Viscosity Solutions for the two-phase Stefan Problem
Kim, Inwon C
2010-01-01
We introduce a notion of viscosity solutions for the two-phase Stefan problem, which incorporates possible existence of a mushy region generated by the initial data. We show that a comparison principle holds between viscosity solutions, and investigate the coincidence of the viscosity solutions and the weak solutions defined via integration by parts. In particular, in the absence of initial mushy region, viscosity solution is the unique weak solution with the same boundary data.
Two algorithms for two-phase Stefan type problems
Institute of Scientific and Technical Information of China (English)
LIAN Xiao-peng; CHENG Xiao-liang; HAN Wei-min
2009-01-01
In this paper, the relaxation algorithm and two Uzawa type algorithms for solving discretized variational inequalities arising from the two-phase Stefan type problem are proposed. An analysis of their convergence is presented and the upper bounds of the convergence rates are derived. Some numerical experiments are shown to demonstrate that for the second Uzawa algorithm which is an improved version of the first Uzawa algorithm, the convergence rate is uniformly bounded away from 1 if τh-2 is kept bounded, where τ is the time step size and h the space mesh size.
Directory of Open Access Journals (Sweden)
Xiao-Ying Qin
2014-01-01
Full Text Available An Adomian decomposition method (ADM is applied to solve a two-phase Stefan problem that describes the pure metal solidification process. In contrast to traditional analytical methods, ADM avoids complex mathematical derivations and does not require coordinate transformation for elimination of the unknown moving boundary. Based on polynomial approximations for some known and unknown boundary functions, approximate analytic solutions for the model with undetermined coefficients are obtained using ADM. Substitution of these expressions into other equations and boundary conditions of the model generates some function identities with the undetermined coefficients. By determining these coefficients, approximate analytic solutions for the model are obtained. A concrete example of the solution shows that this method can easily be implemented in MATLAB and has a fast convergence rate. This is an efficient method for finding approximate analytic solutions for the Stefan and the inverse Stefan problems.
Kharin, Stanislav N.; Sarsengeldin, Merey M.; Nouri, Hassan
2016-08-01
On the base of the Holm model, we represent two phase spherical Stefan problem and its analytical solution, which can serve as a mathematical model for diverse thermo-physical phenomena in electrical contacts. Suggested solution is obtained from integral error function and its properties which are represented in the form of series whose coefficients have to be determined. Convergence of solution series is proved.
Exact solution of two phase spherical Stefan problem with two free boundaries
Kavokin, Alexey A.; Nauryz, Targyn; Bizhigitova, Nazerke T.
2016-08-01
Solution of the heat equation in a spherical domain with two free boundaries (two-phase Stefan problem) when one of the subdomains degenerates at the initial time is considered. The use of conventional finite-difference methods in these cases is not expedient because of the degenerate domain. The solution is found in the form of combination of Integral Error functions series, [M. Sarsengeldin, and S. Kharin, Filomat, (2016), (in Press)] and then recurrent solvability of nonlinear algebraic equations for determining the coefficients of the series is proved. Such problems are of practical interest for the simulation of laser material processing as well for the modeling of thermal effects of electric arc that ignites during the opening of electric contacts [S. N. Kharin, and M. Sarsengeldin, ï£¡Influence of contact materials on phenomena in a short electrical arcï£¡, in Key Engineering Materials, Trans tech publications, Islamabad, Pakistan, 2012, pp. 321-329].
Directory of Open Access Journals (Sweden)
Tarzia Domingo Alberto
2017-01-01
Full Text Available We obtain for the two-phase Lamé-Clapeyron-Stefan problem for a semi-infinite material an equivalence between the temperature and convective boundary conditions at the fixed face in the case that an inequality for the convective transfer coefficient is satisfied. Moreover, an inequality for the coefficient which characterizes the solid-liquid interface of the classical Neumann solution is also obtained. This inequality must be satisfied for data of any phase-change material, and as a consequence the result given in Tarzia, Quart. Appl. Math., 39 (1981, 491-497 is also recovered when a heat flux condition was imposed at the fixed face.
Two-Phase Immiscible Flows in Porous Media: The Mesocopic Maxwell–Stefan Approach
DEFF Research Database (Denmark)
Shapiro, Alexander
2015-01-01
We develop an approach to coupling between viscous flows of the two phases in porous media, based on the Maxwell–Stefan formalism. Two versions of the formalism are presented: the general form, and the form based on the interaction of the flowing phases with the interface between them. The last...... approach is supported by the description of the flow on the mesoscopic level, as coupled boundary problems for the Brinkmann or Stokes equations. It becomes possible, in some simplifying geometric assumptions, to derive exact expressions for the phenomenological coefficients in the Maxwell–Stefan transport...
Quasi-stationary Stefan problem as limit case of Mullins-Sekerka problem
Institute of Scientific and Technical Information of China (English)
易法槐; 陶有山; 刘祖汉
1997-01-01
The existence of a local classical solution to the Mullins-Sekerka problem and the convergence to the two-phase quasi-stationary Stefan problem are proved when surface tension approaches zero. This convergence gives a proof of the existence of a local classical solution of quasi-stationary Stefan problem. The methods work in all dimensions.
The classical Stefan problem basic concepts, modelling and analysis
Gupta, SC
2003-01-01
This volume emphasises studies related toclassical Stefan problems. The term "Stefan problem" isgenerally used for heat transfer problems with phase-changes suchas from the liquid to the solid. Stefan problems have somecharacteristics that are typical of them, but certain problemsarising in fields such as mathematical physics and engineeringalso exhibit characteristics similar to them. The term``classical" distinguishes the formulation of these problems fromtheir weak formulation, in which the solution need not possessclassical derivatives. Under suitable assumptions, a weak solutioncould be as good as a classical solution. In hyperbolic Stefanproblems, the characteristic features of Stefan problems arepresent but unlike in Stefan problems, discontinuous solutions areallowed because of the hyperbolic nature of the heat equation. Thenumerical solutions of inverse Stefan problems, and the analysis ofdirect Stefan problems are so integrated that it is difficult todiscuss one without referring to the other. So no...
CLASSICAL SOLUTION OF QUASI-STATIONARY STEFAN PROBLEM
Institute of Scientific and Technical Information of China (English)
YIFAHUAI
1996-01-01
This paper considers the quasi-stationary Stefan problem:△u(x,t)=0 in space-time domain,u=0 and Vv+δu/δv=0 on the free boundary. under the natural conditions the existence of classical solution locally in time is proved by making use of the property of Frechet derivative operator and fixed point theorem. For the sake of simplicity only the one-phase problem is dealt with. In fact two-phase problem can be dealt with in a similar way with more complicated calculation.
[The suicide problem in Stefan Zweig's works].
Haenel, T
1981-01-01
The life of the Vienna-born writer Stefan Zweig, whose centenary will be on November 28th, 1981, is portrayed in the light of some external data. His works - mainly novellas - in which the theme of suicide plays a central role, are briefly presented, and his preference for describing psychological borderline and extreme states is stressed. One of his first poems and his last one - more than forty years lie between them - are discussed with reference to his depression and suicidal tendencies. Zweig, who at least since the First World war had been periodically suffering from depressions, was looked after and in a sense also treated by his first wife Friderike von Winternitz, until he had to leave his home in Salzburg in 1935. In 1939, he divorced from his wife and married his sickly secretary, Lotte Altmann, who suffered from asthma and depression. After prolonged stays in England, North and South America he settled in Petropolis near Rio de Janeiro in Brasil, where he spent the last months of his life. Zweig was the second son of a dominating, self-willed mother and a dignified, almost "motherly" father. He felt his childhood to have been constricted and hemmed in. His narcissism, which has played an essential role in relation to his suicide, has its roots in his childhood. Direct as well as indirect hints at suicide were not lacking during the last two years of Zweig's life, which were increasingly filled with depression and anxiety. The preface to his autobiography "The World of Yesterday" may be interpreted as an indirect announcement of suicide. On February 22nd, 1942, Zweig committed suicide together with his second wife in Petropolis.
A NOVEL ALGORITHM FOR SOLVING THE CLASSICAL STEFAN PROBLEM
Directory of Open Access Journals (Sweden)
Zhaochun Wu
2011-01-01
Full Text Available A novel algorithm for solving the classic Stefan problem is proposed in the paper. Instead of front tracking, we preset the moving interface locations and use these location coordinates as the grid points to find out the arrival time of moving interface respectively. Through this approach, the difficulty in mesh generation can be avoided completely. The simulation shows the numerical result is well coincident with the exact solution, implying the new approach performes well in solving this problem.
Well-posedness for the Classical Stefan Problem and the Zero Surface Tension Limit
Hadžić, Mahir; Shkoller, Steve
2016-11-01
We develop a framework for a unified treatment of well-posedness for the Stefan problem with or without surface tension. In the absence of surface tension, we establish well-posedness in Sobolev spaces for the classical Stefan problem. We introduce a new velocity variable which extends the velocity of the moving free-boundary into the interior domain. The equation satisfied by this velocity is used for the analysis in place of the heat equation satisfied by the temperature. Solutions to the classical Stefan problem are then constructed as the limit of solutions to a carefully chosen sequence of approximations to the velocity equation, in which the moving free-boundary is regularized and the boundary condition is modified in a such a way as to preserve the basic nonlinear structure of the original problem. With our methodology, we simultaneously find the required stability condition for well-posedness and obtain new estimates for the regularity of the moving free-boundary. Finally, we prove that solutions of the Stefan problem with positive surface tension {σ} converge to solutions of the classical Stefan problem as {σ to 0}.
Directory of Open Access Journals (Sweden)
A. K. Pani
1987-01-01
Full Text Available Optimal error estimates in L2, H1 and H2-norm are established for a single phase Stefan problem with quasilinear parabolic equation in non-divergence form by an H1-Galerkin procedure.
Pressure transient analysis of two-phase flow problems
Energy Technology Data Exchange (ETDEWEB)
Chu, W.C.; Reynolds, A.C.; Raghavan, R.
1986-04-01
This paper considers the analysis of pressure drawdown and buildup data for two-phase flow problems. Of primary concern is the analysis of data influenced by saturation gradients that exist within the reservoir. Wellbore storage effects are assumed to be negligible. The pressure data considered are obtained from a two-dimensional (2D) numerical coning model for an oil/water system. The authors consider constant-rate production followed by a buildup period and assume that the top, bottom, and outer boundaries of the reservoir are sealed. First, they consider the case where the producing interval is equal to the total formation thickness. Second, they discuss the effect of partial penetration. In both cases, they show that average pressure can be estimated by the Matthews-Brons-Hazebroek method and consider the computation of the skin factor. They also show that a reservoir limit test can estimate reservoir PV only if the total mobility adjacent to the wellbore does not vary with time.
Fractional Stefan problems exhibiting lumped and distributed latent-heat memory effects
Voller, Vaughan R.; Falcini, Federico; Garra, Roberto
2013-04-01
We consider fractional Stefan melting problems which involve a memory of the latent-heat accumulation. We show that the manner in which the memory of the latent-heat accumulation is recorded depends on the assumed nature of the transition between the liquid and the solid phases. When a sharp interface between the liquid and the solid phases is assumed, the memory of the accumulation of the latent heat is “lumped” in the history of the speed of the interface. In contrast, when a diffuse interface is assumed, the memory of the accumulation is “distributed” throughout the liquid phase. By use of an example problem, we demonstrate that the equivalence of the sharp- and diffuse-interface models can only occur when there is no memory in the system.
Cao, Yiding; Faghri, Amir; Chang, Won Soon
1989-01-01
An enthalpy transforming scheme is proposed to convert the energy equation into a nonlinear equation with the enthalpy, E, being the single dependent variable. The existing control-volume finite-difference approach is modified so it can be applied to the numerical performance of Stefan problems. The model is tested by applying it to a three-dimensional freezing problem. The numerical results are in agreement with those existing in the literature. The model and its algorithm are further applied to a three-dimensional moving heat source problem showing that the methodology is capable of handling complicated phase-change problems with fixed grids.
Disperse two-phase flows, with applications to geophysical problems
Berselli, Luigi Carlo; Iliescu, Traian
2014-01-01
In this paper we study the motion of a fluid with several dispersed particles whose concentration is very small (smaller than $10^{-3}$), with possible applications to problems coming from geophysics, meteorology, and oceanography. We consider a very dilute suspension of heavy particles in a quasi-incompressible fluid (low Mach number). In our case the Stokes number is small and --as pointed out in the theory of multiphase turbulence-- we can use an Eulerian model instead of a Lagrangian one. The assumption of low concentration allows us to disregard particle--particle interactions, but we take into account the effect of particles on the fluid (two-way coupling). In this way we can study the physical effect of particle inertia (and not only passive tracers), with a model similar to the Boussinesq equations. The resulting model is used in both direct numerical simulations and large eddy simulations of a dam-break (lock-exchange) problem, which is a well-known academic test case. Keywords: Dilute suspensions, E...
Pressure transient analysis of two-phase flow problems
Energy Technology Data Exchange (ETDEWEB)
Chu, W.C.; Reynolds, A.C.; Raghavan, R.
1981-01-01
This work investigates methods to determine reservoir parameters from pressure drawdown and buildup data in a reservoir in which oil and water flow simultaneously. The authors examine the pressure response at a well located at the center of a cylindrical reservoir and consider the pressure response at fully penetrating and partially penetrating wells. The primary concern of the study is to examine the applicability of classical methods for determining phase mobilities, skin factor, average reservoir pressure and reservoir pore volume. Incidental to this study, the authors discuss a method for treating the rate equation in a finite difference model. this method avoids the problem of correctly allocating a total specified rate among producing blocks in a numerical simulator. 18 refs.
Solutions of Green s function for Lamb s problem of a two-phase saturated medium
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The solutions of Green's function are significant for simplification of problem on a two-phase saturated medium.Using transformation of axisymmetric cylindrical coordinate and Sommerfeld's integral,superposition of the influence field on a free surface,authors obtained the solutions of a two-phase saturated medium subjected to a concentrated force on the semi-space.
Institute of Scientific and Technical Information of China (English)
袁益让
2002-01-01
For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estinates in L2 norm are derived to determine the error in the approximate solution.
A Chebyshev collocation method for solving two-phase flow stability problems
Boomkamp, P.A.M.; Boersma, B.J.; Miesen, R.H.M.; Beijnon, G.V.
1997-01-01
This paper describes a Chebyshev collocation method for solving the eigenvalue problem that governs the stability of parallel two-phase flow. The method is based on the expansion of the eigenfunctions in terms of Chebyshev polynomials, point collocation, and the subsequent solution of the resulting
Problems of heat transfer and hydraulics of two-phase media
Kutateladze, S S
1969-01-01
Problems of Heat Transfer and Hydraulics of Two-Phase Media presents the theory of heat transfer and hydrodynamics. This book discusses the various aspects of heat transfer and the flow of two-phase systems. Organized into two parts encompassing 22 chapters, this book starts with an overview of the laws of similarity for heat transfer to or from a flowing liquid with various physical properties and allowed for variation in viscosity and thermal conductivity. This book then explores the general functional relationship that exists between viscosity and thermal conductivity for thermodynamically
A two-phase free boundary problem for a nonlinear diffusion-convection equation
Energy Technology Data Exchange (ETDEWEB)
De Lillo, S; Lupo, G [Dipartimento di Matematica e Informatica, Universita degli Studi di Perugia, Via Vanvitelli 1, 06123 Perugia (Italy)], E-mail: silvana.delillo@pg.infn.it
2008-04-11
A two-phase free boundary problem associated with a diffusion-convection equation is considered. The problem is reduced to a system of nonlinear integral equations, which admits a unique solution for small times. The system admits an explicit two-component solution corresponding to a two-component shock wave of the Burgers equation. The stability of such a solution is also discussed.
Institute of Scientific and Technical Information of China (English)
袁益让
1999-01-01
For compressible two-phase displacement problem, a kind of characteristic finite difference fractional steps schemes is put forward and thick and thin grids are used to form a complete set. Some techniques, such as piecewise biquadratic interpolation, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L~2 norm are derived to determine the error in the approximate solution.
Numerical method for nonlinear two-phase displacement problem and its application
Institute of Scientific and Technical Information of China (English)
YUAN Yi-rang; LIANG Dong; RUI Hong-xing; DU Ning; WANG Wen-qia
2008-01-01
For the three-dimensional nonlinear two-phase displacement problem, the modified upwind finite difference fractional steps schemes were put forward. Some techniques, such as calculus of variations, induction hypothesis, decomposition of high order difference operators, the theory of prior estimates and techniques were used. Optimal order estimates were derived for the error in the approximation solution. These methods have been successfully used to predict the consequences of seawater intrusion and protection projects.
Lattice Boltzmann Methods to Address Fundamental Boiling and Two-Phase Problems
Energy Technology Data Exchange (ETDEWEB)
Uddin, Rizwan
2012-01-01
This report presents the progress made during the fourth (no cost extension) year of this three-year grant aimed at the development of a consistent Lattice Boltzmann formulation for boiling and two-phase flows. During the first year, a consistent LBM formulation for the simulation of a two-phase water-steam system was developed. Results of initial model validation in a range of thermo-dynamic conditions typical for Boiling Water Reactors (BWRs) were shown. Progress was made on several fronts during the second year. Most important of these included the simulation of the coalescence of two bubbles including the surface tension effects. Work during the third year focused on the development of a new lattice Boltzmann model, called the artificial interface lattice Boltzmann model (AILB model) for the 3 simulation of two-phase dynamics. The model is based on the principle of free energy minimization and invokes the Gibbs-Duhem equation in the formulation of non-ideal forcing function. This was reported in detail in the last progress report. Part of the efforts during the last (no-cost extension) year were focused on developing a parallel capability for the 2D as well as for the 3D codes developed in this project. This will be reported in the final report. Here we report the work carried out on testing the AILB model for conditions including the thermal effects. A simplified thermal LB model, based on the thermal energy distribution approach, was developed. The simplifications are made after neglecting the viscous heat dissipation and the work done by pressure in the original thermal energy distribution model. Details of the model are presented here, followed by a discussion of the boundary conditions, and then results for some two-phase thermal problems.
Directory of Open Access Journals (Sweden)
Adriana C. Briozzo
2006-02-01
Full Text Available We prove the existence and uniqueness, local in time, of a solution for a one-phase Stefan problem of a non-classical heat equation for a semi-infinite material with temperature boundary condition at the fixed face. We use the Friedman-Rubinstein integral representation method and the Banach contraction theorem in order to solve an equivalent system of two Volterra integral equations.
Institute of Scientific and Technical Information of China (English)
Yi-rang Yuan
2004-01-01
For compressible two-phase displacement problem,the modified upwind finite difference fractional steps schemes are put forward.Some techniques,such as calculus of variations,commutative law of multiplication of difference operators,decomposition of high order difference operators,the theory of prior estimates and techniques are used.Optimal order estimates in L 2 norm are derived for the error in the approximate solution.This method has already been applied to the numerical simulation of seawater intrusion and migration-accumulation of oil resources.
A two-phase linear programming approach for redundancy allocation problems
Directory of Open Access Journals (Sweden)
Hsieh Yi-Chih
2002-01-01
Full Text Available Provision of redundant components in parallel is an efficient way to increase the system reliability, however, the weight, volume and cost of the system will increase simultaneously. This paper proposes a new two-phase linear programming approach for solving the nonlinear redundancy allocation problems subject to multiple linear constraints. The first phase is used to approximately allocate the resource by using a general linear programming, while the second phase is used to re-allocate the slacks of resource by using a 0-1 integer linear programming. Numerical results demonstrate the effectiveness and efficiency of the proposed approach.
Directory of Open Access Journals (Sweden)
Sandro Salsa
2006-12-01
Full Text Available Let L be a divergence form operator with Lipschitz continuous coefficients in a domain ÃŽÂ©, and let u be a continuous weak solution of Lu=0 in {uÃ¢Â‰Â 0}. In this paper, we show that if ÃÂ† satisfies a suitable differential inequality, then vÃÂ†(x=supBÃÂ†(x(xu is a subsolution of Lu=0 away from its zero set. We apply this result to prove C1,ÃŽÂ³ regularity of Lipschitz free boundaries in two-phase problems.
A two-scale Stefan problem arising in a model for tree sap exudation
Konrad, Isabell; Stockie, John M
2016-01-01
The study of tree sap exudation, in which a (leafless) tree generates elevated stem pressure in response to repeated daily freeze-thaw cycles, gives rise to an interesting multi-scale problem involving heat and multiphase liquid/gas transport. The pressure generation mechanism is a cellular-level process that is governed by differential equations for sap transport through porous cell membranes, phase change, heat transport, and generation of osmotic pressure. By assuming a periodic cellular structure based on an appropriate reference cell, we derive an homogenized heat equation governing the global temperature on the scale of the tree stem, with all the remaining physics relegated to equations defined on the reference cell. We derive a corresponding strong formulation of the limit problem and use it to design an efficient numerical solution algorithm. Numerical simulations are then performed to validate the results and draw conclusions regarding the phenomenon of sap exudation, which is of great importance in...
APPLYING ROBUST RANKING METHOD IN TWO PHASE FUZZY OPTIMIZATION LINEAR PROGRAMMING PROBLEMS (FOLPP
Directory of Open Access Journals (Sweden)
Monalisha Pattnaik
2014-12-01
Full Text Available Background: This paper explores the solutions to the fuzzy optimization linear program problems (FOLPP where some parameters are fuzzy numbers. In practice, there are many problems in which all decision parameters are fuzzy numbers, and such problems are usually solved by either probabilistic programming or multi-objective programming methods. Methods: In this paper, using the concept of comparison of fuzzy numbers, a very effective method is introduced for solving these problems. This paper extends linear programming based problem in fuzzy environment. With the problem assumptions, the optimal solution can still be theoretically solved using the two phase simplex based method in fuzzy environment. To handle the fuzzy decision variables can be initially generated and then solved and improved sequentially using the fuzzy decision approach by introducing robust ranking technique. Results and conclusions: The model is illustrated with an application and a post optimal analysis approach is obtained. The proposed procedure was programmed with MATLAB (R2009a version software for plotting the four dimensional slice diagram to the application. Finally, numerical example is presented to illustrate the effectiveness of the theoretical results, and to gain additional managerial insights.
Directory of Open Access Journals (Sweden)
Grigorios N. Beligiannis
2013-05-01
Full Text Available In this contribution, a generic two-phase stochastic variable neighborhood approach is applied to nurse rostering problems. The proposed algorithm is used for creating feasible and efficient nurse rosters for many different nurse rostering cases. In order to demonstrate the efficiency and generic applicability of the proposed approach, experiments with real-world input data coming from many different nurse rostering cases have been conducted. The nurse rostering instances used have significant differences in nature, structure, philosophy and the type of hard and soft constraints. Computational results show that the proposed algorithm performs better than six different existing approaches applied to the same nurse rostering input instances using the same evaluation criteria. In addition, in all cases, it manages to reach the best-known fitness achieved in the literature, and in one case, it manages to beat the best-known fitness achieved till now.
The use of wavelet transforms in the solution of two-phase flow problems
Energy Technology Data Exchange (ETDEWEB)
Moridis, G.J. [Lawrence Berkeley Lab., CA (United States); Nikolaou, M.; You, Yong [Texas A& M Univ., College Station, TX (United States). Dept. of Chemical Engineering
1994-10-01
In this paper we present the use of wavelets to solve the nonlinear Partial Differential.Equation (PDE) of two-phase flow in one dimension. The wavelet transforms allow a drastically different approach in the discretization of space. In contrast to the traditional trigonometric basis functions, wavelets approximate a function not by cancellation but by placement of wavelets at appropriate locations. When an abrupt chance, such as a shock wave or a spike, occurs in a function, only local coefficients in a wavelet approximation will be affected. The unique feature of wavelets is their Multi-Resolution Analysis (MRA) property, which allows seamless investigational any spatial resolution. The use of wavelets is tested in the solution of the one-dimensional Buckley-Leverett problem against analytical solutions and solutions obtained from standard numerical models. Two classes of wavelet bases (Daubechies and Chui-Wang) and two methods (Galerkin and collocation) are investigated. We determine that the Chui-Wang, wavelets and a collocation method provide the optimum wavelet solution for this type of problem. Increasing the resolution level improves the accuracy of the solution, but the order of the basis function seems to be far less important. Our results indicate that wavelet transforms are an effective and accurate method which does not suffer from oscillations or numerical smearing in the presence of steep fronts.
A FINITE ELEMENT COLLOCATION METHOD FOR TWO-PHASE INCOMPRESSIBLE IMMISCIBLE PROBLEMS
Institute of Scientific and Technical Information of China (English)
Ma Ning
2007-01-01
Two-phase, incompressible, immiscible flow in porous media is governed by a coupled system of nonlinear partial differential equations. The pressure equation is elliptic,whereas the concentration equation is parabolic, and both are treated by the collocation scheme. Existence and uniqueness of solutions of the algorithm are proved. A optimal convergence analysis is given for the method.
A two phase algorithm for solving a class of hard satissfiability problems
J.P. Warners; H. van Maaren
1998-01-01
textabstractThe DIMACS suite of satisfiability (SAT) benchmarks contains a set of instances that are very hard for existing algorithms. These instances arise from learning the parity function on 32 bits. In this paper we develop a two phase algorithm that is capable of solving these instances. In
Numerical simulation for a two-phase porous medium flow problem with rate independent hysteresis
Brokate, M.
2012-05-01
The paper is devoted to the numerical simulation of a multiphase flow in porous medium with a hysteretic relation between the capillary pressures and the saturations of the phases. The flow model we use is based on Darcys law. The hysteretic relation between the capillary pressures and the saturations is described by a play-type hysteresis operator. We propose a numerical algorithm for treating the arising system of equations, discuss finite element schemes and present simulation results for the case of two phases. © 2011 Elsevier B.V. All rights reserved.
