhancing state lies 300 cm -1 from resonance. By comparing the number density of the atomic with any molecular ground state and also the two-photon transition rates to excited states, the intermediate enhancing state for a two-photon transition in Na 2 can be predicted to be less than 1 cm -1 from resonance with the two-photon transition. This observation, along with published Dunham coefficients, is used to identify the states involved in the two-photon transitions

  5. Studies and comparisons of two photon-tagging systems for the production of monochromatic photon beams for photonuclear experiments

    International Nuclear Information System (INIS)

    Aniel, Thierry.

    1982-06-01

    The performance of photon beams obtained by two different tagging processes (tagging of ''hard'' annihilation photons with ''soft'' associated photons, tagging of bremstrahlung photons with associated electrons) on the same facility was studied. The two processes are described and experimental results on the characteristics of the resulting beams given. The respective advantages of both methods are compared with one another and with those of a quasi-monochromatic beam obtained by the in-flight annihilation of a positron beam. A development based on the second process is then studied together with its applications to photonuclear physics [fr

  6. Evaluation of two water-equivalent phantom materials for output calibration of photon and electron beams

    International Nuclear Information System (INIS)

    Liu Lizhong; Prasad, Satish C.; Bassano, Daniel A.

    2003-01-01

    Two commercially available water-equivalent solid phantom materials were evaluated for output calibration in both photon (6-15 MV) and electron (6-20 MeV) beams. The solid water 457 and virtual water materials have the same chemical composition but differ in manufacturing process and density. A Farmer-type ionization chamber was used for measuring the output of the photon beams at 5- and 10-cm depth and electron beams at maximum buildup depth in the solid phantoms and in natural water. The water-equivalency correction factor for the solid materials is defined as the ratio of the chamber reading in natural water to that in the solid at the same linear depth. For photon beams, the correction factor was found to be independent of depth and was 0.987 and 0.993 for 6- and 15-MV beams, respectively, for solid water. For virtual water, the corresponding correction factors were 0.993 and 0.998 for 6- and 15-MV beams, respectively. For electron beams, the correction factors ranged from 1.013 to 1.007 for energies of 6 to 20 MeV for both solid materials. This indicated that the water-equivalency of these materials is within ± 1.3%, making them suitable substitutes for natural water in both photon and electron beam output measurements over a wide energy range. These correction factors are slightly larger than the manufacturers' advertised values (± 1.0% for solid water and ± 0.5% for virtual water). We suggest that these corrections are large enough in most cases and should be applied in the calculation of beam outputs

  7. Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission

    KAUST Repository

    Pan, Jun

    2015-12-01

    We demonstrate ultra-air- and photostable CsPbBr3 quantum dots (QDs) by using an inorganic–organic hybrid ion pair as the capping ligand. This passivation approach to perovskite QDs yields high photoluminescence quantum yield with unprecedented operational stability in ambient conditions (60 ± 5% lab humidity) and high pump fluences, thus overcoming one of the greatest challenges impeding the development of perovskite-based applications. Due to the robustness of passivated perovskite QDs, we were able to induce ultrastable amplified spontaneous emission (ASE) in solution processed QD films not only through one photon but also through two-photon absorption processes. The latter has not been observed before in the family of perovskite materials. More importantly, passivated perovskite QD films showed remarkable photostability under continuous pulsed laser excitation in ambient conditions for at least 34 h (corresponds to 1.2 × 108 laser shots), substantially exceeding the stability of other colloidal QD systems in which ASE has been observed.

  8. Applications of two-photon fluorescence microscopy in deep-tissue imaging

    Science.gov (United States)

    Dong, Chen-Yuan; Yu, Betty; Hsu, Lily L.; Kaplan, Peter D.; Blankschstein, D.; Langer, Robert; So, Peter T. C.

    2000-07-01

    Based on the non-linear excitation of fluorescence molecules, two-photon fluorescence microscopy has become a significant new tool for biological imaging. The point-like excitation characteristic of this technique enhances image quality by the virtual elimination of off-focal fluorescence. Furthermore, sample photodamage is greatly reduced because fluorescence excitation is limited to the focal region. For deep tissue imaging, two-photon microscopy has the additional benefit in the greatly improved imaging depth penetration. Since the near- infrared laser sources used in two-photon microscopy scatter less than their UV/glue-green counterparts, in-depth imaging of highly scattering specimen can be greatly improved. In this work, we will present data characterizing both the imaging characteristics (point-spread-functions) and tissue samples (skin) images using this novel technology. In particular, we will demonstrate how blind deconvolution can be used further improve two-photon image quality and how this technique can be used to study mechanisms of chemically-enhanced, transdermal drug delivery.

  9. Resonance fluorescence spectrum in a two-band photonic bandgap crystal

    Science.gov (United States)

    Lee, Ray-Kuang; Lai, Yinchieh

    2003-05-01

    Steady state resonance fluorescence spectra from a two-level atom embedded in a photonic bandgap crystal and resonantly driven by a classical pump light are calculated. The photonic crystal is considered to be with a small bandgap which is in the order of magnitude of the Rabi frequency and is modeled by the anisotropic two-band dispersion relation. Non-Markovian noises caused by the non-uniform distribution of photon density states near the photonic bandgap are taken into account by a new approach which linearizes the optical Bloch equations by using the Liouville operator expansion. Fluorescence spectra that only exhibit sidebands of the Mollow triplet are found, indicating that there is no coherent Rayleigh scattering process.

  10. Effect of morphology and solvent on two-photon absorption of nano zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, M.K. [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India); Haripadmam, P.C.; Gopinath, Pramod; Krishnan, Bindu [Department of Physics, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India); John, Honey, E-mail: honey@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India)

    2013-05-15

    Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novel precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.

  11. Use of a 3-MV proton accelerator for study of noble gases, including laser ionization of excited states

    International Nuclear Information System (INIS)

    Hurst, G.S.; Judish, J.P.; Nayfeh, M.H.; Parks, J.E.; Payne, M.G.; Wagner, E.B.

    1974-01-01

    The use of a pulsed 3-MV accelerator to study energy pathways in the noble gases is described. The objectives of pathways research are to obtain (1) information on the spectrum of excited states produced by a charged particle in a noble gas, (2) the rate of decay of the various states through various channels as a function of gas pressure, and (3) the modification of the decay channels due to the introduction of foreign species. A new energy pathways model is presented for helium as a general illustration. A method for the study of excited states, using a laser ionization technique is reported. Use is made of a laser which is tuned to a resonance transition between the desired excited state and some higher excited state. Photons in the same pulse photoionize the higher excited state; thus the ionization current vs photon wavelength has a resonance structure. Absolute yields of selected excited states can be obtained whenever the photon fluence per pulse is large enough to saturate the ionization current. A general summary is given of experimental facilities which include a 3-MV Van de Graaff accelerator, electronics for measuring radiation lifetimes, vacuum ultraviolet spectrometers, and a pulsed laser facility for direct study of excited states. Finally, the relevance of pathways research to (1) the interaction of radiation with matter, (2) the development of gas lasers, and (3) methods of ultrasensitive elemental analysis is pointed out

  12. Interpreting HST observations with simulations of reionization: the ionizing photon budget and the decline of Lyman-alpha emission in z>6 dropouts

    Science.gov (United States)

    D'Aloisio, Anson

    2017-08-01

    In recent years, HST surveys such as CANDELS, HUDF, BoRG/HIPPIES, ERS, and the Frontier Fields, have made possible the first robust measurements of the rest-frame UV luminosity function of z =6-10 galaxies, spanning much of the redshift range over which reionization likely occurred. These measurements provide an estimate of the galactic ionizing photon output, addressing the critical question of whether these galaxies could have reionized the Universe. In addition, follow-up spectroscopy has measured the fraction of these galaxies that show Lyman-alpha emission. Interestingly, a dramatic decrease in this fraction above z 6 has been observed, and this evolution has (controversially) been interpreted as evidence that much of reionization happened over z=6-8 (as intergalactic neutral gas leads to large damping wings that scatter the Lyman-alpha line). The clumpiness of the IGM and how it self shields to ionizing photons impacts whether the observed population of galaxies can reionize the Universe, as well as the interpretation of the evolving Lyman-alpha emitter fraction. We propose to run fully coupled radiative-hydrodynamics simulations that are the first to resolve the evaporation of small structures by passing ionization fronts and, hence, to accurately assess the level of clumpiness and self-shielding from the IGM. Our study will nail down the clumping factor used to assess whether the observed population of galaxies can drive reionization, and it will address whether neutral self-shielding clumps in recently reionized regions can scatter galaxies' Lyman-alpha lines.

  13. Aspects of two-photon physics at linear e+e- colliders

    International Nuclear Information System (INIS)

    Drees, M.; Godbole, R.M.

    1993-01-01

    We discuss various reactions at future e + e - and γγ colliders involving real (beamstrahlung or backscattered laser) or quasi-real (bremsstrahlung) photons in the initial state and hadrons in the final state. The production of two central jets with large transverse momentum p T is described in some detail; we give distributions for the rapidity and p T of the jets as well as the di-jet invariant mass, and discuss the relative importance of various initial state configurations and the uncertainties that arise from the at present rather poor knowledge of the parton content of the photon. We also present results for 'mono-jet' production where one jet goes down a beam pipe, for the production of charm, bottom and top quarks, and for single production of W and Z bosons. Where appropriate, the two-photon processes are compared with annihilation reactions leading to similar final states. We also argue that the behaviour of the total inelastic γγ cross section at high energies will probably have little impact on the severity of background problems caused by soft and semi-hard ('minijet') two-photon reactions. We find very large differences in cross sections for all two-photon processes between existing designs for future e + e - colliders, due to the different beamstrahlung spectra; in particular, both designs with >1 events per bunch crossing exist. The number of hardronic two-photon events is expected to rise quickly with the beam energy. Hadronic backgrounds will be even worse if the e + e - collider is converted into a γγ collider. (orig.)

  14. To the calculation of energy resolution of ionization calorimeter

    International Nuclear Information System (INIS)

    Uchajkin, V.V.; Lagutin, A.A.

    1976-01-01

    The question of energy resolution of the ionization calorimeter is considered analytically. A method is discussed for calculating the probability characteristics (mean value and dispersion) of energy losses of an electron-photon shower by ionization in the calorimeter volume

  15. Two-Photon Fluorescence Microscopy Developed for Microgravity Fluid Physics

    Science.gov (United States)

    Fischer, David G.; Zimmerli, Gregory A.; Asipauskas, Marius

    2004-01-01

    Recent research efforts within the Microgravity Fluid Physics Branch of the NASA Glenn Research Center have necessitated the development of a microscope capable of high-resolution, three-dimensional imaging of intracellular structure and tissue morphology. Standard optical microscopy works well for thin samples, but it does not allow the imaging of thick samples because of severe degradation caused by out-of-focus object structure. Confocal microscopy, which is a laser-based scanning microscopy, provides improved three-dimensional imaging and true optical sectioning by excluding the out-of-focus light. However, in confocal microscopy, out-of-focus object structure is still illuminated by the incoming beam, which can lead to substantial photo-bleaching. In addition, confocal microscopy is plagued by limited penetration depth, signal loss due to the presence of a confocal pinhole, and the possibility of live-cell damage. Two-photon microscopy is a novel form of laser-based scanning microscopy that allows three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon microscopy, it utilizes the nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption because of the nonlinear (i.e., quadratic) electric field dependence, so an ultrafast pulsed laser source must typically be employed. On the other hand, this stringent energy density requirement effectively localizes fluorophore excitation to the focal volume. Consequently, two-photon microscopy provides optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction in photo-damage because of the longer excitation wavelength, a reduction in background fluorescence, and a 4 increase in penetration depth over confocal methods because of the reduction in Rayleigh scattering.

  16. Towards a measurement of the two-photon decay width of the Higgs boson at a photon collider

    International Nuclear Information System (INIS)

    Moenig, K.; Rosca, A.

    2007-05-01

    A study of the measurement of the two photon decay width times the branching ratio of a Higgs boson with the mass of 120 GeV in photon-photon collisions is presented, assuming a γγ integrated luminosity of 80 fb -1 in the high energy part of the spectrum. The analysis is based on the reconstruction of the Higgs events produced in the γγ→H process, followed by the decay f the Higgs into a b anti b pair. A statistical error of the measurement of the two-photon width, Γ(H→γγ), times the branching ratio of the Higgs boson, BR(H →b anti b) is found to be 2.1 % for one year of data taking. (orig.)

  17. Sub-threshold investigation of two coupled photonic crystal cavities

    DEFF Research Database (Denmark)

    Schubert, Martin; Frandsen, Lars Hagedorn; Skovgård, Troels Suhr

    2009-01-01

    The behavior of two coupled photonic crystal membrane cavities with quantum dots separated by different number of holes is investigated. The measured spectral splitting with increased coupling is verified by 3D calculations and discussed.......The behavior of two coupled photonic crystal membrane cavities with quantum dots separated by different number of holes is investigated. The measured spectral splitting with increased coupling is verified by 3D calculations and discussed....

  18. Partial cross sections of helium satellites at medium photon energies

    Energy Technology Data Exchange (ETDEWEB)

    Wehlitz, R.; Sellin, I.A. [Univ. of Tennessee, Knoxville, TN (United States); Hemmers, O. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    Still of current interest is the important role of single ionization with excitation compared to single ionization alone. The coupling between the electrons and the incoming photon is a single-particle operator. Thus, an excitation in addition to an ionization, leading to a so-called satellite line in a photoelectron spectrum, is entirely due to electron-electron interaction and probes the electron correlation in the ground and final state. Therefore the authors have undertaken the study of the intensity of helium satellites He{sup +}nl (n = 2 - 6) relative to the main photoline (n = 1) as a function of photon energy at photon energies well above threshold up to 900 eV. From these results they could calculate the partial cross-sections of the helium satellites. In order to test the consistency of their satellite-to-1s ratios with published double-to-single photoionization ratios, the authors calculated the double-to-single photoionization ratio from their measured ratios using the theoretical energy-distribution curves of Chang and Poe and Le Rouzo and Dal Cappello which proved to be valid for photon energies below 120 eV. These calculated double-to-single ionization ratios agree fairly well with recent ion measurements. In the lower photon energy range the authors ratios agree better with the ratios of Doerner et al. while for higher photon energies the agreement is better with the values of Levin et al.

