Thitithammawong, A.; Thitithammawong, A.; Nakason, C.; Sahakaro, Kannika; Sahakaro, K.; Noordermeer, Jacobus W.M.
2007-01-01
Thermoplastic vulcanizates (TPVs) from natural rubber (NR) and polypropylene (PP) were studied, prepared by dynamic vulcanization during melt mixing, using various peroxides to crosslink the rubber phase. The objective was to find a proper balance between degree of crosslinking of the rubber and
Directory of Open Access Journals (Sweden)
Hanguang Wu
2016-04-01
Full Text Available We previously reported that the dispersed rubber microparticles in ethylene-propylene-diene monomer (EPDM/polypropylene (PP thermoplastic vulcanizates (TPVs are actually agglomerates of rubber nanoparticles. In this study, based on this new understanding of the microstructure of TPV, we further revealed the microstructure-properties relationship of EPDM/PP TPV during dynamic vulcanization, especially the effect of the size of rubber nanoparticle agglomerates (dn, the thicknesses of PP ligaments (IDpoly and the rubber network on the properties of EPDM/PP TPV. We were able to simultaneously obtain a high tensile strength, elongation at break, elastic modulus, and elasticity for the EPDM/PP TPV by the achievement of a smaller dn, a thinner IDpoly and a denser rubber network. Interestingly, the effect of dn and IDpoly on the elastic modulus of EPDM/PP TPV composed of rubber nanoparticle agglomerates is different from that of EPDM/PP TPVs composed of rubber microparticles reported previously. The deformation behavior of the TPVs during stretching was studied to understand the mechanism for the achievement of good mechanical properties. Interestingly, the rubber nanoparticle agglomerates are oriented along the tensile direction during stretching. The TPV samples with smaller and more numerous rubber nanoparticle agglomerates can slow down the development of voids and cracks more effectively, thus leading to increase in tensile strength and elongation at break of the EPDM/PP TPV.
Effect of extender oils on the stress relaxation behavior of thermoplastic vulcanizates
Directory of Open Access Journals (Sweden)
2008-11-01
Full Text Available The long term mechanical behavior of oil extended thermoplastic vulcanizates (TPV based on polypropylene (PP and acrylonitrile-butadiene rubber (NBR has been characterized by means of stress relaxation experiments. The morphology of TPV and the phase specific oil distribution which depend on the content and type of oil as well as on the mixing regime have been characterized by means of Atomic Force Microscopy (AFM, Dynamic Mechanical Thermal Analysis (DMTA and Differential Scanning Calorimetrie (DSC. The discussion of the stress relaxation behavior was carried out using the two-component model, which allows splitting the initial stress into two components: a thermal activated stress component and an athermal one. A master curve was created by shifting the relaxation curves vertically and horizontally towards the reference curve. The vertical shift factor bT is a function of the temperature dependence of the athermal stress components. It was found that the oil distribution strongly affects the athermal stress component which is related to the contribution of the structural changes, e.g. crystallinity of the PP phase and the average molecular weight between the crosslinks of the NBR phase. From the temperature dependence of the horizontal shift factor aT the main viscoelastic relaxation process was determined as the α-relaxation process of the crystalline PP phase. It is not dependent on the polarity and content of the oil as well as the mixing regime.
Directory of Open Access Journals (Sweden)
K. Naskar
2014-04-01
Full Text Available Novel thermoplastic vulcanizates (TPVs based on silicone rubber (PDMS and polyamide (PA12 have been prepared by dynamic vulcanization process. The effect of dynamic vulcanization and influence of various types of peroxides as cross-linking agents were studied in detail. All the TPVs were prepared at a ratio of 50/50 wt% of silicone rubber and polyamide. Three structurally different peroxides, namely dicumyl peroxide (DCP, 3,3,5,7,7-pentamethyl 1,2,4-trioxepane (PMTO and cumyl hydroperoxide (CHP were taken for investigation. Though DCP was the best option for curing the silicone rubber, at high temperature it suffers from scorch safety. An inhibitor 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO was added with DCP to stabilize the radicals in order to increase the scorch time. Though CHP (hydroperoxide had higher half life time than DCP at higher temperature, it has no significant effect on cross-linking of silicone rubber. PMTO showed prolonged scorch safety and better cross-linking efficiency rather than the other two. TPVs of DCP and PMTO were made up to 11 minutes of mixing. Increased values of tensile strength and elongation at break of PMTO cross-linked TPV indicate the superiority of PMTO. Scanning electron micrographs correlate with mechanical properties of the TPVs. High storage modulus (E' and lower loss tangent value of the PMTO cross-linked TPV indicate the higher degree of cross-linking which is also well supported by the overall cross-link density value. Thus PMTO was found to be the superior peroxide for cross-linking of silicone rubber at high temperature.
Directory of Open Access Journals (Sweden)
2008-03-01
Full Text Available Novel thermoplastic vulcanizates (TPVs based on polypropylene (PP and new generation ethylene-octene copolymer (EOC have been developed by dynamic vulcanization process, which involves melt-mixing and simultaneously crosslinking a rubber with a thermoplastic. In this paper technologically compatibilized blends of PP and EOC were dynamically vulcanized by coagent assisted peroxide crosslinking system. The effect of structurally different types of peroxides, namely dicumyl peroxide, di-tert butyl peroxy isopropyl benzene and tert-butyl cumyl peroxide with varying concentrations on the properties on TPVs was mainly studied. The physico-mechanical, thermal and morphological properties of these TPVs were characterized by using X-ray diffraction (XRD, differential scanning calorimeter (DSC and scanning electron microscopy (SEM.
Thitithammawong, Anoma; Thitithammawong, A.; Nakason, Charoen; Sahakaro, Kannika; Noordermeer, Jacobus W.M.
2007-01-01
Influences of various types and concentrations of peroxides on the properties of thermoplastic vulcanizates based on natural rubber/polypropylene (PP) blends were investigated. The objective was to find a proper balance between the influences of degree of crosslinking of the rubber and degradation
Directory of Open Access Journals (Sweden)
2008-12-01
Full Text Available Thermoplastic vulcanizates (TPVs are a special class of thermoplastic elastomers, which are produced by simultaneously mixing and crosslinking a rubber with a thermoplastic polymer at an elevated temperature. Peroxide-cured TPVs based on blends of silicone rubber and thermoplastic Engage of two different types, mainly ethylene-octene and ethylenebutene copolymers at different blend ratios have been developed. A detailed comparative study of ethylene-octene vs. ethylene-butene based TPVs are mainly focused in this paper. These TPVs exhibit very good overall mechanical and electrical properties. With increasing amount of Engage in the blends at a fixed concentration of peroxide and coagent, tensile strength, modulus and hardness of the TPVs were found to increase considerably. Ageing characteristics and recyclability of silicone rubber based TPVs are also found excellent. Rheological studies confirm the pseudoplastic nature of these TPVs.
Directory of Open Access Journals (Sweden)
Yu Gao
2017-12-01
Full Text Available Thermoplastic vulcanizate (TPV combines the high elasticity of elastomers and excellent processability of thermoplastics. Novel bio-based TPV based on poly (lactide (PLA and poly (1,4-butanediol/2,3-butanediol/succinate/itaconic acid (PBBSI were prepared in this research. PBBSI copolyesters were synthesized by melting polycondensation, and the molecular weights, chemical structures and compositions of the copolyesters were characterized by GPC, NMR and FTIR. Bio-based 2,3-butanediol was successfully incorporated to depress the crystallization behavior of the PBBSI copolyester. With an increase of 2,3-butanediol content, the PBBSI copolyester transformed from a rigid plastic to a soft elastomer. Furthermore, the obtained TPV has good elasticity and rheological properties, which means it can be applied as a 3D-printing material.
Thermoplastic Micromodel Investigation of Two-Phase Flows in a Fractured Porous Medium
Directory of Open Access Journals (Sweden)
Shao-Yiu Hsu
2017-01-01
Full Text Available In the past few years, micromodels have become a useful tool for visualizing flow phenomena in porous media with pore structures, e.g., the multifluid dynamics in soils or rocks with fractures in natural geomaterials. Micromodels fabricated using glass or silicon substrates incur high material cost; in particular, the microfabrication-facility cost for making a glass or silicon-based micromold is usually high. This may be an obstacle for researchers investigating the two-phase-flow behavior of porous media. A rigid thermoplastic material is a preferable polymer material for microfluidic models because of its high resistance to infiltration and deformation. In this study, cyclic olefin copolymer (COC was selected as the substrate for the micromodel because of its excellent chemical, optical, and mechanical properties. A delicate micromodel with a complex pore geometry that represents a two-dimensional (2D cross-section profile of a fractured rock in a natural oil or groundwater reservoir was developed for two-phase-flow experiments. Using an optical visualization system, we visualized the flow behavior in the micromodel during the processes of imbibition and drainage. The results show that the flow resistance in the main channel (fracture with a large radius was higher than that in the surrounding area with small pore channels when the injection or extraction rates were low. When we increased the flow rates, the extraction efficiency of the water and oil in the mainstream channel (fracture did not increase monotonically because of the complex two-phase-flow dynamics. These findings provide a new mechanism of residual trapping in porous media.
Neutron absorbing room temperature vulcanizable silicone rubber compositions
International Nuclear Information System (INIS)
Zoch, H.L.
1979-01-01
A neutron absorbing composition is described and consists of a one-component room temperature vulcanizable silicone rubber composition or a two-component room temperature vulcanizable silicone rubber composition in which the composition contains from 25 to 300 parts by weight based on the base silanol or vinyl containing diorganopolysiloxane polymer of a boron compound or boron powder as the neutron absorbing ingredient. An especially useful boron compound in this application is boron carbide. 20 claims
International Nuclear Information System (INIS)
Hsu, Y.Y.
1974-01-01
The following papers related to two-phase flow are summarized: current assumptions made in two-phase flow modeling; two-phase unsteady blowdown from pipes, flow pattern in Laval nozzle and two-phase flow dynamics; dependence of radial heat and momentum diffusion; transient behavior of the liquid film around the expanding gas slug in a vertical tube; flooding phenomena in BWR fuel bundles; and transient effects in bubble two-phase flow. (U.S.)
Directory of Open Access Journals (Sweden)
2008-12-01
Full Text Available The present work deals with the effect of conductive carbon black (Ensaco 350G on the physico-mechanical and electrical properties of chlorosulfonated polyethylene (CSM rubber vulcanizates. The physico-mechanical properties like tensile strength, tear strength, elongation at break, compression set, hardness and abrasion resistance have been studied before and after heat ageing. Up to 30 parts per hundred rubber (phr filler loading both tensile and tear strength increases beyond which it shows a decreasing trend whereas modulus gradually increases with the filler loading. Incorporation of carbon black increases the hysteresis loss of filled vulcanizates compared to gum vulcanizates. Unlike gum vulcanizate, in filled vulcanizates the rate of relaxation shows increasing trend. The bound rubber content is found to increase with increase in filler loading. Dielectric relaxation spectra were used to study the relaxation behavior as a function of frequency (100 to 106 Hz at room temperature. Variation in real and imaginary parts of electric modulus has been explained on the basis of interfacial polarization of fillers in the polymer medium. The percolation limit of the conductive black as studied by ac conductivity measurements has also been reported.
Directory of Open Access Journals (Sweden)
Dahham Omar S.
2016-01-01
Full Text Available In this study, the influence of Trans- Polyoctylene Rubber (TOR as a compatibilizer on the cure characteristics, tensile and physical properties of ENR-25/rSC vulcanizate were determined. Five different loading of TOR (2, 4, 6, 8 and 10 phr were prepared and added into the vulcanizate. Results indicated that the scorch time (t2 and cure time (t90 bacame shorter as TOR increased, while minimum torque (ML and maximum torque (MH increased. The incorporation of TOR with the vulcanizates enhanced the tensile strength (Ts, modulus (M100 crosslinking density and hardness values. However, the elongation at break percentage of compatibilized vulcanizates became lower than uncompatibilized vulcanizates.
International Nuclear Information System (INIS)
Delaje, Dzh.
1984-01-01
General hypothesis used to simplify the equations, describing two-phase flows, are considered. Two-component and one-component models of two-phase flow, as well as Zuber and Findlay model for actual volumetric steam content, and Wallis model, describing the given phase rates, are presented. The conclusion is made, that the two-component model, in which values averaged in time are included, is applicable for the solving of three-dimensional tasks for unsteady two-phase flow. At the same time, using the two-component model, including values, averaged in space only one-dimensional tasks for unsteady two-phase flow can be solved
Development of Lignin-Based Polyurethane Thermoplastics
Energy Technology Data Exchange (ETDEWEB)
Saito, Tomonori [ORNL; Perkins, Joshua H [ORNL; Jackson, Daniel C [ORNL; Trammell, Neil E [ORNL; Hunt, Marcus A [ORNL; Naskar, Amit K [ORNL
2013-01-01
In our continued effort to develop value-added thermoplastics from lignin, here we report utilizing a tailored feedstock to synthesize mechanically robust thermoplastic polyurethanes at very high lignin contents (75 65 wt %). The molecular weight and glass transition temperature (Tg) of lignin were altered through cross-linking with formaldehyde. The cross-linked lignin was coupled with diisocyanate-based telechelic polybutadiene as a network-forming soft segment. The appearance of two Tg s, around 35 and 154 C, for the polyurethanes indicates the existence of two-phase morphology, a characteristic of thermoplastic copolymers. A calculated Flory-Huggins interaction parameter of 7.71 also suggests phase immiscibility in the synthesized lignin polyurethanes. An increase in lignin loading increased the modulus, and an increase in crosslink-density increased the modulus in the rubbery plateau region of the thermoplastic. This path for synthesis of novel lignin-based polyurethane thermoplastics provides a design tool for high performance lignin-based biopolymers.
Preparation of sulfonic acid-containing rubbers from natural rubber vulcanizates
Poonsawat, Worapong; Poompradub, Sirilux; Ngamcharussrivichai, Chawalit
2014-06-01
In this work, a series of sulfonic acid-containing rubbers were prepared by aqueous phase oxidation of natural rubber vulcanizates in the presence of hydrogen peroxide (H2O2) and formic acid (HCOOH). The starting vulcanizates were neatly prepared via an efficient vulcanization (EV) system by varying mass ratio of N-cyclohexyl-2-benzothiazole sulfonamide (CBS), as an accelerator, to sulfur. The oxidation conditions were controlled at the molar ratio of H2O2: HCOOH = 1:1, the concentration of H2O2 = 15 wt.%, the temperature = 50 °C, and the reaction time = 3 h. The rubber materials before and after the oxidation were characterized for their physicochemical properties by using Fourier transform infrared spectroscopy, bomb calorimetry, acid-base titration and swelling measurements. The results indicated the presence of sulfonic acid group in the oxidized rubbers, generated by the oxidative cleaves of sulfide crosslinks in the rubber vulcanizates. The oxidation decreased the sulfur content of the rubber in which the level of sulfur loss was determined by the CBS/sulfur ratio. Moreover, the acidity of the oxidized products was correlated with the amount of sulfur remaining.
The network and properties of the NR/SBR vulcanizate modified by electron beam irradiation
Shen, Jing; Wen, Shipeng; Du, Yishi; Li, Ning; Zhang, Liqun; Yang, Yusheng; Liu, Li
2013-11-01
A natural rubber/styrene butadiene rubber (NR/SBR) vulcanizate filled with carbon black was modified by high-energy electron beam (EB) irradiation in this work. The crosslinked structure was studied by a special chemical probe method. The influence of EB irradiation on mechanical properties, filler network, and dynamic properties including abrasion resistance, rolling resistance, and wet skid resistance was also investigated. The results revealed that the crosslink structure significantly changed after EB treatment, indicating that the amount of poly- and di-sulfide crosslinked bonds decreased and that of mono-sulfide bonds increased. The polymer-filler interaction was enhanced after EB irradiation. An EB dose of 600 kGy reduced the abrasion loss of the NR/SBR vulcanizate, and one of 300 kGy reduced the rolling resistance by 11.4%. Meanwhile, EB doses below 200 kGy had no obvious effect on the wet skid resistance. This EB-modified NR/SBR vulcanizate can be used to prepare high-performance tires with good abrasion resistance and low rolling resistance.
Two-phase flow instrumentation
International Nuclear Information System (INIS)
Brand, B.; Emmerling, R.; Fischer, C.; Gaul, H.P.; Umminger, K.
1992-01-01
A careful measurement of the relevant two-phase flow parameters is the basis for the understanding of many thermohydraulic processes. Especially in the nuclear safety research where accident scenarios have to be simulated in experimental setups and predicted by complex computer code systems a reliable tow-phase instrumentation is substantial for the connection between analysis and experiment. Ambitious development programs have been carried out in many institutions and countries to promote two-phase instrumentation. Advantages as well as limitations of some of these systems will be discussed in the paper. In the last 10 - 15 years good progress has been made. However there are still goals for further developments and there is still the fact that in many cases - measured data taken from large experimental facilities cannot be compared directly to the parameters calculated by the codes. Careful comparison and interpretation of both calculated and measured results by experienced researchers will be the key for the thermohydraulic understanding of complex two-phase phenomena also in the future. (authors). 19 figs., 2 tabs., 18 refs
Thermoplastic welding apparatus and method
Energy Technology Data Exchange (ETDEWEB)
Matsen, Marc R.; Negley, Mark A.; Geren, William Preston; Miller, Robert James
2017-03-07
A thermoplastic welding apparatus includes a thermoplastic welding tool, at least one tooling surface in the thermoplastic welding tool, a magnetic induction coil in the thermoplastic welding tool and generally encircling the at least one tooling surface and at least one smart susceptor in the thermoplastic welding tool at the at least one tooling surface. The magnetic induction coil is adapted to generate a magnetic flux field oriented generally parallel to a plane of the at least one smart susceptor.
Kinsuk Naskar, K.N.; Noordermeer, Jacobus W.M.; Kokot, D.
2004-01-01
Stabilizers are used to prevent the degradation of polymers and thereby, to effectively extend their useful lifetime. However, the application of stabilizers in combination with a peroxide-cure system needs special care, because the main function of these materials is to deactivate the radicals
Two phase titanium aluminide alloy
Energy Technology Data Exchange (ETDEWEB)
Deevi, Seetharama C. (Midlothian, VA); Liu, C. T. (Oak Ridge, TN)
2001-01-01
A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.
International Nuclear Information System (INIS)
Boure, J.A.
1974-12-01
Two-phase flow instabilities are classified according to three criteria: the static or dynamic nature of the phenomenon, the necessity or not of a triggering phenomenon, and the pure or compound character of the phenomenon. Tables give the elementary instability phenomena, and the practical types of instability. Flow oscillations (or dynamic instabilities) share a number of characteristics which are dealt with, they are caused by the dynamic interactions between the flow parameters (flow rate, density, pressure, enthalpy and their distributions). Oscillation types are discussed: pure oscillations are density wave oscillations, acoustic oscillations may also occur, various compound oscillations involve either the density wave or the acoustic wave mechanism, interacting with some of the boundary conditions in the device. The analysis of slow oscillations has been made either by means of a simplified model (prediction of the thresholds) or of computer codes. Numerous computer codes are available [fr
Directory of Open Access Journals (Sweden)
I. N. Pugacheva
2013-01-01
Full Text Available The influence of dosage and nature of coagulation agents on molecular weight secreted butadiene-styrene rubber is considered. It is established that the increase of coagulant expense is accompanied by increase of molecular weight that is reflected in indicators received vulcanizates.
Daniel F. Caulfield; Craig Clemons; Rodney E. Jacobson; Roger M. Rowell
2005-01-01
The term âwood-plastic compositesâ refers to any number of composites that contain wood (of any form) and either thermoset or thermoplastic polymers. Thermosets or thermoset polymers are plastics that, once cured, cannot be remelted by heating. These include cured resins, such as epoxies and phenolics, plastics with which the forest products industry is most familiar (...
Daniel F. Caulfield; Craig Clemons; Roger M. Rowell
2010-01-01
The wood industry can expand into new sustainable markets with the formation of a new class of composites with the marriage of the wood industry and the plastics industry. The wood component, usually a flour or fiber, is combined with a thermoplastic to form an extrudable, injectable or thermoformable composite that can be used in many non-structural applications....
Development of a Rapid Thermoplastic Impregnation Device
Weustink, A.P.D.
2007-01-01
A melt impregnation device for rapid thermoplastic impregnation of fiber bundles has been developed through modeling and experiments. The basic principles behind the thermoplastic impregnation process are investigated and the properties needed for a successful thermoplastic impregnation device are
Directory of Open Access Journals (Sweden)
Maryam Mansourirad
2014-12-01
Full Text Available Nowadays, due to environmental concerns, there has been great attention to recycling and reclaiming of tires. Different methods have been used for reclaiming or desulfurization of rubber. One of these methods, in which desulfurization of rubber happens with no damage to the polymer structure, is desulfurization by biological microorganisms. In this research the application and performance of thermophilic and sulfur oxidizing bacteria, Acidianus brierleyi for this purpose was investigated. Ground tire rubber was detoxified with organic solvents, and the optimum conditions for growing microorganisms in the existence of rubber powder in the shaker flasks were determined. In order to accelerate the process, the suitable conditions for growth of bacteria and desulfurization in the bioreactor were adopted. Fourier transfer infrared spectroscopy and scanning electron microscopy were employed to characterize desulfurization of bio-treated powder from bioreactor. The results indicated that morphological changes on powder surface and reduction of sulfur bonds have occurred. Samples from bioreactors, with and without bacteria and also untreated rubber powder were compounded with virgin styrene butadiene rubber. Tensile and dynamic properties were investigated using uni-direction tensile test and dynamic-mechanical-thermal analysis, respectively. Although some differences in dynamic-mechanical-thermal properties of samples pointed to stronger interaction between rubber matrix and treated rubber powder, no significant improvements in the mechanical properties of vulcanizates containing A.brierleyi-treated powder were observed. Low concentration of sulfur in rubber vulcanizates, chemical bonds of sulfur, and low efficiency of A. brierleyi in breaking sulfur bonds and reclaiming rubber were considered as the reasons for low efficiency of this treatment process.
Two-phase flow in refrigeration systems
Gu, Junjie; Gan, Zhongxue
2013-01-01
Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b
Two-phased flow component loss data
International Nuclear Information System (INIS)
Fairhurst, C.P.
1983-01-01
Pressure loss measurements were made for valves and orifice plates under horizontal and vertical two-phase, air/water flow. The results displayed similar trends and were successfully correlated using a semi-empirical approach. (author)
Two phase cooling for superconducting magnets
International Nuclear Information System (INIS)
Eberhard, P.H.; Gibson, G.A.; Green, M.A.; Ross, R.R.; Smits, R.G.; Taylor, J.D.; Watt, R.D.
1986-01-01
Comments on the use of two phase helium in a closed circuit tubular cooling system and some results obtained with the TPC superconducting magnet are given. Theoretical arguments and experimental evidence are given against a previously suggested method to determine helium two phase flow regimes. Two methods to reduce pressure in the magnet cooling tubes during quenches are discussed; (1) lowering the density of helium in the magnet cooling tubes and (2) proper location of pressure relief valves. Some techniques used to protect the refrigerator from too much cold return gas are also mentioned. 10 refs., 1 fig., 5 tabs
Nonlinear dynamics of two-phase flow
International Nuclear Information System (INIS)
Rizwan-uddin
1986-01-01
Unstable flow conditions can occur in a wide variety of laboratory and industry equipment that involve two-phase flow. Instabilities in industrial equipment, which include boiling water reactor (BWR) cores, steam generators, heated channels, cryogenic fluid heaters, heat exchangers, etc., are related to their nonlinear dynamics. These instabilities can be of static (Ledinegg instability) or dynamic (density wave oscillations) type. Determination of regions in parameters space where these instabilities can occur and knowledge of system dynamics in or near these regions is essential for the safe operation of such equipment. Many two-phase flow engineering components can be modeled as heated channels. The set of partial differential equations that describes the dynamics of single- and two-phase flow, for the special case of uniform heat flux along the length of the channel, can be reduced to a set of two coupled ordinary differential equations [in inlet velocity v/sub i/(t) and two-phase residence time tau(t)] involving history integrals: a nonlinear ordinary functional differential equation and an integral equation. Hence, to solve these equations, the dependent variables must be specified for -(nu + tau) ≤ t ≤ 0, where nu is the single-phase residence time. This system of nonlinear equations has been solved analytically using asymptotic expansion series for finite but small perturbations and numerically using finite difference techniques
Two-phase flow in fractured rock
International Nuclear Information System (INIS)
Davies, P.; Long, J.; Zuidema, P.
1993-11-01
This report gives the results of a three-day workshop on two-phase flow in fractured rock. The workshop focused on two-phase flow processes that are important in geologic disposal of nuclear waste as experienced in a variety of repository settings. The goals and objectives of the workshop were threefold: exchange information; describe the current state of understanding; and identify research needs. The participants were divided into four subgroups. Each group was asked to address a series of two-phase flow processes. The following groups were defined to address these processes: basic flow processes; fracture/matrix interactions; complex flow processes; and coupled processes. For each process, the groups were asked to address these four issues: (1) describe the two-phase flow processes that are important with respect to repository performance; (2) describe how this process relates to the specific driving programmatic issues given above for nuclear waste storage; (3) evaluate the state of understanding for these processes; and (4) suggest additional research to address poorly understood processes relevant to repository performance. The reports from each of the four working groups are given here
Two phase transitions in Nuclear Physics
International Nuclear Information System (INIS)
Bes, D.R.
1985-01-01
The status of the art of the problem associated with two phase transitions in the nuclear matter, viz.: the disappearance of the nuclear superfluiditiy with the raising of the rotation velocity and the appearance of an octupolar deformation in the actinide zone, is presented. (L.C.) [pt
Review of two-phase water hammer
International Nuclear Information System (INIS)
Beuthe, T.G.
1997-01-01
In a thermalhydraulic system like a nuclear power plant, where steam and water mix and are used to transport large amounts of energy, there is a potential to create two-phase water hammer. Large water hammer pressure transients are a threat to piping integrity and represent an important safety concern. Such events may cause unscheduled plant down time. The objective of this review is to provide a summary of the information on two-phase water hammer available in the open literature with particular emphasis on water hammer occurrences in nuclear power plants. Past reviews concentrated on studies concerned with preventing water hammer. The present review focuses on the fundamental experimental, analytical, and modelling studies. The papers discussed here were chosen from searches covering up to July 1993. (author)
Apparatus for monitoring two-phase flow
Sheppard, John D.; Tong, Long S.
1977-03-01
A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.
Apparatus for monitoring two-phase flow
International Nuclear Information System (INIS)
Sheppard, J.D.; Tong, L.S.
1977-01-01
A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods. 3 claims, 9 figures
Geometrical automata for two phase flow simulation
International Nuclear Information System (INIS)
Herrero, V.; Guido-Lavalle, G.; Clausse, A.
1996-01-01
An automaton is an entity defined by a mathematical state which changes following iterative rules representing the interaction with the neighborhood. A model of automata for two-phase flow simulation consisting in a field of disks which are allowed to change their radii and move in a plane is presented. The model is more general than the classical cellular automata in two respects: (1) the grid of cellular automata is dismissed in favor of a trajectory generator; and (2) the rules of interaction involve parameters intended to represent some of the most relevant variables governing the actual physical interactions between phases. Computational experiments show that the algorithm captures the essential physics underlying two-phase flow problems such as bubbly-slug pattern transition and void fraction development along tubes. A comparison with experimental data of void fraction profiles is presented, showing excellent agreement. (orig.)
Critical thinking: a two-phase framework.
Edwards, Sharon L
2007-09-01
This article provides a comprehensive review of how a two-phase framework can promote and engage nurses in the concepts of critical thinking. Nurse education is required to integrate critical thinking in their teaching strategies, as it is widely recognised as an important part of student nurses becoming analytical qualified practitioners. The two-phase framework can be incorporated in the classroom using enquiry-based scenarios or used to investigate situations that arise from practice, for reflection, analysis, theorising or to explore issues. This paper proposes a two-phase framework for incorporation in the classroom and practice to promote critical thinking. Phase 1 attempts to make it easier for nurses to organise and expound often complex and abstract ideas that arise when using critical thinking, identify more than one solution to the problem by using a variety of cues to facilitate action. Phase 2 encourages nurses to be accountable and responsible, to justify a decision, be creative and innovative in implementing change.
Review of two-phase instabilities
International Nuclear Information System (INIS)
Kang, Han Ok; Seo, Han Ok; Kang, Hyung Suk; Cho, Bong Hyun; Lee, Doo Jeong
1997-06-01
KAERI is carrying out a development of the design for a new type of integral reactors. The once-through helical steam generator is important design features. The study on designs and operating conditions which prevent flow instability should precede the introduction of one-through steam generator. Experiments are currently scheduled to understand two-phase instability, evaluate the effect of each design parameter on the critical point, and determine proper inlet throttling for the prevention of instability. This report covers general two-phase instability with review of existing studies on this topics. The general classification of two phase flow instability and the characteristics of each type of instability are first described. Special attention is paid to BWR core flow instability and once-through steam generator instability. The reactivity feedback and the effect of system parameters are treated mainly for BWR. With relation to once-through steam generators, the characteristics of convective heating and dryout point oscillation are first investigated and then the existing experimental studies are summarized. Finally chapter summarized the proposed correlations for instability boundary conditions. (author). 231 refs., 5 tabs., 47 figs
Coupling Two-Phase Fluid Flow with Two-Phase Darcy Flow in Anisotropic Porous Media
Directory of Open Access Journals (Sweden)
Jie Chen
2014-06-01
Full Text Available This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow.
Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media
Chen, J.
2014-06-03
This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow. 2014 Jie Chen et al.
Rheological properties of olefinic thermoplastic elastomer blends
Sengers, W.G.F.
2005-01-01
Thermoplastic Elastomers (TPE) are a class of materials that have rubber-like properties and can be processed like thermoplastic polymers. In this thesis, the rheological properties of two TPE blends are correlated to their morphology. The thermoplastic vulcanisates (TPV) consist of micron-sized,
One- and Two-Phase Nozzle Flows.
1980-01-31
PROJECT. TASK The Aerospace Corporation El Segundo, Calif. 90245 11. CONTROLLING OFFICE NAME AND ADDRESS Space Division31jnv 087 Air Force Systems Command...and identify by block .eintber) Gas-particle Two- phase Nozzle Transonic Flow Corn utational Method 20. AS Tf ACT (Continue an reverse side it...Dec. 1978. -51- 74.22 in. Fig.~~~~~~~ U 28.L USmalMOTOR Itro ofgrto n AEXI Fig. 2. BFC Gridl foor Smaio CUonfM igrtho n Somutaterged Noeglock x -344in
Two-phase flow dynamics in ECC
International Nuclear Information System (INIS)
Albraaten, P.J.
1981-07-01
The present report summarizes the achievements within the project ''Two-phase Systems and ECC''. The results during 1978 - 1980 are accounted for in brief as they have been documented in earlier reports. The results during the first half of 1981 are accounted for in greater detail. They contain a new model for the Basset force and test runs with this model using the test code RISQUE. Furthermore, test runs have been performed with TRAC-PD2 MOD 1. This code was implemented on Edwards Pipe Blowdown experiment (a standard test case) and UC-Berkeley Reflooding experiment (a non-standard test case.) (Auth.)
Microgravity Two-Phase Flow Transition
Parang, M.; Chao, D.
1999-01-01
Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.
Two Phase Flow Simulation Using Cellular Automata
International Nuclear Information System (INIS)
Marcel, C.P.
2002-01-01
The classical mathematical treatment of two-phase flows is based on the average of the conservation equations for each phase.In this work, a complementary approach to the modeling of these systems based on statistical population balances of aut omata sets is presented.Automata are entities defined by mathematical states that change following iterative rules representing interactions with the neighborhood.A model of automata for two-phase flow simulation is presented.This model consists of fie lds of virtual spheres that change their volumes and move around a certain environment.The model is more general than the classical cellular automata in two respects: the grid of cellular automata is dismissed in favor of a trajectory generator, and the rules of interaction involve parameters representing the actual physical interactions between phases.Automata simulation was used to study unsolved two-phase flow problems involving high heat flux rates. One system described in this work consists of a vertical channel with saturated water at normal pressure heated from the lower surface.The heater causes water to boil and starts the bubble production.We used cellular automata to describe two-phase flows and the interaction with the heater.General rule s for such cellular automata representing bubbles moving in stagnant liquid were used, with special attention to correct modeling of different mechanisms of heat transfer.The results of the model were compared to previous experiments and correlations finding good agreement.One of the most important findings is the confirmation of Kutateladze's idea about a close relation between the start of critical heat flux and a change in the flow's topology.This was analyzed using a control volume located in the upper surface of the heater.A strong decrease in the interfacial surface just before the CHF start was encountered.The automata describe quite well some characteristic parameters such as the shape of the local void fraction in the
Thermoplastic starch materials prepared from rice starch
International Nuclear Information System (INIS)
Pontes, Barbara R.B.; Curvelo, Antonio A.S.
2009-01-01
Rice starch is a source still little studied for the preparation of thermoplastic materials. However, its characteristics, such as the presence of proteins, fats and fibers may turn into thermoplastics with a better performance. The present study intends the evaluation of the viability of making starch thermoplastic from rice starch and glycerol as plasticizer. The results of X-ray diffraction and scanning electronic microscopy demonstrate the thermoplastic acquisition. The increase of plasticizer content brings on more hydrophilic thermoplastics with less resistance to tension and elongation at break. (author)
Stability of oscillatory two phase Couette flow
Coward, Adrian V.; Papageorgiou, Demetrios T.
1993-01-01
We investigate the stability of two phase Couette flow of different liquids bounded between plane parallel plates. One of the plates has a time dependent velocity in its own plane, which is composed of a constant steady part and a time harmonic component. In the absence of time harmonic modulations, the flow can be unstable to an interfacial instability if the viscosities are different and the more viscous fluid occupies the thinner of the two layers. Using Floquet theory, we show analytically in the limit of long waves, that time periodic modulations in the basic flow can have a significant influence on flow stability. In particular, flows which are otherwise unstable for extensive ranges of viscosity ratios, can be stabilized completely by the inclusion of background modulations, a finding that can have useful consequences in many practical applications.
Thitithammawong, A.; Thitithammawong, A.; Nakason, C.; Sahakaro, Kannika; Noordermeer, Jacobus W.M.
2007-01-01
A proper balance between degree crosslinking of ENR and degradation of PP-phase, and the tendency of peroxide to form smelly by-products, in particular acetophenone are investigated on a 60/40 ENR/PP TPV. Four types of peroxides were used at two mixing temperatures: 160 and 180 oC. The maximum and
Two-phase flow models in unbounded two-phase critical flows
International Nuclear Information System (INIS)
Celata, G.P.; Cumo, M.; Farello, G.E.
1985-01-01
With reference to a Loss-of-Coolant Accident in Light Water Reactors, an analysis of the unbounded two-phase critical flow (i.e. the issuing two-phase jet) has been accomplished. Considering jets external shape, obtained by means of photographic pictures; pressure profiles inside the jet, obtained by means of a movable ''Pitot;'' and jet phases distribution information, obtained by means of X-rays pictures; a characterization of the flow pattern in the unbounded region of a two-phase critical flow is given. Jets X-ray pictures show the existence of a central high density ''core'' gradually evaporating all around, which gives place to a characteristic ''dartflow'' the length of which depends on stagnation thermodynamic conditions
Friction Testing of Thermoplastic Composites
Sachs, Ulrich; Haanappel, Sebastiaan; Rietman, Bert; Akkerman, Remko; Erath, Mark A.
2011-01-01
Friction phenomena play a major role in thermoplastic composite forming processes. In order to make use of the large potential these materials have, accurate CAE tools are needed that as a consequence incorporate temperature, pressure and velocity dependent friction behavior. To obtain a sound
Feng, Wenlai
This is a study of the continuous ultrasound aided extrusion process for the in-situ compatibilization of isotactic polypropylene (iPP)/ethylene-propylene diene rubber (EPDM) thermoplastic elastomer (TPE) using a newly developed ultrasonic treatment reactor. The rheological, mechanical properties and morphology of the TPE with and without ultrasonic treatment were studied. In-situ compatibilization in the ultrasonically treated blends was observed as evident by their more stable morphology after annealing, improved mechanical properties and IR spectra. The obtained results indicated that ultrasonic treatment induced the thermo-mechanical degradations and led to the possibility of enhanced molecular transport and chemical reactions at the interfaces. Processing conditions were established for enhanced in situ compatibilization of the PP/EPDM TPE. The ultrasonic treatments of butyl rubber gum and ultrasonic devulcanization of butyl rubber, tire-curing bladder during extrusion using a grooved barrel ultrasonic reactor were carried out. The ultrasonic treatment of gum caused degradation of the polymer main chain leading to lower molecular weight, broader molecular weight distribution, less unsaturation and changes in physical properties. The devulcanization of butyl rubber was successfully accomplished only at severe conditions of ultrasonic treatment. The mechanical properties of vulcanizates prepared from devulcanized butyl rubber are comparable to that of the virgin vulcanizate. The molecular characterization of sol fraction of devulcanized butyl rubber showed the devulcanization and degradation of butyl rubber occurred simultaneously. 1H NMR transverse relaxation was also used to study butyl rubber gum before and after ultrasonic treatment, and ultrasonically devulcanized unfilled butyl rubber. The T2 relaxation decays were successfully described using a two-component model. The recyclability of tire-curing bladder was also investigated. Gel fraction, crosslink
Constitutive equations for two-phase flows
International Nuclear Information System (INIS)
Boure, J.A.
1974-12-01
The mathematical model of a system of fluids consists of several kinds of equations complemented by boundary and initial conditions. The first kind equations result from the application to the system, of the fundamental conservation laws (mass, momentum, energy). The second kind equations characterize the fluid itself, i.e. its intrinsic properties and in particular its mechanical and thermodynamical behavior. They are the mathematical model of the particular fluid under consideration, the laws they expressed are so called the constitutive equations of the fluid. In practice the constitutive equations cannot be fully stated without reference to the conservation laws. Two classes of model have been distinguished: mixture model and two-fluid models. In mixture models, the mixture is considered as a single fluid. Besides the usual friction factor and heat transfer correlations, a single constitutive law is necessary. In diffusion models, the mixture equation of state is replaced by the phasic equations of state and by three consitutive laws, for phase change mass transfer, drift velocity and thermal non-equilibrium respectively. In the two-fluid models, the two phases are considered separately; two phasic equations of state, two friction factor correlations, two heat transfer correlations and four constitutive laws are included [fr
Moerk, J. Steven (Inventor); Youngquist, Robert C. (Inventor); Werlink, Rudy J. (Inventor)
1999-01-01
A quality and/or flow meter employs a capacitance probe assembly for measuring the dielectric constant of flow stream, particularly a two-phase flow stream including liquid and gas components.ne dielectric constant of the flow stream varies depending upon the volume ratios of its liquid and gas components, and capacitance measurements can therefore be employed to calculate the quality of the flow, which is defined as the volume ratio of liquid in the flow to the total volume ratio of gas and liquid in the flow. By using two spaced capacitance sensors, and cross-correlating the time varying capacitance values of each, the velocity of the flow stream can also be determined. A microcontroller-based processing circuit is employed to measure the capacitance of the probe sensors.The circuit employs high speed timer and counter circuits to provide a high resolution measurement of the time interval required to charge each capacitor in the probe assembly. In this manner, a high resolution, noise resistant, digital representation of each of capacitance value is obtained without the need for a high resolution A/D converter, or a high frequency oscillator circuit. One embodiment of the probe assembly employs a capacitor with two ground plates which provide symmetry to insure that accurate measurements are made thereby.
Condensation in a two-phase pool
International Nuclear Information System (INIS)
Duffey, R.B.; Hughes, E.D.
1991-01-01
We consider the case of vapor condensation in a liquid pool, when the heat transfer is controlled by heat losses through the walls. The analysis is based on drift flux theory for phase separation in the pool, and determines the two-phase mixture height for the pool. To our knowledge this is the first analytical treatment of this classic problem that gives an explicit result, previous work having established the result for the evaporative case. From conservation of mass and energy in a one-dimensional steady flow, together with a void relation between the liquid and vapor fluxes, we determine the increase in the mixture level from the base level of the pool. It can be seen that the thermal and hydrodynamic influences are separable. Thus, the thermal influence of the wall heat transfer appears through its effect on the condensing length L*, so that at high condensation rates the pool is all liquid, and at low rates overflows (the level swell or foaming effect). Similarly, the phase separation effect hydrodynamically determines the height via the relative velocity of the mixture to the entering flux. We examine some practical applications of this result to level swell in condensing flows, and also examine some limits in ideal cases
Two-phase flux simulations by robots
International Nuclear Information System (INIS)
Barrera, F.D.
1997-01-01
Two-Phase flow systems are studied following the statistical formulation, which takes into account the bubble population balances. This is done by means of automata simulation. Geometrical automata are associated to the dispersed phase, and are represented by discs on the plane, resembling bubbles moving in a fluid environment. Following pre-determined rules, the automata evolve, and useful statistical information about their interaction is obtained. This information is applied in the present work to study the mechanisms that induce bubble coalescence. Models for one and two sized automata are presented. It was found that in the case of the model for one size, the probability of interaction among bubbles and the pair correlation function depends not only on the void fraction, but also on the number of elements of the dispersed phase. A correlation for the collision probability between two bubbles is obtained, and this result was extended to the pair correlation function. For the case of systems with two characteristic sizes, a model was formulated for analyzing the interaction among bubbles of the two groups. The interaction of bubbles for one and two sized systems were related by a symmetry factor, which shows the dependence of the interaction among bubbles with the size distribution. By means of the automata simulation, the phenomena of bubble confinement and screening were characterized. It was found that the first phenomenon is stronger in systems with greater distance among bubbles, and that the second effect increases with void fraction and bubble number. (author)
Pressure Loss across Tube Bundles in Two-phase Flow
International Nuclear Information System (INIS)
Sim, Woo Gun; Banzragch, Dagdan
2016-01-01
An analytical model was developed by Sim to estimate the two-phase damping ratio for upward two-phase flow perpendicular to horizontal tube bundles. The parameters of two-phase flow, such as void fraction and pressure loss evaluated in the model, were calculated based on existing experimental formulations. However, it is necessary to implement a few improvements in the formulations for the case of tube bundles. For the purpose of the improved formulation, we need more information about the two-phase parameters, which can be found through experimental test. An experiment is performed with a typical normal square array of cylinders subjected to the two-phase flow of air-water in the tube bundles, to calculate the two-phase Euler number and the two-phase friction multiplier. The pitch-to-diameter ratio is 1.35 and the diameter of cylinder is 18mm. Pressure loss along the flow direction in the tube bundles is measured with a pressure transducer and data acquisition system to calculate the two-phase Euler number and the two-phase friction multiplier. The void fraction model by Feenstra et al. is used to estimate the void fraction of the two-phase flow in tube bundles. The experimental results of the two phase friction multiplier and two-phase Euler number for homogeneous and non-homogeneous two-phase flows are compared and evaluated against the analytical results given by Sim's model
Two-phase Heating in Flaring Loops
Zhu, Chunming; Qiu, Jiong; Longcope, Dana W.
2018-03-01
We analyze and model a C5.7 two-ribbon solar flare observed by the Solar Dynamics Observatory, Hinode, and GOES on 2011 December 26. The flare is made of many loops formed and heated successively over one and half hours, and their footpoints are brightened in the UV 1600 Å before enhanced soft X-ray and EUV missions are observed in flare loops. Assuming that anchored at each brightened UV pixel is a half flaring loop, we identify more than 6700 half flaring loops, and infer the heating rate of each loop from the UV light curve at the footpoint. In each half loop, the heating rate consists of two phases: intense impulsive heating followed by a low-rate heating that is persistent for more than 20 minutes. Using these heating rates, we simulate the evolution of their coronal temperatures and densities with the model of the “enthalpy-based thermal evolution of loops.” In the model, suppression of thermal conduction is also considered. This model successfully reproduces total soft X-ray and EUV light curves observed in 15 passbands by four instruments GOES, AIA, XRT, and EVE. In this flare, a total energy of 4.9 × 1030 erg is required to heat the corona, around 40% of this energy is in the slow-heating phase. About two-fifths of the total energy used to heat the corona is radiated by the coronal plasmas, and the other three fifth transported to the lower atmosphere by thermal conduction.
Vapor Compressor Driven Hybrid Two-Phase Loop, Phase I
National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will demonstrate a vapor compressor driven hybrid two-phase loop technology. The hybrid two-phase loop...
Diamond turning of thermoplastic polymers
Energy Technology Data Exchange (ETDEWEB)
Smith, E.; Scattergood, R.O.
1988-12-01
Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.
[Mechanical properties of thermoplastic materials].
Zhang, Ning; Bai, Yu-xing; Zhang, Kun-ya
2010-09-14
To investigate the mechanical properties of various brands of thermoplastic materials under different test conditions so as to analyze their influencing factors so as to provide a reference for improving the effect of invisible orthodontics. Three brands of thermoplastic materials, DR, Biolon and Erkodent, were selected. They were tested by Instron testing machine to measure their maximal stress and modulus under different processing modes, including pre-thermoforming, post-thermoforming and dipped in artificial saliva for two weeks after thermoforming. The data were analyzed by SPSS 11.5. Analyzed the mechanical properties change-trend under each test condition. The modulus (MPa) and maximum stress (MPa) of control group were significantly higher than those of thermoforming group (DR: 9.63±0.68 vs 7.85±0.61, 267±8 vs 199±6; Erkodent: 8.28±0.28 vs 7.59±0.45, 226±6 vs 199±6; Biolon: 8.85±0.41 vs 7.07±0.22, 237±6 vs 169±7, all P<0.05). The modulus (MPa) and maximum stress (MPa) of thermoforming group were significantly lower than those of saliva immersion group (DR: 7.85±0.61 vs 9.14±0.41, 199±6 vs 243±7; Erkodent: 7.59 ± 0.45 vs 8.38±0.29, 199±6 vs 212±7; Biolon: 7.07±0.22 vs 7.90±0.31, 169±7 vs 197±5, all P<0.05). The different brands of thermoplastic materials have different mechanical properties. The different processing modes influence the mechanical properties of thermoplastic materials. The mechanical properties decrease after thermoforming and increase after saliva immersion.
Thermo-fluid dynamics of two-phase flow
Ishii, Mamoru; Ishii, Mamoru; Ishii, M
2006-01-01
Provides a very systematic treatment of two phase flow problems from a theoretical perspectiveProvides an easy to follow treatment of modeling and code devlopemnt of two phase flow related phenomenaCovers new results of two phase flow research such as coverage of fuel cells technology.
Residual Stresses in Thermoplastic Composites: A Review
Directory of Open Access Journals (Sweden)
M.M. Shokrieh
2008-12-01
Full Text Available Applications of thermoplastic composites have developed extensively. The thermoplastic composites in comparison with the thermoset composites have many advantages. Thermoplastic composites can be melted and remolded many times. The duration of manufacturing process of these composites is short, producing very tough material, and the welding ability and multiple recyclings are their further advantages. The lack of knowledge in this group of composites is the main obstacle in their development. In this review the research works in the field of residual stresses in thermoplastic composites is presented. First, a literature survey on the available research on residual stresses on thermoplastics and thermoplastic composites reinforced with short fibers is compiled. Moreover a review on the available research on residual stresses on thermoplastic composites reinforced with long fibers is presented as well. The effects of the residual stresses on these composites are discussed. Experimental techniques for the measurement of residual stresses in thermoplastic composites and the methods for reducing the existing residual stresses are studied.
Interlaminar toughness of fusion bonded thermoplastic composites
Sacchetti, Francisco R.
2017-01-01
Thermoplastic composites are of increasing interest to the aerospace industry. The melt-processability of the thermoplastic matrix allows for fast manufacturing and assembling techniques, such as thermoforming and fusion bonding, which are also highly suitable for process automation. Fusion bonding
System identification on two-phase flow stability
International Nuclear Information System (INIS)
Wu Shaorong; Zhang Youjie; Wang Dazhong; Bo Jinghai; Wang Fei
1996-01-01
The theoretical principle, experimental method and results of interrelation analysis identification for the instability of two-phase flow are described. A completely new concept of test technology and method on two-phase flow stability was developed by using he theory of information science on system stability and system identification for two-phase flow stability in thermo-physics field. Application of this method would make it possible to identify instability boundary of two-phase flow under stable operation conditions of two-phase flow system. The experiment was carried out on the thermohydraulic test system HRTL-5. Using reverse repeated pseudo-random sequences of heating power as input signal sources and flow rate as response function in the test, the two-phase flow stability and stability margin of the natural circulation system are investigated. The effectiveness and feasibility of identifying two-phase flow stability by using this system identification method were experimentally demonstrated. Basic data required for mathematics modeling of two-phase flow and analysis of two-phase flow stability were obtained, which are useful for analyzing, monitoring of the system operation condition, and forecasting of two-phase flow stability in engineering system
Investigation of Polyvinyl Chloride and Thermoplastic Polyurethane Waste Blend Miscibility
Directory of Open Access Journals (Sweden)
Agnė LAUKAITIENĖ
2013-12-01
Full Text Available In this study the miscibility of polyvinyl chloride (PVC and poly-e-caprolactone based thermoplastic polyurethanes (TPU waste blends were investigated by dilute solution viscometry. The miscibility criteria a, Db, DB, and D[h] were used to assess the degree of miscibility of polymers in tetrahydrofuran solution. Also, to assess the miscibility and microstructure of PVC/TPU blends obtained by solution casting have been characterized by X-ray diffraction. The tensile strength and deformability properties varying on the blend composition were determined. It was found that PVC and TPU are partially miscible, their blend is amorphous and show two-phase structure. TPU changes the mechanical behaviour of PVC the blends. Increase of TPU content causes PVC elongation at break increase and tensile strength decreases. DOI: http://dx.doi.org/10.5755/j01.ms.19.4.3145
A review of damping of two-phase flows
International Nuclear Information System (INIS)
Hara, Fumio
1993-01-01
Damping of two-phase flows has been recognized as one of the most unknown parameters in analyzing vibrational characteristics of structures subjected to two-phase flows since it seems to be influenced by many physical parameters involved in the physics of dynamic energy dissipation of a vibrating structure, for example, liquid viscosity, surface tension, flow velocity, mass ratio, frequency, void fraction, flow regime and so forth. This paper deals with a review of scientific works done to date on the damping of two phase flows and discussions about what has been clarified and what has not been known to us, or what kinds of research are needed about two-phase flow damping. The emphasis is put on the definition of two-phase fluid damping, damping measurement techniques, damping characteristics in relation to two phase flow configurations, and damping generation mechanisms
Forced two phase helium cooling of large superconducting magnets
International Nuclear Information System (INIS)
Green, M.A.; Burns, W.A.; Taylor, J.D.