TWO-PHASE ALGORITHM FOR SOLVING HETEROGENEOUS TRAVELLING REPAIRMEN PROBLEM WITH TIME WINDOWS
Directory of Open Access Journals (Sweden)
Nenad Bjelić
2015-03-01
Full Text Available Heterogeneous travelling repairmen problem with time windows (hetTRPTW is customer oriented problem with large possibilities for practical applications in logistics area. Models and algorithms developed for solving one problem with a cumulative objective function may be, with a little effort, transformed for solving similar problem with a cumulative function. In that sense, aim of this paper is to present results obtained by implementing an algorithm developed for solving cumulative capacitated vehicle routing problem in solving hetTRPTW.
Mathematical modeling and numerical simulation of two-phase flow problems at pore scale
Directory of Open Access Journals (Sweden)
Paula Luna
2015-11-01
Full Text Available Mathematical modeling and numerical simulation of two-phase flow through porous media is a very active field of research, because of its relevancy in a wide range of physical and technological applications. Some outstanding applications concern reservoir simulation and oil and gas recovery, fields in which a great effort is being paid in the development of efficient numerical methods. The mathematical model used in this work is written as a system comprising an elliptic equation for pressure and a hyperbolic one for saturation. Our aim is to obtain the numerical solution of this model by combining finite element and finite volume techniques, with a second-order non-oscillatory reconstruction procedure to build the values of the velocities at the cell interfaces of the FV mesh from pointwise values of the pressure at the FE nodes. The numerical results are compared to those obtained using the commercial code ECLIPSE showing an appropriate behavior from a qualitative point of view. The use of this FE-FV procedure is not the usual numerical method in petroleum reservoir simulation, since the techniques most frequently used are based on finite differences, even in standard commercial tools.
Yang, Haijian
2016-07-26
Fully implicit methods are drawing more attention in scientific and engineering applications due to the allowance of large time steps in extreme-scale simulations. When using a fully implicit method to solve two-phase flow problems in porous media, one major challenge is the solution of the resultant nonlinear system at each time step. To solve such nonlinear systems, traditional nonlinear iterative methods, such as the class of the Newton methods, often fail to achieve the desired convergent rate due to the high nonlinearity of the system and/or the violation of the boundedness requirement of the saturation. In the paper, we reformulate the two-phase model as a variational inequality that naturally ensures the physical feasibility of the saturation variable. The variational inequality is then solved by an active-set reduced-space method with a nonlinear elimination preconditioner to remove the high nonlinear components that often causes the failure of the nonlinear iteration for convergence. To validate the effectiveness of the proposed method, we compare it with the classical implicit pressure-explicit saturation method for two-phase flow problems with strong heterogeneity. The numerical results show that our nonlinear solver overcomes the often severe limits on the time step associated with existing methods, results in superior convergence performance, and achieves reduction in the total computing time by more than one order of magnitude.
Simulation of two-phase flow in elbow with problem solving
Ahmai, Somayeh; Al-Makky, Ahmed
2014-04-01
Multiphase flows occurring in circular curved pipes exhibit important physical phenomena.They are characterized by a large pressure drop and are composed of different phases. In the past, erosion-corrosion was measured through the use of experimental methods. Today numerical simulation models provide a more in depth look into the problem of erosion. Solid particle erosion is of major concern in the industrial engineering sector. In this study, erosion occurring in a (90)-degree elbow has been simulated. The generated two-dimensional data was done through the use of the Commercial software ANSYS Fluent. The primary idea comes from the petrochemicals industry. To overcome this problem, counter measures are proposed in this paper to the piping setup in order to protect pumps from unwanted excessive sand concentrations. Note that the physical properties of the simulated fluid mixture are taken the same as for the real-studied sample.
Two-Phase Heuristic for the Vehicle Routing Problem with Time Windows
Directory of Open Access Journals (Sweden)
Sándor Csiszár
2007-08-01
Full Text Available The subject of the paper is a complete solution for the vehicle routing problemwith time windows, an industrial realization of an NP hard combinatorial optimizationproblem. The primary objective –the minimization of the number of routes- is aimed in thefirst phase, the secondary objective –the travel distance minimization- is going to berealized in the second phase by tabu search. The initial route construction applies aprobability density function for seed selection. Guided Route Elimination procedure wasalso developed. The solution was tested on the Solomon Problem Set and seems to be verycompeitive with the best heuristics published in the latest years (2003-2005.
Pore-scale modeling of moving contact line problems in immiscible two-phase flow
Kucala, Alec; Noble, David; Martinez, Mario
2016-11-01
Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). Here, we present a model for the moving contact line using pore-scale computational fluid dynamics (CFD) which solves the full, time-dependent Navier-Stokes equations using the Galerkin finite-element method. The MCL is modeled as a surface traction force proportional to the surface tension, dependent on the static properties of the immiscible fluid/solid system. We present a variety of verification test cases for simple two- and three-dimensional geometries to validate the current model, including threshold pressure predictions in flows through pore-throats for a variety of wetting angles. Simulations involving more complex geometries are also presented to be used in future simulations for GCS and EOR problems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Baniamerian, Ali; Bashiri, Mahdi; Zabihi, Fahime
2017-04-01
Cross-docking is a new warehousing policy in logistics which is widely used all over the world and attracts many researchers attention to study about in last decade. In the literature, economic aspects has been often studied, while one of the most significant factors for being successful in the competitive global market is improving quality of customer servicing and focusing on customer satisfaction. In this paper, we introduce a vehicle routing and scheduling problem with cross-docking and time windows in a three-echelon supply chain that considers customer satisfaction. A set of homogeneous vehicles collect products from suppliers and after consolidation process in the cross-dock, immediately deliver them to customers. A mixed integer linear programming model is presented for this problem to minimize transportation cost and early/tardy deliveries with scheduling of inbound and outbound vehicles to increase customer satisfaction. A two phase genetic algorithm (GA) is developed for the problem. For investigating the performance of the algorithm, it was compared with exact and lower bound solutions in small and large-size instances, respectively. Results show that there are at least 86.6% customer satisfaction by the proposed method, whereas customer satisfaction in the classical model is at most 33.3%. Numerical examples results show that the proposed two phase algorithm could achieve optimal solutions in small-size instances. Also in large-size instances, the proposed two phase algorithm could achieve better solutions with less gap from the lower bound in less computational time in comparison with the classic GA.
Two-phase semilinear free boundary problem with a degenerate phase
Matevosyan, Norayr
2010-10-16
We study minimizers of the energy functional ∫D[{pipe}∇u{pipe}2 + λ(u+)p]dx for p ∈ (0, 1) without any sign restriction on the function u. The distinguished feature of the problem is the lack of nondegeneracy in the negative phase. The main result states that in dimension two the free boundaries Γ+ = ∂{u > 0} ∩ D andΓ- = ∂{u < 0} ∩ D are C1,α-regular, provided 1 - ∈0 < p < 1. The proof is obtained by a careful iteration of the Harnack inequality to obtain a nontrivial growth estimate in the negative phase, compensating for the apriori unknown nondegeneracy. © 2010 Springer-Verlag.
Energy Technology Data Exchange (ETDEWEB)
Kauder, K.; Kliem, B. [Dortmund Univ. (Germany). FG Fluidenergiemaschinen
1998-12-31
The two-phase screw-type engine presents itself as a expansion engine in a trilateral-flash-cycle to use waste heat in the lower temperature range, because this displacement engine is able to expand working fluids with a high proportion of liquid. Due to the low critical velocity and the blocking flow, the two-phase flow in the inlet port of the screw-type engine has a great influence on the quality of energy transformation. A novel filling system with rotating short nozzles is presented. Less dissipation during the filling process is expected by this system, because the flash evaporation of the fluid will occur in the working chamber and not in the inlet port of the screw-type engine. (orig.) [Deutsch] Der Zweiphasen-Schraubenmotor besitzt als Expansionsmaschine in Trilateral-Flash-Cycle-Prozessen zur Nutzung von Abwaerme mit niedriger Temperatur deutliche Vorteile, da dieser Maschinentyp in der Lage ist, Arbeitsfluide mit einem hohen Fluessigkeitsanteil zu expandieren. Die Zweiphasenstroemung im Einlassbereich des Schraubenmotors hat aufgrund ihrer geringen kritischen Geschwindigkeit und der damit verbundenen blockierten Stroemung einen signifikanten Einfluss auf die Fuellung der Arbeitskammer und der Energiewandlungsguete des Motors. Ein hier vorgestelltes neuartiges Fuellungssystem mit rotierenden Kurzduesen laesst eine verbesserte Fuellung des Zweiphasen-Schraubenmotors erwarten, da es erst in den Arbeitskammern zur Flashverdampfung kommt. (orig.)
Directory of Open Access Journals (Sweden)
Kalić Jovanka
2006-01-01
Full Text Available The topic of this paper is one aspect of the relationship between Serbia and Byzantium at the beginning of the 15th Century, during the so-called "despot period" of the reign of Stefan Lazarević (1402-1427, namely the fate of the Byzantine title of Despots' in Serbia against the background of the political situation in the Balkans at the time of Turkish domination. Knez Stefan (1377-1427, Knez Lazar's son, received the title of Despotes according to the procedure long ago established at the Byzantine Court. In Byzantium, this title, which was second in rank only to the title of the Emperor, used to be endowed to the relatives of the imperial dynasty, it was not hereditary and did not depend on the territory ruled by the bearer of the title. It was a personal court title of the highest rank in Byzantium. This honor was bestowed upon the young Knez Stefan in summer of 1402 after his return from the battlefield of Angora (Ankara, where Sultan Beyazid I suffered a disastrous defeat from the hands of the Tatars. The Serbian Knez was solemnly received in Constantinople, a marriage between himself and a sister of the Byzantine Empress was arranged and John VII Palaeologus, the co-regent of the then-absent Emperor Manuel II Palaeologus, endowed him with the title of Despotes. Knez Stefan carried this title till the end of his life. It was held in great honors in Serbia and was broadened in meaning to designate a ruler's title in general, remaining alive among the Serbs even after the fall of the Byzantine Empire. Stefan Lazarević received the dignity of a Despotes once more, in 1410 in Constantinople. All this notwithstanding, the political situation in the South-East of Europe at the beginning of the 15th Century was all but favorable. Some Christian states were conquered by the Turks (Bulgaria, some were vassals of the Sultan (Byzantium, Serbia. Everything depended on the Ottomans. At the time of dynastic conflicts in the Turkish Empire (1403
Energy Technology Data Exchange (ETDEWEB)
Shin, Y.W.; Wiedermann, A.H.
1984-02-01
A method was published, based on the integral method of characteristics, by which the junction and boundary conditions needed in computation of a flow in a piping network can be accurately formulated. The method for the junction and boundary conditions formulation together with the two-step Lax-Wendroff scheme are used in a computer program; the program in turn, is used here in calculating sample problems related to the blowdown transient of a two-phase flow in the piping network downstream of a PWR pressurizer. Independent, nearly exact analytical solutions also are obtained for the sample problems. Comparison of the results obtained by the hybrid numerical technique with the analytical solutions showed generally good agreement. The good numerical accuracy shown by the results of our scheme suggest that the hybrid numerical technique is suitable for both benchmark and design calculations of PWR pressurizer blowdown transients.
Directory of Open Access Journals (Sweden)
Yu Lin
2015-01-01
Full Text Available High frequency and small lot size are characteristics of milk runs and are often used to implement the just-in-time (JIT strategy in logistical systems. The common frequency problem, which simultaneously involves planning of the route and frequency, has been extensively researched in milk run systems. In addition, vehicle type choice in the milk run system also has a significant influence on the operating cost. Therefore, in this paper, we simultaneously consider vehicle routing planning, frequency planning, and vehicle type choice in order to optimize the sum of the cost of transportation, inventory, and dispatch. To this end, we develop a mathematical model to describe the common frequency problem with vehicle type choice. Since the problem is NP hard, we develop a two-phase heuristic algorithm to solve the model. More specifically, an initial satisfactory solution is first generated through a greedy heuristic algorithm to maximize the ratio of the superior arc frequency to the inferior arc frequency. Following this, a tabu search (TS with limited search scope is used to improve the initial satisfactory solution. Numerical examples with different sizes establish the efficacy of our model and our proposed algorithm.
Directory of Open Access Journals (Sweden)
S. Borazjani
2014-01-01
Full Text Available Analytical solutions for one-dimensional two-phase multicomponent flows in porous media describe processes of enhanced oil recovery, environmental flows of waste disposal, and contaminant propagation in subterranean reservoirs and water management in aquifers. We derive the exact solution for 3×3 hyperbolic system of conservation laws that corresponds to two-phase four-component flow in porous media where sorption of the third component depends on its own concentration in water and also on the fourth component concentration. Using the potential function as an independent variable instead of time allows splitting the initial system to 2×2 system for concentrations and one scalar hyperbolic equation for phase saturation, which allows for full integration of non-self-similar problem with wave interactions.
Arbogast, Todd
2012-01-01
Motivated by possible generalizations to more complex multiphase multicomponent systems in higher dimensions, we develop an Eulerian-Lagrangian numerical approximation for a system of two conservation laws in one space dimension modeling a simplified two-phase flow problem in a porous medium. The method is based on following tracelines, so it is stable independent of any CFL constraint. The main difficulty is that it is not possible to follow individual tracelines independently. We approximate tracing along the tracelines by using local mass conservation principles and self-consistency. The two-phase flow problem is governed by a system of equations representing mass conservation of each phase, so there are two local mass conservation principles. Our numerical method respects both of these conservation principles over the computational mesh (i.e., locally), and so is a fully conservative traceline method. We present numerical results that demonstrate the ability of the method to handle problems with shocks and rarefactions, and to do so with very coarse spatial grids and time steps larger than the CFL limit. © 2012 Society for Industrial and Applied Mathematics.
Ahmad, Zahoor; Hanif, Muhammad
2013-01-01
The development of estimators of population parameters based on two-phase sampling schemes has seen a dramatic increase in the past decade. Various authors have developed estimators of population using either one or two auxiliary variables. The present volume is a comprehensive collection of estimators available in single and two phase sampling. The book covers estimators which utilize information on single, two and multiple auxiliary variables of both quantitative and qualitative nature. Th...
Directory of Open Access Journals (Sweden)
Miraç Eren
2017-01-01
Full Text Available Regional Development Agencies (RDAs play a major role in ensuring sustainability and reducing inter-regional and intra-regional development disparities in line with the principles and policies set in the National Development Plan and Programs. This is done by enhancing cooperation among the public and private sectors, as well as non-governmental organizations. To achieve these targets, RDAs use certain tools such as financial support programs, technical support programs, and the like. Accordingly, an effective evaluation mechanism is crucial in selecting projects that have more added value and higher multiplier effects. In this regard, determining the right parameters that assist in choosing the best projects should be clearly demonstrated. In this study, the selection of projects according to the evaluating criteria of support mechanisms considered by RDAs are discussed through the procedure provided by a practical solution methodology, which is an integration of fuzzy parametric programming (FPP and fuzzy linear programming (FLP. Later, a two-phase procedure is introduced to solve multi-objective fuzzy linear programming problems.
Salama, Amgad
2012-06-17
The flow of two immiscible fluids in porous media is ubiquitous particularly in petroleum exploration and extraction. The displacement of one fluid by another immiscible with it represents a very important aspect in what is called enhanced oil recovery. Another example is related to the long-term sequestration of carbon dioxide, CO2 , in deep geologic formations. In this technique, supercritical CO2 is introduced into deep saline aquifer where it displaces the hosting fluid. Furthermore, very important classes of contaminants that are very slightly soluble in water and represent a huge concern if they get introduced to groundwater could basically be assumed immiscible. These are called light non-aqueous phase liquids (LNAPL) and dense non-aqueous phase liquids (DNAPL). All these applications necessitate that efficient algorithms be developed for the numerical solution of these problems. In this work we introduce the use of shifting matrices to numerically solving the problem of two-phase immiscible flows in the subsurface. We implement the cell-center finite difference method which discretizes the governing set of partial differential equations in conservative manner. Unlike traditional solution methodologies, which are based on performing the discretization on a generic cell and solve for all the cells within a loop, in this technique, the cell center information for all the cells are obtained all at once without loops using matrix oriented operations. This technique is significantly faster than the traditional looping algorithms, particularly for larger systems when coding using languages that require repeating interpretation each time a loop is called like Mat Lab, Python and the like. We apply this technique to the transport of LNAPL and DNAPL into a rectangular domain.
Borazjani, S.; Bedrikovetsky, P.; Farajzadeh, R.
2014-01-01
Analytical solutions for one-dimensional two-phase multicomponent flows in porous media describe processes of enhanced oil recovery, environmental flows of waste disposal, and contaminant propagation in subterranean reservoirs and water management in aquifers. We derive the exact solution for 3x3 hy
Exemplary Europeans. Romain Rolland and Stefan Zweig
Rensen, M.
2014-01-01
The friendship between Romain Rolland (1866-1944) and Stefan Zweig (1881-1942) offers a prime example of intellectual encounter in interwar Europe. The two writers maintained intensive contact between the World Wars and exchanged ideas on the future of Europe and the role of literature in the revita
Stefan-Boltzmann law for massive photons
Moreira, E S
2015-01-01
Thirty years ago a paper appeared in the literature generalizing the Stefan-Boltzmann law to include massive photons. The paper suffers from a flaw though: it assumes that a massive photon travels at the speed of (massless) light. The present work fixes the mistake and presents the correct formula for the radiance.
Stefan-Boltzmann Law for Massive Photons
Moreira, E. S.; Ribeiro, T. G.
2016-08-01
This paper generalizes the Stefan-Boltzmann law to include massive photons. A crucial ingredient to obtain the correct formula for the radiance is to realize that a massive photon does not travel at the speed of (massless) light. It follows that, contrary to what could be expected, the radiance is not proportional to the energy density times the speed of light.
NEGATIVE MAXWELL-STEFAN DIFFUSION-COEFFICIENTS
KRAAIJEVELD, G; WESSELINGH, JA
1993-01-01
The existence of negative Maxwell-Stefan diffusivities is investigated. For the case where the diffusion coefficients are taken to be composition dependent, it is found that the theory of irreversible thermodynamics does not require all diffusivities to be positive definite. This theoretical result
Exemplary Europeans. Romain Rolland and Stefan Zweig
Rensen, M.
2014-01-01
The friendship between Romain Rolland (1866-1944) and Stefan Zweig (1881-1942) offers a prime example of intellectual encounter in interwar Europe. The two writers maintained intensive contact between the World Wars and exchanged ideas on the future of Europe and the role of literature in the revita
The 'Byzantinisms' of king Stefan Radoslav
Directory of Open Access Journals (Sweden)
Maksimović Ljubomir
2009-01-01
Full Text Available The life-style and politics of Stefan Radoslav bear the mark of activities that indicated his special attachment to the Byzantine world. These activities were prompted by a combination of ideological ambitions and political reality, but they were not in keeping with the modest achievements of Radoslav's reign. Moreover, most of these activities belong to the time when Radoslav was heir to the throne. There is no doubt that Stefan Nemanjić the Grand Zhupan and subsequently the first crowned king, had exclusive connections with the Byzantine dynasty of the Angeloi, especially with the emperor Alexios III (1195-1203. In that context, the donor's inscription in the basic ring of the dome in the Church of the Mother of God in Studenica (1208, in which his father Stefan Nemanja, is mentioned as (former 'veleslavni gospodin vse srbske zemlje veli(ki župan i svat cara grčkog kir Alesija', is quite indicative. This ideological construction would acquire a contour in reality by means of a political marriage with one of the female offspring of Angeloi lineage, which would represent an alternative solution to Stefan's failed marriage with Eudocia, daughter of the emperor Alexios. Instead, several years elapsed in waging war with the Latins, the Bulgarians and the State of Epiros. However, efforts to create firmer, more tangible ties with the Angeloi dynasty from Epiros were not forgotten. Therefore, the Serbian monarch brought his eldest son Radoslav into play, intending to have him act as a link with the Angeloi bloodline. As a result of all this, the final attempt to have Radoslav become the husband of a princess from the Angelos dynasty is not surprising. At the end of 1219 or the beginning of 1220, he married Anna Doukaina, the daughter of the epirotic ruler Theodore I Angelos Doukas Komnenos, which at that point represented a marriage connection of the highest possible level between two ruling houses. Stefan's insistence on Serbia acquiring a stake
Thermo-fluid dynamics of two-phase flow
Ishii, Mamoru; Ishii, Mamoru; Ishii, M
2006-01-01
Provides a very systematic treatment of two phase flow problems from a theoretical perspectiveProvides an easy to follow treatment of modeling and code devlopemnt of two phase flow related phenomenaCovers new results of two phase flow research such as coverage of fuel cells technology.
An Interview with Professor Stefan Collini
Institute of Scientific and Technical Information of China (English)
Nie Zhenzhao
2005-01-01
Stefan Collini is professor of intellectual history and English literature at the University of Cambridge, and a Fellow of Clare Hall. Among his works are: Public Moralists (1991); Matthew Arnold, A Critical Portrait (1994), and English Pasts (1999). He has also edited works by John Stuart Mill, Matthew Arnold, C.P. Snow, and Umberto Eco. In his interview, he does not believe that Snow's Two Cultures has any important direct relation to literature, but he thinks that F.R. Leavis is a far more important and rewarding figure than Snow. He claims that there is always a tendency for ″moral″ criticism to underplay the significance of matters of form and to undervalue the lighter genres. He also talks about how to understand the literary criticism and theory, the methodology for literary study and comparative literature studies. In this interview, he gives some advice to Chinese literary graduates how to understand the literary theory and criticism, and how to do literary studies.Professor Stefan Collini, FBA, (English Faculty, University of Cambridge) works principally on the relations between literature and intellectual history in the 19th and 20th centuries. He is the author of Liberalism and Sociology (1979), That Noble Science of Politics (1983), Public Moralists (1991), Matthew Arnold: A Critical Portrait (1994), and English Pasts (1999); he has edited works by J.S. Mill, Matthew Arnold, Umberto Eco, and C.P. Snow; and he has recently published essays on T.S. Eliot, F.R. Leavis, George Orwell, Raymond Williams, cultural criticism, the category of ″non-fiction prose″, the idea of the ″non-specialist public″, and the historical development of the concept of ″culture″. He is currently completing a book on The Question of Intellectuals in 20th-century Britain, and his research interests include ″Condition-of-England″ writing, social criticism, literary journalism, the history of literary criticism, and ideas of culture.
Solution to a two-phase tabu algorithm for location routing problem%定位路线问题的两阶段禁忌搜索算法研究
Institute of Scientific and Technical Information of China (English)
徐丽蕊; 李静
2011-01-01
Location routing problem is the integrated decision of location allocation problem and vehicle routing problem. This paper describes the location routing problem, sets up the mathematical model of this problem, and validates the model by Lingo 10. 0. Because this model is a NP-hard problem, to solve this problem, a two-phase tabu search algorithms was designed. At the first phase, the problems of location allocation to fix on the facility and custom allocation were solved by tabu search algorithms; at the second phase, the vehicle routing problem was solved by tabu search algorithms; by a large number of iterative from location to routing phases, the optimizing solution to the location routing can be obtained. Comparing with the related literature , the computing result shows that the designed algorithm is practicable and effective to solve this problem.%定位路线问题是定位配给和车辆路线问题的集成.分析了定位路线问题的含义,建立了此问题的数学模型,并用Lingo 10.0验证了模型的正确性.由于该模型属于NP-hard问题,设计了两阶段禁忌搜索算法:第一阶段用禁忌搜索算法求解定位配给问题,确定设施定位及客户分配;第二阶段用禁忌搜索算法求解车辆路线问题,经过两个阶段的多次迭代求得定位路线问题的优化解,通过实例计算验证该算法的可行性和有效性.
Two-Phase Cavitating Flow in Turbomachines
Directory of Open Access Journals (Sweden)
Sandor I. Bernad
2012-11-01
Full Text Available Cavitating flows are notoriously complex because they are highly turbulent and unsteady flows involving two species (liquid/vapor with a large density difference. These features pose a unique challenge to numerical modeling works. The study briefly reviews the methodology curently employed for industrial cavitating flow simulations using the two-phase mixture model. The two-phase mixture model is evaluated and validated using benchmark problem where experimental data are available. A 3D cavitating flow computation is performed for the GAMM Francis runner. The model is able to qualitatively predict the location and extent of the 3D cavity on the blade, but further investigation are needed to quatitatively assess the accuracy for real turbomachinery cavitating flows.
Critical thinking: a two-phase framework.
Edwards, Sharon L
2007-09-01
This article provides a comprehensive review of how a two-phase framework can promote and engage nurses in the concepts of critical thinking. Nurse education is required to integrate critical thinking in their teaching strategies, as it is widely recognised as an important part of student nurses becoming analytical qualified practitioners. The two-phase framework can be incorporated in the classroom using enquiry-based scenarios or used to investigate situations that arise from practice, for reflection, analysis, theorising or to explore issues. This paper proposes a two-phase framework for incorporation in the classroom and practice to promote critical thinking. Phase 1 attempts to make it easier for nurses to organise and expound often complex and abstract ideas that arise when using critical thinking, identify more than one solution to the problem by using a variety of cues to facilitate action. Phase 2 encourages nurses to be accountable and responsible, to justify a decision, be creative and innovative in implementing change.
Two-phase viscoelastic jetting
Energy Technology Data Exchange (ETDEWEB)
Yu, J-D; Sakai, S.; Sethian, J.A.
2008-12-10
A coupled finite difference algorithm on rectangular grids is developed for viscoelastic ink ejection simulations. The ink is modeled by the Oldroyd-B viscoelastic fluid model. The coupled algorithm seamlessly incorporates several things: (1) a coupled level set-projection method for incompressible immiscible two-phase fluid flows; (2) a higher-order Godunov type algorithm for the convection terms in the momentum and level set equations; (3) a simple first-order upwind algorithm for the convection term in the viscoelastic stress equations; (4) central difference approximations for viscosity, surface tension, and upper-convected derivative terms; and (5) an equivalent circuit model to calculate the inflow pressure (or flow rate) from dynamic voltage.