  19. Partial cross sections of helium satellites at medium photon energies

    International Nuclear Information System (INIS)

    Wehlitz, R.; Sellin, I.A.; Hemmers, O.

    1997-01-01

    Still of current interest is the important role of single ionization with excitation compared to single ionization alone. The coupling between the electrons and the incoming photon is a single-particle operator. Thus, an excitation in addition to an ionization, leading to a so-called satellite line in a photoelectron spectrum, is entirely due to electron-electron interaction and probes the electron correlation in the ground and final state. Therefore the authors have undertaken the study of the intensity of helium satellites He + nl (n = 2 - 6) relative to the main photoline (n = 1) as a function of photon energy at photon energies well above threshold up to 900 eV. From these results they could calculate the partial cross-sections of the helium satellites. In order to test the consistency of their satellite-to-1s ratios with published double-to-single photoionization ratios, the authors calculated the double-to-single photoionization ratio from their measured ratios using the theoretical energy-distribution curves of Chang and Poe and Le Rouzo and Dal Cappello which proved to be valid for photon energies below 120 eV. These calculated double-to-single ionization ratios agree fairly well with recent ion measurements. In the lower photon energy range the authors ratios agree better with the ratios of Doerner et al. while for higher photon energies the agreement is better with the values of Levin et al

  20. Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, I. V.; Doronina-Amitonova, L. V. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Kurchatov Institute National Research Center, Moscow (Russian Federation); Sidorov-Biryukov, D. A.; Fedotov, A. B. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Anokhin, K. V. [Kurchatov Institute National Research Center, Moscow (Russian Federation); P.K. Anokhin Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow (Russian Federation); Kilin, S. Ya. [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus); Sakoda, K. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Zheltikov, A. M. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Center of Photochemistry, Russian Academy of Sciences, ul. Novatorov 7a, Moscow 117421 (Russian Federation)

    2014-02-24

    Two-photon excitation is shown to substantially enhance the locality of fiber-based optical interrogation of strongly scattering biotissues. In our experiments, a high-numerical-aperture, large-core-are fiber probe is used to deliver the 200-fs output of a 100-MHz mode-locked ytterbium fiber laser to samples of live mouse brain, induce two-photon fluorescence of nitrogen–vacancy centers in diamond markers in brain sample. Fiber probes with a high numerical aperture and a large core area are shown to enable locality enhancement in fiber-laser–fiber-probe two-photon brain excitation and interrogation without sacrificing the efficiency of fluorescence response collection.

  1. Ionizing radiation sources. Ionizing radiation interaction with matter

    International Nuclear Information System (INIS)

    Popits, R.

    1976-01-01

    Fundamentals of nuclear physics are reviewed under the headings: obtaining of X-rays and their properties; modes of radioactive decay of natural or man-made radionuclides; radioactive neutron sources; nuclear fission as basis for devising nuclear reactors and weapons; thermonuclear reactions; cosmic radiation. Basic aspects of ionizing radiation interactions with matter are considered with regard to charged particles, photon radiation, and neutrons. (A.B.)

  2. Modelling and design of complete photonic band gaps in two ...

    Indian Academy of Sciences (India)

    In this paper, we investigate the existence and variation of complete photonic band gap size with the introduction of asymmetry in the constituent dielectric rods with honeycomb lattices in two-dimensional photonic crystals (PhC) using the plane-wave expansion (PWE) method. Two examples, one consisting of elliptical rods ...

  3. Two-Photon Vibrational Spectroscopy using local optical fields of gold and silver nanostructures

    Science.gov (United States)

    Kneipp, Katrin; Kneipp, Janina; Kneipp, Harald

    2007-03-01

    Spectroscopic effects can be strongly affected when they take place in the immediate vicinity of metal nanostructures due to coupling to surface plasmons. We introduce a new approach that suggests highly efficient two-photon labels as well as two-photon vibrational spectroscopy for non-destructive chemical probing. The underlying spectroscopic effect is the incoherent inelastic scattering of two photons on the vibrational quantum states performed in the enhanced local optical fields of gold nanoparticles, surface enhanced hyper Raman scattering (SEHRS). We infer effective two-photon cross sections for SEHRS on the order of 10^5 GM, similar or higher than the best known cross sections for two-photon fluorescence. SEHRS combines the advantages of two-photon spectroscopy with the structural information of vibrational spectroscopy, and the high sensitivity and nanometer-scale local confinement of plasmonics-based spectroscopy.

  4. A new approach to dual-color two-photon microscopy with fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Rebane Aleks

    2010-02-01

    Full Text Available Abstract Background Two-photon dual-color imaging of tissues and cells labeled with fluorescent proteins (FPs is challenging because most two-photon microscopes only provide one laser excitation wavelength at a time. At present, methods for two-photon dual-color imaging are limited due to the requirement of large differences in Stokes shifts between the FPs used and their low two-photon absorption (2PA efficiency. Results Here we present a new method of dual-color two-photon microscopy that uses the simultaneous excitation of the lowest-energy electronic transition of a blue fluorescent protein and a higher-energy electronic transition of a red fluorescent protein. Conclusion Our method does not require large differences in Stokes shifts and can be extended to a variety of FP pairs with larger 2PA efficiency and more optimal imaging properties.

  5. Resonance Ionization Mass Spectrometry (RIMS): applications in spectroscopy and chemical dynamics

    International Nuclear Information System (INIS)

    Naik, P.D.; Kumar, Awadhesh; Upadhyaya, Hari; Bajaj, P.N.

    2009-01-01

    Resonance ionization is a photophysical process wherein electromagnetic radiation is used to ionize atoms, molecules, transient species, etc., by exciting them through their quantum states. The number of photons required to ionize depends on the species being investigated and energy of the photon. Once a charged particle is produced, it is easy to detect it with high efficiency. With the advent of narrow band high power pulsed and cw tunable dye lasers, it has blossomed into a powerful spectroscopic and analytical technique, commonly known as resonance ionization spectroscopy (RIS)/resonance enhanced multiphoton ionization (REMPI). The alliance of resonance ionization with mass spectrometry has grown into a still more powerful technique, known as resonance ionization mass spectrometry (RIMS), which has made significant contributions in a variety of frontier areas of research and development, such as spectroscopy, chemical dynamics, analytical chemistry, cluster science, surface science, radiochemistry, nuclear physics, biology, environmental science, material science, etc. In this article, we shall describe the application of resonance ionization mass spectrometry to spectroscopy of uranium and chemical dynamics of polyatomic molecules

  6. Nonresonant absorption of one photon by one atom and resonant absorption of two photons by two atoms

    International Nuclear Information System (INIS)

    Mizushima, Masataka

    1990-01-01

    When a radiation field of frequency ω 1 interacts with atoms, etch of which has a transition frequency ω ba =(E b -E a )/h, with ω 1 -ω ba =Δ≠0, nonresonant absorption can take place with probability P 1 inversely proportional to Δ 2 (a pressure broadening). When another radiation field of frequency ω 2 , such that ω 1 +ω 2 =2ω ba, interacts simultaneously with the gas a resonant two-photon absorption can take place in addition to the nonresonant absorption. The probability of this two-photon absorption process, P 2 , is found to be inversely proportional to Δ 4 . If Ω=| | is the Rabi frequency of the transition, it is found that P 2 /(P 1 (Δ)+P 1 (-Δ)) is given by 12 {Ω(-Δ)Ω(-Δ)} 2 / {Δ 2 (Ω(-Δ) 2 + Ω(Δ) 2 )}. (author)

  7. Synthesis, singlet-oxygen photogeneration, two-photon absorption, photo-induced DNA cleavage and cytotoxic properties of an amphiphilic β-Schiff-base linked Ru(II) polypyridyl–porphyrin conjugate

    International Nuclear Information System (INIS)

    Ke, Hanzhong; Ma, Wanpeng; Wang, Hongda; Cheng, Guoe; Yuan, Han; Wong, Wai-Kwok; Kwong, Daniel W.J.; Tam, Hoi-Lam; Cheah, Kok-Wai; Chan, Chi-Fai; Wong, Ka-Leung

    2014-01-01

    A novel porphyrin–polypyridyl ruthenium(II) conjugate (TPP–Ru), in which the ruthenium(II) polypyridyl moiety is linked to the β-position of the tetraphenylporphyrin via a Schiff base linkage, has been synthesized and characterized by 1 H NMR, HRMS and UV–visible spectroscopy. The relative singlet oxygen quantum yield and two-photon absorption cross-section of this conjugate, together with its photo-induced DNA cleavage and cytotoxic activities were measured. The results show that the amphiphilic ruthenium(II) polypyridyl–porphyrin conjugate is an effective DNA photocleavage agent, with potential application in one- and two-photon absorption anti-cancer photodynamic therapy. - Highlights: • New porphyrin–ruthenium(II) polypyridyl complexes (TTP–Ru) have been synthesized. • The TTP–Ru shows substantial two-photon absorption cross-section (σ 2 =391 GM). • The TTP–Ru exhibits a substantial 1 O 2 quantum yield (0.64±0.13). • The TTP–Ru exhibits a strong DNA cleavage activity upon photo-excitation. • The TTP–Ru is available for in vitro imaging and as a photodynamic therapy agent

  8. Synthesis, singlet-oxygen photogeneration, two-photon absorption, photo-induced DNA cleavage and cytotoxic properties of an amphiphilic β-Schiff-base linked Ru(II) polypyridyl–porphyrin conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Hanzhong, E-mail: kehanz@163.com [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074 (China); Ma, Wanpeng; Wang, Hongda; Cheng, Guoe [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074 (China); Yuan, Han [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Wong, Wai-Kwok, E-mail: wkwong@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Kwong, Daniel W.J. [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Tam, Hoi-Lam; Cheah, Kok-Wai [Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Chan, Chi-Fai; Wong, Ka-Leung [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China)

    2014-10-15

    A novel porphyrin–polypyridyl ruthenium(II) conjugate (TPP–Ru), in which the ruthenium(II) polypyridyl moiety is linked to the β-position of the tetraphenylporphyrin via a Schiff base linkage, has been synthesized and characterized by {sup 1}H NMR, HRMS and UV–visible spectroscopy. The relative singlet oxygen quantum yield and two-photon absorption cross-section of this conjugate, together with its photo-induced DNA cleavage and cytotoxic activities were measured. The results show that the amphiphilic ruthenium(II) polypyridyl–porphyrin conjugate is an effective DNA photocleavage agent, with potential application in one- and two-photon absorption anti-cancer photodynamic therapy. - Highlights: • New porphyrin–ruthenium(II) polypyridyl complexes (TTP–Ru) have been synthesized. • The TTP–Ru shows substantial two-photon absorption cross-section (σ{sub 2}=391 GM). • The TTP–Ru exhibits a substantial {sup 1}O{sub 2} quantum yield (0.64±0.13). • The TTP–Ru exhibits a strong DNA cleavage activity upon photo-excitation. • The TTP–Ru is available for in vitro imaging and as a photodynamic therapy agent.

  9. Two-photon exchange in elastic electron-nucleon scattering

    International Nuclear Information System (INIS)

    Blunden, P.G.; Melnitchouk, W.; Tjon, J.A.

    2005-01-01

    A detailed study of two-photon exchange in unpolarized and polarized elastic electron-nucleon scattering is presented, taking particular account of nucleon finite size effects. Contributions from nucleon elastic intermediate states are found to have a strong angular dependence, which leads to a partial resolution of the discrepancy between the Rosenbluth and polarization transfer measurements of the proton electric to magnetic form factor ratio, G E /G M . The two-photon exchange contribution to the longitudinal polarization transfer P L is small, whereas the contribution to the transverse polarization transfer P T is enhanced at backward angles by several percent, increasing with Q 2 . This gives rise to a small, E /G M obtained from the polarization transfer ratio P T /P L at large Q 2 . We also compare the two-photon exchange effects with data on the ratio of e + p to e - p cross sections, which is predicted to be enhanced at backward angles. Finally, we evaluate the corrections to the form factors of the neutron and estimate the elastic intermediate state contribution to the 3 He form factors

  10. Electron-positron pair production by two identical photons in the nuclear field

    International Nuclear Information System (INIS)

    Smirnov, A.I.

    1977-01-01

    In the Born approximation of the perturbation theory considered is a nonlinear effect of the electron-positron pair production by two identical photons in the Coulomb field of an atomic nucleus. The kinematic version of identical photons is studied. All the particles are considered to be nonpolarized. The calculation of the differential probability of the effect has been carried out earlier by the Feynman method. The total probability of the effect in limiting energy ranges is determined by integrating the formulas of the pair component distribution over energies. The probabilities of the electron-positron pair production and fusion of two photons into one in the nucleus field have been compared for the case of identical quanta. From the comparison of the results of analyzing both the nonlinear effects it follows that in the high-energy range the electron-positron pair production by two identical photons in the nucleus field extremely predominates over the fusion of two photons into one photon in the same field

  11. Mapping the dissociative ionization dynamics of molecular nitrogen with attosecond resolution

    International Nuclear Information System (INIS)

    Klinker, M; González-Vázquez, J; Martin, F; Trabattoni, A; Sansone, G; Nisoli, M; Liu, C; Linguerri, R; Hochlaf, M; Klei, J; Vrakking, M J J; Calegari, F

    2015-01-01

    We wish to understand the processes underlying the ionization dynamics of N 2 as experimentally induced and studied by recording the kinetic energy release (KER) in a XUV-pump/IR-probe setup. To this end a theoretical model was developed describing the ionization process using Dyson Orbitals and, subsequently, the dissociation process using a large set of diabatic potential energy surfaces (PES) on which to propagate. From said set of PES, a small subset is extracted allowing for the identification of one and two photon processes chiefly responsible for the experimentally observed features. (paper)

  12. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits.