1979-08-01
A major problem shared by all large superconducting magnets is the cryogenic cooling system. Most large magnets are cooled by some variation of the helium bath. Helium bath cooling becomes more and more troublesome as the size of the magnet grows and as geometric constraints come into play. An alternative approach to cooling large magnet systems is the forced flow, two phase helium system. The advantages of two phase cooling in many magnet systems are shown. The design of a two phase helium system, with its control dewar, is presented. The paper discusses pressure drop of a two phase system, stability of a two phase system and the method of cool down of a two phase system. The results of experimental measurements at LBL are discussed. Included are the results of cool down and operation of superconducting solenoids
Two-phase flow experimental studies in micro-models
Karadimitriou, N.K.
2013-01-01
The aim of this research project was to put more physics into theories of two-phase flow. The significance of including interfacial area as a separate variable in two-phase flow and transport models was investigated. In order to investigate experimentally the significance of the inclusion of
Thermoplastic composites for ballistic application
Song, John Whachong
2003-08-01
Systematic studies of thermoplastic composites on ballistic impact failure and kinetic energy absorption mechanisms were examined on both semicrystalline and amorphous polymer matrix composites. By taking advantages of the nature of thermoplastic polymers, the main objective of this research was to develop armor grade composites with thermoplastic resin matrices through a understanding of the microscopic as well as macroscopic characteristics of the composites. In both semicrystalline neat resin and composites, the crystal formation and the degree of crystallinity of the polymer matrix were greatly influenced by processing conditions, especially, the cooling rate. As the cooling rate is decreased, more perfect crystal formation and amorphous rearrangements were evident vs cooling at higher rates. The relative degree of crystallinity of semicrystalline matrix composites was calculated using dynamic mechanical analysis (DMA). These values were in good agreement with neat resin values obtained via differantial scanning calorimeter (DSC). Unfortunately, the morphological perfection of the semicrystalline matrix exhibits negligible advantage on ballistic impact resistance. Failure of the composites under ballistic impact was localized and the kinetic energy absorption was low. Amorphous polymers were also greatly influenced by processing conditions. Furthermore, amorphous polymers exhibit large processing windows in terms of processing temperature, which allows the various processing manipulations for ballistic composite fabrication. As increasing processing temperature, glass transition temperature of the polymer and stiffness of the composite increased due to the morphological perfection and level of wetting, respectively. Ballistic impact resistance was found to be inversely proportional to the stiffness of the composites. Fiber wetting characteristics and polymer morphology changes during the cooling process are considered to be major contributors of this behavior
Modeling two-phase flow in PEM fuel cell channels
Energy Technology Data Exchange (ETDEWEB)
Wang, Yun; Basu, Suman; Wang, Chao-Yang [Electrochemical Engine Center (ECEC), and Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)
2008-05-01
This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M{sup 2} formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels. (author)
Turning Renewable Resources into Recyclable Polymer: Development of Lignin-Based Thermoplastic
Energy Technology Data Exchange (ETDEWEB)
Saito, Tomonori [ORNL; Brown, Rebecca H [ORNL; Hunt, Marcus A [ORNL; Pickel, Deanna L [ORNL; Pickel, Joseph M [ORNL; Messman, Jamie M [ORNL; Baker, Frederick S [ORNL; Keller, Martin [ORNL; Naskar, Amit K [ORNL
2012-01-01
Productive uses of lignin, the third most abundant natural polymer, have been sought for decades. One especially attractive possibility is that of developing value-added products including thermoplastics based on lignin. This possibility warrants special attention due to growth of the modern biofuel industries. However, the polydisperse molecular weight and hyper-branched structure of lignin has hindered the creation of high-performance biopolymers. Here, we report the preparation and characterization of novel lignin-based, partially carbon-neutral thermoplastics. We first altered the molecular weight of lignin, either by fractionation with methanol, or by formaldehyde crosslinking. A crosslinking of lignin increases the molecular weight, exhibiting Mn = 31000 g/mol, whereas that of native lignin is 1840 g/mol. Tuning the molecular weight of lignin enabled successful preparation of novel lignin-derived thermoplastics, when coupled with telechelic polybutadiene soft-segments at proper feed ratios. Characteristic to thermoplastic rubbers, free-standing films of the resulting copolymers exhibit two-phase morphology and associated relaxations in the dynamic mechanical loss spectrum. To our knowledge this article is the first report to demonstrate phase immiscibility, melt-processibility, and biphasic morphology of soft and hard segments in a lignin-based copolymer for all feed ratios of two macromolecular components. The use of higher molecular weight lignin enhanced the resulting shear modulus due to efficient network formation of telechelic polybutadiene bridges. The storage modulus in the rubbery plateau region increased with increasing lignin content. The successful synthesis of novel lignin-based thermoplastics will open a new pathway to biomass utilization and will help conserve petrochemicals.
Research on one-dimensional two-phase flow
International Nuclear Information System (INIS)
Adachi, Hiromichi
1988-10-01
In Part I the fundamental form of the hydrodynamic basic equations for a one-dimensional two-phase flow (two-fluid model) is described. Discussions are concentrated on the treatment of phase change inertial force terms in the equations of motion and the author's equations of motion which have a remarkable uniqueness on the following three points. (1) To express force balance of unit mass two-phase fluid instead of that of unit volume two-phase fluid. (2) To pick up the unit existing mass and the unit flowing mass as the unit mass of two-phase fluid. (3) To apply the kinetic energy principle instead of the momentum low in the evaluation of steady inertial force term. In these three, the item (1) is for excluding a part of momentum change or kinetic energy change due to mass change of the examined part of fluid, which is independent of force. The item (2) is not to introduce a phenomenological physical model into the evaluation of phase change inertial force term. And the item (3) is for correctly applying the momentum law taking into account the difference of representative velocities between the main flow fluid (vapor phase or liquid phase) and the phase change part of fluid. In Part II, characteristics of various kinds of high speed two-phase flow are clarified theoretically by the basic equations derived. It is demonstrated that the steam-water two-phase critical flow with violent flashing and the airwater two-phase critical flow without phase change can be described with fundamentally the same basic equations. Furthermore, by comparing the experimental data from the two-phase critical discharge test and the theoretical prediction, the two-phase discharge coefficient, C D , for large sharp-edged orifice is determined as the value which is not affected by the experimental facility characteristics, etc. (author)
State of the art: two-phase flow calibration techniques
International Nuclear Information System (INIS)
Stanley, M.L.
1977-01-01
The nuclear community faces a particularly difficult problem relating to the calibration of instrumentation in a two-phase flow steam/water environment. The rationale of the approach to water reactor safety questions in the United States demands that accurate measurements of mass flows in a decompressing two-phase flow be made. An accurate measurement dictates an accurate calibration. This paper addresses three questions relating to the state of the art in two-phase calibration: (1) What do we mean by calibration. (2) What is done now. (3) What should be done
Thermo-Fluid Dynamics of Two-Phase Flow
Ishii, Mamrou
2011-01-01
"Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part
Dynamic Modeling of Phase Crossings in Two-Phase Flow
DEFF Research Database (Denmark)
Madsen, Søren; Veje, Christian; Willatzen, Morten
2012-01-01
Two-phase flow and heat transfer, such as boiling and condensing flows, are complicated physical phenomena that generally prohibit an exact solution and even pose severe challenges for numerical approaches. If numerical solution time is also an issue the challenge increases even further. We present...... here a numerical implementation and novel study of a fully distributed dynamic one-dimensional model of two-phase flow in a tube, including pressure drop, heat transfer, and variations in tube cross-section. The model is based on a homogeneous formulation of the governing equations, discretized...... of the variables and are usually very slow to evaluate. To overcome these challenges, we use an interpolation scheme with local refinement. The simulations show that the method handles crossing of the saturation lines for both liquid to two-phase and two-phase to gas regions. Furthermore, a novel result obtained...
Visual Analysis of Inclusion Dynamics in Two-Phase Flow.
Karch, Grzegorz Karol; Beck, Fabian; Ertl, Moritz; Meister, Christian; Schulte, Kathrin; Weigand, Bernhard; Ertl, Thomas; Sadlo, Filip
2018-05-01
In single-phase flow visualization, research focuses on the analysis of vector field properties. In two-phase flow, in contrast, analysis of the phase components is typically of major interest. So far, visualization research of two-phase flow concentrated on proper interface reconstruction and the analysis thereof. In this paper, we present a novel visualization technique that enables the investigation of complex two-phase flow phenomena with respect to the physics of breakup and coalescence of inclusions. On the one hand, we adapt dimensionless quantities for a localized analysis of phase instability and breakup, and provide detailed inspection of breakup dynamics with emphasis on oscillation and its interplay with rotational motion. On the other hand, we present a parametric tightly linked space-time visualization approach for an effective interactive representation of the overall dynamics. We demonstrate the utility of our approach using several two-phase CFD datasets.
Vapor Compressor Driven Hybrid Two-Phase Loop, Phase II
National Aeronautics and Space Administration — The Phase I project successfully demonstrated the feasibility of the vapor compression hybrid two-phase loop (VCHTPL). The test results showed the high...
Two-phase cooling fluids; Les fluides frigoporteurs diphasiques
Energy Technology Data Exchange (ETDEWEB)
Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Lyon (France)
1997-12-31
In the framework of the diminution of heat transfer fluid consumption, the concept of indirect refrigerating circuits, using cooling intermediate fluids, is reviewed and the fluids that are currently used in these systems are described. Two-phase cooling fluids advantages over single-phase fluids are presented with their thermophysical characteristics: solid fraction, two-phase mixture enthalpy, thermal and rheological properties, determination of heat and mass transfer characteristics, and cold storage through ice slurry
Digital image processing for two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Lee, Jae Young; Lim, Jae Yun [Cheju National University, Cheju (Korea, Republic of); No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1992-07-01
A photographic method to measure the key parameters of two-phase flow is realized by using a digital image processing technique. The 8 bit gray level and 256 x 256 pixels are used to generates the image data which is treated to get the parameters of two-phase flow. It is observed that the key parameters could be identified by treating data obtained by the digital image processing technique.
Refrigeration. Two-Phase Flow. Flow Regimes and Pressure Drop
DEFF Research Database (Denmark)
Knudsen, Hans-Jørgen Høgaard
2002-01-01
The note gives the basic definitions used in two-phase flow. Flow regimes and flow regimes map are introduced. The different contributions to the pressure drop are stated together with an imperical correlation from the litterature.......The note gives the basic definitions used in two-phase flow. Flow regimes and flow regimes map are introduced. The different contributions to the pressure drop are stated together with an imperical correlation from the litterature....
Stochastic modelling of two-phase flows including phase change
International Nuclear Information System (INIS)
Hurisse, O.; Minier, J.P.
2011-01-01
Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models. (authors)
Contribution to the theory of the two phase blowdown phenomenon
International Nuclear Information System (INIS)
Hutcherson, M.N.
1975-12-01
In order to accurately model the two phase portion of a pressure vessel blowdown, it becomes necessary to understand the bubble growth mechanism within the vessel during the early period of the decompression, the two phase flow behavior within the vessel, and the applicability of the available two phase critical flow models to the blowdown transient. To aid in providing answers to such questions, a small scale, separate effects, isothermal blowdown experiment has been conducted in a small pressure vessel. The tests simulated a full open, double ended, guillotine break in a large diameter, short exhaust duct from the vessel. The vaporization process at the initiation of the decompression is apparently that of thermally dominated bubble growth originating from the surface cavities inside the system. Thermodynamic equilibrium of the remaining fluid within the vessel existed in the latter portion of the decompression. A nonuniform distribution of fluid quality within the vessel was also detected in this experiment. By comparison of the experimental results from this and other similar transient, two phase critical flow studies with steady state, small duct, two phase critical flow data, it is shown that transient, two phase critical flow in large ducts appears to be similar to steady state, two phase critical flow in small ducts. Analytical models have been developed to predict the blowdown characteristics of a system during subcooled decompression, the bubble growth regime of blowdown, and also in the nearly dispersed period of depressurization. This analysis indicates that the system pressure history early in the blowdown is dependent on the internal vessel surface area, the internal vessel volume, and also on the exhaust flow area from the system. This analysis also illustrates that the later period of decompression can be predicted based on thermodynamic equilibrium
A two-phase damping model on tube bundles subjected to two-phase cross-flow
Energy Technology Data Exchange (ETDEWEB)
Sim, Woo Gun [Hannam University, Daejeon (Korea, Republic of); Mureithi, N. W. [Ecole Polytechnique, Montreal (Canada)
2014-02-15
An analytical model is developed to estimate the two-phase damping ratio for upward cross-flow through horizontal tube bundles. The present model is formulated based on Feenstra's model (2000) for void fraction and various models (homogeneous, Levy, MartinelliNelson and Marchaterre) for two-phase friction multiplier. The analytical results of drag coefficient on a cylinder and two-phase Euler number are compared with the experimental results by Sim-Mureithi (2013). The correlation factor between frictional pressure drop and the hydraulic drag coefficient is evaluated by considering the experimental results. The two-phase damping ratios given by the analytical model are compared with existing experimental results. The model based on Marchaterre's model is suitable for air-water mixture, whereas the Martinelli-Nelson's model is suitable for steam-water and Freon mixtures. The two-phase damping ratio is independent of pitch mass flux for air-water mixture, but is more or less influenced by the mass flux for steam-water/Freon (134) mixtures. The two phase damping ratios given by the present model agree well with experimental results for a wide range of pitch mass ratio, quality, and p/d ratios.
Multi-scale effects in the consolidation of thermoplastic laminates
Grouve, Wouter Johannes Bernardus; Akkerman, Remko
2009-01-01
Consolidation experiments were performed on thermoplastic composite laminates produced by film- stacking. The results suggest that the consolidation takes place in different stages: plastic deformation of the thermoplastic film, meso-impregnation and finally micro-impregnation. However, the
Experimental investigation two phase flow in direct methanol fuel cells
International Nuclear Information System (INIS)
Mat, M. D.; Kaplan, Y.; Celik, S.; Oeztural, A.
2007-01-01
Direct methanol fuel cells (DMFC) have received many attentions specifically for portable electronic applications since it utilize methanol which is in liquid form in atmospheric condition and high energy density of the methanol. Thus it eliminates the storage problem of hydrogen. It also eliminates humidification requirement of polymeric membrane which is a problem in PEM fuel cells. Some electronic companies introduced DMFC prototypes for portable electronic applications. Presence of carbon dioxide gases due to electrochemical reactions in anode makes the problem a two phase problem. A two phase flow may occur at cathode specifically at high current densities due to the excess water. Presence of gas phase in anode region and liquid phase in cathode region prevents diffusion of fuel and oxygen to the reaction sites thus reduces the performance of the system. Uncontrolled pressure buildup in anode region increases methanol crossover through membrane and adversely effect the performance. Two phase flow in both anode and cathode region is very effective in the performance of DMYC system and a detailed understanding of two phase flow for high performance DMFC systems. Although there are many theoretical and experimental studies available on the DMFC systems in the literature, only few studies consider problem as a two-phase flow problem. In this study, an experimental set up is developed and species distributions on system are measured with a gas chromatograph. System performance characteristics (V-I curves) is measured depending on the process parameters (temperature, fuel ad oxidant flow rates, methanol concentration etc)
Two-phase flow induced parametric vibrations in structural systems
International Nuclear Information System (INIS)
Hara, Fumio
1980-01-01
This paper is divided into two parts concerning piping systems and a nuclear fuel pin system. The significant experimental results concerning the random vibration induced in an L-shaped pipe by air-water two-phase flow and the theoretical analysis of the vibration are described in the first part. It was clarified for the first time that the parametric excitation due to the periodic changes of system mass, centrifugal force and Coriolis force was the mechanism of exciting the vibration. Moreover, the experimental and theoretical analyses of the mechanism of exciting vibration by air-water two-phase flow in a straight, horizontal pipe were carried out, and the first natural frequency of the piping system was strongly related to the dominant frequency of void signals. The experimental results on the vibration of a nuclear fuel pin model in parallel air-water two-phase flow are reported in the latter part. The relations between vibrational strain variance and two-phase flow velocity or pressure fluctuation, and the frequency characteristics of vibrational strain variance were obtained. The theoretical analysis of the dynamic interaction between air-water two-phase flow and a fuel pin structure, and the vibrational instability of fuel pins in alternate air and water slugs or in large bubble flow are also reported. (Kako, I.)
Modelling of the viscoelastic behaviour of steel reinforced thermoplastic pipes
Kruijer, M.P.; Warnet, Laurent; Akkerman, Remko
2006-01-01
This paper describes the analysis of the time dependent behaviour of a steel reinforced thermoplastic pipe. This new class of composite pipes is constructed of a HDPE (high-density polyethylene) liner pipe, which is over wrapped with two layers of thermoplastic tape. The thermoplastic tapes are
Mathematical modeling of disperse two-phase flows
Morel, Christophe
2015-01-01
This book develops the theoretical foundations of disperse two-phase flows, which are characterized by the existence of bubbles, droplets or solid particles finely dispersed in a carrier fluid, which can be a liquid or a gas. Chapters clarify many difficult subjects, including modeling of the interfacial area concentration. Basic knowledge of the subjects treated in this book is essential to practitioners of Computational Fluid Dynamics for two-phase flows in a variety of industrial and environmental settings. The author provides a complete derivation of the basic equations, followed by more advanced subjects like turbulence equations for the two phases (continuous and disperse) and multi-size particulate flow modeling. As well as theoretical material, readers will discover chapters concerned with closure relations and numerical issues. Many physical models are presented, covering key subjects including heat and mass transfers between phases, interfacial forces and fluid particles coalescence and breakup, a...
A SAS Package for Logistic Two-Phase Studies
Directory of Open Access Journals (Sweden)
Walter Schill
2014-04-01
Full Text Available Two-phase designs, in which for a large study a dichotomous outcome and partial or proxy information on risk factors is available, whereas precise or complete measurements on covariates have been obtained only in a stratified sub-sample, extend the standard case-control design and have been proven useful in practice. The application of two-phase designs, however, seems to be hampered by the lack of appropriate, easy-to-use software. This paper introduces sas-twophase-package, a collection of SAS-macros, to fulfill this task. sas-twophase-package implements weighted likelihood, pseudo likelihood and semi- parametric maximum likelihood estimation via the EM algorithm and via profile likelihood in two-phase settings with dichotomous outcome and a given stratification.
A void fraction model for annular two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Tandon, T.N.; Gupta, C.P.; Varma, H.K.
1985-01-01
An analytical model has been developed for predicting void fraction in two-phase annular flow. In the analysis, the Lockhart-Martinelli method has been used to calculate two-phase frictional pressure drop and von Karman's universal velocity profile is used to represent the velocity distribution in the annular liquid film. Void fractions predicted by the proposed model are generally in good agreement with a available experimental data. This model appears to be as good as Smith's correlation and better than the Wallis and Zivi correlations for computing void fraction.
Two-phase LMMHD mixer-development experiments
International Nuclear Information System (INIS)
Fabris, G.; Dunn, P.F.; Chow, J.C.F.
1978-01-01
The results of a series of experiments conducted to evaluate the fluid mechanical performance of various two-phase LMMHD mixer designs are presented. The results from both flow visualization studies of the local two-phase flows downstream from various mixer-element configurations and local measurements performed to characterize these flows are presented. A conceptual LMMHD mixer design is described that insures the generation of small bubbles, prevents the formation of gas slugs and separated regions, and favors the stabilization of a homogeneous foam flow
Reinforcing thermoplastics with hydrogen bonding bridged inorganics
Energy Technology Data Exchange (ETDEWEB)
Du Mingliang, E-mail: du@zstu.edu.c [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Guo Baochun, E-mail: psbcguo@scut.edu.c [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu Mingxian; Cai Xiaojia; Jia Demin [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China)
2010-01-15
A new reinforcing strategy for thermoplastics via hydrogen bonding bridged inorganics in the matrix was proposed. The hydrogen bonds could be formed in thermoplastics matrices with the incorporation of a little organics containing hydrogen bonding functionalities. Isotactic polypropylene (PP), polyamide 6 (PA 6), and high density polyethylene (HDPE), together with specific inorganics and organics were utilized to verify the effectiveness of the strategy. The investigations suggest that the hydrogen bonding bridged inorganics led to substantially increased flexural properties. The results of attenuated total refraction Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) indicate the formation of hydrogen bonding among the inorganics and organics in the composites.
Modelling two-phase transport of 3H/3He
Visser, A.; Schaap, J.D.; Leijnse, T.; Broers, H.P.; Bierkens, M.F.P.
2008-01-01
Degassing of groundwater by excess denitrification of agricultural pollution complicates the interpretation of 3H/3He data and hinders the estimation of travel times in nitrate pollution studies. In this study we used a two-phase flow and transport model (STOMP) to evaluate the method presented by
Qualitative behaviour of incompressible two-phase flows with phase ...
Indian Academy of Sciences (India)
... consistent model for incompressible two-phase flows with phase transitions is considered mathematically. The model is based on first principles, i.e., balance of mass, momentum and energy. In the isothermal case, this problem is analysed to obtain local well-posedness, stability of non-degenerate equilibria, and global ...
A device for two-phase flow control in nanochannels
Shui, Lingling; van den Berg, Albert; Eijkel, Jan C.T.; Kim, Tae Song; Lee, Yoon-Sik; Chung, Twek-Dong; Jeon, Noo Li; Lee, Sang-Hoon; Suh, Kahp-Yang; Choo, Jaebm; Kim, Yong-Kweon
2009-01-01
We developed a novel method to control two-phase flow in nanochannels using regulating microchannels connected to the nanochannels. The flow rate inside a nanochannel can be regulated based on the pressure drops along the channel network. Stable flows with flow rates as low as 10-5 �?�L.min-1 (<
Two Phase Flow Split Model for Parallel Channels | Iloeje | Nigerian ...
African Journals Online (AJOL)
A model has been developed for the determination of two phase flow distributions between multiple parallel channels which communicate between a common upper and a common lower plenum. It utilizes the requirement of equal plenum to plenum pressure drops through the channels, continuity equations at the lower ...
Thermalhydraulic instability analysis of a two phase natural circulation loop
International Nuclear Information System (INIS)
Sesini, Paula Aida
1998-01-01
This work presents an analysis of a loop operating in natural circulation regime. Experiments were done in a rectangular closed circuit in one and two-phase flows. Numerical analysis were performed initially with the CIRNAT code and afterwards with RELAP5/MOD2. The limitations of CIRNAT were studied and new developments for this code are proposed. (author)
Controlling two-phase flow in microfluidic systems using electrowetting
Gu, H.
2011-01-01
Electrowetting (EW)-based digital microfluidic systems (DMF) and droplet-based two-phase flow microfluidic systems (TPF) with closed channels are the most widely used microfluidic platforms. In general, these two approaches have been considered independently. However, integrating the two
Droplets formation and merging in two-phase flow microfluidics
Gu, H.; Duits, Michael H.G.; Mugele, Friedrich Gunther
2011-01-01
Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key
Numerical simulation of two phase flows in heat exchangers
International Nuclear Information System (INIS)
Grandotto Biettoli, M.
2006-04-01
The report presents globally the works done by the author in the thermohydraulic applied to nuclear reactors flows. It presents the studies done to the numerical simulation of the two phase flows in the steam generators and a finite element method to compute these flows. (author)
Two-phase alkali-metal experiments in reduced gravity
International Nuclear Information System (INIS)
Antoniak, Z.I.
1986-06-01
Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity
Electrophoretic Partitioning of Proteins in Two-Phase Microflows
DEFF Research Database (Denmark)
Münchow, G.; Hardt, S.; Kutter, Jörg Peter
2007-01-01
This work reports on protein transport phenomena discovered in partitioning experiments with a novel setup for continuous-flow two-phase electrophoresis consisting of a microchannel in which a phase boundary is formed in flow direction. Proteins can be partitioned exploiting their affinity...
TWO-PHASE EJECTOR of CARBON DIOXIDE HEAT PUMP CALCULUS
Directory of Open Access Journals (Sweden)
Sit B.M.
2010-12-01
Full Text Available It is presented the calculus of the two-phase ejector for carbon dioxide heat pump. The method of calculus is based on the method elaborated by S.M. Kandil, W.E. Lear, S.A. Sherif, and is modified taking into account entrainment ratio as the input for the calculus.
Effective thermal conductivity of real two-phase systems using ...
Indian Academy of Sciences (India)
Unknown
Abstract. A theoretical model has been developed for real two-phase system assuming linear flow of heat flux lines having ellipsoidal particles arranged in a three-dimensional cubic array. The arrangement has been divided into unit cells, each of which contains an ellipsoid. The resistor model has been applied to ...
TWO PHASE FLOW SPLIT MODEL FOR PARALLEL CHANNELS
African Journals Online (AJOL)
Ifeanyichukwu Onwuka
A model has been developed for the determination of two phase flow distributions between multiple parallel channels which ... transients, up to ten parallel flow paths, simple and complicated geometries, including the boilers of fossil steam generators and ..... The above model and numerical technique were programmed in ...
Tunable two-phase coexistence in half-doped manganites
Indian Academy of Sciences (India)
Abstract. We discuss our very interesting experimental observation that the low- temperature two-phase coexistence in half-doped manganites is multi-valued (at any field) in that we can tune the coexisting antiferromagnetic-insulating (AF-I) and the ferromagnetic-metallic (FM-M) phase fractions by following different paths in ...
Tunable two-phase coexistence in half-doped manganites
Indian Academy of Sciences (India)
temperature two-phase coexistence in half-doped manganites is multi-valued (at any field) in that we can tune the coexisting antiferromagnetic-insulating (AF-I) and the ferromagnetic-metallic (FM-M) phase fractions by following different paths in (; ...
Two-phase Flow in Micro and Nanofluidic Devices
Shui, Lingling
2009-01-01
This thesis provides experimental data and theoretical analysis on two-phase flow in devices with different layouts of micrometer or nanometer-size channels. A full flow diagram is presented for oil and water flow in head-on microfluidic devices. Morphologically different flow regimes (dripping,
High speed motion neutron radiography of two-phase flow
International Nuclear Information System (INIS)
Robinson, A.H.; Wang, S.L.
1983-01-01
Current research in the area of two-phase flow utilizes a wide variety of sensing devices, but some limitations exist on the information which can be obtained. Neutron radiography is a feasible alternative to ''see'' the two-phase flow. A system to perform neutron radiographic analysis of dynamic events which occur on the order of several milliseconds has been developed at Oregon State University. Two different methods have been used to radiograph the simulated two-phase flow. These are pulsed, or ''flash'' radiography, and high speed movie neutron radiography. The pulsed method serves as a ''snap-shot'' with an exposure time ranging from 10 to 20 milliseconds. In high speed movie radiography, a scintillator is used to convert neutrons into light which is enhanced by an optical intensifier and then photographed by a high speed camera. Both types of radiography utilize the pulsing capability of the OSU TRIGA reactor. The principle difficulty with this type of neutron radiography is the fogging of the image due to the large amount of scattering in the water. This difficulty can be overcome by using thin regions for the two-phase flow or using heavy water instead of light water. The results obtained in this paper demonstrate the feasibility of using neutron radiography to obtain data in two-phase flow situations. Both movies and flash radiographs have been obtained of air bubbles in water and boiling from a heater element. The neutron radiographs of the boiling element show both nucleate boiling and film boiling. (Auth.)
Thermoplastic film camera for holographic recording
International Nuclear Information System (INIS)
Liegeois, C.; Meyrueis, P.
1982-01-01
The design thermoplastic-film recording camera and its performance for holography of extended objects are reported. Special corona geometry and accurate control of development heat by constant current heating and high resolution measurement of the develop temperature make easy recording of reproducible, large aperture holograms possible. The experimental results give the transfer characteristics, the diffraction efficiency characteristics and the spatial frequency response. (orig.)
Coal swelling and thermoplasticity under high pressure
Energy Technology Data Exchange (ETDEWEB)
Ndaji, F.E.; Butterfield, I.M.; Thomas, K.M. (Newcastle upon Tyne University, Newcastle upon Tyne (United Kingdom). Northern Carbon Research Labs., Dept. of Chemistry)
1992-01-01
The literature on the following topics is reviewed: swelling and agglomeration of coal; measurements of swelling index and dilatometric and plastometric properties at high pressures; and the effects of oxidation, tar addition and minerals on high-pressure thermoplastic properties. 34 refs., 6 figs.
The reactive extrusion of thermoplastic polyurethane
Verhoeven, Vincent Wilhelmus Andreas
2006-01-01
The objective of this thesis was to increase the understanding of the reactive extrusion of thermoplastic polyurethane. Overall, several issues were identified: • Using a relative simple extrusion model, the reactive extrusion process can be described. This model can be used to further investigate
Identifying thermal breakdown products of thermoplastics.
Guillemot, Marianne; Oury, Benoît; Melin, Sandrine
2017-07-01
Polymers processed to produce plastic articles are subjected to temperatures between 150°C and 450°C or more during overheated processing and breakdowns. Heat-based processing of this nature can lead to emission of volatile organic compounds (VOCs) into the thermoplastic processing shop. In this study, laboratory experiments, qualitative and quantitative emissions measurement in thermoplastic factories were carried out. The first step was to identify the compounds released depending on the thermoplastic nature, the temperature and the type of process. Then a thermal degradation protocol that can extrapolate the laboratory results to industry scenarios was developed. The influence of three parameters on released thermal breakdown products was studied: the sample preparation methods-manual cutting, ambient, or cold grinding-the heating rate during thermal degradation-5, 10 20, and 50°C/min-and the decomposition method-thermogravimetric analysis and pyrolysis. Laboratory results were compared to atmospheric measurements taken at 13 companies to validate the protocol and thereby ensure its representativeness of industrial thermal processing. This protocol was applied to most commonly used thermoplastics to determine their thermal breakdown products and their thermal behaviour. Emissions data collected by personal exposure monitoring and sampling at the process emission area show airborne concentrations of detected compounds to be in the range of 0-3 mg/m 3 under normal operating conditions. Laser cutting or purging operations generate higher pollution levels in particular formaldehyde which was found in some cases at a concentration above the workplace exposure limit.
Turbine flow meter response in two-phase flows
International Nuclear Information System (INIS)
Shim, W.J.; Dougherty, T.J.; Cheh, H.Y.
1996-01-01
The purpose of this paper is to suggest a simple method of calibrating turbine flow meters to measure the flow rates of each phase in a two-phase flow. The response of two 50.8 mm (2 inch) turbine flow meters to air-water, two-phase mixtures flowing vertically in a 57 mm I.D. (2.25 inch) polycarbonate tube has been investigated for both upflow and downflow. The flow meters were connected in series with an intervening valve to provide an adjustable pressure difference between them. Void fractions were measured by two gamma densitometers, one upstream of the flow meters and the other downstream. The output signal of the turbine flow meters was found to depend only on the actual volumetric flow rate of the gas, F G , and liquid, F L , at the location of the flow meter
Non-Darcy behavior of two-phase channel flow.
Xu, Xianmin; Wang, Xiaoping
2014-08-01
We study the macroscopic behavior of two-phase flow in porous media from a phase-field model. A dissipation law is first derived from the phase-field model by homogenization. For simple channel geometry in pore scale, the scaling relation of the averaged dissipation rate with the velocity of the two-phase flow can be explicitly obtained from the model which then gives the force-velocity relation. It is shown that, for the homogeneous channel surface, Dacry's law is still valid with a significantly modified permeability including the contribution from the contact line slip. For the chemically patterned surfaces, the dissipation rate has a non-Darcy linear scaling with the velocity, which is related to a depinning force for the patterned surface. Our result offers a theoretical understanding on the prior observation of non-Darcy behavior for the multiphase flow in either simulations or experiments.
Method and apparatus for monitoring two-phase flow. [PWR
Sheppard, J.D.; Tong, L.S.
1975-12-19
A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.
Visualization in cryogenic environment: Application to two-phase studies
Rousset, Bernard; Chatain, Denis; Puech, Laurent; Thibault, Pierre; Viargues, François; Wolf, Pierre-Etienne
2009-10-01
This paper reviews recent technical developments devoted to the study of cryogenic two-phase fluids. These techniques span from simple flow visualization to quantitative measurements of light scattering. It is shown that simple flow pattern configurations are obtained using classical optical tools (CCD cameras, endoscopes), even in most severe environments (high vacuum, high magnetic field). Quantitative measurements include laser velocimetry, particle sizing, and light scattering analysis. In the case of magnetically compensated gravity boiling oxygen, optical access is used to control the poistioning of a bubble subject to buoyancy forces in an experimental cell. Flow visualization on a two-phase superfluid helium pipe-flow, performed as a support of LHC cooldown studies, leads to flow pattern characterization. Visualization includes stratified and atomized flows. Thanks to the low refractive index contrast between the liquid and its vapor, quantitative results on droplet densities can be obtained even in a multiple scattering regime.
Study on flow instabilities in two-phase mixtures
International Nuclear Information System (INIS)
Ishii, M.
1976-03-01
Various mechanisms that can induce flow instabilities in two-phase flow systems are reviewed and their relative importance discussed. In view of their practical importance, the density-wave instabilities have been analyzed in detail based on the one-dimensional two-phase flow formulation. The dynamic response of the system to the inlet flow perturbations has been derived from the model; thus the characteristic equation that predicts the onset of instabilities has been obtained. The effects of various system parameters, such as the heat flux, subcooling, pressure, inlet velocity, inlet orificing, and exit orificing on the stability boundary have been analyzed. In addition to numerical solutions, some simple stability criteria under particular conditions have been obtained. Both results have been compared with various experimental data, and a satisfactory agreement has been demonstrated
Two-phase dynamics of gas-heated steam generators
International Nuclear Information System (INIS)
Schittke, H.J.
1977-01-01
The dynamic behavior of a once-through steam generator plant operating in the secondary loop of a gas-cooled high-temperature reactor is considered. The mathematical model used for the description of the thermohydraulics of the problem comprises not only the dynamic behavior of the primary heating gas flow and the tube wall temperatures but especially the effects of pressure dynamics in the secondary fluid and the relevant two-phase flow phenomena: using an additional momentum balance equation for the dynamics of the slip velocity it is shown that the analytical computation of the slip velocity it is shown that the analytical computation of slip and two-phase pressure drop effects from the model equations is possible without the use of external correlations. Based on this mathematical model a generally applicable computer model is used to simulate the dynamic response of a given system
Transition from boiling to two-phase forced convection
International Nuclear Information System (INIS)
Maroti, L.
1985-01-01
The paper presents a method for the prediction of the boundary points of the transition region between fully developed boiling and two-phase forced convection. It is shown that the concept for the determination of the onset of fully developed boiling can also be applied for the calculation of the point where the heat transfer is effected again by the forced convection. Similarly, the criterion for the onset of nucleate boiling can be used for the definition of the point where boiling is completely suppressed and pure two-phase forced convection starts. To calculate the heat transfer coefficient for the transition region, an equation is proposed that applies the boundary points and a relaxation function ensuring the smooth transition of the heat transfer coefficient at the boundaries
Mathematical modeling and the two-phase constitutive equations
International Nuclear Information System (INIS)
Boure, J.A.
1975-01-01
The problems raised by the mathematical modeling of two-phase flows are summarized. The models include several kinds of equations, which cannot be discussed independently, such as the balance equations and the constitutive equations. A review of the various two-phase one-dimensional models proposed to date, and of the constitutive equations they imply, is made. These models are either mixture models or two-fluid models. Due to their potentialities, the two-fluid models are discussed in more detail. To avoid contradictions, the form of the constitutive equations involved in two-fluid models must be sufficiently general. A special form of the two-fluid models, which has particular advantages, is proposed. It involves three mixture balance equations, three balance equations for slip and thermal non-equilibriums, and the necessary constitutive equations [fr
Numerical simulation for two-phase jet problem
International Nuclear Information System (INIS)
Lee, W.H.; Shah, V.L.
1981-01-01
A computer program TWOP was developed for obtaining the numerical solutions of three-dimensional, transient, two-phase flow system with nonequilibrium and nonhomogeneous conditions. TWOP employs two-fluid model and a set of the conservation equations formulated by Harlow and Amsden along with their Implicit Multi-Field (IMF) numerical technique that allows all degrees of couplings between the two fields. We have further extended the procedure of Harlow and Amsden by incorporating the implicit couplings of phase transition and interfacial heat transfer terms in the energy equations. Numerical results of two tested problems are presented to demonstrate the capabilities of the TWOP code. The first problem is the separation of vapor and liquid, showing that the code can handle the computational difficulties such as liquid packing and sharp interface phenomena. The second problem is the high pressure two-phase jet impinged on vertical plate, demonstrating the important role of the interfacial mass and momentum exchange
Multiparticle imaging velocimetry measurements in two-phase flow
International Nuclear Information System (INIS)
Hassan, Y.A.
1998-01-01
The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being extended to determine the velocity fields in two and three-dimensional, two-phase fluid flows. In the past few years, the technique has attracted quite a lot of interest. PIV enables fluid velocities across a region of a flow to be measured at a single instant in time in global domain. This instantaneous velocity profile of a given flow field is determined by digitally recording particle (microspheres or bubbles) images within the flow over multiple successive video frames and then conducting flow pattern identification and analysis of the data. This paper presents instantaneous velocity measurements in various two and three- dimensional, two-phase flow situations. (author)
Two phase flow instabilities in horizontal straight tube evaporator
2010-01-01
Abstract It is essential to ensure the stability of a refrigeration system if the oscillation in evaporation process is the primary cause for the whole system instability. This paper is concerned with an experimental investigation of two phase flow instabilities in a horizontal straight tube evaporator of a refrigeration system. The relationship between pressure drop and mass flow with constant heat flux and evaporation pressure is measured and determined. It is found that there is...
Laser Doppler measurements in two-phase flows
International Nuclear Information System (INIS)
Durst, F.; Zare, M.
1976-01-01
Basic theory for laser-Doppler velocity measurements of large reflecting or refracting surfaces is provided. It is shown that the Doppler-signals contain information of the velocity and size of the large bodies, and relationships for transforming velocity and radius of curvature of moving spheres are presented. Preliminary experiments verified the analytical findings and demonstrated the applicability of the method to some two-phase flows
Computational methods for two-phase flow and particle transport
Lee, Wen Ho
2013-01-01
This book describes mathematical formulations and computational methods for solving two-phase flow problems with a computer code that calculates thermal hydraulic problems related to light water and fast breeder reactors. The physical model also handles the particle and gas flow problems that arise from coal gasification and fluidized beds. The second part of this book deals with the computational methods for particle transport.
Recent advances in two-phase flow numerics
Energy Technology Data Exchange (ETDEWEB)
Mahaffy, J.H.; Macian, R. [Pennsylvania State Univ., University Park, PA (United States)
1997-07-01
The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.
Recent advances in two-phase flow numerics
International Nuclear Information System (INIS)
Mahaffy, J.H.; Macian, R.
1997-01-01
The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques
A posteriori error estimates for two-phase obstacle problem
Czech Academy of Sciences Publication Activity Database
Repin, S.; Valdman, Jan
2015-01-01
Roč. 107, č. 2 (2015), s. 324-335 ISSN 1072-3374 R&D Projects: GA ČR GA13-18652S Institutional support: RVO:67985556 Keywords : two-phase obstacle problem * a posteriori error estimate * finite element method * variational inequalities Subject RIV: BA - General Mathematics http://library.utia.cas.cz/separaty/2015/MTR/valdman-0444082.pdf
Two-phase flow instability and propagation of disturbances
International Nuclear Information System (INIS)
Yadigaroglu, G.
1984-01-01
Various mechanisms of static and dynamic macroinstabilities, appearing in two-phase flows, have been considered. Types of instabilities, conditioned by the form of hydraulic characteristics of the channel and density waves are analyzed in detail. Problems of instabilities in nuclear reactor circuits, in particular problems of instabilities, conditioned by water and steam mixing and vapour condensation, and problems of steam generator operation instability are discussed
Theory and Tests of Two-Phase Turbines
Elliott, D. G.
1986-01-01
New turbines open possibility of new types of power cycles. Report describes theoretical analysis and experimental testing of two-phase impulse turbines. Such turbines open possibility of new types of power cycles operating with extremely wet mixtures of steam and water, organic fluids, or immiscible liquids and gases. Possible applications are geothermal power, waste-heat recovery, refrigerant expansion, solar conversion, transportation, and engine-bottoming cycles.
Two phases of the interstellar medium in nebulas around quasars
Energy Technology Data Exchange (ETDEWEB)
Zentsova, A.S.
1988-05-01
It is shown that for the interstellar gas in nebulas surrounding quasars the condition of thermal instability is satisfied, and the gas must separate into two phases: cold (T /approx equal/ 10/sup 4//degree/K) dense clouds and a hot (T /approx equal/ 10/sup 8//degree/K) rarefied medium. The density, size, and mass of the clouds formed by the development of the thermal instability are estimated.
Two-phase computer codes for zero-gravity applications
International Nuclear Information System (INIS)
Krotiuk, W.J.
1986-10-01
This paper discusses the problems existing in the development of computer codes which can analyze the thermal-hydraulic behavior of two-phase fluids especially in low gravity nuclear reactors. The important phenomenon affecting fluid flow and heat transfer in reduced gravity is discussed. The applicability of using existing computer codes for space applications is assessed. Recommendations regarding the use of existing earth based fluid flow and heat transfer correlations are made and deficiencies in these correlations are identified
An objective indicator for two-phase flow pattern transition
International Nuclear Information System (INIS)
Hervieua, E.; Seleghim, P. Jr.
1998-01-01
This work concerns the development of a methodology the objective of which is to characterize and diagnose two-phase flow regime transitions. The approach is based on the fundamental assumption that a transition flow is less stationary than a flow with an established regime. During the first time, the efforts focused on: (1) the design and construction of an experimental loop, allowing to reproduce the main horizontal two-phase flow patterns, in a stable and controlled way; (2) the design and construction of an electrical impedance probe, providing an imaged information of the spatial phase distribution in the pipe; and (3) the systematic study of the joint time-frequency and time-scale analysis methods, which permitted to define an adequate parameter quantifying the unstationarity degree. During the second time, in order to verify the fundamental assumption, a series of experiments were conducted, the objective of which was to demonstrate the correlation between unstationarity and regime transition. The unstationarity degree was quantified by calculating the Gabor's transform time-frequency covariance of the impedance probe signals. Furthermore, the phenomenology of each transition was characterized by the joint moments and entropy. The results clearly show that the regime transitions are correlated with local time-frequency covariance peaks, which demonstrates that these regime transitions are characterized by a loss of stationarity. Consequently, the time-frequency covariance constitutes an objective two-phase flow regime transition indicator. (orig.)
An objective indicator for two-phase flow pattern transition
International Nuclear Information System (INIS)
Hervieu, E.; Seleghim, P. Jr.
1998-01-01
This work concerns the development of a methodology which objective is to characterize and diagnose two-phase flow regime transitions. The approach is based on the fundamental assumption that a transition flow is less stationary than a flow with an established regime. In a first time, the efforts focused on: the design and construction of an experimental loop, allowing to reproduce the main horizontal two-phase flow patterns, in a stable and controlled way; the design and construction of an electrical impedance probe, providing an imaged information of the spatial phase distribution in the pipe; the systematic study of the joint time-frequency and time-scale analysis methods, which permitted to define an adequate parameter quantifying the unstationarity degree. In a second time, in order to verify the fundamental assumption, a series of experiments were conducted, which objective was to demonstrate the correlation between unstationarity and regime transition. The unstationarity degree was quantified by calculating the Gabor's transform time-frequency covariance of the impedance probe signals. Furthermore, the phenomenology of each transition was characterized by the joint moments and entropy. The results clearly show that the regime transitions are correlated with local time-frequency covariance peaks, which demonstrates that these regime transitions are characterized by a loss of stationarity. Consequently, the time-frequency covariance constitutes an objective two-phase flow regime transition indicator. (author)
Numerical simulation of compressible, turbulent, two-phase flow
Coakley, t. J.; Champney, J. M.
1985-01-01
A computer program for numerically simulating compressible, turbulent, two-phase flows is described and applied. Special attention is given to flows in which dust is ingested into the turbulent boundary layer behind shock waves moving over the earth's surface. it is assumed that the two phases are interpenetrating continua which are coupled by drag forces and heat transfer. The particle phase is assumed to be dilute, and turbulent effects are modeled by zero- and two-equation eddy viscosity models. An important feature of the turbulence modeling is the treatment of surface boundary conditions which control the ingestion of particles into the boundary layer by turbulent friction and diffusion. The numerical method uses second-order implicit upwind differencing of the inviscid terms of the equations and second-order central differencing of the viscous terms. A diagonal form of the implicit algorithm is used to improve efficiency, and the transformation to a curvilinear coordinate system is accomplished by the finite volume techniques. Applications to a series of representative flows include a two-phase nozzle flow, the steady flow of air over a sand bed, and the air flow behind a normal shock wave in uniform motion over a sand bed. Results of the latter two applications are compared with experimental results.
Cold water injection into two-phase mixtures
International Nuclear Information System (INIS)
1989-07-01
This report presents the results of a review of the international literature regarding the dynamic loadings associated with the injection of cold water into two-phase mixtures. The review placed emphasis on waterhammer in nuclear power plants. Waterhammmer incidence data were reviewed for information related to thermalhydraulic conditions, underlying causes and consequential damage. Condensation induced waterhammer was found to be the most significant consequence of injecting cold water into a two-phase system. Several severe waterhammer incidents have been attributed to slug formation and steam bubble collapse under conditions of stratified steam and cold water flows. These phenomena are complex and not well understood. The current body of experimental and analytical knowledge is not large enough to establish maps of expected regimes of condensation induced waterhammer. The Electric Power Research Institute, in the United States, has undertaken a major research and development programme to develop the knowledge base for this area. The limited models and data currently available show that mechanical parameters are as important as thermodynamic conditions for the initiation of condensation induced waterhammer. Examples of bounds for avoiding two-phase waterhammer are given. These bounds are system specific and depend upon parameters such as pump capacity, pipe length and pipe orientation
Characterization of horizontal air–water two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Kong, Ran; Kim, Seungjin, E-mail: skim@psu.edu
2017-02-15
Highlights: • A visualization study is performed to develop flow regime map in horizontal flow. • Database in horizontal bubbly flow is extended using a local conductivity probe. • Frictional pressure drop analysis is performed in horizontal bubbly flow. • Drift flux analysis is performed in horizontal bubbly flow. - Abstract: This paper presents experimental studies performed to characterize horizontal air–water two-phase flow in a round pipe with an inner diameter of 3.81 cm. A detailed flow visualization study is performed using a high-speed video camera in a wide range of two-phase flow conditions to verify previous flow regime maps. Two-phase flows are classified into bubbly, plug, slug, stratified, stratified-wavy, and annular flow regimes. While the transition boundaries identified in the present study compare well with the existing ones (Mandhane et al., 1974) in general, some discrepancies are observed for bubbly-to-plug/slug, and plug-to-slug transition boundaries. Based on the new transition boundaries, three additional test conditions are determined in horizontal bubbly flow to extend the database by Talley et al. (2015a). Various local two-phase flow parameters including void fraction, interfacial area concentration, bubble velocity, and bubble Sauter mean diameter are obtained. The effects of increasing gas flow rate on void fraction, bubble Sauter mean diameter, and bubble velocity are discussed. Bubbles begin to coalesce near the gas–liquid layer instead of in the highly packed region when gas flow rate increases. Using all the current experimental data, two-phase frictional pressure loss analysis is performed using the Lockhart–Martinelli method. It is found that the coefficient C = 24 yields the best agreement with the data with the minimum average difference. Moreover, drift flux analysis is performed to predict void-weighted area-averaged bubble velocity and area-averaged void fraction. Based on the current database, functional
The Condensation effect on the two-phase flow stability
International Nuclear Information System (INIS)
Abdou Mohamed, Hesham Nagah
2005-01-01
A one-dimensional analytical model has been developed to be used for the linear analysis of density-wave oscillations in a parallel heated channel and a natural circulation loop.The heater and the riser sections are divided into a single-phase and a two-phase region.The two-phase region is represented by the drift-flux model. The model accounts for aphasic slip and subcooled boiling.The localized friction at the heater and the riser exit is treated considering the two-phase mixture.Also the effects of the condensation in the riser and the change in the system pressure have been studied.The exact equation for the heated channel and the total loop pressure drop is perturbed around the steady state.he stability characteristics of the heated channel and the loop are investigated using the Root finding method criterion.The results are summarized on instability maps in the plane of subcooled boiling number vs. phase change number (i.e., inlet subcooling vs. heater heat flux).The predictions of the model are compared with experimental results published in open literature. The results show that, the treatment effect of localized friction in two-phase mixtures stabilizes the system and improves the agreement of the calculations with the experimental results.For a parallel heated channel, the results indicate a more stable system with high inlet restriction, low outlet restriction, and high inlet velocity. And for a natural circulation loop, an increase in the inlet restriction broadened the range of the continuous circulation mode and stabilized the system, a decrease in the exit restriction or the liquid charging level shifted to the right the range of the continuous circulation mode and stabilized the system and an increase in the riser condensation shifted to the right the range of the continuous circulation mode and stabilized the system.The results show that the model agrees well with the available experimental data. In particular, the results show the significance of
Two-phase flow in volatile oil reservoir using two-phase pseudo-pressure well test method
Energy Technology Data Exchange (ETDEWEB)
Sharifi, M.; Ahmadi, M. [Calgary Univ., AB (Canada)
2009-09-15
A study was conducted to better understand the behaviour of volatile oil reservoirs. Retrograde condensation occurs in gas-condensate reservoirs when the flowing bottomhole pressure (BHP) lowers below the dewpoint pressure, thus creating 4 regions in the reservoir with different liquid saturations. Similarly, when the BHP of volatile oil reservoirs falls below the bubblepoint pressure, two phases are created in the region around the wellbore, and a single phase (oil) appears in regions away from the well. In turn, higher gas saturation causes the oil relative permeability to decrease towards the near-wellbore region. Reservoir compositional simulations were used in this study to predict the fluid behaviour below the bubblepoint. The flowing bottomhole pressure was then exported to a well test package to diagnose the occurrence of different mobility regions. The study also investigated the use of a two-phase pseudo-pressure method on volatile and highly volatile oil reservoirs. It was concluded that this method can successfully predict the true permeability and mechanical skin. It can also distinguish between mechanical skin and condensate bank skin. As such, the two-phase pseudo-pressure method is particularly useful for developing after-drilling well treatment and enhanced oil recovery process designs. However, accurate relative permeability and PVT data must be available for reliable interpretation of the well test in volatile oil reservoirs. 18 refs., 3 tabs., 9 figs.
1983-01-01
Epoxy Thermoplastic (ETP) is a recently developed epoxy-resin-based thermoplastic pavement marking material being promoted by the Federal Highway Administration as a possible substitute for conventional traffic paints and thermoplastics. Its reported...
Microscale patterning of thermoplastic polymer surfaces by selective solvent swelling.