Determining Planetary Temperatures with the Stefan-Boltzmann Law
LoPresto, Michael C.; Hagoort, Nichole
2011-01-01
What follows is a description of several activities involving the Stefan-Boltzmann radiation law that can provide laboratory experience beyond what is normally found in traditional introductory thermodynamics experiments on thermal expansion, specific heat, and heats of transformation. The activities also provide more extensive coverage of and…
Determining Planetary Temperatures with the Stefan-Boltzmann Law
LoPresto, Michael C.; Hagoort, Nichole
2011-01-01
What follows is a description of several activities involving the Stefan-Boltzmann radiation law that can provide laboratory experience beyond what is normally found in traditional introductory thermodynamics experiments on thermal expansion, specific heat, and heats of transformation. The activities also provide more extensive coverage of and…
EXPLORING THE MAXWELL-STEFAN DESCRIPTION OF ION-EXCHANGE
WESSELINGH, JA; VONK, P; KRAAIJEVELD, G
1995-01-01
In ion exchange, water and several ions diffuse simultaneously, with different velocities. They are driven by activity, electrical and pressure gradients. We describe these complicated processes with the Maxwell-Stefan equation. This equation for multicomponent diffusion requires one diffusivity or
A Stefan model for mass transfer in a rotating disk reaction vessel
BOHUN, C. S.
2015-05-04
Copyright © Cambridge University Press 2015. In this paper, we focus on the process of mass transfer in the rotating disk apparatus formulated as a Stefan problem with consideration given to both the hydrodynamics of the process and the specific chemical reactions occurring in the bulk. The wide range in the reaction rates of the underlying chemistry allows for a natural decoupling of the problem into a simplified set of weakly coupled convective-reaction-diffusion equations for the slowly reacting chemical species and a set of algebraic relations for the species that react rapidly. An analysis of the chemical equilibrium conditions identifies an expansion parameter and a reduced model that remains valid for arbitrarily large times. Numerical solutions of the model are compared to an asymptotic analysis revealing three distinct time scales and chemical diffusion boundary layer that lies completely inside the hydrodynamic layer. Formulated as a Stefan problem, the model generalizes the work of Levich (Levich and Spalding (1962) Physicochemical hydrodynamics, vol. 689, Prentice-Hall Englewood Cliffs, NJ) and will help better understand the natural limitations of the rotating disk reaction vessel when consideration is made for the reacting chemical species.
A vector valued Stefan problem from aluminium industry
F.J. Vermolen; C. Vuik
1998-01-01
textabstractDissolution of stoichiometric multi-component particles in ternary alloys is an important process occurring during the heat treatment of as-cast aluminium alloys prior to hot-extrusion. A mathematical model is proposed to describe such a process. In this model an equation is given to
Smoothed Particle Hydrodynamics Method for Two-dimensional Stefan Problem
Tarwidi, Dede
2016-01-01
Smoothed particle hydrodynamics (SPH) is developed for modelling of melting and solidification. Enthalpy method is used to solve heat conduction equations which involved moving interface between phases. At first, we study the melting of floating ice in the water for two-dimensional system. The ice objects are assumed as solid particles floating in fluid particles. The fluid and solid motion are governed by Navier-Stokes equation and basic rigid dynamics equation, respectively. We also propose a strategy to separate solid particles due to melting and solidification. Numerical results are obtained and plotted for several initial conditions.
Notes on Stefan-Maxwell Equation versus Grahan's Diffusion Law
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Certain prerequisite information on the component fluxes is necessary for solution of the Stefan-Maxwell equation in multicomponent diffusion systems and the Graham's law of diffusion and effusion is often resorted for this purpose. This article addresses solution of the Stefan-Maxwell equation in binary gas systems and explores the necessary conditions for definite solution of concentration profiles and pertinent component fluxes. It is found that there are multiple solutions for component fluxes in contradiction to what specified by the Graham's law of diffusion. The theorem of minimum entropy production in the non-equilibrium thermodynamics is believed instructive in determining the stable steady state solution out of infinite multiple solutions possible under the specified conditions. It is suggested that only when the boundary condition of component concentration is symmetrical in an isothermal binary system, the counter-diffusion becomes equimolar. The Graham's law of diffusion seems not generally valid for the case of isothermal ordinary diffusion.
Computational methods for two-phase flow and particle transport
Lee, Wen Ho
2013-01-01
This book describes mathematical formulations and computational methods for solving two-phase flow problems with a computer code that calculates thermal hydraulic problems related to light water and fast breeder reactors. The physical model also handles the particle and gas flow problems that arise from coal gasification and fluidized beds. The second part of this book deals with the computational methods for particle transport.
Two-phase flow in refrigeration systems
Gu, Junjie; Gan, Zhongxue
2013-01-01
Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b
Two-phase flow studies. Final report
Energy Technology Data Exchange (ETDEWEB)
Kestin, J.; Maeder, P.F.
1980-08-01
Progress on the following is reported: literature survey, design of two-phase flow testing facility, design of nozzle loop, thermophysical properties, design manual, and advanced energy conversion systems. (MHR)
La Novella degli scacchi di Stefan Zweig. Semiotica della frontiera
Directory of Open Access Journals (Sweden)
Francesco Garofalo
2011-04-01
Full Text Available The scope of the study is an analysis of Schachnovelle (The Royal Game by Stefan Zweig, focusing on the opposition between two topics: (1 cultural x\\borders and conflicts and (2 intellectual cosmopolitism. The analysis is based on a semiotic approach, compared with the knowledge provided by literary criticism. As a result of this, the paper tries to cast a new light on Zweig’s place in literature. In particular, his progressive view on peace avoids the risks related to every kind of “professional reformism” and thus is still interesting nowadays.
Biography of Colonel Stefan Iliev (1930 [In Bulgarian
Directory of Open Access Journals (Sweden)
E. Kozhuharova
2013-09-01
Full Text Available Colonel Stefan Iliev, a commander of the 15th Infantry Lom regiment (Belogradchik, is a Bulgarian hero, killed in the battlefield at Chervenata stena, near Bitola, on 26 March 1917. Here is the journal version of a very rare book, published in the printing house of Stamen Kamenov in Belogradchik in 1930. On the cover of the book an author is not given - it is an edition of the Belogradchik Society of the Reserve Non-Commissioned Officers. All details of the military career of this brave Bulgarian soldier are described. The book exists in two editions.
On the Stable Numerical Approximation of Two-Phase Flow with Insoluble Surfactant
Barrett, John W; Nürnberg, Robert
2013-01-01
We present a parametric finite element approximation of two-phase flow with insoluble surfactant. This free boundary problem is given by the Navier--Stokes equations for the two-phase flow in the bulk, which are coupled to the transport equation for the insoluble surfactant on the interface that separates the two phases. We combine the evolving surface finite element method with an approach previously introduced by the authors for two-phase Navier--Stokes flow, which maintains good mesh properties. The derived finite element approximation of two-phase flow with insoluble surfactant can be shown to be stable. Several numerical simulations demonstrate the practicality of our numerical method.
Two-Phase Algorithm for Optimal Camera Placement
Directory of Open Access Journals (Sweden)
Jun-Woo Ahn
2016-01-01
Full Text Available As markers for visual sensor networks have become larger, interest in the optimal camera placement problem has continued to increase. The most featured solution for the optimal camera placement problem is based on binary integer programming (BIP. Due to the NP-hard characteristic of the optimal camera placement problem, however, it is difficult to find a solution for a complex, real-world problem using BIP. Many approximation algorithms have been developed to solve this problem. In this paper, a two-phase algorithm is proposed as an approximation algorithm based on BIP that can solve the optimal camera placement problem for a placement space larger than in current studies. This study solves the problem in three-dimensional space for a real-world structure.
Benno Geiger, umanista mitteleuropeo. Il carteggio con Stefan Zweig
Directory of Open Access Journals (Sweden)
Diana Battisti
2015-12-01
Full Text Available This article outlines the development of work in progress on the Austrian author Benno Geiger. Mostly forgotten in the field of German studies, Geiger is better known for his writings as an art critic and his translations of Dante, Petrarch and Pascoli than for his compositions as a poet. However, in the decades that followed the Jahrhundertwende, he was a cultural benchmark for an entire generation of artists and intellectuals. In particular, this project focuses on his friendship with Stefan Zweig, which is well documented by a long and intense correspondence (from 1904 to 1939. Both of them see the question of Europeanism in a new light, still to be appraised.
Generalized Stefan models accounting for a discontinuous temperature field
Danescu, A.
We construct a class of generalized Stefan models able to account for a discontinuous temperature field across a nonmaterial interface. The resulting theory introduces a constitutive scalar interfacial field, denoted by /lineθ and called the equivalent temperature of the interface. A classical procedure, based on the interfacial dissipation inequality, relates the interfacial energy release to the interfacial mass flux and restricts the equivalent temperature of the interface. We show that previously proposed theories are obtained as particular cases when /lineθ = ⪉θ > or /lineθ = ⪉(1)/(θ )>-1 or, more generally, when /lineθ = ⪉θ r ⪉ 1/θ1-r-1 for 0<= r<= 1. We study in a particular constitutive framework the solidification of an under-cooled liquid and we are able to give a sufficient condition for the existence of travelling wave solutions.
Institute of Scientific and Technical Information of China (English)
江文奇
2014-01-01
The difference between actual behavior and expected utility in multi-criteria decision-making problems could be solved effectively based on prospect theory.This paper proposes a method of information fusion through two stages for multi-criteria group decision-making problems.In the first stage,we set reference points using median method,and define the interval of decision-makers' weights.The nonlinear programming model could be built with maximal comprehensive prospect value of these alternatives under single criteria.In the second stage,multiple criteria decision optimization model is offered with maximal comprehensive prospect value of all the alternatives,the alternatives rank are also given.Finally,numerical example illustrates the feasibility of the method.%前景理论可以有效解决多准则决策中实际行为与期望效用之间的差异.针对多准则群体决策问题,提出一种基于前景理论的两阶段信息集结方法.第一阶段,运用中位数法设定参考点,界定决策者权重区间,以单准则下方案综合前景值最大建立非线性规划模型;第二阶段,以所有方案综合前景值最大为目标,构建多准则决策优化模型,并进行方案排序.最后运用案例说明了方法的可行性.
Review of two-phase instabilities
Energy Technology Data Exchange (ETDEWEB)
Kang, Han Ok; Seo, Han Ok; Kang, Hyung Suk; Cho, Bong Hyun; Lee, Doo Jeong
1997-06-01
KAERI is carrying out a development of the design for a new type of integral reactors. The once-through helical steam generator is important design features. The study on designs and operating conditions which prevent flow instability should precede the introduction of one-through steam generator. Experiments are currently scheduled to understand two-phase instability, evaluate the effect of each design parameter on the critical point, and determine proper inlet throttling for the prevention of instability. This report covers general two-phase instability with review of existing studies on this topics. The general classification of two phase flow instability and the characteristics of each type of instability are first described. Special attention is paid to BWR core flow instability and once-through steam generator instability. The reactivity feedback and the effect of system parameters are treated mainly for BWR. With relation to once-through steam generators, the characteristics of convective heating and dryout point oscillation are first investigated and then the existing experimental studies are summarized. Finally chapter summarized the proposed correlations for instability boundary conditions. (author). 231 refs., 5 tabs., 47 figs
Computer simulation of two-phase flow in nuclear reactors
Energy Technology Data Exchange (ETDEWEB)
Wulff, W.
1992-09-01
Two-phase flow models dominate the economic resource requirements for development and use of computer codes for analyzing thermohydraulic transients in nuclear power plants. Six principles are presented on mathematical modeling and selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited for two-phase flow analysis in nuclear reactors than the two-fluid model, because of the latter`s closure problem. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost.
Computer simulation of two-phase flow in nuclear reactors
Energy Technology Data Exchange (ETDEWEB)
Wulff, W.
1992-01-01
Two-phase flow models dominate the economic resource requirements for development and use of computer codes for analyzing thermohydraulic transients in nuclear power plants. Six principles are presented on mathematical modeling and selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited for two-phase flow analysis in nuclear reactors than the two-fluid model, because of the latter's closure problem. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost.
Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media
Chen, J.
2014-06-03
This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow. 2014 Jie Chen et al.
Kaegbein, Paul
2007-01-01
Arvustus: Stefan Hartmann. Revaler Handwerker im Spiegel fer Ratsprotokolle von 1722 bis 1755. In : Ostseeprovinzen, baltische Staaten und das Nationale. Münster : LIT, 2005. lk. 89-112. Kanuti gildi koondunud ametite organisatsioonist ja struktuurist
Kaegbein, Paul
2007-01-01
Arvustus: Stefan Hartmann. Revaler Handwerker im Spiegel fer Ratsprotokolle von 1722 bis 1755. In : Ostseeprovinzen, baltische Staaten und das Nationale. Münster : LIT, 2005. lk. 89-112. Kanuti gildi koondunud ametite organisatsioonist ja struktuurist
Investigations of two-phase flame propagation under microgravity conditions
Gokalp, Iskender
2016-07-01
Investigations of two-phase flame propagation under microgravity conditions R. Thimothée, C. Chauveau, F. Halter, I Gökalp Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France This paper presents and discusses recent results on two-phase flame propagation experiments we carried out with mono-sized ethanol droplet aerosols under microgravity conditions. Fundamental studies on the flame propagation in fuel droplet clouds or sprays are essential for a better understanding of the combustion processes in many practical applications including internal combustion engines for cars, modern aircraft and liquid rocket engines. Compared to homogeneous gas phase combustion, the presence of a liquid phase considerably complicates the physico-chemical processes that make up combustion phenomena by coupling liquid atomization, droplet vaporization, mixing and heterogeneous combustion processes giving rise to various combustion regimes where ignition problems and flame instabilities become crucial to understand and control. Almost all applications of spray combustion occur under high pressure conditions. When a high pressure two-phase flame propagation is investigated under normal gravity conditions, sedimentation effects and strong buoyancy flows complicate the picture by inducing additional phenomena and obscuring the proper effect of the presence of the liquid droplets on flame propagation compared to gas phase flame propagation. Conducting such experiments under reduced gravity conditions is therefore helpful for the fundamental understanding of two-phase combustion. We are considering spherically propagating two-phase flames where the fuel aerosol is generated from a gaseous air-fuel mixture using the condensation technique of expansion cooling, based on the Wilson cloud chamber principle. This technique is widely recognized to create well-defined mono-size droplets
Microgravity Two-Phase Flow Transition
Parang, M.; Chao, D.
1999-01-01
Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.
Droplet Manipulations in Two Phase Flow Microfluidics
Directory of Open Access Journals (Sweden)
Arjen M. Pit
2015-11-01
Full Text Available Even though droplet microfluidics has been developed since the early 1980s, the number of applications that have resulted in commercial products is still relatively small. This is partly due to an ongoing maturation and integration of existing methods, but possibly also because of the emergence of new techniques, whose potential has not been fully realized. This review summarizes the currently existing techniques for manipulating droplets in two-phase flow microfluidics. Specifically, very recent developments like the use of acoustic waves, magnetic fields, surface energy wells, and electrostatic traps and rails are discussed. The physical principles are explained, and (potential advantages and drawbacks of different methods in the sense of versatility, flexibility, tunability and durability are discussed, where possible, per technique and per droplet operation: generation, transport, sorting, coalescence and splitting.
Two phase decision algorithm of replica allocation
Institute of Scientific and Technical Information of China (English)
Zuo Chaoshu; Liu Xinsong; Wang Zheng; Li Yi
2006-01-01
In distributed parallel server system, location and redundancy of replicas have great influence on availability and efficiency of the system. In order to improve availahility and efficiency of the system, two phase decision algorithm of replica allocation is proposed. The algorithm which makes use of auto-regression model dynamically predicts the future count of READ and WRITE operation, and then determines location and redundancy of replicas by considering availability, CPU and bands of the network. The algorithm can not only ensure the requirement of availability, but also reduce the system resources consumed by all the operations in a great scale. Analysis and test show that communication complexity and time complexity of the algorithm satisfy O( n ), resource optimizing scale increases with the increase of READ count.
Phase appearance or disappearance in two-phase flows
Cordier, Floraine; Kumbaro, Anela
2011-01-01
This paper is devoted to the treatment of specific numerical problems which appear when phase appearance or disappearance occurs in models of two-phase flows. Such models have crucial importance in many industrial areas such as nuclear power plant safety studies. In this paper, two outstanding problems are identified: first, the loss of hyperbolicity of the system when a phase appears or disappears and second, the lack of positivity of standard shock capturing schemes such as the Roe scheme. After an asymptotic study of the model, this paper proposes accurate and robust numerical methods adapted to the simulation of phase appearance or disappearance. Polynomial solvers are developed to avoid the use of eigenvectors which are needed in usual shock capturing schemes, and a method based on an adaptive numerical diffusion is designed to treat the positivity problems. An alternate method, based on the use of the hyperbolic tangent function instead of a polynomial, is also considered. Numerical results are presente...
A TWO-PHASE APPROACH TO FUZZY SYSTEM IDENTIFICATION
Institute of Scientific and Technical Information of China (English)
Ta-Wei HUNG; Shu-Cherng FANG; Henry L.W.NUTTLE
2003-01-01
A two-phase approach to fuzzy system identification is proposed. The first phase produces a baseline design to identify a prototype fuzzy system for a target system from a coIlection of input-output data pairs. It uses two easily implemented clustering techniques: the subtractive clustering method and the fuzzy c-means (FCM) clustering algorithm. The second phase (fine tuning)is executed to adjust the parameters identified in the baseline design. This phase uses the steepest descent and recursive least-squares estimation methods. The proposed approach is validated by applying it to both a function approximation type of problem and a classification type of problem. An analysis of the learning behavior of the proposed approach for the two test problems is conducted for further confirmation.
Berroia in Stefan Dušan's politics
Directory of Open Access Journals (Sweden)
Maksimović Ljubomir M.
2004-01-01
Full Text Available Being one of the most important cities in Macedonia, Berroia automatically entered the horizon of Serbian politics once Stefan Dušan got involved into the Byzantine Civil War during the forties of the fourteenth century. The King's previous invasion of Macedonia, in the thirties, had been aimed directly towards Thessalonica and was a failure. Thus, in the second phase of his politics, in which Macedonia was used as a backing in the striving for the Empire, Thessalonica was temporarily left aside, although not before first Serres and then Berroia had been captured, so as to leave it completely isolated. Initially, it was Serres rather than Berroia that Dušan was focused on, its conquest in September 1345 leading immediately to the proclamation of the Empire. Afterwards — in the first half of 1346 — Berroia was also conquered and turned into an important Serbian stronghold, Thessalonica being thus cut off, which enabled the Serbs to await a more favorable time to capture it. At the same time, the conquest of Berroia paved the way for the Serbian invasion of Epirus and Thessalia. Emperor John VI Cantacuzenus was certainly aware of the consequences of such a strategic constellation. Thus, when he finally managed to neutralize the Zelots in Thessalonica, his first move towards the change of the situation was to recuperate Berroia and surrounding towns. This was such a severe blow for the Serbs, that it immediately became clear that even Dušan's imperial power might be endangered if his position in Macedonia further weakened. He reacted promptly and recaptured Berroia and other strongholds he had lost. The conquest of Berroia was lead by the nobleman Radoslav Hlapen, who first acted as a governor on behalf of Dušan, and after the death of the Emperor practically as an independent ruler of that part of Macedonia.
Podolsky electromagnetism and a modification in Stefan-Boltzmann law
Energy Technology Data Exchange (ETDEWEB)
Bonin, Carlos Alberto; Bufalo, Rodrigo Santos; Escobar, Bruto Max Pimentel; Zambrano, German Enrique Ramos [Instituto de Fisica Teorica (IFT/UNESP), Sao Paulo, SP (Brazil)
2009-07-01
Full text. As it is well-known, gauge fields that emerge from the gauge principle are massless vector fields. Considering the photon as a Proca particle, experience sets an upper limit on its mass. This limit is m{sub Proca} < 6X10{sup -17}eV (PDG 2006). However, a mass term, regardless how small, breaks the gauge symmetry. Nevertheless, there exists a theory in which is possible to introduce a mass term preserving all symmetries of Maxwell electromagnetism, including the gauge one: such theory is known as Podolsky Electromagnetism. Podolsky theory is a second- order-derivative theory and has some remarkable properties, despite those already mentioned: the theory has two sectors, a massive one and massless one, it depends on a free parameter (which happens to be the mass of the massive sector) that, like all other elementary particles's masses of the Standard Model, must be fixed through experiences, and the fact that the electrostatic potential is finite everywhere, including over a punctual charge. Just like Maxwell electromagnetism, Podolsky's is a constrained theory and, since it is of second order in the derivatives, it consists in a much richer theoretical structure. Therefore, from both, theoretical and experimental points of view, Podolsky electromagnetism is a very attractive theory. In this work we study a gas of Podolsky photons at finite temperature through path integration. We show that the massless sector leads to the famous Planck's law for black-body radiation and, therefore, to the Stefan-Boltzmann law. We also show that the massive sector of the Podolsky theory induces a modification in both these laws. It is possible to set limits on the Podolsky parameter through comparison of our results with data from cosmic microwave background radiation. (author)
Moerk, J. Steven (Inventor); Youngquist, Robert C. (Inventor); Werlink, Rudy J. (Inventor)
1999-01-01
A quality and/or flow meter employs a capacitance probe assembly for measuring the dielectric constant of flow stream, particularly a two-phase flow stream including liquid and gas components.ne dielectric constant of the flow stream varies depending upon the volume ratios of its liquid and gas components, and capacitance measurements can therefore be employed to calculate the quality of the flow, which is defined as the volume ratio of liquid in the flow to the total volume ratio of gas and liquid in the flow. By using two spaced capacitance sensors, and cross-correlating the time varying capacitance values of each, the velocity of the flow stream can also be determined. A microcontroller-based processing circuit is employed to measure the capacitance of the probe sensors.The circuit employs high speed timer and counter circuits to provide a high resolution measurement of the time interval required to charge each capacitor in the probe assembly. In this manner, a high resolution, noise resistant, digital representation of each of capacitance value is obtained without the need for a high resolution A/D converter, or a high frequency oscillator circuit. One embodiment of the probe assembly employs a capacitor with two ground plates which provide symmetry to insure that accurate measurements are made thereby.
Experimental and numerical investigation on two-phase flow instabilities
Energy Technology Data Exchange (ETDEWEB)
Ruspini, Leonardo Carlos
2013-03-01
Two-phase flow instabilities are experimentally and numerically studied within this thesis. In particular, the phenomena called Ledinegg instability, density wave oscillations and pressure drop oscillations are investigated. The most important investigations regarding the occurrence of two-phase flow instabilities are reviewed. An extensive description of the main contributions in the experimental and analytical research is presented. In addition, a critical discussion and recommendations for future investigations are presented. A numerical framework using a hp-adaptive method is developed in order to solve the conservation equations modelling general thermo-hydraulic systems. A natural convection problem is analysed numerically in order to test the numerical solver. Moreover, the description of an adaptive strategy to solve thermo-hydraulic problems is presented. In the second part of this dissertation, a homogeneous model is used to study Ledinegg, density wave and pressure drop oscillations phenomena numerically. The dynamic characteristics of the Ledinegg (flow excursion) phenomenon are analysed through the simulation of several transient examples. In addition, density wave instabilities in boiling and condensing systems are investigated. The effects of several parameters, such as the fluid inertia and compressibility volumes, on the stability limits of Ledinegg and density wave instabilities are studied, showing a strong influence of these parameters. Moreover, the phenomenon called pressure drop oscillations is numerically investigated. A discussion of the physical representation of several models is presented with reference to the obtained numerical results. Finally, the influence of different parameters on these phenomena is analysed. In the last part, an experimental investigation of these phenomena is presented. The designing methodology used for the construction of the experimental facility is described. Several simulations and a non
Stability of stratified two-phase flows in horizontal channels
Barmak, Ilya; Ullmann, Amos; Brauner, Neima; Vitoshkin, Helen
2016-01-01
Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems the stratified flow with smooth interface is stable only in confined zone of relatively lo...
Mathematical model of two-phase flow in accelerator channel
Directory of Open Access Journals (Sweden)
О.Ф. Нікулін
2010-01-01
Full Text Available The problem of two-phase flow composed of energy-carrier phase (Newtonian liquid and solid fine-dispersed phase (particles in counter jet mill accelerator channel is considered. The mathematical model bases goes on the supposition that the phases interact with each other like independent substances by means of aerodynamics’ forces in conditions of adiabatic flow. The mathematical model in the form of system of differential equations of order 11 is represented. Derivations of equations by base physical principles for cross-section-averaged quantity are produced. The mathematical model can be used for estimation of any kinematic and thermodynamic flow characteristics for purposely parameters optimization problem solving and transfer functions determination, that take place in counter jet mill accelerator channel design.
Pressure Loss across Tube Bundles in Two-phase Flow
Energy Technology Data Exchange (ETDEWEB)
Sim, Woo Gun; Banzragch, Dagdan [Hannam Univ., Daejon (Korea, Republic of)
2016-03-15
An analytical model was developed by Sim to estimate the two-phase damping ratio for upward two-phase flow perpendicular to horizontal tube bundles. The parameters of two-phase flow, such as void fraction and pressure loss evaluated in the model, were calculated based on existing experimental formulations. However, it is necessary to implement a few improvements in the formulations for the case of tube bundles. For the purpose of the improved formulation, we need more information about the two-phase parameters, which can be found through experimental test. An experiment is performed with a typical normal square array of cylinders subjected to the two-phase flow of air-water in the tube bundles, to calculate the two-phase Euler number and the two-phase friction multiplier. The pitch-to-diameter ratio is 1.35 and the diameter of cylinder is 18mm. Pressure loss along the flow direction in the tube bundles is measured with a pressure transducer and data acquisition system to calculate the two-phase Euler number and the two-phase friction multiplier. The void fraction model by Feenstra et al. is used to estimate the void fraction of the two-phase flow in tube bundles. The experimental results of the two phase friction multiplier and two-phase Euler number for homogeneous and non-homogeneous two-phase flows are compared and evaluated against the analytical results given by Sim's model.