    Science.gov (United States)

    Yu, Leo; Natarajan, Chandra M; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S; Tanner, Michael G; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H; Fejer, Martin M; Yamamoto, Yoshihisa

    2015-11-24

    Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.

  13. Photon-splitting cross sections

    International Nuclear Information System (INIS)

    Johannessen, A.M.; Mork, K.J.; Overbo, I.

    1980-01-01

    The differential cross section for photon splitting (scattering of one photon into two photons) in a Coulomb field, obtained earlier by Shima, has been integrated numerically to yield various differential cross sections. Energy spectra differential with respect to the energy of one of the outgoing photons are presented for several values of the primary photon energy. Selected examples of recoil momentum distributions and some interesting doubly or multiply differential cross sections are also given. Values for the total cross section are obtained essentially for all energies. The screening effect caused by atomic electrons is also taken into account, and is found to be important for high energies, as in e + e - pair production. Comparisons with various approximate results obtained by previous authors mostly show fair agreement. We also discuss the possibilities for experimental detection and find the most promising candidate to be a measurement of both photons, and their energies, at a moderately high energy

  14. Stationary striations due to interaction of two ionization waves in xenon glow discharge

    International Nuclear Information System (INIS)

    Maruyama, T.; Nishina, S.; Kitamura, H.; Itagaki, K.; Mizuochi, H.

    1990-01-01

    Experimental observations on stationary striations in the positive column of xenon discharge are reported. Stationary striations are observed when two ionization waves exist simultaneously in the positive column at low pressure and high current region. These stationary striations are caused by nonlinear interference of two backward ionization waves of which frequencies are either equal or are in the ratio 1:2. The spatial intervals for the striated pattern are equal to the reciprocal of the difference between the wave-numbers of two ionization waves. (orig.)

  15. Two-photon activation of endogenous store-operated calcium channels without optogenetics

    Science.gov (United States)

    Cheng, Pan; Tang, Wanyi; He, Hao

    2018-02-01

    Store-operated calcium (SOC) channels, regulated by intracellular Ca2+ store, are the essential pathway of calcium signaling and participate in a wide variety of cellular activities such as gene expression, secretion and immune response1. However, our understanding and regulation of SOC channels are mainly based on pharmacological methods. Considering the unique advantages of optical control, optogenetic control of SOC channels has been developed2. However, the process of genetic engineering to express exogenous light-sensitive protein is complicated, which arouses concerns about ethic difficulties in some research of animal and applications in human. In this report, we demonstrate rapid, robust and reproducible two-photon activation of endogenous SOC channels by femtosecond laser without optogenetics. We present that the short-duration two-photon scanning on subcellular microregion induces slow Ca2+ influx from extracellular medium, which can be eliminated by removing extracellular Ca2+. Block of SOC channels using various pharmacological inhibitors or knockdown of SOC channels by RNA interference reduce the probability of two-photon activated Ca2+ influx. On the contrary, overexpression of SOC channels can increase the probability of Ca2+ influx by two-photon scanning. These results collectively indicate Ca2+ influx through two-photon activated SOC channels. Different from classical pathway of SOC entry activated by Ca2+ store depletion, STIM1, the sensor protein of Ca2+ level in endoplasmic reticulum, does not show any aggregation or migration in this two-photon activated Ca2+ influx, which rules out the possibility of intracellular Ca2+ store depletion. Thereby, we propose this all-optical method of two-photon activation of SOC channels is of great potential to be widely applied in the research of cell calcium signaling and related biological research.

  16. Femtosecond time-resolved two-photon photoemission study of organic semiconductor copper phthalocyanine film

    International Nuclear Information System (INIS)

    Tanaka, A.; Tohoku University; University of Rochester, NY; Yan, L.; Watkins, N.J.; Gao, Y.

    2004-01-01

    Full text: Organic semiconductors are recently attracting much interest from the viewpoints of both device and fundamental physics. These organic semiconductors are considered to be important constituents of the future devices, such as organic light-emitting diode, organic field effect transistor, and organic solid-state injection laser. In order to elucidate their detailed physical properties and to develop the future devices, it is indispensable to understand their excited-state dynamics as well as their electronic structures. The femtosecond time-resolved two-photon photoemission (TR-2PPE) spectroscopy is attracting much interest because of its capability to observe the energy-resolved excited electron dynamics. In this work, we have carried out a TR-2PPE study of the organic semiconductor copper phthalocyanine (CuPc) film. Furthermore, we have investigated the detailed electronic structure of CuPc film using the photoemission (PES) and inverse photoemission (IPES) spectroscopies. From the simultaneous PES and IPES measurements for CuPc film with a thickness of 100 nm, the lowest unoccupied molecular orbital (LUMO), highest occupied molecular orbital, and ionization potential of CuPc film have been directly determined. The observed two-photon photoemission (2PPE) spectrum of the present CuPc film, measured with photon energy of about hv=3.3 eV, exhibits a broad feature. From the energy diagram of CuPc film determined by the PES and IPES measurements, the intermediate state observed in the present 2PPE spectrum of CuPc film corresponds to the energy region between about 0.4 and 1.7 eV above the LUMO energy. From the time-resolved pump-probe measurements, it is found that the relaxation lifetimes of excited states in the present CuPc films are very short (all below 50 fs) and monotonously become faster with increasing excitation energy. We attribute this extremely fast relaxation process of photoexcitation to a rapid internal conversion process. From these results

  17. Monte Carlo studies on photon interactions in radiobiological experiments

    Science.gov (United States)

    Shahmohammadi Beni, Mehrdad; Krstic, D.; Nikezic, D.

    2018-01-01

    X-ray and γ-ray photons have been widely used for studying radiobiological effects of ionizing radiations. Photons are indirectly ionizing radiations so they need to set in motion electrons (which are a directly ionizing radiation) to perform the ionizations. When the photon dose decreases to below a certain limit, the number of electrons set in motion will become so small that not all cells in an “exposed” cell population can get at least one electron hit. When some cells in a cell population are not hit by a directly ionizing radiation (in other words not irradiated), there will be rescue effect between the irradiated cells and non-irradiated cells, and the resultant radiobiological effect observed for the “exposed” cell population will be different. In the present paper, the mechanisms underlying photon interactions in radiobiological experiments were studied using our developed NRUphoton computer code, which was benchmarked against the MCNP5 code by comparing the photon dose delivered to the cell layer underneath the water medium. The following conclusions were reached: (1) The interaction fractions decreased in the following order: 16O > 12C > 14N > 1H. Bulges in the interaction fractions (versus water medium thickness) were observed, which reflected changes in the energies of the propagating photons due to traversals of different amount of water medium as well as changes in the energy-dependent photon interaction cross-sections. (2) Photoelectric interaction and incoherent scattering dominated for lower-energy (10 keV) and high-energy (100 keV and 1 MeV) incident photons. (3) The fractions of electron ejection from different nuclei were mainly governed by the photoelectric effect cross-sections, and the fractions from the 1s subshell were the largest. (4) The penetration fractions in general decreased with increasing medium thickness, and increased with increasing incident photon energy, the latter being explained by the corresponding reduction in

  18. Monte Carlo studies on photon interactions in radiobiological experiments.

    Directory of Open Access Journals (Sweden)

    Mehrdad Shahmohammadi Beni

    Full Text Available X-ray and γ-ray photons have been widely used for studying radiobiological effects of ionizing radiations. Photons are indirectly ionizing radiations so they need to set in motion electrons (which are a directly ionizing radiation to perform the ionizations. When the photon dose decreases to below a certain limit, the number of electrons set in motion will become so small that not all cells in an "exposed" cell population can get at least one electron hit. When some cells in a cell population are not hit by a directly ionizing radiation (in other words not irradiated, there will be rescue effect between the irradiated cells and non-irradiated cells, and the resultant radiobiological effect observed for the "exposed" cell population will be different. In the present paper, the mechanisms underlying photon interactions in radiobiological experiments were studied using our developed NRUphoton computer code, which was benchmarked against the MCNP5 code by comparing the photon dose delivered to the cell layer underneath the water medium. The following conclusions were reached: (1 The interaction fractions decreased in the following order: 16O > 12C > 14N > 1H. Bulges in the interaction fractions (versus water medium thickness were observed, which reflected changes in the energies of the propagating photons due to traversals of different amount of water medium as well as changes in the energy-dependent photon interaction cross-sections. (2 Photoelectric interaction and incoherent scattering dominated for lower-energy (10 keV and high-energy (100 keV and 1 MeV incident photons. (3 The fractions of electron ejection from different nuclei were mainly governed by the photoelectric effect cross-sections, and the fractions from the 1s subshell were the largest. (4 The penetration fractions in general decreased with increasing medium thickness, and increased with increasing incident photon energy, the latter being explained by the corresponding reduction in

  19. Saturated two-photon absorption by atoms in a perturber gas

    International Nuclear Information System (INIS)

    Nienhuis, G.

    1980-01-01

    We derive a general expression for the two-photon absorption spectrum of a three-state atom excited by two mono-chromatic radiation fields. Collisional line-broadening effects are incorporated, and the result allows inclusion of profiles with a validity outside the impact limit. Results of previous work are recovered in the appropriate limits. Saturation affects the different lines in the two-photon absorption spectrum in a different fashion. (orig.)

  20. Selection rules for the dematerialization of a particle into two photons

    International Nuclear Information System (INIS)

    Yang, C.N.

    1983-01-01

    Selection rules governing the disintegration of a particle into two photons are derived from the general principle of invariance under rotation and inversion. The polarization state of the photons is completely fixed by the selection rules for initial particles with spin less than 2. These results which are independent of any specific assumption about the interactions may possibly offer a method of deciding the symmetry nature of mesons which decay into two photons. 4 tables

  1. Photon acceleration in laser wakefield accelerators

    International Nuclear Information System (INIS)

    Trines, R. M. G. M.

    2007-01-01

    If the index of a refraction of a dispersive medium, such as a plasma, changes in time, it can be used to change the frequency of light propagating through the medium. This effect is called photon acceleration. It has been predicted in both theory and simulations, and also been demonstrated experimentally for the case of moving ionization fronts in gases (the so-called ionization blueshift) as well as for laser-driven wakefields.Here, we present studies of photon acceleration in laser-driven plasma wakefields. The unique spectral characteristics of this process will be discussed, to distinguish it from e.g. photon acceleration by ionization fronts, frequency domain interferometry or self-phase modulation. The dynamics of the photons in laser-wakefield interaction are studied through both regular particle-in-cell and wave-kinetic simulations. The latter approach provides a powerful, versatile, and easy-to-use method to track the propagation of individual spectral components, providing new insight into the physics of laser-plasma interaction. Theory, simulations and experimental results will be brought together to provide a full understanding of the dynamics of a laser pulse in its own wakefield.Even though the wave-kinetic approach mentioned above has mainly been developed for the description of laser-plasma interaction, it can be applied to a much wider range of fast wave-slow wave interaction processes: Langmuir waves-ion acoustic waves, drift waves-zonal flow, Rossby waves-zonal flow, or even photons-gravitational waves. Several recent results in these areas will be shown, often with surprising results

  2. Electron- and photon-impact ionization of furfural

    Science.gov (United States)

    Jones, D. B.; Ali, E.; Nixon, K. L.; Limão-Vieira, P.; Hubin-Franskin, M.-J.; Delwiche, J.; Ning, C. G.; Colgan, J.; Murray, A. J.; Madison, D. H.; Brunger, M. J.

    2015-11-01

    The He(i) photoelectron spectrum of furfural has been investigated, with its vibrational structure assigned for the first time. The ground and excited ionized states are assigned through ab initio calculations performed at the outer-valence Green's function level. Triple differential cross sections (TDCSs) for electron-impact ionization of the unresolved combination of the 4a″ + 21a' highest and next-highest occupied molecular orbitals have also been obtained. Experimental TDCSs are recorded in a combination of asymmetric coplanar and doubly symmetric coplanar kinematics. The experimental TDCSs are compared to theoretical calculations, obtained within a molecular 3-body distorted wave framework that employed either an orientation average or proper TDCS average. The proper average calculations suggest that they may resolve some of the discrepancies regarding the angular distributions of the TDCS, when compared to calculations employing the orbital average.

  3. Electron- and photon-impact ionization of furfural

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Ali, E.; Madison, D. H., E-mail: plimaovieira@fct.unl.pt, E-mail: madison@mst.edu, E-mail: michael.brunger@flinders.edu.au [Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409 (United States); Nixon, K. L. [Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); School of Biology, Chemistry and Forensic Science, University of Wolverhampton, Wolverhampton WV1 1LY (United Kingdom); Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt, E-mail: madison@mst.edu, E-mail: michael.brunger@flinders.edu.au [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Université de Liège, Institut de Chimie-Bât. B6C, B-4000 Liège 1 (Belgium); Ning, C. G. [State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 (China); Colgan, J. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Murray, A. J. [Photon Science Institute, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); and others

    2015-11-14

    The He(I) photoelectron spectrum of furfural has been investigated, with its vibrational structure assigned for the first time. The ground and excited ionized states are assigned through ab initio calculations performed at the outer-valence Green’s function level. Triple differential cross sections (TDCSs) for electron-impact ionization of the unresolved combination of the 4a″  +  21a′ highest and next-highest occupied molecular orbitals have also been obtained. Experimental TDCSs are recorded in a combination of asymmetric coplanar and doubly symmetric coplanar kinematics. The experimental TDCSs are compared to theoretical calculations, obtained within a molecular 3-body distorted wave framework that employed either an orientation average or proper TDCS average. The proper average calculations suggest that they may resolve some of the discrepancies regarding the angular distributions of the TDCS, when compared to calculations employing the orbital average.