Rahmanian, Omid; Chen, Chien-Fu; DeVoe, Don L
2012-09-04
A new method for the fabrication of microscale features in thermoplastic substrates is presented. Unlike traditional thermoplastic microfabrication techniques, in which bulk polymer is displaced from the substrate by machining or embossing, a unique process termed orogenic microfabrication has been developed in which selected regions of a thermoplastic surface are raised from the substrate by an irreversible solvent swelling mechanism. The orogenic technique allows thermoplastic surfaces to be patterned using a variety of masking methods, resulting in three-dimensional features that would be difficult to achieve through traditional microfabrication methods. Using cyclic olefin copolymer as a model thermoplastic material, several variations of this process are described to realize growth heights ranging from several nanometers to tens of micrometers, with patterning techniques include direct photoresist masking, patterned UV/ozone surface passivation, elastomeric stamping, and noncontact spotting. Orogenic microfabrication is also demonstrated by direct inkjet printing as a facile photolithography-free masking method for rapid desktop thermoplastic microfabrication.
Developing two-phase flow modelling concepts for rock fractures
International Nuclear Information System (INIS)
Keto, V.
2010-01-01
The Finnish nuclear waste disposal company, Posiva Oy, is planning an underground repository for spent nuclear fuel to be constructed on the island of Olkiluoto on the south-west coast of Finland. One element of the site investigations conducted at Olkiluoto is the excavation of the underground rock characterisation facility (ONKALO) that will be extended to the final disposal depth (approximately -400 m). The bedrock around the excavated tunnel volume is fully saturated with groundwater, which water commonly contains a mixture of dissolved gases. These gases remain dissolved due to the high hydrostatic pressure. During tunnel excavation work the natural hydrostatic pressure field is disturbed and the water pressure will decrease close to the atmospheric pressure in the immediate vicinity of the tunnel. During this pressure drop two-phase flow conditions (combined flow of both water and gas) may develop in the vicinity of the underground opening, as the dissolved gas is exsoluted under the low pressure (the term exsolution refers here to release of the dissolved gas molecules from the water phase into a separate gas phase). This report steers towards concept development for numerical two-phase flow modeling for fractured rock. The focus is on the description of gas phase formation process under disturbed hydraulic conditions by exsolution of dissolved gases from groundwater, and on understanding the effects of a possibly formed gas phase on groundwater flow conditions in rock fractures. A mathematical model of three mutually coupled nonlinear partial differential equations for two-phase flow is presented and corresponding constitutional relationships are introduced and discussed. Illustrative numerical simulations are performed in a simplified setting using COMSOL Multiphysics 3.5a - software package. Shortcomings and conceptual problems are discussed. (orig.)
Measurement of Two-Phase Flow Characteristics Under Microgravity Conditions
Keshock, E. G.; Lin, C. S.; Edwards, L. G.; Knapp, J.; Harrison, M. E.; Xhang, X.
1999-01-01
This paper describes the technical approach and initial results of a test program for studying two-phase annular flow under the simulated microgravity conditions of KC-135 aircraft flights. A helical coil flow channel orientation was utilized in order to circumvent the restrictions normally associated with drop tower or aircraft flight tests with respect to two-phase flow, namely spatial restrictions preventing channel lengths of sufficient size to accurately measure pressure drops. Additionally, the helical coil geometry is of interest in itself, considering that operating in a microgravity environment vastly simplifies the two-phase flows occurring in coiled flow channels under 1-g conditions for virtually any orientation. Pressure drop measurements were made across four stainless steel coil test sections, having a range of inside tube diameters (0.95 to 1.9 cm), coil diameters (25 - 50 cm), and length-to-diameter ratios (380 - 720). High-speed video photographic flow observations were made in the transparent straight sections immediately preceding and following the coil test sections. A transparent coil of tygon tubing of 1.9 cm inside diameter was also used to obtain flow visualization information within the coil itself. Initial test data has been obtained from one set of KC-135 flight tests, along with benchmark ground tests. Preliminary results appear to indicate that accurate pressure drop data is obtainable using a helical coil geometry that may be related to straight channel flow behavior. Also, video photographic results appear to indicate that the observed slug-annular flow regime transitions agree quite reasonably with the Dukler microgravity map.
Examination of injection moulded thermoplastic maize starch
Directory of Open Access Journals (Sweden)
2007-12-01
Full Text Available This paper focuses on the effect of the different injection moulding parameters and storing methods on injection moulded thermoplastic maize starch (TPS. The glycerol and water plasticized starch was processed in a twin screw extruder and then with an injection moulding machine to produce TPS dumbbell specimens. Different injection moulding set-ups and storing conditions were used to analyse the effects on the properties of thermoplastic starch. Investigated parameters were injection moulding pressure, holding pressure, and for the storage: storage at 50% relative humidity, and under ambient conditions. After processing the mechanical and shrinkage properties of the manufactured TPS were determined as a function of the ageing time. While conditioning, the characteristics of the TPS changed from a soft material to a rigid material. Although this main behaviour remained, the different injection moulding parameters changed the characteristics of TPS. Scanning electron microscope observations revealed the changes in the material on ageing.
A SDHW system with two-phase heat transfer fluid
International Nuclear Information System (INIS)
Konstantinou, K.; Belessiotis, V.; Hristoforou, A.
1993-12-01
Full text: This report examines the thermal performance of a SDHW system which uses ethanol 100% pure as heat transfer medium to the water in the tank. The energy transfer takes place through a change of phase of ethanol from liquid to vapor effected by the processes of boiling and condensation. A complete heat transfer analysis is performed, focused on the mechanisms of boiling and condensation. This method serves as a basic technique for the thermal evaluation of systems using two-phase fluids. (author)
Two-phase flow measurement based on oblique laser scattering
Vendruscolo, Tiago P.; Fischer, Robert; Martelli, Cícero; Rodrigues, Rômulo L. P.; Morales, Rigoberto E. M.; da Silva, Marco J.
2015-07-01
Multiphase flow measurements play a crucial role in monitoring productions processes in many industries. To guarantee the safety of processes involving multiphase flows, it is important to detect changes in the flow conditions before they can cause damage, often in fractions of seconds. Here we demonstrate how the scattering pattern of a laser beam passing a two-phase flow under an oblique angle to the flow direction can be used to detect derivations from the desired flow conditions in microseconds. Applying machine-learning techniques to signals obtained from three photo-detectors we achieve a compact, versatile, low-cost sensor design for safety applications.
Experimental and numerical investigation on two-phase flow instabilities
Energy Technology Data Exchange (ETDEWEB)
Ruspini, Leonardo Carlos
2013-03-01
Two-phase flow instabilities are experimentally and numerically studied within this thesis. In particular, the phenomena called Ledinegg instability, density wave oscillations and pressure drop oscillations are investigated. The most important investigations regarding the occurrence of two-phase flow instabilities are reviewed. An extensive description of the main contributions in the experimental and analytical research is presented. In addition, a critical discussion and recommendations for future investigations are presented. A numerical framework using a hp-adaptive method is developed in order to solve the conservation equations modelling general thermo-hydraulic systems. A natural convection problem is analysed numerically in order to test the numerical solver. Moreover, the description of an adaptive strategy to solve thermo-hydraulic problems is presented. In the second part of this dissertation, a homogeneous model is used to study Ledinegg, density wave and pressure drop oscillations phenomena numerically. The dynamic characteristics of the Ledinegg (flow excursion) phenomenon are analysed through the simulation of several transient examples. In addition, density wave instabilities in boiling and condensing systems are investigated. The effects of several parameters, such as the fluid inertia and compressibility volumes, on the stability limits of Ledinegg and density wave instabilities are studied, showing a strong influence of these parameters. Moreover, the phenomenon called pressure drop oscillations is numerically investigated. A discussion of the physical representation of several models is presented with reference to the obtained numerical results. Finally, the influence of different parameters on these phenomena is analysed. In the last part, an experimental investigation of these phenomena is presented. The designing methodology used for the construction of the experimental facility is described. Several simulations and a non
Interfacial area measurements in two-phase flow
International Nuclear Information System (INIS)
Veteau, J.-M.
1979-08-01
A thorough understanding of two-phase flow requires the accurate measurement of the time-averaged interfacial area per unit volume (also called the time-averaged integral specific area). The so-called 'specific area' can be estimated by several techniques described in the literature. These different methods are reviewed and the flow conditions which lead to a rigourous determination of the time-averaged integral specific area are clearly established. The probe technique, involving local measurements seems very attractive because of its large range of application [fr
Virtual mass effects in two-phase flow. Topical report
International Nuclear Information System (INIS)
Cheng, L.Y.; Drew, D.A.; Lahey, R.T. Jr.
1978-03-01
The effect of virtual mass on phase separation during the acceleration of a two-phase mixture was studied. Virtual mass can be regarded as an induced inertia on the dispersed phase which is accelerating relative to the continuous phase, and it was found that the virtual mass acceleration is objective, implying an invariance with respect to reference frame. An objective form of the virtual acceleration was derived and required parameters were determined for limiting cases. Analyses determined that experiments on single bubble nozzle/diffuser flow cannot readily discriminate between various virtual mass acceleration models
Design and construction of two phases flow meter
International Nuclear Information System (INIS)
Nor Paiza Mohamad Hasan
2002-01-01
This paper deals with design of the gamma ray correlometer and flow loop system for measuring the velocity between two parallel cross-sections of a pipeline. In the laboratory, the radioisotope source and detector were collimated by brass with small beam slit respectively. The flow loop system consists of transparent pipeline, adjustable frequency pump and water container. As a result, when the construction of the flow loop and correlometer is completed, the velocity of two phases flow can be measured by the cross-correlation techniques. (Author)
Current capabilities of transient two-phase flow instruments
International Nuclear Information System (INIS)
Solbrig, C.W.; Kondic, N.N.
1979-01-01
The measurement of two phase flow phenomena in transient conditions representative of a Loss-of-Coolant Accident requires the use of sophisticated instruments and the further development of other instruments. Measurements made in large size pipes are often flow regime dependent. The flow regimes encountered depend upon the system geometry, transient effects, heat transfer, etc. The geometries in which these measurements must be made, the instruments which are currently used, new instruments being developed, the facilities used to calibrate these instruments, and the improvements which must be made to measurement capabilities are described
Two-phase flow boiling pressure drop in small channels
International Nuclear Information System (INIS)
Sardeshpande, Madhavi V.; Shastri, Parikshit; Ranade, Vivek V.
2016-01-01
Highlights: • Study of typical 19 mm steam generator tube has been undertaken in detail. • Study of two phase flow boiling pressure drop, flow instability and identification of flow regimes using pressure fluctuations is the main focus of present work. • Effect of heat and mass flux on pressure drop and void fraction was studied. • Flow regimes identified from pressure fluctuations data using FFT plots. • Homogeneous model predicted pressure drop well in agreement. - Abstract: Two-phase flow boiling in small channels finds a variety of applications in power and process industries. Heat transfer, boiling flow regimes, flow instabilities, pressure drop and dry out are some of the key issues related to two-phase flow boiling in channels. In this work, the focus is on pressure drop in two-phase flow boiling in tubes of 19 mm diameter. These tubes are typically used in steam generators. Relatively limited experimental database is available on 19 mm ID tube. Therefore, in the present work, the experimental set-up is designed for studying flow boiling in 19 mm ID tube in such a way that any of the different flow regimes occurring in a steam generator tube (from pre-heating of sub-cooled water to dry-out) can be investigated by varying inlet conditions. The reported results cover a reasonable range of heat and mass flux conditions such as 9–27 kW/m 2 and 2.9–5.9 kg/m 2 s respectively. In this paper, various existing correlations are assessed against experimental data for the pressure drop in a single, vertical channel during flow boiling of water at near-atmospheric pressure. A special feature of these experiments is that time-dependent pressures are measured at four locations along the channel. The steady-state pressure drop is estimated and the identification of boiling flow regimes is done with transient characteristics using time series analysis. Experimental data and corresponding results are compared with the reported correlations. The results will be
Modulating patterns of two-phase flow with electric fields.
Liu, Dingsheng; Hakimi, Bejan; Volny, Michael; Rolfs, Joelle; Anand, Robbyn K; Turecek, Frantisek; Chiu, Daniel T
2014-07-01
This paper describes the use of electro-hydrodynamic actuation to control the transition between three major flow patterns of an aqueous-oil Newtonian flow in a microchannel: droplets, beads-on-a-string (BOAS), and multi-stream laminar flow. We observed interesting transitional flow patterns between droplets and BOAS as the electric field was modulated. The ability to control flow patterns of a two-phase fluid in a microchannel adds to the microfluidic tool box and improves our understanding of this interesting fluid behavior.
Numerical simulation of two phase flows in heat exchangers
International Nuclear Information System (INIS)
Grandotto Biettoli, M.
2006-04-01
The author gives an overview of his research activity since 1981. He first gives a detailed presentation of properties and equations of two-phase flows in heat exchangers, and of their mathematical and numerical investigation: semi-local equations (mass conservation, momentum conservation and energy conservation), homogenized conservation equations (mass, momentum and enthalpy conservation, boundary conditions), equation closures, discretization, resolution algorithm, computational aspects and applications. Then, he reports the works performed in the field of turbulent flows, hyperbolic methods, low Mach methods, the Neptune project, and parallel computing
A real two-phase submarine debris flow and tsunami
International Nuclear Information System (INIS)
Pudasaini, Shiva P.; Miller, Stephen A.
2012-01-01
The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the
Flexoelectricity in several thermoplastic and thermosetting polymers
Chu, Baojin; Salem, D. R.
2012-09-01
The flexoelectricity of several thermoplastic and thermosetting polymers was investigated by testing the dielectric polarization response under bending deformation of polymer cantilevers. All the polymers studied showed a flexoelectric response with a flexoelectric coefficient of the order of the 10-9-10-8 C/m. Based on a comparison of the flexoelectric response of the different polymers studied, we discuss factors that may influence the generation of flexoelectricity in polymeric materials.
Thermoplastic polyurethane as a mechanochromic strain sensor
Cellini, Filippo; Khapli, Sachin; Peterson, Sean D.; Porfiri, Maurizio
2015-04-01
Mechanochromism of polymer-dye blends can be used to formulate novel pressure sensors for fluid mechanics and hydrology, where the use of traditional electromechanical transducers may be limited by environmental factors. Here, we investigate optomechanical properties of a mechanochromic blend of thermoplastic polyurethane and 0.5 wt% bis(benzoxazolyl)stilbene fluorescent dye. We characterize the response of this soft active material in a stress relaxation test by simultaneous acquisition of the tensile load, the mechanical deformation, and the fluorescence emission.
Experimental study of two-phase natural circulation circuit
Energy Technology Data Exchange (ETDEWEB)
Lemos, Wanderley Freitas; Su, Jian, E-mail: wlemos@lasme.coppe.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose Luiz Horacio, E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), RIo de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental
2012-07-01
This paper reports an experimental study on the behavior of fluid flow in natural circulation under single-and two-phase flow conditions. The natural circulation circuit was designed based on concepts of similarity and scale in proportion to the actual operating conditions of a nuclear reactor. This test equipment has similar performance to the passive system for removal of residual heat presents in Advanced Pressurized Water Reactors (A PWR). The experiment was carried out by supplying water to primary and secondary circuits, as well as electrical power resistors installed inside the heater. Power controller has available to adjust the values for supply of electrical power resistors, in order to simulate conditions of decay of power from the nuclear reactor in steady state. Data acquisition system allows the measurement and control of the temperature at different points by means of thermocouples installed at several points along the circuit. The behavior of the phenomenon of natural circulation was monitored by a software with graphical interface, showing the evolution of temperature measurement points and the results stored in digital format spreadsheets. Besides, the natural circulation flow rate was measured by a flowmeter installed on the hot leg. A flow visualization technique was used the for identifying vertical flow regimes of two-phase natural circulation. Finally, the Reynolds Number was calculated for the establishment of a friction factor correlation dependent on the scale geometrical length, height and diameter of the pipe. (author)
CFD Simulations of Pb-Bi Two-Phase Flow
International Nuclear Information System (INIS)
Dostal, Vaclav; Zelezny, Vaclav; Zacha, Pavel
2008-01-01
In a Pb-Bi cooled direct contact steam generation fast reactor water is injected directly above the core, the produced steam is separated at the top and is send to the turbine. Neither the direct contact phenomenon nor the two-phase flow simulations in CFD have been thoroughly described yet. A first attempt in simulating such two-phase flow in 2D using the CFD code Fluent is presented in this paper. The volume of fluid explicit model was used. Other important simulation parameters were: pressure velocity relation PISO, discretization scheme body force weighted for pressure, second order upwind for momentum and CISCAM for void fraction. Boundary conditions were mass flow inlet (Pb-Bi 0 kg/s and steam 0.07 kg/s) and pressure outlet. The effect of mesh size (0.5 mm and 0.2 mm cells) was investigated as well as the effect of the turbulent model. It was found that using a fine mesh is very important in order to achieve larger bubbles and the turbulent model (k-ε realizable) is necessary to properly model the slug flow. The fine mesh and unsteady conditions resulted in computationally intense problem. This may pose difficulties in 3D simulations of the real experiments. (authors)
Analytical study of solids-gas two phase flow
International Nuclear Information System (INIS)
Hosaka, Minoru
1977-01-01
Fundamental studies were made on the hydrodynamics of solids-gas two-phase suspension flow, in which very small solid particles are mixed in a gas flow to enhance the heat transfer characteristics of gas cooled high temperature reactors. Especially, the pressure drop due to friction and the density distribution of solid particles are theoretically analyzed. The friction pressure drop of two-phase flow was analyzed based on the analytical result of the single-phase friction pressure drop. The calculated values of solid/gas friction factor as a function of solid/gas mass loading are compared with experimental results. Comparisons are made for Various combinations of Reynolds number and particle size. As for the particle density distribution, some factors affecting the non-uniformity of distribution were considered. The minimum of energy dispersion was obtained with the variational principle. The suspension density of particles was obtained as a function of relative distance from wall and was compared with experimental results. It is concluded that the distribution is much affected by the particle size and that the smaller particles are apt to gather near the wall. (Aoki, K.)
Experimental study of two-phase natural circulation circuit
International Nuclear Information System (INIS)
Lemos, Wanderley Freitas; Su, Jian; Faccini, Jose Luiz Horacio
2012-01-01
This paper reports an experimental study on the behavior of fluid flow in natural circulation under single-and two-phase flow conditions. The natural circulation circuit was designed based on concepts of similarity and scale in proportion to the actual operating conditions of a nuclear reactor. This test equipment has similar performance to the passive system for removal of residual heat presents in Advanced Pressurized Water Reactors (A PWR). The experiment was carried out by supplying water to primary and secondary circuits, as well as electrical power resistors installed inside the heater. Power controller has available to adjust the values for supply of electrical power resistors, in order to simulate conditions of decay of power from the nuclear reactor in steady state. Data acquisition system allows the measurement and control of the temperature at different points by means of thermocouples installed at several points along the circuit. The behavior of the phenomenon of natural circulation was monitored by a software with graphical interface, showing the evolution of temperature measurement points and the results stored in digital format spreadsheets. Besides, the natural circulation flow rate was measured by a flowmeter installed on the hot leg. A flow visualization technique was used the for identifying vertical flow regimes of two-phase natural circulation. Finally, the Reynolds Number was calculated for the establishment of a friction factor correlation dependent on the scale geometrical length, height and diameter of the pipe. (author)
Droplets formation and merging in two-phase flow microfluidics.
Gu, Hao; Duits, Michel H G; Mugele, Frieder
2011-01-01
Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.
Acute cholecystitis: two-phase spiral CT finding
Energy Technology Data Exchange (ETDEWEB)
Oh, Eung Young; Yoon, Myung Hwan; Yang, Dal Mo; Chun Seok; Bae, Jun Gi; Kim, Hak Soo; Kim, Hyung Sik [Chungang Ghil Hospital, Incheon (Korea, Republic of)
1998-07-01
To describe the two-phase spiral CT findings of acute cholecystitis. Materials and Methods : CT scans of nine patients with surgically-proven acute cholecystitis were retrospectively reviewed for wall thickening, enhancement pattern of the wall, attenuation of the liver adjacent to the gallbladder, gallstones,gallbladder distension, gas collection within the gallbladder, pericholecystic fluid and infiltration of pericholecystic fat. Results : In all cases, wall thickening of the gallbladder was seen, though this was more distinct on delayed images, Using high-low-high attenuation, one layer was seen in five cases, nd three layers in four. On arterial images, eight cases showed transient focal increased attenuation of the liver adjacent to the gall bladder;four of these showed curvilinear attenuation and four showed subsegmental attenuation. One case showed curvilinear decreased attenuation between increased attenuation of the liver and the gallbladder, and during surgery, severe adhesion between the liver and gallbladder was confirmed. Additional CT findings were infiltration of pericholecystic fat (n=9), gallstones (n=7), gallbladder distension (n=6), pericholecystic fluid(n=3), and gas collection within the gallbladder (n=2). Conclusion : In patients with acute cholecystitis,two-phase spiral CT revealed wall thickening in one or three layers ; on delayed images this was more distinct. In many cases, arterial images showed transient focal increased attenuation of the liver adjacent to the gallbladder.
Computer simulation of two-phase flow in nuclear reactors
International Nuclear Information System (INIS)
Wulff, W.
1993-01-01
Two-phase flow models dominate the requirements of economic resources for the development and use of computer codes which serve to analyze thermohydraulic transients in nuclear power plants. An attempt is made to reduce the effort of analyzing reactor transients by combining purpose-oriented modelling with advanced computing techniques. Six principles are presented on mathematical modeling and the selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited than the two-fluid model for the analysis of two-phase flow in nuclear reactors, because of the latter's closure problems. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost. (orig.)
Studying Suspended Sediment Mechanism with Two-Phase PIV
Matinpour, H.; Atkinson, J. F.; Bennett, S. J.; Guala, M.
2017-12-01
Suspended sediment transport affects soil erosion, agriculture and water resources quality. Turbulent diffusion is the most primary force to maintain sediments in suspension. Although extensive previous literature have been studying the interactions between turbulent motion and suspended sediment, mechanism of sediments in suspension is still poorly understood. In this study, we investigate suspension of sediments as two distinct phases: one phase of sediments and another phase of fluid with turbulent motions. We designed and deployed a state-of-the-art two-phase PIV measurement technique to discriminate these two phases and acquire velocities of each phase separately and simultaneously. The technique that we have developed is employing a computer-vision based method, which enables us to discriminate sediment particles from fluid tracer particles based on two thresholds, dissimilar particle sizes and different particle intensities. Results indicate that fluid turbulence decreases in the presence of suspended sediments. Obtaining only sediment phase consecutive images enable us to compute fluctuation sediment concentration. This result enlightens understanding of complex interaction between the fluctuation velocities and the fluctuation of associated mass and compares turbulent viscosity with turbulent eddy diffusivity experimentally.
Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles
Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai
2016-06-01
Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations.
Droplets Formation and Merging in Two-Phase Flow Microfluidics
Directory of Open Access Journals (Sweden)
Hao Gu
2011-04-01
Full Text Available Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i the emulsification step should lead to a very well controlled drop size (distribution; and (ii the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.
Modelling compressible dense and dilute two-phase flows
Saurel, Richard; Chinnayya, Ashwin; Carmouze, Quentin
2017-06-01
Many two-phase flow situations, from engineering science to astrophysics, deal with transition from dense (high concentration of the condensed phase) to dilute concentration (low concentration of the same phase), covering the entire range of volume fractions. Some models are now well accepted at the two limits, but none are able to cover accurately the entire range, in particular regarding waves propagation. In the present work, an alternative to the Baer and Nunziato (BN) model [Baer, M. R. and Nunziato, J. W., "A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials," Int. J. Multiphase Flow 12(6), 861 (1986)], initially designed for dense flows, is built. The corresponding model is hyperbolic and thermodynamically consistent. Contrarily to the BN model that involves 6 wave speeds, the new formulation involves 4 waves only, in agreement with the Marble model [Marble, F. E., "Dynamics of a gas containing small solid particles," Combustion and Propulsion (5th AGARD Colloquium) (Pergamon Press, 1963), Vol. 175] based on pressureless Euler equations for the dispersed phase, a well-accepted model for low particle volume concentrations. In the new model, the presence of pressure in the momentum equation of the particles and consideration of volume fractions in the two phases render the model valid for large particle concentrations. A symmetric version of the new model is derived as well for liquids containing gas bubbles. This model version involves 4 characteristic wave speeds as well, but with different velocities. Last, the two sub-models with 4 waves are combined in a unique formulation, valid for the full range of volume fractions. It involves the same 6 wave speeds as the BN model, but at a given point of space, 4 waves only emerge, depending on the local volume fractions. The non-linear pressure waves propagate only in the phase with dominant volume fraction. The new model is tested numerically on various
Characteristics of two-phase flows in large diameter channels
Energy Technology Data Exchange (ETDEWEB)
Schlegel, J.P., E-mail: schlegelj@mst.edu [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, 301 W 14th St., Rolla, MO 65401 (United States); Hibiki, T.; Ishii, M. [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907 (United States)
2016-12-15
Two-phase flows in large diameter channels have a great deal of importance in a wide variety of industrial applications. Nuclear systems, petroleum refineries, and chemical processes make extensive use of larger systems. Flows in such channels have very different properties from flows in smaller channels which are typically used in experimental research. In this paper, the various differences between flows in large and small channels are highlighted using the results of previous experimental and analytical research. This review is followed by a review of recent experiments in and model development for flows in large diameter channels performed by the authors. The topics of these research efforts range from void fraction and interfacial area concentration measurement to flow regime identification and modeling, drift-flux modeling for high void fraction conditions, and evaluation of interfacial area transport models for large diameter channels.
Two-phase flow simulations in pore-geometries
Heimann, F.; Engwer, C.; Bastian, P.; Ippisch, O.
2012-04-01
Pore scale simulations of multi phase flow in porous media present a promising approach in the development and verification of continuum scale models as well as in the understanding of the underlying processes of flow phenomena like hysteresis or the peculiarities of the capillary fringe. As typical pore geometries involve complicated geometries with peculiar topological properties, the generation of a computational mesh, required by finite element (FE) based simulation approaches, becomes a limiting obstacle. We present a numerical discretization based on discontinuous Galerkin methods which does not require a grid which is fitted to the computational domain. In this approach, the resolution of the domain boundaries may be chosen independent of the FE basis. Furthermore, we will present discretization techniques allowing for an accurate representation of the interface conditions i.e. the jump in the pressure and the velocity derivatives. First results of simulations for two-phase flow in pore geometries are discussed.
Two-phase continuum theory for windblown sand
Jenkins, James T.; Valance, Alexandre
2018-03-01
We outline the derivation of a two-phase continuum theory for grains, jumping above a bed of sand, while accelerated by a turbulent shearing flow, colliding with the bed, rebounding, and, perhaps, generating other grains. Relations between the shear and normal stresses and vertical derivatives of components of the average particle velocity are determined by averaging the dynamical equations for the particle trajectories. This provides the closure for the system of differential equations that govern the behavior of the wind and particles above the bed. Boundary conditions are obtained by averaging the results of experiments on rebound and ejection of particles from a particle bed. We solve the resulting system of equations subject to the derived boundary conditions for steady, uniform flows over both particle and rigid beds, and obtain unsteady, uniform solutions and steady, nonuniform solutions that provide information regarding saturation times and lengths, respectively.
Two-phase flow instabilities in a vertical annular channel
Energy Technology Data Exchange (ETDEWEB)
Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)
1995-09-01
An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.
Numerical modeling of two-phase transonic flow
Czech Academy of Sciences Publication Activity Database
Halama, Jan; Benkhaldoun, F.; Fořt, Jaroslav
2010-01-01
Roč. 80, č. 88 (2010), s. 1624-1635 ISSN 0378-4754 Grant - others:GA ČR(CZ) GA201/08/0012 Program:GA Institutional research plan: CEZ:AV0Z20760514 Keywords : two - phase flow * condensation * fractional step method Subject RIV: BK - Fluid Dynamics Impact factor: 0.812, year: 2010 http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V0T-4VNK68X-2-R&_cdi=5655&_user=640952&_pii=S0378475409000421&_origin=search&_coverDate=04%2F30%2F2010&_sk=999199991&view=c&wchp=dGLzVlb-zSkWb&md5=5ba607428fac339a3e5f67035d3996d0&ie=/sdarticle.pdf
Mathematical model of two-phase flow in accelerator channel
Directory of Open Access Journals (Sweden)
О.Ф. Нікулін
2010-01-01
Full Text Available The problem of two-phase flow composed of energy-carrier phase (Newtonian liquid and solid fine-dispersed phase (particles in counter jet mill accelerator channel is considered. The mathematical model bases goes on the supposition that the phases interact with each other like independent substances by means of aerodynamics’ forces in conditions of adiabatic flow. The mathematical model in the form of system of differential equations of order 11 is represented. Derivations of equations by base physical principles for cross-section-averaged quantity are produced. The mathematical model can be used for estimation of any kinematic and thermodynamic flow characteristics for purposely parameters optimization problem solving and transfer functions determination, that take place in counter jet mill accelerator channel design.
Gulping phenomena in transient countercurrent two-phase flow
International Nuclear Information System (INIS)
Tehrani, Ali A.K.
2001-04-01
Apart from previous work on countercurrent gas-liquid flow, transient tank drainage through horizontal off-take pipes is described, including experimental procedure, flow pattern on observations and countercurrent flow limitation results. A separate chapter is devoted to countercurrent two-phase flow in a pressurised water reactor hot-leg scaled model. Results concerning low head flooding, high head and loss of bowl flooding, transient draining of the steam generator and pressure variation and bubble detachment are presented. The following subjects are covered as well: draining of sealed tanks of vertical pipes, unsteady draining of closed vessel via vertical tube, unsteady filling of a closed vessel via vertical tube from a constant head reservoir. Practical significance of the results obtained is discussed
Flooding in counter-current two-phase flow
International Nuclear Information System (INIS)
Ragland, W.A.; Ganic, E.N.
1982-01-01
Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding
Studies on shock phenomena in two-phase flow, 2
International Nuclear Information System (INIS)
Akagawa, Koji; Fujii, Terushige; Ito, Yutaka; Fukuhara, Kazuya; Yamaguchi, Toshiaki.
1982-01-01
Shock phenomena caused by a rapid valve closure in a slug flow region were investigated. The experiment was conducted in a horizontal acrylic tube of 20.7 mm ID, 4.85 mm in thickness, and 18.5 m in length. The profiles of the transient pressure caused by a rapid valve closure in slug flow are affected by the flow configuration adjacent to the valve, and these are classified into two types according to the existence of a gas slug or a liquid slug at the valve at the instant of valve closure. The characteristics of the transient pressure in the former were analyzed by an oscillation system model composed of a mass (liquid slug) and a compressible capacity (gas slug). Those in the latter were also analyzed for a homogeneous two-phase flow model by a similar method to that in a waterhammer analysis. The experimental results were well explained by these analyses. (author)
Advanced two-phase measurements developed at ENEA laboratories
International Nuclear Information System (INIS)
Girardi, G.; Palazzi, G.; Savelli, D.
1991-01-01
Measurement and control techniques, applied to industry, have the common aim to increase plant safety, reliability and availability. An industrial monitoring system needs several sensors, whose signals, after elaborating and interpretation, allow one to define the best working conditions; moreover, advanced instrumentation inserted in experimental facilities gives one the possibility to interpret process phenomena and to assess mathematical models. These new systems are able to detect and to process, at highest quality standard, physical parameters from which it is possible to draw more complex information and obtain additional parameters not directly measurable but necessary for a more complete process analysis. In this context the ENEA Experimental Engineering Division of the Thermal Reactor Department has been developing several advanced sensors and innovative systems in its laboratories at the Casaccia Centre (Rome). This article presents the principal results of these measurement methods concerning two-phase flow application. Two sectors are considered: a) innovative probes; b) advanced systems based on signal elaboration
Response of two-phase droplets to intense electromagnetic radiation
Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.
1993-01-01
The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.
Interfacial shear modeling in two-phase annular flow
International Nuclear Information System (INIS)
Kumar, R.; Edwards, D.P.
1996-07-01
A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment
Flooding in counter-current two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Ragland, W.A.; Ganic, E.N.
1982-01-01
Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding.
Correct numerical simulation of a two-phase coolant
Kroshilin, A. E.; Kroshilin, V. E.
2016-02-01
Different models used in calculating flows of a two-phase coolant are analyzed. A system of differential equations describing the flow is presented; the hyperbolicity and stability of stationary solutions of the system is studied. The correctness of the Cauchy problem is considered. The models' ability to describe the following flows is analyzed: stable bubble and gas-droplet flows; stable flow with a level such that the bubble and gas-droplet flows are observed under and above it, respectively; and propagation of a perturbation of the phase concentration for the bubble and gas-droplet media. The solution of the problem about the breakdown of an arbitrary discontinuity has been constructed. Characteristic times of the development of an instability at different parameters of the flow are presented. Conditions at which the instability does not make it possible to perform the calculation are determined. The Riemann invariants for the nonlinear problem under consideration have been constructed. Numerical calculations have been performed for different conditions. The influence of viscosity on the structure of the discontinuity front is studied. Advantages of divergent equations are demonstrated. It is proven that a model used in almost all known investigating thermohydraulic programs, both in Russia and abroad, has significant disadvantages; in particular, it can lead to unstable solutions, which makes it necessary to introduce smoothing mechanisms and a very small step for describing regimes with a level. This does not allow one to use efficient numerical schemes for calculating the flow of two-phase currents. A possible model free from the abovementioned disadvantages is proposed.
Construction of the two-phase critical flow test facility
International Nuclear Information System (INIS)
Chung, C. H.; Chang, S. K.; Park, H. S.; Min, K. H.; Choi, N. H.; Kim, C. H.; Lee, S. H.; Kim, H. C.; Chang, M. H.
2002-03-01
The two-phase critical test loop facility has been constructed in the KAERI engineering laboratory for the simulation of small break loss of coolant accident entrained with non-condensible gas of SMART. The test facility can operate at 12 MPa of pressure and 0 to 60 C of sub-cooling with 0.5 kg/s of non- condensible gas injection into break flow, and simulate up to 20 mm of pipe break. Main components of the test facility were arranged such that the pressure vessel containing coolant, a test section simulating break and a suppression tank inter-connected with pipings were installed vertically. As quick opening valve opens, high pressure/temperature coolant flows through the test section forming critical two-phase flow into the suppression tank. The pressure vessel was connected to two high pressure N2 gas tanks through a control valve to control pressure in the pressure vessel. Another N2 gas tank was also connected to the test section for the non-condensible gas injection. The test facility operation was performed on computers supported with PLC systems installed in the control room, and test data such as temperature, break flow rate, pressure drop across test section, gas injection flow rate were all together gathered in the data acquisition system for further data analysis. This test facility was classified as a safety related high pressure gas facility in law. Thus the loop design documentation was reviewed, and inspected during construction of the test loop by the regulatory body. And the regulatory body issued permission for the operation of the test facility
Supporting universal prevention programs: a two-phased coaching model.
Becker, Kimberly D; Darney, Dana; Domitrovich, Celene; Keperling, Jennifer Pitchford; Ialongo, Nicholas S
2013-06-01
Schools are adopting evidence-based programs designed to enhance students' emotional and behavioral competencies at increasing rates (Hemmeter et al. in Early Child Res Q 26:96-109, 2011). At the same time, teachers express the need for increased support surrounding implementation of these evidence-based programs (Carter and Van Norman in Early Child Educ 38:279-288, 2010). Ongoing professional development in the form of coaching may enhance teacher skills and implementation (Noell et al. in School Psychol Rev 34:87-106, 2005; Stormont et al. 2012). There exists a need for a coaching model that can be applied to a variety of teacher skill levels and one that guides coach decision-making about how best to support teachers. This article provides a detailed account of a two-phased coaching model with empirical support developed and tested with coaches and teachers in urban schools (Becker et al. 2013). In the initial universal coaching phase, all teachers receive the same coaching elements regardless of their skill level. Then, in the tailored coaching phase, coaching varies according to the strengths and needs of each teacher. Specifically, more intensive coaching strategies are used only with teachers who need additional coaching supports, whereas other teachers receive just enough support to consolidate and maintain their strong implementation. Examples of how coaches used the two-phased coaching model when working with teachers who were implementing two universal prevention programs (i.e., the PATHS curriculum and PAX Good Behavior Game [PAX GBG]) provide illustrations of the application of this model. The potential reach of this coaching model extends to other school-based programs as well as other settings in which coaches partner with interventionists to implement evidence-based programs.
Outcomes of two-phase orthodontic treatment of deepbite malocclusions.
Franchi, Lorenzo; Baccetti, Tiziano; Giuntini, Veronica; Masucci, Caterina; Vangelisti, Andrea; Defraia, Efisio
2011-11-01
The objective of this prospective controlled study was to assess the outcomes of two-phase treatment of deepbite patients revaluated at the end of circumpubertal growth, 1 year after the end of a phase-2 treatment. A sample of 58 subjects with deepbite (mean age 9.7 years, overbite greater than 4.5 mm) was treated consecutively with a two-phase protocol. Lateral cephalograms were taken before treatment (T1), at the completion of phase 1 (T2), and 1 year after the completion of phase 2 with fixed appliances (T3, mean age 15.8 years). The T1-T2, T2-T3, and T1-T3 changes were compared with those of the 29 subjects (mean age at T1 = 9.1 years) with untreated deepbite (t-tests for independent samples). Prevalence rates for improved overbite during the T1-T3 interval and for corrected overbite at T3 were contrasted in the treated vs untreated groups (z tests on proportions). Overbite was reduced by 1.9 mm in the treated group as a result of overall treatment; this group also displayed a significant reduction in the interincisal angulation (-6.6°) due to a significant proclination of upper incisors (4.1°) and a significant increase in the projection of the lower incisors (2.0 mm). The average amount of deepbite correction 1 year into retention was modest, and it was mainly due to a significant proclination of the incisors. The prevalence rate of subjects with a corrected overbite in the treated sample at T3 (74%) was not significantly different from that of the untreated sample (52%).
Two-phase flow heat transfer in nuclear reactor systems
International Nuclear Information System (INIS)
Koncar, Bostjan; Krepper, Eckhard; Bestion, Dominique; Song, Chul-Hwa; Hassan, Yassin A.
2013-01-01
Complete text of publication follows: Heat transfer and phase change phenomena in two-phase flows are often encountered in nuclear reactor systems and are therefore of paramount importance for their optimal design and safe operation.The complex phenomena observed especially during transient operation of nuclear reactor systems necessitate extensive theoretical and experimental investigations. This special issue brings seven research articles of high quality. Though small in number, they cover a wide range of topics, presenting high complexity and diversity of heat transfer phenomena in two-phase flow. In the last decades a vast amount of research has been devoted to theoretical work and computational simulations, yet the experimental work remains indispensable for understanding of two-phase flow phenomena and for model validation purposes. This is reflected also in this issue, where only one article is purely experimental, while three of them deal with theoretical modelling and the remaining three with numerical simulations. The experimental investigation of the critical heat flux (CHF) phenomena by means of photographic study is presented in the paper of J. Park et al. They have used a high-speed camera system to observe the transient boiling characteristics on a thin horizontal cylinder submerged in a pool of water or highly wetting liquid. Experiments show that the initial boiling process is strongly affected by the properties and wettability of the liquid. The authors have stressed the importance of the local scale observation leading to better understanding of the transient CHF phenomena. In the article of G. Espinosa-Paredes et al. a theoretical work concerning the derivation of transport equations for two-phase flow is presented. The author proposes a novel approach based on derivation of nonlocal volume averaged equations which contain new terms related to nonlocal transport effects. These non-local terms act as coupling elements between the phenomena
Ma, Xiao-kui; Daugulis, Andrew J
2014-01-01
Amycolatopsis sp. ATCC 39116 (formerly Streptomyces setonii) has shown promising results in converting ferulic acid (trans-4-hydroxy-3-methoxycinnamic acid; substrate), which can be derived from natural plant wastes, to vanillin (4-hydroxy-3-methoxybenzaldehyde). After exploring the influence of adding vanillin at different times during the growth cycle on cell growth and transformation performance of this strain and demonstrating the inhibitory effect of vanillin, a solid-liquid two-phase partitioning bioreactor (TPPB) system was used as an in situ product removal technique to enhance transformation productivity by this strain. The thermoplastic polymer Hytrel(®) G4078W was found to have superior partitioning capacity for vanillin with a partition coefficient of 12 and a low affinity for the substrate. A 3-L working volume solid-liquid fed-batch TPPB mode, using 300 g Hytrel G4078W as the sequestering phase, produced a final vanillin concentration of 19.5 g/L. The overall productivity of this reactor system was 450 mg/L. h, among the highest reported in literature. Vanillin was easily and quantitatively recovered from the polymers mostly by single stage extraction into methanol or other organic solvents used in food industry, simultaneously regenerating polymer beads for reuse. A polymer-liquid two phase bioreactor was again confirmed to easily outperform single phase systems that feature inhibitory or easily further degraded substrates/products. This enhancement strategy might reasonably be expected in the production of other flavor and fragrance compounds obtained by biotransformations. © 2013 American Institute of Chemical Engineers.
Textile impregnation with thermoplastic resin - models and application
Loendersloot, Richard; Grouve, Wouter Johannes Bernardus; Lamers, E.A.D.; Wijskamp, Sebastiaan; Kelly, P.A.; Bickerton, S.; Lescher, P.; Govignon, Q.
2012-01-01
One of the key issues of the development of cost-effective thermoplastic composites for the aerospace industry is the process quality control. A complete, void free impregnation of the textile reinforcement by the thermoplastic resin is an important measure of the quality of composites. The
Thermoplastic impact property improvement in hybrid natural fibre epoxy composite bumper beam
Energy Technology Data Exchange (ETDEWEB)
Davoodi, M M; Sapuan, S M; Ali, Aidy [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia 43400 UPM Serdang, Selangor (Malaysia); Ahmad, D; Khalina, A, E-mail: makinejadm2@asme.org [Department of Biological and Agricultural Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)
2010-05-15
Utilization of thermoset resin as a bumper beam composite matrix is currently more dominated in car manufacturer suppliers, because of availability, easy processing, low material cost and production equipment investment. Moreover, low viscosity, shrinkage and excellent flow facilitate better fibre impregnation and proper surface resin wetting. Three-dimensional cross linking curing increase impact, creep and environmental stress cracking resistance properties. Low impact properties of natural fibre epoxy composite, are main issues in its employment for automotive structural components. Impact properties in epoxy composite bumper beam could be increased by modifying the resin, reinforcement and manufacturing process as well as geometry parameters such as cross section, thickness, added ribs and fixing method optimizations could strengthen impact resistance. There are two main methods, flexibilisation and toughening, as modifying the resin in order to improve the impact properties of epoxy composite, which form single phase or two-phase morphology to make modifier as epoxy or from separate phase to keep the thermo-mechanical properties. Liquid rubber, thermoplastic, core shell particle and rigid particle are different methods of toughening improvements. In this research, thermoplastic toughening has used to improve impact properties in hybrid natural fibre epoxy composite for automotive bumper beam and has achieved reasonable impact improvements.
Thermoplastic impact property improvement in hybrid natural fibre epoxy composite bumper beam
International Nuclear Information System (INIS)
Davoodi, M M; Sapuan, S M; Ali, Aidy; Ahmad, D; Khalina, A
2010-01-01
Utilization of thermoset resin as a bumper beam composite matrix is currently more dominated in car manufacturer suppliers, because of availability, easy processing, low material cost and production equipment investment. Moreover, low viscosity, shrinkage and excellent flow facilitate better fibre impregnation and proper surface resin wetting. Three-dimensional cross linking curing increase impact, creep and environmental stress cracking resistance properties. Low impact properties of natural fibre epoxy composite, are main issues in its employment for automotive structural components. Impact properties in epoxy composite bumper beam could be increased by modifying the resin, reinforcement and manufacturing process as well as geometry parameters such as cross section, thickness, added ribs and fixing method optimizations could strengthen impact resistance. There are two main methods, flexibilisation and toughening, as modifying the resin in order to improve the impact properties of epoxy composite, which form single phase or two-phase morphology to make modifier as epoxy or from separate phase to keep the thermo-mechanical properties. Liquid rubber, thermoplastic, core shell particle and rigid particle are different methods of toughening improvements. In this research, thermoplastic toughening has used to improve impact properties in hybrid natural fibre epoxy composite for automotive bumper beam and has achieved reasonable impact improvements.
International Nuclear Information System (INIS)
Briola, Stefano; Di Marco, Paolo; Gabbrielli, Roberto
2017-01-01
A novel Combined Cooling, Heating and Power (CCHP) cycle, operating with two-phase devices for the compression and expansion processes and a single-component wet working fluid, is proposed. A detailed sensitivity analysis of the novel CCHP cycle has been investigated in order to evaluate, in terms of energy performance indicators, its potentiality to serve typical trigenerative tertiary and industrial end-users with different fixed operating temperatures. In general, the novel CCHP cycle is characterized by higher energy performance indicators than a separated energy production system. The comparison between the novel CCHP cycle and several commercialized CCHP systems has been performed in the case studies related to tertiary and industrial end-users. The novel CCHP cycle shows a trigenerative capability in wide ranges of the end-users demands without surplus or deficit of the electric or thermal powers. Furthermore, the maximum allowable capital cost of the whole novel CCHP plant (BEPCC), that will assure the profitability of the investment, is calculated in the tertiary and industrial end-users case studies. For the tertiary end-user, the capital costs of the commercialized CCHP are between the minimum and maximum BEPCC values. On the contrary, for the industrial end-user, they are lower than the minimum and maximum BEPCC values. - Highlights: • Novel CCHP cycle with two-phase expanders and compressors has been conceived. • Novel CCHP cycle has higher performances than a separated energy production system. • Novel CCHP cycle satisfies the user demands in wide ranges without surplus/deficit. • Tertiary user: novel CCHP cycle is competitive against marketed CCHP systems. • Industrial user: novel CCHP cycle is not competitive against marketed CCHP systems.
Enhanced mixing in two-phase Taylor-Couette flows
International Nuclear Information System (INIS)
Dherbecourt, Diane
2015-01-01
In the scope of the nuclear fuel reprocessing, Taylor-Couette flows between two concentric cylinders (the inner one in rotation and the outer one at rest) are used at laboratory scale to study the performances of new liquid/liquid extraction processes. Separation performances are strongly related to the mixing efficiency, the quantification of the latter is therefore of prime importance. A previous Ph.D. work has related the mixing properties to the hydrodynamics parameters in single-phase flow, using both experimental and numerical investigations. The Reynolds number, flow state and vortices height (axial wavelength) impacts were thus highlighted. This Ph.D. work extends the previous study to two-phase configurations. For experimental simplification, and to avoid droplets coalescence or breakage, spherical solid particles of PMMA from 800 μm to 1500 μm diameter are used to model rigid droplets. These beads are suspended in an aqueous solution of dimethyl sulfoxide (DMSO) and potassium Thiocyanate (KSCN). The experimental setup uses coupled Particle Image Velocimetry (PIV) and Planar Laser-Induced Fluorescence (PLIF) to access simultaneously the hydrodynamic and the mixing properties. Although the two phases are carefully chosen to match in density and refractive index, these precautions are not sufficient to ensure a good measurement quality, and a second PLIF channel is added to increase the precision of the mixing quantification. The classical PLIF channel monitors the evolution of Rhodamine WT concentration, while the additional PLIF channel is used to map a Fluorescein dye, which is homogeneously concentrated inside the gap. This way, a dynamic mask of the bead positions can be created and used to correct the Rhodamine WT raw images. Thanks to this experimental setup, a parametric study of the particles size and concentration is achieved. A double effect of the dispersed phase is evidenced. On one hand, the particles affect the flow hydrodynamic properties
Thermoplastic microcantilevers fabricated by nanoimprint lithography
DEFF Research Database (Denmark)
Greve, Anders; Keller, Stephan Urs; Vig, Asger Laurberg
2010-01-01
Nanoimprint lithography has been exploited to fabricate micrometre-sized cantilevers in thermoplastic. This technique allows for very well defined microcantilevers and gives the possibility of embedding structures into the cantilever surface. The microcantilevers are fabricated in TOPAS and are up...... to 500 μm long, 100 μm wide, and 4.5 μm thick. Some of the cantilevers have built-in ripple surface structures with heights of 800 nm and pitches of 4 μm. The yield for the cantilever fabrication is 95% and the initial out-of-plane bending is below 10 μm. The stiffness of the cantilevers is measured...