Łysiak, Marian
2008-01-01
Professor Stefan Szuman was an outstanding offspring of dr med Leon Szuman, the Torun surgeon. He was born in Torun on 3.01.1889. Encouraged by his father he successfully graduated from medical school. Father's hopes that his private surgery clinic in Torun could be runned by his son were shattered when Stefan found a pretext for quitting surgery. It turned out that his real passion was psychology and education. Luckily, he survived the two world wars. In years 1948-1949, a 28 year old priest Karol Wojtyla listened to his lectures on characterology. It seems that among others, Stefan Szuman's views on human attitude towards death exerted a noticeable influence on the later Pope John Paul II.
Vapor Compressor Driven Hybrid Two-Phase Loop Project
National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will demonstrate a vapor compressor driven hybrid two-phase loop technology. The hybrid two-phase loop...
Correct numerical simulation of a two-phase coolant
Kroshilin, A. E.; Kroshilin, V. E.
2016-02-01
Different models used in calculating flows of a two-phase coolant are analyzed. A system of differential equations describing the flow is presented; the hyperbolicity and stability of stationary solutions of the system is studied. The correctness of the Cauchy problem is considered. The models' ability to describe the following flows is analyzed: stable bubble and gas-droplet flows; stable flow with a level such that the bubble and gas-droplet flows are observed under and above it, respectively; and propagation of a perturbation of the phase concentration for the bubble and gas-droplet media. The solution of the problem about the breakdown of an arbitrary discontinuity has been constructed. Characteristic times of the development of an instability at different parameters of the flow are presented. Conditions at which the instability does not make it possible to perform the calculation are determined. The Riemann invariants for the nonlinear problem under consideration have been constructed. Numerical calculations have been performed for different conditions. The influence of viscosity on the structure of the discontinuity front is studied. Advantages of divergent equations are demonstrated. It is proven that a model used in almost all known investigating thermohydraulic programs, both in Russia and abroad, has significant disadvantages; in particular, it can lead to unstable solutions, which makes it necessary to introduce smoothing mechanisms and a very small step for describing regimes with a level. This does not allow one to use efficient numerical schemes for calculating the flow of two-phase currents. A possible model free from the abovementioned disadvantages is proposed.
On the nonequilibrium segregation state of a two-phase mixture in a porous column
DEFF Research Database (Denmark)
Shapiro, Alexander; Stenby, Erling Halfdan
1996-01-01
The problem of segregation of a two-phase multicomponent mixture under the action of thermal gradient, gravity and capillary forces is studied with respect to component distribution in a thick oil-gas-condensate reservoir. Governing equations are derived on the basis of nonequilibrium thermodynam...... thermodynamics. A steady state of the two-phase mixture with nonzero diffusion fluxes and exchange between phases is described. In the case of binary mixtures analytical formulae for saturation, component distribution and flow in the two-phase zone are obtained....
Reynolds transport theorem for a two-phase flow
Collado, Francisco J.
2007-01-01
Transport equations for one-dimensional (1d), steady, two-phase flow have been proposed based on the fact that if the phases have different velocities, they cannot cover the same distance (the control volume length) in the same time. Thus, working in the same control volume for the two phases, the time scales of the phases have to be different. From this approach, transport balances for 1D, steady, two-phase flow have been already derived, supplying acceptable correlations for two-phase flow. Here, based on the strict application of the Reynolds transport theorem, general transport balances for two-phase flow are suggested.
Institute of Scientific and Technical Information of China (English)
Dao-qi Yang; Jennifer Zhao
2003-01-01
An iterative algorithm is proposed and analyzed based on a hybridized mixed finite element method for numerically solving two-phase generalized Stefan interface problems withstrongly discontinuous solutions, conormal derivatives, and coefficients. This algorithmiteratively solves small problems for each single phase with good accuracy and exchangeinformation at the interface to advance the iteration until convergence, following the ideaof Schwarz Alternating Methods. Error estimates are derived to show that this algorithmalways converges provided that relaxation parameters are suitably chosen. Numeric experiments with matching and non-matching grids at the interface from different phases areperformed to show the accuracy of the method for capturing discontinuities in the solutionsand coefficients. In contrast to standard numerical methods, the accuracy of our methoddoes not seem to deteriorate as the coefficient discontinuity increases.
Writing European Lives: Stefan Zweig as a Biographer of Verhaeren, Rolland and Erasmus
Rensen, M.
2015-01-01
The Jewish-Austrian writer Stefan Zweig (1881-1942) was a passionate biographer who wrote about the lives of many influential people in European literature and history. In some of these biographies the genre is consciously employed as a vehicle to express an idea of Europe and foster a sense of belo
Review article number 50 - The Maxwell-Stefan approach to mass transfer
Krishna, R.; Wesselingh, J.A
1997-01-01
The limitations of the Fick's law for describing diffusion are discussed. It is argued that the Maxwell-Stefan formulation provides the most general, and convenient, approach for describing mass transport which takes proper account of thermodynamic non-idealities and influence of external force fiel
Das ritual der unterwerfung Stefan Nemanjas unter Maunel I. Komnenos (1172
Directory of Open Access Journals (Sweden)
Vučetić Martin Marko
2013-01-01
Full Text Available This article investigates the ceremonial of the subjection of the Serbian župan Stefan Nemanja to the Byzantine emperor Manuel I Komnenos (1172 and compares it with similar events of the period in question. It argues for a strong influence of western forms of conflict resolution (“deditio” in the ceremonial.
Writing European Lives: Stefan Zweig as a Biographer of Verhaeren, Rolland and Erasmus
Rensen, M.
2015-01-01
The Jewish-Austrian writer Stefan Zweig (1881-1942) was a passionate biographer who wrote about the lives of many influential people in European literature and history. In some of these biographies the genre is consciously employed as a vehicle to express an idea of Europe and foster a sense of belo
Review article number 50 - The Maxwell-Stefan approach to mass transfer
Krishna, R.; Wesselingh, J.A
1997-01-01
The limitations of the Fick's law for describing diffusion are discussed. It is argued that the Maxwell-Stefan formulation provides the most general, and convenient, approach for describing mass transport which takes proper account of thermodynamic non-idealities and influence of external force fiel
The Maxwell-Stefan description of mixture diffusion in nanoporous crystalline materials
Krishna, R.
2014-01-01
The efficacy of nanoporous crystalline materials in separation applications is often influenced to a significant extent by diffusion of guest molecules within the pores of the structural frameworks. The Maxwell-Stefan (M-S) equations provide a fundamental and convenient description of mixture diffus
Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase
Barsky, Eugene
2010-01-01
This book brings to light peculiarities of the formation of critical regimes of two-phase flows with a polydisperse solid phase. A definition of entropy is formulated on the basis of statistical analysis of these peculiarities. The physical meaning of entropy and its correlation with other parameters determining two-phase flows are clearly defined. The interrelations and main differences between this entropy and the thermodynamic one are revealed. The main regularities of two-phase flows both in critical and in other regimes are established using the notion of entropy. This parameter serves as a basis for a deeper insight into the physics of the process and for the development of exhaustive techniques of mass exchange estimation in such flows. The book is intended for graduate and postgraduate students of engineering studying two-phase flows, and to scientists and engineers engaged in specific problems of such fields as chemical technology, mineral dressing, modern ceramics, microelectronics, pharmacology, po...
On Riemann Solvers and Kinetic Relations for Isothermal Two-Phase Flows with Surface Tension
Rohde, Christian
2016-01-01
We consider a sharp-interface approach for the inviscid isothermal dynamics of compressible two-phase flow, that accounts for phase transition and surface tension effects. To fix the mass exchange and entropy dissipation rate across the interface kinetic relations are frequently used. The complete uni-directional dynamics can then be understood by solving generalized two-phase Riemann problems. We present new well-posedness theorems for the Riemann problem and corresponding computable Riemann solvers, that cover quite general equations of state, metastable input data and curvature effects. The new Riemann solver is used to validate different kinetic relations on physically relevant problems including a comparison with experimental data. Riemann solvers are building blocks for many numerical schemes that are used to track interfaces in two-phase flow. It is shown that the new Riemann solver enables reliable and efficient computations for physical situations that could not be treated before.
Next steps in two-phase flow: executive summary
Energy Technology Data Exchange (ETDEWEB)
DiPippo, R.
1980-09-01
The executive summary includes the following topics of discussion: the state of affairs; the fundamental governing equations; the one-dimensional mixture model; the drift-flux model; the Denver Research Institute two-phase geothermal flow program; two-phase flow pattern transition criteria; a two-fluid model under development; the mixture model as applied to geothermal well flow; DRI downwell instrumentation; two-phase flow instrumentation; the Sperry Research Corporation downhole pump and gravity-head heat exchanger systems; and the Brown University two-phase flow experimental program. (MHR)
Stability of stratified two-phase flows in horizontal channels
Barmak, I.; Gelfgat, A.; Vitoshkin, H.; Ullmann, A.; Brauner, N.
2016-04-01
Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems, the stratified flow with a smooth interface is stable only in confined zone of relatively low flow rates, which is in agreement with experiments, but is not predicted by long-wave analysis. Depending on the flow conditions, the critical perturbations can originate mainly at the interface (so-called "interfacial modes of instability") or in the bulk of one of the phases (i.e., "shear modes"). The present analysis revealed that there is no definite correlation between the type of instability and the perturbation wavelength.
Response of two-phase droplets to intense electromagnetic radiation
Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.
1993-04-01
The behavior of two-phase droplets subjected to high intensity radiation pulses is studied. Droplets are highly absorbing solids in weakly absorbing liquid medium. The objective of the study was to define heating thresholds required for causing explosive boiling and secondary atomization of the fuel droplet. The results point to mechanisms for energy storage and transport in two-phase systems.
Two-Phase Technology at NASA/Johnson Space Center
Ungar, Eugene K.; Nicholson, Leonard S. (Technical Monitor)
1999-01-01
Since the baseline International Space Station (ISS) External Active Thermal Control System (EATCS) was changed from a two-phase mechanically pumped system to a single phase cascade system in the fall of 1993, two-phase EATCS research has continued at a low level at JSC. One of-the lessons of the ISS EATCS selection was that two-phase thermal control systems must have significantly lower power than comparable single phase systems to overcome their larger radiator area, larger line and fluid mass, and perceived higher technical risk. Therefore, research at JSC has concentrated on low power mechanically pumped two-phase EATCSs. In the presentation, the results of a study investigating the trade of single and two-phase mechanically pumped EATCSs for space vehicles will be summarized. The low power two-phase mechanically pumped EATCS system under development at JSC will be described in detail and the current design status of the subscale test unit will be reviewed. Also, performance predictions for a full size EATCS will be presented. In addition to the discussion of two-phase mechanically pumped EATCS development at JSC, two-phase technologies under development for biological water processing will be discussed. These biological water processor technologies are being prepared for a 2001 flight experiment and subsequent usage on the TransHab module on the International Space Station.
Two Phases of Coherent Structure Motions in Turbulent Boundary Layer
Institute of Scientific and Technical Information of China (English)
LIU Jian-Hua; JIANG Nan
2007-01-01
Two phases of coherent structure motion are acquired after obtaining conditional phase-averaged waveforms for longitudinal velocity of coherent structures in turbulent boundary layer based on Harr wavelet transfer. The correspondences of the two phases to the two processes (i.e. ejection and sweep) during a burst are determined.
The Two-Phase Hell-Shaw Flow: Construction of an Exact Solution
Malaikah, K. R.
2013-03-01
We consider a two-phase Hele-Shaw cell whether or not the gap thickness is time-dependent. We construct an exact solution in terms of the Schwarz function of the interface for the two-phase Hele-Shaw flow. The derivation is based upon the single-valued complex velocity potential instead of the multiple-valued complex potential. As a result, the construction is applicable to the case of the time-dependent gap. In addition, there is no need to introduce branch cuts in the computational domain. Furthermore, the interface evolution in a two-phase problem is closely linked to its counterpart in a one-phase problem
Institute of Scientific and Technical Information of China (English)
Jiang Ji-Jian; Meng Qing-Miao; Wang Shuai
2009-01-01
Using entropy density of Dirac field near the event horizon of a rectilinear non-uniformly accelerating Kinnersley black hole, the law for the thermal radiation of black hole is studied and the instantaneous radiation energy density is obtained. It is found that the instantaneous radiation energy density of a black hole is always proportional to the quartic of the temperature on event horizon in the same direction. That is to say, the thermal radiation of a black hole always satisfies the generalized Stefan Boltzmann law. In addition, the derived generalized Stefan-Boltzmann coefficient is no longer a constant, but a dynamic coefficient related to the space-time metric near the event horizon and the changing rate of the event horizon in black holes.
Memorias de un judío: el mundo visto por Stefan Zweig
Directory of Open Access Journals (Sweden)
Kênia Maria de Almeida Pereira
2011-03-01
Full Text Available El artículo traza el periplo vital e ideológico del escritor Stefan Zweig a partir de su libro El mundo que yo vi: mis memorias, de 1942. Se esboza la visión del fascismo que tuvo el intelectual, el drama del Holocausto y los terrores de la política antisemita de Adolfo Hitler a partir de la Segunda Guerra Mundial, a la vez que se formulan interrogantes sobre la política brasileña de la era de Getúlio Vargas respecto al fascismo. El texto desvela los misterios de la pasión, la vida y la muerte de Stefan Zweig durante las décadas de 1930 y 1940 en Brasil.
A Comparison of Fick and Maxwell-Stefan Diffusion Formulations in PEMFC Cathode Gas Diffusion Layers
Lindstrom, Michael
2013-01-01
This paper explores the mathematical formulations of Fick and Maxwell-Stefan diffusion in the context of polymer electrolyte membrane fuel cell cathode gas diffusion layers. Formulations of diffusion combined with mass-averaged Darcy flow are considered for three component gases. Fick formulations can be considered as approximations of Maxwell-Stefan in a certain sense. For this application, the formulations can be compared computationally in a simple, one dimensional setting. We observe that the predictions of the formulations are very similar, despite their seemingly different structure. Analytic insight is given to the result. In addition, it is seen that for both formulations, diffusion laws are small perturbations from bulk flow. The work is also intended as a reference to multi-component gas diffusion formulations in the fuel cell setting.
Cerroni, D.; Fancellu, L.; Manservisi, S.; Menghini, F.
2016-06-01
In this work we propose to study the behavior of a solid elastic object that interacts with a multiphase flow. Fluid structure interaction and multiphase problems are of great interest in engineering and science because of many potential applications. The study of this interaction by coupling a fluid structure interaction (FSI) solver with a multiphase problem could open a large range of possibilities in the investigation of realistic problems. We use a FSI solver based on a monolithic approach, while the two-phase interface advection and reconstruction is computed in the framework of a Volume of Fluid method which is one of the more popular algorithms for two-phase flow problems. The coupling between the FSI and VOF algorithm is efficiently handled with the use of MEDMEM libraries implemented in the computational platform Salome. The numerical results of a dam break problem over a deformable solid are reported in order to show the robustness and stability of this numerical approach.
Solving ball lightning—A reply to Stefan and Massey (2008)
Coleman, Peter Francis
2009-06-01
Comments are made on the ball lightning paper of Stephan and Massey [Stefan, K.D., Massey, N., 2008. Burning molten metallic sphere: One class of ball lightning? Journal of Atmospheric and Solar-Terrestrial Physics 70, 1589-1596] that describes their [`]welding drop' theory. An alternative theory is offered based on combustion inside an atmospheric vortex. The [`]vortex fireball' hypothesis has good explanatory capability in regard to published ball lightning properties.
Krishna, R.; van Baten, J.M.
2009-01-01
Diffusion of pure components (hydrogen (H-2) argon (Ar), krypton (Kr), methane (C1), ethane (C2), propane (C3), n-butane (nC4), and n-hexane (nC6)) in silica nanopores with diameters of 1, 1.5, 2, 3, 4, 5.8, 7.6, and 10 nm were investigated using molecular dynamics (MD). The Maxwell-Stefan (M-S)
Entering of Stefan Dušan into the Empire
Directory of Open Access Journals (Sweden)
Pirivatrić Srđan
2007-01-01
Full Text Available At the moment when, in October 1341, a new Civil War broke out in the Byzantium after the death of Andronicus III, the traditional views of the imperial power and the Empire underwent considerable changes. The powers of the co-rulers had been on the rise since 1272, and during the Civil War of 1321-1328 the Byzantine Empire was in effect divided, that is, two Basileis were ruling 'imperially' (autokratorikōs over their respective territories within the formally unified Empire, under the scope of relations of Superior basileus - co-basileus. Therefore, the Empire (autokratoria, imperium could multiply in the sense of rulers’ authorities, and be divided in the sense of territoriality. The imperial power and the Empire became subject to family relations and family law. In view of the family connections between the Byzantine Emperors (basileis autokratores and the monarchs of the neighboring countries and nations, the right to succession was being used as an argument in some disputes between the rulers. The Byzantine law, that is the Byzantine political views, allowed for the possibility of the so-called 'joint rule' (e oikeia arch by a Byzantine basileus autokrator and some other, foreign member of the dynasty ruling over certain region of the Byzantine Empire - a foreign ruler would be allowed to rule on condition that the Byzantine basileus be recognized as the supreme master. This scenario is known from one recorded dispute between the Byzantine basileus Andronicus III and the Bulgarian tsar Michael Assen III dating from 1328, when the Bulgarian Emperor did not accept the Byzantine rule, however. All these circumstances are of special importance since they directly precede the King Stefan Dušan’s involvement in the Civil War, that is, his later entering into the Empire. The first phase of Dušan’s involvement in the Civil War is typically conquering and opportunistic in nature, with the aim of immediate territorial enlargement. The
A comparison of Fick and Maxwell-Stefan diffusion formulations in PEMFC gas diffusion layers
Lindstrom, Michael; Wetton, Brian
2017-01-01
This paper explores the mathematical formulations of Fick and Maxwell-Stefan diffusion in the context of polymer electrolyte membrane fuel cell cathode gas diffusion layers. The simple Fick law with a diagonal diffusion matrix is an approximation of Maxwell-Stefan. Formulations of diffusion combined with mass-averaged Darcy flow are considered for three component gases. For this application, the formulations can be compared computationally in a simple, one dimensional setting. Despite the models' seemingly different structure, it is observed that the predictions of the formulations are very similar on the cathode when air is used as oxidant. The two formulations give quite different results when the Nitrogen in the air oxidant is replaced by helium (this is often done as a diagnostic for fuel cells designs). The two formulations also give quite different results for the anode with a dilute Hydrogen stream. These results give direction to when Maxwell-Stefan diffusion, which is more complicated to implement computationally in many codes, should be used in fuel cell simulations.
Thermo-Fluid Dynamics of Two-Phase Flow
Ishii, Mamrou
2011-01-01
"Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part
Critical transport velocity in two-phase, horizontal pipe flow
Energy Technology Data Exchange (ETDEWEB)
Sommerville, D. (U.S. Army Chemical Research, Development and Engineering Center, Aberdeen Proving Grounds, MD (US))
1991-02-01
This paper reports on the suspension of solid particles or entrainment of liquid droplets in two- phase flow. Theoretical and empirical relationships have been derived for both instances without any consideration to the similarities between the two. However, a general relation for two-phase flow is desirable since there are systems that cannot be readily defined due to the dual (solid/liquid) nature of the transported material, such as colloids, pulp, slurries, and sludge. Using turbulence theory, one general equation can be derived to predict critical transport velocities for two-phase horizontal flow.
What types of investors generate the two-phase phenomenon?
Ryu, Doojin
2013-12-01
We examine the two-phase phenomenon described by Plerou, Gopikrishnan, and Stanley (2003) [1] in the KOSPI 200 options market, one of the most liquid options markets in the world. By analysing a unique intraday dataset that contains information about investor type for each trade and quote, we find that the two-phase phenomenon is generated primarily by domestic individual investors, who are generally considered to be uninformed and noisy traders. In contrast, our empirical results indicate that trades by foreign institutions, who are generally considered informed and sophisticated investors, do not exhibit two-phase behaviour.
Tunable two-phase coexistence in half-doped manganites
Indian Academy of Sciences (India)
P Chaddah; A Banerjee
2008-02-01
We discuss our very interesting experimental observation that the low-temperature two-phase coexistence in half-doped manganites is multi-valued (at any field) in that we can tune the coexisting antiferromagnetic-insulating (AF-I) and the ferromagnetic-metallic (FM-M) phase fractions by following different paths in (; ) space. We have shown experimentally that the phase fraction, in this two-phase coexistence, can take continuous infinity of values. All but one of these are metastable, and two-phase coexistence is not an equilibrium state.
Effects of Macroparticle Sizes on Two-phase Mixture Discharge Under DC Voltage
Institute of Scientific and Technical Information of China (English)
YAO Wenjun; HE Zhenghao; DENG Heming; WANG Guoli; ZHANG Man; MA Jun; LI Jin; YE Qizheng; HU Hui
2012-01-01
The discharge laws of the two-phase mixtures are of significance to the lightning protection and external insulation of HV transmission lines under the influence of severe climatic conditions. The initiation and propagation of discharge and its influence factors are the fundamental problems to be studied.
Effects of gravity and inlet location on a two-phase countercurrent imbibition in porous media
El-Amin, Mohamed
2012-01-01
We introduce a numerical investigation of the effect of gravity on the problem of two-phase countercurrent imbibition in porous media. We consider three cases of inlet location, namely, from, side, top, and bottom. A 2D rectangular domain is considered for numerical simulation. The results indicate that gravity has a significant effect depending on open-boundary location.
Two-Phase Flow in Rotating Hele-Shaw Cells with Coriolis Effects
Escher, Joachim; Walker, Christoph
2011-01-01
The free boundary problem of a two phase flow in a rotating Hele-Shaw cell with Coriolis effects is studied. Existence and uniqueness of solutions near spheres is established, and the asymptotic stability and instability of the trivial solution is characterized in dependence on the fluid densities.
Effects of Gravity and Inlet Location on a Two-Phase Countercurrent Imbibition in Porous Media
Directory of Open Access Journals (Sweden)
M. F. El-Amin
2012-01-01
Full Text Available We introduce a numerical investigation of the effect of gravity on the problem of two-phase countercurrent imbibition in porous media. We consider three cases of inlet location, namely, from, side, top, and bottom. A 2D rectangular domain is considered for numerical simulation. The results indicate that gravity has a significant effect depending on open-boundary location.
Time dependent two phase flows in Magnetohydrodynamics: A ...
African Journals Online (AJOL)
Journal of the Nigerian Association of Mathematical Physics ... Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Time dependent two phase flows in Magnetohydrodynamics: A Greens function approach. BK Jha, HM Jibril ...
Gravity Independence of Microchannel Two-Phase Flow Project
National Aeronautics and Space Administration — Most of the amassed two-phase flow and heat transfer knowledge comes from experiments conducted in Earth’s gravity. Space missions span varying gravity levels,...
Vapor Compressor Driven Hybrid Two-Phase Loop Project
National Aeronautics and Space Administration — The Phase I project successfully demonstrated the feasibility of the vapor compression hybrid two-phase loop (VCHTPL). The test results showed the high...
TWO PHASE FLOW SPLIT MODEL FOR PARALLEL CHANNELS
African Journals Online (AJOL)
Ifeanyichukwu Onwuka
The equations are solved using the Broyden'smethod ... channel system subjected to a two-phase flow transient, and the results have been very .... system pressure, the heat addition rates inside ... three dimensional flows in the LP.
Particle modulations to turbulence in two-phase round jets
Institute of Scientific and Technical Information of China (English)
Bing Wang; Huiqiang Zhang; Yi Liu; Xiaofen Yan; Xilin Wang
2009-01-01
The particle modulations to turbulence in round jets were experimentally studied by means of two-phase velocity measurements with Phase Doppler Anemometer (PDA). Laden with very large particles, no significant attenuations of turbulence intensities were measured in the far-fields, due to small two-phase slip velocities and particle Reynolds number. The gas-phase turbulence is enhanced by particles in the near-fields, but it is significantly attenuated by the small particles in the far-fields. The smaller particles have a more profound effect on the attenuation of turbulence intensities. The enhancements or attenuations of turbulence intensities in the far-fields depends on the energy production, transport and dissipation mechanisms between the two phases, which are determined by the particle prop-erties and two-phase velocity slips. The non-dimensional parameter CTI is introduced to represent the change of turbulence intensity.
Transient two-phase performance of LOFT reactor coolant pumps
Energy Technology Data Exchange (ETDEWEB)
Chen, T.H.; Modro, S.M.
1983-01-01
Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed.
Scaling of Two-Phase Systems Across Gravity Levels Project
National Aeronautics and Space Administration — There is a defined need for long term earth based testing for the development and deployment of two-phase flow systems in reduced-gravity, including lunar gravity,...
Thermal Marangoni Convection of Two-phase Dusty Fluid Flow along a Vertical Wavy Surface
Directory of Open Access Journals (Sweden)
S. Siddiqa
2017-01-01
Full Text Available The paper considers the influence of thermal Marangoni convection on boundary layer flow of two-phase dusty fluid along a vertical wavy surface. The dimensionless boundary layer equations for two-phase problem are reduced to a convenient form by primitive variable transformations (PVF and then integrated numerically by employing the implicit finite difference method along with the Thomas Algorithm. The effect of thermal Marangoni convection, dusty water and sinusoidal waveform are discussed in detail in terms of local heat transfer rate, skin friction coefficient, velocity and temperature distributions. This investigation reveals the fact that the water-particle mixture reduces the rate of heat transfer, significantly.