  4. Electron- and photon-impact ionization of furfural

    International Nuclear Information System (INIS)

    Jones, D. B.; Ali, E.; Madison, D. H.; Nixon, K. L.; Limão-Vieira, P.; Hubin-Franskin, M.-J.; Delwiche, J.; Ning, C. G.; Colgan, J.; Murray, A. J.

    2015-01-01

    The He(I) photoelectron spectrum of furfural has been investigated, with its vibrational structure assigned for the first time. The ground and excited ionized states are assigned through ab initio calculations performed at the outer-valence Green’s function level. Triple differential cross sections (TDCSs) for electron-impact ionization of the unresolved combination of the 4a″  +  21a′ highest and next-highest occupied molecular orbitals have also been obtained. Experimental TDCSs are recorded in a combination of asymmetric coplanar and doubly symmetric coplanar kinematics. The experimental TDCSs are compared to theoretical calculations, obtained within a molecular 3-body distorted wave framework that employed either an orientation average or proper TDCS average. The proper average calculations suggest that they may resolve some of the discrepancies regarding the angular distributions of the TDCS, when compared to calculations employing the orbital average

  5. Two-photon collisions and short-distance tests of quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1978-12-01

    The physics of two-photon collisions in e +- storage rings is reviewed with emphasis on the predictions of perturbative quantum chromodynamics for high transverse momentum reactions. It is noted that because of the remarkable scaling properties predicted by the theory, two-photon collisions may be proved one of the cleanest tests of the quantum chromodynamics picture of short distance hadron dynamics. In order to contrast these predictions for photon-induced reactions with those for incident hadrons, predictions from quantum chromodynamics for hadron structure functions and form factors at large momentum transfer are also discussed. 55 references

  6. On the enhancement of the back-to-back two-electron-one photon ionization in molecules

    Science.gov (United States)

    Amusia, Miron; Drukarev, Eugene

    2014-05-01

    Recently, the long ago predicted quasi-free mechanism of two-electron photoionization was detected already at relatively low energy photoionization in He. It was observed that some pairs of electrons are leaving the target atom back-to-back, i.e. in opposite direction with almost the same energy. They have opposite spin directions. The cross-section of this process depends upon the probability for a pair of electrons to be close to each other before meeting the incoming photon. Such probability is greatly enhanced in molecules with covalent bonding, like H2. In this and similar molecules the electrons spend an essential part of time being between nuclei and thus screening them from each other. We demonstrate that indeed the back-to-back contribution is much bigger in H2 than in He. We analyze qualitatively some other situations that lead to relative growth of back-to-back contribution. Atoms with electrons with bigger principal quantum numbers have bigger back-to-back contributions. An external pressure applied to molecules forces electrons to be closer to each other. As a result for them the back-to-back contribution can be controllable enhanced.

  7. A new mechanism of ionizing radiation detection for positron emission tomography: modulation of optical properties

    Science.gov (United States)

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-10-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) annihilation photon pair coincidence time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit of around 100 ps. On the other hand, modulation mechanisms of a material's optical properties as exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to study whether ionizing radiation can also produce fast modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5x10-6 is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the radiation source flux rate and average photon energy.

  8. Strong nonlinearity-induced correlations for counterpropagating photons scattering on a two-level emitter

    DEFF Research Database (Denmark)

    Nysteen, Anders; McCutcheon, Dara; Mørk, Jesper

    2015-01-01

    We analytically treat the scattering of two counterpropagating photons on a two-level emitter embedded in an optical waveguide. We find that the nonlinearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could be quanti......We analytically treat the scattering of two counterpropagating photons on a two-level emitter embedded in an optical waveguide. We find that the nonlinearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could...

  9. Radiative corrections to the beam spin asymmetry in photon electroproduction e polarized p {yields} ep{gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Fonvieille, H.; Bensafa, I. [LPC-Clermont-Fd, Universite Blaise Pascal, F-63170 Aubiere Cedex (France)

    2006-11-15

    We have measured at MAMI the beam single spin asymmetry (SSA) in exclusive photon electroproduction (e polarized p {yields} ep{gamma}) with a longitudinally polarized beam, in the region of the {delta}(1232) resonance. In this document the value of the radiative correction to this asymmetry is obtained for our kinematics. Although the correction is expected to be very small and negligible, its value is needed as a confirmation and for the purpose of systematic error estimate. The parameter of kinematics are given as follows: four-momentum transfer of the virtual photon, Q{sup 2} = 0.35 GeV{sup 2}; total energy in the ({gamma}p) center of mass, W=1.190 GeV; polarization of the virtual photon, {epsilon}=0.48; azimuthal angle (lepton-hadron planes), {phi} = 220 angle; polar angle of Compton scattering in center of mass, {theta}{sub {gamma}}{sub {gamma}} in [0 angle, 40 angle]; incoming electron beam energy, E{sub e} = 0.88 GeV; scattered electron energy, E{sub 0}' = 0.40 GeV; polar angle of scattered electron {theta}{sub e} = 59.9 angle. The radiative correction is calculated by the radcorr code written by M. Vanderhaeghen, in a version adapted to beam spin asymmetries.In practice, the conclusions are twofold: - the asymmetry that was measured in the VCS channel does not need to be corrected for radiative effects, given the large statistical error bar attached to the experimental values (an asymmetry of 1-10 % with a statistical error bar of 3-4 %); - a systematic error {delta}SSA{sub syst} on the asymmetry will be considered, related to uncertainties in the calculation of the radiative correction (at least two of them have been mentioned here: the cross section model and the soft photon limit). To estimate this error a 100 % variation of the radiative correction was assumed. For the radiative correction itself the maximal value found was taken. Therefore one can take: {delta}SSA{sub syst} = {+-}2.7 x 10{sup -3}.

  10. Far-Field Focus and Dispersionless Anticrossing Bands in Two-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Xiaoshuang Chen

    2007-01-01

    Full Text Available We review the simulation work for the far-field focus and dispersionless anticrossing bands in two-dimensional (2D photonic crystals. In a two-dimensional photonic-crystal-based concave lens, the far-field focus of a plane wave is given by the distance between the focusing point and the lens. Strong and good-quality far-field focusing of a transmitted wave, explicitly following the well-known wave-beam negative refraction law, can be achieved. The spatial frequency information of the Bloch mode in multiple Brillouin zones (BZs is investigated in order to indicate the wave propagation in two different regions. When considering the photonic transmission in a 2D photonic crystal composed of a negative phase-velocity medium (NPVM, it is shown that the dispersionless anticrossing bands are generated by the couplings among the localized surface polaritons of the NPVM rods. The photonic band structures of the NPVM photonic crystals are characterized by a topographical continuous dispersion relationship accompanied by many anticrossing bands.

  11. Two-photon exclusive processes in quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1986-07-01

    QCD predictions for ..gamma gamma.. annihilation into single mesons, meson pairs, and baryon pairs are reviewed. Two-photon exclusive processes provide the most sensitive and practical measure of the distribution amplitudes, and thus a critical confrontation between QCD and experiment. Both the angular distribution and virtual photon mass dependence of these amplitudes are sensitive to the shapes of the phi (chi, Q). Novel effects involving the production of qq anti q anti q states at threshold are also discussed, and a new method is presented for systematically incorporating higher-order QCD corrections in ..gamma gamma.. reactions.

  12. Two-photon exclusive processes in quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1986-07-01

    QCD predictions for γγ annihilation into single mesons, meson pairs, and baryon pairs are reviewed. Two-photon exclusive processes provide the most sensitive and practical measure of the distribution amplitudes, and thus a critical confrontation between QCD and experiment. Both the angular distribution and virtual photon mass dependence of these amplitudes are sensitive to the shapes of the phi (chi, Q). Novel effects involving the production of qq anti q anti q states at threshold are also discussed, and a new method is presented for systematically incorporating higher-order QCD corrections in γγ reactions

  13. Two-photon transitions to exciton polaritons

    International Nuclear Information System (INIS)

    Hassan, A.R.

    1979-08-01

    A semiclassical theory for the creation of excitonic polariton states by two-photon absorption, via an intermediate exciton state, is given. A band model has been introduced which gives the dominant contribution to this process. A numerical calculation is found to be in good agreement with a recent observation in CuCl. (author)

  14. Two-photon Doppler cooling of alkaline-earth-metal and ytterbium atoms

    International Nuclear Information System (INIS)

    Magno, Wictor C.; Cavasso Filho, Reinaldo L.; Cruz, Flavio C.

    2003-01-01

    The possibility of laser cooling of alkaline-earth-metal atoms and ytterbium atoms using a two-photon transition is analyzed. We consider a 1 S 0 - 1 S 0 transition with excitation in near resonance with the 1 P 1 level. This greatly increases the two-photon transition rate, allowing an effective transfer of momentum. The experimental implementation of this technique is discussed and we show that for calcium, for example, two-photon cooling can be used to achieve a Doppler limit of 123 μK. The efficiency of this cooling scheme and the main loss mechanisms are analyzed

  15. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    Science.gov (United States)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  16. Picosecond phase conjugation in two-photon absorption in poly-di-acetylenes

    International Nuclear Information System (INIS)

    Nunzi, Dominique Jean-Michel

    1990-01-01

    Poly-di-acetylenes exhibit a large two-photon absorption at 1064 nm wavelength. Its different effects on phase-conjugate nonlinearity are described in the framework of picosecond experiments. In solutions, gels, and films (optically thin media), third-order susceptibility appears as an increasing intensity dependent function. Phase measurements by nonlinear interferometry with the substrate or with the solvent are compared with predictions of a resonantly driven three level system. Phase-conjugate response exhibits a multi-exponential decay. Polarization symmetries analysis shows a one-dimensional effect. Study under strong static electric field action reveals that we face charged species bound to photoconductive polymer chains. In PTS single crystals (optically thick media), response saturates and cancels at high light intensity. This is well accounted for by propagation equations solved in large two-photon absorption conditions. The effect is exploited in a phase conjugation experiment under external optical pump excitation. We thus demonstrate that enhanced nonlinearity is a two-photon absorption relayed and amplified by mid-gap absorbing species which have been created by this two-photon absorption. We formally face a four-photon absorption described by a positive imaginary seventh-order non-linearity. (author) [fr

  17. Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography

    Science.gov (United States)

    Scott, Timothy F.; Kowalski, Benjamin A.; Sullivan, Amy C.; Bowman, Christopher N.; McLeod, Robert R.

    2009-05-01

    Controlling and reducing the developed region initiated by photoexposure is one of the fundamental goals of optical lithography. Here, we demonstrate a two-color irradiation scheme whereby initiating species are generated by single-photon absorption at one wavelength while inhibiting species are generated by single-photon absorption at a second, independent wavelength. Co-irradiation at the second wavelength thus reduces the polymerization rate, delaying gelation of the material and facilitating enhanced spatial control over the polymerization. Appropriate overlapping of the two beams produces structures with both feature sizes and monomer conversions otherwise unobtainable with use of single- or two-photon absorption photopolymerization. Additionally, the generated inhibiting species rapidly recombine when irradiation with the second wavelength ceases, allowing for fast sequential exposures not limited by memory effects in the material and thus enabling fabrication of complex two- or three-dimensional structures.

  18. Two mechanisms of disorder-induced localization in photonic-crystal waveguides

    Science.gov (United States)

    García, P. D.; KiršanskÄ--, G.; Javadi, A.; Stobbe, S.; Lodahl, P.

    2017-10-01

    Unintentional but unavoidable fabrication imperfections in state-of-the-art photonic-crystal waveguides lead to the spontaneous formation of Anderson-localized modes thereby limiting slow-light propagation and its potential applications. On the other hand, disorder-induced cavities offer an approach to cavity-quantum electrodynamics and random lasing at the nanoscale. The key statistical parameter governing the disorder effects is the localization length, which together with the waveguide length determines the statistical transport of light through the waveguide. In a disordered photonic-crystal waveguide, the localization length is highly dispersive, and therefore, by controlling the underlying lattice parameters, it is possible to tune the localization of the mode. In the present work, we study the localization length in a disordered photonic-crystal waveguide using numerical simulations. We demonstrate two different localization regimes in the dispersion diagram where the localization length is linked to the density of states and the photon effective mass, respectively. The two different localization regimes are identified in experiments by recording the photoluminescence from quantum dots embedded in photonic-crystal waveguides.

  19. Phosphorescent probes for two-photon microscopy of oxygen (Conference Presentation)

    Science.gov (United States)

    Vinogradov, Sergei A.; Esipova, Tatiana V.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is much needed in many areas of biological research. Our laboratory has been developing the phosphorescence quenching technique for biological oximetry - an optical method that possesses intrinsic microscopic capability. In the past we have developed dendritically protected oxygen probes for quantitative imaging of oxygen in tissue. More recently we expanded our design on special two-photon enhanced phosphorescent probes. These molecules brought about first demonstrations of the two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new information for neouroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as sub-optimal brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. In this paper we discuss principles of 2PLM and address the interplay between the probe chemistry, photophysics and spatial and temporal imaging resolution. We then present a new approach to brightly phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to a new generation of 2PLM probes.

  20. MAGNETOACOUSTIC WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Soler, Roberto; Ballester, Jose Luis [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, Marc, E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2013-11-01

    Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma β, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional damping due to ion-neutral collisions. Approximate analytic expressions for the frequencies are given in the limit case of strongly coupled ions and neutrals, while numerically obtained dispersion diagrams are provided for arbitrary collision frequencies. In addition, we discuss the presence of cutoffs in the dispersion diagrams that constrain wave propagation for certain combinations of parameters. A specific application to propagation of compressible waves in the solar chromosphere is given.