Statistical descriptions of polydisperse turbulent two-phase flows
Minier, Jean-Pierre
2016-12-01
Disperse two-phase flows are flows containing two non-miscible phases where one phase is present as a set of discrete elements dispersed in the second one. These discrete elements, or 'particles', can be droplets, bubbles or solid particles having different sizes. This situation encompasses a wide range of phenomena, from nano-particles and colloids sensitive to the molecular fluctuations of the carrier fluid to inertia particles transported by the large-scale motions of turbulent flows and, depending on the phenomenon studied, a broad spectrum of approaches have been developed. The aim of the present article is to analyze statistical models of particles in turbulent flows by addressing this issue as the extension of the classical formulations operating at a molecular or meso-molecular level of description. It has a three-fold purpose: (1) to bring out the thread of continuity between models for discrete particles in turbulent flows (above the hydrodynamical level of description) and classical mesoscopic formulations of statistical physics (below the hydrodynamical level); (2) to reveal the specific challenges met by statistical models in turbulence; (3) to establish a methodology for modeling particle dynamics in random media with non-zero space and time correlations. The presentation is therefore centered on organizing the different approaches, establishing links and clarifying physical foundations. The analysis of disperse two-phase flow models is developed by discussing: first, approaches of classical statistical physics; then, by considering models for single-phase turbulent flows; and, finally, by addressing current formulations for discrete particles in turbulent flows. This brings out that particle-based models do not cease to exist above the hydrodynamical level and offer great interest when combined with proper stochastic formulations to account for the lack of equilibrium distributions and scale separation. In the course of this study, general results
Creep of Two-Phase Microstructures for Microelectronic Applications
Energy Technology Data Exchange (ETDEWEB)
Reynolds, Heidi Linch [Univ. of California, Berkeley, CA (United States)
1998-12-01
The mechanical properties of low-melting temperature alloys are highly influenced by their creep behavior. This study investigates the dominant mechanisms that control creep behavior of two-phase, low-melting temperature alloys as a function of microstructure. The alloy systems selected for study were In-Ag and Sn-Bi because their eutectic compositions represent distinctly different microstructure.” The In-Ag eutectic contains a discontinuous phase while the Sn-Bi eutectic consists of two continuous phases. In addition, this work generates useful engineering data on Pb-free alloys with a joint specimen geometry that simulates microstructure found in microelectronic applications. The use of joint test specimens allows for observations regarding the practical attainability of superplastic microstructure in real solder joints by varying the cooling rate. Steady-state creep properties of In-Ag eutectic, Sn-Bi eutectic, Sn-xBi solid-solution and pure Bi joints have been measured using constant load tests at temperatures ranging from O°C to 90°C. Constitutive equations are derived to describe the steady-state creep behavior for In-Ageutectic solder joints and Sn-xBi solid-solution joints. The data are well represented by an equation of the form proposed by Dom: a power-law equation applies to each independent creep mechanism. Rate-controlling creep mechanisms, as a function of applied shear stress, test temperature, and joint microstructure, are discussed. Literature data on the steady-state creep properties of Sn-Bi eutectic are reviewed and compared with the Sn-xBi solid-solution and pure Bi joint data measured in the current study. The role of constituent phases in controlling eutectic creep behavior is discussed for both alloy systems. In general, for continuous, two-phase microstructure, where each phase exhibits significantly different creep behavior, the harder or more creep resistant phase will dominate the creep behavior in a lamellar microstructure. If a
The pressure effects on two-phase anaerobic digestion
International Nuclear Information System (INIS)
Chen, Yuling; Rößler, Benjamin; Zielonka, Simon; Lemmer, Andreas; Wonneberger, Anna-Maria; Jungbluth, Thomas
2014-01-01
Highlights: • The pressure effect on anaerobic digestion up to 9 bar was examined. • Increasing pressure decreased pH value in the anaerobic filter. • Increasing pressure increased methane content. • Increasing pressure decreased specific methane yield slightly. • The pressurized methane reactor was very stable and performed well. - Abstract: Two-phase pressurized anaerobic digestion is a novel process aimed at facilitating injection of the produced biogas into the natural gas grid by integrating the fermentative biogas production and upgrading it to substitute natural gas. In order to understand the mechanisms, knowledge of pressure effects on anaerobic digestion is required. To examine the effects of pressure on the anaerobic digestion process, a two-phase anaerobic digestion system was built up in laboratory scale, including three acidogenesis-leach-bed-reactors and one pressure-resistant anaerobic filter. Four different pressure levels (the absolute pressure of 1 bar, 3 bar, 6 bar and 9 bar) were applied to the methane reactor in sequence, with the organic loading rate maintained at approximately 5.1 kgCOD m −3 d −1 . Gas production, gas quality, pH value, volatile fatty acids, alcohol, ammonium-nitrogen, chemical oxygen demand (COD) and alkaline buffer capacity were analyzed. No additional caustic chemicals were added for pH adjustment throughout the experiment. With the pressure increasing from 1.07 bar to 8.91 bar, the pH value decreased from 7.2 to 6.5, the methane content increased from 66% to 75%, and the specific methane yield was slightly reduced from 0.33 l N g −1 COD to 0.31 l N g −1 COD. There was almost no acid-accumulation during the entire experiment. The average COD-degradation grade was always more than 93%, and the average alkaline buffering capacity (VFA/TIC ratio) did not exceed 0.2 at any pressure level. The anaerobic filter showed a very stable performance, regardless of the pressure variation
Simulating compressible-incompressible two-phase flows
Denner, Fabian; van Wachem, Berend
2017-11-01
Simulating compressible gas-liquid flows, e.g. air-water flows, presents considerable numerical issues and requires substantial computational resources, particularly because of the stiff equation of state for the liquid and the different Mach number regimes. Treating the liquid phase (low Mach number) as incompressible, yet concurrently considering the gas phase (high Mach number) as compressible, can improve the computational performance of such simulations significantly without sacrificing important physical mechanisms. A pressure-based algorithm for the simulation of two-phase flows is presented, in which a compressible and an incompressible fluid are separated by a sharp interface. The algorithm is based on a coupled finite-volume framework, discretised in conservative form, with a compressive VOF method to represent the interface. The bulk phases are coupled via a novel acoustically-conservative interface discretisation method that retains the acoustic properties of the compressible phase and does not require a Riemann solver. Representative test cases are presented to scrutinize the proposed algorithm, including the reflection of acoustic waves at the compressible-incompressible interface, shock-drop interaction and gas-liquid flows with surface tension. Financial support from the EPSRC (Grant EP/M021556/1) is gratefully acknowledged.
Turbulent transition modification in dispersed two-phase pipe flow
Winters, Kyle; Longmire, Ellen
2014-11-01
In a pipe flow, transition to turbulence occurs at some critical Reynolds number, Rec , and transition is associated with intermittent swirling structures extending over the pipe cross section. Depending on the magnitude of Rec , these structures are known either as puffs or slugs. When a dispersed second liquid phase is added to a liquid pipe flow, Rec can be modified. To explore the mechanism for this modification, an experiment was designed to track and measure these transitional structures. The facility is a pump-driven circuit with a 9m development and test section of diameter 44mm. Static mixers are placed upstream to generate an even dispersion of silicone oil in a water-glycerine flow. Pressure signals were used to identify transitional structures and trigger a high repetition rate stereo-PIV system downstream. Stereo-PIV measurements were obtained in planes normal to the flow, and Taylor's Hypothesis was employed to infer details of the volumetric flow structure. The presentation will describe the sensing and imaging methods along with preliminary results for the single and two-phase flows. Supported by Nanodispersions Technology.
Texture of uniaxial compressed two-phase titanium-aluminides
International Nuclear Information System (INIS)
Bermig, G.; Tobisch, J.; Brokmeier, H.G.; Wurzwallner, K.
1993-01-01
Texture is, among others, an essential parameter to document the different states of a polycrystalline material from production to application. Therefore, texture studies were carried out in γ-base titanium aluminide series, Ti-48at%Al and Ti-48at%Al-2at%Cr, in order to describe their microstructural changes during uniaxial compression. The fabrication of the material started by casting an ingot of the desired composition. After hot isostatic pressing (HIP) the specimens were deformed up to 77% with a compression rate of ∼ 10mm/s, X-ray diffraction and microscopical investigations confirm the expected two-phase material composition of tetragonal γ-Tial and hexagonal α 2 -Ti 3 Al respectively. The texture measurements were carried out by X-ray as well as by neutron diffraction. A comparison of both techniques is necessary in order to document that only a combination of X-ray and neutron diffraction allows to obtain the whole texture information of all samples. Finally, the determined textures are discussed in correlation with deformation. (orig.)
Mechanisms for two phase flow in porous media
International Nuclear Information System (INIS)
Weber, G.
1995-07-01
For a better understanding of transport mechanisms in soil for a system with two phases of immiscible liquids the physics of porous media gives again important contributions. In this report, the considerations mainly concentrate on horizontal transport. Our approach is based on the similarity solution of the transport equation which reduces a given nonlinear partial differential equation (PDE) to an ordinary differential equation (ODE). It can be seen, how dimensionless similarity solutions of the ODE depend, in addition to the similarity variable, on two parameters: - the capillary number Nc, giving the ratio of capillary forces and viscous forces, and - the ratio of the viscosities of the two liquid phases. It is shown, under which conditions different mechanisms of transport are to be expected, such as - a completely stable displacement or - an unstable displacement, related to viscous fingering (DLA, Diffusion Limited Aggregation) or to capillary fingering (IP, Invasion Percolation). These mechanisms are also strongly dependent on certain critical exponents (characteristic for DLA or IP). These relations are discussed in our report. Again, for some regions of saturation, mechanisms of displacement are either clearly dominated - by imbibition (e.g. water pushing oil) or - by drain (e.g. oil pushing water). Some of the results are also transformed again from the similarity solution of the ODE to a solution of the PDE (with space- and time coordinates). It is seen, that even with this somewhat simplified approach, we obtain a considerable spectrum of mechanisms. (orig.)
A turbulent two-phase flow model for nebula flows
International Nuclear Information System (INIS)
Champney, J.M.; Cuzzi, J.N.
1990-01-01
A new and very efficient turbulent two-phase flow numericaly model is described to analyze the environment of a protoplanetary nebula at a stage prior to the formation of planets. Focus is on settling processes of dust particles in flattened gaseous nebulae. The model employs a perturbation technique to improve the accuracy of the numerical simulations of such flows where small variations of physical quantities occur over large distance ranges. The particles are allowed to be diffused by gas turbulence in addition to settling under gravity. Their diffusion coefficients is related to the gas turbulent viscosity by the non-dimensional Schmidt number. The gas turbulent viscosity is determined by the means of the eddy viscosity hypothesis that assumes the Reynolds stress tensor proportional to the mean strain rate tensor. Zero- and two-equation turbulence models are employed. Modeling assumptions are detailed and discussed. The numerical model is shown to reproduce an existing analytical solution for the settling process of particles in an inviscid nebula. Results of nebula flows are presented taking into account turbulence effects of nebula flows. Diffusion processes are found to control the settling of particles. 24 refs
Two phases of the anyon gas and broken T symmetry
International Nuclear Information System (INIS)
Canright, G.S.; Rojo, A.G.
1991-01-01
This paper reports the first exact finite-temperature study of anyons. The authors' method is an extension to finite T of earlier numerical work with small numbers of anyons on a lattice. We study the spontaneous magnetization M 0 (T), since the signature has been identified as a key signature of broken T symmetry for anyon models. Our results confirm the two-phase picture suggested by earlier work: The authors find a low-temperature regime where M 0 is very small or zero, and a high-temperature regime where M 0 is of O(0.1 μ B ) per particle. In the high-temperature regime the authors can obtain an excellent estimate of M 0 (T) in the thermodynamic limit (which we call M 0 ∞ ). since our finite-size results extrapolate smoothly with little scatter. The authors' values for M 0 ∞ can then be compared with the results of μSR experiments on high-temperature superconductors, which set an upper experimental bound on the internal fields from such moments. The authors find that M 0 ∞ in a bulk material of many planes will almost certainly give a signal well above this threshold if (and only if) the planes are ordered ferromagnetically. In the antiferromagnetic case (which is strongly favored energetically) the signal from M 0 ∞ is probably undetectable. Finally, we estimate the transition temperature T c from our finite-size studies, obtaining a value on the order of a few hundred Kelvins
Entrainment in vertical annular two-phase flow
International Nuclear Information System (INIS)
Sawant, Pravin; Ishii, Mamoru; Mori, Michitsugu
2009-01-01
Prediction of amount of entrained droplets or entrainment fraction in annular two-phase flow is essential for the estimation of dryout condition and analysis of post dryout heat transfer in light water nuclear reactors and steam boilers. In this study, air-water and organic fluid (Freon-113) annular flow entrainment experiments have been carried out in 9.4 and 10.2 mm diameter test sections, respectively. Both the experiments covered three distinct pressure conditions and wide range of liquid and gas flow conditions. The organic fluid experiments simulated high pressure steam-water annular flow conditions. In each of the experiments, measurements of entrainment fraction, droplet entrainment rate and droplet deposition rate have been performed by using a liquid film extraction method. A simple, explicit and non-dimensional correlation developed by Sawant et al. (2008a) for the prediction of entrainment fraction is further improved in this study in order to account for the existence of critical gas and liquid flow rates below which no entrainment is possible. Additionally, a new correlation is proposed for the estimation of minimum liquid film flow rate at the maximum entrainment fraction condition. The improved correlation successfully predicted the newly collected air-water and Freon-113 entrainment fraction data. Furthermore, the correlations satisfactorily compared with the air-water, helium-water and air-genklene experimental data measured by Willetts (1987). (author)
Passive Two-Phase Cooling of Automotive Power Electronics: Preprint
Energy Technology Data Exchange (ETDEWEB)
Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.
2014-08-01
Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.
Two-Phase Flow Hydrodynamics in Superhydrophobic Channels
Stevens, Kimberly; Crockett, Julie; Maynes, Daniel; Iverson, Brian
2015-11-01
Superhydrophobic surfaces promote drop-wise condensation and droplet removal leading to the potential for increased thermal transport. Accordingly, great interest exists in using superhydrophobic surfaces in flow condensing environments, such as power generation and desalination. Adiabatic air-water mixtures were used to gain insight into the effect of hydrophobicity on two-phase flows and the hydrodynamics present in flow condensation. Pressure drop and onset of various flow regimes in hydrophilic, hydrophobic, and superhydrophobic mini (0.5 x 10 mm) channels were explored. Data for air/water mixtures with superficial Reynolds numbers from 20-200 and 250-1800, respectively, were obtained. Agreement between experimentally obtained pressure drops and correlations in literature for the conventional smooth control surfaces was better than 20 percent. Transitions between flow regimes for the hydrophobic and hydrophilic channels were similar to commonly recognized flow types. However, the superhydrophobic channel demonstrated significantly different flow regime behavior from conventional surfaces including a different shape of the air slugs, as discussed in the presentation.
Acetylation of rice straw for thermoplastic applications.
Zhang, Guangzhi; Huang, Kai; Jiang, Xue; Huang, Dan; Yang, Yiqi
2013-07-01
An inexpensive and biodegradable thermoplastic was developed through acetylation of rice straw (RS) with acetic anhydride. Acetylation conditions were optimized. The structure and properties of acetylated RS were characterized by fourier transform infrared (FTIR), solid-state (13)C NMR spectroscopy, X-ray diffractometer (XRD), scanning electron microscope (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results showed that acetylation of RS has successfully taken place, and comparing with raw RS, the degree of crystallinity decreased and the decomposition rate was slow. The acetylated RS has got thermoplasticity when weight ratio of RS and acetic anhydride was 1:3, using sulphuric acid (9% to RS) as catalyst in glacial acetic acid 35°C for 12h, and the dosage of solvent was 9 times RS, in which weight percent gain (WPG) of the modified RS powder was 35.5% and its percent acetyl content was 36.1%. The acetylated RS could be formed into transparent thin films with different amount of plasticizer diethyl phthalate (DEP) using tape casting technology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Low Cost Processing of Commingled Thermoplastic Composites
Chiasson, Matthew Lee
A low cost vacuum consolidation process has been investigated for use with commingled thermoplastic matrix composites. In particular, the vacuum consolidation behaviour of commingled polypropylene/glass fibre and commingled nylon/carbon fibre precursors were studied. Laminates were consolidated in a convection oven under vacuum pressure. During processing, the consolidation of the laminate packs was measured by use of non-contact eddy current sensors. The consolidation curves are then used to tune an empirical consolidation model. The overall quality of the resulting laminates is also discussed. Dynamic mechanical analysis, differential scanning calorimetry and mechanical tensile testing were also performed in order to determine the effects of varying processing parameters on the physical and mechanical properties of the laminates. Through this analysis, it was determined that the nylon/carbon fibre blend was not suitable for vacuum consolidation, while the polypropylene/glass fibre blend is a viable option for vacuum consolidation. The ultimate goal of this work is to provide a foundation from which low cost unmanned aerial vehicle (UAV) components can be designed and manufactured from thermoplastic matrix composites using a low cost processing technique as an alternative to traditional thermoset composite materials.
Tough and Sustainable Graft Block Copolymer Thermoplastics
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jiuyang; Li, Tuoqi; Mannion, Alexander M.; Schneiderman, Deborah K.; Hillmyer, Marc A.; Bates, Frank S. (UMM)
2016-03-15
Fully sustainable poly[HPMC-g-(PMVL-b-PLLA)] graft block copolymer thermoplastics were prepared from hydroxypropyl methylcellulose (HPMC), β-methyl-δ-valerolactone (MVL), and l-lactide (LLA) using a facile two-step sequential addition approach. In these materials, rubbery PMVL functions as a bridge between the semirigid HPMC backbone and the hard PLLA end blocks. This specific arrangement facilitates PLLA crystallization, which induces microphase separation and physical cross-linking. By changing the backbone molar mass or side chain composition, these thermoplastic materials can be easily tailored to access either plastic or elastomeric behavior. Moreover, the graft block architecture can be utilized to overcome the processing limitations inherent to linear block polymers. Good control over molar mass and composition enables the deliberate design of HPMC-g-(PMVL-b-PLLA) samples that are incapable of microphase separation in the melt state. These materials are characterized by relatively low zero shear viscosities in the melt state, an indication of easy processability. The simple and scalable synthetic procedure, use of inexpensive and renewable precursors, and exceptional rheological and mechanical properties make HPMC-g-(PMVL-b-PLLA) polymers attractive for a broad range of applications.
Numerical methods for two-phase flow with contact lines
Energy Technology Data Exchange (ETDEWEB)
Walker, Clauido
2012-07-01
This thesis focuses on numerical methods for two-phase flows, and especially flows with a moving contact line. Moving contact lines occur where the interface between two fluids is in contact with a solid wall. At the location where both fluids and the wall meet, the common continuum descriptions for fluids are not longer valid, since the dynamics around such a contact line are governed by interactions at the molecular level. Therefore the standard numerical continuum models have to be adjusted to handle moving contact lines. In the main part of the thesis a method to manipulate the position and the velocity of a contact line in a two-phase solver, is described. The Navier-Stokes equations are discretized using an explicit finite difference method on a staggered grid. The position of the interface is tracked with the level set method and the discontinuities at the interface are treated in a sharp manner with the ghost fluid method. The contact line is tracked explicitly and its dynamics can be described by an arbitrary function. The key part of the procedure is to enforce a coupling between the contact line and the Navier-Stokes equations as well as the level set method. Results for different contact line models are presented and it is demonstrated that they are in agreement with analytical solutions or results reported in the literature.The presented Navier-Stokes solver is applied as a part in a multiscale method to simulate capillary driven flows. A relation between the contact angle and the contact line velocity is computed by a phase field model resolving the micro scale dynamics in the region around the contact line. The relation of the microscale model is then used to prescribe the dynamics of the contact line in the macro scale solver. This approach allows to exploit the scale separation between the contact line dynamics and the bulk flow. Therefore coarser meshes can be applied for the macro scale flow solver compared to global phase field simulations
Simulation of two-phase flows by domain decomposition
International Nuclear Information System (INIS)
Dao, T.H.
2013-01-01
This thesis deals with numerical simulations of compressible fluid flows by implicit finite volume methods. Firstly, we studied and implemented an implicit version of the Roe scheme for compressible single-phase and two-phase flows. Thanks to Newton method for solving nonlinear systems, our schemes are conservative. Unfortunately, the resolution of nonlinear systems is very expensive. It is therefore essential to use an efficient algorithm to solve these systems. For large size matrices, we often use iterative methods whose convergence depends on the spectrum. We have studied the spectrum of the linear system and proposed a strategy, called Scaling, to improve the condition number of the matrix. Combined with the classical ILU pre-conditioner, our strategy has reduced significantly the GMRES iterations for local systems and the computation time. We also show some satisfactory results for low Mach-number flows using the implicit centered scheme. We then studied and implemented a domain decomposition method for compressible fluid flows. We have proposed a new interface variable which makes the Schur complement method easy to build and allows us to treat diffusion terms. Using GMRES iterative solver rather than Richardson for the interface system also provides a better performance compared to other methods. We can also decompose the computational domain into any number of sub-domains. Moreover, the Scaling strategy for the interface system has improved the condition number of the matrix and reduced the number of GMRES iterations. In comparison with the classical distributed computing, we have shown that our method is more robust and efficient. (author) [fr
Development of two-phase Flow Model, 'SOBOIL', for Sodium
International Nuclear Information System (INIS)
Hahn, Do Hee; Chang, Won Pyo; Kim, In Chul; Kwon, Young Min; Lee, Yong Bum
2000-03-01
The objective of this research is to develop a sodium two-phase flow analysis model, 'SOBOIL', for the assessment of the initial stage of the KALIMER HCDA (Hypotherical Core Disruptive Accident). The 'SOBOIL' is basically similar to the multi-bubble slug ejection model used in SAS2A[1]. When a bubble is formed within the liquid slug, the bubble fills the whole cross section of the coolant channel except for a film left on the cladding or on the structure. Up to nine bubbles, separated by the liquid slugs, are allowed in the channel at any time. Each liquid slug flow rate in the model is performed in 2 steps. In the first step, the preliminary flow rate in the liquid slug is calculated neglecting the effect of changes in the vapor bubble pressures over the time step. The temperature and pressure distributions, and interface velocity at the interface between the liquid slug and vapor bubble are also calculated during this process. The new vapor temperature and pressure are then determined from the balance between the net energy transferred into the vapor and the change of the vapor energy. The liquid flow is finally calculated considering the change of the vapor pressure over a time step and the calculation is repeated until specified elapsed time is met. Continuous effort, therefore, must be made on the examination and improvement for the model to become reliable. To this end, much interest must be concentrated in the relevant international collaborations for access to a reference model or test data for the verification
Interfacial Instability in Two-Phase Flow: Manipulating Coalescence and Condensation
National Aeronautics and Space Administration — Two-phase flow under microgravity conditions presents a number of technical challenges ( and ). Life support and habitation depend on systems that use two-phase flow...
Stratified steady and unsteady two-phase flows between two parallel plates
International Nuclear Information System (INIS)
Sim, Woo Gun
2006-01-01
To understand fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. Stratified steady and unsteady two-phase flows between two parallel plates have been studied to investigate the general characteristics of the flow related to flow-induced vibration. Based on the spectral collocation method, a numerical approach has been developed for the unsteady two-phase flow. The method is validated by comparing numerical result to analytical one given for a simple harmonic two-phase flow. The flow parameters for the steady two-phase flow, such as void fraction and two-phase frictional multiplier, are evaluated. The dynamic characteristics of the unsteady two-phase flow, including the void fraction effect on the complex unsteady pressure, are illustrated
Thermal monitoring of the thermoplastic injection molding process with FBGs
Alberto, Nélia J.; Nogueira, Rogério N.; Neto, Victor F.
2014-08-01
Injection molding is an important polymer processing method for manufacturing plastic components. In this work, the thermal monitoring of the thermoplastic injection molding is presented, since temperature is a critical parameter that influences the process features. A set of fiber Bragg gratings were multiplexed, aiming a two dimensional monitoring of the mold. The results allowed to identify the different stages of the thermoplastic molding cycle. Additionally, the data provide information about the heat transfer phenomena, an important issue for the thermoplastic injection sector, and thus for an endless number of applications that employ this type of materials.
Two-phase simulation of a variable rate infiltration experiment
Luvisotto, V.; Manoli, G.; Cainelli, O.; Bellin, A.; Marani, M.; Putti, M.
2012-04-01
Flow and transport processes in unsaturated soils are typically modeled through Richards' equation with retention and hydraulic conductivity curves obtained under static and stationary conditions, respectively. This model is commonly applied to quantify infiltration at the hillslope scale under strongly varying rainfall intensity, which leads to varying infiltration rates. To our knowledge detailed laboratory experiments reproducing this situation in large columns of length comparable with the soil thickness in Alpine hillslopes are lacking. In the present work we analyze and model variable rate infiltration experiments performed in a sand column accurately instrumented with tensiometers and TDR probes. Previous analyses revealed that data collected during transient experiments are not falling within the main wetting and drying curves obtained with careful analysis under static conditions. On the other hand, as expected, the same retention curves were able to reproduce with high accuracy experiments conducted under quasi-static conditions. As a consequence, the Richards' model was unable to reproduce the pressure distribution along the column during transient experiments conducted with variable rainfall rates. These findings have important consequences, e.g. for the prediction of runoff production and hill-slope stability. We propose that this discrepancy may be due to the influence of air flow on water pressure which is expected to be much higher under variable rainfall conditions when rapid saturation of the top soil may limit air to escape from above. In the present work, we numerically investigated this hypothesis using a two-phase air-water flow model. The numerical solver is based on a linear FEM-based pressure-pressure formulation where accurate mass balance is preserved by careful choice of spatial and temporal discretization of the nonlinear terms. The pressure-pressure formulation is chosen to ensure proper implementation of the pressure-based boundary
Measurement of two phase flow properties using the nuclear reactor instruments
International Nuclear Information System (INIS)
Albrecht, R.W.; Washington Univ., Seattle; Crowe, R.D.; Dailey, D.J.; Kosaly, G.; Damborg, M.J.
1982-01-01
A procedure is introduced for characterizing one dimensional, two phase flow in terms of three properties; propagation, structure, and dynamics. It is shown that all of these properties can be measured by analyzing the response of the reactor neutron field to a two phase flow perturbation. Therefore, a nuclear reactor can be regarded as a two phase flow instrument. (author)
Chimeric Plastics : a new class of thermoplastic
Sonnenschein, Mark
A new class of thermoplastics (dubbed ``Chimerics'') is described that exhibits a high temperature glass transition followed by high performance elastomer properties, prior to melting. These transparent materials are comprised of co-continuous phase-separated block copolymers. One block is an amorphous glass with a high glass transition temperature, and the second is a higher temperature phase transition block creating virtual thermoreversible crosslinks. The material properties are highly influenced by phase separation on the order of 10-30 nanometers. At lower temperatures the polymer reflects the sum of the block copolymer properties. As the amorphous phase glass transition is exceeded, the virtual crosslinks of the higher temperature second phase dominate the plastic properties, resulting in rubber-like elasticity.
Metallic glass-strengthened thermoplastic elastomer composites
Liu, Xue; Liu, Hao; Wang, Dong; Wang, Enpeng; Liu, Wenjian; Yao, Kefu; Chen, Na
2017-06-01
Thermoplastic elastomers (TPEs) and metallic glasses (MGs), both lack of long-range ordering structure, have different physical and mechanical properties. To combine unique viscoelasticity of elastomers and excellent wear resistance of MGs, we propose to introduce a Pd40Ni40Si4P16 MG into a commercial styrene-butadiene-styrene (SBS) TPE to form MG/TPE composites. Serving as a hard and strong second phase dispersed in the SBS matrix, the micrometer-sized MG particles can effectively improve the wear resistance of the matrix due to a strengthening effect. In particular, the MG/TPE composite with an addition of 60 wt% MG shows significantly enhanced wear resistance up to about three times that of the SBS matrix. The present results provide a new way to enhance the wear resistance of the widely used TPEs, which may generate immense economic value by extending their service life.
Molecular recognition in poly(epsilon-caprolactone)-based thermoplastic elastomers
Wisse, Eva; Spiering, A. J. H.; van Leeuwen, Ellen N. M.; Renken, Raymond A. E.; Dankers, Patricia Y. W.; Brouwer, Linda A.; van Luyn, Marja J. A.; Harmsen, Martin C.; Sommerdijk, Nico A. J. M.; Meijer, E. W.
2006-01-01
The molecular recognition properties of the hydrogen bonding segments in biodegradable thermoplastic elastomers were explored, aiming at the further functionalization of these potentially interesting biomaterials. A poly(epsilon-caprolactone)-based poly(urea) 2 was synthesized and characterized in
Attribute based selection of thermoplastic resin for vacuum infusion process
DEFF Research Database (Denmark)
Prabhakaran, R.T. Durai; Lystrup, Aage; Løgstrup Andersen, Tom
2011-01-01
The composite industry looks toward a new material system (resins) based on thermoplastic polymers for the vacuum infusion process, similar to the infusion process using thermosetting polymers. A large number of thermoplastics are available in the market with a variety of properties suitable...... for different engineering applications, and few of those are available in a not yet polymerised form suitable for resin infusion. The proper selection of a new resin system among these thermoplastic polymers is a concern for manufactures in the current scenario and a special mathematical tool would...... be beneficial. In this paper, the authors introduce a new decision making tool for resin selection based on significant attributes. This article provides a broad overview of suitable thermoplastic material systems for vacuum infusion process available in today’s market. An illustrative example—resin selection...
Mechanical properties of recycled thermoplastics | Niang | Journal of ...
African Journals Online (AJOL)
regardless of the differences in tension-compression behavior and material nonlinearities or variations in material properties among manufacturers. Keywords: mechanical properties, recycled thermoplastics, tension and compression tests. Journal of Modeling, Design and Management of Engineering Systems, Vol.
Characteristics and utilization of thermoplastic elastomers (TPE)-an overview
Energy Technology Data Exchange (ETDEWEB)
Roestamsjah [R and D Center for Applied Chemistry, Indonesian Inst. of Sciences (Indonesia)
1998-10-01
The unique feature of thermoplastic elastomer, the combining of processing characteristics of thermoplastics with the physical properties of vulcanized rubber is reviewed. Highlights of TPE and its characteristics is aimed to generate interest in TPE, where SANS technique will be utilized for its characterization. The topics discussed include rubber elasticity, state of aggregation of polymers, microseparation in block copolymer system, application of TPE, and finally some notes in developing interest in TPE and SANS in Indonesia. (author)
Wear resistance of injection-molded thermoplastic denture base resins
Hamanaka, Ippei; Iwamoto, Misa; Lassila, Lippo V. J.; Vallittu, Pekka K.; Takahashi, Yutaka
2016-01-01
Abstract Objective This study investigated the wear resistance of injection-molded thermoplastic denture base resins using nanoindentation instrument. Materials and methods Six injection-molded thermoplastic denture base resins (two polyamides, two polyesters, one polycarbonate, one polymethylmethacrylate [PMMA]) and a PMMA conventional heat-polymerized denture-based polymer control were tested. Elastic modulus, hardness, wear depth, and roughness were calculated using a nanoindentation instrument. Results Elastic modulus and hardness of the injection-molded thermoplastic denture base resins were significantly lower than those of the PMMA conventional heat-polymerized denture-based polymer. Wear depth of polycarbonate and PMMA conventional heat-polymerized denture-based polymer were significantly higher than that of other injection-molded thermoplastic denture base resins. The roughness of injection-molded thermoplastic denture base resins was significantly more than that of PMMA conventional heat-polymerized denture-based polymer after testing. Conclusions Wear resistance of injection-molded thermoplastic denture base was low compared to PMMA conventional heat-polymerized denture-based polymers. PMID:28642909
A nanostructured carbon-reinforced polyisobutylene-based thermoplastic elastomer.
Puskas, Judit E; Foreman-Orlowski, Elizabeth A; Lim, Goy Teck; Porosky, Sara E; Evancho-Chapman, Michelle M; Schmidt, Steven P; El Fray, Mirosława; Piatek, Marta; Prowans, Piotr; Lovejoy, Krystal
2010-03-01
This paper presents the synthesis and characterization of a polyisobutylene (PIB)-based nanostructured carbon-reinforced thermoplastic elastomer. This thermoplastic elastomer is based on a self-assembling block copolymer having a branched PIB core carrying -OH functional groups at each branch point, flanked by blocks of poly(isobutylene-co-para-methylstyrene). The block copolymer has thermolabile physical crosslinks and can be processed as a plastic, yet retains its rubbery properties at room temperature. The carbon-reinforced thermoplastic elastomer had more than twice the tensile strength of the neat polymer, exceeding the strength of medical grade silicone rubber, while remaining significantly softer. The carbon-reinforced thermoplastic elastomer displayed a high T(g) of 126 degrees C, rendering the material steam-sterilizable. The carbon also acted as a free radical trap, increasing the onset temperature of thermal decomposition in the neat polymer from 256.6 degrees C to 327.7 degrees C. The carbon-reinforced thermoplastic elastomer had the lowest water contact angle at 82 degrees and surface nano-topography. After 180 days of implantation into rabbit soft tissues, the carbon-reinforced thermoplastic elastomer had the thinnest tissue capsule around the microdumbbell specimens, with no eosinophiles present. The material also showed excellent integration into bones. Copyright 2009 Elsevier Ltd. All rights reserved.
Manufacturing a 9-Meter Thermoplastic Composite Wind Turbine Blade: Preprint
Energy Technology Data Exchange (ETDEWEB)
Murray, Robynne [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Snowberg, David R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berry, Derek S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beach, Ryan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rooney, Samantha A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Swan, Dana [Arkema Inc.
2017-12-06
Currently, wind turbine blades are manufactured from a combination of glass and/or carbon fiber composite materials with a thermoset resin such as epoxy, which requires energy-intensive and expensive heating processes to cure. Newly developed in-situ polymerizing thermoplastic resin systems for composite wind turbine blades polymerize at room temperature, eliminating the heating process and significantly reducing the blade manufacturing cycle time and embodied energy, which in turn reduces costs. Thermoplastic materials can also be thermally welded, eliminating the need for adhesive bonds between blade components and increasing the overall strength and reliability of the blades. As well, thermoplastic materials enable end-of-life blade recycling by reheating and decomposing the materials, which is a limitation of existing blade technology. This paper presents a manufacturing demonstration for a 9-m-long thermoplastic composite wind turbine blade. This blade was constructed in the Composites Manufacturing Education and Technology facility at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) using a vacuum-assisted resin transfer molding process. Johns Manville fiberglass and an Arkema thermoplastic resin called Elium were used. Additional materials included Armacell-recycled polyethylene terephthalate foam from Creative Foam and low-cost carbon- fiber pultruded spar caps (manufactured in collaboration with NREL, Oak Ridge National Laboratory, Huntsman, Strongwell, and Chomarat). This paper highlights the development of the thermoplastic resin formulations, including an additive designed to control the peak exothermic temperatures. Infusion and cure times of less than 3 hours are also demonstrated, highlighting the efficiency and energy savings associated with manufacturing thermoplastic composite blades.
Heat transfer studies in a spiral plate heat exchanger for water: palm oil two phase system
Directory of Open Access Journals (Sweden)
S. Ramachandran
2008-09-01
Full Text Available Experimental studies were conducted in a spiral plate heat exchanger with hot water as the service fluid and the two-phase system of water palm oil in different mass fractions and flow rates as the cold process fluid. The two phase heat transfer coefficients were correlated with Reynolds numbers (Re in the form h = a Re m, adopting an approach available in literature for two phase fluid flow. The heat transfer coefficients were also related to the mass fraction of palm oil for identical Reynolds numbers. The two-phase multiplier (ratio of the heat transfer coefficient of the two phase fluid and that of the single phase fluid was correlated with the Lockhart Martinelli parameter in a polynomial form. This enables prediction of the two-phase coefficients using single-phase data. The predicted coefficients showed a spread of ± 10 % in the laminar range.
A Novel Model of Dielectric Constant of Two-Phase Composites with Interfacial Shells
Xue, Qingzhong
Considering the interface effect between two phases in composite, we present a novel model of dielectric constant of two-phase composites with interfacial shells. Starting from Maxwell theory and average polarization theory, the formula of calculating the effective dielectric constant of two-phase random composites with interfacial shells is presented. The theoretical results on effective dielectric constant of alkyd resin paint/Barium titanate random composites with interfacial shells are in good agreement with the experimental data.
Two-Phase Annular Flow in Helical Coil Flow Channels in a Reduced Gravity Environment
Keshock, Edward G.; Lin, Chin S.
1996-01-01
A brief review of both single- and two-phase flow studies in curved and coiled flow geometries is first presented. Some of the complexities of two-phase liquid-vapor flow in curved and coiled geometries are discussed, and serve as an introduction to the advantages of observing such flows under a low-gravity environment. The studies proposed -- annular two-phase air-water flow in helical coil flow channels are described. Objectives of the studies are summarized.
Xie, Wei-Yang; Li, Xiao-Ping; Zhang, Lie-Hui; Tan, Xiao-Hua; Wang, Jun-Chao; Wang, Hai-Tao
2015-01-01
After multistage fracturing, the flowback of fracturing fluid will cause two-phase flow through hydraulic fractures in shale gas reservoirs. With the consideration of two-phase flow and desorbed gas transient diffusion in shale gas reservoirs, a two-phase transient flow model of multistage fractured horizontal well in shale gas reservoirs was created. Accurate solution to this flow model is obtained by the use of source function theory, Laplace transform, three-dimensional eigenvalue method, ...
Models for assessing the relative phase velocity in a two-phase flow. Status report
International Nuclear Information System (INIS)
Schaffrath, A.; Ringel, H.
2000-06-01
The knowledge of slip or drift flux in two phase flow is necessary for several technical processes (e.g. two phase pressure losses, heat and mass transfer in steam generators and condensers, dwell period in chemical reactors, moderation effectiveness of two phase coolant in BWR). In the following the most important models for two phase flow with different phase velocities (e.g. slip or drift models, analogy between pressure loss and steam quality, ε - ε models and models for the calculation of void distribution in reposing fluids) are classified, described and worked up for a further comparison with own experimental data. (orig.)
Characteristics of low-mass-velocity vertical gas-liquid two-phase flow
International Nuclear Information System (INIS)
Adachi, Hiromichi; Abe, Yutaka; Kimura, Ko-ji
1995-01-01
In the present paper, characteristics of low mass velocity two-phase flow was analyzed based on a concept that pressure energy of two-phase flow is converted into acceleration work, gravitational work and frictional work, and the pressure energy consumption rate should be minimum at the stable two-phase flow condition. Experimental data for vertical upward air-water two-phase flow at atmospheric pressure was used to verify this concept and the turbulent model used in this method is optimized with the data. (author)
Recycled Polypropylene Improved with Thermoplastic Elastomers
Directory of Open Access Journals (Sweden)
Ecaterina Matei
2017-01-01
Full Text Available The use of recycled polypropylene (RPP as raw material for various industries has been known. However, the mechanical and thermal properties of recycled products are lower than those of raw material. The objective of this study was to obtain and investigate the modified recycled polypropylene (RPP with commercial elastomers for possible applications. The compounded RPP-based thermoplastic elastomers were investigated in order to determine their thermal properties (melt flow index (MFI, differential scanning calorimetry (DSC, VICAT softening temperature (VST, and heat deflection temperature (HDT, structural characteristics (optical microscopy, atomic force microscopy (AFM, and X-ray diffraction (XRD, and mechanical properties (tensile properties, density, and IZOD impact. The RPP compounded with 10% elastomer recorded higher tensile properties than the unmodified RPP. Also, IZOD impact strength increased from 4.3±0.2 kJ/m2 (registered for RPP to 21.7±2.5 kJ/m2 for the PPR/SIS30 compound, while the degree of crystallinity decreased for all compounds. The obtained results recommend the RPP/elastomers compounds both for environmental remediation from postconsumer PP wastes and to realize new goods with high performance for various applications.
Development of thermoplastic composite aircraft structures
Renieri, Michael P.; Burpo, Steven J.; Roundy, Lance M.; Todd, Stephanie A.; Kim, H. J.
1992-01-01
Efforts focused on the use of thermoplastic composite materials in the development of structural details associated with an advanced fighter fuselage section with applicability to transport design. In support of these designs, mechanics developments were conducted in two areas. First, a dissipative strain energy approach to material characterization and failure prediction, developed at the Naval Research Laboratory, was evaluated as a design/analysis tool. Second, a finite element formulation for thick composites was developed and incorporated into a lug analysis method which incorporates pin bending effects. Manufacturing concepts were developed for an upper fuel cell cover. A detailed trade study produced two promising concepts: fiber placement and single-step diaphragm forming. Based on the innovative design/manufacturing concepts for the fuselage section primary structure, elements were designed, fabricated, and structurally tested. These elements focused on key issues such as thick composite lugs and low cost forming of fastenerless, stiffener/moldine concepts. Manufacturing techniques included autoclave consolidation, single diaphragm consolidation (SDCC) and roll-forming.
Mechanical properties: wood lumber versus plastic lumber and thermoplastic composites
Directory of Open Access Journals (Sweden)
Bernardo Zandomenico Dias
Full Text Available Abstract Plastic lumber and thermoplastic composites are sold as alternatives to wood products. However, many technical standards and scientific studies state that the two materials cannot be considered to have the same structural behaviour and strength. Moreover, there are many compositions of thermoplastic-based products and plenty of wood species. How different are their mechanical properties? This study compares the modulus of elasticity and the flexural, compressive, tensile and shear strengths of such materials, as well as the materials' specific mechanical properties. It analyses the properties of wood from the coniferae and dicotyledon species and those of commercialized and experimental thermoplastic-based product formulations. The data were collected from books, scientific papers and manufacturers' websites and technical data sheets, and subsequently compiled and presented in Ashby plots and bar graphs. The high values of the compressive strength and specific compressive and tensile strengths perpendicular to the grain (width direction shown by the experimental thermoplastic composites compared to wood reveal their great potential for use in compressed elements and in functions where components are compressed or tensioned perpendicularly to the grain. However, the low specific flexural modulus and high density of thermoplastic materials limit their usage in certain civil engineering and building applications.
Jang, Dae-Eun; Lee, Ji-Young; Jang, Hyun-Seon; Lee, Jang-Jae; Son, Mee-Kyoung
2015-01-01
PURPOSE The aim of this study was to compare the color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for the non-metal clasp dentures to those of thermoplastic polyamide and conventional heat-polymerized denture base resins. MATERIALS AND METHODS Three types of denture base resin, which are conventional heat-polymerized acrylic resin (Paladent 20), thermoplastic polyamide resin (Bio Tone), thermoplastic acrylic resin (Acrytone) were used as materials for this study...
Parallel two-phase-flow-induced vibrations in fuel pin model
International Nuclear Information System (INIS)
Hara, Fumio; Yamashita, Tadashi
1978-01-01
This paper reports the experimental results of vibrations of a fuel pin model -herein meaning the essential form of a fuel pin from the standpoint of vibration- in a parallel air-and-water two-phase flow. The essential part of the experimental apparatus consisted of a flat elastic strip made of stainless steel, both ends of which were firmly supported in a circular channel conveying the two-phase fluid. Vibrational strain of the fuel pin model, pressure fluctuation of the two-phase flow and two-phase-flow void signals were measured. Statistical measures such as power spectral density, variance and correlation function were calculated. The authors obtained (1) the relation between variance of vibrational strain and two-phase-flow velocity, (2) the relation between variance of vibrational strain and two-phase-flow pressure fluctuation, (3) frequency characteristics of variance of vibrational strain against the dominant frequency of the two-phase-flow pressure fluctuation, and (4) frequency characteristics of variance of vibrational strain against the dominant frequency of two-phase-flow void signals. The authors conclude that there exist two kinds of excitation mechanisms in vibrations of a fuel pin model inserted in a parallel air-and-water two-phase flow; namely, (1) parametric excitation, which occurs when the fundamental natural frequency of the fuel pin model is related to the dominant travelling frequency of water slugs in the two-phase flow by the ratio 1/2, 1/1, 3/2 and so on; and (2) vibrational resonance, which occurs when the fundamental frequency coincides with the dominant frequency of the two-phase-flow pressure fluctuation. (auth.)
Symmetrical components and power analysis for a two-phase microgrid system
DEFF Research Database (Denmark)
Alibeik, M.; Santos Jr., E. C. dos; Blaabjerg, Frede
2014-01-01
This paper presents a mathematical model for the symmetrical components and power analysis of a new microgrid system consisting of three wires and two voltages in quadrature, which is designated as a two-phase microgrid. The two-phase microgrid presents the following advantages: 1) constant power...
Numerical simulation for gas-liquid two-phase flow in pipe networks
International Nuclear Information System (INIS)
Li Xiaoyan; Kuang Bo; Zhou Guoliang; Xu Jijun
1998-01-01
The complex pipe network characters can not directly presented in single phase flow, gas-liquid two phase flow pressure drop and void rate change model. Apply fluid network theory and computer numerical simulation technology to phase flow pipe networks carried out simulate and compute. Simulate result shows that flow resistance distribution is non-linear in two phase pipe network
Strong enhancement of streaming current power by application of two phase flow
Xie, Yanbo; Sherwood, John D.; Shui, Lingling; van den Berg, Albert; Eijkel, Jan C.T.
2011-01-01
We show that the performance of a streaming-potential based microfluidic energy conversion system can be strongly en-hanced by the use of two phase flow. In single-phase systems, the internal conduction current induced by the streaming poten-tial limits the output power, while in a two-phase system
Two-phase flow modeling for low concentration spherical particle motion through a Newtonian fluid
CSIR Research Space (South Africa)
Smit GJF
2010-11-01
Full Text Available Models that are used for the simulation of two-phase flows in coastal dynamics make extensive use of empirical data. The main focus of this investigation is to develop models for specific aspects of two-phase flows that are based on physical...
Analytic approximations for the elastic moduli of two-phase materials
DEFF Research Database (Denmark)
Zhang, Z. J.; Zhu, Y. K.; Zhang, P.
2017-01-01
Based on the models of series and parallel connections of the two phases in a composite, analytic approximations are derived for the elastic constants (Young's modulus, shear modulus, and Poisson's ratio) of elastically isotropic two-phase composites containing second phases of various volume...
Chiaramonte, Francis; Motil, Brian; McQuillen, John
2014-01-01
The Two-phase Heat Transfer International Topical Team consists of researchers and members from various space agencies including ESA, JAXA, CSA, and RSA. This presentation included descriptions various fluid experiments either being conducted by or planned by NASA for the International Space Station in the areas of two-phase flow, flow boiling, capillary flow, and crygenic fluid storage.
Modeling and Performance of a Self-Excited Two-Phase Reluctance ...
African Journals Online (AJOL)
A self-excited two-phase reluctance generator (SETPRG) with balanced stator winding is presented. A unique balanced two-phase stator winding was designed with emphasis on obtaining a stator MMF waveform with minimum space harmonics. Then a mathematical model by which the dynamic behavior of the generator ...
Operation of a forced two phase cooling system on a large superconducting magnet
International Nuclear Information System (INIS)
Green, M.A.; Burns, W.A.; Eberhard, P.H.; Gibson, G.H.; Pripstein, M.; Ross, R.R.; Smits, R.G.; Taylor, J.D.; Van Slyke, H.
1980-05-01
This paper describes the operation of a forced two phase cooling system on a two meter diameter superconducting solenoid. The magnet is a thin high current density superconducting solenoid which is cooled by forced two phase helium in tubes around the coil. The magnet, which is 2.18 meters in diameter and 3.4 meters long, has a cold mass of 1700 kg. The two phase cooling system contains less than 300 liters of liquid helium, most of which is contained in a control dewar. This paper describes the operating characteristics of the LBL two phase forced cooling system during cooldown and warm up. The paper presents experimental data on operations of the magnet using either a helium pump or the refrigerator compressor to circulate two phase helium through the superconducting coil cooling tubes
Directory of Open Access Journals (Sweden)
Wei-Yang Xie
2015-01-01
Full Text Available After multistage fracturing, the flowback of fracturing fluid will cause two-phase flow through hydraulic fractures in shale gas reservoirs. With the consideration of two-phase flow and desorbed gas transient diffusion in shale gas reservoirs, a two-phase transient flow model of multistage fractured horizontal well in shale gas reservoirs was created. Accurate solution to this flow model is obtained by the use of source function theory, Laplace transform, three-dimensional eigenvalue method, and orthogonal transformation. According to the model’s solution, the bilogarithmic type curves of the two-phase model are illustrated, and the production decline performance under the effects of hydraulic fractures and shale gas reservoir properties are discussed. The result obtained in this paper has important significance to understand pressure response characteristics and production decline law of two-phase flow in shale gas reservoirs. Moreover, it provides the theoretical basis for exploiting this reservoir efficiently.
Advances in two-phase flow and heat transfer fundamentals and applications volumes I and II
International Nuclear Information System (INIS)
Kakac, S.; Ishil, M.
1983-01-01
Two-phase flow applications are found in a wide range of engineering systems, such as nuclear and conventional power plants, evaporators of refrigeration systems and a wide variety of evaporative and condensive heat exchangers in the chemical industry. This publication is based on the invited lectures presented at the NATO Advanced Research Workshop on the Advances in Two-Phase Flow and Heat Transfer. Leading scientists and practicing engineers from NATO and non-NATO countries convened to discuss two-phase flow and heat transfer and formulated recommendations for future research directions. These two volumes incorporate a systematic approach to two-phase flow analysis, and present both basic and applied information. The volumes identify the unresolved problem areas and provide suggestions for priority research topics in the field of two-phase flow and heat transfer
Phenomenological studies of two-phase flow processes for nuclear waste isolation
International Nuclear Information System (INIS)
Pruess, K.; Finsterle, S.; Persoff, P.; Oldenburg, C.
1994-01-01
The US civilian radioactive waste management program is unique in its focus on a site in the unsaturated zone, at Yucca Mountain, Nevada. Two-phase flow phenomena can also play an important role in repositories beneath the water table where gas is generated by corrosion, hydrolysis, and biological degradation of the waste packages. An integrated program has been initiated to enhance our understanding of two-phase flow behavior in fractured rock masses. The studies include two-phase (gas-liquid) flow experiments in laboratory specimens of natural rock fractures, analysis and modeling of heterogeneity and instability effects in two-phase flow, and design and interpretation of field experiments by means of numerical simulation. We present results that identify important aspects of two-phase flow behavior on different space and time scales which are relevant to nuclear waste disposal in both unsaturated and saturated formations
Dosimetric effects of thermoplastic immobilizing devices on skin dose
International Nuclear Information System (INIS)
Adu-Poku Olivia
2017-07-01
This work shows the increase in surface dose caused by thermoplastic immobilizing masks used for positioning and immobilization of patients. Thermoplastics are organic materials which soften when they are heated. They can be formed after softening and retain their final shape when cooled. The use of these thermoplastic masks are relevant during patient treatment. However, it can lead to an increased skin dose. Measurements were done at source-to-surface distance of 80 cm for external radiation beams produced by cobalt 60 using the Farmer type ionization chamber and the Unidos electrometer. Measurements were carried out using various mask thicknesses and no mask material on a solid water phantom. The thermoplastic percentage depth dose (PDD), equivalent thickness of water of the various thicknesses of the mask and surface doses were determined. The increase in the surface dose caused by the thermoplastic mask was compared by looking at the PDD at depth 0 with and without the mask present and was found to increase between 0.76 and 0.79% with no mask for a field size of 5 x 5 cm 2 . It was found that, the presence of the mask shifted the percentage depth dose curve to lower values. The physical thermoplastic thickness was measured to be between 2.30 and 1.80 mm, and the equivalent thicknesses of water, d e , were determined to be 1.2, 1.15, 1.10 and 1.09 and 1.00 mm for the unstretched, 5 cm stretched, 10 cm stretched, 15 cm stretched and 20 cm stretched masks, respectively. This meant that, as the mask thickness decreased, its water equivalent thickness also decreased. The presence of the mask material did not increase the skin dose significantly ( less than 1%). (au)
Mechanical Properties of Isotactic Polypropylene Modified with Thermoplastic Potato Starch
Knitter, M.; Dobrzyńska-Mizera, M.
2015-05-01
In this paper selected mechanical properties of isotactic polypropylene (iPP) modified with potato starch have been presented. Thermoplastic starch (TPS) used as a modifier in the study was produced from potato starch modified with glycerol. Isotactic polypropylene/thermoplastic potato starch composites (iPP/TPS) that contained 10, 30, 50 wt.% of modified starch were examined using dynamic mechanical-thermal analysis, static tensile, Brinell hardness, and Charpy impact test. The studies indicated a distinct influence of a filler content on the mechanical properties of composites in comparison with non-modified polypropylene.
Viscous and thermal modelling of thermoplastic composites forming process
Guzman, Eduardo; Liang, Biao; Hamila, Nahiene; Boisse, Philippe
2016-10-01
Thermoforming thermoplastic prepregs is a fast manufacturing process. It is suitable for automotive composite parts manufacturing. The simulation of thermoplastic prepreg forming is achieved by alternate thermal and mechanical analyses. The thermal properties are obtained from a mesoscopic analysis and a homogenization procedure. The forming simulation is based on a viscous-hyperelastic approach. The thermal simulations define the coefficients of the mechanical model that depend on the temperature. The forming simulations modify the boundary conditions and the internal geometry of the thermal analyses. The comparison of the simulation with an experimental thermoforming of a part representative of automotive applications shows the efficiency of the approach.