On the peculiarities of LDA method in two-phase flows with high concentrations of particles
Poplavski, S. V.; Boiko, V. M.; Nesterov, A. U.
2016-10-01
Popular applications of laser Doppler anemometry (LDA) in gas dynamics are reviewed. It is shown that the most popular method cannot be used in supersonic flows and two-phase flows with high concentrations of particles. A new approach to implementation of the known LDA method based on direct spectral analysis, which offers better prospects for such problems, is presented. It is demonstrated that the method is suitable for gas-liquid jets. Owing to the progress in laser engineering, digital recording of spectra, and computer processing of data, the method is implemented at a higher technical level and provides new prospects of diagnostics of high-velocity dense two-phase flows.
Two-phase cooling fluids; Les fluides frigoporteurs diphasiques
Energy Technology Data Exchange (ETDEWEB)
Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Lyon (France)
1997-12-31
In the framework of the diminution of heat transfer fluid consumption, the concept of indirect refrigerating circuits, using cooling intermediate fluids, is reviewed and the fluids that are currently used in these systems are described. Two-phase cooling fluids advantages over single-phase fluids are presented with their thermophysical characteristics: solid fraction, two-phase mixture enthalpy, thermal and rheological properties, determination of heat and mass transfer characteristics, and cold storage through ice slurry
Entropy analysis on non-equilibrium two-phase flow models
Energy Technology Data Exchange (ETDEWEB)
Karwat, H.; Ruan, Y.Q. [Technische Universitaet Muenchen, Garching (Germany)
1995-09-01
A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.
An Implicit Numerical Method for the Simulation of Two-phase Flow
Energy Technology Data Exchange (ETDEWEB)
Yoon, Han Young; Lee, Seung-Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jeong, Jae Jun [Pusan National University, Busan (Korea, Republic of)
2015-10-15
An implicit numerical method is presented for the analysis of two-phase flows in PWRs. Numerical stability and efficiency are improved by decoupling energy equations from the pressure equation. All the convection and diffusion terms are calculated implicitly. The proposed numerical method is verified against conceptual two-phase flow problems. An implicit numerical method has been proposed for two-phase calculation where energy equations are decoupled from the pressure equation. Convection and diffusion terms are calculated implicitly. The calculation results are the same for PME-explicit, PM explicit, and PM-implicit. Large time step size has been tested with PM-implicit-c and the results are also the same.
Numerical Study of Void Fraction Distribution Propagation in Gas-Liquid Two-Phase Flow
Institute of Scientific and Technical Information of China (English)
YANG Jianhui; LI Qing; LU Wenqiang
2005-01-01
A dynamic propagation model was developed for waves in two-phase flows by assuming that continuity waves and dynamic waves interact nonlinearly for certain flow conditions. The drift-flux model is solved with the one-dimensional continuity equation for gas-liquid two-phase flows as an initial-boundary value problem solved using the characteristic-curve method. The numerical results give the void fraction distribution propagation in a gas-liquid two-phase flow which shows how the flow pattern transition occurs. The numerical simulations of different flow patterns show that the void fraction distribution propagation is determined by the characteristics of the drift-flux between the liquid and gas flows and the void fraction range. Flow pattern transitions begin around a void fraction of 0.27 and end around 0.58. Flow pattern transitions do not occur for very high void concentrations.
Energy Technology Data Exchange (ETDEWEB)
Ramiere, I
2006-09-15
This work is dedicated to the introduction of two original fictitious domain methods for the resolution of elliptic problems (mainly convection-diffusion problems) with general and eventually mixed boundary conditions: Dirichlet, Robin or Neumann. The originality lies in the approximation of the immersed boundary by an approximate interface derived from the fictitious domain Cartesian mesh, which is generally not boundary-fitted to the physical domain. The same generic numerical scheme is used to impose the embedded boundary conditions. Hence, these methods require neither a surface mesh of the immersed boundary nor the local modification of the numerical scheme. We study two modelling of the immersed boundary. In the first one, called spread interface, the approximate immersed boundary is the union of the cells crossed by the physical immersed boundary. In the second one, called thin interface, the approximate immersed boundary lies on sides of mesh cells. Additional algebraic transmission conditions linking both flux and solution jumps through the thin approximate interface are introduced. The fictitious problem to solve as well as the treatment of the embedded boundary conditions are detailed for the two methods. A Q1 finite element scheme is implemented for the numerical validation of the spread interface approach while a new cell-centered finite volume scheme is derived for the thin interface approach with immersed jumps. Each method is then combined to multilevel local mesh refinement algorithms (with solution or flux residual) to increase the precision of the solution in the vicinity of the immersed interface. A convergence analysis of a Q1 finite element method with non-boundary fitted meshes is also presented. This study proves the convergence rates of the present methods. Among the various industrial applications, the simulation on a model of heat exchanger in french nuclear power plants enables us to appreciate the performances of the fictitious domain
Were king Stefan the First-Crowned and his son Radoslav co-rulers?
Directory of Open Access Journals (Sweden)
Bubalo Đorđe
2009-01-01
Full Text Available The Serbian historiography considers the issue of the co-ruling of King Stefan the First-Crowned and his son Radoslav as the one finally resolved. The suggested solution on the co-rule of Stefan and Radoslav may be most succinctly expressed as following: as early as in the year of 1220, due to the frail health of Stefan the First-Crowned and Radoslav's marriage to Anne the Epirus princess, Radoslav was crowned to be the king and positioned to co-rule with his father after the Byzantine model of governing. Nevertheless this point of view has some loose ends. The notion of co-ruling and the very term of 'co-ruler' are quite freely used in the scholarly works. A general consensus on the precise meaning has not been reached yet. At the point where one author perceives a co-rule, the other categorically denies it. Basically the approach equalizing the heir to the throne and the co-ruler is wrong. Although the co-rulers in most cases were the throne heirs, they cannot be called the co-rulers because of the right to inherit the throne, but for the ruling attributes that formally established that right. The conviction of the co-rule of King Stefan and his son Radoslav is founded on the interpretation of the facts coming from the following sources: entitling charters for the monastery of Žiča, produced by Stefan and Radoslav around 1220; some segments from St. Sava's biographies by Domentian and Theodosius describing the circumstances of Stefan's death-bed leaving the throne to Radoslav; the three acts of the town of Kotor from 1221 and 1227 dated by the rule of king Radoslav, the portraits of Stefan and Radoslav next to the entrance to the Church of the Ascension in the monastery of Žiča and in the nartex of the Mileševa monastery church. In the first Žiča charter, Stefan calls Radoslav his heir, while in the second Žiča charter Stefan points out Radoslav as his first-born son blessed by him to be the king of the whole state. (jegože i
Dynamic behavior of pipes conveying gas–liquid two-phase flow
Energy Technology Data Exchange (ETDEWEB)
An, Chen, E-mail: anchen@cup.edu.cn [Offshore Oil/Gas Research Center, China University of Petroleum-Beijing, Beijing 102249 (China); Su, Jian, E-mail: sujian@lasme.coppe.ufrj.br [Nuclear Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, CP 68509, Rio de Janeiro 21941-972 (Brazil)
2015-10-15
Highlights: • Dynamic behavior of pipes conveying gas–liquid two-phase flow was analyzed. • The generalized integral transform technique (GITT) was applied. • Excellent convergence behavior and long-time stability were shown. • Effects of volumetric quality and volumetric flow rate on dynamic behavior were studied. • Normalized volumetric-flow-rate stability envelope of dynamic system was determined. - Abstract: In this paper, the dynamic behavior of pipes conveying gas–liquid two-phase flow was analytically and numerically investigated on the basis of the generalized integral transform technique (GITT). The use of the GITT approach in the analysis of the transverse vibration equation lead to a coupled system of second order differential equations in the dimensionless temporal variable. The Mathematica's built-in function, NDSolve, was employed to numerically solve the resulting transformed ODE system. The characteristics of gas–liquid two-phase flow were represented by a slip-ratio factor model that was devised and used for similar problems. Good convergence behavior of the proposed eigenfunction expansions is demonstrated for calculating the transverse displacement at various points of pipes conveying air–water two-phase flow. Parametric studies were performed to analyze the effects of the volumetric gas fraction and the volumetric flow rate on the dynamic behavior of pipes conveying air–water two-phase flow. Besides, the normalized volumetric-flow-rate stability envelope for the dynamic system was obtained.
Two-phase analysis in consensus genetic mapping.
Ronin, Y; Mester, D; Minkov, D; Belotserkovski, R; Jackson, B N; Schnable, P S; Aluru, S; Korol, A
2012-05-01
Numerous mapping projects conducted on different species have generated an abundance of mapping data. Consequently, many multilocus maps have been constructed using diverse mapping populations and marker sets for the same organism. The quality of maps varies broadly among populations, marker sets, and software used, necessitating efforts to integrate the mapping information and generate consensus maps. The problem of consensus genetic mapping (MCGM) is by far more challenging compared with genetic mapping based on a single dataset, which by itself is also cumbersome. The additional complications introduced by consensus analysis include inter-population differences in recombination rate and exchange distribution along chromosomes; variations in dominance of the employed markers; and use of different subsets of markers in different labs. Hence, it is necessary to handle arbitrary patterns of shared sets of markers and different level of mapping data quality. In this article, we introduce a two-phase approach for solving MCGM. In phase 1, for each dataset, multilocus ordering is performed combined with iterative jackknife resampling to evaluate the stability of marker orders. In this phase, the ordering problem is reduced to the well-known traveling salesperson problem (TSP). Namely, for each dataset, we look for order that gives minimum sum of recombination distances between adjacent markers. In phase 2, the optimal consensus order of shared markers is selected from the set of allowed orders and gives the minimal sum of total lengths of nonconflicting maps of the chromosome. This criterion may be used in different modifications to take into account the variation in quality of the original data (population size, marker quality, etc.). In the foregoing formulation, consensus mapping is considered as a specific version of TSP that can be referred to as "synchronized TSP." The conflicts detected after phase 1 are resolved using either a heuristic algorithm over the
Study of two-phase flows in reduced gravity
Roy, Tirthankar
Study of gas-liquid two-phase flows under reduced gravity conditions is extremely important. One of the major applications of gas-liquid two-phase flows under reduced gravity conditions is in the design of active thermal control systems for future space applications. Previous space crafts were characterized by low heat generation within the spacecraft which needed to be redistributed within the craft or rejected to space. This task could easily have been accomplished by pumped single-phase loops or passive systems such as heat pipes and so on. However with increase in heat generation within the space craft as predicted for future missions, pumped boiling two-phase flows are being considered. This is because of higher heat transfer co-efficients associated with boiling heat transfer among other advantages. Two-phase flows under reduced gravity conditions also find important applications in space propulsion as in space nuclear power reactors as well as in many other life support systems of space crafts. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to predict the behavior of gas-liquid two-phase flows under reduced gravity conditions. It should be noted that considerable differences exist between two-phase flows under reduced and normal gravity conditions especially for low inertia flows. This is because due to suppression of the gravity field the gas-liquid two-phase flows take a considerable time to develop under reduced gravity conditions as compared to normal gravity conditions. Hence other common methods of analysis applicable for fully developed gas-liquid two-phase flows under normal gravity conditions, like flow regimes and flow regime transition criteria, will not be applicable to gas-liquid two-phase flows under reduced gravity conditions. However the two-fluid model and the IATE need to be evaluated first against detailed experimental data obtained under reduced gravity conditions. Although lot of studies
Simon, Moritz
2013-01-01
Motivated by applications in subsurface CO2 sequestration, we investigate constrained optimal control problems with partially miscible two-phase flow in porous media. The objective is, e.g., to maximize the amount of trapped CO2 in an underground reservoir after a fixed period of CO2 injection, where the time-dependent injection rates in multiple wells are used as control parameters. We describe the governing two-phase two-component Darcy flow PDE system and formulate the optimal control problem. For the discretization we use a variant of the BOX method, a locally conservative control-volume FE method. The timestep-wise Lagrangian of the control problem is implemented as a functional in the PDE toolbox Sundance, which is part of the HPC software Trilinos. The resulting MPI parallelized Sundance state and adjoint solvers are linked to the interior point optimization package IPOPT. Finally, we present some numerical results in a heterogeneous model reservoir.
Numerical methods for two-phase flow with contact lines
Energy Technology Data Exchange (ETDEWEB)
Walker, Clauido
2012-07-01
This thesis focuses on numerical methods for two-phase flows, and especially flows with a moving contact line. Moving contact lines occur where the interface between two fluids is in contact with a solid wall. At the location where both fluids and the wall meet, the common continuum descriptions for fluids are not longer valid, since the dynamics around such a contact line are governed by interactions at the molecular level. Therefore the standard numerical continuum models have to be adjusted to handle moving contact lines. In the main part of the thesis a method to manipulate the position and the velocity of a contact line in a two-phase solver, is described. The Navier-Stokes equations are discretized using an explicit finite difference method on a staggered grid. The position of the interface is tracked with the level set method and the discontinuities at the interface are treated in a sharp manner with the ghost fluid method. The contact line is tracked explicitly and its dynamics can be described by an arbitrary function. The key part of the procedure is to enforce a coupling between the contact line and the Navier-Stokes equations as well as the level set method. Results for different contact line models are presented and it is demonstrated that they are in agreement with analytical solutions or results reported in the literature.The presented Navier-Stokes solver is applied as a part in a multiscale method to simulate capillary driven flows. A relation between the contact angle and the contact line velocity is computed by a phase field model resolving the micro scale dynamics in the region around the contact line. The relation of the microscale model is then used to prescribe the dynamics of the contact line in the macro scale solver. This approach allows to exploit the scale separation between the contact line dynamics and the bulk flow. Therefore coarser meshes can be applied for the macro scale flow solver compared to global phase field simulations
Mathematical modeling of disperse two-phase flows
Morel, Christophe
2015-01-01
This book develops the theoretical foundations of disperse two-phase flows, which are characterized by the existence of bubbles, droplets or solid particles finely dispersed in a carrier fluid, which can be a liquid or a gas. Chapters clarify many difficult subjects, including modeling of the interfacial area concentration. Basic knowledge of the subjects treated in this book is essential to practitioners of Computational Fluid Dynamics for two-phase flows in a variety of industrial and environmental settings. The author provides a complete derivation of the basic equations, followed by more advanced subjects like turbulence equations for the two phases (continuous and disperse) and multi-size particulate flow modeling. As well as theoretical material, readers will discover chapters concerned with closure relations and numerical issues. Many physical models are presented, covering key subjects including heat and mass transfers between phases, interfacial forces and fluid particles coalescence and breakup, a...
Velocity and energy relaxation in two-phase flows
Meyapin, Yannick; Gisclon, Marguerite
2009-01-01
In the present study we investigate analytically the process of velocity and energy relaxation in two-phase flows. We begin our exposition by considering the so-called six equations two-phase model [Ishii1975, Rovarch2006]. This model assumes each phase to possess its own velocity and energy variables. Despite recent advances, the six equations model remains computationally expensive for many practical applications. Moreover, its advection operator may be non-hyperbolic which poses additional theoretical difficulties to construct robust numerical schemes |Ghidaglia et al, 2001]. In order to simplify this system, we complete momentum and energy conservation equations by relaxation terms. When relaxation characteristic time tends to zero, velocities and energies are constrained to tend to common values for both phases. As a result, we obtain a simple two-phase model which was recently proposed for simulation of violent aerated flows [Dias et al, 2010]. The preservation of invariant regions and incompressible li...
A SAS Package for Logistic Two-Phase Studies
Directory of Open Access Journals (Sweden)
Walter Schill
2014-04-01
Full Text Available Two-phase designs, in which for a large study a dichotomous outcome and partial or proxy information on risk factors is available, whereas precise or complete measurements on covariates have been obtained only in a stratified sub-sample, extend the standard case-control design and have been proven useful in practice. The application of two-phase designs, however, seems to be hampered by the lack of appropriate, easy-to-use software. This paper introduces sas-twophase-package, a collection of SAS-macros, to fulfill this task. sas-twophase-package implements weighted likelihood, pseudo likelihood and semi- parametric maximum likelihood estimation via the EM algorithm and via profile likelihood in two-phase settings with dichotomous outcome and a given stratification.
Two-Phase flow instrumentation for nuclear accidents simulation
Monni, G.; De Salve, M.; Panella, B.
2014-11-01
The paper presents the research work performed at the Energy Department of the Politecnico di Torino, concerning the development of two-phase flow instrumentation and of models, based on the analysis of experimental data, that are able to interpret the measurement signals. The study has been performed with particular reference to the design of power plants, such as nuclear water reactors, where the two-phase flow thermal fluid dynamics must be accurately modeled and predicted. In two-phase flow typically a set of different measurement instruments (Spool Piece - SP) must be installed in order to evaluate the mass flow rate of the phases in a large range of flow conditions (flow patterns, pressures and temperatures); moreover, an interpretative model of the SP need to be developed and experimentally verified. The investigated meters are: Turbine, Venturi, Impedance Probes, Concave sensors, Wire mesh sensor, Electrical Capacitance Probe. Different instrument combinations have been tested, and the performance of each one has been analyzed.
A mechanical erosion model for two-phase mass flows
Pudasaini, Shiva P
2016-01-01
Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, process-based, two-phase, erosion-deposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transport. The model is based on the jump in the momentum flux including changes of material and flow properties along the flow-bed interface and enhances an existing general two-phase mass flow model (Pudasaini, 2012). A two-phase variably saturated erodible basal morphology is introduced and allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process including momentum and rheological changes of the flowing mixture. By rigorous derivation, we show that appropriate incorporation of the mass and momentum productions or losses in conservative model formulation is essential for the physically correct and mathematically consistent descript...
Simulating confined swirling gas-solid two phase jet
Institute of Scientific and Technical Information of China (English)
金晗辉; 夏钧; 樊建人; 岑可法
2002-01-01
A k-ε-kp multi-fluid model was used to simulate confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. After considering the drag force between the two phases and gravity, a series of numerical simulations of the two-phase flow of 30μm, 45μm, 60μm diameter particles were performed on a x×r＝50×50 mesh grid respectively. The results showed that the k-ε-kp multi-fluid model can be applied to predict moderate swirling multi-phase flow. When the particle diameter is large, the collision of the particles with the wall will influence the prediction accuracy. The bigger the diameter of the particles, the stronger the collision with the wall, and the more obvious the difference between measured and calculated results.
Dynamic Modeling of Phase Crossings in Two-Phase Flow
DEFF Research Database (Denmark)
Madsen, Søren; Veje, Christian; Willatzen, Morten
2012-01-01
of the variables and are usually very slow to evaluate. To overcome these challenges, we use an interpolation scheme with local refinement. The simulations show that the method handles crossing of the saturation lines for both liquid to two-phase and two-phase to gas regions. Furthermore, a novel result obtained...... in this work, the method is stable towards dynamic transitions of the inlet/outlet boundaries across the saturation lines. Results for these cases are presented along with a numerical demonstration of conservation of mass under dynamically varying boundary conditions. Finally we present results...
Shock wave of vapor-liquid two-phase flow
Institute of Scientific and Technical Information of China (English)
Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN
2008-01-01
The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.
Two Phase Flow and Space-Based Applications
McQuillen, John
1999-01-01
A reduced gravity environment offers the ability to remove the effect of buoyancy on two phase flows whereby density differences that normally would promote relative velocities between the phases and also alter the shape of the interface are removed. However, besides being a potent research tool, there are also many space-based technologies that will either utilize or encounter two-phase flow behavior, and as a consequence, several questions must be addressed. This paper presents some of these technologies missions. Finally, this paper gives a description of web-sites for some funding.
Die eksotiese element in Stefans Grové se musiek: 'n manifestasie van kulturele vertaling
Weyer, Waldo
2013-01-01
This article pays homage to Stefans Grové, "composer of Africa", who turned ninety last year. Grové is one of a trio of South African composers who are regarded as the "founding fathers of South African art music", Arnold van Wyk and Hubert du Plessis being the other two. Grové would, however, eventually distinguish himself from his two colleagues with his Music of Africa series in which he is able to fuse musical features from both Western and African traditions. This hybrid style started to...
Aether field in extra dimensions: Stefan-Boltzmann law and Casimir effect at finite temperature
Santos, A. F.; Khanna, Faqir C.
2017-01-01
The Lorentz and C P T symmetries are not violated at the highest laboratory energies available. However these symmetries may be violated at Planck scale. A particular development is to investigate the breakdown of Lorentz and C P T symmetries by introducing an aether field that exhibits nonzero vacuum expectation value along the fifth dimension. The interactions of the aether field with scalar, electromagnetic, and fermions fields are analyzed. The Stefan-Boltzmann law and Casimir effect at finite temperature are calculated using the Thermo Field Dynamics formalism.
Stefan Zweig’s legends: a new stage in the development of the European legend
Directory of Open Access Journals (Sweden)
Tuliakova Natalia Alexandrovna
2015-10-01
Full Text Available The article studies the genre of legend-parable that appeared in European literature in the end of the 19th century as exemplified by Stefan Zweig’s collection of legends. On the basis of comparison of the legend-parable and literary legend of the 19th century the author reveals the core markers of the new genre. They include the support of the religious pretext, the choice of relations between a person and God as the main topic, the absence of the conflict representation, the emphasis on the concept of the miracle, objective author’s viewpoint, explication of the author’s intention.
New Fundamental Light Particle and Breakdown of Stefan-Boltzmann's Law
Directory of Open Access Journals (Sweden)
Samoilov V.
2011-04-01
Full Text Available Recently, we predicted the existence of fundamental particles in Nature, neutral Light Particles with spin 1 and rest mass m = 1.8 x 10^{-4} m_e, in addition to electrons, neutrons and protons. We call these particles Light Bosons because they create electromagnetic field which represents Planck's gas of massless photons together with a gas of Light Particles in the condensate. Such reasoning leads to a breakdown of Stefan-Boltzmann's law at low temperature. On the other hand, the existence of new fundamental neutral Light Particles leads to correction of such physical concepts as Bose-Einstein condensation of photons, polaritons and exciton polaritons.
The Boundary Element Method Applied to the Two Dimensional Stefan Moving Boundary Problem
1991-03-15
iterate 12 times to reach :34 BOUNDARY TIME EVOLUION Figure 3.4. Fixed Boundary Time Evolution ’onvergence in the successive approximation. The squares...memory requirements of the code, especially if more intricate geometries are to be considered. If fast conmput.- ing resources are not available, the
Modelling two-phase transport of 3H/3He
Visser, A.; Schaap, J.D.; Leijnse, T.; Broers, H.P.; Bierkens, M.F.P.
2008-01-01
Degassing of groundwater by excess denitrification of agricultural pollution complicates the interpretation of 3H/3He data and hinders the estimation of travel times in nitrate pollution studies. In this study we used a two-phase flow and transport model (STOMP) to evaluate the method presented by
Two-phase alkali-metal experiments in reduced gravity
Energy Technology Data Exchange (ETDEWEB)
Antoniak, Z.I.
1986-06-01
Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.
Coal-Face Fracture With A Two-Phase Liquid
Collins, E. R., Jr.
1985-01-01
In new method for mining coal without explosive, two-phase liquid such as CO2 and water, injected at high pressure into deeper ends of holes drilled in coal face. Liquid permeates coal seam through existing microfractures; as liquid seeps back toward face, pressure eventually drops below critical value at which dissolved gas flashvaporizes, breaking up coal.
Two-phase flow in micro and nanofluidic devices
Shui, Lingling
2009-01-01
This thesis provides experimental data and theoretical analysis on two-phase flow in devices with different layouts of micrometer or nanometer-size channels. A full flow diagram is presented for oil and water flow in head-on microfluidic devices. Morphologically different flow regimes (dripping, jet
Modelling two-phase transport of 3H/3He
Visser, A.; Schaap, J.D.; Leijnse, T.; Broers, H.P.; Bierkens, M.F.P.
2008-01-01
Degassing of groundwater by excess denitrification of agricultural pollution complicates the interpretation of 3H/3He data and hinders the estimation of travel times in nitrate pollution studies. In this study we used a two-phase flow and transport model (STOMP) to evaluate the method presented by V
Experimental Investigation of two-phase nitrogen Cryo transfer line
Singh, G. K.; Nimavat, H.; Panchal, R.; Garg, A.; Srikanth, GLN; Patel, K.; Shah, P.; Tanna, V. L.; Pradhan, S.
2017-02-01
A 6-m long liquid nitrogen based cryo transfer line has been designed, developed and tested at IPR. The test objectives include the thermo-hydraulic characteristics of Cryo transfer line under single phase as well as two phase flow conditions. It is always easy in experimentation to investigate the thermo-hydraulic parameters in case of single phase flow of cryogen but it is real challenge when one deals with the two phase flow of cryogen due to availibity of mass flow measurements (direct) under two phase flow conditions. Established models have been reported in the literature where one of the well-known model of Lockhart-Martenelli relationship has been used to determine the value of quality at the outlet of Cryo transfer line. Under homogenous flow conditions, by taking the ratio of the single-phase pressure drop and the two-phase pressure drop, we estimated the quality at the outlet. Based on these equations, vapor quality at the outlet of the transfer line was predicted at different heat loads. Experimental rresults shown that from inlet to outlet, there is a considerable increment in the pressure drop and vapour quality of the outlet depending upon heat load and mass flow rate of nitrogen flowing through the line.
Numerical simulation of two-phase flow in offshore environments
Wemmenhove, Rik
2008-01-01
Numerical Simulation of Two-Phase Flow in Offshore Environments Rik Wemmenhove Weather conditions on full sea are often violent, leading to breaking waves and lots of spray and air bubbles. As high and steep waves may lead to severe damage on ships and offshore structures, there is a great need for
TWO-PHASE EJECTOR of CARBON DIOXIDE HEAT PUMP CALCULUS
Directory of Open Access Journals (Sweden)
Sit B.M.