  1. MAGNETOACOUSTIC WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    International Nuclear Information System (INIS)

    Soler, Roberto; Ballester, Jose Luis; Carbonell, Marc

    2013-01-01

    Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma β, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional damping due to ion-neutral collisions. Approximate analytic expressions for the frequencies are given in the limit case of strongly coupled ions and neutrals, while numerically obtained dispersion diagrams are provided for arbitrary collision frequencies. In addition, we discuss the presence of cutoffs in the dispersion diagrams that constrain wave propagation for certain combinations of parameters. A specific application to propagation of compressible waves in the solar chromosphere is given

  2. Inclusive two-jet production in photon-photon collisions: Direct and resolved contributions in next-to-leading order QCD

    International Nuclear Information System (INIS)

    Kleinwort, T.; Kramer, G.

    1996-10-01

    We have calculated inclusive two-jet production in photon-photon collisions superimposing direct, single-resolved and double-resolved cross sections for center-of-mass energies of TRISTAN and LEP1.5. All three contributions are calculated up to next-to-leading order. The results are compared with recent experimental data. Three NLO sets of parton distributions of the photon are tested. (orig.)

  3. Two-photon polarization Fourier spectroscopy of metastable atomic hydrogen

    International Nuclear Information System (INIS)

    Duncan, A.J.; Beyer, H.-J.; Kleinpoppen, H.; Sheikh, Z.A,; B-Z Univ., Multan

    1997-01-01

    A novel Fourier-transform spectroscopic method using two-photon polarization to determine the spectral distribution of the two photons emitted in the spontaneous decay of metastable atomic hydrogen is described. The method uses birefringent retardation plates and takes advantage of the subtle interplay between the spectral properties and the entangled polarization properties of the radiation emitted in the decay. Assuming the validity of the theoretical spectral distribution, it is shown that the experimental results agree well with theory. On the other hand, success in solving the inverse problem of determining the spectral distribution from the experimental results is limited by the small number of experimental points. However, making reasonable assumptions it is deduced that the observed spectrum is characterized by a broadband signal of width (0.43 ± 0.06) x 10 16 rad s -1 and centre angular frequency (0.77 ± 0.03) x 10 16 rad s -1 in good agreement with the predictions of 0.489 x 10 16 rad s -1 and 0.775 x 10 16 rad s -1 , respectively, obtained from the theoretical spectral distribution modified to take account of the absorption of the two-photon radiation in air. The values of 1.5 fs for the coherence time and 440 nm for the coherence length for single photons of the two-photon pair which are obtained from the measured bandwidth imply that, in the ideal case, these values are determined by the essentially zero lifetime of the virtual intermediate state of the decay process rather than the long lifetime of the metastable state which, it is suggested, determines the coherence time and coherence length appropriate to certain types of fourth-order interference experiments. (Author)

  4. A two photon absorption laser induced fluorescence diagnostic for fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Magee, R. M.; Galante, M. E.; McCarren, D.; Scime, E. E. [Physics Department, West Virginia University, Morgantown, West Virginia 26506 (United States); Boivin, R. L.; Brooks, N. H.; Groebner, R. J.; Hill, D. N. [General Atomics, San Diego, California 92121 (United States); Porter, G. D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm{sup 2}), narrow bandwidth (0.1 cm{sup -1}) laser is injected into a hydrogen plasma to excite the Lyman {beta} transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer {alpha} emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.

  5. A two photon absorption laser induced fluorescence diagnostic for fusion plasmas.

    Science.gov (United States)

    Magee, R M; Galante, M E; McCarren, D; Scime, E E; Boivin, R L; Brooks, N H; Groebner, R J; Hill, D N; Porter, G D

    2012-10-01

    The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm(2)), narrow bandwidth (0.1 cm(-1)) laser is injected into a hydrogen plasma to excite the Lyman β transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer α emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.

  6. Time correlation in two-photon decay

    International Nuclear Information System (INIS)

    Hrasko, P.

    1979-11-01

    The relative time distribution of the photons emitted in a second order non-cascade process b→a+2γ is investigated under the assumption that only those photon pairs are detected which were emitted a sufficiently long time after the preparation of the decaying state. An anticorrelation between the photons is found and attributed to the propagation of one of the photons backward in time. (author)

  7. Effects of stellar evolution and ionizing radiation on the environments of massive stars

    Science.gov (United States)

    Mackey, J.; Langer, N.; Mohamed, S.; Gvaramadze, V. V.; Neilson, H. R.; Meyer, D. M.-A.

    2014-09-01

    We discuss two important effects for the astrospheres of runaway stars: the propagation of ionizing photons far beyond the astropause, and the rapid evolution of massive stars (and their winds) near the end of their lives. Hot stars emit ionizing photons with associated photoheating that has a significant dynamical effect on their surroundings. 3-D simulations show that H ii regions around runaway O stars drive expanding conical shells and leave underdense wakes in the medium they pass through. For late O stars this feedback to the interstellar medium is more important than that from stellar winds. Late in life, O stars evolve to cool red supergiants more rapidly than their environment can react, producing transient circumstellar structures such as double bow shocks. This provides an explanation for the bow shock and linear bar-shaped structure observed around Betelgeuse.

  8. Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Foteinopoulou, Stavroula [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates

  9. Two-photon optics of Bessel-Gaussian modes

    CSIR Research Space (South Africa)

    McLaren, M

    2013-09-01

    Full Text Available In this paper we consider geometrical two-photon optics of Bessel-Gaussian modes generated in spontaneous parametric down-conversion of a Gaussian pump beam. We provide a general theoretical expression for the orbital angular momentum (OAM) spectrum...

  10. Event-by-event simulation of nonclassical effects in two-photon interference experiments

    NARCIS (Netherlands)

    Michielsen, K.; Jin, F.; Delina, M.; Raedt, H. De

    2012-01-01

    A corpuscular simulation model for second-order intensity interference phenomena is discussed. It is shown that both the visibility V = 1/2 predicted for two-photon interference experiments with two independent sources and the visibility V = 1 predicted for two-photon interference experiments with a

  11. Search for two-photon production of resonances decaying into K anti K and K anti K. pi

    Energy Technology Data Exchange (ETDEWEB)

    Althoff, M; Braunschweig, W; Kirschfink, F J; Martyn, H U; Rosskamp, R; Siebke, H; Wallraff, W; Eisenmann, J; Fischer, H M; Hartmann, H

    1985-11-01

    An analysis of the production of Ksub(s)/sup 0/Ksub(s)/sup 0/ and Ksup(+-)Ksub (s)/sup 0/..pi..sup(-+) by two quasi-real photons is presented. The cross section for ..gamma gamma..->K/sup 0/ anti K/sup 0/, which is given for the ..gamma gamma.. invariant mass range from K anti K threshold to 2.5 GeV, is dominated by the f'(1,525) resonance and an enhancement near the K anti K threshold. Upper limits on the product of the two-photon width times the branching ratio into K anti K pairs are given for THETA(1,700), h(2,030), and zeta(2,220). For exclusive two-photon production of Ksup(+-)Ksub(s)/sup 0/..pi..-+ no significant signal was observed. Upper limits are given on the cross section of ..gamma gamma..->K/sup +/ anti K/sup 0/..pi../sup -/ or K/sup -/K/sup 0/..pi../sup +/ between 1.4 and 3.2 GeV and on the product of the ..gamma gamma.. width times the branching ratio into the Kanti K..pi.. final states for the etasub(c)(2,980) and the iota(1,440), yielding GAMMA(..gamma gamma..->iota(1,440)) . BR(iota(1,440)-> K anti K..pi..) < 2.2keV at 95% C.L.

  12. Increasing quantum yield of sodium salicylate above 80 eV photon energy: Implications for photoemission cross sections

    International Nuclear Information System (INIS)

    Lindle, D.W.; Ferrett, T.A.; Heimann, P.A.; Shirley, D.A.

    1986-01-01

    The quantum yield of the visible scintillator sodium salicylate is found to increase in the incident photon-energy range 80--270 eV. Because of its use as a photon-flux monitor in recent gas-phase photoelectron spectroscopy measurements, previously reported partial cross sections for Hg (4f, 5p, and 5d subshells) and CH 3 I (I 4d subshell) in this energy range are corrected, and new values are reported. For Hg, the correction brings the experimental data into better overall agreement with theory. However, considerable uncertainty remains in the absolute scale derived from previous Hg photoabsorption measurements, and no single rescaling of the subshell cross sections could simultaneously bring all three into agreement with available theoretical calculations

  13. LCLS in—photon out: fluorescence measurement of neon using soft x-rays

    Science.gov (United States)

    Obaid, Razib; Buth, Christian; Dakovski, Georgi L.; Beerwerth, Randolf; Holmes, Michael; Aldrich, Jeff; Lin, Ming-Fu; Minitti, Michael; Osipov, Timur; Schlotter, William; Cederbaum, Lorenz S.; Fritzsche, Stephan; Berrah, Nora

    2018-02-01

    We measured the fluorescence photon yield of neon upon soft x-ray ionization (∼1200 eV) from the x-ray free-electron laser at Linac Coherent Light Source, and demonstrated the usage of a grazing incidence spectrometer with a variable line spacing grating to perform x-ray fluorescence spectroscopy on a gas phase system. Our measurements also allowed us to estimate the focal size of the beam from the theoretical description developed, in terms of the rate equation approximation accounting for photoionization shake off of neutral neon and double auger decay of single core holes.

  14. Two-photon transitions in hydrogen atoms embedded in weakly coupled plasmas

    International Nuclear Information System (INIS)

    Paul, S.; Ho, Y. K.

    2008-01-01

    The pseudostate method has been applied to calculate energy eigenvalues and corresponding eigenfunctions of the hydrogen atom in Debye plasma environments. Resonant two-photon transition rates from the ground state of atomic hydrogen to 2s and 3s excited states have been computed as a function of photon frequency in the length and velocity gauges for different Debye lengths. A two-photon transparency is found in correspondence to each resonance for 1s-3s. The transparency frequency and resonance enhancement frequency vary significantly with the Debye length.

  15. Two-photon fluorescence and fluorescence imaging of two styryl heterocyclic dyes combined with DNA.

    Science.gov (United States)

    Gao, Chao; Liu, Shu-yao; Zhang, Xian; Liu, Ying-kai; Qiao, Cong-de; Liu, Zhao-e

    2016-03-05

    Two new styryl heterocyclic two-photon (TP) materials, 4-[4-(N-methyl)styrene]-imidazo [4,5-f][1,10] phenanthroline-benzene iodated salt (probe-1) and 4,4-[4-(N-methyl)styrene]-benzene iodated salt (probe-2) were successfully synthesized and studied as potential fluorescent probes of DNA detection. The linear and nonlinear photophysical properties of two compounds in different solvents were investigated. The absorption, one- and two-photon fluorescent spectra of the free dye and dye-DNA complex were also examined to evaluate their photophysical properties. The binding constants of dye-DNA were obtained according to Scatchard equation with good values. The results showed that two probes could be used as fluorescent DNA probes by two-photon excitation, and TP fluorescent properties of probe-1 are superior to that of probe-2. The fluorescent method date indicated that the mechanisms of dye-DNA complex interaction may be groove binding for probe-1 and electrostatic interaction for probe-2, respectively. The MTT assay experiments showed two probes are low toxicity. Moreover, the TP fluorescence imaging of DNA detection in living cells at 800 nm indicated that the ability to locate in cell nuclei of probe-1 is better than that of probe-2. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Particle Production in Two-Photon Collisions at Belle

    International Nuclear Information System (INIS)

    Nakazawa, Hideyuki

    2010-01-01

    Experimental study of η η production in two-photon collisions: The differential cross section for the process γ γ → η η has been measured in the kinematic range above the η η threshold, 1.096 GeV -1 data sample collected with the Belle detector at the KEKB e + e - collider. In the W range 1.1-2.0 GeV/c 2 we perform an analysis of resonance amplitudes for various partial waves; at higher energy we extract the contributions of χ cJ charmonia and compare the energy and angular dependence of the cross section with the predictions of theoretical models. Observation of η c (2S) in six-prong final states produced in two-photon collisions: We report the observation of η c (2S), produced in two-photon collisions, and decaying to the six-prong final states 3(π + π - ), K + K - 2(π + π - ), and K 0 S K + ππ + π - (including the charge-conjugate state). This analysis is based on a large data sample accumulated by the Belle experiment at the KEKB asymmetric-energy electron-positron collider. This is the first observation of decay modes of the η c (2S) other than K 0 S K + π - . (author)

  17. Detection of carbon monoxide (CO) in sooting hydrocarbon flames using femtosecond two-photon laser-induced fluorescence (fs-TPLIF)

    Science.gov (United States)

    Wang, Yejun; Kulatilaka, Waruna D.

    2018-01-01

    Ultrashort-pulse, femtosecond (fs)-duration, two-photon laser-induced fluorescence (fs-TPLIF) measurements of carbon monoxide (CO) are reported in rich, sooting hydrocarbon flames. CO-TPLIF detection using conventional nanosecond or picosecond lasers are often plagued by photochemical interferences, specifically under fuel-rich flames conditions. In the current study, we investigate the commonly used CO two-photon excitation scheme of the B1Σ+ ← X1Σ+ electronic transition, using approximately 100-fs-duration excitation pulses. Fluorescence emission was observed in the Ångström band originating from directly populated B1Σ+ upper state, as well as, in the third positive band from collisionally populated b3Σ+ upper state. The current work was focused on the Ångström band emission. Interference from nascent C2 emissions originating from hot soot particles in the flame could be reduced to a negligible level using a narrower detection gate width. In contrast, avoiding interferences from laser-generated C2 Swan-band emissions required specific narrowband spectral filtering in sooting flame conditions. The observed less than quadratic laser pulse energy dependence of the TPLIF signal suggests the presence of strong three-photon ionization and stimulated emission processes. In a range of CH4/air and C2H4/air premixed flames investigated, the measured CO fluorescence signals agree well with the calculated equilibrium CO number densities. Reduced-interference CO-TPLIF imaging in premixed C2H4/O2/N2 jet flames is also reported.