Two-phase aqueous micellar systems: an alternative method for protein purification
Directory of Open Access Journals (Sweden)
Rangel-Yagui C. O.
2004-01-01
Full Text Available Two-phase aqueous micellar systems can be exploited in separation science for the extraction/purification of desired biomolecules. This article reviews recent experimental and theoretical work by Blankschtein and co-workers on the use of two-phase aqueous micellar systems for the separation of hydrophilic proteins. The experimental partitioning behavior of the enzyme glucose-6-phosphate dehydrogenase (G6PD in two-phase aqueous micellar systems is also reviewed and new results are presented. Specifically, we discuss very recent work on the purification of G6PD using: i a two-phase aqueous micellar system composed of the nonionic surfactant n-decyl tetra(ethylene oxide (C10E4, and (ii a two-phase aqueous mixed micellar system composed of C10E4 and the cationic surfactant decyltrimethylammonium bromide (C10TAB. Our results indicate that the two-phase aqueous mixed (C10E4/C10TAB micellar system can improve significantly the partitioning behavior of G6PD relative to that observed in the two-phase aqueous C10E4 micellar system.
Analytical solution for two-phase flow in a wellbore using the drift-flux model
Energy Technology Data Exchange (ETDEWEB)
Pan, L.; Webb, S.W.; Oldenburg, C.M.
2011-11-01
This paper presents analytical solutions for steady-state, compressible two-phase flow through a wellbore under isothermal conditions using the drift flux conceptual model. Although only applicable to highly idealized systems, the analytical solutions are useful for verifying numerical simulation capabilities that can handle much more complicated systems, and can be used in their own right for gaining insight about two-phase flow processes in wells. The analytical solutions are obtained by solving the mixture momentum equation of steady-state, two-phase flow with an assumption that the two phases are immiscible. These analytical solutions describe the steady-state behavior of two-phase flow in the wellbore, including profiles of phase saturation, phase velocities, and pressure gradients, as affected by the total mass flow rate, phase mass fraction, and drift velocity (i.e., the slip between two phases). Close matching between the analytical solutions and numerical solutions for a hypothetical CO{sub 2} leakage problem as well as to field data from a CO{sub 2} production well indicates that the analytical solution is capable of capturing the major features of steady-state two-phase flow through an open wellbore, and that the related assumptions and simplifications are justified for many actual systems. In addition, we demonstrate the utility of the analytical solution to evaluate how the bottomhole pressure in a well in which CO{sub 2} is leaking upward responds to the mass flow rate of CO{sub 2}-water mixture.
Pressure distribution over tube surfaces of tube bundle subjected to two phase cross flow
International Nuclear Information System (INIS)
Sim, Woo Gun
2013-01-01
Two phase vapor liquid flows exist in many shell and tube heat exchangers such as condensers, evaporators and nuclear steam generators. To understand the fluid dynamic forces acting on a structure subjected to a two phase flow, it is essential to obtain detailed information about the characteristics of a two phase flow. The characteristics of a two phase flow and the flow parameters were introduced, and then, an experiment was performed to evaluate the pressure loss in the tube bundles and the fluid dynamic force acting on the cylinder owing to the pressure distribution. A two phase flow was pre mixed at the entrance of the test section, and the experiments were undertaken using a normal triangular array of cylinders subjected to a two phase cross flow. The pressure loss along the flow direction in the tube bundles was measured to calculate the two phase friction multiplier, and the multiplier was compared with the analytical value. Furthermore, the circular distributions of the pressure on the cylinders were measured. Based on the distribution and the fundamental theory of two phase flow, the effects of the void fraction and mass flux per unit area on the pressure coefficient and the drag coefficient were evaluated. The drag coefficient was calculated by integrating the measured pressure coefficient and the drag coefficient were evaluated. The drag coefficient was calculated by integrating the measured pressure on the tube by a numerical method. It was found that for low mass fluxes, the measured two phase friction multipliers agree well with the analytical results, and good agreement for the effect of the void fraction on the drag coefficients, as calculated by the measured pressure distributions, is shown qualitatively, as compared to the existing experimental results
A study of water hammer phenomena in a one-component two-phase bubbly flow
International Nuclear Information System (INIS)
Fujii, Terushige; Akagawa, Koji
2000-01-01
Water hammer phenomena caused by a rapid valve closure, that is, shock phenomena in two-phase flows, are an important problem for the safety assessment of a hypothetical LOCA. This paper presents the results of experimental and analytical studies of the water hammer phenomena in a one-component tow-phase bubbly flow. In order to clarify the characteristics of water hammer phenomena, experiments for a one-component two-phase flow of Freon R-113 were conducted and a numerical simulation of pressure transients was developed. An overall picture of the water hammer phenomena in a one-component two-phase flow is presented an discussed. (author)
On the nonequilibrium segregation state of a two-phase mixture in a porous column
DEFF Research Database (Denmark)
Shapiro, Alexander; Stenby, Erling Halfdan
1996-01-01
The problem of segregation of a two-phase multicomponent mixture under the action of thermal gradient, gravity and capillary forces is studied with respect to component distribution in a thick oil-gas-condensate reservoir. Governing equations are derived on the basis of nonequilibrium thermodynam...... thermodynamics. A steady state of the two-phase mixture with nonzero diffusion fluxes and exchange between phases is described. In the case of binary mixtures analytical formulae for saturation, component distribution and flow in the two-phase zone are obtained....
Thermoplastic polyurethane (TPU)/polyolefin (PO) blends
Lu, Qiwei
Thermoplastic polyurethane (TPU) is a very important material with high versatility and superior physical properties. Melt blending TPU with metallocene polyolefin (PO) can lower TPU cost and improve polyolefin properties like abrasion resistance, adhesion, and paintability. Since TPU and non-polar PO blends are completely immiscible, efficient compatibilizers become the key issue and remain challenging. My main thesis work is to develop and study compatibilized TPU/PO blends. Although reactive compatibilization is considered the most efficient method, fast interfacial reactions between highly reactive functional groups are necessary to generate compatibilizers within usually short processing time. It is known that the urethane linkage (carbamate -NHCOO-) in TPU can reversibly dissociate to generate highly reactive isocyanates at melt temperatures. To find out the best reactive compatibilization, three approaches were employed on different molecular scales: (1) model urethane compound (dibutyl & dioctyl 4,4'-methylenebis(phenyl carbamate)) and small functional molecule (primary amine, secondary amine, hydroxyl, acid, anhydride, and epoxide) reactions at 200°C monitored by nuclear magnetic resonance and Fourier-transform infrared to examine the basic chemistry; (2) short, model TPU's with different chemical structures blended with functional polymers including poly(ethylene glycol) and polybutadiene to explore the effect of interface in immiscible mixtures; (3) melt blending of a commercial TPU with polypropylene (PP), further involving more complicated morphology, using different types of functional PP's (note: amine functional PP's were prepared by melt amination) as compatibilizers followed by rheological, morphological, thermal, and mechanical characterizations. Besides the core thesis project on TPU blends, other related work that has been accomplished includes: (1) adhesion between TPU and PP; (2) rheological properties of TPU; (3) block copolymer formation
Processing and characterization of unidirectional thermoplastic nanocomposites
Narasimhan, Kameshwaran
The manufacture of continuous fibre-reinforced thermoplastic nanocomposites is discussed for the case of E-Glass reinforced polypropylene (PP) matrix and for E-Glass reinforced Polyamide-6 (Nylon-6), with and without dispersed nanoclay (montmorillonite) platelets. The E-Glass/PP nanocomposite was manufactured using pultrusion, whereas the E-Glass/Nylon-6 nanocomposite was manufactured using compression molding. Mechanical characterization of nanocomposites were performed and compared with traditional microcomposites. Compressive as well as shear strength of nanocomposites was improved by improving the yield strength of the surrounding matrix through the dispersion of nanoclay. Significant improvements were achieved in compressive strength and shear strength with relatively low nanoclay loadings. Initially, polypropylene with and without nanoclay were melt intercalated using a single-screw extruder and the pultruded nanocomposite was fabricated using extruded pre-impregnated (pre-preg) tapes. Compression tests were performed as mandated by ASTM guidelines. SEM and TEM characterization revealed presence of nanoclay in an intercalated and partially exfoliated morphology. Mechanical tests confirmed significant improvements in compressive strength (˜122% at 10% nanoclay loading) and shear strength (˜60% at 3% nanoclay loading) in modified pultruded E-Glass/PP nanocomposites in comparison with baseline properties. Uniaxial tensile tests showed a small increase in tensile strength (˜3.4%) with 3% nanoclay loading. Subsequently, E-Glass/Nylon-6 nanocomposite panels were manufactured by compression molding. Compression tests were performed according to IITRI guidelines, whereas short beam shear and uni-axial tensile tests were performed according to ASTM standards. Mechanical tests confirmed strength enhancement with nanoclay addition, with a significant improvement in compressive strength (50% at 4% nanoclay loading) and shear strength (˜36% at 4% nanoclay loading
Resistance Welding of Thermoplastic Composites : Process and Performance
Shi, H.
2014-01-01
Compared to thermoset composites, thermoplastic composites are drawing more and more attention by aircraft industries not only due to their excellent material properties but also due to their potentials to reduce cycle time and structure cost by using low-cost manufacturing technologies such as
Influence of gamma irradiation in the thermoplastic elastomer (TPE)
International Nuclear Information System (INIS)
Oliveira, Camila B.; Parra, Duclerc F.; Marchini, Leonardo G.
2017-01-01
The TPE is the nomenclature used for the thermoplastic elastomer, which is also known as thermoplastic rubber. It belongs to an under-researched class of engineering plastics, however, in recent years there has been steady growth due to its important and unusual combination of properties. During its use, it behaves like an elastomer, but, unlike traditional elastomers (vulcanized rubbers), it can be processed using conventional technologies and equipment used for thermoplastics, such as extrusion and injection. The processing of polymers, such as TPE by means of radiation, constitutes a technological area dedicated to the study of the physical and chemical effects caused by high energy radiation, such as gamma radiation. Thus the objective of this work is to evaluate the mechanical and thermal properties of TPE irradiated by 60 Co source of gamma radiation in different doses. The thermoplastic elastomer being modified by means of ionizing radiation at doses of 5, 10, 20, 30, 50 and 100 kGy the effects of the radiation on the mechanical and thermal properties of this material are evaluated through the tests of tensile tests, TGA, FTIR and Fluency Index
FibreChain: characterization and modeling of thermoplastic composites processing
Rietman, Bert; Niazi, Muhammad Sohail; Akkerman, Remko; Lomov, S.V.
2013-01-01
Thermoplastic composites feature the advantage of melting and shaping. The material properties during processing and the final product properties are to a large extent determined by the thermal history of the material. The approach in the FP7-project FibreChain for process chain modeling of
Compression molding of chopped woven thermoplastic composite flakes
Abdul Rasheed, Mohammed Iqbal
2016-01-01
Continuous fiber reinforced composites with high-performance thermoplastic polymer matrices have an enormous potential in terms of performance, production rate, cost efficiency and recyclability. The use of this relatively new class of materials by the aerospace and automotive industry has been
Functional impressions with thermoplastic materials for reline procedures.
Fitzloff, R A
1984-07-01
Used as an impression material in a reline or rebase technique for a new or existing distal extension mandibular removable partial denture or mandibular complete denture, thermoplastic resin provides a denture base with uniform support under an occlusal load and a smooth nonirritating acrylic resin surface.
Study on quality improvement of palm trunk by thermoplastic impregnation
Rosli, F.; Ghazali, C. M. R.; Abdullah, M. M. A. B.; Hussin, K.
2017-09-01
Due to abundance of palm trunk waste, palm trunk can be used as alternative raw material of wood composites to replace future timber. However, the morphological of palm trunk is not truly woody material, so the quality improvement was studied by thermoplastic impregnation at different soaking time. The effect of thermoplastic resin impregnation on the morphological, physical and mechanical was investigated in this study. It was found that the amount of resin uptake to the palm trunk ranged from 3.85% to 6.25%. The density, thickness swelling and water absorption of treated palm trunk significantly improved. While, the modulus of rupture (MOR) and modulus of elasticity (MOE) of treated palm trunk was greater than untreated. This findings in this study indicated that thermoplastic resin would be considered alternative to formaldehyde-based resin to improved properties of palm trunk. At the request of all authors and with the approval of the proceedings editor, article 020268 titled, "Study on Quality Improvement of Palm Trunk by Thermoplastic Impregnation," is being retracted from the public record due to the fact that it is a duplication of article 020153 published in the same volume.
The compression of wood/thermoplastic fiber mats during consolidation
Karl R. Englund; Michael P. Wolcott; John C. Hermanson
2004-01-01
Secondary processing of non-woven wood and wood/thermoplastic fiber mats is generally performed using compression molding, where heated platens or dies form the final product. Although the study and use of wood-fiber composites is widespread, few research efforts have explicitly described the fundamentals of mat consolidation. In contrast, the wood composite literature...
Thermoplastic Composite Wind Turbine Blades : An Integrated Design Approach
Joncas, S.
2010-01-01
This thesis proposes a new structural design concept for future large wind turbine blades based on fully recyclable thermoplastic composites (TPC). With respect to material properties, cost and processing, reactively processed anionic polyamide-6 (APA-6) has been identified as the most promising
Thermoplastic Composite Wind Turbine Blades : Kinetics and Processability
Teuwen, J.J.E.
2011-01-01
In previous research, the potential of glass fibre reinforced anionic polyamide-6 (APA-6) composites for use in wind turbine blades was proven. Based on polymer properties, viscosity, processing time, costs and recyclability, APA-6 composites are considered the most suitable reactive thermoplastic
Russo, P.; Acierno, D.; Capezzuto, F.; Buonocore, G. G.; Di Maio, L.; Lavorgna, M.
2015-12-01
Thermoplastic polyurethanes (TPUs) have been widely used for a variety of applications such as fibers, coating, adhesives, and biomedical items because of their melt processability and versatile properties essentially related to their intrinsic two-phase segmented structure. However, their low stiffness and tensile strength as well as their weak barrier properties still limit their use. Currently, improvements of functional properties of plastics are usually obtained by the inclusion of nanofillers which, in this case, should be able to modify the segregated hard/soft domains of TPU matrix. In this frame, noteworthy results have been already achieved by using carbon based fillers as carbon nanotubes, graphene, graphene oxide, carbon nanofibers and so on. In this frame, this research was focused on blown films based on TPU composites including 0.2%, 0.5% and 1% of a commercial graphene oxide (GO). These latter were obtained according to a two-step procedure: a co-solvent methodology to obtain a concentrated TPU/graphene master followed by a dilution with the neat TPU matrix by extrusion melt compounding. Film samples were analyzed in terms of thermal, structural and barrier properties. Preliminary results indicated structural modifications of the TPU matrix as a result of the GO included with consequent influences on the water vapor barrier properties.
Tomei, M Concetta; Mosca Angelucci, Domenica; Annesini, M Cristina; Daugulis, Andrew J
2013-11-15
The present study has provided a comparison between a conventional ex situ method for the treatment of contaminated soil, a soil slurry bioreactor, with a novel technology in which a contaminant is rapidly and effectively removed from the soil by means of absorptive polymer beads, which are then added to a two-phase partitioning bioreactor (TPPB) for biodegradation of the target molecule. 4-nitrophenol (4NP) was selected as a model contaminant, being representative of a large class of xenobiotics, and the DuPont thermoplastic Hytrel™ 8206 was utilized for its extraction from soil over ranges of soil contamination level, soil moisture content, and polymer:soil ratios. Since the polymers were able to rapidly (up to 77% and 85% in 4 and 24h respectively) and selectively remove the contaminant, the soil retained its nutrient and microflora content, which is in contrast to soil washing which can remove these valuable soil resources. After 4h of reaction time, the TPPB system demonstrated removal efficiency four times higher (77% vs 20%) than the slurry system, with expected concomitant savings in time and energy. A volumetric removal rate of 75 mg4NPh(-1) L(-1) was obtained in the TPPB, significantly greater than the value of 1.7 obtained in the slurry bioreactor. The polymers were readily regenerated for subsequent reuse, demonstrating the versatility of the polymer-based soil treatment technology. Copyright © 2013 Elsevier B.V. All rights reserved.
Development of an Enhanced Two-Phase Production System at the Geysers Geothermal Field; FINAL
International Nuclear Information System (INIS)
Steven Enedy
2001-01-01
A method was developed to enhance geothermal steam production from two-phase wells at THE Geysers Geothermal Field. The beneficial result was increased geothermal production that was easily and economically delivered to the power plant
Non-local two phase flow momentum transport in S BWR
Energy Technology Data Exchange (ETDEWEB)
Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)
2015-09-15
The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)
Development of One Dimensional Hyperbolic Coupled Solver for Two-Phase Flows
International Nuclear Information System (INIS)
Kim, Eoi Jin; Kim, Jong Tae; Jeong, Jae June
2008-08-01
The purpose of this study is a code development for one dimensional two-phase two-fluid flows. In this study, the computations of two-phase flow were performed by using the Roe scheme which is one of the upwind schemes. The upwind scheme is widely used in the computational fluid dynamics because it can capture discontinuities clearly such as a shock. And this scheme is applicable to multi-phase flows by the extension methods which were developed by Toumi, Stadtke, etc. In this study, the extended Roe upwind scheme by Toumi for two-phase flow was implemented in the one-dimensional code. The scheme was applied to a shock tube problem and a water faucet problem. This numerical method seems efficient for non oscillating solutions of two phase flow problems, and also capable for capturing discontinuities
Development of One Dimensional Hyperbolic Coupled Solver for Two-Phase Flows
Energy Technology Data Exchange (ETDEWEB)
Kim, Eoi Jin; Kim, Jong Tae; Jeong, Jae June
2008-08-15
The purpose of this study is a code development for one dimensional two-phase two-fluid flows. In this study, the computations of two-phase flow were performed by using the Roe scheme which is one of the upwind schemes. The upwind scheme is widely used in the computational fluid dynamics because it can capture discontinuities clearly such as a shock. And this scheme is applicable to multi-phase flows by the extension methods which were developed by Toumi, Stadtke, etc. In this study, the extended Roe upwind scheme by Toumi for two-phase flow was implemented in the one-dimensional code. The scheme was applied to a shock tube problem and a water faucet problem. This numerical method seems efficient for non oscillating solutions of two phase flow problems, and also capable for capturing discontinuities.
Single and two-phase flow pressure drop for CANFLEX bundle
Energy Technology Data Exchange (ETDEWEB)
Park, Joo Hwan; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G. R.; Bullock, D. E. [Atomic Energy of Canada Limited, Ontario (Canada)
1998-12-31
Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-134a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLEX bundle is found to be about 20% higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within {+-} 5% error. 11 refs., 5 figs. (Author)
A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries.
Directory of Open Access Journals (Sweden)
S Dong
Full Text Available Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries.
Directory of Open Access Journals (Sweden)
Mosdorf Romuald
2015-06-01
Full Text Available The two-phase flow (water-air occurring in square minichannel (3x3 mm has been analysed. In the minichannel it has been observed: bubbly flow, flow of confined bubbles, flow of elongated bubbles, slug flow and semi-annular flow. The time series recorded by laser-phototransistor sensor was analysed using the recurrence quantification analysis. The two coefficients:Recurrence rate (RR and Determinism (DET have been used for identification of differences between the dynamics of two-phase flow patterns. The algorithm which has been used normalizes the analysed time series before calculating the recurrence plots.Therefore in analysis the quantitative signal characteristicswas neglected. Despite of the neglect of quantitative signal characteristics the analysis of its dynamics (chart of DET vs. RR allows to identify the two-phase flow patterns. This confirms that this type of analysis can be used to identify the two-phase flow patterns in minichannels.
Experimental observation of capillary instabilities of two phase flow in a microfluidic T-junction
CSIR Research Space (South Africa)
Mbanjwa, MB
2010-01-01
Full Text Available This paper discusses the experimental observation of capillary instabilities of two-phase flow in a microfluidc T-junction. These instabilities are analogous to the classical Plateau-Rayleigh instabilities. The experiments were carried out...
Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase
Barsky, Eugene
2010-01-01
This book brings to light peculiarities of the formation of critical regimes of two-phase flows with a polydisperse solid phase. A definition of entropy is formulated on the basis of statistical analysis of these peculiarities. The physical meaning of entropy and its correlation with other parameters determining two-phase flows are clearly defined. The interrelations and main differences between this entropy and the thermodynamic one are revealed. The main regularities of two-phase flows both in critical and in other regimes are established using the notion of entropy. This parameter serves as a basis for a deeper insight into the physics of the process and for the development of exhaustive techniques of mass exchange estimation in such flows. The book is intended for graduate and postgraduate students of engineering studying two-phase flows, and to scientists and engineers engaged in specific problems of such fields as chemical technology, mineral dressing, modern ceramics, microelectronics, pharmacology, po...
Numerical simulation of multi-dimensional two-phase flow based on flux vector splitting
Energy Technology Data Exchange (ETDEWEB)
Staedtke, H.; Franchello, G.; Worth, B. [Joint Research Centre - Ispra Establishment (Italy)
1995-09-01
This paper describes a new approach to the numerical simulation of transient, multidimensional two-phase flow. The development is based on a fully hyperbolic two-fluid model of two-phase flow using separated conservation equations for the two phases. Features of the new model include the existence of real eigenvalues, and a complete set of independent eigenvectors which can be expressed algebraically in terms of the major dependent flow parameters. This facilitates the application of numerical techniques specifically developed for high speed single-phase gas flows which combine signal propagation along characteristic lines with the conservation property with respect to mass, momentum and energy. Advantages of the new model for the numerical simulation of one- and two- dimensional two-phase flow are discussed.
Scaling of Two-Phase Systems Across Gravity Levels, Phase I
National Aeronautics and Space Administration — There is a defined need for long term earth based testing for the development and deployment of two-phase flow systems in reduced-gravity, including lunar gravity,...
A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries
Dong, S.; Wang, X.
2016-01-01
Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909
Identification of two-phase flow regimes by time-series modeling
International Nuclear Information System (INIS)
King, C.H.; Ouyang, M.S.; Pei, B.S.
1987-01-01
The identification of two-phase flow patterns in pipes or ducts is important to the design and operation of thermal-hydraulic systems, especially in the nuclear reactor cores of boiling water reactors or in the steam generators of pressurized water reactors. Basically, two-phase flow shows some fluctuating characteristics even at steady-state conditions. These fluctuating characteristics can be analyzed by statistical methods for obtaining flow signatures. There have been a number of experimental studies conducted that are concerned with the statistical properties of void fraction or pressure pulsation in two-phase flow. In this study, the authors propose a new technique of identifying the patterns of air-water two-phase flow in a vertical pipe. This technique is based on analyzing the statistic characteristics of the pressure signals of the test loop by time-series modeling
On the nonequilibrium segregation state of a two-phase mixture in a porous column
DEFF Research Database (Denmark)
Shapiro, Alexander; Stenby, Erling Halfdan
1996-01-01
The problem of segregation of a two-phase multicomponent mixture under the action of thermal gradient, gravity and capillary forces is studied with respect to component distribution in a thick oil-gas-condensate reservoir. Governing equations are derived on the basis of nonequilibrium thermodynam...... thermodynamics. A steady state of the two-phase mixture with nonzero diffusion fluxes and exchange between phases is described. In the case of binary mixtures analytical formulae for saturation, component distribution and flow in the two-phase zone are obtained.......The problem of segregation of a two-phase multicomponent mixture under the action of thermal gradient, gravity and capillary forces is studied with respect to component distribution in a thick oil-gas-condensate reservoir. Governing equations are derived on the basis of nonequilibrium...
A New Appraoch to Modeling Immiscible Two-phase Flow in Porous Media
DEFF Research Database (Denmark)
Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan
In this work we present a systematic literature review regarding the macroscopic approaches to modeling immiscible two-phase flow in porous media, the formulation process of the incorporate PDE based on Film Model(viscous coupling), the calculation of saturation profile around the transition zone...... to modeling immiscible two-phase flow in porous media. The suggested approach to immiscible two-phase flow in porous media describes the dispersed mesoscopic fluids’ interfaces which are highly influenced by the injected interfacial energy and the local interfacial energy capacity. It reveals a new...... possibility of modeling two-phase flow through energy balance. The saturation profile generated through the suggested approach is different from those through other approaches....
Future directions in two-phase flow and heat transfer in space
Bankoff, S. George
1994-01-01
Some areas of opportunity for future research in microgravity two-phase flow and heat transfer are pointed out. These satisfy the dual requirements of relevance to current and future needs, and scientific/engineering interest.
Non-local two phase flow momentum transport in S BWR
International Nuclear Information System (INIS)
Espinosa P, G.; Salinas M, L.; Vazquez R, A.
2015-09-01
The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)
Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow
International Nuclear Information System (INIS)
Wu, Hao; Dong, Feng
2014-01-01
Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model
Reversible, on-demand generation of aqueous two-phase microdroplets
Collier, Charles Patrick; Retterer, Scott Thomas; Boreyko, Jonathan Barton; Mruetusatorn, Prachya
2017-08-15
The present invention provides methods of on-demand, reversible generation of aqueous two-phase microdroplets core-shell microbeads, microparticle preparations comprising the core-shell microbeads, and drug delivery formulation comprising the microparticle preparations. Because these aqueous microdroplets have volumes comparable to those of cells, they provide an approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Hence, the present methods generate femtoliter aqueous two-phase droplets within a microfluidic oil channel using gated pressure pulses to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phase transitions between single-phase, two-phase, and core-shell microbead states are obtained via evaporation-induced dehydration and water rehydration.
Determination of drift-flux velocity as a function of two-phase flow patterns
International Nuclear Information System (INIS)
Austregesilo Filho, H.
1986-01-01
A method is suggested for the calculation of drift-flux velocity as a function of two-phase flow patterns determined analytically. This model can be introduced in computer codes for thermal hydraulic analyses based mainly on homogeneous assumptions, in order to achieve a more realis tic description of two-phase flow phenomena, which is needed for the simulation of accidents in nuclear power plants for which phase separation effects are dominant, e.g., small break accidents. (Author) [pt
Estimation of the sugar cane cultivated area from LANDSAT images using the two phase sampling method
Parada, N. D. J. (Principal Investigator); Cappelletti, C. A.; Mendonca, F. J.; Lee, D. C. L.; Shimabukuro, Y. E.
1982-01-01
A two phase sampling method and the optimal sampling segment dimensions for the estimation of sugar cane cultivated area were developed. This technique employs visual interpretations of LANDSAT images and panchromatic aerial photographs considered as the ground truth. The estimates, as a mean value of 100 simulated samples, represent 99.3% of the true value with a CV of approximately 1%; the relative efficiency of the two phase design was 157% when compared with a one phase aerial photographs sample.
Water property lookup table (sanwat) for use with the two-phase computational code shaft
International Nuclear Information System (INIS)
Sherman, M.P.; Eaton, R.R.
1980-10-01
A lookup table for water thermodynamic and transport properties (SANWAT) has been constructed for use with the two-phase computational code, SHAFT. The table, which uses density and specific internal energy as independent variables, covers the liquid, two-phase, and vapor regions. The liquid properties of water are contained in a separate subtable in order to obtain high accuracy for this nearly incompressible region that is frequently encountered in studies of the characteristics of nuclear-waste repositories
In-step Two-phase Flow (TPF) Thermal Control Experiment
1992-01-01
The Two-Phase Flow Thermal Control Experiment is part of the NASA/OAST In-Space Technology Experiments (In-STEP) Program. The experiment is configured for the Hitchhiker Shuttle payload system and consists of a capillary pumped loop, heatpipe radiator, and two-phase flow heat exchanger. The flight experiment design approach, test plan, payload design, and test components are described in outline and graphic form.
Two-phase interfacial area and flow regime modeling in FLOWTRAN-TF code
International Nuclear Information System (INIS)
Smith, F.G. III; Lee, S.Y.; Flach, G.P.; Hamm, L.L.
1992-01-01
FLOWTRAN-TF is a new two-component, two-phase thermal-hydraulics code to capture the detailed assembly behavior associated with loss-of-coolant accident analyses in multichannel assemblies of the SRS reactors. The local interfacial area of the two-phase mixture is computed by summing the interfacial areas contributed by each of three flow regimes. For smooth flow regime transitions, the code uses an interpolation technique in terms of component void fraction for each basic flow regime
Personal view of educating two-phase flow and human resource development as a nuclear engineer
International Nuclear Information System (INIS)
Hotta, Akitoshi
2010-01-01
As an engineer who has devoted himself in the nuclear industry for almost three decades, the author gave a personal view on educating two-phase flow and developing human resources. An expected role of universities in on-going discussions of collaboration among industry-government-academia is introduced. Reformation of two-phase flow education is discussed from two extreme viewpoints, the basic structure of physics and the practical system analysis. (author)
Numerical study for two phase flow in the near nozzle region of turbine combustors
International Nuclear Information System (INIS)
Pervez, K.; Mushtaq, S.
1999-01-01
In the present study flow conditions in the near nozzle region of the combustion chamber have been investigated. There exists two-phase flow in this region. The overall performance and pollutant formation in the combustion chamber have been investigated. There exists two-phase flow in this region. The overall performance and pollutant formation in the combustion zone largely depends on the spray field in the near nozzle region the studies are conducted to determined the effects of multi jets on the flow pattern in the near nozzle region The phase doppler particle analyzer (PDPA) has been used to measure the velocities and sizes of the droplets. The flow field of two-phase liquid drop-air jets is formed from three injectors arranged in t line. Furthermore the two-phase flow field has been analyzed numerically also. The numerical analysis consists of two computational models, namely (i) 3 non-evaporating two-phase jets, (II) 3 evaporating two phase jets. The Eulerian-Eulerian approach in incorporated in both the numerical models. Since the flow is turbulent, a two-equation model (k-Epsilon) is implemented in the numerical analysis. Numerical solution of the conservation equation is obtained using PHOENICS computer code. Boundary conditions are provided from the experimental measurements. Numerical domain for the two models of the analysis starts at some distance (about 10 diameters of the injector orifice) where the atomization process is complete and droplet size and velocity could be measured experimentally. (author)
Measurement of local two-phase flow parameters of nanofluids using conductivity double-sensor probe.
Park, Yu Sun; Chang, Soon Heung
2011-04-04
A two-phase flow experiment using air and water-based γ-Al2O3 nanofluid was conducted to observe the basic hydraulic phenomenon of nanofluids. The local two-phase flow parameters were measured with a conductivity double-sensor two-phase void meter. The void fraction, interfacial velocity, interfacial area concentration, and mean bubble diameter were evaluated, and all of those results using the nanofluid were compared with the corresponding results for pure water. The void fraction distribution was flattened in the nanofluid case more than it was in the pure water case. The higher interfacial area concentration resulted in a smaller mean bubble diameter in the case of the nanofluid. This was the first attempt to measure the local two-phase flow parameters of nanofluids using a conductivity double-sensor two-phase void meter. Throughout this experimental study, the differences in the internal two-phase flow structure of the nanofluid were identified. In addition, the heat transfer enhancement of the nanofluid can be resulted from the increase of the interfacial area concentration which means the available area of the heat and mass transfer.
A study of two-phase flow in a reduced gravity environment
Hill, D.; Downing, Robert S.
1987-01-01
A test loop was designed and fabricated for observing and measuring pressure drops of two-phase flow in reduced gravity. The portable flow test loop was then tested aboard the NASA-JSC KC135 reduced gravity aircraft. The test loop employed the Sundstrand Two-Phase Thermal Management System (TPTMS) concept which was specially fitted with a clear two-phase return line and condenser cover for flow observation. A two-phase (liquid/vapor) mixture was produced by pumping nearly saturated liquid through an evaporator and adding heat via electric heaters. The quality of the two-phase flow was varied by changing the evaporator heat load. The test loop was operated on the ground before and after the KC135 flight tests to create a one-gravity data base. The ground testing included all the test points run during the reduced gravity testing. Two days of reduced gravity tests aboard the KC135 were performed. During the flight tests, reduced-gravity, one-gravity, and nearly two-gravity accelerations were experienced. Data was taken during the entire flight which provided flow regime and pressure drop data for the three operating conditions. The test results show that two-phase pressure drops and flow regimes can be accurately predicted in zero-gravity.
International Nuclear Information System (INIS)
Boucker, M.; Laviaville, J.; Martin, A.; Bechaud, C.; Bestion, D.; Coste, P.
2004-01-01
The objective of this communication is to present some preliminary applications to pressurized thermal shock (PTS) investigations of the CFD (Computational Fluid Dynamics) two-phase flow solver of the new NEPTUNE thermal-hydraulics platform. In the framework of plant life extension, the Reactor Pressure Vessel (RPV) integrity is a major concern, and an important part of RPV integrity assessment is related to PTS analysis. In the case where the cold legs are partially filled with steam, it becomes a two-phase problem and new important effects occur, such as condensation due to the Emergency Core Cooling (ECC) injections of sub-cooled water. Thus, an advanced prediction of RPV thermal loading during these transients requires sophisticated two-phase, local scale, 3-dimensional codes. In that purpose, a program has been set up to extend the capabilities of the NEPTUNE two-phase CFD solver. A simple set of turbulence and condensation model for free surface steam-water flow has been tested in simulation of an ECC high pressure injection representing facility, using a full 3-dimensional mesh and the new NEPTUNE solver. Encouraging results have been obtained but it should be noticed that several sources of error can compensate for one another. Nevertheless, the computation presented here allows to be reasonable confident in the use of two-phase CFD in order to carry out refined analysis of two-phase PTS scenarios within the next years
Interaction between local parameters of two-phase flow and random forces on a cylinder
International Nuclear Information System (INIS)
Sylviane Pascal-Ribot; Yves Blanchet; Franck Baj; Phillippe Piteau
2005-01-01
Full text of publication follows: In the frame of assessments of steam generator tube bundle vibrations, a study was conducted in order to investigate the effects of an air/water flow on turbulent buffeting forces induced on a cylinder. The main purpose is to relate the physical parameters characterizing an air/water two-phase crossflow with the structural loading of a fixed cylindrical tube. In this first approach, the experiments are carried out in a rectangular acrylic test section supplied with a vertical upward bubbly flow. This flow is transversally impeded by a fixed rigid 12,15 mm diameter cylinder. Different turbulence grids are used in order to modify two-phase characteristics such as bubble diameter, void fraction profile, fluctuation parameters. Preliminarily, a dimensional analysis of fluid-structure interaction under two-phase turbulent solicitations has enabled to identify a list of physically relevant variables which must be measured to evaluate the random forces. The meaning of these relevant parameters as well as the effect of flow patterns are discussed. Direct measurements of two-phase flow parameters are performed simultaneously with measurements of forces exerted on the cylinder. The main descriptive parameters of a two-phase flow are measured using a bi-optical probe, in particular void fraction profiles, interfacial velocities, bubble diameters, void fraction fluctuations. In the same time, the magnitude of random forces caused by two-phase flow is measured with a force transducer. A thorough analysis of the experimental data is then undertaken in order to correlate physical two-phase mechanisms with the random forces exerted on the cylinder. The hypotheses made while applying the dimensional analysis are verified and their pertinence is discussed. Finally, physical parameters involved in random buffeting forces applied on a transverse tube are proposed to scale the spectral magnitude of these forces and comparisons with other authors
Howes, Jeremy C.; Loos, Alfred C.
1987-01-01
An experimental program to develop test methods to be used to characterize interfacial (autohesive) strength development in polysulfone thermoplastic resin and graphite-polysulfone prepreg during processing is reported. Two test methods were used to examine interfacial strength development in neat resin samples. These included an interfacial tension test and a compact tension (CT) fracture toughness test. The interfacial tensile test proved to be very difficult to perform with a considerable amount of data scatter. Thus, the interfacial test was discarded in favor of the fracture toughness test. Interfacial strength development was observed by measuring the refracture toughness of precracked compact tension specimens that were rehealed at a given temperature and contact time. The measured refracture toughness was correlated with temperature and contact time. Interfacial strength development in graphite-polysulfone unidirectional composites was measured using a double cantilever beam (DCB) interlaminar fracture toughness test. The critical strain energy release rate of refractured composite specimens was measured as a function of healing temperature and contact time.
Complex network analysis in inclined oil–water two-phase flow
International Nuclear Information System (INIS)
Zhong-Ke, Gao; Ning-De, Jin
2009-01-01
Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling many complex natural and artificial systems. Oil–water two-phase flow is one of the most complex systems. In this paper, we use complex networks to study the inclined oil–water two-phase flow. Two different complex network construction methods are proposed to build two types of networks, i.e. the flow pattern complex network (FPCN) and fluid dynamic complex network (FDCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K-means clustering, useful and interesting results are found which can be used for identifying three inclined oil–water flow patterns. To investigate the dynamic characteristics of the inclined oil–water two-phase flow, we construct 48 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of the inclined oil–water two-phase flow. In this paper, from a new perspective, we not only introduce a complex network theory into the study of the oil–water two-phase flow but also indicate that the complex network may be a powerful tool for exploring nonlinear time series in practice. (general)
International Nuclear Information System (INIS)
Gao Zhong-Ke; Hu Li-Dan; Jin Ning-De
2013-01-01
We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas—liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitative characterization of the dynamic flow behavior in the transitions among different gas—liquid flow patterns. (general)
Measurement of void fraction and bubble size distribution in two-phase flow system
International Nuclear Information System (INIS)
Huahun, G.
1987-01-01
The importance of study two phase flow parameter and microstructure has appeared increasingly, with the development of two-phase flow discipline. In the paper, the measurement methods of several important microstructure parameter in a two phase flow vertical channel have been studied. Using conductance probe the two phase flow pattern and the average void fraction have been measured previously by the authors. This paper concerns microstructure of the bubble size distribution and local void fraction. The authors studied the methods of measuring bubble velocity, size distribution and local void fraction using double conductance probes and a set of apparatus. Based on our experiments and Yoshihiro work, a formula of calculated local void fraction has been deduced by using the statistical characteristics of bubbles in two phase flow and the relation between calculated bubble size and voltage has been determined. Finally the authors checked by using photograph and fast valve, which is classical but reliable. The results are the same with what has been studied before
Experimental study on local resistance of two-phase flow through spacer grid with rod bundle
International Nuclear Information System (INIS)
Yan Chaoxing; Yan Changqi; Sun Licheng; Tian Qiwei
2015-01-01
The experimental study on local resistance of single-phase and two-phase flows through a spacer grid in a vertical channel with 3 × 3 rod bundle was carried out under the normal temperature and pressure. For the case of single-phase flow, the liquid Reynolds number covered the range of 290-18 007. For the case of two-phase flow, the ranges of gas and liquid superficial velocities were 0.013-3.763 m/s and 0.076-1.792 m/s, respectively. A correlation for predicting local resistance of single-phase flow was given based on experimental results. Eight classical two-phase viscosity formulae for homogeneous model were evaluated against the experimental data of two-phase flow. The results show that Dukler model predicts the experimental data well in the range of Re 1 < 9000 while McAdams correlation is the best one for Re 1 ≥ 9000. For all experimental data, Dukler model provides the best prediction with the mean relative error of 29.03%. A new correlation is fitted for the range of Re 1 < 9000 by considering mass quality, two- phase Reynolds number and liquid and gas densities, resulting in a good agreement with the experimental data. (authors)
Present status of numerical analysis on transient two-phase flow
International Nuclear Information System (INIS)
Akimoto, Masayuki; Hirano, Masashi; Nariai, Hideki.
1987-01-01
The Special Committee for Numerical Analysis of Thermal Flow has recently been established under the Japan Atomic Energy Association. Here, some methods currently used for numerical analysis of transient two-phase flow are described citing some information given in the first report of the above-mentioned committee. Many analytical models for transient two-phase flow have been proposed, each of which is designed to describe a flow by using differential equations associated with conservation of mass, momentum and energy in a continuous two-phase flow system together with constructive equations that represent transportation of mass, momentum and energy though a gas-liquid interface or between a liquid flow and the channel wall. The author has developed an analysis code, called MINCS, that serves for systematic examination of conservation equation and constructive equations for two-phase flow models. A one-dimensional, non-equilibrium two-liquid flow model that is used as the basic model for the code is described. Actual procedures for numerical analysis is shown and some problems concerning transient two-phase analysis are described. (Nogami, K.)
On the use of nuclear magnetic resonance to characterize vertical two-phase bubbly flows
International Nuclear Information System (INIS)
Lemonnier, H.; Jullien, P.
2011-01-01
Research highlights: → We provide a complete theory of the PGSE measurement in single and two-phase flow. → Friction velocity can be directly determinated from measured velocity distributions. → Fast determination of moments shorten PGSE process with small loss of accuracy. → Turbulent diffusion measurements agree well with known trends and existing models. → We think NMR can be a tool to benchmark thermal anemometry in two-phase flow. - Abstract: Since the pioneering work of who showed that NMR can be used to measure accurately the mean liquid velocity and void fraction in two-phase pipe flow, it has been shown that NMR signal can also characterize the turbulent eddy diffusivity and velocity fluctuations. In this paper we provide an in depth validation of these statements together with a clarification of the nature of the mean velocity that is actually measured by NMR PFGSE sequence. The analysis shows that the velocity gradient at the wall is finely space-resolved and allows the determination of the friction velocity in single-phase flows. Next turbulent diffusion measurements in two-phase flows are presented, analyzed and compared to existing data and models. It is believed that NMR velocity measurement is sufficiently understood that it can be utilized to benchmark thermal anemometry in two-phase flows. Theoretical results presented in this paper also show how this can be undertaken.
International Nuclear Information System (INIS)
Cacuci, D.G.
1984-07-01
This report presents a self-contained mathematical formalism for deterministic sensitivity analysis of two-phase flow systems, a detailed application to sensitivity analysis of the homogeneous equilibrium model of two-phase flow, and a representative application to sensitivity analysis of a model (simulating pump-trip-type accidents in BWRs) where a transition between single phase and two phase occurs. The rigor and generality of this sensitivity analysis formalism stem from the use of Gateaux (G-) differentials. This report highlights the major aspects of deterministic (forward and adjoint) sensitivity analysis, including derivation of the forward sensitivity equations, derivation of sensitivity expressions in terms of adjoint functions, explicit construction of the adjoint system satisfied by these adjoint functions, determination of the characteristics of this adjoint system, and demonstration that these characteristics are the same as those of the original quasilinear two-phase flow equations. This proves that whenever the original two-phase flow problem is solvable, the adjoint system is also solvable and, in principle, the same numerical methods can be used to solve both the original and adjoint equations
A Derivation of the Nonlocal Volume-Averaged Equations for Two-Phase Flow Transport
Directory of Open Access Journals (Sweden)
Gilberto Espinosa-Paredes
2012-01-01
Full Text Available In this paper a detailed derivation of the general transport equations for two-phase systems using a method based on nonlocal volume averaging is presented. The local volume averaging equations are commonly applied in nuclear reactor system for optimal design and safe operation. Unfortunately, these equations are limited to length-scale restriction and according with the theory of the averaging volume method, these fail in transition of the flow patterns and boundaries between two-phase flow and solid, which produce rapid changes in the physical properties and void fraction. The non-local volume averaging equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection diffusion and transport properties for two-phase flow; for instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail.
An Experimental Study of Two-Phase Pulse Flushing Technology in Water Distribution Systems
Directory of Open Access Journals (Sweden)
Zhaozhao Tang
2017-12-01
Full Text Available The deterioration of drinking water during distribution process is caused by many factors. The microorganisms and substances peeling off from the “growth-ring” make the secondary pollution in drinking water distribution systems. To reduce the secondary pollution, two-phase pulse flushing technology is introduced to quickly remove the “growth-ring”. In this study, experiment is undertaken for investigating the efficiency of the two-phase pulse flushing and finding the best setting combination. A case study is undertaken to compare the efficiencies between the two-phase pulse and the single-phase flushing. The best setting combination of the two-phase pulse flushing is at the frequency 4 s–6 s (air inflow time is 4 s and air cut off time is 6 s and the round air inflow nozzle is set at the bottom of the pipe. Two-phase pulse flushing technology can save 95% of water and 6 h 40 min flushing time.
Application of two-phase flow for cooling of hybrid microchannel PV cells: A comparative study
International Nuclear Information System (INIS)
Valeh-e-Sheyda, Peyvand; Rahimi, Masoud; Karimi, Ebrahim; Asadi, Masomeh
2013-01-01
Highlights: ► Showing cooling potential of gas–liquid two-phase flow in microchannels for PV cell. ► Introducing the concept of using slug flow in microchannels for cooling of PV cells. ► In single-phase flow, increasing the liquid flow rate enhances the PV power. ► Showing that in two-phase flow the output power related the fluid flow regime. ► By coupling PV and microchannel an increase up to 38% in output power was observed. - Abstract: This paper reports the experimental data from performance of two-phase flows in a small hybrid microchannel solar cell. Using air and water as two-phase fluid, the experiments were conducted at indoor condition in an array of rectangular microchannels with a hydraulic diameter of 0.667 mm. The gas superficial velocity ranges were between 0 and 3.27 m s −1 while liquid flow rate was 0.04 m s −1 . The performance analysis of the PV cell at slug and transitional slug/annular flow regimes are the focus of this study. The influence of two-phase working fluid on PV cell cooling was compared with single-phase. In addition, the great potential of slug flow for heat removal enhancement in PV/T panel was investigated. The obtained data showed the proposed hybrid system could substantially increases the output power of PV solar cells
Development and Characterization of Amorphous Thermoplastic Matrix Graphene Nanocomposites
Directory of Open Access Journals (Sweden)
Alfonso Maffezzoli
2012-10-01
Full Text Available The aim of the present work is the development of amorphous thermoplastic matrix nanocomposites based on graphite nanoparticles. Different types of graphite were used, including unmodified graphite, graphene nanoplatelets and graphite intercalation compounds. Graphite intercalation compounds were subjected to thermal treatment to attain exfoliation of the nanofiller. The exfoliation process was studied by means of thermal analysis. The nanofillers and nanocomposites were characterized by means of X-ray Diffraction (XRD and Scanning Electron Microscope (SEM analysis. The nanocomposites were further characterized by means of mechanical and dielectric analysis. The flammability of the nanocomposites was also analyzed. Results obtained indicate that addition of the nanofiller allows improving the proprieties of the amorphous thermoplastic matrix. The effect of the degree of dispersion of the nanofiller is particularly relevant for the dielectric properties of the nanocomposites, whereas no direct correlation between degree of dispersion and mechanical properties can be observed.
Methods of Recycling, Properties and Applications of Recycled Thermoplastic Polymers
Directory of Open Access Journals (Sweden)
Mădălina Elena Grigore
2017-11-01
Full Text Available This study aims to provide an updated survey of the main thermoplastic polymers in order to obtain recyclable materials for various industrial and indoor applications. The synthesis approach significantly impacts the properties of such materials and these properties in turn have a significant impact on their applications. Due to the ideal properties of the thermoplastic polymers such as corrosion resistance, low density or user-friendly design, the production of plastics has increased markedly over the last 60 years, becoming more used than aluminum or other metals. Also, recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume I. Chapters 1-5)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume III. Chapters 11-14)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume IV. Chapters 15-19)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume II. Chapters 6-10)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Analysis of data obtained in two-phase flow tests of primary heat transport pumps
International Nuclear Information System (INIS)
Currie, T.C.
1986-06-01
This report analyzes data obtained in two-phase flow tests of primary heat transport pumps performed during the period 1980-1983. Phenomena which have been known to cause pump-induced flow oscillations in pressurized piping systems under two-phase conditions are reviewed and the data analyzed to determine whether any of the identified phenomena could have been responsible for the instabilities observed in those tests. Tentative explanations for the most severe instabilities are given based on those analyses. It is shown that suction pipe geometry probably plays an important role in promoting instabilities, so additional experiments to investigate the effect of suction pipe geometry on the stability of flow in a closed pipe loop under two-phase conditions are recommended
Numerical simulation of the two-phase flows in a hydraulic coupling by solving VOF model
International Nuclear Information System (INIS)
Luo, Y; Zuo, Z G; Liu, S H; Fan, H G; Zhuge, W L
2013-01-01
The flow in a partially filled hydraulic coupling is essentially a gas-liquid two-phase flow, in which the distribution of two phases has significant influence on its characteristics. The interfaces between the air and the liquid, and the circulating flows inside the hydraulic coupling can be simulated by solving the VOF two-phase model. In this paper, PISO algorithm and RNG k–ε turbulence model were employed to simulate the phase distribution and the flow field in a hydraulic coupling with 80% liquid fill. The results indicate that the flow forms a circulating movement on the torus section with decreasing speed ratio. In the pump impeller, the air phase mostly accumulates on the suction side of the blades, while liquid on the pressure side; in turbine runner, air locates in the middle of the flow passage. Flow separations appear near the blades and the enclosing boundaries of the hydraulic coupling
Steady state flow analysis of two-phase natural circulation in multiple parallel channel loop
Energy Technology Data Exchange (ETDEWEB)
Bhusare, V.H. [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Bagul, R.K. [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Joshi, J.B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019 (India); Nayak, A.K. [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Kannan, Umasankari [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Reactor Physics Design Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Pilkhwal, D.S. [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Vijayan, P.K. [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)
2016-08-15
Highlights: • Liquid circulation velocity increases with increasing superficial gas velocity. • Total two-phase pressure drop decreases with increasing superficial gas velocity. • Channels with larger driving force have maximum circulation velocities. • Good agreement between experimental and model predictions. - Abstract: In this work, steady state flow analysis has been carried out experimentally in order to estimate the liquid circulation velocities and two-phase pressure drop in air–water multichannel circulating loop. Experiments were performed in 15 channel circulating loop. Single phase and two-phase pressure drops in the channels have been measured experimentally and have been compared with theoretical model of Joshi et al. (1990). Experimental measurements show good agreement with model.
Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces
Energy Technology Data Exchange (ETDEWEB)
Brauner, N.; Rovinsky, J.; Maron, D.M. [Tel-Aviv Univ. (Israel)
1995-09-01
The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the `flow monograms` describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the `interface monograms`, whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system `operational monogram`. The `operational monogram` enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop.
Entropy analysis on non-equilibrium two-phase flow models
Energy Technology Data Exchange (ETDEWEB)
Karwat, H.; Ruan, Y.Q. [Technische Universitaet Muenchen, Garching (Germany)
1995-09-01
A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.
Hydraulic Behaviour of He II in Stratified Counter-Current Two-Phase Flow
Rousset, B; Jäger, B; Van Weelderen, R; Weisend, J G
1998-01-01
Future large devices using superconducting magnets or RF cavities (e.g. LHC or TESLA) need He II two-phase flow for cooling. The research carried out into counter-current superfluid two-phase flow was the continuation of work on co-current flow and benefited from all the knowledge acquired both experimentally and theoretically. Experiments were conducted on two different pipe diameters (40 and 65 m m I.D. tube) for slopes ranging between 0 and 2%, and for temperatures ranging between 1.8 and 2 K. This paper introduces the theoretical model, describes the tests, and provides a critical review of the results obtained in He II counter current two-phase flow.
Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces
International Nuclear Information System (INIS)
Brauner, N.; Rovinsky, J.; Maron, D.M.
1995-01-01
The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the 'flow monograms' describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the 'interface monograms', whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system 'operational monogram'. The 'operational monogram' enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop
Phase separation and pressure drop of two-phase flow in vertical manifolds
International Nuclear Information System (INIS)
Zetzmann, K.
1982-01-01
The splitting of a two-phase mass flow in a tube manifold results in a separation between liquid and gas phase. A study is presented of the phase distribution and the related two-phase pressure drop for vertical manifolds in the technically relevant geometry and flow parameter region of an air-water-flow. At the outlet changes in the gas/fluid-radio are observed which are proportional to this ratio at the inlet. The separation characteristic strongly depends on the massflow through the junction. Empirical equations are given to calculate the separation. Measuring the pressure drop at main- and secondary tube of the manifold the additional pressure drop can be obtained. If these results are related with the dynamic pressure at the inlet, two-phase resistance coefficients can be deduced, which may be tested by empirical relations. (orig.) [de
Analysis of phase dynamics in two-phase flow using latticegas automata
International Nuclear Information System (INIS)
Ohashi, H.; Hashimoto, Y.; Tsumaya, A.; Chen, Y.; Akiyama, M.
1998-01-01
In this paper, we describe lattice gas automaton models appropriate for two-phase flow simulation and their applications to study various phase dynamics of two-fluid mixtures. Several algorithms are added to the original immiscible Lattice Gas model to adjust surface tension and to introduce density difference between two fluids. Surface tension is controlled by the collision rules an difference in density is due to nonlocal forces between automaton particles. We simulate the relative motion of the dispersed phase in another continuous fluid. Deformation and disintegration of rising drops are reproduced. The interaction between multiple drops is also observed in calculations. Furutre, we obtain the transition of the two-phase flow pattern from bubbly, slug to annular flow. Density difference of two phase is one of the key ingredients to generate the annular flow pattern
Magnetic liquid metal two-phase flow research. Phase 1. Final report
International Nuclear Information System (INIS)
Graves, R.D.
1983-04-01
The Phase I research demonstrates the feasibility of the magnetic liquid metal (MLM) two-phase flow concept. A dispersion analysis is presented based on a complete set of two-phase-flow equations augmented to include stresses due to magnetic polarization of the fluid. The analysis shows that the stability of the MLM two-phase flow is determined by the magnetic Mach number, the slip ratio, geometry of the flow relative to the applied magnetic field, and by the voidage dependence of the interfacial forces. Results of a set of experiments concerned with magnetic effects on the dynamics of single bubble motion in an aqueous-based, viscous, conducting magnetic fluid are presented. Predictions in the theoretical literature are qualitatively verified using a bench-top experimental apparatus. In particular, applied magnetic fields are seen to lead to reduced bubble size at fixed generating orifice pressure
Measurement of Liquid-Metal Two-Phase Flow with a Dynamic Neutron Radiography
International Nuclear Information System (INIS)
Cha, J. E.; Lim, I. C.; Kim, H. R.; Kim, C. M.; Nam, H. Y.; Saito, Y.
2005-01-01
The dynamic neutron radiography(DNR) has complementary characteristics to X-ray radiography and is suitable to visualization and measurement of a multi-phase flow research in a metallic duct and liquid metal flow. The flow-field information of liquid metal system is very important for the safety analysis of fast breeder reactor and the design of the spallation target of accelerator driven system. A DNR technique was applied to visualize the flow field in the gas-liquid metal two-phase flow with the HANARO-beam facility. The lead bismuth eutectic and the nitrogen gas were used to construct the two-phase flow field in the natural circulation U-channel. The two-phase flow images in the riser were taken at various combinations of the liquid flow and gas flow with high frame-rate neutron radiography at 1000 fps
Multivariate recurrence network analysis for characterizing horizontal oil-water two-phase flow.
Gao, Zhong-Ke; Zhang, Xin-Wang; Jin, Ning-De; Marwan, Norbert; Kurths, Jürgen
2013-09-01
Characterizing complex patterns arising from horizontal oil-water two-phase flows is a contemporary and challenging problem of paramount importance. We design a new multisector conductance sensor and systematically carry out horizontal oil-water two-phase flow experiments for measuring multivariate signals of different flow patterns. We then infer multivariate recurrence networks from these experimental data and investigate local cross-network properties for each constructed network. Our results demonstrate that a cross-clustering coefficient from a multivariate recurrence network is very sensitive to transitions among different flow patterns and recovers quantitative insights into the flow behavior underlying horizontal oil-water flows. These properties render multivariate recurrence networks particularly powerful for investigating a horizontal oil-water two-phase flow system and its complex interacting components from a network perspective.
Analysis of forced convective transient boiling by homogeneous model of two-phase flow
International Nuclear Information System (INIS)
Kataoka, Isao
1985-01-01
Transient forced convective boiling is of practical importance in relation to the accident analysis of nuclear reactor etc. For large length-to-diameter ratio, the transient boiling characteristics are predicted by transient two-phase flow calculations. Based on homogeneous model of two-phase flow, the transient forced convective boiling for power and flow transients are analysed. Analytical expressions of various parameters of transient two-phase flow have been obtained for several simple cases of power and flow transients. Based on these results, heat flux, velocity and time at transient CHF condition are predicted analytically for step and exponential power increases, and step, exponential and linear velocity decreases. The effects of various parameters on heat flux, velocity and time at transient CHF condition have been clarified. Numerical approach combined with analytical method is proposed for more complicated cases. Solution method for pressure transient are also described. (author)
Moving Boudary Models for Dynamic Simulations of Two-phase Flows
DEFF Research Database (Denmark)
Jensen, Jakob Munch; Tummelscheit, H.
2002-01-01
Two-phase flows are commonly found in components in energy systems such as evaporators and boilers. The performance of these components depends among others on the controller. Transient models describing the evaporation process are important tools for determining control parameters, and fast low...... order models are needed for this purpose. This article describes a general moving boundary (MB) model for modeling two-phase flows. Furthermore the general MB-model is reduced to model a typical dry-expansion evaporator. The reduced MB-model thus captures the phenomena as the general MB-model does...... but is less complex. The reduced MB-model is well suited for control purposes both for determining control parameters and for model based control strategies and examples of a controlled refrigeration system are shown. The general MB model divides the flow into three regions (liquid, two-phase and vapor...
High-velocity two-phase flow two-dimensional modeling
International Nuclear Information System (INIS)
Mathes, R.; Alemany, A.; Thilbault, J.P.
1995-01-01
The two-phase flow in the nozzle of a LMMHD (liquid metal magnetohydrodynamic) converter has been studied numerically and experimentally. A two-dimensional model for two-phase flow has been developed including the viscous terms (dragging and turbulence) and the interfacial mass, momentum and energy transfer between the phases. The numerical results were obtained by a finite volume method based on the SIMPLE algorithm. They have been verified by an experimental facility using air-water as a simulation pair and a phase Doppler particle analyzer for velocity and droplet size measurement. The numerical simulation of a lithium-cesium high-temperature pair showed that a nearly homogeneous and isothermal expansion of the two phases is possible with small pressure losses and high kinetic efficiencies. In the throat region a careful profiling is necessary to reduce the inertial effects on the liquid velocity field
Two-phase air-water stratified flow measurement using ultrasonic techniques
International Nuclear Information System (INIS)
Fan, Shiwei; Yan, Tinghu; Yeung, Hoi
2014-01-01
In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable
Study on performance of squeeze film damper with oil-air two-phase fluid
Shen, Xinmin; Li, Qihan; Du, Lijie
1992-10-01
This paper presents an analytical method for the lubrication film performance of a squeeze film damper with oil-air two-phase fluid, on the basis of the testing results and numerical analysis of oil film cavitation. The calculational results for the pressure distribution of lubrication oil film are in good agreement with the experimental results. The damper performance data obtained from two-phase fluid analysis are also compared with the results calculated by pure oil film damper. It is proven that the data can be used for the engineering analyses. The analytical method can be extended for the other bearings with similar lubrication film of oil-air two-phase fluid.
Numerical simulation of multi-dimensional two-phase transient flow across bundles
International Nuclear Information System (INIS)
Xu Liangwang; Jia Baoshan
2012-01-01
A multi-dimensional two-fluid model for two-phase flow across bundles is presented. The concept of porous media and distributed resistance are applied to derive the two-fluid Navier-Stokes equation of equivalent continuum, which is discretized with full implicit scheme on multi-dimensional staggered grid and solved with direct Strong Implicit Procedure (SIP). A numerical simulation of kettle reboiler experiment is implemented for model verification. Good agreement between the numerical results and experimental data is obtained, which proves that the suggested model is able to handle with two-phase instability numerically and suitable for the simulation of multi-dimensional two-phase transient flow across bundles. (authors)
Magnitude and sign correlations in conductance fluctuations of horizontal oil water two-phase flow
Zhu, L.; Jin, N. D.; Gao, Z. K.; Zong, Y. B.; Zhai, L. S.; Wang, Z. Y.
2012-05-01
In experiment we firstly define five typical horizontal oil-water flow patterns. Then we introduce an approach for analyzing signals by decomposing the original signals increment into magnitude and sign series and exploring their scaling properties. We characterize the nonlinear and linear properties of horizontal oil-water two-phase flow, which relate to magnitude and sign series respectively. We find that the joint distribution of different scaling exponents can effectively identify flow patterns, and the detrended fluctuation analysis (DFA) on magnitude and sign series can represent typical horizontal oil-water two-phase flow dynamics characteristics. The results indicate that the magnitude and sign decomposition method can be a helpful tool for characterizing complex dynamics of horizontal oil-water two-phase flow.
Visualization of two-phase flow in metallic pipes using neutron radiographic technique
International Nuclear Information System (INIS)
Luiz, L.C.; Crispim, V.R.
2007-01-01
The study of two-phase flow is a matter of great interest both for the engineering and oil industries. The production of oil and natural gas involves the transportation of fluids in their liquid and gaseous states, respectively, to the processing plant for refinement. The forecasting of two-phase flow in oil pipes is of the utmost important yet an extremely difficult task. With the development of the electronic imaging system, installed in J-9 irradiation channel of the IEN/CNEN Argonauta Reactor, it is possible to visualize the different types of two phase air-water flows in small-diameter metallic pipes. After developing the captured image the liquid-gas drift flux correlation as well as the void fraction in relation to the injected air outflow for a fixed water outflow can be obtained. (author)
Measurement of pressure fluctuation in gas-liquid two-phase vortex street
International Nuclear Information System (INIS)
Sun Zhiqiang; Sang Wenhui; Zhang Hongjian
2009-01-01
The pressure fluctuation in the wake is an important parameter to characterize the shedding process of gas-liquid two-phase Karman vortex street. This paper investigated such pressure fluctuations in a horizontal pipe using air and water as the tested fluid media. The dynamic signal representing the pressure fluctuation was acquired by the duct-wall differential pressure method. Results show that in the wake of the gas-liquid two-phase Karman vortex street, the frequency of the pressure fluctuation is linear with the Reynolds number when the volume void fraction is within the range of 18%. Moreover, the mean amplitude of the pressure fluctuation decreases with the volume void fraction, and the mean amplitude is larger at higher water flowrates under the same volume void fraction. These findings contribute to an in-depth understanding of the gas-liquid two-phase Karman vortex street.
An Implicit Numerical Method for the Simulation of Two-phase Flow
Energy Technology Data Exchange (ETDEWEB)
Yoon, Han Young; Lee, Seung-Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jeong, Jae Jun [Pusan National University, Busan (Korea, Republic of)
2015-10-15
An implicit numerical method is presented for the analysis of two-phase flows in PWRs. Numerical stability and efficiency are improved by decoupling energy equations from the pressure equation. All the convection and diffusion terms are calculated implicitly. The proposed numerical method is verified against conceptual two-phase flow problems. An implicit numerical method has been proposed for two-phase calculation where energy equations are decoupled from the pressure equation. Convection and diffusion terms are calculated implicitly. The calculation results are the same for PME-explicit, PM explicit, and PM-implicit. Large time step size has been tested with PM-implicit-c and the results are also the same.
Three-dimensional two-phase mass transport model for direct methanol fuel cells
International Nuclear Information System (INIS)
Yang, W.W.; Zhao, T.S.; Xu, C.
2007-01-01
A three-dimensional (3D) steady-state model for liquid feed direct methanol fuel cells (DMFC) is presented in this paper. This 3D mass transport model is formed by integrating five sub-models, including a modified drift-flux model for the anode flow field, a two-phase mass transport model for the porous anode, a single-phase model for the polymer electrolyte membrane, a two-phase mass transport model for the porous cathode, and a homogeneous mist-flow model for the cathode flow field. The two-phase mass transport models take account the effect of non-equilibrium evaporation/ condensation at the gas-liquid interface. A 3D computer code is then developed based on the integrated model. After being validated against the experimental data reported in the literature, the code was used to investigate numerically transport behaviors at the DMFC anode and their effects on cell performance
Thermoplastic polymers surfaces for Dip-Pen Nanolithography of oligonucleotides
Energy Technology Data Exchange (ETDEWEB)
Suriano, Raffaella [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Biella, Serena, E-mail: serena.biella@polimi.it [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Cesura, Federico; Levi, Marinella; Turri, Stefano [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
2013-05-15
Different thermoplastic polymers were spin-coated to prepare smooth surfaces for the direct deposition of end-group modified oligonucleotides by Dip-Pen Nanolithography. A study of the diffusion process was done in order to investigate the dependence of calibration coefficient and quality of deposited features on environmental parameters (temperature, relative humidity) and ink's molecular weight and functionality. The optimization of the process parameters led to the realization of high quality and density nanoarrays on plastics.
Thermoplastic high performance cable insulation systems for flexible system operation
Vaughan, A.S.; Green, C.D.; Hosier, I.L.; Stevens, G.C.; Pye, A.; Thomas, J.L.; Sutton, S.J.; Guessens, T.
2015-01-01
Crosslinked polyethylene (XLPE) has been the cable insulation material of choice in many different transmission and distribution applications for many years and, while this material has many desirable characteristics, its thermo-mechanical properties have consequences for both continuous and emergency cable ratings which, in turn, have implications for system operational flexibility. In this paper, we describe the principles and two embodiments through which new thermoplastic insulation syste...
Ultrasonic assisted consolidation of commingled thermoplastic/glass fibers rovings
Directory of Open Access Journals (Sweden)
Francesca eLionetto
2015-04-01
Full Text Available Thermoplastic matrix composites are finding new applications in different industrial area thanks to their intrinsic advantages related to environmental compatibility and processability. The approach presented in this work consists in the development of a technology for the simultaneous deposition and consolidation of commingled thermoplastic rovings through to the application of high energy ultrasound. An experimental equipment, integrating both fiber impregnation and ply consolidation in a single process, has been designed and tested. It is made of an ultrasonic welder, whose titanium sonotrode is integrated on a filament winding machine. During winding, the commingled roving is at the same time in contact with the mandrel and the horn. The intermolecular friction generated by ultrasound is able to melt the thermoplastic matrix and impregnate the reinforcement fibers. The heat transfer phenomena occurring during the in situ consolidation were simulated solving by finite element (FE analysis an energy balance accounting for the heat generated by ultrasonic waves and the melting characteristics of the matrix. To this aim, a calorimetric characterization of the thermoplastic matrix has been carried out to obtain the input parameters for the model. The FE analysis has enabled to predict the temperature distribution in the composite during heating and cooling The simulation results have been validated by the measurement of the temperature evolution during ultrasonic consolidation.The reliability of the developed consolidation equipment was proved by producing hoop wound cylinder prototypes using commingled continuous E-glass rovings and Polypropylene (PP filaments. The consolidated composite cylinders are characterized by high mechanical properties, with values comparable with the theoretical ones predicted by the micromechanical analysis.
Mechanical properties of green composites based on thermoplastic starch
Fornes, F.; Sánchez-Nácher, L.; Fenollar, O.; Boronat, T.; Garcia-Sanoguera, D.
2010-06-01
The present work is focused on study of "green composites" elaborated from thermoplastic starch (TPS) as polymer matrix and a fiber from natural origin (rush) as reinforced fiber. The effect of the fiber content has been studied by means of the mechanical properties. The composite resulting presents a lack of interaction between matrix and fiber that represents a performance decrease. However the biodegradability behavior of the resulting composite raise this composite as useful an industrial level.
Simulation of shrinkage and warpage of semi-crystalline thermoplastics
Hopmann, Ch.; Borchmann, N.; Spekowius, M.; Weber, M.; Schöngart, M.
2015-05-01
Today, the simulation of the injection molding process is state of the art. Besides the simulation of the manufacturing process, commercial simulation tools allow a prediction of the structural properties of the final part. Especially the complex shrinkage and warpage behavior is of interest as it significantly influences the part quality. Although modern simulation tools provide qualitatively correct results for several materials and processing conditions, significant deviations from the real component's behavior can occur for semi-crystalline thermoplastics. One underlying reason is the description on the macro scale used in these simulation tools. However, in semi-crystalline materials significant effects take place on the micro scale, e.g. crystalline superstructures that cannot be neglected. As part of a research project at IKV, investigations are carried out to improve the simulation accuracy of shrinkage and warpage. To point out differences in the accuracy of commercially available simulation tools, a reference part is computed for the materials polypropylene and polyoxymethylene. The results are validated by injection molding experiments. The shrinkage and warpage behavior is characterized by optical measuring technology. In future, models for the description of the pvT behavior of semi-crystalline thermoplastics will be implemented into the software package SphäroSim which was developed at IKV. With this software, crystallization kinetics for semi-crystalline thermoplastics can be calculated on the micro scale. With the newly implemented pvT models the calculation of shrinkage and warpage for semi-crystalline thermoplastics will be enabled on the micro scale.
Sustainable green composites of thermoplastic starch and cellulose fibers
Amnuay Wattanakornsiri; Sampan Tongnunui
2014-01-01
Green composites have gained renewed interest as environmental friendly materials and as biodegradable renewable resources for a sustainable development. This review provides an overview of recent advances in green composites based on thermoplastic starch (TPS) and cellulose fibers. It includes information about compositions, preparations, and properties of starch, cellulose fibers, TPS, and green composites based on TPS and cellulose fibers. Introduction and production of these r...
Compression molding of chopped woven thermoplastic composite flakes
Abdul Rasheed, Mohammed Iqbal
2016-01-01
Continuous fiber reinforced composites with high-performance thermoplastic polymer matrices have an enormous potential in terms of performance, production rate, cost efficiency and recyclability. The use of this relatively new class of materials by the aerospace and automotive industry has been growing steadily during the last decade. However, the use of continuous reinforcements limit the complexity of the shape of the end products, as defects such as wrinkles can form during processing. Mor...
Shock attenuation in two-phase (gas-liquid) jets for inertial fusion applications
Lascar, Celine C.
Z-Pinch IFE (Inertial Fusion Energy) reactor designs will likely utilize high yield targets (˜ 3 GJ) at low repetition rates (˜ 0.1 Hz). Appropriately arranged thick liquid jets can adequately protect the cavity walls from the target X-rays, ions, and neutrons. However, the shock waves and mechanical loadings produced by rapid heating and evaporation of incompressible liquid jets may be challenging to accommodate within a small reactor cavity. This investigation examines the possibility of using two-phase compressible (liquid/gas) jets to protect the cavity walls in high yield IFE systems, thereby mitigating the mechanical consequences of rapid energy deposition within the jets. Two-phase, free, vertical jets with different cross sections (planar, circular, and annular) were examined over wide ranges of liquid velocities and void fractions. The void fraction and bubble size distributions within the jets were measured; correlations to predict variations of the slip ratio and the Sauter mean diameter were developed. An exploding wire system was used to generate a shock wave at the center of the annular jets. Attenuation of the shock by the surrounding single- or two-phase medium was measured. The results show that stable coherent jets can be established and steadily maintained over a wide range of inlet void fractions and liquid velocities, and that significant attenuation in shock strength can be attained with relatively modest void fractions (˜ 1%); the compressible two-phase jets effectively convert and dissipate mechanical energy into thermal energy within the gas bubbles. The experimental characteristics of single- and two-phase jets were compared against predictions of a state-of-art CFD code (FLUENTRTM ). The data obtained in this investigation will allow reactor system designers to predict the behavior of single- and two-phase jets and quantify their effectiveness in mitigating the consequences of shock waves on the cavity walls in high yield IFE systems.
Direct numerical simulation of reactor two-phase flows enabled by high-performance computing
Energy Technology Data Exchange (ETDEWEB)
Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.; Feng, Jinyong; Gouws, Andre; Li, Mengnan; Bolotnov, Igor A.
2018-04-01
Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent research progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.
Microstructure And Mechanical Properties Of Lead Oxide- Thermoplastic Elas Tomer Composite
International Nuclear Information System (INIS)
Sudirman; Handayani, Ari; Darwinto, Tri; Teguh, Yulius S.P.P.; Sunarni, Anik; Marlijanti, Isni
2000-01-01
Research on microstructure and mechanical properties of lead oxide-thermoplastic elastomer composite with Pb 3 O 4 as lead oxide. Thermoplastic elastomer synthesized from natural rubber as the elastomer and methyl metacrilate as the thermoplastic and irradiated simultaneously with optimum gamma ray. Thermoplastic elastomer (NR-PMMA) grind in a laboplastomill and Pb 3 O 4 was added in varied amount of 10%. 30%. 40% and 50%wt.The results showed that mechanical properties (tensile strength and elongation break) decreased as the Pb 3 O 4 composition increased. Microstructure from SEM observation showed that Pb 3 O 4 distributed evenly and having function as filler in composite
Properties of injection-molded thermoplastic polyester denture base resins.
Hamanaka, Ippei; Takahashi, Yutaka; Shimizu, Hiroshi
2014-02-01
This study investigated the properties of injection-molded thermoplastic polyester denture base resins. Two injection-molded thermoplastic polyester denture base resins (polyethylene terephthalate copolymer and polycycloalkylene terephthalate copolymer) were tested. Specimens of each denture base material were fabricated for flexural properties testing, Charpy impact testing and shear bond testing (n = 10). The flexural strength at the proportional limit, elastic modulus, Charpy impact strength and the shear bond strength of the two denture base materials were estimated. The polycycloalkylene terephthalate copolymer denture base resin had significantly lower flexural strength at the proportional limit, lower elastic modulus, higher impact strength and lower shear bond strength compared to the polyethylene terephthalate copolymer denture base resin. The properties of the injection-molded thermoplastic denture base resins composed of polyethylene terephthalate copolymer and polycycloalkylene terephthalate copolymer were different from each other. The polycycloalkylene terephthalate copolymer denture base resin had significantly lower flexural strength at the proportional limit, lower elastic modulus, higher impact strength and lower shear bond strength compared to the polyethylene terephthalate copolymer denture base resin.
Mechanical properties of injection-molded thermoplastic denture base resins.
Hamanaka, Ippei; Takahashi, Yutaka; Shimizu, Hiroshi
2011-03-01
To investigate the mechanical properties of injection-molded thermoplastic denture base resins. Four injection-molded thermoplastic resins (two polyamides, one polyethylene terephthalate, one polycarbonate) and, as a control, a conventional heat-polymerized polymethyl methacrylate (PMMA), were used in this study. The flexural strength at the proportional limit (FS-PL), the elastic modulus, and the Charpy impact strength of the denture base resins were measured according to International Organization for Standardization (ISO) 1567 and ISO 1567:1999/Amd 1:2003. The descending order of the FS-PL was: conventional PMMA > polyethylene terephthalate, polycarbonate > two polyamides. The descending order of the elastic moduli was: conventional PMMA > polycarbonate > polyethylene terephthalate > two polyamides. The descending order of the Charpy impact strength was: polyamide (Nylon PACM12) > polycarbonate > polyamide (Nylon 12), polyethylene terephthalate > conventional PMMA. All of the injection-molded thermoplastic resins had significantly lower FS-PL, lower elastic moduli, and higher or similar impact strength compared to the conventional PMMA. The polyamide denture base resins had low FS-PL and low elastic moduli; one of them possessed very high impact strength, and the other had low impact strength. The polyethylene terephthalate denture base resin showed a moderately high FS-PL, moderate elastic modulus, and low impact strength. The polycarbonate denture base resin had a moderately high FS-PL, moderately high elastic modulus, and moderate impact strength.
Two-phase coolant pump model of pressurized light water nuclear reactors
International Nuclear Information System (INIS)
Santos, G.A. dos; Freitas, R.L.
1990-01-01
The two-phase coolant pump model of pressurized light water nuclear reactors is an important point for the loss of primary coolant accident analysis. The homologous curves set up the complete performance of the pump and are input for accidents analysis thermal-hydraulic codes. This work propose a mathematical model able to predict the two-phase homologous curves where it was incorporated geometric and operational pump condition. The results were compared with the experimental tests data from literature and it has showed a good agreement. (author)
Analysis of two-phase flow induced vibrations in perpendiculary supported U-type piping systems
International Nuclear Information System (INIS)
Hiramatsu, Tsutomu; Komura, Yoshiaki; Ito, Atsushi.
1984-01-01
The perpose of this analysis is to predict the vibration level of a pipe conveying a two-phase flowing fluid. Experiments were carried out with a perpendiculary supported U-type piping system, conveying an air-water two-phase flow in a steady state condition. Fluctuation signals are observed by a void signal sensor, and power spectral densities and probability density functions are obtained from the void signals. Theoretical studies using FEM and an estimation of the exciting forces from the PSD of void signals, provided a good predictional estimation of vibration responses of the piping system. (author)
Two-phase flow void fraction measurement using gamma ray attenuation technique
International Nuclear Information System (INIS)
Silva, R.D. da.
1985-01-01
The present work deals with experimental void fraction measurements in two-phase water-nitrogen flow, by using a gamma ray attenuation technique. Several upward two-phase flow regimes in a vertical tube were simulated. The water flow was varied from 0.13 to 0.44 m 3 /h while the nitrogen flow was varied between 0.01 and 0.1 m 3 /h. The mean volumetric void fraction was determined based on the measured linear void fraction for each flow condition. The results were compared with other authors data and showed a good agreement. (author) [pt
An algebraic stress/flux model for two-phase turbulent flow
International Nuclear Information System (INIS)
Kumar, R.
1995-12-01
An algebraic stress model (ASM) for turbulent Reynolds stress and a flux model for turbulent heat flux are proposed for two-phase bubbly and slug flows. These mathematical models are derived from the two-phase transport equations for Reynolds stress and turbulent heat flux, and provide C μ , a turbulent constant which defines the level of eddy viscosity, as a function of the interfacial terms. These models also include the effect of heat transfer. When the interfacial drag terms and the interfacial momentum transfer terms are absent, the model reduces to a single-phase model used in the literature
Evaluation of Low-Cost Topologies for Two-Phase Induction Motor Drives, in Industrial Applications
DEFF Research Database (Denmark)
Blaabjerg, Frede; Lungeanu, Florin; Skaug, Kenneth
2002-01-01
This paper investigates and compares the potential of the two-phase induction motors to accommodate variable speed operation in ac drive. The analysis is based on both theory and experimental work, showing a conflict between the performances on one side, and the cost/complexity for such ac drives...... on the other side. Another contradiction comes from the benefits as well as from the drawbacks related with the ac running capacitor. It is concluded that the two-phase induction motor drives are more depending on the load characteristic than the three-phase motor drives, while the best topology...
Two-phase flow stability structure in a natural circulation system
Energy Technology Data Exchange (ETDEWEB)
Zhou, Zhiwei [Nuclear Engineering Laboratory Zurich (Switzerland)
1995-09-01
The present study reports a numerical analysis of two-phase flow stability structures in a natural circulation system with two parallel, heated channels. The numerical model is derived, based on the Galerkin moving nodal method. This analysis is related to some design options applicable to integral heating reactors with a slightly-boiling operation mode, and is also of general interest to similar facilities. The options include: (1) Symmetric heating and throttling; (2) Asymmetric heating and symmetric throttling; (3) Asymmetric heating and throttling. The oscillation modes for these variants are discussed. Comparisons with the data from the INET two-phase flow stability experiment have qualitatively validated the present analysis.
Local wettability reversal during steady-state two-phase flow in porous media.
Sinha, Santanu; Grøva, Morten; Ødegården, Torgeir Bryge; Skjetne, Erik; Hansen, Alex
2011-09-01
We study the effect of local wettability reversal on remobilizing immobile fluid clusters in steady-state two-phase flow in porous media. We consider a two-dimensional network model for a porous medium and introduce a wettability alteration mechanism. A qualitative change in the steady-state flow patterns, destabilizing the percolating and trapped clusters, is observed as the system wettability is varied. When capillary forces are strong, a finite wettability alteration is necessary to move the system from a single-phase to a two-phase flow regime. When both phases are mobile, we find a linear relationship between fractional flow and wettability alteration.
Preliminary Two-Phase Terry Turbine Nozzle Models for RCIC Off-Design Operation Conditions
Energy Technology Data Exchange (ETDEWEB)
Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, James [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2017-06-12
This report presents the effort to extend the single-phase analytical Terry turbine model to cover two-phase off-design conditions. The work includes: (1) adding well-established two-phase choking models – the Isentropic Homogenous Equilibrium Model (IHEM) and Moody’s model, and (2) theoretical development and implementation of a two-phase nozzle expansion model. The two choking models provide bounding cases for the two-phase choking mass flow rate. The new two-phase Terry turbine model uses the choking models to calculate the mass flow rate, the critical pressure at the nozzle throat, and steam quality. In the divergent stage, we only consider the vapor phase with a similar model for the single-phase case by assuming that the liquid phase would slip along the wall with a much slower speed and will not contribute the impulse on the rotor. We also modify the stagnation conditions according to two-phase choking conditions at the throat and the cross-section areas for steam flow at the nozzle throat and at the nozzle exit. The new two-phase Terry turbine model was benchmarked with the same steam nozzle test as for the single-phase model. Better agreement with the experimental data is observed than from the single-phase model. We also repeated the Terry turbine nozzle benchmark work against the Sandia CFD simulation results with the two-phase model for the pure steam inlet nozzle case. The RCIC start-up tests were simulated and compared with the single-phase model. Similar results are obtained. Finally, we designed a new RCIC system test case to simulate the self-regulated Terry turbine behavior observed in Fukushima accidents. In this test, a period inlet condition for the steam quality varying from 1 to 0 is applied. For the high quality inlet period, the RCIC system behaves just like the normal operation condition with a high pump injection flow rate and a nominal steam release rate through the turbine, with the net addition of water to the primary system; for
International Nuclear Information System (INIS)
Han Bin; Tong Yunxian; Wu Shaorong
1992-11-01
It is a classical method by using analysis of differential pressure fluctuation signal to identify two-phase flow pattern. The method which uses trait peak in the frequency-domain will result confusion between bubble flow and intermittent flow due to the influence of gas speed. Considering the spatial geometric significance of two-phase slow patterns and using the differential pressure gauge as a sensor, the Strouhal number 'Sr' is taken as the basis for distinguishing flow patterns. Using Strouhal number 'Sr' to identify flow pattern has clear physical meaning. The experimental results using the spatial analytical technique to measure the flow pattern are also given
Two-phase forced-convective heat transfer at high subcritical pressure
International Nuclear Information System (INIS)
Sohns, J.
1974-01-01
Two-phase forced-convective heat transfer was investigated in the reduced pressure range 0.31 less than π less than 0.96 with ammonia as working fluid in a vertical tube. With small qualities as well as simultaneous high mass flow rates and system pressure it is suggested to use the dimensionless groups controlling turbulent heat transfer in tubes for a homogeneous two-phase flow model. It was possible to represent experimental data by a correlation of turbulent flow type. (U.S.)
Development of a large-scale general purpose two-phase flow analysis code
International Nuclear Information System (INIS)
Terasaka, Haruo; Shimizu, Sensuke
2001-01-01
A general purpose three-dimensional two-phase flow analysis code has been developed for solving large-scale problems in industrial fields. The code uses a two-fluid model to describe the conservation equations for two-phase flow in order to be applicable to various phenomena. Complicated geometrical conditions are modeled by FAVOR method in structured grid systems, and the discretization equations are solved by a modified SIMPLEST scheme. To reduce computing time a matrix solver for the pressure correction equation is parallelized with OpenMP. Results of numerical examples show that the accurate solutions can be obtained efficiently and stably. (author)
Problems of heat transfer and hydraulics of two-phase media
Kutateladze, S S
1969-01-01
Problems of Heat Transfer and Hydraulics of Two-Phase Media presents the theory of heat transfer and hydrodynamics. This book discusses the various aspects of heat transfer and the flow of two-phase systems. Organized into two parts encompassing 22 chapters, this book starts with an overview of the laws of similarity for heat transfer to or from a flowing liquid with various physical properties and allowed for variation in viscosity and thermal conductivity. This book then explores the general functional relationship that exists between viscosity and thermal conductivity for thermodynamically
Lagrangian analysis of two-phase hydrodynamic and nuclear-coupled density-wave oscillations
International Nuclear Information System (INIS)
Lahey, R.T. Jr.; Yadigaroglu, G.
1974-01-01
The mathematical technique known as the ''method of characteristics'' has been used to construct an exact, analytical solution to predict the onset of density-wave oscillations in diabatic two-phase systems, such as Boiling Water Nuclear Reactors (BWR's). Specifically, heater wall dynamics, boiling boundary dynamics and nuclear kinetics have been accounted for in this analysis. Emphasis is placed on giving the reader a clear physical understanding of the phenomena of two-phase density-wave oscillations. Explanations are presented in terms of block diagram logic, and phasor representations of the various pressure drop perturbations are given. (U.S.)
Numerical approach of multi-field two-phase flow models in the OVAP code
International Nuclear Information System (INIS)
Anela Kumbaro
2005-01-01
Full text of publication follows: A significant progress has been made in modeling the complexity of vapor-liquid two-phase flow. Different three-dimensional models exist in order to simulate the evolution of parameters which characterize a two-phase model. These models can be classified into various groups depending on the inter-field coupling. A hierarchy of increasing physical complexity can be defined. The simplest group corresponds to the homogeneous mixture models where no interactions are taken into account. Another group is constituted by the two-fluid models employing physically important interfacial forces between two-phases, liquid, and water. The last group is multi-field modeling where inter-field couplings can be taken into account at different degrees, such as the MUltiple Size Group modeling [2], the consideration of separate equations for the transport and generation of mass and momentum for each field under the assumption of the same energy for all the fields of the same phase, and a full multi-field two-phase model [1]. The numerical approach of the general three-dimensional two-phase flow is by complexity of the phenomena a very challenging task; the ideal numerical method should be at the same time simple in order to apply to any model, from equilibrium to multi-field model and conservative in order to respect the fundamental conservation physical laws. The approximate Riemann solvers have the good properties of conservation of mass, momentum and energy balance and have been extended successfully to two-fluid models [3]- [5]. But, the up-winding of the flux is based on the Eigen-decomposition of the two-phase flow model and the computation of the Eigen-structure of a multi-field model can be a high cost procedure. Our contribution will present a short review of the above two-phase models, and show numerical results obtained for some of them with an approximate Riemann solver and with lower-complexity alternative numerical methods that do not
Generating a Two-Phase Lesson for Guiding Beginners to Learn Basic Dance Movements
Yang, Yang; Leung, Howard; Yue, Lihua; Deng, Liqun
2013-01-01
In this paper, an automated lesson generation system for guiding beginners to learn basic dance movements is proposed. It analyzes the dance to generate a two-phase lesson which can provide a suitable cognitive load thus offering an efficient learning experience. In the first phase, the dance is divided into small pieces which are patterns, and…
Vincent, Charles C.J.; Kok, Jacobus B.W.
1992-01-01
The two-phase closed loop thermosyphon is investigated with emphasis on the overall performance in transient operation. The control volume approach is the base of a global analysis describing the motion of vapor and liquid phases of the thermosyphon system in one-dimensional equations. Interfacial
Constructing a unique two-phase compressibility factor model for lean gas condensates
Energy Technology Data Exchange (ETDEWEB)
Moayyedi, Mahmood; Gharesheikhlou, Aliashghar [Research Institute of Petroleum Industry (RIPI), Tehran (Iran, Islamic Republic of); Azamifard, Arash; Mosaferi, Emadoddin [Amirkabir University of Technology (AUT), Tehran (Iran, Islamic Republic of)
2015-02-15
Generating a reliable experimental model for two-phase compressibility factor in lean gas condensate reservoirs has always been demanding, but it was neglected due to lack of required experimental data. This study presents the main results of constructing the first two-phase compressibility factor model that is completely valid for Iranian lean gas condensate reservoirs. Based on a wide range of experimental data bank for Iranian lean gas condensate reservoirs, a unique two-phase compressibility factor model was generated using design of experiments (DOE) method and neural network technique (ANN). Using DOE, a swift cubic response surface model was generated for two-phase compressibility factor as a function of some selected fluid parameters for lean gas condensate fluids. The proposed DOE and ANN models were finally validated using four new independent data series. The results showed that there is a good agreement between experimental data and the proposed models. In the end, a detailed comparison was made between the results of proposed models.
effects of parallel channel interactions on two-phase flow split in ...
African Journals Online (AJOL)
Dr Obe
1982-09-01
Sep 1, 1982 ... varied so as to simulate different flow phenomena which might occur during a loss ... QCV - Quick Closing Valves. 2ϕ - Two-phase flow. lϕ - Single phase flow α - Void fraction. X - Flow quality. UP - Upper Plenum. LP - Lower Plenum. W - Flow rate kg/hr .... evident that gradual introduction of vapour into the ...
Pigging analysis for gas-liquid two phase flow in pipelines
International Nuclear Information System (INIS)
Kohda, K.; Suzukawa, Y.; Furukawa, H.
1988-01-01
A new method to analyze transient phenomena caused by pigging in gas-liquid two-phase flow is developed. During pigging, a pipeline is divided into three sections by two moving boundaries, namely the pig and the leading edge of the liquid slug in front of the pig. The basic equations are mass, momentum and energy conservation equations. The boundary conditions at the moving boundaries are determined from the mass conservation across the boundaries, etc. A finite difference method is used to solve the equations numerically. The method described above is also capable of analyzing transient two-phase flow caused by pressure and flow rate changes. Thus the over-all analysis of transient two-phase flow in pipelines becomes possible. A series of air-water two-phase flow pigging experiments was conducted using 105.3 mm diameter and 1436.5 m long test pipeline. The agreement between the measured and the calculated results is very good
Phase distribution of nitrogen-water two-phase flow in parallel micro channels
Zhou, Mi; Wang, Shuangfeng; Zhou, You
2017-04-01
The present work experimentally investigated the phase splitting characteristics of gas-liquid two-phase flow passing through a horizontal-oriented micro-channel device with three parallel micro-channels. The hydraulic diameters of the header and the branch channels were 0.6 and 0.4 mm, respectively. Five different liquids, including de-ionized water and sodium dodecyl sulfate (SDS) solution with different concentration were employed. Different from water, the surface tension of SDS solution applied in this work decreased with the increment of mass concentration. Through series of visual experiments, it was found that the added SDS surfactant could obviously facilitate the two-phase flow through the parallel micro channels while SDS solution with low concentration would lead to an inevitable blockage of partial outlet branches. Experimental results revealed that the two phase distribution characteristics depended highly on the inlet flow patterns and the outlet branch numbers. To be specific, at the inlet of slug flow, a large amount of gas preferred flowing into the middle branch channel while the first branch was filled with liquid. However, when the inlet flow pattern was shifted to annular flow, all of the gas passed through the second and the last branches, with a little proportion of liquid flowing into the first channel. By comparison with the experimental results obtained from a microchannel device with five parallel micro-T channels, uneven distribution of the two phase can be markedly noticed in our present work.
Modeling of Two-Phase Flow in Rough-Walled Fracture Using Level Set Method
Directory of Open Access Journals (Sweden)
Yunfeng Dai
2017-01-01
Full Text Available To describe accurately the flow characteristic of fracture scale displacements of immiscible fluids, an incompressible two-phase (crude oil and water flow model incorporating interfacial forces and nonzero contact angles is developed. The roughness of the two-dimensional synthetic rough-walled fractures is controlled with different fractal dimension parameters. Described by the Navier–Stokes equations, the moving interface between crude oil and water is tracked using level set method. The method accounts for differences in densities and viscosities of crude oil and water and includes the effect of interfacial force. The wettability of the rough fracture wall is taken into account by defining the contact angle and slip length. The curve of the invasion pressure-water volume fraction is generated by modeling two-phase flow during a sudden drainage. The volume fraction of water restricted in the rough-walled fracture is calculated by integrating the water volume and dividing by the total cavity volume of the fracture while the two-phase flow is quasistatic. The effect of invasion pressure of crude oil, roughness of fracture wall, and wettability of the wall on two-phase flow in rough-walled fracture is evaluated.
Mechanistic multidimensional analysis of two-phase flow in horizontal tube with 90 deg elbow
International Nuclear Information System (INIS)
Tselishcheva, E.A.; Antal, St.P.; Podowski, M.Z.; Marshall, S.
2007-01-01
The development of modeling and simulation capabilities of two-phase flow and heat transfer is very important for the design, operation and safety of nuclear reactors. Whereas a significant progress in this field has been made over the recent years, further advancements are clearly needed for new concepts of advanced (Generation-IV in particular) reactors. Difficulties in analyzing gas/liquid flows are due to the fact that such two-phase mixtures can assume several different flow patterns, each characterized by flow-regime specific interfacial phenomena of mass, momentum and energy transfer. The level of difficulty increases even further in the case of a complex tube geometries and spatial orientations. The purpose of this paper is to discuss the results of the analysis of a two-phase flow in a horizontal pipe with a 90-degree elbow. The overall objective of the present work is the development of a 3-dimensional computational model of a two-phase high-Reynolds number turbulent flow. The overall new model has been encoded in the next-generation Computational Multiphase Fluid Dynamics (CMFD) computer code, NPHASE. The model has been tested parametrically and the results of NPHASE calculations have been compared against experimental data. It has been demonstrated that the proposed model is consistent both physically and numerically, the predictions are in a reasonable agreement with the measurements
The development of two-phase flow instrumentation at PNC O-arai Engineering Center
International Nuclear Information System (INIS)
Obata, T.; Kobori, T.; Hayamizu, Y.
1975-10-01
This paper reviews development works on the two-phase flow instrumentation carried out at PNC Oarai Engineering Center for FUGEN safety test. The paper describes heater surface temperature measurement, four types of void meters and two steam quality meters. (auth.)
A Von Karman integral approach to a two phase boundary layer problem
Henry, R.; Pasamehmetoglu, P.; Eno, B.; Anderson, L.
1987-01-01
A Von Karman integral approximation of a two phase boundary layer is developed for bodies of arbitrary shape. The flow field considered is that of the injection of water through a porous airfoil. A solution for the special case of a flat plate is presented. The equations for the airfoil solution are developed and possible effects on airflow separation are discussed.
Discontinuous Galerkin finite element method for shallow two-phase flows
Rhebergen, Sander; Bokhove, Onno; van der Vegt, Jacobus J.W.
We present a discontinuous Galerkin finite element method for two depth-averaged two-phase flow models. One of these models contains nonconservative products for which we developed a discontinuous Galerkin finite element formulation in Rhebergen et al. (2008) J. Comput. Phys. 227, 1887-1922. The
International Nuclear Information System (INIS)
Chu, W.; Dhir, V.K.; Marshall, J.
1983-01-01
An experimental investigation of two phase flow through porous layers formed of non-heated glass particles (nominal diameter 1 to 6 mm) has been made. Particulate bed depths of 30 cm and 70 cm were used. The effect of particle size, particle size distribution and bed porosity on void fraction and pressure drop through a particulate bed formed in a cylindrical test section has been investigated. The superficial velocity of liquid (water) is varied from 1.83 to 18.3 mm/s while the superficial velocity of gas (air) is varied from 0 to 68.4 mm/s. These superficial velocities were chosen so that pressure drop and void fraction measurement could be made for the porous layer in fixed and fluidized states. A model based on drift flux approach has been developed for the void fraction. Using the two phase friction pressure drop data, the relative permeabilities of the two phases have been concluded with void fraction. The void fraction and two phase friction pressure gradient in beds composed of mixtures of spherical particles as well as sharps of different nominal sizes have also been examined. It is found that the models for single size particles are also applicable to mixtures of particles if a mean particle diameter for the mixture is defined
Two-phase flow phenomena in broken recirculation line of BWR
International Nuclear Information System (INIS)
Kato, Masami; Arai, Kenji; Narabayashi, Tadashi; Amano, Osamu.
1986-01-01
When a primary recirculation line of BWR is ruptured, a primary recirculation pump may be subjected to very high velocity two-phase flow and its speed may be accelerated by this flow. It is important for safety evaluation to estimate the pump behavior during blowdown. There are two problems involved in analyzing this behavior. One problem concerns the pump characteristics under two-phase flow. The other involves the two-phase conditions at the pump inlet. If the rupture occurs at a suction side of the pump, choking is considered to occur at a broken jet pump nozzle. Then, a void fraction becomes larger downstream from the jet pump nozzle and volumetric flow through the pump will be very high. However, there is little experimental data available on two-phase flow downstream from a choking plane. Blowdown tests were performed using a simulated broken recirculation line and measured data were analyzed by TRAC-PlA. Analytical results agreed with measured data. (author)
International Nuclear Information System (INIS)
Mesquita, R.N. de; Masotti, P.H.F.; Penha, R.M.L.; Andrade, D.A.; Sabundjian, G.; Torres, W.M.
2012-01-01
Highlights: ► A fuzzy classification system for two-phase flow instability patterns is developed. ► Flow patterns are classified based on images of natural circulation experiments. ► Fuzzy inference is optimized to use single grayscale profiles as input. - Abstract: Two-phase flow on natural circulation phenomenon has been an important theme on recent studies related to nuclear reactor designs. The accuracy of heat transfer estimation has been improved with new models that require precise prediction of pattern transitions of flow. In this work, visualization of natural circulation cycles is used to study two-phase flow patterns associated with phase transients and static instabilities of flow. A Fuzzy Flow-type Classification System (FFCS) was developed to classify these patterns based only on image extracted features. Image acquisition and temperature measurements were simultaneously done. Experiments in natural circulation facility were adjusted to generate a series of characteristic two-phase flow instability periodic cycles. The facility is composed of a loop of glass tubes, a heat source using electrical heaters, a cold source using a helicoidal heat exchanger, a visualization section and thermocouples positioned over different loop sections. The instability cyclic period is estimated based on temperature measurements associated with the detection of a flow transition image pattern. FFCS shows good results provided that adequate image acquisition parameters and pre-processing adjustments are used.
An advanced ultrasonic technique for slow and void fraction measurements of two-phase flow
International Nuclear Information System (INIS)
Faccini, J.L.H.; Su, J.; Harvel, G.D.; Chang, J.S.
2004-01-01
In this paper, we present a hybrid type counterpropagating transmission ultrasonic technique (CPTU) for flow and time averaging ultrasonic transmission intensity void fraction measurements (TATIU) of air-water two-phase flow, which is tested in the new two-phase flow test section mounted recently onto an existing single phase flow rig. The circular pipe test section is made of 51.2 mm stainless steel, followed by a transparent extruded acrylic pipe aimed at flow visualization. The two-phase flow rig operates in several flow regimes: bubbly, smooth stratified, wavy stratified and slug flow. The observed flow patterns are compared with previous experimental and numerical flow regime map for horizontal two phase flows. These flow patterns will be identified by time averaging transmission intensity ultrasonic techniques which have been developed to meet this particular application. A counterpropagating transmission ultrasonic flowmeter is used to measure the flow rate of liquid phase. A pulse-echo TATIU ultrasonic technique used to measure the void fraction of the horizontal test section is presented. We can draw the following conclusions: 1) the ultrasonic system was able to characterize the 2 flow patterns simulated (stratified and plug flow); 2) the results obtained for water volumetric fraction require more experimental work to determine exactly the technique uncertainties but, a priori, they are consistent with earlier work; and 3) the experimental uncertainties can be reduced by improving the data acquisition system, changing the acquisition time interval from seconds to milliseconds
A double parameters measurement of steam-water two-phase flow with single orifice
International Nuclear Information System (INIS)
Zhong Shuoping; Tong Yunxian; Yu Meiying
1992-08-01
A double parameters measurement of steam-water two-phase flow with single orifice is described. An on-line measurement device based on micro-computer has been developed. The measured r.m.s error of steam quality is less than 6.5% and the measured relative r.m.s. error of mass flow rate is less than 9%
Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids
Santos, J. E.; Savioli, G. B.
2018-04-01
Seismic waves traveling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency dependent P-wave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The P-wave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyze their effect on the mesoscopic-loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.
The young's modulus of two phase and porous materials theory and experiment
International Nuclear Information System (INIS)
Nazare, S.; Ondracek, G.
1977-01-01
Theoretical methods to calculate the Young's modulus of two phase materials are discussed taking into account the concentration, shape and orientation of the phases. The results are simplified for the special case of porous materials and compared with experimental data. (author) [pt
Electric capacitance tomography and two-phase flow for the nuclear reactor safety analysis
International Nuclear Information System (INIS)
Lee, Jae Young
2008-01-01
Recently electric capacitance tomography has been developed to be used in the analysis of two-phase flow. Although its electric field is not focused as the hard ray tomography such as the X-ray or gamma ray, its convenience of easy access to the system and easy maintenance due to no requirement of radiation shielding benefits us in its application in the two-phase flow study, one of important area in the nuclear safety analysis. In the present paper, the practical technologies in the electric capacitance tomography are represented in both parts of hardware and software. In the software part, both forward problem and inverse problem are discussed and the method of regularization. In the hardware part, the brief discussion of the electronics circuits is made which provides femto farad resolution with a reasonable speed (150 frame/sec for 16 electrodes). Some representative ideal cases are studied to demonstrate its potential capability for the two-phase flow analysis. Also, some variations of the tomography such as axial tomography, and three dimensional tomography are discussed. It was found that the present ECT is expected to become a useful tool to understand the complicated three dimensional two-phase flow which may be an important feature to be equipped by the safety analysis codes. (author)
Improving performance of two-phase natural circulation loops by reducing of entropy generation
International Nuclear Information System (INIS)
Goudarzi, N.; Talebi, S.