2010-12-01
Full Text Available It is presented the calculus of the two-phase ejector for carbon dioxide heat pump. The method of calculus is based on the method elaborated by S.M. Kandil, W.E. Lear, S.A. Sherif, and is modified taking into account entrainment ratio as the input for the calculus.
Kuchma, A E; Martyukova, D S
2016-01-01
A new comprehensive analysis of Stefan's flow caused by a free growing droplet in vapor-gas atmosphere with several condensing components is presented. This analysis, based on the nonstationary heat and material balance and diffusion transport equations, shows the appearance of the Stefan inflow in the vicinity of the growing droplet and the outflow at large distances from the droplet as a consequence of nonisothermal condensation. For an ensemble of droplets in the atmospheric cloud, this flow provides an increase of the total volume of the cloud, which can be treated as cloud thermal expansion and leads to floating the cloud as a whole due to buoyancy. We have formulated the self-similar solutions of the nonstationary diffusion and heat conduction equations for a growing multicomponent droplet and have derived analytical expressions for the nonstationary velocity profile of Stefan's flow and the expansion volume of the vapor-gas mixture around the growing droplet. To illustrate the approach, we computed the...
An ALE Finite Element Approach for Two-Phase Flow with Phase Change
Gros, Erik; Anjos, Gustavo; Thome, John; Ltcm Team; Gesar Team
2016-11-01
In this work, two-phase flow with phase change is investigated through the Finite Element Method (FEM) in the Arbitrary Lagrangian-Eulerian (ALE) framework. The equations are discretized on an unstructured mesh where the interface between the phases is explicitly defined as a sub-set of the mesh. The two-phase interface position is described by a set of interconnected nodes which ensures a sharp representation of the boundary, including the role of the surface tension. The methodology proposed for computing the curvature leads to very accurate results with moderate programming effort and computational costs. Such a methodology can be employed to study accurately many two-phase flow and heat transfer problems in industry such as oil extraction and refinement, design of refrigeration systems, modelling of microfluidic and biological systems and efficient cooling of electronics for computational purposes. The latter is the principal aim of the present research. The numerical results are discussed and compared to analytical solutions and reference results, thereby revealing the capability of the proposed methodology as a platform for the study of two-phase flow with phase change.
A Stable Parametric Finite Element Discretization of Two-Phase Navier--Stokes Flow
Barrett, John W; Nürnberg, Robert
2013-01-01
We present a parametric finite element approximation of two-phase flow. This free boundary problem is given by the Navier--Stokes equations in the two phases, which are coupled via jump conditions across the interface. Using a novel variational formulation for the interface evolution gives rise to a natural discretization of the mean curvature of the interface. The parametric finite element approximation of the evolving interface is then coupled to a standard finite element approximation of the two-phase Navier--Stokes equations in the bulk. Here enriching the pressure approximation space with the help of an XFEM function ensures good volume conservation properties for the two phase regions. In addition, the mesh quality of the parametric approximation of the interface in general does not deteriorate over time, and an equidistribution property can be shown for a semidiscrete continuous-in-time variant of our scheme in two space dimensions. Moreover, our finite element approximation can be shown to be uncondit...
Ilić-Tasić, Slobodanka; Ravinić, Dragan; Pantović, Mihailo; Bojanić, Vladmila; Pavlović, Budimir
2012-01-01
Medieval medicine and pharmacy were the subjects of numerous researches. The enviable level of health culture and social care of the diseased and debilitated people of the Serbian medieval state was far advanced for the time. However, there are scarce written records of the conditions. The purpose of this paper is to point out the conditions which enabled the foundation of the first Serbian hospitals, development of scientific medicine and spiritual culture in medieval Serbian lands. Favourable conditions for the development of medieval medicine are linked with the arrival of the Nemanjić dynasty to the throne of the Serbian medieval state, i.e. Stefan Nemanja, and later with the life and work of his son Prince Rastko Nemanjić - Saint Sava. The wide field of activity of the Grand Prince Stefan Nemanja included the creation of stable and independent state ("the unifier of all Serbian lands") with a significant and shrewd political activity (vassal to Byzantine Emperor Manuel Comnenus, participation in great alliances against Byzantium), building of churches, defender of the Orthodox Christianity, foundation of the first Serbian hospital outside of borders of Serbian state in Hilandar monastery, social care about people and cultivating literary activity.
Two-phase relative permeability models in reservoir engineering calculations
Energy Technology Data Exchange (ETDEWEB)
Siddiqui, S.; Hicks, P.J.; Ertekin, T.
1999-01-15
A comparison of ten two-phase relative permeability models is conducted using experimental, semianalytical and numerical approaches. Model predicted relative permeabilities are compared with data from 12 steady-state experiments on Berea and Brown sandstones using combinations of three white mineral oils and 2% CaCl1 brine. The model results are compared against the experimental data using three different criteria. The models are found to predict the relative permeability to oil, relative permeability to water and fractional flow of water with varying degrees of success. Relative permeability data from four of the experimental runs are used to predict the displacement performance under Buckley-Leverett conditions and the results are compared against those predicted by the models. Finally, waterflooding performances predicted by the models are analyzed at three different viscosity ratios using a two-dimensional, two-phase numerical reservoir simulator. (author)
Two-phase Flow Distribution in Heat Exchanger Manifolds
Vist, Sivert
2004-01-01
The current study has investigated two-phase refrigerant flow distribution in heat exchange manifolds. Experimental data have been acquired in a heat exchanger test rig specially made for measurement of mass flow rate and gas and liquid distribution in the manifolds of compact heat exchangers. Twelve different manifold designs were used in the experiments, and CO2 and HFC-134a were used as refrigerants.
Recent advances in two-phase flow numerics
Energy Technology Data Exchange (ETDEWEB)
Mahaffy, J.H.; Macian, R. [Pennsylvania State Univ., University Park, PA (United States)
1997-07-01
The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.
Estimating disease prevalence in two-phase studies.
Alonzo, Todd A; Pepe, Margaret Sullivan; Lumley, Thomas
2003-04-01
Disease prevalence is ideally estimated using a 'gold standard' to ascertain true disease status on all subjects in a population of interest. In practice, however, the gold standard may be too costly or invasive to be applied to all subjects, in which case a two-phase design is often employed. Phase 1 data consisting of inexpensive and non-invasive screening tests on all study subjects are used to determine the subjects that receive the gold standard in the second phase. Naive estimates of prevalence in two-phase studies can be biased (verification bias). Imputation and re-weighting estimators are often used to avoid this bias. We contrast the forms and attributes of the various prevalence estimators. Distribution theory and simulation studies are used to investigate their bias and efficiency. We conclude that the semiparametric efficient approach is the preferred method for prevalence estimation in two-phase studies. It is more robust and comparable in its efficiency to imputation and other re-weighting estimators. It is also easy to implement. We use this approach to examine the prevalence of depression in adolescents with data from the Great Smoky Mountain Study.
Characterization of horizontal air–water two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Kong, Ran; Kim, Seungjin, E-mail: skim@psu.edu
2017-02-15
Highlights: • A visualization study is performed to develop flow regime map in horizontal flow. • Database in horizontal bubbly flow is extended using a local conductivity probe. • Frictional pressure drop analysis is performed in horizontal bubbly flow. • Drift flux analysis is performed in horizontal bubbly flow. - Abstract: This paper presents experimental studies performed to characterize horizontal air–water two-phase flow in a round pipe with an inner diameter of 3.81 cm. A detailed flow visualization study is performed using a high-speed video camera in a wide range of two-phase flow conditions to verify previous flow regime maps. Two-phase flows are classified into bubbly, plug, slug, stratified, stratified-wavy, and annular flow regimes. While the transition boundaries identified in the present study compare well with the existing ones (Mandhane et al., 1974) in general, some discrepancies are observed for bubbly-to-plug/slug, and plug-to-slug transition boundaries. Based on the new transition boundaries, three additional test conditions are determined in horizontal bubbly flow to extend the database by Talley et al. (2015a). Various local two-phase flow parameters including void fraction, interfacial area concentration, bubble velocity, and bubble Sauter mean diameter are obtained. The effects of increasing gas flow rate on void fraction, bubble Sauter mean diameter, and bubble velocity are discussed. Bubbles begin to coalesce near the gas–liquid layer instead of in the highly packed region when gas flow rate increases. Using all the current experimental data, two-phase frictional pressure loss analysis is performed using the Lockhart–Martinelli method. It is found that the coefficient C = 24 yields the best agreement with the data with the minimum average difference. Moreover, drift flux analysis is performed to predict void-weighted area-averaged bubble velocity and area-averaged void fraction. Based on the current database, functional
Karimi, Amir
1991-01-01
NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.
A Simple and Efficient Diffuse Interface Method for Compressible Two-Phase Flows
Energy Technology Data Exchange (ETDEWEB)
Ray A. Berry; Richard Saurel; Fabien Petitpas
2009-05-01
In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. For many reasons, to be discussed, there is growing interest in the application of two-phase flow models to provide diffuse, but nevertheless resolved, simulation of interfaces between two immiscible compressible fluids – diffuse interface method (DIM). Because of its ability to dynamically create interfaces and to solve interfaces separating pure media and mixtures for DNS-like (Direct Numerical Simulation) simulations of interfacial flows, we examine the construction of a simple, robust, fast, and accurate numerical formulation for the 5-equation Kapila et al. [1] reduced two-phase model. Though apparently simple, the Kapila et al. model contains a volume fraction differential transport equation containing a nonlinear, non-conservative term which poses serious computational challenges. To circumvent the difficulties encountered with the single velocity and single pressure Kapila et al. [1] multiphase flow model, a 6-equation relaxation hyperbolic model is built to solve interface problems with compressible fluids. In this approach, pressure non-equilibrium is first restored, followed by a relaxation to an asymptotic solution which is convergent to the solutions of the Kapila et al. reduced model. The apparent complexity introduced with this extended hyperbolic model actually leads to considerable simplifications regarding numerical resolution, and the various ingredients used by this method are general enough to consider future extensions to problems involving complex physics.
Möckl, Leonhard; Lamb, Don C; Bräuchle, Christoph
2014-12-15
A big honor for small objects: The Nobel Prize in Chemistry 2014 was jointly awarded to Eric Betzig, Stefan Hell, and William E. Moerner "for the development of super-resolved fluorescence microscopy". This Highlight describes how the field of super-resolution microscopy developed from the first detection of a single molecule in 1989 to the sophisticated techniques of today.
Maucec, M
2000-01-01
The MCNP4B Monte Carlo transport code is used in a feasibility study of the epithermal neutron boron neutron capture therapy facility in the thermalizing column of the 250-kW TRIGA Mark II reactor at the Jozef Stefan Institute (JSI). To boost the epithermal neutron flux at the reference irradiation
Krishna, R.; van Baten, J.M.
2010-01-01
The Maxwell-Stefan (M-S) equations are widely used for modeling permeation of water-alcohol mixtures across microporous membranes in pervaporation and dehydration process applications. For binary mixtures, for example, the following set of assumptions is commonly invoked, either explicitly or
Maucec, M
2000-01-01
The MCNP4B Monte Carlo transport code is used in a feasibility study of the epithermal neutron boron neutron capture therapy facility in the thermalizing column of the 250-kW TRIGA Mark II reactor at the Jozef Stefan Institute (JSI). To boost the epithermal neutron flux at the reference irradiation
A splitting technique for analytical modelling of two-phase multicomponent flow in porous media
DEFF Research Database (Denmark)
Pires, A.P.; Bedrikovetsky, P.G.; Shapiro, Alexander
2006-01-01
In this paper we discuss one-dimensional models for two-phase Enhanced Oil Recovery (EOR) floods (oil displacement by gases, polymers, carbonized water, hot water, etc.). The main result presented here is the splitting of the EOR mathematical model into thermodynamical and hydrodynamical parts....... The introduction of a potential associated with one of the conservation laws and its use as a new independent coordinate reduces the number of equations by one. The (n)x(n) conservation law model for two-phase n-component EOR flows in new coordinates is transformed into a reduced (n-1)x(n-1) auxiliary system...... containing just thermodynamical variables (equilibrium fractions of components, sorption isotherms) and one lifting equation containing just hydrodynamical parameters (phase relative permeabilities and viscosities). The algorithm to solve analytically the problem includes solution of the reduced auxiliary...
An acoustic-convective splitting-based approach for the Kapila two-phase flow model
ten Eikelder, M. F. P.; Daude, F.; Koren, B.; Tijsseling, A. S.
2017-02-01
In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splitting approach. The results are in good agreement with reference results and exact solutions.
An acoustic-convective splitting-based approach for the Kapila two-phase flow model
Energy Technology Data Exchange (ETDEWEB)
Eikelder, M.F.P. ten, E-mail: m.f.p.teneikelder@tudelft.nl [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Daude, F. [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); IMSIA, UMR EDF-CNRS-CEA-ENSTA 9219, Université Paris Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau (France); Koren, B.; Tijsseling, A.S. [Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands)
2017-02-15
In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splitting approach. The results are in good agreement with reference results and exact solutions.
Numerical Fractional-Calculus Model for Two-Phase Flow in Fractured Media
Directory of Open Access Journals (Sweden)
Wenwen Zhong
2013-01-01
Full Text Available Numerical simulation of two-phase flow in fractured porous media is an important topic in the subsurface flow, environmental problems, and petroleum reservoir engineering. The conventional model does not work well in many cases since it lacks the memory property of fracture media. In this paper, we develop a new numerical formulation with fractional time derivative for two-phase flow in fractured porous media. In the proposed formulation, the different fractional time derivatives are applied to fracture and matrix regions since they have different memory properties. We further develop a two-level time discrete method, which uses a large time step for the pressure and a small time step size for the saturation. The pressure equation is solved implicitly in each large time step, while the saturation is updated by an explicit fractional time scheme in each time substep. Finally, the numerical tests are carried out to demonstrate the effectiveness of the proposed numerical model.
Well-posed Euler model of shock-induced two-phase flow in bubbly liquid
Tukhvatullina, R. R.; Frolov, S. M.
2017-07-01
A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.
Imagining Afrikaners musically: Reflections on the ‘African music’ of Stefans Grové
Directory of Open Access Journals (Sweden)
S. J. Muller
2000-05-01
Full Text Available For nearly two decades Stefans Grové has been composing music that absorbs the cultural “Other" of Africa in a manner that defies an easy classification of ‘‘indigenous’’ principles and “exotic” appropriation. His own conception of himself as an African who composes African music challenges the inhibition of “white” Afrikaner culture and revivifies Afrikaner culture as African culture. In so doing, Grové is consciously subverting the myth of a united Africa over against a monolithic "West” - and with it the legitimacy of an autochthonous echt African culture previously excluded by “whites" and Afrikaners. This article takes a closer look at the strategies and techniques involved in this fin de siècle musical imaginings of Afrikaner identity.
Construction of a confocal PIXE set-up at the Jozef Stefan Institute and first results
Energy Technology Data Exchange (ETDEWEB)
Grlj, N., E-mail: natasa.grlj@ijs.si [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Pelicon, P.; Zitnik, M.; Vavpetic, P. [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Sokaras, D. [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Institute of Nuclear Physics, NCSR ' Demokritos' , GR-15310 Athens (Greece); Karydas, A.G. [Nuclear Spectrometry and Applications Laboratory, International Atomic Energy Agency, A-2444 Seibersdorf (Austria); Institute of Nuclear Physics, NCSR ' Demokritos' , GR-15310 Athens (Greece); Kanngiesser, B. [Institute of Optics and Atomic Physics, Technical University of Berlin, Hardenbergstrasse 36, D-10623 Berlin (Germany)
2011-10-15
A new confocal PIXE set-up at the Jozef Stefan Institute in Ljubljana was recently designed and built. It consists of a silicon-drift detector, a specially designed polycapillary lens and a snout-alignment interface for precise positioning. It allows detector movement in all directions and therefore precise alignment during the creation of the probing volume and the possibility of simultaneous use of other complementary techniques, including standard {mu}-PIXE measurements with another X-ray detector. A description of the new set-up is given, as well as a short presentation of the method itself. Two custom-designed types of X-ray lenses were tailored and manufactured for this application, a standard semi-lens and a polycapillary conic collimator; both were characterized and compared within the scope of development of the confocal PIXE system. First results of depth profiling with the beam scanning mode are shown.
Eşanu, V
1984-01-01
A brief review is made of the research in the field of antiviral chemotherapy performed in the "Stefan S. Nicolau" Institute of Virology during the 35 years since its foundation. The investigations have mainly focused on influenza and herpes virus, but the chemotherapy of other viral infections (mumps, vaccinia, Coxsackie, etc.) has also been approached. Most of the chemotherapy agents assayed have been represented by natural preparations: immunoglobulins, interferon, hormones, vitamins, plant extracts (garlic, horse radish), bee products (propolis, royal jelly); attempts have also been made with numerous synthetic compounds. Stress is laid on the preparations already tested with a view to application in human clinic, and the prospects of chemotherapy research in the Institute of Virology are discussed.
[Intellectual exchange between Germany and Latin America: an interview with Stefan Rinke].
Rinke, Stefan; da Silva, André Felipe Cândido; Junghans, Miriam; Cavalcanti, Juliana Manzoni; de Muñoz, Pedro Felipe Neves
2014-01-01
Current and former students of the Casa de Oswaldo Cruz/Fiocruz interviewed German historian Stefan Rinke, of the Freie Universität Berlin, who specializes in examining the historical development of Latin America as it fits into the international context. Rinke's work uses dimensions such as economic and diplomatic relations, migratory flows, and ethnic conflict as tools in his analyses of the networks of interdependence that have tied Latin America to Europe and the USA. His lens goes beyond the Latin American continent to approach globalization as a historical process, with national and regional contexts placed within a general framework. In this interview, Rinke talks about his academic career, global and transnational history, and joint projects between Germany and Latin America.
Allie-Ebrahim, Tariq; Zhu, Qingyu; Bräuer, Pierre; Moggridge, Geoff D; D'Agostino, Carmine
2017-06-21
The Maxwell-Stefan model is a popular diffusion model originally developed to model diffusion of gases, which can be considered thermodynamically ideal mixtures, although its application has been extended to model diffusion in non-ideal liquid mixtures as well. A drawback of the model is that it requires the Maxwell-Stefan diffusion coefficients, which are not based on measurable quantities but they have to be estimated. As a result, numerous estimation methods, such as the Darken model, have been proposed to estimate these diffusion coefficients. However, the Darken model was derived, and is only well defined, for binary systems. This model has been extended to ternary systems according to two proposed forms, one by R. Krishna and J. M. van Baten, Ind. Eng. Chem. Res., 2005, 44, 6939-6947 and the other by X. Liu, T. J. H. Vlugt and A. Bardow, Ind. Eng. Chem. Res., 2011, 50, 10350-10358. In this paper, the two forms have been analysed against the ideal ternary system of methanol/butan-1-ol/propan-1-ol and using experimental values of self-diffusion coefficients. In particular, using pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) we have measured the self-diffusion coefficients in various methanol/butan-1-ol/propan-1-ol mixtures. The experimental values of self-diffusion coefficients were then used as the input data required for the Darken model. The predictions of the two proposed multicomponent forms of this model were then compared to experimental values of mutual diffusion coefficients for the ideal alcohol ternary system. This experimental-based approach showed that the Liu's model gives better predictions compared to that of Krishna and van Baten, although it was only accurate to within 26%. Nonetheless, the multicomponent Darken model in conjunction with self-diffusion measurements from PGSTE-NMR represents an attractive method for a rapid estimation of mutual diffusion in multicomponent systems, especially when compared to exhaustive
Experimental Two-Phase Liquid-Metal Magnetohydrodynamic Generator Program
1979-04-01
efficiencies in excess of 0.8 are attainable. Initial measurements of local flow parameters in a NaK -nitrogen two-phase liquid - metal MHD generator...hot liquid metals . Thus, the concept of using surface-active aaents in MHD generators can be evaluated more rapidly and inexpensively with NaK , the...describe this aggregation of bchbles as a foam. When the Ba- NaK solution was transferred, helium was blown under the surface of the liquid metal with the
A real two-phase submarine debris flow and tsunami
Energy Technology Data Exchange (ETDEWEB)
Pudasaini, Shiva P.; Miller, Stephen A. [Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn Nussallee 8, D-53115, Bonn (Germany)
2012-09-26
The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the
Recurrent pyogenic cholangitis : efficacy of two-phase helical CT
Energy Technology Data Exchange (ETDEWEB)
Jeong, Ki Ho; Cho, June Sik; Shin, Kyung Sook; Lee, Se Hyo; Yu, Ho Jun; Park, Jin Yong; Kim, Young Min [College of Medicine, Chungnam National University, Taejon (Korea, Republic of)
2000-01-01
To evaluate the usefulness of two-phase helical CT in patients with recurrent pyogenic cholangitis (RPC) for the detection of acute inflammation and assessment of the degree of portal vein (PV) stenosis as a cause of hepatic parenchymal atrophy. We retrospectively reviewed two-phase CT findings in 30 patients with RPC diagnosed by CT, ERCP (endoscopic retrograde cholangiopancreatography), and surgery. Two-phase helical CT scans were obtained 30 sec (arterial phase, AP) and 70 sec (portal phase, PP) after the start of IV administration of contrast material. Without prior information, we analyzed periductal parenchymal and ductal wall enhancement during the AP and PP, and the degree of PV stenosis during the PP. Acute inflammation was diagnosed on the basis of symptoms and laboratory findings. To evaluate the relationship between parenchymal a trophy and PV stenosis, the degree of PV stenosis in affected parenchyma was classified as one of three types (mild, less than 25%; moderate, 25-75%; severe, greater than 75%), as compared with the diameter of normal PV in unaffected parenchyma. Ten of the 30 patients underwent CT during the acute inflammatory stage and 20 during the remission stage. Of the ten patients with acute inflammation, eight (80%) showed transient periductal parenchymal enhancement during the AP (p less than 0.05), which correlated closely with acute inflammation. Only three (15%) of the 20 patients with remission, however, showed transient parenchymal enhancement during this phase, at which time ductal wall enhancement was seen in three (30%) of the ten patients with acute inflammation and in seven (35%) of the 20 who showed remission (p greater than 0.05). There was no significant difference in parenchymal and ductal wall enhancement during the PP between patients with acute inflammation and those who showed remission (p greater than 0.05). Hepatic parenchymal atrophy of the lesion was seen in 24 patients. Among these, PV stenosis was mild in five
Stochastic analysis of particle-fluid two-phase flows
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
This paper is devoted to exploring approaches to understanding the stochastic characteristics of particle-fluid two-phase flow. By quantifying the forces dominating the particle motion and modelling the less important and/or unclear forces as random forces, a stochastic differential equation is proposed to describe the complex behavior of a particle motion. An exploratory simulation has shown satisfactory agreement with phase doppler particle analyzer (PDPA) measurements, which indicates that stochastic analysis is a potential approach for revealing the details of particle-fluid flow phenomena.
Two-phase nozzle flow and the subcharacteristic condition
DEFF Research Database (Denmark)
Linga, Gaute; Aursand, Peder; Flåtten, Tore
2015-01-01
We consider nozzle flow models for two-phase flow with phase transfer. Such models are based on energy considerations applied to the frozen and equilibrium limits of the underlying relaxation models. In this paper, we provide an explicit link between the mass flow rate predicted by these models a...... leakage of CO2 is presented, indicating that the frozen and equilibrium models provide significantly different predictions. This difference is comparable in magnitude to the modeling error introduced by applying simple ideal-gas/incompressible-liquid equations-of-state for CO2....
Droplets Formation and Merging in Two-Phase Flow Microfluidics
Directory of Open Access Journals (Sweden)
Hao Gu
2011-04-01
Full Text Available Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i the emulsification step should lead to a very well controlled drop size (distribution; and (ii the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.
Experimental study of two-phase natural circulation circuit
Energy Technology Data Exchange (ETDEWEB)
Lemos, Wanderley Freitas; Su, Jian, E-mail: wlemos@lasme.coppe.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose Luiz Horacio, E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), RIo de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental
2012-07-01
This paper reports an experimental study on the behavior of fluid flow in natural circulation under single-and two-phase flow conditions. The natural circulation circuit was designed based on concepts of similarity and scale in proportion to the actual operating conditions of a nuclear reactor. This test equipment has similar performance to the passive system for removal of residual heat presents in Advanced Pressurized Water Reactors (A PWR). The experiment was carried out by supplying water to primary and secondary circuits, as well as electrical power resistors installed inside the heater. Power controller has available to adjust the values for supply of electrical power resistors, in order to simulate conditions of decay of power from the nuclear reactor in steady state. Data acquisition system allows the measurement and control of the temperature at different points by means of thermocouples installed at several points along the circuit. The behavior of the phenomenon of natural circulation was monitored by a software with graphical interface, showing the evolution of temperature measurement points and the results stored in digital format spreadsheets. Besides, the natural circulation flow rate was measured by a flowmeter installed on the hot leg. A flow visualization technique was used the for identifying vertical flow regimes of two-phase natural circulation. Finally, the Reynolds Number was calculated for the establishment of a friction factor correlation dependent on the scale geometrical length, height and diameter of the pipe. (author)
Two-phase electrochemical lithiation in amorphous silicon.