  18. A new two-photon mechanism of the formation of a continuous spectrum of photons emitted by secondary emission products of atomic particles

    International Nuclear Information System (INIS)

    Veksler, V.I.

    1986-01-01

    A two-photon mechanism of the formation of a continuous spectrum of photons emitted by products of metal sputtering is considered. The following process of the two-photon mechanism is considered: the continuous spectrum is formed under quadrupole two-photon transitions in sputtered excited atoms having vacancies at the d level in atoms of transition metals or at the of level in lanthanides found against the filled conduction band. It is shown that the suggested mechanism should play an essential role in the formation of the continuous spectrum of optical radiation

  19. Two-Photon Probes for Lysosomes and Mitochondria: Simultaneous Detection of Lysosomes and Mitochondria in Live Tissues by Dual-Color Two-Photon Microscopy Imaging.

    Science.gov (United States)

    Lim, Chang Su; Hong, Seung Taek; Ryu, Seong Shick; Kang, Dong Eun; Cho, Bong Rae

    2015-10-01

    Novel two-photon (TP) probes were developed for lysosomes (PLT-yellow) and mitochondria (BMT-blue and PMT-yellow). These probes emitted strong TP-excited fluorescence in cells at widely separated wavelength regions and displayed high organelle selectivity, good cell permeability, low cytotoxicity, and pH insensitivity. The BMT-blue and PLT-yellow probes could be utilized to detect lysosomes and mitochondria simultaneously in live tissues by using dual-color two-photon microscopy, with minimum interference from each other. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Two-photon excitation with pico-second fluorescence lifetime imaging to detect nuclear association of flavanols

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Harvey, Irene, E-mail: i.mueller-harvey@reading.ac.uk [Chemistry and Biochemistry Laboratory, Food Production and Quality Research Division, School of Agriculture, Policy and Development, University of Reading, P O Box 236, Reading RG6 6AT (United Kingdom); Feucht, Walter, E-mail: walter.feucht@gmail.com [Department of Plant Sciences, Technical University of Munich (TUM), Wissenschaftszentrum Weihenstephan (WZW), D-85354 Freising (Germany); Polster, Juergen, E-mail: j.polster@wzw.tum.de [Department of Physical Biochemistry, Technical University of Munich (TUM), Wissenschaftszentrum Weihenstephan (WZW), D-85354 Freising (Germany); Trnkova, Lucie, E-mail: lucie.trnkova@uhk.cz [University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 50003 Hradec Kralove (Czech Republic); Burgos, Pierre, E-mail: pierre.burgos@stfc.ac.uk [Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Parker, Anthony W., E-mail: tony.parker@stfc.ac.uk [Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Botchway, Stanley W., E-mail: stan.botchway@stfc.ac.uk [Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot, Oxfordshire, OX11 0QX (United Kingdom)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer This fluorescence lifetime imaging microscopy (FLIM) technique for flavanols overcomes autofluorescence interference in cells. Black-Right-Pointing-Pointer Plant flavanols differed in their lifetimes. Black-Right-Pointing-Pointer Dissolved and bound flavanols revealed contrasting lifetime changes. Black-Right-Pointing-Pointer This technique will allow studying of flavanol trafficking in live cells. - Abstract: Two-photon excitation enabled for the first time the observation and measurement of excited state fluorescence lifetimes from three flavanols in solution, which were {approx}1.0 ns for catechin and epicatechin, but <45 ps for epigallocatechin gallate (EGCG). The shorter lifetime for EGCG is in line with a lower fluorescence quantum yield of 0.003 compared to catechin (0.015) and epicatechin (0.018). In vivo experiments with onion cells demonstrated that tryptophan and quercetin, which tend to be major contributors of background fluorescence in plant cells, have sufficiently low cross sections for two-photon excitation at 630 nm and therefore do not interfere with detection of externally added or endogenous flavanols in Allium cepa or Taxus baccata cells. Applying two-photon excitation to flavanols enabled 3-D fluorescence lifetime imaging microscopy and showed that added EGCG penetrated the whole nucleus of onion cells. Interestingly, EGCG and catechin showed different lifetime behaviour when bound to the nucleus: EGCG lifetime increased from <45 to 200 ps, whilst catechin lifetime decreased from 1.0 ns to 500 ps. Semi-quantitative measurements revealed that the relative ratios of EGCG concentrations in nucleoli associated vesicles: nucleus: cytoplasm were ca. 100:10:1. Solution experiments with catechin, epicatechin and histone proteins provided preliminary evidence, via the appearance of a second lifetime ({tau}{sub 2} = 1.9-3.1 ns), that both flavanols may be interacting with histone proteins. We conclude that there

  1. N-Annulated perylene-substituted and fused porphyrin dimers with intense near-infrared one-photon and two-photon absorption

    KAUST Repository

    Luo, Jie

    2015-01-21

    Fusion of two N-annulated perylene (NP) units with a fused porphyrin dimer along the S0-S1 electronic transition moment axis has resulted in new near-infrared (NIR) dyes 1a/1b with very intense absorption (ε>1.3×105M-1cm-1) beyond 1250nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10-6 and 6.0×10-6 for 1a and 1b, respectively. The NP-substituted porphyrin dimers 2a/2b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited-state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer-like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two-photon absorption cross-sections in the NIR region due to extended π-conjugation. Time-dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.

  2. Radiation hydrodynamical instabilities in cosmological and galactic ionization fronts

    Science.gov (United States)

    Whalen, Daniel J.; Norman, Michael L.

    2011-11-01

    Ionization fronts, the sharp radiation fronts behind which H/He ionizing photons from massive stars and galaxies propagate through space, were ubiquitous in the universe from its earliest times. The cosmic dark ages ended with the formation of the first primeval stars and galaxies a few hundred Myr after the Big Bang. Numerical simulations suggest that stars in this era were very massive, 25-500 solar masses, with H(II) regions of up to 30,000 light-years in diameter. We present three-dimensional radiation hydrodynamical calculations that reveal that the I-fronts of the first stars and galaxies were prone to violent instabilities, enhancing the escape of UV photons into the early intergalactic medium (IGM) and forming clumpy media in which supernovae later exploded. The enrichment of such clumps with metals by the first supernovae may have led to the prompt formation of a second generation of low-mass stars, profoundly transforming the nature of the first protogalaxies. Cosmological radiation hydrodynamics is unique because ionizing photons coupled strongly to both gas flows and primordial chemistry at early epochs, introducing a hierarchy of disparate characteristic timescales whose relative magnitudes can vary greatly throughout a given calculation. We describe the adaptive multistep integration scheme we have developed for the self-consistent transport of both cosmological and galactic ionization fronts.

  3. Excited-state kinetics of the carotenoid S//1 state in LHC II and two-photon excitation spectra of lutein and beta-carotene in solution Efficient Car S//1 yields Chl electronic energy transfer via hot S//1 states?

    CERN Document Server

    Walla, P J; Linden, Patricia A; Ohta, Kaoru

    2002-01-01

    The excited-state dynamics of the carotenoids (Car) in light- harvesting complex II (LHC II) of Chlamydomonas reinhardtii were studied by transient absorption measurements. The decay of the Car S //1 population ranges from similar to 200 fs to over 7 ps, depending on the excitation and detection wavelengths. In contrast, a 200 fs Car S//1 yields Chlorophyll (Chl) energy transfer component was the dominant time constant for our earlier two-photon fluorescence up- conversion measurements (Walla, P.J. ; et al. J. Phys. Chem. B 2000, 104, 4799-4806). We also present the two-photon excitation (TPE) spectra of lutein and beta-carotene in solution and compare them with the TPE spectrum of LHC II. The TPE-spectrum of LHC II has an onset much further to the blue and a width that is narrower than expected from comparison to the S//1 fluorescence of lutein and beta-carotene in solution. Different environments may affect the shape of the S//1 spectrum significantly. To explain the blue shift of the TPE spectrum and the d...

  4. Observation of new satellites in Cs-Ar system using resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Nayfeh, M.H.; Hurst, G.S.; Payne, M.G.; Young, J.P.

    1978-01-01

    The absorption line shape of Cs-Ar system is recorded using two-photon ionization of the system with Cs(7P) as an intermediate state. New satellite structures in the wings of Cs(7P) are observed which were not resolved in previous absorption measurements. Also the absolute absorption cross section in the blue wing is measured

  5. Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs

    Science.gov (United States)

    Hipke, Arthur; Meek, Samuel A.; Ideguchi, Takuro; Hänsch, Theodor W.; Picqué, Nathalie

    2014-07-01

    Multiplex two-photon excitation spectroscopy is demonstrated at Doppler-limited resolution. We describe first Fourier-transform two-photon spectroscopy of an atomic sample with two mode-locked laser oscillators in a dual-comb technique. Each transition is uniquely identified by the modulation imparted by the interfering comb excitations. The temporal modulation of the spontaneous two-photon fluorescence is monitored with a single photodetector, and the spectrum of all excited transitions is revealed by a Fourier transform.

  6. One-dimensional modulation instability in biased two-photon photorefractive-photovoltaic crystals

    International Nuclear Information System (INIS)

    Zhan Kaiyun; Hou Chunfeng; Li Xin

    2010-01-01

    The one-dimensional modulation instability of broad optical beams in biased two-photon photorefractive-photovoltaic crystals is investigated under steady-state conditions. Our analysis indicates that the modulation instability growth rate depends on the external bias field, the bulk photovoltaic effect and the ratio of the intensity of the incident beam to that of the dark irradiance. Moreover, our results show that this modulation instability growth rate is the same as that in two-photon photorefractive-photovoltaic crystals under open circuit conditions in the absence of an external bias field, and the modulation instability growth rate in two-photon biased photorefractive-nonphotovoltaic crystals can be predicted when the bulk photovoltaic effect is neglected.

  7. ABSORPTION-LINE SPECTROSCOPY OF GRAVITATIONALLY LENSED GALAXIES: FURTHER CONSTRAINTS ON THE ESCAPE FRACTION OF IONIZING PHOTONS AT HIGH REDSHIFT

    Energy Technology Data Exchange (ETDEWEB)

    Leethochawalit, Nicha; Ellis, Richard S.; Zitrin, Adi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Jones, Tucker A. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Stark, Daniel P. [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States)

    2016-11-10

    The fraction of ionizing photons escaping from high-redshift star-forming galaxies is a key obstacle in evaluating whether galaxies were the primary agents of cosmic reionization. We previously proposed using the covering fraction of low-ionization gas, measured via deep absorption-line spectroscopy, as a proxy. We now present a significant update, sampling seven gravitationally lensed sources at 4 < z < 5. We show that the absorbing gas in our sources is spatially inhomogeneous, with a median covering fraction of 66%. Correcting for reddening according to a dust-in-cloud model, this implies an estimated absolute escape fraction of ≃19% ± 6%. With possible biases and uncertainties, collectively we find that the average escape fraction could be reduced to no less than 11%, excluding the effect of spatial variations. For one of our lensed sources, we have sufficient signal-to-noise ratio to demonstrate the presence of such spatial variations and scatter in its dependence on the Ly α equivalent width, consistent with recent simulations. If this source is typical, our lower limit to the escape fraction could be reduced by a further factor ≃2. Across our sample, we find a modest anticorrelation between the inferred escape fraction and the local star formation rate, consistent with a time delay between a burst and leaking Lyman continuum photons. Our analysis demonstrates considerable variations in the escape fraction, consistent with being governed by the small-scale behavior of star-forming regions, whose activities fluctuate over short timescales. This supports the suggestion that the escape fraction may increase toward the reionization era when star formation becomes more energetic and burst-like.

  8. Two-color visible/vacuum ultraviolet photoelectron imaging dynamics of Br2.

    Science.gov (United States)

    Plenge, Jürgen; Nicolas, Christophe; Caster, Allison G; Ahmed, Musahid; Leone, Stephen R

    2006-10-07

    An experimental two-color photoionization dynamics study of laser-excited Br2 molecules is presented, combining pulsed visible laser excitation and tunable vacuum ultraviolet (VUV) synchrotron radiation with photoelectron imaging. The X 1Sigmag + -B 3Pi0+u transition in Br2 is excited at 527 nm corresponding predominantly to excitation of the v' = 28 vibrational level in the B 3Pi0+u state. Tunable VUV undulator radiation in the energy range of 8.40-10.15 eV is subsequently used to ionize the excited molecules to the X 2Pi32,12 state of the ion, and the ionic ground state is probed by photoelectron imaging. Similar experiments are performed using single-photon synchrotron ionization in the photon energy range of 10.75-12.50 eV without any laser excitation. Photoelectron kinetic energy distributions are extracted from the photoelectron images. In the case of two-color photoionization using resonant excitation of the intermediate B 3Pi0+u state, a broad distribution of photoelectron kinetic energies is observed, and in some cases even a bimodal distribution, which depends on the VUV photon energy. In contrast, for single-photon ionization, a single nearly Gaussian-shaped distribution is observed, which shifts to higher energy with photon energy. Simulated spectra based on Franck-Condon factors for the transitions Br2(X 1Sigmag+, v" = 0)-Br2 +(X 2Pi12,32, v+) and Br2(B 3Pi0+u, v' = 28)-Br2 +(X 2Pi12,32, v+) are generated. Comparison of these calculated spectra with the measured images suggests that the differences in the kinetic energy distributions for the two ionization processes reflect the different extensions of the vibrational wave functions in the v" = 0 electronic ground state (X 1Sigmag+) versus the electronically and vibrationally excited state (B 3Pi0+u, v' = 28).