2015-01-01
This paper aims to investigate the effects of various parameters on stability behavior and entropy generation through a two-phase natural circulation loop. Two-phase natural circulation systems have low driving head and, consequently, low heat removal capability. To have a higher thermodynamic efficiency, in addition to the stability analysis, minimization of entropy generation by loop should be taken into account in the design of these systems. In the present study, to investigate the stability behavior, the non-linear method (known as the direct solution method or time domain method) which is able to simulate the uniform and non-uniform diameter loops, was applied. To best calculate entropy generation rates, the governing equations of the entropy generation were solved analytically. The effects of various parameters such as operating conditions and geometrical dimensions on the stability behavior and the entropy generation in the two-phase natural circulation loop were then analyzed. - Highlights: • Effects of all important parameters on entropy generation of a loop are studied. • The governing equations of the entropy generation are solved analytically. • Effects of all important parameters on stability of a loop are investigated. • Improvement of two-phase natural circulation loop is investigated.
Simultaneous two-phase flow measurement techniques using Particle Image Velocimetry
Matinpour, Hadis; Atkinson, Joseph; Bennett, Sean
2017-11-01
Most geophysical and environmental flows in nature are turbulent flow and entrain suspended sediments. Turbulent-sediment interaction is one of the most challenging and complicated phenomenon. Many studies have investigated turbulent modulation by suspended sediments. However, there is little investigation on studying sediments in suspension as a two-phase flow, one phase of sediments and another phase of fluid. In this study, we designed and employed a state-of-the-art two-phase PIV method to measure each phase instantaneous velocities simultaneously and separately. The technique that we have developed is employing a computer-vision based method, which enables us to discriminate sediment particles from fluid tracer particles based on two thresholds, dissimilar particle sizes and different particle intensities. To validate two-phase PIV method, we also measured only fluid phase velocities by florescent tracer particles and a camera equipped with a narrow-band filter. Results from imaged processing method are compared with results from physically discriminated two phase method.
Liquid-liquid extraction of enzymes by affinity aqueous two-phase systems
Directory of Open Access Journals (Sweden)
Xu Yan
2003-12-01
Full Text Available From analytical to commercial scale, aqueous two-phase systems have their application in the purification, characterization and study of biomaterials. In order to improve the selectivity of the systems, the biospecific affinity ligands were introduced. In the affinity partitioning aqueous two-phase system, have many enzymes been purified. This review discusses the partitioning of some enzymes in the affinity aqueous two-phase systems in regard to the different ligands, including reactive dyes, metal ions and other ligands. Some integration of aqueous two-phase system with other techniques for more effective purification of enzymes are also presented.Tanto em escala de laboratório como industrial, os sistemas de duas fases aquosas podem ser utilizados para a purificação, caracterização e estudos de biomateriais. Para aumentar a seletividade desse sistema, ligantes de afinidade bioespecíficos podem ser utilizados. No sistema de duas fases aquosas por afinidade, muitas enzimas podem ser purificadas. Neste artigo de revisão, a partição de algumas enzimas por esse tipo de afinidade, utilizando diferentes ligantes como corantes e íons metálicos, são discutidas. Além disso, a integração desse sistema de duas fases aquosas com outras técnicas de purificação estão sendo apresentados, com o objetivo mostrar a melhoria da eficiência do processo.
An ALE Finite Element Approach for Two-Phase Flow with Phase Change
Gros, Erik; Anjos, Gustavo; Thome, John; Ltcm Team; Gesar Team
2016-11-01
In this work, two-phase flow with phase change is investigated through the Finite Element Method (FEM) in the Arbitrary Lagrangian-Eulerian (ALE) framework. The equations are discretized on an unstructured mesh where the interface between the phases is explicitly defined as a sub-set of the mesh. The two-phase interface position is described by a set of interconnected nodes which ensures a sharp representation of the boundary, including the role of the surface tension. The methodology proposed for computing the curvature leads to very accurate results with moderate programming effort and computational costs. Such a methodology can be employed to study accurately many two-phase flow and heat transfer problems in industry such as oil extraction and refinement, design of refrigeration systems, modelling of microfluidic and biological systems and efficient cooling of electronics for computational purposes. The latter is the principal aim of the present research. The numerical results are discussed and compared to analytical solutions and reference results, thereby revealing the capability of the proposed methodology as a platform for the study of two-phase flow with phase change.
Comparison of two-phase Darcy's law with a thermodynamically consistent approach
Niessner, J.; Berg, S.; Hassanizadeh, S.M.
2011-01-01
The extended Darcy’s law is a commonly used equation for the description of immiscible two-phase flow in porous media. It dates back to the 1940s and is essentially an empirical relationship. According to the extended Darcy’s law, pressure gradient and gravity are the only driving forces for the
effects of parallel channel interactions on two-phase flow split in ...
African Journals Online (AJOL)
Dr Obe
1982-09-01
Sep 1, 1982 ... system pressures varied from near atmospheric to a little over 1.7 bar. ... history dependent. They depended also on the relative channel orifice restrictions, the state of two-phase mixture in each channel at the start of flow, the manner of initiation of the .... evident that gradual introduction of vapour into the ...
Forced Two-Phase Helium Cooling Scheme for the Mu2e Transport Solenoid
Energy Technology Data Exchange (ETDEWEB)
Tatkowski, G. [Fermilab; Cheban, S. [Fermilab; Dhanaraj, N. [Fermilab; Evbota, D. [Fermilab; Lopes, M. [Fermilab; Nicol, T. [Fermilab; Sanders, R. [Fermilab; Schmitt, R. [Fermilab; Voirin, E. [Fermilab
2015-01-01
The Mu2e Transport Solenoid (TS) is an S-shaped magnet formed by two separate but similar magnets, TS-u and TS-d. Each magnet is quarter-toroid shaped with a centerline radius of approximately 3 m utilizing a helium cooling loop consisting of 25 to 27 horizontal-axis rings connected in series. This cooling loop configuration has been deemed adequate for cooling via forced single phase liquid helium; however it presents major challenges to forced two-phase flow such as “garden hose” pressure drop, concerns of flow separation from tube walls, difficulty of calculation, etc. Even with these disadvantages, forced two-phase flow has certain inherent advantages which make it a more attractive option than forced single phase flow. It is for this reason that the use of forced two-phase flow was studied for the TS magnets. This paper will describe the analysis using helium-specific pressure drop correlations, conservative engineering approach, helium properties calculated and updated at over fifty points, and how the results compared with those in literature. Based on the findings, the use of forced-two phase helium is determined to be feasible for steady-state cooling of the TS solenoids
Kraai, Gerard N.; Schuur, Boelo; van Zwol, Floris; Haak, Robert M.; Minnaard, Adriaan J.; Feringa, Ben L.; Heeres, Hero J.; de Vries, Johannes G.; Prunier, ML
2009-01-01
Production of fine chemicals is mostly performed in batch reactors. Use of continuous processes has many advantages which may reduce the cost of production. We have developed the use of centrifugal contact separators (CCSs) for continuous two-phase catalytic reactions. This equipment has previously
Effects of Particles Collision on Separating Gas–Particle Two-Phase Turbulent Flows
Sihao, L. V.
2013-10-10
A second-order moment two-phase turbulence model incorporating a particle temperature model based on the kinetic theory of granular flow is applied to investigate the effects of particles collision on separating gas–particle two-phase turbulent flows. In this model, the anisotropy of gas and solid phase two-phase Reynolds stresses and their correlation of velocity fluctuation are fully considered using a presented Reynolds stress model and the transport equation of two-phase stress correlation. Experimental measurements (Xu and Zhou in ASME-FED Summer Meeting, San Francisco, Paper FEDSM99-7909, 1999) are used to validate this model, source codes and prediction results. It showed that the particles collision leads to decrease in the intensity of gas and particle vortices and takes a larger effect on particle turbulent fluctuations. The time-averaged velocity, the fluctuation velocity of gas and particle phase considering particles colli-sion are in good agreement with experimental measurements. Particle kinetic energy is always smaller than gas phase due to energy dissipation from particle collision. Moreover, axial– axial and radial–radial fluctuation velocity correlations have stronger anisotropic behaviors. © King Fahd University of Petroleum and Minerals 2013
Periodic two-phase heat transfer coefficient in thermoelectric cooling mini evaporator
S. Filippeschi; E. Latrofa; G. Salvadori
2006-01-01
Highly compact Periodic Two-Phase Thermosyphon (PTPT) cooling devices joined with a thermoelectric cooler can allow a wide flexibility in the design of CFC-free refrigerators. In this paper a method has been presented to experimentally evaluate the PTPT evaporator heat transfer coefficient highly changing over time. Copyright , Manchester University Press.
Turbulence equations in incompressible two-phase flow without mass transfer
International Nuclear Information System (INIS)
Lance, Michel; Marie, J.-L.; Charnay, Georges; Bataille, Jean
1979-01-01
In order to adapt the modelling methods of one-phase turbulence, the equations describing the evolution of the Reynolds stress tensor, of the dissipation and of the fluctuating pressure in each phase of an incompressible two-phase flow without mass transfer were established [fr
Model description of bactrial 3-methylcatechol production in one- and two-phase systems
Husken, L.E.; Hoogakker, J.; Bont, de J.A.M.; Tramper, J.; Beeftink, H.H.
2003-01-01
Pseudomonas putida MC2 produces 3-methylcatechol from toluene in aqueous medium. A second phase of 1-octanol may improve total product accumulation. To optimise the design of such a biphasic process, a process model was developed, both for one- and two-phase applications. The insights obtained by
Effects of gravity and inlet location on a two-phase countercurrent imbibition in porous media
El-Amin, Mohamed
2012-01-01
We introduce a numerical investigation of the effect of gravity on the problem of two-phase countercurrent imbibition in porous media. We consider three cases of inlet location, namely, from, side, top, and bottom. A 2D rectangular domain is considered for numerical simulation. The results indicate that gravity has a significant effect depending on open-boundary location.
A Dual-Stage Two-Phase Model of Selective Attention
Hubner, Ronald; Steinhauser, Marco; Lehle, Carola
2010-01-01
The dual-stage two-phase (DSTP) model is introduced as a formal and general model of selective attention that includes both an early and a late stage of stimulus selection. Whereas at the early stage information is selected by perceptual filters whose selectivity is relatively limited, at the late stage stimuli are selected more efficiently on a…
Milking microalga Dunaliella salina for Beta-carotene production in two-phase bioreactors
Hejazi, M.; Holwerda, E.; Wijffels, R.H.
2004-01-01
A new method was developed for production of beta-carotene from Dunaliella salina. Cells were grown in low light intensity and then transferred to a production bioreactor illuminated at a higher light intensity. It was a two-phase bioreactor consisting of an aqueous and a biocompatible organic
Comparison of two-phase and three-phase methanol synthesis processes
van de Graaf, G.H; Beenackers, A.A C M
1996-01-01
A comparison is made between the ICI (two-phase) methanol synthesis process and a three-phase slurry process based on a multi-stage agitated reactor. The process calculations are based on a complete reactor system consisting of the reactor itself, a recycling system and a gas-liquid separator. The
Novel polymer-polymer conjugates for recovery of lactic acid by aqueous two-phase extraction.
Planas, J; Kozlowski, A; Harris, J M; Tjerneld, F; Hahn-Hägerdal, B
1999-01-01
A new family of polymer conjugates is proposed to overcome constraints in the applicability of aqueous two-phase systems for the recovery of lactic acid. Polyethylene glycol-polyethylenimine (PEI) conjugates and ethylene oxide propylene oxide-PEI (EOPO-PEI) conjugates were synthesized. Aqueous two-phase systems were generated when the conjugates were mixed with fractionated dextran or crude hydrolyzed starch. With 2% phosphate buffer in the systems, phase diagrams with critical points of 3.9% EOPO-PEI-3.8% dextran (DEX) and 3.5% EOPO-PEI-7.9% crude starch were obtained. The phase separation temperature of 10% EOPO-PEI solutions titrated with lactic acid to pH 6 was 35 degrees C at 5% phosphate, and increased linearly to 63 degrees C at 2% phosphate. Lactic acid partitioned to the top conjugate-rich phase of the new aqueous two-phase systems. In particular, the lactic acid partition coefficient was 2.1 in 10% EOPO-PEI-8% DEX systems containing 2% phosphate. In the same systems, the partitioning of the lactic acid bacterium, Lactococcus lactis subsp. lactis, was 0.45. The partitioning of propionic, succinic, and citric acids was also determined in the new aqueous two-phase systems. Copyright 1999 John Wiley & Sons, Inc.
Severe slugging in gas-liquid two-phase pipe flow
Malekzadeh, R.
2012-01-01
transportation facilities. In an offshore oil and gas production facility, pipeline-riser systems are required to transport two-phase hydrocarbons from subsurface oil and gas wells to a central production platform. Severe slugs reaching several thousands pipe diameters may occur when transporting
Results of two-phase natural circulation in hot-leg U-bend simulation experiments
International Nuclear Information System (INIS)
Ishii, M.; Lee, S.Y.; Abou El-Seoud, S.
1987-01-01
In order to study the two-phase natural circulation and flow termination during a small break loss of coolant accident in LWR, simulation experiments have been performed using two different thermal-hydraulic loops. The main focus of the experiment was the two-phase flow behavior in the hot-leg U-bend typical of BandW LWR systems. The first group of experiments was carried out in the nitrogen gas-water adiabatic simulation loop and the second in the Freon 113 boiling and condensation loop. Both of the loops have been designed as a flow visualization facility and built according to the two-phase flow scaling criteria developed under this program. The nitrogen gas-water system has been used to isolate key hydrodynamic phenomena such as the phase distribution, relative velocity between phases, two-phase flow regimes and flow termination mechanisms, whereas the Freon loop has been used to study the effect of fluid properties, phase changes and coupling between hydrodynamic and heat transfer phenomena. Significantly different behaviors have been observed due to the non-equilibrium phase change phenomena such as the flashing and condensation in the Freon loop. The phenomena created much more unstable hydrodynamic conditions which lead to cyclic or oscillatory flow behaviors
Conceptual plan: Two-Phase Flow Laboratory Program for the Waste Isolation Pilot Plant
International Nuclear Information System (INIS)
Howarth, S.M.
1993-07-01
The Salado Two-Phase Flow Laboratory Program was established to address concerns regarding two-phase flow properties and to provide WIPP-specific, geologically consistent experimental data to develop more appropriate correlations for Salado rock to replace those currently used in Performance Assessment models. Researchers in Sandia's Fluid Flow and Transport Department originally identified and emphasized the need for laboratory measurements of Salado threshold pressure and relative permeability. The program expanded to include the measurement of capillary pressure, rock compressibility, porosity, and intrinsic permeability and the assessment of core damage. Sensitivity analyses identified the anhydrite interbed layers as the most likely path for the dissipation of waste-generated gas from waste-storage rooms because of their relatively high permeability. Due to this the program will initially focus on the anhydrite interbed material. The program may expand to include similar rock and flow measurements on other WIPP materials including impure halite, pure halite, and backfill and seal materials. This conceptual plan presents the scope, objectives, and historical documentation of the development of the Salado Two-Phase Flow Program through January 1993. Potential laboratory techniques for assessing core damage and measuring porosity, rock compressibility, capillary and threshold pressure, permeability as a function of stress, and relative permeability are discussed. Details of actual test designs, test procedures, and data analysis are not included in this report, but will be included in the Salado Two-Phase Flow Laboratory Program Test Plan pending the results of experimental and other scoping activities in FY93
Microreactor concepts for enhanced mass transfer in the two-phase hydroformylation of 1-octene
Energy Technology Data Exchange (ETDEWEB)
Dietzsch, E.; Mueller, J.; Voelkel, N.; Klemm, E. [Chemnitz Univ. of Technology (Germany). Dept. of Chemical Technology
2006-07-01
Using higher olefins such as 1-octene in the so called two-phase hydroformylation technology with a water soluble catalyst, the observed reaction rates are much slower than that of short chain alkenes, because the mass transfer of 1-octene to the aqueous catalyst phase can be assumed as a rate limiting step. A solution for this problem preserving the advantages of the two-phase technology is the application of microreactors. Using them, a process intensification should be achieved because of their superior intrinsic interface areas between different phases. In preliminary studies we investigated different mixing concepts for generating optimum and stable G/L/L-mixtures of synthesis gas, 1-octene and catalyst solution which were subsequently fed to a capillary microreactor conducting the hydroformylation. Since the mass transport of 1-octene into the aqueous catalyst phase should be the mainly limiting step, it was the aim to achieve a maximum dispersion of the organic in the aqueous phase. For comparison purposes investigations of the two-phase hydroformylation of 1-octene in a continuous stirred autoclave were performed. These experiments are the basis to evaluate and quantify a process intensification by the use of microreactors in the hydroformylation according to the two-phase technology. (orig.)
Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model
Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.
2016-03-01
Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.
Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model
International Nuclear Information System (INIS)
Shuard, Adrian M; Mahmud, Hisham B; King, Andrew J
2016-01-01
Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ω turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model. (paper)
Non-Isothermal Constitutive Relations and Heat Transfer Equations of a Two-Phase Medium
Directory of Open Access Journals (Sweden)
Uciechowska-Grakowicz Anna
2017-09-01
Full Text Available In the case of a two-phase medium – such as the soil, which consists of an elastic skeleton and is filled with pore fluids – stress and strain within the medium are dependent on both phases. Similarly, in the case of heat transfer, heat is conducted through the two phases at different rates, with an additional heat transfer between the phases. In the classical approach to modelling a porous medium, it is assumed that the fluid filling the pore space is water, which is incompressible. In the case of gas, the volume of which is strongly dependent on temperature and pressure, one should take this behavior into account in the constitutive relations for the medium. This work defines the physical relations of a two-phase medium and provides heat transfer equations, constructed for a porous, elastic skeleton with fluid-filled pores, which may be: liquid, gas, or mixture of liquid and a gas in non-isothermal conditions. The paper will present constitutive relations derived from the laws of irreversible thermodynamics, assuming that pores are filled with either a liquid or a gas. These relations, in the opinion of the authors, may be used as the basis for the construction of a model of the medium filled partly with a liquid and partly with a gas. It includes the possibility of independent heat transfer through any given two-phase medium phase, with the transfer of heat between the phases.
Variable and space steps solution of a two phase moving boundary ...
African Journals Online (AJOL)
Equations of a two phase moving boundary problem in cylindrical coordinates are obtained from the formulation of a transient shrinking core model of whole tree combustion in a one dimensional steady state fixed-bed reactor. An hybrid Variable Grid Method is developed to solve the non linear equations and the results are ...
Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model.
Delnoij, E.; Lammers, F.A.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria
1997-01-01
In this paper a detailed hydrodynamic model for gas-liquid two-phase flow will be presented. The model is based on a mixed Eulerian-Lagrangian approach and describes the time-dependent two-dimensional motion of small, spherical gas bubbles in a bubble column operating in the homogeneous regime. The
Zhang, Q.
2013-01-01
In this study the transport of colloids in a two-phase fluid system is investigated. In particular, the effects on the interface of two immiscible fluids in steady-state and transient circumstances in a micro-porous network are investigated. The experimental setup is designed consisting of micro
A contribution to the study of two-phase steam-water critical flow
International Nuclear Information System (INIS)
Reocreux, M.
1975-06-01
Conservation equations were derived to describe two phase flow systems and conditions were established in order to satisfy critical flow. The theoretical analysis performed to establish the above condition has demonstrated the important part played by transfer terms. Experimental studies on glass and metal channels showed the importance of the way evaporation was initiated. (R.L.)
Differentiation of surface properties of chlorococcalean algae by means of aqueous two phase systems
Directory of Open Access Journals (Sweden)
Jan Burczyk
2014-01-01
Full Text Available Algal cells belonging to various strains of Chlorococcales (Chlorophyta have been partitioned in aqueous two-phase systems containing ionogenic polymers, DEAE-dextran or SDS-dextran, at various pH values. Strain-specific differences of partition type which have been found in the phase systems used can be useful for distinguishing of algal cells.
Effects of Parallel Channel Interactions on Two-Phase Flow Split in ...
African Journals Online (AJOL)
The tests would aid the development of a realistic transient computer model for tracking the distribution of two-phase flows into the multiple parallel channels of a Nuclear Reactor, during Loss of Coolant Accidents (LOCA), and were performed at the General Electric Nuclear Energy Division Laboratory, California. The test ...
Extraction of peptide tagged cutinase in detergent-based aqueous two-phase systems
Rodenbrock, A.; Selber, K.; Egmond, M.R.; Kula, M.-R.
2010-01-01
Detergent-based aqueous two-phase systems have the advantage to require only one auxiliary chemical to induce phase separation above the cloud point. In a systematic study the efficiency of tryptophan-rich peptide tags was investigated to enhance the partitioning of an enzyme to the detergent-rich
RELAP5 two-phase fluid model and numerical scheme for economic LWR system simulation
International Nuclear Information System (INIS)
Ransom, V.H.; Wagner, R.J.; Trapp, J.A.
1981-01-01
The RELAP5 two-phase fluid model and the associated numerical scheme are summarized. The experience accrued in development of a fast running light water reactor system transient analysis code is reviewed and example of the code application are given
Void fraction prediction in two-phase flows independent of the liquid phase density changes
International Nuclear Information System (INIS)
Nazemi, E.; Feghhi, S.A.H.; Roshani, G.H.
2014-01-01
Gamma-ray densitometry is a frequently used non-invasive method to determine void fraction in two-phase gas liquid pipe flows. Performance of flow meters using gamma-ray attenuation depends strongly on the fluid properties. Variations of the fluid properties such as density in situations where temperature and pressure fluctuate would cause significant errors in determination of the void fraction in two-phase flows. A conventional solution overcoming such an obstacle is periodical recalibration which is a difficult task. This paper presents a method based on dual modality densitometry using Artificial Neural Network (ANN), which offers the advantage of measuring the void fraction independent of the liquid phase changes. An experimental setup was implemented to generate the required input data for training the network. ANNs were trained on the registered counts of the transmission and scattering detectors in different liquid phase densities and void fractions. Void fractions were predicted by ANNs with mean relative error of less than 0.45% in density variations range of 0.735 up to 0.98 gcm −3 . Applying this method would improve the performance of two-phase flow meters and eliminates the necessity of periodical recalibration. - Highlights: • Void fraction was predicted independent of density changes. • Recorded counts of detectors/void fraction were used as inputs/output of ANN. • ANN eliminated necessity of recalibration in changeable density of two-phase flows
Constructing a unique two-phase compressibility factor model for lean gas condensates
International Nuclear Information System (INIS)
Moayyedi, Mahmood; Gharesheikhlou, Aliashghar; Azamifard, Arash; Mosaferi, Emadoddin
2015-01-01
Generating a reliable experimental model for two-phase compressibility factor in lean gas condensate reservoirs has always been demanding, but it was neglected due to lack of required experimental data. This study presents the main results of constructing the first two-phase compressibility factor model that is completely valid for Iranian lean gas condensate reservoirs. Based on a wide range of experimental data bank for Iranian lean gas condensate reservoirs, a unique two-phase compressibility factor model was generated using design of experiments (DOE) method and neural network technique (ANN). Using DOE, a swift cubic response surface model was generated for two-phase compressibility factor as a function of some selected fluid parameters for lean gas condensate fluids. The proposed DOE and ANN models were finally validated using four new independent data series. The results showed that there is a good agreement between experimental data and the proposed models. In the end, a detailed comparison was made between the results of proposed models
Flow visualization analysis of two-phase flow through contraction using shadow-image and PIV
International Nuclear Information System (INIS)
Watanabe, Satoshi; Morimoto, Yuichiro; Ishikawa, Masaaki; Okamoto, Koji; Madarame, Haruki
2004-01-01
Gas-liquid two-phase flow through contraction was visualized and analyzed using shadow-image and PIV. The flow channel has reducer, where the width was contracted from 50mm to 20mm. Bubble deformation and concurrent velocity fluctuation was investigated varying superficial liquid flow rate from 0.4m/s to 8.0m/s. (author)
Theoretical aspects of electrical power generation from two-phase flow streaming potentials
Sherwood, J.D.; Xie, Yanbo; van den Berg, Albert; Eijkel, Jan C.T.
A theoretical analysis of the generation of electrical streaming currents and electrical power by two-phase flow in a rectangular capillary is presented. The injection of a second, non-conducting fluid phase tends to increase the internal electrical resistance of the electrical generator, thereby
A modified SMAC scheme for a non-equilibrium compressible two-phase fluid
International Nuclear Information System (INIS)
Yoon, H. Y.; Jeong, J. J.
2008-01-01
Two-phase flows appear in LWRs (light water reactors) in highly complex forms depending on their thermal-hydraulic conditions. System codes have mainly been providing the performance and safety analysis of these complex two-phase phenomena during anticipated transients or accidents. More sophisticated two-phase computational models are needed for a detailed analysis of LWR components such as a reactor vessel core, downcomer, steam generators, etc., enabling more operational margins. In many fluid flow calculations, there are efficient numerical methods like SMAC, ICE and SIMPLE where the mass fluxes from the momentum equation are solved using an assumed pressure field, and the pressure field is corrected based on a continuity. The ICE is similar to SMAC except it can be applied to compressible fluids. SMAC and SIMPLE differ in their degree of implicitness. In all these methods, the energy equations are solved using the mass flux and the pressure from the momentum and continuity equations. However, the pressure fields in a two-phase flow need to be corrected based on energy equation as well as continuity when their thermo-dynamic states are far from an equilibrium state. In this paper, the SMAC method is modified for an application to non-equilibrium two-phase flow, where the phase change term appearing in the continuity equation is implemented in an implicit way for the pressure correction calculation. The compressibility is also considered. The present method is compared to a method, where the energy and continuity equations are coupled simultaneously during the pressure correction step
A modified SMAC scheme for a non-equilibrium compressible two-phase fluid
Energy Technology Data Exchange (ETDEWEB)
Yoon, H. Y.; Jeong, J. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2008-05-15
Two-phase flows appear in LWRs (light water reactors) in highly complex forms depending on their thermal-hydraulic conditions. System codes have mainly been providing the performance and safety analysis of these complex two-phase phenomena during anticipated transients or accidents. More sophisticated two-phase computational models are needed for a detailed analysis of LWR components such as a reactor vessel core, downcomer, steam generators, etc., enabling more operational margins. In many fluid flow calculations, there are efficient numerical methods like SMAC, ICE and SIMPLE where the mass fluxes from the momentum equation are solved using an assumed pressure field, and the pressure field is corrected based on a continuity. The ICE is similar to SMAC except it can be applied to compressible fluids. SMAC and SIMPLE differ in their degree of implicitness. In all these methods, the energy equations are solved using the mass flux and the pressure from the momentum and continuity equations. However, the pressure fields in a two-phase flow need to be corrected based on energy equation as well as continuity when their thermo-dynamic states are far from an equilibrium state. In this paper, the SMAC method is modified for an application to non-equilibrium two-phase flow, where the phase change term appearing in the continuity equation is implemented in an implicit way for the pressure correction calculation. The compressibility is also considered. The present method is compared to a method, where the energy and continuity equations are coupled simultaneously during the pressure correction step.
Numerical simulation of two-phase flow with front-capturing
International Nuclear Information System (INIS)
Tzanos, C.P.; Weber, D.P.
2000-01-01
Because of the complexity of two-phase flow phenomena, two-phase flow codes rely heavily on empirical correlations. This approach has a number of serious shortcomings. Advances in parallel computing and continuing improvements in computer speed and memory have stimulated the development of numerical simulation tools that rely less on empirical correlations and more on fundamental physics. The objective of this work is to take advantage of developments in massively parallel computing, single-phase computational fluid dynamics of complex systems, and numerical methods for front capturing in two-phase flows to develop a computer code for direct numerical simulation of two-phase flow. This includes bubble/droplet transport, interface deformation and topology change, bubble-droplet interactions, interface mass, momentum, and energy transfer. In this work, the Navier-Stokes and energy equations are solved by treating both phases as a single fluid with interfaces between the two phases, and a discontinuity in material properties across the moving interfaces. The evolution of the interfaces is simulated by using the front capturing technique of the level-set methods. In these methods, the boundary of a two-fluid interface is modeled as the zero level set of a smooth function φ. The level-set function φ is defined as the signed distance from the interface (φ is negative inside a droplet/bubble and positive outside). Compared to other front-capturing or front-tracking methods, the level-set approach is relatively easy to implement even in three-dimensional flows, and it has been shown to simulate well the coalescence and breakup of droplets/bubbles
Evaluation of the Sensitivity of Two-Phase Flow Model for the Steam Separator Analysis
International Nuclear Information System (INIS)
Michio Murase; Masao Chaki
2006-01-01
Reducing of the pressure losses of steam separator systems of boiling water reactor (BWR) plants is useful to reduce the required pump head and enhance core stability design margin. The need to reduce the pressure losses of steam separator systems is especially important in BWR plants that have high power density cores and natural circulation systems. The core flow rate of a BWR plant with a natural circulation system is affected by the pressure losses of steam separator systems. In BWR plants with high power density cores, the core stability design margin is affected by these pressure losses. Generally, reducing the pressure losses of the steam separator systems leads to increased carry-under and carryover. Reducing the pressure losses while keeping the characteristics of both carry-under and carryover is desired, so many studies have been done. The steam separator of a BWR plant consists of a standpipe section, a swirl vane section and three-barrel sections. Two-phase flow of steam and water enters the steam separator through the standpipe section and reaches the swirl vane section. In the swirl vane section, the two-phase flow is given centrifugal force and is basically separated into steam and water. Therefore investigating the two-phase flow characteristics of the swirl vane section is very important. After the swirl vane section, the two-phase flow enters the barrel sections. Each barrel has a pick-off ring. The water in the barrel section is mainly removed by these pick-off rings because the water mainly flows upward as a liquid film in the barrel section due to the centrifugal force given in the swirl vane section. We researched the effect of using the drag force model of the swirling two-phase flow in analyzing a steam separator and we found that the drag force model greatly affects the results of the analysis. (authors)
Two-group interfacial area concentration correlations of two-phase flows in large diameter pipes
International Nuclear Information System (INIS)
Shen, Xiuzhong; Hibiki, Takashi
2015-01-01
The reliable empirical correlations and models are one of the important ways to predict the interfacial area concentration (IAC) in two-phase flows. However, up to now, no correlation or model is available for the prediction of the IAC in the two-phase flows in large diameter pipes. This study collected an IAC experimental database of two-phase flows taken under various flow conditions in large diameter pipes and presented a systematic way to predict the IAC for two-phase flows from bubbly, cap-bubbly to churn flow in large diameter pipes by categorizing bubbles into two groups (group-1: spherical and distorted bubble, group-2: cap bubble). Correlations were developed to predict the group-1 void fraction from the void fraction of all bubble. The IAC contribution from group-1 bubbles was modeled by using the dominant parameters of group-1 bubble void fraction and Reynolds number based on the parameter-dependent analysis of Hibiki and Ishii (2001, 2002) using one-dimensional bubble number density and interfacial area transport equations. A new drift velocity correlation for two-phase flow with large cap bubbles in large diameter pipes was derived in this study. By comparing the newly-derived drift velocity correlation with the existing drift velocity correlation of Kataoka and Ishii (1987) for large diameter pipes and using the characteristics of the representative bubbles among the group 2 bubbles, we developed the model of IAC and bubble size for group 2 cap bubbles. The developed models for estimating the IAC are compared with the entire collected database. A reasonable agreement was obtained with average relative errors of ±28.1%, ±54.4% and ±29.6% for group 1, group 2 and all bubbles respectively. (author)
Critical pressure of non-equilibrium two-phase critical flow
International Nuclear Information System (INIS)
Minzer, U.
1996-01-01
Critical pressure is defined as the pressure existing at the exit edge of the piping, when it remains constant despite a decrease in the back. According to this definition the critical pressure is larger than the back pressure and for two-phase conditions below saturation pressure. The two-phase critical pressure has a major influence on the two-phase critical flow characteristics. Therefore it is of High significance in calculations of critical mass flux and critical depressurization rate, which are important in the fields of Nuclear Reactor Safety and Industrial Safety. At the Nuclear Reactor Safety field is useful for estimations of the Reactor Cooling System depressurization, the core coolant level, and the pressure build-up in the containment. In the Industrial Safety field it is helpful for estimating the leakage rate of toxic gases Tom liquefied gas pressure vessels, depressurization of pressure vessels, and explosion conditions due to liquefied gas release. For physical description of non-equilibrium two-phase critical flow it would be convenient to divide the flow into two stages. The first stage is the flow of subcooled liquid at constant temperature and uniform pressure drop (i.e., the case of incompressible fluid and uniform piping cross section). The rapid flow of the liquid causes a delay in the boiling of the liquid, which begins to boil below saturation pressure, at thermal non-equilibrium. The boiling is the beginning of the second stage, characterized by a sharp increase of the pressure drop. The liquid temperature on the second stage is almost constant because most of the energy for vaporization is supplied from the large pressure drop The present work will focus on the two-phase critical pressure of water, since water serves as coolant in the vast majority of nuclear power reactors throughout the world. (author)
Mudie, Deanna M; Shi, Yi; Ping, Haili; Gao, Ping; Amidon, Gordon L; Amidon, Gregory E
2012-10-01
In vitro dissolution methodologies that adequately capture the oral bioperformance of solid dosage forms are critical tools needed to aid formulation development. Such methodologies must encompass important physiological parameters and be designed with drug properties in mind. Two-phase dissolution apparatuses, which contain an aqueous phase in which the drug dissolves (representing the dissolution/solubility component) and an organic phase into which the drug partitions (representing the absorption component), have the potential to provide meaningful predictions of in vivo oral bioperformance for some BCS II, and possibly some BCS IV drug products. Before such an apparatus can be evaluated properly, it is important to understand the kinetics of drug substance partitioning from the aqueous to the organic medium. A mass transport analysis was performed of the kinetics of partitioning of drug substance solutions from the aqueous to the organic phase of a two-phase dissolution apparatus. Major assumptions include pseudo-steady-state conditions, a dilute aqueous solution and diffusion-controlled transport. Input parameters can be measured or estimated a priori. This paper presents the theory and derivation of our analysis, compares it with a recent kinetic approach, and demonstrates its effectiveness in predicting in vitro partitioning profiles of three BCS II weak acids in four different in vitro two-phase dissolution apparatuses. Very importantly, the paper discusses how a two-phase apparatus can be scaled to reflect in vivo absorption kinetics and for which drug substances the two-phase dissolution systems may be appropriate tools for measuring oral bioperformance. Copyright © 2012 John Wiley & Sons, Ltd.
Experimental investigation of two-phase flow patterns in minichannels at horizontal orientation
Saljoshi, P. S.; Autee, A. T.
2017-09-01
Two-phase flow is the simplest case of multiphase flow in which two phases are present for a pure component. The mini channel is considered as diameter below 3.0-0.2 mm and conventional channel is considered diameter above 3.0 mm. An experiment was conducted to study the adiabatic two-phase flow patterns in the circular test section with inner diameter of 1.1, 1.63, 2.0, 2.43 and 3.0 mm for horizontal orientation using air and water as a fluid. Different types of flow patterns found in the experiment. The parameters that affect most of these patterns and their transitions are channel size, phase superficial velocities (air and liquid) and surface tension. The superficial velocity of liquid and gas ranges from 0.01 to 66.70 and 0.01 to 3 m/s respectively. Two-phase flow pattern photos were recorded using a high speed CMOS camera. In this experiment different flow patterns were identified for different tube diameters that confirm the diameter effect on flow patterns in two-phase flows. Stratified flow was not observed for tube diameters less than 3.0 mm. Similarly, wavy-annular flow pattern was not observed in 1.6 and 1.0 mm diameter tubes due to the surface-tension effect and decrease in tube diameter. Buoyancy effects were clearly visible in 2.43 and 3.0 mm diameter tubes flow pattern. It has also observed that as the test-section diameter decreases the transition lines shift towards the higher gas and liquid velocity. However, the result of flow pattern lines in the present study has good agreement with the some of the existing flow patterns maps.
Two-Phase Gas-Liquid Flow Structure Characteristics under Periodic Cross Forces Action
Directory of Open Access Journals (Sweden)
V. V. Perevezentsev
2015-01-01
Full Text Available The article presents a study of two-phase gas-liquid flow under the action of periodic cross forces. The work objective is to obtain experimental data for further analysis and have structure characteristics of the two-phase flow movement. For research, to obtain data without disturbing effect on the flow were used optic PIV (Particle Image Visualization methods because of their noninvasiveness. The cross forces influence was provided by an experimental stand design to change the angular amplitudes and the periods of channel movement cycle with two-phase flow. In the range of volume gas rates was shown a water flow rate versus the inclination angle of immovable riser section and the characteristic angular amplitudes and periods of riser section inclination cycle under periodic cross forces. Data on distribution of average water velocity in twophase flow in abovementioned cases were also obtained. These data allowed us to draw a conclusion that a velocity distribution depends on the angular amplitude and on the period of the riser section roll cycle. This article belongs to publications, which study two-phase flows with no disturbing effect on them. Obtained data give an insight into understanding a pattern of twophase gas-liquid flow under the action of periodic cross forces and can be used to verify the mathematical models of the CFD thermo-hydraulic codes. In the future, the work development expects taking measurements with more frequent interval in the ranges of angular amplitudes and periods of the channel movement cycle and create a mathematical model to show the action of periodic cross forces on two-phase gas-liquid flow.
Damping and fluidelastic instability in two-phase cross-flow heat exchanger tube arrays
Moran, Joaquin E.
An experimental study was conducted to investigate damping and fluidelastic instability in tube arrays subjected to two-phase cross-flow. The purpose of this research was to improve our understanding of these phenomena and how they are affected by void fraction and flow regime. The model tube bundle had 10 cantilevered tubes in a parallel-triangular configuration, with a pitch ratio of 1.49. The two-phase flow loop used in this research utilized Refrigerant 11 as the working fluid, which better models steam-water than air-water mixtures in terms of vapour-liquid mass ratio as well as permitting phase changes due to pressure fluctuations. The void fraction was measured using a gamma densitometer, introducing an improvement over the Homogeneous Equilibrium Model (HEM) in terms of void fraction, density and velocity predictions. Three different damping measurement methodologies were implemented and compared in order to obtain a more reliable damping estimate. The methods were the traditionally used half-power bandwidth, the logarithmic decrement and an exponential fitting to the tube decay response. The decay trace was obtained by "plucking" the monitored tube from outside the test section using a novel technique, in which a pair of electromagnets changed their polarity at the natural frequency of the tube to produce resonance. The experiments showed that the half-power bandwidth produces higher damping values than the other two methods. The primary difference between the methods is caused by tube frequency shifting, triggered by fluctuations in the added mass and coupling between the tubes, which depend on void fraction and flow regime. The exponential fitting proved to be the more consistent and reliable approach to estimating damping. In order to examine the relationship between the damping ratio and mass flux, the former was plotted as a function of void fraction and pitch mass flux in an iso-contour plot. The results showed that damping is not independent of mass
Extension of CFD Codes Application to Two-Phase Flow Safety Problems - Phase 3
International Nuclear Information System (INIS)
Bestion, D.; Anglart, H.; Mahaffy, J.; Lucas, D.; Song, C.H.; Scheuerer, M.; Zigh, G.; Andreani, M.; Kasahara, F.; Heitsch, M.; Komen, E.; Moretti, F.; Morii, T.; Muehlbauer, P.; Smith, B.L.; Watanabe, T.
2014-11-01
The Writing Group 3 on the extension of CFD to two-phase flow safety problems was formed following recommendations made at the 'Exploratory Meeting of Experts to Define an Action Plan on the Application of Computational Fluid Dynamics (CFD) Codes to Nuclear Reactor Safety Problems' held in Aix-en-Provence, in May 2002. Extension of CFD codes to two-phase flow is significant potentiality for the improvement of safety investigations, by giving some access to smaller scale flow processes which were not explicitly described by present tools. Using such tools as part of a safety demonstration may bring a better understanding of physical situations, more confidence in the results, and an estimation of safety margins. The increasing computer performance allows a more extensive use of 3D modelling of two-phase Thermal hydraulics with finer nodalization. However, models are not as mature as in single phase flow and a lot of work has still to be done on the physical modelling and numerical schemes in such two-phase CFD tools. The Writing Group listed and classified the NRS problems where extension of CFD to two-phase flow may bring real benefit, and classified different modelling approaches in a first report (Bestion et al., 2006). First ideas were reported about the specification and analysis of needs in terms of validation and verification. It was then suggested to focus further activity on a limited number of NRS issues with a high priority and a reasonable chance to be successful in a reasonable period of time. The WG3-step 2 was decided with the following objectives: - selection of a limited number of NRS issues having a high priority and for which two-phase CFD has a reasonable chance to be successful in a reasonable period of time; - identification of the remaining gaps in the existing approaches using two-phase CFD for each selected NRS issue; - review of the existing data base for validation of two-phase CFD application to the selected NRS problems
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Ba Nghiep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Jin [Autodesk, Inc., Ithaca, NY (United States); Costa, Franco [Autodesk, Inc., Ithaca, NY (United States); Lambert, Gregory [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Baird, Donald G. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Sharma, Bhisham A. [Purdue Univ., West Lafayette, IN (United States); Kijewski, Seth A. [Purdue Univ., West Lafayette, IN (United States); Sangid, Michael D. [Purdue Univ., West Lafayette, IN (United States); Gandhi, Umesh N. [Toyota Research Inst. North America, Ann Arbor, MI (United States); Wollan, Eric J. [PlastiComp, Inc., Winona, MN (United States); Roland, Dale [PlastiComp, Inc., Winona, MN (United States); Mori, Steven [Magna Exteriors and Interiors Corporation, Aurora, ON (Canada); Tucker, III, Charles L. [Univ. of Illinois, Urbana-Champaign, IL (United States)
2016-06-01
This project aimed to integrate, optimize, and validate the fiber orientation and length distribution models previously developed and implemented in the Autodesk® Simulation Moldflow® Insight (ASMI) software package for injection-molded long-carbon-fiber (LCF) thermoplastic composite structures. The project was organized into two phases. Phase 1 demonstrated the ability of the advanced ASMI package to predict fiber orientation and length distributions in LCF/polypropylene (PP) and LCF/polyamide-6, 6 (PA66) plaques within 15% of experimental results. Phase 2 validated the advanced ASMI package by predicting fiber orientation and length distributions within 15% of experimental results for a complex three-dimensional (3D) Toyota automotive part injection-molded from LCF/PP and LCF/PA66 materials. Work under Phase 2 also included estimate of weight savings and cost impacts for a vehicle system using ASMI and structural analyses of the complex part. The present report summarizes the completion of Phases 1 and 2 work activities and accomplishments achieved by the team comprising Pacific Northwest National Laboratory (PNNL); Purdue University (Purdue); Virginia Polytechnic Institute and State University (Virginia Tech); Autodesk, Inc. (Autodesk); PlastiComp, Inc. (PlastiComp); Toyota Research Institute North America (Toyota); Magna Exteriors and Interiors Corp. (Magna); and University of Illinois. Figure 1 illustrates the technical approach adopted in this project that progressed from compounding LCF/PP and LCF/PA66 materials, to process model improvement and implementation, to molding and modeling LCF/PP and LCF/PA66 plaques. The lessons learned from the plaque study and the successful validation of improved process models for fiber orientation and length distributions for these plaques enabled the project to go to Phase 2 to mold, model, and optimize the 3D complex part.
Tool-ply friction in thermoplastic composite forming (CD-rom)
ten Thije, R.H.W.; Akkerman, Remko; van der Meer, L.; Ubbink, M.P.; Boisse, P.
2008-01-01
Friction is an important phenomenon that can dominate the resulting product geometry of thermoplastic composites upon forming. A model was developed that predicts the friction between a thermoplastic laminate and a rigid tool. The mesoscopic model, based on the Reynolds’ equation for thin film
Su, Yibo; de Rooij, Matthijn; Grouve, Wouter; Akkerman, Remko
2017-01-01
Co-consolidated titanium – carbon fibre reinforced thermoplastic composite hybrid joints show potential for application in aerospace structures. The strength of the interface between the titanium and the thermoplastic composite is crucial for the strength of the entire hybrid joint. Application of a
Jang, Dae-Eun; Lee, Ji-Young; Jang, Hyun-Seon; Lee, Jang-Jae; Son, Mee-Kyoung
2015-08-01
The aim of this study was to compare the color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for the non-metal clasp dentures to those of thermoplastic polyamide and conventional heat-polymerized denture base resins. Three types of denture base resin, which are conventional heat-polymerized acrylic resin (Paladent 20), thermoplastic polyamide resin (Bio Tone), thermoplastic acrylic resin (Acrytone) were used as materials for this study. One hundred five specimens were fabricated. For the color stability test, specimens were immersed in the coffee and green tee for 1 and 8 weeks. Color change was measured by spectrometer. Water sorption was tested after 1 and 8 weeks immersion in the water. For the test of cytotoxicity, cell viability assay was measured and cell attachment was analyzed by FE-SEM. All types of denture base resin showed color changes after 1 and 8 weeks immersion. However, there was no significant difference between denture base resins. All specimens showed significant color changes in the coffee than green tee. In water sorption test, thermoplastic acrylic resin showed lower values than conventional heat-polymerized acrylic resin and thermoplastic polyamide resin. Three types of denture base showed low cytotoxicity in cell viability assay. Thermoplastic acrylic resin showed the similar cell attachment but more stable attachment than conventional heat-polymerized acrylic resin. Thermoplastic acrylic resin for the non-metal clasp denture showed acceptable color stability, water sorption and cytotoxicity. To verify the long stability in the mouth, additional in vitro studies are needed.
Effects of weathering on color loss of natural fiber : thermoplastic composites
Robert H. Falk; Colin. Felton; Thomas. Lundin
2000-01-01
The technology currently exists to manufacture natural fiber-thermoplastic composites from recycled materials. Development of commodity building products from these composites would open huge markets for waste-based materials in the United States. To date, the construction industry has only accepted wood-thermoplastic composite lumber and only for limited applications...
In the US, wood plastic composites (WPC) represent one of the successful markets for natural fiber-filled thermoplastic composites. The WPC typically use virgin or recycled thermoplastic as the substrate and wood fiber as the filler. A major application of the WPC is in non-structural building appli...
Method for bonding a thermoplastic polymer to a thermosetting polymer component
Van Tooren, M.J.L.
2012-01-01
The invention relates to a method for bonding a thermoplastic polymer to a thermosetting polymer component, the thermoplastic polymer having a melting temperature that exceeds the curing temperature of the thermosetting polymer. The method comprises the steps of providing a cured thermosetting
Effects of weathering on color loss of natural fiber thermoplastic composites
R.H. Falk; C. Felton; T. Lundin
2001-01-01
The technology currently exists to manufacture natural fiber thermoplastic composites from recycled materials. Development of commodity-building products from these composites would open up huge markets for waste-based materials in the US. To date, the construction industry has only accepted wood thermoplastic composite lumber (and only for limited applications). In...
Analysis of Two-Phase Flow in Damper Seals for Cryogenic Turbopumps
Arauz, Grigory L.; SanAndres, Luis
1996-01-01
Cryogenic damper seals operating close to the liquid-vapor region (near the critical point or slightly su-cooled) are likely to present two-phase flow conditions. Under single phase flow conditions the mechanical energy conveyed to the fluid increases its temperature and causes a phase change when the fluid temperature reaches the saturation value. A bulk-flow analysis for the prediction of the dynamic force response of damper seals operating under two-phase conditions is presented as: all-liquid, liquid-vapor, and all-vapor, i.e. a 'continuous vaporization' model. The two phase region is considered as a homogeneous saturated mixture in thermodynamic equilibrium. Th flow in each region is described by continuity, momentum and energy transport equations. The interdependency of fluid temperatures and pressure in the two-phase region (saturated mixture) does not allow the use of an energy equation in terms of fluid temperature. Instead, the energy transport is expressed in terms of fluid enthalpy. Temperature in the single phase regions, or mixture composition in the two phase region are determined based on the fluid enthalpy. The flow is also regarded as adiabatic since the large axial velocities typical of the seal application determine small levels of heat conduction to the walls as compared to the heat carried by fluid advection. Static and dynamic force characteristics for the seal are obtained from a perturbation analysis of the governing equations. The solution expressed in terms of zeroth and first order fields provide the static (leakage, torque, velocity, pressure, temperature, and mixture composition fields) and dynamic (rotordynamic force coefficients) seal parameters. Theoretical predictions show good agreement with experimental leakage pressure profiles, available from a Nitrogen at cryogenic temperatures. Force coefficient predictions for two phase flow conditions show significant fluid compressibility effects, particularly for mixtures with low mass
Thermal hydraulics-II. 2. Benchmarking of the TRIO Two-Phase-Flow Module
International Nuclear Information System (INIS)
Helton, Donald; Kumbaro, Anela; Hassan, Yassin
2001-01-01
The Commissariat a l'Energie Atomique (CEA) is currently developing a two-phase-flow module for the Trio-U CFD computer program. Work in the area of advanced numerical technique application to two-phase flow is being carried out by the SYSCO division at the CEA Saclay center. Recently, this division implemented several advanced numerical solvers, including approximate Riemann solvers and flux vector splitting schemes. As a test of these new advances, several benchmark tests were executed. This paper describes the pertinent results of this study. The first benchmark problem was the Ransom faucet problem. This problem consists of a vertical column of water acting under the gravity force. The appeal of this problem is that it tests the program's handling of the body force term and it has an analytical solution. The Trio results [based on a two-fluid, two-dimensional (2-D) simulation] for this problem were very encouraging. The two-phase-flow module was able to reproduce the analytical velocity and void fraction profiles. A reasonable amount of numerical diffusion was observed, and the numerical solution converged to the analytical solution as the grid size was refined, as shown in Fig. 1. A second series of benchmark problems is concerned with the employment of a drag force term. In a first approach, we test the capability of the code to take account of this source term, using a flux scheme solution technique. For this test, a rectangular duct was utilized. As shown in Fig. 2, mesh refinement results in an approach to the analytical solution. Next, a convergent/divergent nozzle problem is proposed. The nozzle is characterized by a brief contraction section and a long expansion section. A two-phase, 2-D, non-condensing model is used in conjunction with the Rieman solver. Figure 3 shows a comparison of the pressure profile for the experimental case and for the values calculated by the TRIO U two-phase-flow module. Trio was able to handle the drag force term and
Interfacial area transport for reduced-gravity two-phase flows
Vasavada, Shilp
An extensive experimental and theoretical study of two-phase flow behavior in reduced-gravity conditions has been performed as part of the current research and the results of the same are presented in this thesis. The research was undertaken to understand the behavior of two-phase flows in an environment where the gravity field is reduced as compared to that on earth. The goal of the study was to develop a model capable of predicting the flow behavior. An experimental program was developed and accomplished which simulated reduced-gravity conditions on earth by using two liquids of similar density, thereby decreasing the body force effect akin to actual reduced-gravity conditions. The justification and validation of this approach has been provided based on physical arguments as well as comparison of acquired data with that obtained aboard parabolic flights by previous researchers. The experimental program produced an extensive dataset of local and averaged two-phase flow parameters using state-of-the-art instrumentation. Such data were acquired for a wide range of flow conditions at different radial and axial locations in a 25 mm inner diameter test facility. The current dataset is, in the author's opinion, the most extensive and detailed dataset available for such conditions at present. Analysis of the data revealed important differences between two-phase flows in normal and reduced-gravity conditions. The data analysis also highlighted key interaction mechanisms between the fluid particles and physical phenomena occurring in two-phase flows under reduced-gravity conditions. The interfacial area transport equation (IATE) for reduced-gravity conditions has been developed by considering two groups of bubbles/drops and mechanistically modeling the interaction mechanisms. The developed model has been benchmarked against the acquired data and the predictions of the model compared favorably against the experimental data. This signifies the success achieved in modeling
Strongly coupled dispersed two-phase flows; Ecoulements diphasiques disperses fortement couples
Energy Technology Data Exchange (ETDEWEB)
Zun, I.; Lance, M.; Ekiel-Jezewska, M.L.; Petrosyan, A.; Lecoq, N.; Anthore, R.; Bostel, F.; Feuillebois, F.; Nott, P.; Zenit, R.; Hunt, M.L.; Brennen, C.E.; Campbell, C.S.; Tong, P.; Lei, X.; Ackerson, B.J.; Asmolov, E.S.; Abade, G.; da Cunha, F.R.; Lhuillier, D.; Cartellier, A.; Ruzicka, M.C.; Drahos, J.; Thomas, N.H.; Talini, L.; Leblond, J.; Leshansky, A.M.; Lavrenteva, O.M.; Nir, A.; Teshukov, V.; Risso, F.; Ellinsen, K.; Crispel, S.; Dahlkild, A.; Vynnycky, M.; Davila, J.; Matas, J.P.; Guazelli, L.; Morris, J.; Ooms, G.; Poelma, C.; van Wijngaarden, L.; de Vries, A.; Elghobashi, S.; Huilier, D.; Peirano, E.; Minier, J.P.; Gavrilyuk, S.; Saurel, R.; Kashinsky, O.; Randin, V.; Colin, C.; Larue de Tournemine, A.; Roig, V.; Suzanne, C.; Bounhoure, C.; Brunet, Y.; Tanaka, A.T.; Noma, K.; Tsuji, Y.; Pascal-Ribot, S.; Le Gall, F.; Aliseda, A.; Hainaux, F.; Lasheras, J.; Didwania, A.; Costa, A.; Vallerin, W.; Mudde, R.F.; Van Den Akker, H.E.A.; Jaumouillie, P.; Larrarte, F.; Burgisser, A.; Bergantz, G.; Necker, F.; Hartel, C.; Kleiser, L.; Meiburg, E.; Michallet, H.; Mory, M.; Hutter, M.; Markov, A.A.; Dumoulin, F.X.; Suard, S.; Borghi, R.; Hong, M.; Hopfinger, E.; Laforgia, A.; Lawrence, C.J.; Hewitt, G.F.; Osiptsov, A.N.; Tsirkunov, Yu. M.; Volkov, A.N.