Wang, Jiang Wei; He, Yu; Fan, Feifei; Liu, Xiao Hua; Xia, Shuman; Liu, Yang; Harris, C Thomas; Li, Hong; Huang, Jian Yu; Mao, Scott X; Zhu, Ting
2013-02-13
Lithium-ion batteries have revolutionized portable electronics and will be a key to electrifying transport vehicles and delivering renewable electricity. Amorphous silicon (a-Si) is being intensively studied as a high-capacity anode material for next-generation lithium-ion batteries. Its lithiation has been widely thought to occur through a single-phase mechanism with gentle Li profiles, thus offering a significant potential for mitigating pulverization and capacity fade. Here, we discover a surprising two-phase process of electrochemical lithiation in a-Si by using in situ transmission electron microscopy. The lithiation occurs by the movement of a sharp phase boundary between the a-Si reactant and an amorphous Li(x)Si (a-Li(x)Si, x ~ 2.5) product. Such a striking amorphous-amorphous interface exists until the remaining a-Si is consumed. Then a second step of lithiation sets in without a visible interface, resulting in the final product of a-Li(x)Si (x ~ 3.75). We show that the two-phase lithiation can be the fundamental mechanism underpinning the anomalous morphological change of microfabricated a-Si electrodes, i.e., from a disk shape to a dome shape. Our results represent a significant step toward the understanding of the electrochemically driven reaction and degradation in amorphous materials, which is critical to the development of microstructurally stable electrodes for high-performance lithium-ion batteries.
Droplets formation and merging in two-phase flow microfluidics.
Gu, Hao; Duits, Michel H G; Mugele, Frieder
2011-01-01
Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.
Acute cholecystitis: two-phase spiral CT finding
Energy Technology Data Exchange (ETDEWEB)
Oh, Eung Young; Yoon, Myung Hwan; Yang, Dal Mo; Chun Seok; Bae, Jun Gi; Kim, Hak Soo; Kim, Hyung Sik [Chungang Ghil Hospital, Incheon (Korea, Republic of)
1998-07-01
To describe the two-phase spiral CT findings of acute cholecystitis. Materials and Methods : CT scans of nine patients with surgically-proven acute cholecystitis were retrospectively reviewed for wall thickening, enhancement pattern of the wall, attenuation of the liver adjacent to the gallbladder, gallstones,gallbladder distension, gas collection within the gallbladder, pericholecystic fluid and infiltration of pericholecystic fat. Results : In all cases, wall thickening of the gallbladder was seen, though this was more distinct on delayed images, Using high-low-high attenuation, one layer was seen in five cases, nd three layers in four. On arterial images, eight cases showed transient focal increased attenuation of the liver adjacent to the gall bladder;four of these showed curvilinear attenuation and four showed subsegmental attenuation. One case showed curvilinear decreased attenuation between increased attenuation of the liver and the gallbladder, and during surgery, severe adhesion between the liver and gallbladder was confirmed. Additional CT findings were infiltration of pericholecystic fat (n=9), gallstones (n=7), gallbladder distension (n=6), pericholecystic fluid(n=3), and gas collection within the gallbladder (n=2). Conclusion : In patients with acute cholecystitis,two-phase spiral CT revealed wall thickening in one or three layers ; on delayed images this was more distinct. In many cases, arterial images showed transient focal increased attenuation of the liver adjacent to the gallbladder.
Experimental study of a two-phase surface jet
Perret, Matias; Esmaeilpour, Mehdi; Politano, Marcela S.; Carrica, Pablo M.
2013-04-01
Results of an experimental study of a two-phase jet are presented, with the jet issued near and below a free surface, parallel to it. The jet under study is isothermal and in fresh water, with air injectors that allow variation of the inlet air volume fraction between 0 and 13 %. Measurements of water velocity have been performed using LDV, and the jet exit conditions measured with PIV. Air volume fraction, bubble velocity and chord length distributions were measured with sapphire optical local phase detection probes. The mean free surface elevation and RMS fluctuations were obtained using local phase detection probes as well. Visualization was performed with laser-induced fluorescence. Measurements reveal that the mean free surface elevation and turbulent fluctuations significantly increase with the injection of air. The water normal Reynolds stresses are damped by the presence of bubbles in the bulk of the liquid, but very close to the free surface the effect is reversed and the normal Reynolds stresses increase slightly for the bubbly flow. The Reynolds shear stresses time it takes the bubbles to pierce the free surface, resulting in a considerable increase in the local air volume fraction. In addition to first explore a bubbly surface jet, the comprehensive dataset reported herein can be used to validate two-phase flow models and computational tools.
Experimental study of two phase flow in inclined channel
Energy Technology Data Exchange (ETDEWEB)
Park, Goon Cherl; Lee, Tae Ho; Lee, Sang Won [Seoul National University, Seoul (Korea, Republic of)
1997-07-01
Local two-phase flow parameters were measured to investigate the internal flow structures of steam-water boiling flow in an inclined channel. The vapor phase local flow parameters, such as void fraction, bubble frequency, vapor velocity, interfacial area concentration and chord length, were measured, using two conductivity probe method, and local liquid phase velocity was measured by pitot tube. In order to investigate the effects of channel inclination on two phase flow structure, the experiments were conducted for three angles of inclination; 0 degree(vertical), 30 degree and 60 degree. The experimental flow conditions were confined to the liquid superficial velocities less than 1.4 m/sec and nearly atmospheric pressure, and the flow regime was limited to the subcooled boiling. Using the measured distributions of the local phasic parameters, correlations for the drift-flux parameters such as distribution parameter and drift velocity were proposed. Those correlations were compared with the available correlation applicable to the inclined channel by the calculation of average void fraction using the present data. 44 refs., 4 tabs., 88 figs. (author)
钢铁工业中的自由边值问题%Free Boundary Problems in the Steel Industry
Institute of Scientific and Technical Information of China (English)
A.D. Fitt; J.R. Ockendon; C.P.Please
2004-01-01
This paper considers two novel free boundary problems that emerge from modelling processes basic to steel manufacture.The first process concerns the spray cooling of hot steel sheet during the process of continuous casting. Here, an important practical consideration is the non-monotonicity of the measured heat transfer from the steel as a function of the steel temperature. In order to understand this phenomenon, a two-phase flow model is written down for the heating and vapourisation of the water spray. This model relies on a microscale analysis of droplet vapourisation and, in a steady state, it reduces to a coupled system of nonlinear ordinary differential equations for the spray temperature and water content. This system predicts the conditions for the existence or otherwise of a free boundary separating the two-phase region from a dry vapour layer close to the steel plate.The thickness of this vapour layer is determined by the solution of a generalised Stefan problem. The second process concerns the macroscopic modelling of pig iron production in blast furnaces. In the simplest scenario, the blast furnace may be roughly divided into a porous solid region. overlaying a hot high pressure gaseous zone. The gas reacts with the solid in a thin "intermediate region" at the base of the solid region and it is in this intermediate region that the pig iron is produced. A free boundary model is proposed for the location of the intermediate region and its stability is investigated.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
In the investigation of effect of KSCN on the partitioning of lysozyme in PEG2000/ammonium sulfate aqueous two-phase system, it was found that the KSCN could alter the pH difference between the two phases, and thus affect the partition of lysozyme. The relationship between partition coefficients of lysozyme and pH differences between two phases was discussed.
Prediction of shear bands in sand based on granular flow model and two-phase equilibrium
Institute of Scientific and Technical Information of China (English)
张义同; 齐德瑄; 杜如虚; 任述光
2008-01-01
In contrast to the traditional interpretation of shear bands in sand as a bifurcation problem in continuum mechanics,shear bands in sand are considered as high-strain phase(plastic phase) of sand and the materials outside the bands are still in low-strain phase(elastic phase),namely,the two phases of sand can coexist under certain condition.As a one-dimensional example,the results show that,for materials with strain-softening behavior,the two-phase solution is a stable branch of solutions,but the method to find two-phase solutions is very different from the one for bifurcation analysis.The theory of multi-phase equilibrium and the slow plastic flow model are applied to predict the formation and patterns of shear bands in sand specimens,discontinuity of deformation gradient and stress across interfaces between shear bands and other regions is considered,the continuity of displacements and traction across interfaces is imposed,and the Maxwell relation is satisfied.The governing equations are deduced.The critical stress for the formation of a shear band,both the stresses and strains inside the band and outside the band,and the inclination angle of the band can all be predicted.The predicted results are consistent with experimental measurements.
Simulation experiments for hot-leg U-bend two-phase flow phenomena
Energy Technology Data Exchange (ETDEWEB)
Ishii, M.; Hsu, J.T.; Tucholke, D.; Lambert, G.; Kataoka, I.
1986-01-01
In order to study the two-phase natural circulation and flow termination during a small break loss of coolant accident in LWR, simulation experiments have been performed. Based on the two-phase flow scaling criteria developed under this program, an adiabatic hot leg U-bend simulation loop using nitrogen gas and water and a Freon 113 boiling and condensation loop were built. The nitrogen-water system has been used to isolate key hydrodynamic phenomena from heat transfer problems, whereas the Freon loop has been used to study the effect of phase changes and fluid properties. Various tests were carried out to establish the basic mechanism of the flow termination and reestablishment as well as to obtain essential information on scale effects of parameters such as the loop frictional resistance, thermal center, U-bend curvature and inlet geometry. In addition to the above experimental study, a preliminary modeling study has been carried out for two-phase flow in a large vertical pipe at relatively low gas fluxes typical of natural circulation conditions.
Binary image encryption based on interference of two phase-only masks.
Jia, Wei; Wen, Fung Jacky; Chow, Yuk Tak; Zhou, Changhe
2012-07-20
Optical image encryption based on interference has attracted a lot of attention recently. The technique employs two pure phase masks derived from the complex field of the image in the Fresnel diffraction domain. The image decryption procedure can be carried out by inverse Fresnel transformation of the summation of two pure phase masks. However, the silhouette of the original image, which is recovered by either of the two phase-only masks, impedes the application of this technique. In this paper, a very simple method for binary image encryption based on interference of two phase-only masks is proposed without any silhouette problem. The binary image in combination with a random phase mask is separated into two phase-only masks directly, and the decryption by summation of the two masks can be performed digitally or optically. In this paper, the encryption and decryption processes are analyzed, after which both the optical simulation and the experimental results based on single-beam holography are given to demonstrate the feasibility of the encryption method. As information nowadays is mainly digitized into binary codes, the proposed encryption method may find applications in the information processing field.
Directory of Open Access Journals (Sweden)
Erdeljan Jelena
2006-01-01
Full Text Available In the Vita of despot Stefan Lazarević, Belgrade is compared to Jerusalem The use of this topos is aimed at a social construction of meaning within the framework of historically determined cultural discourse, based on the premise that culture itself can be observed as a complex system of signs constantly open to redefinition. This implies that the approach to its more profound understanding must rely on a method based on reconceptualization of the problem of text and context. Therefore, the true object of investigation becomes the relation between text and society whose activities are themselves perceived as a sort of behavioral text, in which that relation functions as two homologous systems of signs. As a result, our attention is focused on activities which produce social and cultural phenomena and objects — actually on the means by the use of which a world filled with meaning is created. Apart from texts, those means, as real as the text itself, belong to the instruments of creating sacred space or hierotopy, a phenomenon historically recognized as translatio Hierosolymi. Beyond any doubt, in the eyes of homo medievalis, the absolute paradigm of hierotopic activity is Constantinople the capital of the Empire and universal model through the emulation of which or through the appropriation of whose elements of identity (ranging from cults of saints to visual identity throughout history, and in particular in the later middle ages (especially following the events of 1204, a growing number of other points in the Christian oikoumene gains the status of center as a God-chosen and God-protected place — Arta, Trebizond and Nicea, Paris and Venice, Novgorod and Moscow, to name just the most prominent examples In investigating the case of Belgrade, attention is focused on the modes and vehicles of hierotopy which in the days of despot Stefan Lazarević (1402-1427 were laid as the foundation of likening Belgrade and Jerusalem as the utmost example of
Multiphysics modeling of two-phase film boiling within porous corrosion deposits
Energy Technology Data Exchange (ETDEWEB)
Jin, Miaomiao, E-mail: mmjin@mit.edu; Short, Michael, E-mail: hereiam@mit.edu
2016-07-01
Porous corrosion deposits on nuclear fuel cladding, known as CRUD, can cause multiple operational problems in light water reactors (LWRs). CRUD can cause accelerated corrosion of the fuel cladding, increase radiation fields and hence greater exposure risk to plant workers once activated, and induce a downward axial power shift causing an imbalance in core power distribution. In order to facilitate a better understanding of CRUD's effects, such as localized high cladding surface temperatures related to accelerated corrosion rates, we describe an improved, fully-coupled, multiphysics model to simulate heat transfer, chemical reactions and transport, and two-phase fluid flow within these deposits. Our new model features a reformed assumption of 2D, two-phase film boiling within the CRUD, correcting earlier models' assumptions of single-phase coolant flow with wick boiling under high heat fluxes. This model helps to better explain observed experimental values of the effective CRUD thermal conductivity. Finally, we propose a more complete set of boiling regimes, or a more detailed mechanism, to explain recent CRUD deposition experiments by suggesting the new concept of double dryout specifically in thick porous media with boiling chimneys. - Highlights: • A two-phase model of CRUD's effects on fuel cladding is developed and improved. • This model eliminates the formerly erroneous assumption of wick boiling. • Higher fuel cladding temperatures are predicted when accounting for two-phase flow. • Double-peaks in thermal conductivity vs. heat flux in experiments are explained. • A “double dryout” mechanism in CRUD is proposed based on the model and experiments.
Two-Phase Algorithm for Optimal Camera Placement
Jun-Woo Ahn; Tai-Woo Chang; Sung-Hee Lee; Yong Won Seo
2016-01-01
As markers for visual sensor networks have become larger, interest in the optimal camera placement problem has continued to increase. The most featured solution for the optimal camera placement problem is based on binary integer programming (BIP). Due to the NP-hard characteristic of the optimal camera placement problem, however, it is difficult to find a solution for a complex, real-world problem using BIP. Many approximation algorithms have been developed to solve this problem. In this pape...
Contrast enhanced two-phase spiral CT of urinary bladder
Energy Technology Data Exchange (ETDEWEB)
Park, Jeung Uk; Cha, Seong Sook; Ryu, Ji Hwa; Oh, Jeong Geun; Chang, Seung Kuk; Choi, Seok Jin; Eun, Choong Kie [Inje Univ. College of Medicine, Pusan (Korea, Republic of); Seo, Chang Hye [Daedong General Hospital, Pusan (Korea, Republic of)
1997-10-01
To determine optimal scan time for the early phase of two-phase spiral CT and to evaluate its usefulness in the detection and assessment of extension of urinary bladder lesions. In four normal adults, we performed dynamic scanning and obtained time-density curves for internal and external iliac arteries and veins, and the wall of the urinary bladder. Sixty patients with 68 lesions of the urinary bladder or prostate underwent precontrast and two-phase spiral CT scanning. After injection of 100ml of noninonic contrast material, images for the early and delayed phases were obtained at 60 seconds and 5 minutes, respectively. We measured CT H. U. of the wall, the lesion, and lumen of urinary bladder as seen on axial scanning, in each image in which the lesion was best shown. For the detection of bladder lesions and assessment of their extension, precontrast, early-, and delayed phsed images were compared. Dynamic study of normal adults showed maximum enhancement of bladder wall between 60 and 100 seconds. The difference of CT H. U. between bladder wall and the lesion was greatest in the early phase. The best detection rate(98.5%) was seen during this phase, and for the detection of bladder lesion, this same phase was superior or equal (66/68, 97.1%) to the delayed phase. The precontrast image was also superior or equal (31/68, 45.6%) to that of the delayed phase. For the assessment of extension of bladder lesion, the early phase was superior (36/68, 52.9%) to the delayed phase, and precontrast image was superiour (1/68, 1.5%) to that of the delayed phase. For determining the stage of bladder cancer, the early phase was most accurate if the stages was below B{sub 2} or D, while for stage C, the delayed phase was most accurate. In two-hpase spiral CT scanning, we consider the optimal time for the early phase to be between 60 and 100 seconds after injection of contrast material. For the detection and assessment of extension of urinary bladder lesion, the early phase was
Advanced numerical methods for three dimensional two-phase flow calculations
Energy Technology Data Exchange (ETDEWEB)
Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)
1997-07-01
This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.
Two-phase microfluidics: thermophysical fundamentals and engineering concepts
Kuznetsov, V. V.
2016-10-01
Thermophysical fundamentals and engineering concepts of the two-phase microfluidic devises based on controlled liquid decay are discussed in this paper. The results of an experimental study of the explosive evaporation at a thin film heater of the MEMS devise in application to thermal inkjet printing are presented. The peculiarities of homogeneous nucleation and bubble growth in the liquid subjected to pulse heating are discussed. Using experimental data a simple equation suitable for predicting the growth rate of a vapor bubble in a non-uniformly superheated liquid was obtained and used to complete a mathematical model of the self-consistent nucleation and vapor bubbles growth in the induced pressure field. The results of numerical calculations according to the proposed model showed good agreement with the experimental data on a time of nucleation and duration of the initial stage of an explosive evaporation of water.
Two-phase flow instability in a parallel multichannel system
Institute of Scientific and Technical Information of China (English)
HOU Suxia
2009-01-01
The two-phase flow instabilities observed in through parallel multichannel can be classified into three types, of which only one is intrinsic to parallel multichannel systems. The intrinsic instabilities observed in parallel multichannel system have been studied experimentally. The stable boundary of the flow in such a parallel-channel system are sought, and the nature of inlet flow oscillation in the unstable region has been examined experimentally under various conditions of inlet velocity, heat flux, liquid temperature, cross section of channel and entrance throttling. The results show that parallel multichannel system possess a characteristic oscillation that is quite independent of the magnitude and duration of the initial disturbance, and the stable boundary is influenced by the characteristic frequency of the system as well as by the exit quality when this is low, and upon raising the exit quality and reducing the characteristic frequency, the system increases its instability, and entrance throttling effectively contributes to stabilization of the system.
Response of two-phase droplets to intense electromagnetic radiation
Energy Technology Data Exchange (ETDEWEB)
Spann, J.F. (Morgantown Energy Technology Center, U.S. Department of Energy, P.O. Box 880, Morgantown, West Virginia 26507-0880 (United States)); Maloney, D.J.; Lawson, W.F.; Casleton, K.H. (Morgantown Energy Technology Center, U.S. Department of Energy, P.O. Box 880, Morgantown, West Virginia 26507-0880 (United States))
1993-04-20
The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii = 37, 55, and 80 [mu]m) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.
Two phase coexistence for the hydrogen-helium mixture
Fantoni, Riccardo
2015-01-01
We use our newly constructed quantum Gibbs ensemble Monte Carlo algorithm to perform computer experiments for the two phase coexistence of a hydrogen-helium mixture. Our results are in quantitative agreement with the experimental results of C. M. Sneed, W. B. Streett, R. E. Sonntag, and G. J. Van Wylen. The difference between our results and the experimental ones is in all cases less than 15% relative to the experiment, reducing to less than 5% in the low helium concentration phase. At the gravitational inversion between the vapor and the liquid phase, at low temperatures and high pressures, the quantum effects become relevant. At extremely low temperature and pressure the first component to show superfluidity is the helium in the vapor phase.
Two-phase flow simulation of aeration on stepped spillway
Institute of Scientific and Technical Information of China (English)
CHENG Xiangju; LUO Lin; ZHAO Wenqian; LI Ran
2004-01-01
Stepped spillways have existed as escape works for a very long time. It is found that water can trap a lot of air when passing through steps and then increasing oxygen content in water body, so stepped spillways can be used as a measure of re-aeration and to improve water quality of water body. However, there is no reliable theoretical method on quantitative calculation of re-aeration ability for the stepped spillways. By introducing an air-water two-phase flow model, this paper used k-ε turbulence model to calculate the characteristic variables of free-surface aeration on stepped spillway. The calculated results fit with the experimental results well. It supports that the numerical modeling method is reasonable and offers firm foundation on calculating re-aeration ability of stepped spillways. The simulation approach can provide a possible optimization tool for designing stepped spillways of more efficient aeration capability.
Emerging Two-Phase Cooling Technologies for Power Electronic Inverters
Energy Technology Data Exchange (ETDEWEB)
Hsu, J.S.
2005-08-17
In order to meet the Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FVCT) goals for volume, weight, efficiency, reliability, and cost, the cooling of the power electronic devices, traction motors, and generators is critical. Currently the power electronic devices, traction motors, and generators in a hybrid electric vehicle (HEV) are primarily cooled by water-ethylene glycol (WEG) mixture. The cooling fluid operates as a single-phase coolant as the liquid phase of the WEG does not change to its vapor phase during the cooling process. In these single-phase systems, two cooling loops of WEG produce a low temperature (around 70 C) cooling loop for the power electronics and motor/generator, and higher temperature loop (around 105 C) for the internal combustion engine. There is another coolant option currently available in automobiles. It is possible to use the transmission oil as a coolant. The oil temperature exists at approximately 85 C which can be utilized to cool the power electronic and electrical devices. Because heat flux is proportional to the temperature difference between the device's hot surface and the coolant, a device that can tolerate higher temperatures enables the device to be smaller while dissipating the same amount of heat. Presently, new silicon carbide (SiC) devices and high temperature direct current (dc)-link capacitors, such as Teflon capacitors, are available but at significantly higher costs. Higher junction temperature (175 C) silicon (Si) dies are gradually emerging in the market, which will eventually help to lower hardware costs for cooling. The development of high-temperature devices is not the only way to reduce device size. Two-phase cooling that utilizes the vaporization of the liquid to dissipate heat is expected to be a very effective cooling method. Among two-phase cooling methods, different technologies such as spray, jet impingement, pool boiling and submersion, etc. are being developed. The
Solutal Marangoni instability in layered two-phase flows
Picardo, Jason R; Pushpavanam, S
2015-01-01
In this paper, the instability of layered two-phase flows caused by the presence of a soluble surfactant (or a surface active solute) is studied. The fluids have different viscosities, but are density matched to focus on Marangoni effects. The fluids flow between two flat plates, which are maintained at different solute concentrations. This establishes a constant flux of solute from one fluid to the other in the base state. A linear stability analysis is performed, using a combination of asymptotic and numerical methods. In the creeping flow regime, Marangoni stresses destabilize the flow, provided a concentration gradient is maintained across the fluids. One long wave and two short wave Marangoni instability modes arise, in different regions of parameter space. A well-defined condition for the long wave instability is determined in terms of the viscosity and thickness ratios of the fluids, and the direction of mass transfer. Energy budget calculations show that the Marangoni stresses that drive long and shor...
Two-phase flow instabilities in a vertical annular channel
Energy Technology Data Exchange (ETDEWEB)
Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)
1995-09-01
An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.
Equations of two-phase flow in spray chamber
Institute of Scientific and Technical Information of China (English)
李新禹; 张志红; 金星; 徐杰
2009-01-01
The downstream water-air heat and moisture transfer system in a moving coordinate was studied. The relationship between the diameter of the misted droplets and the spray pressure was determined. Based on the theory of the relative velocity,the two-phase flow mode of the spray chamber and the efficiency equation for heat and moisture exchange were established. Corrections were carried out for the efficiency equation with spray pressure of 157 kPa. The results show that the pressure plays an important part in determining the efficiency of heat and moisture exchange. When the spray pressure is less than 157 kPa,better coincidence is noticed between the theoretical analysis and the test results with the error less than 6%. Greater error will be resulted in the case when the spray pressure is beyond 157 kPa. After the correction treatment,the coincidence between the theoretical and the experimental results is greatly improved.
Transient thermohydraulic modeling of two-phase fluid systems
Blet, N.; Delalandre, N.; Ayel, V.; Bertin, Y.; Romestant, C.; Platel, V.
2012-11-01
This paper presents a transient thermohydraulic modeling, initially developed for a capillary pumped loop in gravitational applications, but also possibly suitable for all kinds of two-phase fluid systems. Using finite volumes method, it is based on Navier-Stokes equations for transcribing fluid mechanical aspects. The main feature of this 1D-model is based on a network representation by analogy with electrical. This paper also proposes a parametric study of a counterflow condenser following the sensitivity to inlet mass flow rate and cold source temperature. The comparison between modeling results and experimental data highlights a good numerical evaluation of temperatures. Furthermore, the model is able to represent a pretty good dynamic evolution of hydraulic variables.
Flooding in counter-current two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Ragland, W.A.; Ganic, E.N.
1982-01-01
Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding.
Response of two-phase droplets to intense electromagnetic radiation
Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.
1993-01-01
The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.
Note on Two-Phase Phenomena in Financial Markets
Institute of Scientific and Technical Information of China (English)
JIANG Shi-Mei; CAI Shi-Min; ZHOU Wao; ZHOU Pei-Ling
2008-01-01
The two-phase behaviour in financial markets actually means the bifurcation phenomenon, which represents the change of the conditional probability from an unimodal to a bimodal distribution. We investigate the bifurcation phenomenon in Hang-Seng index. It is observed that the bifurcation phenomenon in financial index is not universal, but specific under certain conditions. For Hang-Seng index and randomly generated time series, the phenomenon just emerges when the power-law exponent of absolute increment distribution is between i and 2 with appropriate period. Simulations on a randomly generated time series suggest the bifurcation phenomenon itself is subject to the statistics of absolute increment, thus it may not be able to reflect essential financial behaviours. However, even under the same distribution of absolute increment, the range where bifurcation phenomenon occurs is far different from real market to artificial data, which may reflect certain market information.
Thirty-two phase sequences design with good autocorrelation properties
Indian Academy of Sciences (India)
S P Singh; K Subba Rao
2010-02-01
Polyphase Barker Sequences are ﬁnite length, uniform complex sequences; the magnitude of their aperiodic autocorrelation sidelobes are bounded by 1. Such sequences have been used in numerous real-world applications such as channel estimation, radar and spread spectrum communication. In this paper, thirty-two phase Barker sequences up to length 24 with an alphabet size of only 32 are presented. The sequences from length 25 to 289 have autocorrelation properties better than well-known Frank codes. Because of the complex structure the sequences are very difﬁcult to detect and analyse by an enemy’s electronic support measures (ESMs). The synthesized sequences are promising for practical application to radar and spread spectrum communication systems. These sequences are found using the Modiﬁed Simulated Annealing Algorithm (MSAA). The convergence rate of the algorithm is good.