  9. Absolute cross sections for photoionization of Xeq+ ions (1 ⩽ q ⩽ 5) at the 3d ionization threshold

    International Nuclear Information System (INIS)

    Schippers, S; Ricz, S; Buhr, T; Borovik, A Jr; Hellhund, J; Holste, K; Huber, K; Schäfer, H-J; Schury, D; Klumpp, S; Mertens, K; Martins, M; Flesch, R; Ulrich, G; Rühl, E; Jahnke, T; Lower, J; Metz, D; Schmidt, L P H; Schöffler, M

    2014-01-01

    The photon-ion merged-beams technique has been employed at the new Photon-Ion spectrometer at PETRA III for measuring multiple photoionization of Xe q+ (q = 1–5) ions. Total ionization cross sections have been obtained on an absolute scale for the dominant ionization reactions of the type hν + Xe q+ → Xe r+ + (q − r)e − with product charge states q + 2 ⩽ r ⩽ q + 5. Prominent ionization features are observed in the photon-energy range 650–750 eV, which are associated with excitation or ionization of an inner-shell 3d electron. Single-configuration Dirac–Fock calculations agree quantitatively with the experimental cross sections for non-resonant photoabsorption, but fail to reproduce all details of the measured ionization resonance structures. (paper)

  10. Correlated two-photon interference in a dual-beam Michelson interferometer

    International Nuclear Information System (INIS)

    Kwiat, P.G.; Vareka, W.A.; Hong, C.K.; Nathel, H.; Chiao, R.Y.

    1990-01-01

    We report on an interference effect arising from a two-photon entangled state produced in a potassium dihydrogen phosphate (KDP) crystal pumped by an ultraviolet argon-ion laser. Two conjugate beams of signal and idler photons were injected in a parallel configuration into a single Michelson interferometer, and detected separately by two photomultipliers, while the difference in its arm lengths was slowly scanned. The coincidence rate exhibited fringes with a visibility of nearly 50%, and a period given by half the ultraviolet (not the signal or idler) wavelength, while the singles rate exhibited no fringes

  11. Pressure broadening of atomic oxygen two-photon absorption laser induced fluorescence

    NARCIS (Netherlands)

    Marinov, D.; Drag, C.; Blondel, C.; Guaitella, O.; Golda, J.; Klarenaar, B.L.M.; Engeln, R.A.H.; Schulz-von der Gathen, V.; Booth, J.-P.

    2016-01-01

    Atomic oxygen, considered to be a determining reactant in plasma applications at ambient pressure, is routinely detected by two-photon absorption laser induced fluorescence (TALIF). Here, pressure broadening of the (2p 4 3 P 2  →  3p 3 P J=0,1,2) two-photon transition in oxygen atoms was

  12. High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states

    Science.gov (United States)

    Wu, FangZhou; Yang, GuoJian; Wang, HaiBo; Xiong, Jun; Alzahrani, Faris; Hobiny, Aatef; Deng, FuGuo

    2017-12-01

    This study proposes the first high-capacity quantum secure direct communication (QSDC) with two-photon six-qubit hyper-entangled Bell states in two longitudinal momentum and polarization degrees of freedom (DOFs) of photon pairs, which can be generated using two 0.5 mm-thick type-I β barium borate crystal slabs aligned one behind the other and an eight-hole screen. The secret message can be independently encoded on the photon pairs with 64 unitary operations in all three DOFs. This protocol has a higher capacity than previous QSDC protocols because each photon pair can carry 6 bits of information, not just 2 or 4 bits. Our QSDC protocol decreases the influence of decoherence from environment noise by exploiting the decoy photons to check the security of the transmission of the first photon sequence. Compared with two-way QSDC protocols, our QSDC protocol is immune to an attack by an eavesdropper using Trojan horse attack strategies because it is a one-way quantum communication. The QSDC protocol has good applications in the future quantum communication because of all these features.

  13. Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes

    Science.gov (United States)

    Qian, Chenjiang; Wu, Shiyao; Song, Feilong; Peng, Kai; Xie, Xin; Yang, Jingnan; Xiao, Shan; Steer, Matthew J.; Thayne, Iain G.; Tang, Chengchun; Zuo, Zhanchun; Jin, Kuijuan; Gu, Changzhi; Xu, Xiulai

    2018-05-01

    Two-photon Rabi splitting in a cavity-dot system provides a basis for multiqubit coherent control in a quantum photonic network. Here we report on two-photon Rabi splitting in a strongly coupled cavity-dot system. The quantum dot was grown intentionally large in size for a large oscillation strength and small biexciton binding energy. Both exciton and biexciton transitions couple to a high-quality-factor photonic crystal cavity with large coupling strengths over 130 μ eV . Furthermore, the small binding energy enables the cavity to simultaneously couple with two exciton states. Thereby, two-photon Rabi splitting between the biexciton and cavity is achieved, which can be well reproduced by theoretical calculations with quantum master equations.

  14. Efficient Entanglement Concentration of Nonlocal Two-Photon Polarization-Time-Bin Hyperentangled States

    Science.gov (United States)

    Wang, Zi-Hang; Yu, Wen-Xuan; Wu, Xiao-Yuan; Gao, Cheng-Yan; Alzahrani, Faris; Hobiny, Aatef; Deng, Fu-Guo

    2018-03-01

    We present two different hyperentanglement concentration protocols (hyper-ECPs) for two-photon systems in nonlocal polarization-time-bin hyperentangled states with known parameters, including Bell-like and cluster-like states, resorting to the parameter splitting method. They require only one of two parties in quantum communication to operate her photon in the process of entanglement concentration, not two, and they have the maximal success probability. They work with linear optical elements and have good feasibility in experiment, especially in the case that there are a big number of quantum data exchanged as the parties can obtain the information about the parameters of the nonlocal hyperentangled states by sampling a subset of nonlocal hyperentangled two-photon systems and measuring them. As the quantum state of photons in the time-bin degree of freedom suffers from less noise in an optical-fiber channel, these hyper-ECPs may have good applications in practical long-distance quantum communication in the future.

  15. New two-photon based nanoscopic modalities and optogenetics

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    that can be equipped with optical trapping handles for convenient mechanical control using only optical forces [6]. These microstructures illustrated above can be effectively handled with simultaneous top- and side-view on our BioPhotonics Workstation to undertake six-degree-of-freedom optical actuation...... of two-photon polymerised microstructures equipped with features easily entering the submicron-regime. Aided by European collaborators who fabricated test structures with built-in waveguides for us, we were able to put the idea of optically steerable freestanding waveguides – coined: wave-guided optical...

  16. Influence of Two Photon Absorption on Soliton Self-Frequency Shift

    DEFF Research Database (Denmark)

    Steffensen, Henrik; Rottwitt, Karsten; Jepsen, Peter Uhd

    2011-01-01

    The creation of mid-infrared supercontinua necessitates the use of soft-glass fibers. However, some materials, like chalcogenide, have a substantial two photon absorption. We introduce a model for soliton self-frequency shift that successfully includes this effect.......The creation of mid-infrared supercontinua necessitates the use of soft-glass fibers. However, some materials, like chalcogenide, have a substantial two photon absorption. We introduce a model for soliton self-frequency shift that successfully includes this effect....

  17. Unambiguous modification of nonorthogonal single- and two-photon polarization states

    International Nuclear Information System (INIS)

    Torres-Ruiz, F. A.; Aguirre, J.; Delgado, A.; Lima, G.; Neves, L.; Roa, L.; Saavedra, C.; Padua, S.

    2009-01-01

    In this paper we propose a probabilistic method which allows an unambiguous modification of two nonorthogonal quantum states. We experimentally implement this protocol by using two-photon polarization states generated in the process of spontaneous parametric down conversion. In the experiment, for codifying initial quantum states, we consider single-photon states and heralded detection. We show that the application of this protocol to entangled states allows a fine control of the amount of entanglement of the initial state.

  18. Enhanced Size Selection in Two-Photon Excitation for CsPbBr3 Perovskite Nanocrystals.

    Science.gov (United States)

    Chen, Junsheng; Chábera, Pavel; Pascher, Torbjörn; Messing, Maria E; Schaller, Richard; Canton, Sophie; Zheng, Kaibo; Pullerits, Tõnu

    2017-10-19

    Cesium lead bromide (CsPbBr 3 ) perovskite nanocrystals (NCs), with large two-photon absorption (TPA) cross-section and bright photoluminescence (PL), have been demonstrated as stable two-photon-pumped lasing medium. With two-photon excitation, red-shifted PL spectrum and increased PL lifetime is observed compared with one-photon excitation. We have investigated the origin of such difference using time-resolved laser spectroscopies. We ascribe the difference to the enhanced size selection of NCs by two-photon excitation. Because of inherent nonlinearity, the size dependence of absorption cross-section under TPA is stronger. Consequently, larger size NCs are preferably excited, leading to longer excited-state lifetime and red-shifted PL emission. In a broad view, the enhanced size selection in two-photon excitation of CsPbBr 3 NCs is likely a general feature of the perovskite NCs and can be tuned via NC size distribution to influence their performance within NC-based nonlinear optical materials and devices.

  19. Inhibition of two-photon absorption due to dipole-dipole interaction in nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, N6A 3K7 (Canada)], E-mail: msingh@uwo.ca

    2008-07-21

    We have investigated the inhibition of two-photon absorption in photonic crystals doped with an ensemble of four-level nanoparticles. The particles are interacting with one another by the dipole-dipole interaction. Dipoles in nanoparticles are induced by a selected transition. Numerical simulations have been performed for an isotropic photonic crystal. Interesting phenomena have been predicted such as the inhibition of the two-photon absorption due to the dipole-dipole interaction. It has also been found that the inhibition effect can be switched on and off by tuning a decay resonance energy within the energy band of the crystal. A theory of dressed states has been used to explain the results.

  20. Crossed-coil detection of two-photon excited nuclear quadrupole resonance

    Science.gov (United States)

    Eles, Philip T.; Michal, Carl A.

    2005-08-01

    Applying a recently developed theoretical framework for determining two-photon excitation Hamiltonians using average Hamiltonian theory, we calculate the excitation produced by half-resonant irradiation of the pure quadrupole resonance of a spin-3/2 system. This formalism provides expressions for the single-quantum and double-quantum nutation frequencies as well as the Bloch-Siegert shift. The dependence of the excitation strength on RF field orientation and the appearance of the free-induction signal along an axis perpendicular to the excitation field provide an unmistakable signature of two-photon excitation. We demonstrate single- and double-quantum excitation in an axially symmetric system using 35Cl in a single crystal of potassium chlorate ( ωQ = 28 MHz) with crossed-coil detection. A rotation plot verifies the orientation dependence of the two-photon excitation, and double-quantum coherences are observed directly with the application of a static external magnetic field.

  1. Efficient non-linear two-photon effects from the Cesium 6D manifold

    Science.gov (United States)

    Haluska, Nathan D.; Perram, Glen P.; Rice, Christopher A.

    2018-02-01

    We report several non-linear process that occur when two-photon pumping the cesium 6D states. Cesium vapor possess some of the largest two-photon pump cross sections in nature. Pumping these cross sections leads to strong amplified spontaneous emission that we observe on over 17 lasing lines. These new fields are strong enough to couple with the pump to create additional tunable lines. We use a heat pipe with cesium densities of 1014 to 1016 cm-3 and 0 to 5 Torr of helium buffer gas. The cesium 6D States are interrogated by both high energy pulses and low power CW sources. We observe four-wave mixing, six-wave mixing, potential two-photon lasing, other unknown nonlinear processes, and the persistence of some processes at low thresholds. This system is also uniquely qualified to support two-photon lasing under the proper conditions.

  2. Photonic density of states of two-dimensional quasicrystalline photonic structures

    International Nuclear Information System (INIS)

    Jia Lin; Bita, Ion; Thomas, Edwin L.

    2011-01-01

    A large photonic band gap (PBG) is highly favorable for photonic crystal devices. One of the most important goals of PBG materials research is identifying structural design strategies for maximizing the gap size. We provide a comprehensive analysis of the PBG properties of two-dimensional (2D) quasicrystals (QCs), where rotational symmetry, dielectric fill factor, and structural morphology were varied systematically in order to identify correlations between structure and PBG width at a given dielectric contrast (13:1, Si:air). The transverse electric (TE) and transverse magnetic (TM) PBGs of 12 types of QCs are investigated (588 structures). We discovered a 12mm QC with a 56.5% TE PBG, the largest reported TE PBG for an aperiodic crystal to date. We also report here a QC morphology comprising ''throwing star''-like dielectric domains, with near-circular air cores and interconnecting veins emanating radially around the core. This interesting morphology leads to a complete PBG of ∼20% , which is the largest reported complete PBG for aperiodic crystals.

  3. Single-organelle tracking by two-photon conversion

    Science.gov (United States)

    Watanabe, Wataru; Shimada, Tomoko; Matsunaga, Sachihiro; Kurihara, Daisuke; Fukui, Kiichi; Shin-Ichi Arimura, Shin-Ichi; Tsutsumi, Nobuhiro; Isobe, Keisuke; Itoh, Kazuyoshi

    2007-03-01

    Spatial and temporal information about intracellular objects and their dynamics within a living cell are essential for dynamic analysis of such objects in cell biology. A specific intracellular object can be discriminated by photoactivatable fluorescent proteins that exhibit pronounced light-induced spectral changes. Here, we report on selective labeling and tracking of a single organelle by using two-photon conversion of a photoconvertible fluorescent protein with near-infrared femtosecond laser pulses. We performed selective labeling of a single mitochondrion in a living tobacco BY-2 cell using two-photon photoconversion of Kaede. Using this technique, we demonstrated that, in plants, the directed movement of individual mitochondria along the cytoskeletons was mediated by actin filaments, whereas microtubules were not required for the movement of mitochondria. This single-organelle labeling technique enabled us to track the dynamics of a single organelle, revealing the mechanisms involved in organelle dynamics. The technique has potential application in direct tracking of selective cellular and intracellular structures.