2003-07-01
This document gathers the abstracts of the Euromech 421 colloquium about strongly coupled dispersed two-phase flows. Behaviors specifically due to the two-phase character of the flow have been categorized as: suspensions, particle-induced agitation, microstructure and screening mechanisms; hydrodynamic interactions, dispersion and phase distribution; turbulence modulation by particles, droplets or bubbles in dense systems; collective effects in dispersed two-phase flows, clustering and phase distribution; large-scale instabilities and gravity driven dispersed flows; strongly coupled two-phase flows involving reacting flows or phase change. Topic l: suspensions particle-induced agitation microstructure and screening mechanisms hydrodynamic interactions between two very close spheres; normal stresses in sheared suspensions; a critical look at the rheological experiments of R.A. Bagnold; non-equilibrium particle configuration in sedimentation; unsteady screening of the long-range hydrodynamic interactions of settling particles; computer simulations of hydrodynamic interactions among a large collection of sedimenting poly-disperse particles; velocity fluctuations in a dilute suspension of rigid spheres sedimenting between vertical plates: the role of boundaries; screening and induced-agitation in dilute uniform bubbly flows at small and moderate particle Reynolds numbers: some experimental results. Topic 2: hydrodynamic interactions, dispersion and phase distribution: hydrodynamic interactions in a bubble array; A 'NMR scattering technique' for the determination of the structure in a dispersion of non-brownian settling particles; segregation and clustering during thermo-capillary migration of bubbles; kinetic modelling of bubbly flows; velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles; an attempt to simulate screening effects at moderate particle Reynolds numbers using an hybrid formulation; modelling the two-phase
Energy Technology Data Exchange (ETDEWEB)
Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.; Sakurai, K.; Kempe, M.; Tamizhmani, G.; Kurtz, S.
2011-10-01
Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grade uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.
Additive Manufacturing of Thermoplastic Matrix Composites Using Ultrasonics
Olson, Meghan
Advanced composite materials have great potential for facilitating energy efficient product design and their manufacture if improvements are made to current composite manufacturing processes. This thesis focuses on the development of a novel manufacturing process for thermoplastic composite structures entitled Laser-Ultrasonic Additive Manufacturing ('LUAM'), which is intended to combine the benefits of laser processing technology, developed by Automated Dynamics Inc., with ultrasonic bonding technology that is used commercially for unreinforced polymers. These technologies used together have the potential to significantly reduce the energy consumption and void content of thermoplastic composites made using Automated Fiber Placement (AFP). To develop LUAM in a methodical manner with minimal risk, a staged approach was devised whereby coupon-level mechanical testing and prototyping utilizing existing equipment was accomplished. Four key tasks have been identified for this effort: Benchmarking, Ultrasonic Compaction, Laser Assisted Ultrasonic Compaction, and Demonstration and Characterization of LUAM. This thesis specifically addresses Tasks 1 and 2, i.e. Benchmarking and Ultrasonic Compaction, respectively. Task 1, fabricating test specimens using two traditional processes (autoclave and thermal press) and testing structural performance and dimensional accuracy, provide results of a benchmarking study by which the performance of all future phases will be gauged. Task 2, fabricating test specimens using a non-traditional process (ultrasonic conpaction) and evaluating in a similar fashion, explores the the role of ultrasonic processing parameters using three different thermoplastic composite materials. Further development of LUAM, although beyond the scope of this thesis, will combine laser and ultrasonic technology and eventually demonstrate a working system.
Grid Generation Issues in the CFD Modelling of Two-Phase Flow in a Pipe
Directory of Open Access Journals (Sweden)
V. Hernandez-Perez
2011-03-01
Full Text Available The grid generation issues found in the 3D simulation of two-phase flow in a pipe using Computational Fluid Dynamics (CFD are discussed in this paper. Special attention is given to the effect of the element type and structure of the mesh. The simulations were carried out using the commercial software package STAR-CCM+, which is designed for numerical simulation of continuum mechanics problems. The model consisted of a cylindrical vertical pipe. Different mesh structures were employed in the computational domain. The condition of two-phase flow was simulated with the Volume of Fluid (VOF model, taking into consideration turbulence effects using the k-e model. The results showed that there is a strong dependency of the flow behaviour on the mesh employed. The best result was obtained with the grid known as butterfly grid, while the cylindrical mesh produced misleading results. The simulation was validated against experimental results.
Two-phase velocity measurements around cylinders using particle image velocimetry
Energy Technology Data Exchange (ETDEWEB)
Hassan, Y.A.; Philip, O.G.; Schmidl, W.D. [Texas A& M Univ., College Station, TX (United States)] [and others
1995-09-01
The particle Image Velocimetry flow measurement technique was used to study both single-phase flow and two-phase flow across a cylindrical rod inserted in a channel. First, a flow consisting of only a single-phase fluid was studied. The experiment consisted of running a laminar flow over four rods inserted in a channel. The water flow rate was 126 cm{sup 3}/s. Then a two-phase flow was studied. A mixture of water and small air bubbles was used. The water flow rate was 378 cm{sup 3}/s and the air flow rate was approximately 30 cm{sup 3}/s. The data are analyzed to obtain the velocity fields for both experiments. After interpretation of the velocity data, forces acting on a bubble entrained by the vortex were calculated successfully. The lift and drag coefficients were calculated using the velocity measurements and the force data.
Interfacial structures of confined air-water two-phase bubbly flow
International Nuclear Information System (INIS)
Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.
2000-01-01
The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C 0 = 1.35
Simplified Eigen-structure decomposition solver for the simulation of two-phase flow systems
International Nuclear Information System (INIS)
Kumbaro, Anela
2012-01-01
This paper discusses the development of a new solver for a system of first-order non-linear differential equations that model the dynamics of compressible two-phase flow. The solver presents a lower-complexity alternative to Roe-type solvers because it only makes use of a partial Eigen-structure information while maintaining its accuracy: the outcome is hence a good complexity-tractability trade-off to consider as relevant in a large number of situations in the scope of two-phase flow numerical simulation. A number of numerical and physical benchmarks are presented to assess the solver. Comparison between the computational results from the simplified Eigen-structure decomposition solver and the conventional Roe-type solver gives insight upon the issues of accuracy, robustness and efficiency. (authors)
Enzyme mass-transfer coefficient in aqueous two-phase systems using static mixer extraction column.
Rostami, K; Alamshahi, M
2002-09-01
Recent technical advances in aqueous two-phase systems (ATPS) have made this a sound technique for the extraction of biomacromolecules. The extraction of alpha-amylase was investigated using aqueous two-phase systems formed by sodium sulphate-polyethylene glycol (PEG) in water in a 47-mm inner diameter spray column packed with three types of static mixers. The effects of dispersed-phase flow rate, phase composition, column height and diameter were studied. The extraction column was operated in a semi-batch manner. It was found that the hold-up and volumetric mass transfer coefficients increased with an increase in dispersed (PEG-rich) phase velocity and decreased with increasing phase composition. Empirical correlations were developed for fractional dispersed-phase hold-up and volumetric mass transfer coefficients.
Interfacial structures of confined air-water two-phase bubbly flow
Energy Technology Data Exchange (ETDEWEB)
Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.
2000-08-01
The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.
Two-Phase Immiscible Flows in Porous Media: The Mesocopic Maxwell–Stefan Approach
DEFF Research Database (Denmark)
Shapiro, Alexander
2015-01-01
We develop an approach to coupling between viscous flows of the two phases in porous media, based on the Maxwell–Stefan formalism. Two versions of the formalism are presented: the general form, and the form based on the interaction of the flowing phases with the interface between them. The last...... of mixing” between the flowing phases. Comparison to the available experimental data on the steady-state two-phase relative permeabilities is presented....... approach is supported by the description of the flow on the mesoscopic level, as coupled boundary problems for the Brinkmann or Stokes equations. It becomes possible, in some simplifying geometric assumptions, to derive exact expressions for the phenomenological coefficients in the Maxwell–Stefan transport...
Synchrotron 4-dimensional imaging of two-phase flow through porous media.
Kim, F H; Penumadu, D; Patel, P; Xiao, X; Garboczi, E J; Moylan, S P; Donmez, M A
2016-01-01
Near real-time visualization of complex two-phase flow in a porous medium was demonstrated with dynamic 4-dimensional (4D) (3D + time) imaging at the 2-BM beam line of the Advanced Photon Source (APS) at Argonne National Laboratory. Advancing fluid fronts through tortuous flow paths and their interactions with sand grains were clearly captured, and formations of air bubbles and capillary bridges were visualized. The intense X-ray photon flux of the synchrotron facility made 4D imaging possible, capturing the dynamic evolution of both solid and fluid phases. Computed Tomography (CT) scans were collected every 12 s with a pixel size of 3.25 µm. The experiment was carried out to improve understanding of the physics associated with two-phase flow. The results provide a source of validation data for numerical simulation codes such as Lattice-Boltzmann, which are used to model multi-phase flow through porous media.
STUDY OF IDENTIFICATION OF TWO-PHASE FLOW PARAMETERS BY PRESSURE FLUCTUATION ANALYSIS
Directory of Open Access Journals (Sweden)
Ondrej Burian
2016-12-01
Full Text Available This paper deals with identification of parameters of simple pool boiling in a vertical rectangular channel by analysis of pressure fluctuation. In this work is introduced a small experimental facility about 9 kW power, which was used for simulation of pool boiling phenomena and creation of steam-water volume. Several pressure fluctuations measurements and differential pressure fluctuations measurements at warious were carried out. Main changed parameters were power of heaters and hydraulics resistance of channel internals. Measured pressure data was statistically analysed and compared with goal to find dependencies between parameters of two-phase flow and statistical properties of pressure fluctuation. At the end of this paper are summarized final results and applicability of this method for parameters determination of two phase flow for pool boiling conditions at ambient pressure.
Well-posed Euler model of shock-induced two-phase flow in bubbly liquid
Tukhvatullina, R. R.; Frolov, S. M.
2018-03-01
A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.
Measurements of local two-phase flow parameters in a boiling flow channel
International Nuclear Information System (INIS)
Yun, Byong Jo; Park, Goon-CherI; Chung, Moon Ki; Song, Chul Hwa
1998-01-01
Local two-phase flow parameters were measured lo investigate the internal flow structures of steam-water boiling flow in an annulus channel. Two kinds of measuring methods for local two-phase flow parameters were investigated. These are a two-conductivity probe for local vapor parameters and a Pitot cube for local liquid parameters. Using these probes, the local distribution of phasic velocities, interfacial area concentration (IAC) and void fraction is measured. In this study, the maximum local void fraction in subcooled boiling condition is observed around the heating rod and the local void fraction is smoothly decreased from the surface of a heating rod to the channel center without any wall void peaking, which was observed in air-water experiments. The distributions of local IAC and bubble frequency coincide with those of local void fraction for a given area-averaged void fraction. (author)
Non-equilibrium effects on the two-phase flow critical phenomenon
International Nuclear Information System (INIS)
Sami, S.M.
1988-01-01
In the present study, the choking criterion for nonhomogeneous nonequilibrium two phase flow is obtained by solving the two-fluid model conservation equations. The method of characteristics is employed to predict the critical flow conditions. Critical flow is established after the magnitude of the characteristic slopes (velocities). Critical flow conditions are reached when the smallest characteristic slope becomes equal to zero. Several expression are developed to determine the nonequilibrium mass and heat exchanges in terms of the system dependent parameters derivatives. In addition, comprehensive transition flow regime maps are employed in the calculation of interfacial heat and momentum transfer rates. Numerical results reveal that the proposed model reliably predicts the critical two-phase flow phenomenon under different inlet conditions and compares well with other existing models
Two-phase flow in porous media: power-law scaling of effective permeability
Energy Technology Data Exchange (ETDEWEB)
Groeva, Morten; Hansen, Alex, E-mail: Morten.Grova@ntnu.no, E-mail: Alex.Hansen@ntnu.no [Department of Physics, NTNU, NO-7491 Trondheim (Norway)
2011-09-15
A recent experiment has reported power-law scaling of effective permeability of two-phase flow with respect to capillary number for a two-dimensional model porous medium. In this paper, we consider the simultaneous flow of two phases through a porous medium under steady-state conditions, fixed total flow-rate and saturation, using a two-dimensional network simulator. We obtain power-law exponents for the scaling of effective permeability with respect to capillary number. The simulations are performed both for viscosity matched fluids and for a high viscosity ratio resembling that of air and water. Good power-law behaviour is found for both cases. Different exponents are found, depending on saturation.
Finite difference solution for a generalized Reynolds equation with homogeneous two-phase flow
Braun, M. J.; Wheeler, R. L., III; Hendricks, R. C.; Mullen, R. L.
An attempt is made to relate elements of two-phase flow and kinetic theory to the modified generalized Reynolds equation and to the energy equation, in order to arrive at a unified model simulating the pressure and flows in journal bearings, hydrostatic journal bearings, or squeeze film dampers when a two-phase situation occurs due to sudden fluid depressurization and heat generation. The numerical examples presented furnish a test of the algorithm for constant properties, and give insight into the effect of the shaft fluid heat transfer coefficient on the temperature profiles. The different level of pressures achievable for a given angular velocity depends on whether the bearing is thermal or nonisothermal; upwind differencing is noted to be essential for the derivation of a realistic profile.
Adaptive moving grid methods for two-phase flow in porous media
Dong, Hao
2014-08-01
In this paper, we present an application of the moving mesh method for approximating numerical solutions of the two-phase flow model in porous media. The numerical schemes combine a mixed finite element method and a finite volume method, which can handle the nonlinearities of the governing equations in an efficient way. The adaptive moving grid method is then used to distribute more grid points near the sharp interfaces, which enables us to obtain accurate numerical solutions with fewer computational resources. The numerical experiments indicate that the proposed moving mesh strategy could be an effective way to approximate two-phase flows in porous media. © 2013 Elsevier B.V. All rights reserved.
A continuum theory for two-phase flows of particulate solids: application to Poiseuille flows
Monsorno, Davide; Varsakelis, Christos; Papalexandris, Miltiadis V.
2015-11-01
In the first part of this talk, we present a novel two-phase continuum model for incompressible fluid-saturated granular flows. The model accounts for both compaction and shear-induced dilatancy and accommodates correlations for the granular rheology in a thermodynamically consistent way. In the second part of this talk, we exercise this two-phase model in the numerical simulation of a fully-developed Poiseuille flow of a dense suspension. The numerical predictions are shown to compare favorably against experimental measurements and confirm that the model can capture the important characteristics of the flow field, such as segregation and formation of plug zones. Finally, results from parametric studies with respect to the initial concentration, the magnitude of the external forcing and the width of the channel are presented and the role of these physical parameters is quantified. Financial Support has been provided by SEDITRANS, an Initial Training Network of the European Commission's 7th Framework Programme
Monte Carlo simulation of a two-phase flow in an unsaturated porous media
Directory of Open Access Journals (Sweden)
Xu Peng
2012-01-01
Full Text Available Relative permeability is a significant transport property which describes the simultaneous flow of immiscible fluids in porous media. A pore-scale physical model is developed for the two-phase immiscible flow in an unsaturated porous media according to the statistically fractal scaling laws of natural porous media, and a predictive calculation of two-phase relative permeability is presented by Monte Carlo simulation. The tortuosity is introduced to characterize the highly irregular and convoluted property of capillary pathways for fluid flow through a porous medium. The computed relative permeabilities are compared with empirical formulas and experimental measurements to validate the current model. The effect of fractal dimensions and saturation on the relative permeabilities is also discussed
An acoustic-convective splitting-based approach for the Kapila two-phase flow model
Energy Technology Data Exchange (ETDEWEB)
Eikelder, M.F.P. ten, E-mail: m.f.p.teneikelder@tudelft.nl [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Daude, F. [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); IMSIA, UMR EDF-CNRS-CEA-ENSTA 9219, Université Paris Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau (France); Koren, B.; Tijsseling, A.S. [Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands)
2017-02-15
In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splitting approach. The results are in good agreement with reference results and exact solutions.
Two-phase flow modeling in the rod bundle subchannel analysis
International Nuclear Information System (INIS)
Hisashi, Ninokata
2006-01-01
In order to practice a design-by-analysis of thermohydraulics design of BWR fuel rod bundles, the subchannel analysis would play a major role. There, the immediate concern is improvement in its predictive capability of CHF due in particular to the film dryout (boiling transition phenomena: BT) on the fuel rod surface. Constitutive equations in the subchannel analysis formulation are responsible for the quality of calculated results. The constitutive equations are a result of integration of the local and instantaneous description of two-phase flows over the subchannel control volume. In general, they are expressed in terms of subchannel-control-volume- as well as area-averaged two-phase flow state variables. In principle the information on local and instantaneous physical phenomena taking place inside subchannels must be counted for in the algebraic form of the equations on the basis of a more mechanistic modeling approach. They should include also influences of the multi-dimensional subchannel geometry and fluid material properties. Thermohydraulics phenomena of interests in this deed are: 1) vapor-liquid re-distribution by inter-subchannel exchanges due to the diversion cross flow, turbulent mixing and void drift, 2) liquid film behaviors, 3) transition of two-phase flow regimes, 4) droplet entrainment and deposition and 5) spacer-droplet interactions. These are considered to be five key factors in understanding the BT in BWR fuel rod bundles. In Japan, a university-industry consortium has been formed under the sponsorship of the Ministry of Economics, Trade and Industry. This paper describes an outline of the on-going project and, first, an outline of the current efforts is presented in developing a new two-fluid three field subchannel code NASCA being aimed at predicting onset of BT, and post BT phenomena in advanced BWR fuel rod bundles including those of the tight lattice configuration for a higher conversion. Then the current methodology adopted to improve
Two-phase flow modeling in the rod bundle subchannel analysis
International Nuclear Information System (INIS)
Hisashi, Ninokata
2004-01-01
Full text of publication follows:In order to practice a design-by-analysis of thermohydraulics design of BWR fuel rod bundles, the subchannel analysis would play a major role. There, the immediate concern is improvement in its predictive capability of CHF due in particular to the film dryout (boiling transition phenomena: BT) on the fuel rod surface. Constitutive equations in the subchannel analysis formulation are responsible for the quality of calculated results. The constitutive equations are a result of integration of the local and instantaneous description of two-phase flows over the subchannel control volume. In general, they are expressed in terms of subchannel-control-volume- as well as area-averaged two-phase flow state variables. In principle the information on local and instantaneous physical phenomena taking place inside subchannels must be counted for in the algebraic form of the equations on the basis of a more mechanistic modeling approach. They should include also influences of the multi-dimensional subchannel geometry and fluid material properties. Thermohydraulics phenomena of interests in this deed are: 1) vapor-liquid re-distribution by inter-subchannel exchanges due to the diversion cross flow, turbulent mixing and void drift, 2) liquid film behaviors, 3) transition of two-phase flow regimes, 4) droplet entrainment and deposition and 5) spacer-droplet interactions. These are considered to be five key factors in understanding the BT in BWR fuel rod bundles. In Japan, a university-industry consortium has been formed under the sponsorship of the Ministry of Economics, Trade and Industry. This paper describes an outline of the on-going project and, first, an outline of the current efforts is presented in developing a new two-fluid three field subchannel code NASCA being aimed at predicting onset of BT, and post BT phenomena in advanced BWR fuel rod bundles including those of the tight lattice configuration for a higher conversion. Then the current
Lumped-parameter modeling of one-dimensional two-phase flow
International Nuclear Information System (INIS)
Wulff, W.
1978-01-01
An integral or lumped-parameter modeling technique is presented for the analysis of nonequilibrium, nonhomogeneous, one-dimensional two-phase flow. The method is designed to increase computing efficiency over standard finite difference techniques and to describe accurately the motion of flow regime interfaces. Computing efficiency is achieved by converting the partial differential equations of the conservation laws into ordinary differential equations and by introducing profile estimates. Flow regime interfaces are tracked with the aid of kinematic jump conditions. The governing equations are derived, and the method is elucidated on three applications. One application involves a closed-loop transient, the second one involves the dynamics of a liquid level, while the third application deals with the level swelling above a nonhomogeneous two-phase mixture. Comparisons are presented between lumped parameter modeling solutions, solutions from finite difference techniques and analytical solutions. The comparisons show good agreement. The important role of profile functions is discussed
Experimental study of micron size droplets in a two phase flow in a converging - diverging nozzle
International Nuclear Information System (INIS)
Jurski, Kristine
1997-01-01
The fluid present in a pressurized vessel in normal operation is generally a mono-phase one. In accidental regime (a breach for example), a two-phase (ring and/or dispersed) flow appears and the flow is submitted to large accelerations when passing through the breach, and is then dispersed in the atmosphere. This research thesis reports an experimental simulation of an accident by generating, through a discharge of an upstream vessel into a downstream vessel, a strongly accelerated gaseous-liquid two-phase flow, with an essentially dispersed configuration in a convergent-divergent nozzle. In order to characterize the speed and diameter evolution of the dispersed liquid phase, the author reports a comparative study of two different liquid aerosols: micron-size droplets of di-octyl phthalate (DOP) of known concentration and diameter, and water droplets obtained by heterogeneous spontaneous condensation [fr
Ultrafast X-ray tomography for two-phase flow analysis in centrifugal pumps
International Nuclear Information System (INIS)
Schaefer, Thomas; Hampel, Uwe; Technische Univ. Dresden
2017-01-01
The unsteady behavior of gas-liquid two-phase flow in a centrifugal pump impeller has been visualized, using ultrafast X-ray tomography. Based on the reconstructed tomographic images an evaluation and detailed analysis of the flow conditions has been done. Here, the high temporal resolution of the tomographic images offered the opportunity to get a deep insight into the flow to perform a detailed description of the transient gas-liquid phase distribution inside the impeller. Significant properties of the occurring two-phase flow and characteristic flow patterns have been disclosed. Furthermore, the effects of different air entrainment conditions have been investigated and typical phase distributions inside the impeller have been shown.
A study on two phase flows of linear compressors for the prediction of refrigerant leakage
International Nuclear Information System (INIS)
Hwang, Il Sun; Lee, Young Lim; Oh, Won Sik; Park, Kyeong Bae
2015-01-01
Usage of linear compressors is on the rise due to their high efficiency. In this paper, leakage of a linear compressor has been studied through numerical analysis and experiments. First, nitrogen leakage for a stagnant piston with fixed cylinder pressure as well as for a moving piston with fixed cylinder pressure was analyzed to verify the validity of the two-phase flow analysis model. Next, refrigerant leakage of a linear compressor in operation was finally predicted through 3-dimensional unsteady, two phase flow CFD (Computational fluid dynamics). According to the research results, the numerical analyses for the fixed cylinder pressure models were in good agreement with the experimental results. The refrigerant leakage of the linear compressor in operation mainly occurred through the oil exit and the leakage became negligible after about 0.4s following operation where the leakage became lower than 2.0x10 -4 kg/s.
Simon, Moritz
2013-01-01
Motivated by applications in subsurface CO2 sequestration, we investigate constrained optimal control problems with partially miscible two-phase flow in porous media. The objective is, e.g., to maximize the amount of trapped CO2 in an underground reservoir after a fixed period of CO2 injection, where the time-dependent injection rates in multiple wells are used as control parameters. We describe the governing two-phase two-component Darcy flow PDE system and formulate the optimal control problem. For the discretization we use a variant of the BOX method, a locally conservative control-volume FE method. The timestep-wise Lagrangian of the control problem is implemented as a functional in the PDE toolbox Sundance, which is part of the HPC software Trilinos. The resulting MPI parallelized Sundance state and adjoint solvers are linked to the interior point optimization package IPOPT. Finally, we present some numerical results in a heterogeneous model reservoir.
Design of a two-phase loop thermosyphon for telecommunications system(II): analysis and simulation
International Nuclear Information System (INIS)
Kim, Won Tae; Song, Kyu Sub; Lee, Young
1998-01-01
A computer simulation is performed for a two-phase loop thermosyphon for the B-ISDN telecommunications. The aim of this code development is to provide capabilities to predict the affects of many variables on the performance of the proposed TLT system using different empirical correlations obtained from the literature for the evaporation and condensation, and the shape factors available. In this present study, the simulation code is based on the sectorial thermal resistance network built on the flow regimes of the two-phase flows involved. The nodal resistances are solved by the typical Gauss-Seidal iteration method. The code can predict whether the proposed design is possible based on the flooding limit calculation of the system and its results are compared with the experimental results
Design of a two-phase loop thermosyphon for telecommunications system(II): analysis and simulation
Energy Technology Data Exchange (ETDEWEB)
Kim, Won Tae [Kongju National Univ., Kongju (Korea, Republic of); Song, Kyu Sub [Electronics and Telecommunications Research Institute, Taejon (Korea, Republic of); Lee, Young [Univ. of Ottawa, Ontario (Canada)
1998-10-01
A computer simulation is performed for a two-phase loop thermosyphon for the B-ISDN telecommunications. The aim of this code development is to provide capabilities to predict the affects of many variables on the performance of the proposed TLT system using different empirical correlations obtained from the literature for the evaporation and condensation, and the shape factors available. In this present study, the simulation code is based on the sectorial thermal resistance network built on the flow regimes of the two-phase flows involved. The nodal resistances are solved by the typical Gauss-Seidal iteration method. The code can predict whether the proposed design is possible based on the flooding limit calculation of the system and its results are compared with the experimental results.
Bioconversion of a L-carnitin precursor in a one- or two-phase system.
Bare, G; Jacques, P; Hubert, J B; Rikir, R; Thonart, P
1991-01-01
The ability of the yeast Saccharomyces cerevisiae to bioconvert stereo-selectively octyl-4-chloroacetoacetate (OCA) into the corresponding chiral alcohol, precursor of L-carnitin, an important physiological agent, was investigated. In a monophasic system with free cells, more than 90% of OCA (0.018 M) bioconversion have been reached after 6 h (enantiomeric excess for the R form, eeR:97%). Immobilized cells in alginate beads were less efficient in conversion of OCA than free cells. In a two-phase system with free cells, the level of reduction of OCA (0.018 M) reached 85% after 48 h. With a medium containing a higher OCA concentration (0.270 M), 41% of this product were bioconverted after the same period. On the other hand, immobilized cells did not show any significant bioconversion of OCA in two-phase reactors. The limiting factor of these reactors in the regeneration of the cofactors involved in the OCA reduction.
Two-phase dusty fluid flow along a cone with variable properties
Siddiqa, Sadia; Begum, Naheed; Hossain, Md. Anwar; Mustafa, Naeem; Gorla, Rama Subba Reddy
2017-05-01
In this paper numerical solutions of a two-phase natural convection dusty fluid flow are presented. The two-phase particulate suspension is investigated along a vertical cone by keeping variable viscosity and thermal conductivity of the carrier phase. Comprehensive flow formations of the gas and particle phases are given with the aim to predict the behavior of heat transport across the heated cone. The influence of (1) air with particles, (2) water with particles and (3) oil with particles are shown on shear stress coefficient and heat transfer coefficient. It is recorded that sufficient increment in heat transport rate can be achieved by loading the dust particles in the air. Further, distribution of velocity and temperature of both the carrier phase and the particle phase are shown graphically for the pure fluid (air, water) as well as for the fluid with particles (air-metal and water-metal particle mixture).
Energy Technology Data Exchange (ETDEWEB)
Wang Fumin [Mechanical Engineering Department, Stanford University, Room 224, Building 530, Stanford, CA 94305-3030 (United States)]. E-mail: fuminmems@gmail.com; Steinbrenner, Julie E. [Mechanical Engineering Department, Stanford University, Room 224, Building 530, Stanford, CA 94305-3030 (United States); Hidrovo, Carlos H. [Mechanical Engineering Department, Stanford University, Room 224, Building 530, Stanford, CA 94305-3030 (United States); Kramer, Theresa A. [Mechanical Engineering Department, Stanford University, Room 224, Building 530, Stanford, CA 94305-3030 (United States); Lee, Eon Soo [Mechanical Engineering Department, Stanford University, Room 224, Building 530, Stanford, CA 94305-3030 (United States); Vigneron, Sebastien [Mechanical Engineering Department, Stanford University, Room 224, Building 530, Stanford, CA 94305-3030 (United States); Cheng, Ching-Hsiang [Mechanical Engineering Department, Stanford University, Room 224, Building 530, Stanford, CA 94305-3030 (United States); Eaton, John K. [Mechanical Engineering Department, Stanford University, Room 224, Building 530, Stanford, CA 94305-3030 (United States); Goodson, Kenneth E. [Mechanical Engineering Department, Stanford University, Room 224, Building 530, Stanford, CA 94305-3030 (United States)
2007-07-15
Microchannels (0.05-1 mm) improve gas routing in proton exchange membrane fuel cells, but add to the complexities of water management. This work microfabricates experimental structures with distributed water injection as well as with heating and temperature sensing capabilities to study water formation and transport. The samples feature optical access to allow visualization and distributed thermometry for investigation of two-phase flow transport phenomena in the microchannels. The temperature evolution along the channel is observed that the temperature downstream of the distributed water injection decreases as the pressure drop increases. As the water injection rate is lower than 200 {mu}l/min, there exists a turning point where temperature increases as the pressure drop increases further. These micromachined structures with integrated temperature sensors and heaters are key to the experimental investigation as well as visualization of two-phase flow and water transport phenomena in microchannels for fuel cell applications.
Pump two-phase performance program. Volume 5. Steady-state data. Final report
International Nuclear Information System (INIS)
Kennedy, W.G.; Jacob, M.C.; Whitehouse, J.C.; Fishburn, J.D.; Kanupka, G.J.
1980-09-01
Objective was to obtain steady-state and transient two-phase empirical data to substantiate and improve the reactor coolant pump analytical model currently used for LOCA analysis. A one-fifth scale pump was tested in steady-state runs with single- and two-phase mixtures of water and steam over ranges of operating conditions representative of postulated loss-of-coolant accidents. This volume contains tabulated data and derived parameters obtained for each of 962 selected steady-state test points conducted. A summary chronological listing of all 1322 steady-state test points actually conducted is also provided. The basic data are 67 channels of direct measurements for each test. Twenty-six derived parameters plus drift and standard deviations are calculated from the basic data and presented in the tabulation
Study of two-phase flow redistribution between two passes of a heat exchanger
International Nuclear Information System (INIS)
Mendes de Moura, L.F.
1989-04-01
The object of the present thesis deals with the study of two-phase flow redistribution between two passes of a heat exchanger. Mass flow rate measurements of each component performed at each channel outlet of the second pass allowed us to determine the influence of mass flow, gas quality, flow direction (upward or downward) and common header geometry upon flow redistribution. Local void fraction inside common header was measured with an optical probe. A two-dimensional two-phase flow computational code was developed from a two-fluid model. Modelling of interfacial momentum transfer was used in order to take into account twp-phase flow patterns in common headers. Numerical simulation results show qualitative agreement with experimental results. Present theoretical model limitations are analysed and future improvements are proposed [fr
Numerical simulation of polishing U-tube based on solid-liquid two-phase
Li, Jun-ye; Meng, Wen-qing; Wu, Gui-ling; Hu, Jing-lei; Wang, Bao-zuo
2018-03-01
As the advanced technology to solve the ultra-precision machining of small hole structure parts and complex cavity parts, the abrasive grain flow processing technology has the characteristics of high efficiency, high quality and low cost. So this technology in many areas of precision machining has an important role. Based on the theory of solid-liquid two-phase flow coupling, a solid-liquid two-phase MIXTURE model is used to simulate the abrasive flow polishing process on the inner surface of U-tube, and the temperature, turbulent viscosity and turbulent dissipation rate in the process of abrasive flow machining of U-tube were compared and analyzed under different inlet pressure. In this paper, the influence of different inlet pressure on the surface quality of the workpiece during abrasive flow machining is studied and discussed, which provides a theoretical basis for the research of abrasive flow machining process.
Kou, Jisheng
2013-01-01
A class of discontinuous Galerkin methods with interior penalties is presented for incompressible two-phase flow in heterogeneous porous media with capillary pressures. The semidiscrete approximate schemes for fully coupled system of two-phase flow are formulated. In highly heterogeneous permeable media, the saturation is discontinuous due to different capillary pressures, and therefore, the proposed methods incorporate the capillary pressures in the pressure equation instead of saturation equation. By introducing a coupling approach for stability and error estimates instead of the conventional separate analysis for pressure and saturation, the stability of the schemes in space and time and a priori hp error estimates are presented in the L2(H 1) for pressure and in the L∞(L2) and L2(H1) for saturation. Two time discretization schemes are introduced for effectively computing the discrete solutions. © 2013 Societ y for Industrial and Applied Mathematics.
New developments in two-phase flow heat transfer with emphasis on nuclear safety research
International Nuclear Information System (INIS)
Mayinger, F.
1987-01-01
The literature on two-phase flow - with and without heat transfer - shows an explosive-like growth of published papers within the last ten years. Many of these papers were published as a result of nuclear safety research. It is impossible to deal with all new developments reported in this extensive literature. So one has to ask: Are there trends of special interest, where this report could be concentrated on? Looking over the situation, there seem to be three very promising fields of research having high actuality, especially for nuclear safety, namely: fluiddynamic and thermodynamic nonequilibrium in steady state, transient conditions, and scaling. The discussion on new developments in two-phase flow heat transfer, therefore, is limited on these subjects
Ultrafast X-ray tomography for two-phase flow analysis in centrifugal pumps
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Thomas [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Fluid Dynamics; Hampel, Uwe [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Fluid Dynamics; Technische Univ. Dresden (Germany). AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering
2017-07-15
The unsteady behavior of gas-liquid two-phase flow in a centrifugal pump impeller has been visualized, using ultrafast X-ray tomography. Based on the reconstructed tomographic images an evaluation and detailed analysis of the flow conditions has been done. Here, the high temporal resolution of the tomographic images offered the opportunity to get a deep insight into the flow to perform a detailed description of the transient gas-liquid phase distribution inside the impeller. Significant properties of the occurring two-phase flow and characteristic flow patterns have been disclosed. Furthermore, the effects of different air entrainment conditions have been investigated and typical phase distributions inside the impeller have been shown.
Two phase choke flow in tubes with very large L/D
Hendricks, R. C.; Simoneau, R. J.
1977-01-01
Two phase and gaseous choked flow data for fluid nitrogen were obtained for a test section which was a long constant area duct of 16 200 L/D with a diverging diffuser attached to the exit. Flow rate data were taken along five isotherms (reduced temperature of 0.81, 0.96, 1.06, 1.12, and 2.34) for reduced pressures to 3. The flow rate data were mapped in the usual manner using stagnation conditions at the inlet mixing chamber upstream of the entrance length. The results are predictable by a two-phase homogeneous equilibrium choking flow model which includes wall fraction. A simplified theory which in essence decouples the long tube region from the high acceleration choking region also appears to predict the data reasonably well, but about 15 percent low.
Three-dimensional investigation of the two-phase flow structure in a bubbly pipe flow
International Nuclear Information System (INIS)
Schmidl, W.; Hassan, Y.A.; Ortiz-Villafuerte, J.
1996-01-01
Particle image velocimetry (PIV) is a nonintrusive measurement technique that can be used to study the structure of various fluid flows. PIV is used to measure the time-varying, full-field velocity data of a particle-seeded flow field within either a two-dimensional plane or three-dimensional volume. PIV is a very efficient measurement technique since it can obtain both qualitative and quantitative spatial information about the flow field being studied. The quantitative spatial velocity information can be further processed into information of flow parameters such as vorticity and turbulence over extended areas. The objective of this study was to apply recent advances and improvements in the PIV flow measurement technique to the full-field, nonintrusive analysis of a three-dimensional, two-phase fluid flow system in such a manner that both components of the two-phase system could be experimentally quantified
Construction of Representative Pore Morphologies in Disordered Nanoporous Two-Phase Materials
Energy Technology Data Exchange (ETDEWEB)
Toney, Michael F
2003-04-01
Materials with nanometer size heterogeneities are commonplace in the physical and biological sciences and often exhibit complex morphologies. Although this morphology has a dramatic effect on the materials' properties (e.g., transport and reaction processes), it is often difficult to accurately characterize. We describe a method, using a novel analysis of small angle x-ray scattering data, of generating representative three-dimensional morphologies of isotropic two-phase materials (one class of heterogeneous materials) where the morphology is disordered. This is applied to thin films containing nanometer sized pores with a range of porosities (4-44%). These representations provide a visualization of the pore morphology, give the pore size scale and extent of interconnection, and permit the determination of the transitions from closed pore to interconnected pores to bicontinuous morphology. This methodology will be valuable for characterizing two-phase systems, such as polymer blends, microemulsions, porous geological materials, bones, cements and ceramics.
International Nuclear Information System (INIS)
Leavell, W.H.; Mullens, J.A.
1981-01-01
A computational algorithm has been developed to measure transient, phase-interface velocity in two-phase, steam-water systems. The algorithm will be used to measure the transient velocity of steam-water mixture during simulated PWR reflood experiments. By utilizing signals produced by two, spatially separated impedance probes immersed in a two-phase mixture, the algorithm computes the average transit time of mixture fluctuations moving between the two probes. This transit time is computed by first, measuring the phase shift between the two probe signals after transformation to the frequency domain and then computing the phase shift slope by a weighted least-squares fitting technique. Our algorithm, which has been tested with both simulated and real data, is able to accurately track velocity transients as fast as 4 m/s/s
Computational modelling of a thermoforming process for thermoplastic starch
Szegda, D.; Song, J.; Warby, M. K.; Whiteman, J. R.
2007-05-01
Plastic packaging waste currently forms a significant part of municipal solid waste and as such is causing increasing environmental concerns. Such packaging is largely non-biodegradable and is particularly difficult to recycle or to reuse due to its complex composition. Apart from limited recycling of some easily identifiable packaging wastes, such as bottles, most packaging waste ends up in landfill sites. In recent years, in an attempt to address this problem in the case of plastic packaging, the development of packaging materials from renewable plant resources has received increasing attention and a wide range of bioplastic materials based on starch are now available. Environmentally these bioplastic materials also reduce reliance on oil resources and have the advantage that they are biodegradable and can be composted upon disposal to reduce the environmental impact. Many food packaging containers are produced by thermoforming processes in which thin sheets are inflated under pressure into moulds to produce the required thin wall structures. Hitherto these thin sheets have almost exclusively been made of oil-based polymers and it is for these that computational models of thermoforming processes have been developed. Recently, in the context of bioplastics, commercial thermoplastic starch sheet materials have been developed. The behaviour of such materials is influenced both by temperature and, because of the inherent hydrophilic characteristics of the materials, by moisture content. Both of these aspects affect the behaviour of bioplastic sheets during the thermoforming process. This paper describes experimental work and work on the computational modelling of thermoforming processes for thermoplastic starch sheets in an attempt to address the combined effects of temperature and moisture content. After a discussion of the background of packaging and biomaterials, a mathematical model for the deformation of a membrane into a mould is presented, together with its
Use of Vacuum Bagging for Fabricating Thermoplastic Microfluidic Devices
Cassano, Christopher L.; Simon, Andrew J.; Liu, Wei; Fredrickson, Carl; Fan, Z. Hugh
2014-01-01
In this work we present a novel thermal bonding method for thermoplastic microfluidic devices. This simple method employs a modified vacuum bagging technique, a concept borrowed from the aerospace industry, to produce conventional thick substrate microfluidic devices, as well as multi-layer film devices. The bonds produced using this method are superior to those obtained using conventional thermal bonding methods, including thermal lamination, and are capable of sustaining burst pressures in excess of 550 kPa. To illustrate the utility of this method, thick substrate devices were produced, as well as a six-layer film device that incorporated several complex features. PMID:25329244
Induction Consolidation of Thermoplastic Composites Using Smart Susceptors
Energy Technology Data Exchange (ETDEWEB)
Matsen, Marc R
2012-06-14
This project has focused on the area of energy efficient consolidation and molding of fiber reinforced thermoplastic composite components as an energy efficient alternative to the conventional processing methods such as autoclave processing. The expanding application of composite materials in wind energy, automotive, and aerospace provides an attractive energy efficiency target for process development. The intent is to have this efficient processing along with the recyclable thermoplastic materials ready for large scale application before these high production volume levels are reached. Therefore, the process can be implemented in a timely manner to realize the maximum economic, energy, and environmental efficiencies. Under this project an increased understanding of the use of induction heating with smart susceptors applied to consolidation of thermoplastic has been achieved. This was done by the establishment of processing equipment and tooling and the subsequent demonstration of this fabrication technology by consolidating/molding of entry level components for each of the participating industrial segments, wind energy, aerospace, and automotive. This understanding adds to the nation's capability to affordably manufacture high quality lightweight high performance components from advanced recyclable composite materials in a lean and energy efficient manner. The use of induction heating with smart susceptors is a precisely controlled low energy method for the consolidation and molding of thermoplastic composites. The smart susceptor provides intrinsic thermal control based on the interaction with the magnetic field from the induction coil thereby producing highly repeatable processing. The low energy usage is enabled by the fact that only the smart susceptor surface of the tool is heated, not the entire tool. Therefore much less mass is heated resulting in significantly less required energy to consolidate/mold the desired composite components. This energy
Blends of thermoplastic and elastomeric matrices with liquid crystalline polymers
Energy Technology Data Exchange (ETDEWEB)
Roggero, A.; Pedretti, U.; La Mantia, F.P. [Eniricerche, Milanese (Italy)
1995-12-01
Liquid crystalline polymers (LCPs) present a unique balance of properties and, when added to thermoplastic (TP) or elastomeric (EL) matrices, can impart to the relevant blends specific properties that can be utilized for specific applications. As regards TP/LCP blends, the proclivity of LCPs to form fibrous structures and their low melt viscositiy allowed to obtain blends reinforced and easier to process than the pure TPs: particularly, depending on the LCP-TP structures and on the processing parameters, materials with improved processability, high modulus, enhanced impact strength and creeping resistance were obtained. As regards EL/LCP blends, that based on fluoroelastomers were in depth investigated and offered outstanding properties.
Fused Deposition Technique for Continuous Fiber Reinforced Thermoplastic
Bettini, Paolo; Alitta, Gianluca; Sala, Giuseppe; Di Landro, Luca
2017-02-01
A simple technique for the production of continuous fiber reinforced thermoplastic by fused deposition modeling, which involves a common 3D printer with quite limited modifications, is presented. An adequate setting of processing parameters and deposition path allows to obtain components with well-enhanced mechanical characteristics compared to conventional 3D printed items. The most relevant problems related to the simultaneous feeding of fibers and polymer are discussed. The properties of obtained aramid fiber reinforced polylactic acid (PLA) in terms of impregnation quality and of mechanical response are measured.
Nanoimprint technology nanotransfer for thermoplastic and photocurable polymers
Taniguchi, Jun; Mizuno, Jun; Saito, Takushi
2013-01-01
Nanoscale pattern transfer technology using molds is a rapidly advancing area and one that has seen much recent attention due to its potential for use in nanotechnology industries and applications. However, because of these rapid advances, it can be difficult to keep up with the technological trends and the latest cutting-edge methods. In order to fully understand these pioneering technologies, a comprehensive understanding of the basic science and an overview of the techniques are required. Nanoimprint Technology: Nanotransfer for Thermoplastic and Photocurable Polymers covers
Solid particle erosion and viscoelastic properties of thermoplastic polyurethanes
Directory of Open Access Journals (Sweden)
G. Arena
2015-03-01
Full Text Available The wear resistance of several thermoplastic polyurethanes (TPUs having different chemical nature and micronscale arrangement of the hard and soft segments has been investigated by means of erosion and abrasion tests. The goal was correlating the erosion performances of the materials to their macroscopic mechanical properties. Unlike conventional tests, such as hardness and tensile measurements, viscoelastic analysis proved to be a valuable tool to study the erosion resistance of TPUs. In particular, a strict correlation was found between the erosion rate and the high-frequency (~107 Hz loss modulus. The latter reflects the actual ability of TPU to dissipate the impact energy of the erodent particles.
FIBER ORIENTATION IN INJECTION MOLDED LONG CARBON FIBER THERMOPLASTIC COMPOSITES
Energy Technology Data Exchange (ETDEWEB)
Wang, Jin; Nguyen, Ba Nghiep; Mathur, Raj N.; Sharma, Bhisham; Sangid, Michael D.; Costa, Franco; Jin, Xiaoshi; Tucker III, Charles L.; Fifield, Leonard S.
2015-03-23
A set of edge-gated and center-gated plaques were injection molded with long carbon fiber-reinforced thermoplastic composites, and the fiber orientation was measured at different locations of the plaques. Autodesk Simulation Moldflow Insight (ASMI) software was used to simulate the injection molding of these plaques and to predict the fiber orientation, using the anisotropic rotary diffusion and the reduced strain closure models. The phenomenological parameters of the orientation models were carefully identified by fitting to the measured orientation data. The fiber orientation predictions show very good agreement with the experimental data.
Sustainable green composites of thermoplastic starch and cellulose fibers
Directory of Open Access Journals (Sweden)
Amnuay Wattanakornsiri
2014-04-01
Full Text Available Green composites have gained renewed interest as environmental friendly materials and as biodegradable renewable resources for a sustainable development. This review provides an overview of recent advances in green composites based on thermoplastic starch (TPS and cellulose fibers. It includes information about compositions, preparations, and properties of starch, cellulose fibers, TPS, and green composites based on TPS and cellulose fibers. Introduction and production of these recyclable composites into the material market would be important for environmental sustainability as their use can decrease the volume of petroleum derived plastic waste dumps. Green composites are comparable cheap and abundant, but further research and development is needed for a broader utilization.
Two-phase flow in steam turbines: EDF R and D division investigations
International Nuclear Information System (INIS)
Laali, A.R.
1992-05-01
This report outlines the investigations on wet steam flows in steam turbines. All the softwares developed in the framework of these studies enables analysis of different aspects of these types of flows. The use of two phase codes based on 2 fluid models, which has achieved a sufficient progress, and the integration of the condensation programme in a transonic non stationary code will constitute a second step for these studies, enhancing what has already been achieved in this field
A tool for visualization of two-phase flow simulations related to nuclear safety
International Nuclear Information System (INIS)
Hyvaerinen, J.
1991-01-01
This paper describes a new tool, BOXER, that has been developed to produce animated visualization of data from computer simulations of two-phase (multi-component) flow phenomena in nuclear reactor systems. In the first part of the paper, background information regarding the type and the scope of the simulations is presented. The second part describes the tool, giving an example of its usage. BOXER has been developed at the Finnish Centre for Radiation and Nuclear Safety. (author)
Modeling and simulation of nanoparticles transport in a two-phase flow in porous media
El-Amin, Mohamed
2012-01-01
In the current paper, a mathematical model to describe the nanoparticles transport carried by a two-phase flow in a porous medium is presented. Both capillary forces as well as Brownian diffusion are considered in the model. A numerical example of countercurrent water-oil imbibition is considered. We monitor the changing of the fluid and solid properties due to the addition of the nanoparticles using numerical experiments. Variation of water saturation, nanoparticles concentration and porosity ratio are investigated.
A method to couple HEM and HRM two-phase flow models
International Nuclear Information System (INIS)
Herard, J.M.; Hurisse, O.; Hurisse, O.; Ambroso, A.
2009-01-01
We present a method for the unsteady coupling of two distinct two-phase flow models (namely the Homogeneous Relaxation Model, and the Homogeneous Equilibrium Model) through a thin interface. The basic approach relies on recent works devoted to the interfacial coupling of CFD models, and thus requires to introduce an interface model. Many numerical test cases enable to investigate the stability of the coupling method. (authors)
Experimental study of two-phase flow using shadowgraphy and IPI technique
Czech Academy of Sciences Publication Activity Database
Jašíková, D.; Kotek, M.; Kysela, Bohuš; Šulc, R.; Kopecký, V.
2017-01-01
Roč. 2, č. 2017 (2017), s. 107-114 ISSN 2367-8992 R&D Projects: GA ČR GA16-20175S Grant - others:GA MŠk(CZ) LO1201 Institutional support: RVO:67985874 Keywords : mixing process * two - phase flow * shadowgraphy * interferometric particle imaging * visualization Subject RIV: JP - Industrial Processing OBOR OECD: Fluids and plasma physics (including surface physics) http://www.iaras.org/iaras/filedownloads/ijtam/2017/009-0020(2017).pdf