  4. Accidental degeneracy in photonic bands and topological phase transitions in two-dimensional core-shell dielectric photonic crystals.

    Science.gov (United States)

    Xu, Lin; Wang, Hai-Xiao; Xu, Ya-Dong; Chen, Huan-Yang; Jiang, Jian-Hua

    2016-08-08

    A simple core-shell two-dimensional photonic crystal is studied where the triangular lattice symmetry and the C6 point group symmetry give rich physics in accidental touching points of photonic bands. We systematically evaluate different types of accidental nodal points at the Brillouin zone center for transverse-magnetic harmonic modes when the geometry and permittivity of the core-shell material are continuously tuned. The accidental nodal points can have different dispersions and topological properties (i.e., Berry phases). These accidental nodal points can be the critical states lying between a topological phase and a normal phase of the photonic crystal. They are thus very important for the study of topological photonic states. We show that, without breaking time-reversal symmetry, by tuning the geometry of the core-shell material, a phase transition into the photonic quantum spin Hall insulator can be achieved. Here the "spin" is defined as the orbital angular momentum of a photon. We study the topological phase transition as well as the properties of the edge and bulk states and their application potentials in optics.

  5. 'Saddle-point' ionization

    International Nuclear Information System (INIS)

    Gay, T.J.; Hale, E.B.; Irby, V.D.; Olson, R.E.; Missouri Univ., Rolla; Berry, H.G.

    1988-01-01

    We have studied the ionization of rare gases by protons at intermediate energies, i.e., energies at which the velocities of the proton and the target-gas valence electrons are comparable. A significant channel for electron production in the forward direction is shown to be 'saddle-point' ionization, in which electrons are stranded on or near the saddle-point of electric potential between the receding projectile and the ionized target. Such electrons yield characteristic energy spectra, and contribute significantly to forward-electron-production cross sections. Classical trajectory Monte Carlo calculations are found to provide qualitative agreement with our measurements and the earlier measurements of Rudd and coworkers, and reproduce, in detail, the features of the general ionization spectra. (orig.)

  6. Two photon emission by hydrogen-like atoms in high temperature plasmas

    International Nuclear Information System (INIS)

    Costescu, A.; Manzatu, I.; Dinu, C.; Mihailescu, I.N.

    1981-08-01

    New exact solutions and a rather simple polynomial expression of the power emitted in the two photon transition from a metastable 2s state to the ground state of a hydrogen-like atom were infered with the aid of the Coulomb Green's function method. It was shown that the two photon decay represents under certain circumstances a significant power loss mechanism. (authors)

  7. Two-photon cooling of magnesium atoms

    DEFF Research Database (Denmark)

    Malossi, N.; Damkjær, S.; Hansen, P. L.

    2005-01-01

    A two-photon mechanism for cooling atoms below the Doppler temperature is analyzed. We consider the magnesium ladder system (3s2)S01¿(3s3p)P11 at 285.2nm followed by the (3s3p)P11¿(3s3d)D21 transition at 880.7nm . For the ladder system quantum coherence effects may become important. Combined with...... and experiment is excellent. In addition, by properly choosing the Rabi frequencies of the two optical transitions a velocity independent atomic dark state is observed....

  8. All-optical femtosecond switch using two-photon absorption

    International Nuclear Information System (INIS)

    Yavuz, D. D.

    2006-01-01

    Utilizing a two-photon absorption scheme in an alkali-metal vapor cell, we suggest a technique where a strong laser beam switches off another laser beam of different wavelength in femtosecond time scales

  9. Mid-infrared two-photon absorption in an extended-wavelength InGaAs photodetector

    Science.gov (United States)

    Piccardo, Marco; Rubin, Noah A.; Meadowcroft, Lauren; Chevalier, Paul; Yuan, Henry; Kimchi, Joseph; Capasso, Federico

    2018-01-01

    We investigate the nonlinear optical response of a commercial extended-wavelength In0.81Ga0.19As uncooled photodetector. Degenerate two-photon absorption in the mid-infrared range is observed using a quantum cascade laser emitting at λ = 4.5 μm as the excitation source. From the measured two-photon photocurrent signal, we extract a two-photon absorption coefficient β(2) = 0.6 ± 0.2 cm/MW, in agreement with the theoretical value obtained from the Eg-3 scaling law. Considering the wide spectral range covered by extended-wavelength InxGa1-xAs alloys, this result holds promise for applications based on two-photon absorption for this family of materials at wavelengths between 1.8 and 5.6 μm.

  10. Health Effects of Non-Ionizing Radiation on Human

    International Nuclear Information System (INIS)

    Zubaidah-Alatas; Yanti Lusiyanti

    2001-01-01

    Increases of development and use of equipment that procedures non-ionizing radiant energy such as laser, radar, microwave ovens, power lines and hand phones, bring about public concern about the possible health effects owing to the non-ionizing radiation exposure. Non ionizing electromagnetic radiation compared to ionizing radiation, has longer wavelength, lower frequency, and lower photon energy in its interaction with body tissues. The term on non-ionizing radiation refers to the groups of electromagnetic radiations with energies less than about 10 eV corresponding to wavelengths in the ultraviolet, visible, infra red microwave and radiofrequency spectral regions. This paper describes the current state of knowledge about types of non-ionizing radiation and the health effects at molecular and cellular levels as well as its effects on human health. (author)

  11. Inhibition of two-photon absorption in a three-level system with a pair of bichromatic fields

    International Nuclear Information System (INIS)

    Zou Jinhua; Hu Xiangming; Cheng Guangling; Li Xing; Du Dan

    2005-01-01

    We study two-photon absorption in a three-level ladder atomic system driven by a pair of bichromatic fields of equal frequency differences. The high-frequency component of one bichromatic field and the low-frequency component of the other are on two-photon resonance. The transition probability is calculated by employing the method of harmonic expansion and matrix inversion. Unexpectedly, when the sums of the phases of the different pairs of field components on the two-photon resonance are equal to each other, two-photon absorption is dramatically suppressed and the atomic system becomes transparent against two-photon absorption. Physically, due to dynamical Stark splitting, the two-photon transitions induced by the different pairs of field components experience different dressed states with phase difference of π. As a result, destructive interference occurs between the two pathways and leads to the inhibition of two-photon absorption

  12. Two-photon physics at LEP

    International Nuclear Information System (INIS)

    Ginzburg, I.F.

    1988-01-01

    The two-photon production of hadrons in e + e - collisions e + e - →e + e - h from which the γγ→h cross sections are extracted is discussed. The common features of these processes are: hadrons move, as a rule, along e + e - beam axis, their total transverse momentum K perpendicular or perpendicular to is small; the total hadron energy is usually less than √S/2. Physical problems of soft processes, exotics, hard processes, semihard processes are considered. New possibilities of LEP, the most interesting and real are presented

  13. Selective two-photon collagen crosslinking in situ measured by Brillouin microscopy (Conference Presentation)

    Science.gov (United States)

    Kwok, Sheldon J. J.; Kuznetsov, Ivan A.; Kim, Moonseok; Choi, Myunghwan; Scarcelli, Giuliano; Yun, Seok-Hyun

    2017-02-01

    Two-photon polymerization and crosslinking are commonly used methods for microfabrication of three-dimensional structures with applications spanning from photonic microdevices, drug delivery systems, to cellular scaffolds. However, the use of two-photon processes for precise, internal modification of biological tissues has not yet been reported. One of the major challenges has been a lack of appropriate tools to monitor and characterize crosslinked regions nondestructively. Here, we demonstrate spatially selective two-photon collagen crosslinking (2P-CXL) in intact tissue for the first time. Using riboflavin photosensitizer and femtosecond laser irradiation, we crosslinked a small volume of tissue within animal corneas. Collagen fiber orientations and photobleaching were characterized by second harmonic generation and two-photon fluorescence imaging, respectively. Using confocal Brillouin microscopy, we measured local changes in longitudinal mechanical moduli and visualized the cross-linked pattern without perturbing surrounding non-irradiated regions. 2P-CXL-induced tissue stiffening was comparable to that achieved with conventional one-photon CXL. Our results demonstrate the ability to selectively stiffen biological tissue in situ at high spatial resolution, with broad implications in ophthalmology, laser surgery, and tissue engineering.

  14. Two narrow bandwidth photons interfering in an electromagnetically induced transparency (EIT) system

    International Nuclear Information System (INIS)

    Wang Fuyuan; Shi Baosen; Lu Xiaosong; Guo Guangcan

    2008-01-01

    In this paper, we have analysed in detail the quantum interference of the degenerate narrowband two-photon state by using a Mach–Zehnder interferometer, in which an electromagnetically induced transparency (EIT) medium is placed in one of two interfering beams. Our results clearly show that it is possible to coherently keep the quantum state at a single photon level in the EIT process, especially when the transparent window of the EIT medium is much larger than the bandwidth of the single photon. This shows that the EIT medium is possibly a kind of memory or repeater for the narrowband photons in the areas of quantum communication and quantum computer. This kind of experiment is feasible within the current technology

  15. Probabilistic teleportation scheme of two-mode entangled photon states by using linear optic element

    Institute of Scientific and Technical Information of China (English)

    XIANG Shao-hua

    2003-01-01

    A scheme for teleporting two-mode entangled photon states with the successful probability 33.3% is proposed. In the scheme, the teleporte d qubit is two-mode photon entangled states, and two pairs of EPR pair are used as quantum channel between a sender and a receiver. This procedure is achieved by using two 50/50 symmetric beam splitters and four photon number detectors wit h the help of classical information.

  16. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  17. Comparison of measurements of absorbed dose to water using a water calorimeter and ionization chambers for clinical radiotherapy photon and electron beams

    International Nuclear Information System (INIS)

    Marles, A.E.M.

    1981-01-01

    With the development of the water calorimeter direct measurement of absorbed dose in water becomes possible. This could lead to the establishment of an absorbed dose rather than an exposure related standard for ionization chambers for high energy electrons and photons. In changing to an absorbed dose standard it is necessary to investigate the effect of different parameters, among which are the energy dependence, the air volume, wall thickness and material of the chamber. The effect of these parameters is experimentally studied and presented for several commercially available chambers and one experimental chamber, for photons up to 25 MV and electrons up to 20 MeV, using a water calorimeter as the absorbed dose standard and the most recent formalism to calculate the absorbed dose with ion chambers. For electron beams, the dose measured with the calorimeter was 1% lower than the dose calculated with the chambers, independent of beam energy and chamber. For photon beams, the absorbed dose measured with the calorimeter was 3.8% higher than the absorbed dose calculated from the chamber readings. Such differences were found to be chamber and energy independent. The results for the photons were found to be statistically different from the results with the electron beams. Such difference could not be attributed to a difference in the calorimeter response

  18. Interaction of ionizing radiation with matter

    International Nuclear Information System (INIS)

    Calisto, Washington

    1994-01-01

    Definition of ionizing radiation,interaction of electrons with matter,physical model of collision,elastic and inelastic collisions,range of electron in matter,interaction of photon with matter.Photoelectric effect , Compton effect,pair production,consideration of interaction of various radiations with soft tissue

  19. Sensing for intracellular thiols by water-insoluble two-photon fluorescent probe incorporating nanogel

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xudong; Zhang, Xin; Wang, Shuangqing; Li, Shayu [Beijing National Laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hu, Rui, E-mail: hurui@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Li, Yi, E-mail: yili@mail.ipc.ac.cn [Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Guoqiang, E-mail: gqyang@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-04-15

    Highlights: • A novel “turn-on” two-photon fluorescent probe based on a π-conjugated triarylboron luminogen was designed and synthesized. • Fast, selective and sensitive detection of biothiols in 100% aqueous solution by simply loaded on a nanogel. • Single-photon and two-photon fluorescent bioimaging of biothiols in NIH/3T3 fibroblasts. - Abstract: A novel “turn-on” two-photon fluorescent probe containing a π-conjugated triarylboron luminogen and a maleimide moiety DMDP-M based on the photo-induced electron transfer (PET) mechanism for biothiol detection was designed and synthesized. By simply loading the hydrophobic DMDP-M on a cross-linked Pluronic{sup ®} F127 nanogel (CL-F127), a probing system DMDP-M/CL-F127 was established, which shows quick response, high selectivity and sensitivity to cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) in aqueous phase. The DMDP-M/CL-F127 system presented the fastest response to Cys with a rate constant of 0.56 min{sup −1}, and the detection limit to Cys was calculated to be as low as 0.18 μM. The DMDP-M/CL-F127 system has been successfully applied to the fluorescence imaging of biothiols in NIH/3T3 fibroblasts either with single-photon or two-photon excitation because of its high biocompatibility and cell-membrane permeability. The present work provides a general, simple and efficient strategy for the application of hydrophobic molecules to sensing biothiols in aqueous phase, and a novel sensing system for intracellular biothiols fitted for both single-photon and two-photon fluorescence imaging.

  20. Free-air ionization chamber, FAC-IR-300, designed for medium energy X-ray dosimetry

    International Nuclear Information System (INIS)

    Mohammadi, S.M.; Tavakoli-Anbaran, H.; Zeinali, H.Z.

    2017-01-01

    The primary standard for X-ray photons is based on parallel-plate free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) is tried to design and build the free-air ionization chamber, FAC-IR-300, for low and medium energy X-ray dosimetry. The main aim of the present work is to investigate specification of the FAC-IR-300 ionization chamber and design it. FAC-IR-300 dosimeter is composed of two parallel plates, a high voltage (HV) plate and a collector plate, along with a guard electrode that surrounds the collector plate. The guard plate and the collector were separated by an air gap. For obtaining uniformity in the electric field distribution, a group of guard strips was used around the ionization chamber. These characterizations involve determining the exact dimensions of the ionization chamber by using Monte Carlo simulation and introducing correction factors.