Multi-level adaptive simulation of transient two-phase flow in heterogeneous porous media
Chueh, C.C.
2010-10-01
An implicit pressure and explicit saturation (IMPES) finite element method (FEM) incorporating a multi-level shock-type adaptive refinement technique is presented and applied to investigate transient two-phase flow in porous media. Local adaptive mesh refinement is implemented seamlessly with state-of-the-art artificial diffusion stabilization allowing simulations that achieve both high resolution and high accuracy. Two benchmark problems, modelling a single crack and a random porous medium, are used to demonstrate the robustness of the method and illustrate the capabilities of the adaptive refinement technique in resolving the saturation field and the complex interaction (transport phenomena) between two fluids in heterogeneous media. © 2010 Elsevier Ltd.
Vector Controlled Two Phase Induction Motor and To A Three Phase Induction Motor
Directory of Open Access Journals (Sweden)
K.krishna Rao (PG student
2014-12-01
Full Text Available This paper presents vector controlled of single phase induction motor. some problems are with vector controlled SPIM.As SPIM’s are typically to maintain speed and also about the complex implementation of vector controlled SPIM.the implemantion of the proposed vector controlled TPIM compared to the vector controlled SPIM. The general modal sutable for vector control of the unsymmentrical two phase induction motor and also stator flux oriented controlled strategies are analized. the comparative performance of both has been presented in this work with help of a practical three phase motor.
Prediction of gas-liquid two-phase flow regime in microgravity
Lee, Jinho; Platt, Jonathan A.
1993-01-01
An attempt is made to predict gas-liquid two-phase flow regime in a pipe in a microgravity environment through scaling analysis based on dominant physical mechanisms. Simple inlet geometry is adopted in the analysis to see the effect of inlet configuration on flow regime transitions. Comparison of the prediction with the existing experimental data shows good agreement, though more work is required to better define some physical parameters. The analysis clarifies much of the physics involved in this problem and can be applied to other configurations.
Two-phase methanization of food wastes in pilot scale.
Lee, J P; Lee, J S; Park, S C
1999-01-01
A 5 ton/d pilot scale two-phase anaerobic digester was constructed and tested to treat Korean food wastes in Anyang city near Seoul. The easily degradable presorted food waste was efficiently treated in the two-phase anaerobic digestion process. The waste contained in plastic bags was shredded and then screened for the removal of inert materials such as fabrics and plastics, and subsequently put into the two-stage reactors. Heavy and light inerts such as bones, shells, spoons, and plastic pieces were again removed by gravity differences. The residual organic component was effectively hydrolyzed and acidified in the first reactor with 5 d space time at pH of about 6.5. The second, methanization reactor converted the acids into methane with pH between 7.4 and 7.8. The space time for the second reactor was 15 d. The effluent from the second reactor was recycled to the first reactor to provide alkalinities. The process showed stable steady-state operation with the maximum organic loading rate of 7.9 kg volatile solid (VS)/m3/d and the volatile solid reduction efficiency of about 70%. The total of 3.6 tons presorted MSW containing 2.9 tons of food organic was treated to produce about 230 m3 of biogas with 70% (v/v) of methane and 80 kg of humus. This process is extended to full-scale treating 15 tons of food waste a day in Euiwang city and the produced biogas is utilized for the heating/cooling of adjacent buildings.
Two phase continuous digestion of solid manure on-farm
Energy Technology Data Exchange (ETDEWEB)
Schaefer, W.; Lehto, M. [MTT Agrifood Research Finland, Vihti (Finland). Animal Production Research; Evers, L.; Granstedt, A. [Biodynamic Research Inst., Jaerna (Sweden)
2007-07-01
Present commercially available biogas plants are mainly suitable for slurry and co-substrates. Cattle, horse and poultry farms using a solid manure chain experience a crucial competitive disadvantage, because conversion to slurry technology requires additional investments. Based on the technological progress of anaerobic digestion of municipal solid waste, so called 'dry fermentation' prototype plants were developed for anaerobic digestion of organic material containing 15-50% total solids (Hoffman, 2001). These plants show added advantages compared to slurry digestion plants: Less reactor volume, less process energy, less transport capacity, less odour emissions. On-farm research (Gronauer and Aschmann, 2004; Kusch and Oechsner, 2004) and prototype research (Linke, 2004) on dry fermentation in batch reactors show that loading and discharging of batch reactors remains difficult and/or time-consuming compared to slurry reactors. Additionally a constant level of gas generation requires offset operation of several batch reactors. Baserga et al. (1994) developed a pilot plant of 9.6 m{sup 3} capacity for continuous digestion of solid beef cattle manure on-farm. However, on-farm dry fermentation plants are not common and rarely commercially available. We assume that lack of tested technical solutions and scarceness of on-farm research results are the main reason for low acceptance of dry fermentation technology on-farm. We report about an innovative two phase farm-scale biogas plant. The plant continuously digests dairy cattle manure and organic residues of the farm and the surrounding food processing units. The two phase reactor technology was chosen for two reasons: first it offers the separation of a liquid fraction and a solid fraction for composting after hydrolysis and secondly the methanation of the liquid fraction using fixed film technology results in a very short hydraulic retention time, reduction in reactor volume, and higher methane content of the
Supporting universal prevention programs: a two-phased coaching model.
Becker, Kimberly D; Darney, Dana; Domitrovich, Celene; Keperling, Jennifer Pitchford; Ialongo, Nicholas S
2013-06-01
Schools are adopting evidence-based programs designed to enhance students' emotional and behavioral competencies at increasing rates (Hemmeter et al. in Early Child Res Q 26:96-109, 2011). At the same time, teachers express the need for increased support surrounding implementation of these evidence-based programs (Carter and Van Norman in Early Child Educ 38:279-288, 2010). Ongoing professional development in the form of coaching may enhance teacher skills and implementation (Noell et al. in School Psychol Rev 34:87-106, 2005; Stormont et al. 2012). There exists a need for a coaching model that can be applied to a variety of teacher skill levels and one that guides coach decision-making about how best to support teachers. This article provides a detailed account of a two-phased coaching model with empirical support developed and tested with coaches and teachers in urban schools (Becker et al. 2013). In the initial universal coaching phase, all teachers receive the same coaching elements regardless of their skill level. Then, in the tailored coaching phase, coaching varies according to the strengths and needs of each teacher. Specifically, more intensive coaching strategies are used only with teachers who need additional coaching supports, whereas other teachers receive just enough support to consolidate and maintain their strong implementation. Examples of how coaches used the two-phased coaching model when working with teachers who were implementing two universal prevention programs (i.e., the PATHS curriculum and PAX Good Behavior Game [PAX GBG]) provide illustrations of the application of this model. The potential reach of this coaching model extends to other school-based programs as well as other settings in which coaches partner with interventionists to implement evidence-based programs.
Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media
Institute of Scientific and Technical Information of China (English)
DONG He-Fei; HONG Tao; ZHANG De-Liang
2011-01-01
We extend the conservation-element and solution-element method to simulate a two-phase detonation model in porous media. The accuracy of the method is validated by calculating an inert compaction problem. The main characteristics of piston-driven detonation phenomena, including the compaction wave, the onset of combustion,and the transition to detonation, could be predicted successfully.
Institute of Scientific and Technical Information of China (English)
丁伯阳; 丁翠红; 陈禹; 陶海冰
2004-01-01
The Green function on two-phase saturated medium by concentrated force has a broad and important use in seismology, seismic engineering, soil mechanics, geophysics,dynamic foundation theory and so on. According to the Green function on two-phase saturated medium by concentrated force in three-dimentional displacement field obtained by Ding Bo-yang et al. , it gives out the Green function in two-dimensional displacement field by infinite integral method along x3-direction derived by De Hoop and Manolis. The method adopted in the thesis is simpler. The result will be simplified to the boundary element method of dynamic problem.
Historical basis of the Miracula of Saint Symeon in Stefan the First-Crowned’s life of Symeon
Directory of Open Access Journals (Sweden)
Komatina Ivana
2014-01-01
Full Text Available The paper is devoted to the research of the so-called Catalog of Miracles in the Life of Saint Symeon by Stefan the First-Crowned. Because the miracles are divided in the Life into those in which Symeon-Nemanja is revealed as a Saint, and those in which his heir Stefan the First-Crowned conquers the enemies of the Serbian State with his help, the attention is paid on research of their historical basis and chronological frame, as well as their religious essence. [Projekat Ministarstva nauke Republike Srbije, br. 177029: Srednjovekovne srpske zemlje (13-15. vek: politički, privredni, društveni i pravni procesi
Creep of Two-Phase Microstructures for Microelectronic Applications
Energy Technology Data Exchange (ETDEWEB)
Reynolds, Heidi Linch [Univ. of California, Berkeley, CA (United States)
1998-12-01
The mechanical properties of low-melting temperature alloys are highly influenced by their creep behavior. This study investigates the dominant mechanisms that control creep behavior of two-phase, low-melting temperature alloys as a function of microstructure. The alloy systems selected for study were In-Ag and Sn-Bi because their eutectic compositions represent distinctly different microstructure.” The In-Ag eutectic contains a discontinuous phase while the Sn-Bi eutectic consists of two continuous phases. In addition, this work generates useful engineering data on Pb-free alloys with a joint specimen geometry that simulates microstructure found in microelectronic applications. The use of joint test specimens allows for observations regarding the practical attainability of superplastic microstructure in real solder joints by varying the cooling rate. Steady-state creep properties of In-Ag eutectic, Sn-Bi eutectic, Sn-xBi solid-solution and pure Bi joints have been measured using constant load tests at temperatures ranging from O°C to 90°C. Constitutive equations are derived to describe the steady-state creep behavior for In-Ageutectic solder joints and Sn-xBi solid-solution joints. The data are well represented by an equation of the form proposed by Dom: a power-law equation applies to each independent creep mechanism. Rate-controlling creep mechanisms, as a function of applied shear stress, test temperature, and joint microstructure, are discussed. Literature data on the steady-state creep properties of Sn-Bi eutectic are reviewed and compared with the Sn-xBi solid-solution and pure Bi joint data measured in the current study. The role of constituent phases in controlling eutectic creep behavior is discussed for both alloy systems. In general, for continuous, two-phase microstructure, where each phase exhibits significantly different creep behavior, the harder or more creep resistant phase will dominate the creep behavior in a lamellar microstructure. If a
Statistical descriptions of polydisperse turbulent two-phase flows
Minier, Jean-Pierre
2016-12-01
Disperse two-phase flows are flows containing two non-miscible phases where one phase is present as a set of discrete elements dispersed in the second one. These discrete elements, or 'particles', can be droplets, bubbles or solid particles having different sizes. This situation encompasses a wide range of phenomena, from nano-particles and colloids sensitive to the molecular fluctuations of the carrier fluid to inertia particles transported by the large-scale motions of turbulent flows and, depending on the phenomenon studied, a broad spectrum of approaches have been developed. The aim of the present article is to analyze statistical models of particles in turbulent flows by addressing this issue as the extension of the classical formulations operating at a molecular or meso-molecular level of description. It has a three-fold purpose: (1) to bring out the thread of continuity between models for discrete particles in turbulent flows (above the hydrodynamical level of description) and classical mesoscopic formulations of statistical physics (below the hydrodynamical level); (2) to reveal the specific challenges met by statistical models in turbulence; (3) to establish a methodology for modeling particle dynamics in random media with non-zero space and time correlations. The presentation is therefore centered on organizing the different approaches, establishing links and clarifying physical foundations. The analysis of disperse two-phase flow models is developed by discussing: first, approaches of classical statistical physics; then, by considering models for single-phase turbulent flows; and, finally, by addressing current formulations for discrete particles in turbulent flows. This brings out that particle-based models do not cease to exist above the hydrodynamical level and offer great interest when combined with proper stochastic formulations to account for the lack of equilibrium distributions and scale separation. In the course of this study, general results
Energy Technology Data Exchange (ETDEWEB)
Chen, Jixin [Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA 92697-3975 (United States)
2010-02-15
In this study, the air-water two phase flow behavior in PEM fuel cell parallel channels with porous media inserts was experimentally investigated using a self-designed and manufactured transparent assembly. The visualization images of the two phase flow in channels with porous media inserts were presented and three patterns were summarized. Compared with the traditional hollow channel design, the novel configuration featured less severe two phase flow mal-distribution and self-adjustment to water amount in channels, although a higher pressure drop was introduced due to the porous media inserts. The dominant frequency of pressure drop signal was found to be a diagnostic tool for water behavior in channels. The novel flow channel design with porous media inserts may become a solution to the water management problem in PEM fuel cells. (author)
Chen, Jixin
In this study, the air-water two phase flow behavior in PEM fuel cell parallel channels with porous media inserts was experimentally investigated using a self-designed and manufactured transparent assembly. The visualization images of the two phase flow in channels with porous media inserts were presented and three patterns were summarized. Compared with the traditional hollow channel design, the novel configuration featured less severe two phase flow mal-distribution and self-adjustment to water amount in channels, although a higher pressure drop was introduced due to the porous media inserts. The dominant frequency of pressure drop signal was found to be a diagnostic tool for water behavior in channels. The novel flow channel design with porous media inserts may become a solution to the water management problem in PEM fuel cells.
Review:Liquid film dryout model for predicting critical heat flux in annular two-phase flow
Institute of Scientific and Technical Information of China (English)
Bo JIAO; Li-min QIU; Jun-liang LU; Zhi-hua GAN
2009-01-01
Gas-liquid two-phase flow and heat transfer can be encountered in numerous fields, such as chemical engineering, refrigeration, nuclear power reactor, metallurgical industry, spaceflight. Its critical heat flux (CHF) is one of the most important factors for the system security of engineering applications. Since annular flow is the most common flow pattern in gas-liquid two-phase flow, predicting CHF of annular two-phase flow is more significant. Many studies have shown that the liquid film dryout model is successful for that prediction, and determining the following parameters will exert predominant effects on the accuracy of this model: onset of annular flow, inception criterion for droplets entrainment, entrainment fraction, droplets deposi-tion and entrainment rates. The main theoretical results achieved on the above five parameters are reviewed; also, limitations in the existing studies and problems for further research are discussed.
SHAFT78: a two-phase multidimensional computer program for geothermal reservoir simulation
Energy Technology Data Exchange (ETDEWEB)
Pruess, K.; Schroeder, R.C.; Witherspoon, P.A.; Zerzan, J.M.
1979-11-01
The computer program SHAFT78 was developed to compute two-phase flow phenomena in geothermal reservoirs. The program solves transient initial-value problems with prescribed boundary-conditions in up to three space dimensions. The solution method is an explicit-implicit IFD approach which does not distinguish between 1, 2, or 3-D coordinate systems and allows a flexible choice of the shape of the discrete grid elements. The mass-and-energy equations are formulated in conservative form. The stability and convergence of the algorithm is controlled by an automatic choice of time steps - partially controlled by the user. Although the program has been developed for use in simulating production and injection in geothermal reservoirs, there are other two-phase problems for which it is either immediately applicable, or for which it can be modified to be applicable. All fluid parameters, such as viscosity, heat capacity, heat conductivity, etc., can be specified as functions of temperature and pressure, and all parameters can vary with position. The program can handle up to seven different anisotropic rocks, with all rock parameters assumed to be independent of position, temperature, and pressure. (MHR)
Parasitic Currents in Diffuse-Interface Two-Phase Flow Simulations
Milani, Pedro; Mirjalili, Seyedshahabaddin; Mani, Ali
2016-11-01
Two phase flow phenomena are important in a wide range of applications, such as bubble generation in ocean waves and droplet dynamics in fuel injectors. Several methods can be used to simulate such phenomena. The focus of this study is the diffuse-interface method, in which the interface is described via a mixing energy and spans a few computational cells, while surface tension is modeled as a force density term on the right-hand side of the momentum equation. The advantages of this method include the ability to easily simulate complex geometries since it does not require special treatment around the interface, and to conserve mass exactly. However, this method suffers from parasitic currents, an unphysical velocity field generated close to the interface due to numerical imprecisions in the surface tension term. This can be a serious problem in low speed flows, where the parasitic currents are significant compared to the velocity scale of the problem. In this study, we consider a wide range of diffuse-interface schemes for two-phase flows, including different options for discrete representation of the surface tension force. By presenting an assessment of each method's performance in scenarios involving parasitic currents, we develop accuracy estimates and guidelines for selection among these models. Supported by the ONR.
Particle migration in two-phase, viscoelastic flows
Jaensson, Nick; Hulsen, Martien; Anderson, Patrick
2014-11-01
Particles suspended in creeping, viscoelastic flows can migrate across stream lines due to gradients in normal stresses. This phenomenon has been investigated both numerically and experimentally. However, particle migration in the presence of fluid-fluid interfaces is hardly studied. We present results of simulations in 2D and 3D of rigid spherical particles in two-phase flows, where either one or both of the fluids are viscoelastic. The fluid-fluid interface is assumed to be diffuse and is described using Cahn-Hilliard theory. The particle boundary is assumed to be sharp and is described by a boundary-fitted, moving mesh. The governing equations are solved using the finite element method. We show that differences in normal stresses between the two fluids can induce a migration of the particle towards the interface in a shear flow. Depending on the magnitude of the surface tension and the properties of the fluids, particle migration can be halted due to the induced Laplace pressure, the particle can be adsorbed at the interface, or the particle can cross the interface into the other fluid. Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands.
Criteria for guaranteed breakdown in two-phase inhomogeneous bodies
Bardsley, Patrick; Primrose, Michael S.; Zhao, Michael; Boyle, Jonathan; Briggs, Nathan; Koch, Zoe; Milton, Graeme W.
2017-08-01
Lower bounds are obtained on the maximum field strength in one or both phases in a body containing two-phases. These bounds only incorporate boundary data that can be obtained from measurements at the surface of the body, and thus may be useful for determining if breakdown has necessarily occurred in one of the phases, or that some other nonlinearities have occurred. It is assumed the response of the phases is linear up to the point of electric, dielectric, or elastic breakdown, or up to the point of the onset of nonlinearities. These bounds are calculated for conductivity, with one or two sets of boundary conditions, for complex conductivity (as appropriate at fixed frequency when the wavelength is much larger than the body, i.e. for quasistatics), and for two-dimensional elasticity. Sometimes the bounds are optimal when the field is constant in one of the phases, and using the algorithm of Kang, Kim, and Milton (2012) a wide variety of inclusion shapes having this property, for appropriately chosen bodies and appropriate boundary conditions, are numerically constructed. Such inclusions are known as E_Ω -inclusions.
Diagnosing Traffic Anomalies Using a Two-Phase Model
Institute of Scientific and Technical Information of China (English)
Bin Zhang; Jia-Hai Yang; Jian-Ping Wu; Ying-Wu Zhu
2012-01-01
Network traffic anomalies are unusual changes in a network,so diagnosing anomalies is important for network management.Feature-based anomaly detection models (ab)normal network traffic behavior by analyzing packet header features. PCA-subspace method (Principal Component Analysis) has been verified as an efficient feature-based way in network-wide anomaly detection.Despite the powerful ability of PCA-subspace method for network-wide traffic detection,it cannot be effectively used for detection on a single link.In this paper,different from most works focusing on detection on flow-level traffic,based on observations of six traffc features for packet-level traffic,we propose a new approach B6SVM to detect anomalies for packet-level traffic on a single link.The basic idea of B6-SVM is to diagnose anomalies in a multi-dimensional view of traffic features using Support Vector Machine (SVM).Through two-phase classification,B6-SVM can detect anomalies with high detection rate and low false alarm rate.The test results demonstrate the effectiveness and potential of our technique in diagnosing anomalies.Further,compared to previous feature-based anomaly detection approaches,B6-SVM provides a framework to automatically identify possible anomalous types.The framework of B6-SVM is generic and therefore,we expect the derived insights will be helpful for similar future research efforts.
Thermal performance of closed two-phase thermosyphon using nanofluids
Energy Technology Data Exchange (ETDEWEB)
Khandekar, Sameer; Mehta, Balkrishna [Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Joshi, Yogesh M. [Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)
2008-06-15
Nanofluids, stabilized suspensions of nanoparticles typically <100 nm in conventional fluids, are evolving as potential enhanced heat transfer fluids due to their improved thermal conductivity, increase in single phase heat transfer coefficient and significant increase in critical boiling heat flux. In the present paper, we investigate the overall thermal resistance of closed two-phase thermosyphon using pure water and various water based nanofluids (of Al{sub 2}O{sub 3}, CuO and laponite clay) as working fluids. We observe that all these nanofluids show inferior thermal performance than pure water. Furthermore, we observe that the wettability of all nanofluids on copper substrate, having the same average roughness as that of the thermosyphon container pipe, is better than that of pure water. A scaling analysis is presented which shows that the increase in wettability and entrapment of nanoparticles in the grooves of the surface roughness cause decrease in evaporator side Peclet number that finally leads to poor thermal performance. (author)
Aqueous Nanofluid as a Two-Phase Coolant for PWR
Directory of Open Access Journals (Sweden)
Pavel N. Alekseev
2012-01-01
Full Text Available Density fluctuations in liquid water consist of two topological kinds of instant molecular clusters. The dense ones have helical hydrogen bonds and the nondense ones are tetrahedral clusters with ice-like hydrogen bonds of water molecules. Helical ordering of protons in the dense water clusters can participate in coherent vibrations. The ramified interface of such incompatible structural elements induces clustering impurities in any aqueous solution. These additives can enhance a heat transfer of water as a two-phase coolant for PWR due to natural forming of nanoparticles with a thermal conductivity higher than water. The aqueous nanofluid as a new condensed matter has a great potential for cooling applications. It is a mixture of liquid water and dispersed phase of extremely fine quasi-solid particles usually less than 50 nm in size with the high thermal conductivity. An alternative approach is the formation of gaseous (oxygen or hydrogen nanoparticles in density fluctuations of water. It is possible to obtain stable nanobubbles that can considerably exceed the molecular solubility of oxygen (hydrogen in water. Such a nanofluid can convert the liquid water in the nonstoichiometric state and change its reduction-oxidation (RedOx potential similarly to adding oxidants (or antioxidants for applying 2D water chemistry to aqueous coolant.
Microporous silica gels from alkylsilicate-water two phase hydrolysis
Energy Technology Data Exchange (ETDEWEB)
Chu, L.; Tejedor-Tejedor, M.I.; Anderson, M.A. [Univ. of Wisconsin, Madison, WI (United States). Water Chemistry Program
1994-12-31
Microporous silica gels have been synthesized through a nano-particulate sol-gel route. These gels have uniformly distributed and extremely small pores(< 15 {angstrom} in diameter). Hydrolysis and condensation reactions leading to these gels were carried out in an alkyl silicate-water (ammonia) two phase system. These reactions took place at the alkyl silicate droplet-water interfacial boundary. No alcohol was added. A clear, stable and uniformly distributed colloidal silica suspension having an average particle size less than 6 nm was prepared by this method. Fast hydrolysis, slow condensation and low solubility all contribute to a high supersaturation level and result in the formation of small particles. This process is consistent with classic nucleation theory. When the particles are produced under acidic rather than under basic reaction conditions, smaller particles are formed due to the slower condensation rate and lower solubility of these silica particles in acidic conditions. At the same pH, alkylsilicates having smaller alkyl groups react faster with water leading to smaller primary particles. Homogeneous nucleation conditions are achieved when the water/alkylsilicate ratio is high.
Two-Phase Flow Hydrodynamics in Superhydrophobic Channels
Stevens, Kimberly; Crockett, Julie; Maynes, Daniel; Iverson, Brian
2015-11-01
Superhydrophobic surfaces promote drop-wise condensation and droplet removal leading to the potential for increased thermal transport. Accordingly, great interest exists in using superhydrophobic surfaces in flow condensing environments, such as power generation and desalination. Adiabatic air-water mixtures were used to gain insight into the effect of hydrophobicity on two-phase flows and the hydrodynamics present in flow condensation. Pressure drop and onset of various flow regimes in hydrophilic, hydrophobic, and superhydrophobic mini (0.5 x 10 mm) channels were explored. Data for air/water mixtures with superficial Reynolds numbers from 20-200 and 250-1800, respectively, were obtained. Agreement between experimentally obtained pressure drops and correlations in literature for the conventional smooth control surfaces was better than 20 percent. Transitions between flow regimes for the hydrophobic and hydrophilic channels were similar to commonly recognized flow types. However, the superhydrophobic channel demonstrated significantly different flow regime behavior from conventional surfaces including a different shape of the air slugs, as discussed in the presentation.
An automated two-phase system for hydrogel microbead production.
Coutinho, Daniela F; Ahari, Amir F; Kachouie, Nezamoddin N; Gomes, Manuela E; Neves, Nuno M; Reis, Rui L; Khademhosseini, Ali
2012-09-01
Polymeric beads have been used for protection and delivery of bioactive materials, such as drugs and cells, for different biomedical applications. Here, we present a generic two-phase system for the production of polymeric microbeads of gellan gum or alginate, based on a combination of in situ polymerization and phase separation. Polymer droplets, dispensed using a syringe pump, formed polymeric microbeads while passing through a hydrophobic phase. These were then crosslinked, and thus stabilized, in a hydrophilic phase as they crossed through the hydrophobic-hydrophilic interface. The system can be adapted to different applications by replacing the bioactive material and the hydrophobic and/or the hydrophilic phases. The size of the microbeads was dependent on the system parameters, such as needle size and solution flow rate. The size and morphology of the microbeads produced by the proposed system were uniform, when parameters were kept constant. This system was successfully used for generating polymeric microbeads with encapsulated fluorescent beads, cell suspensions and cell aggregates proving its ability for generating bioactive carriers that can potentially be used for drug delivery and cell therapy.
Two-Phase Flow Field Simulation of Horizontal Steam Generators
Directory of Open Access Journals (Sweden)
Ataollah Rabiee
2017-02-01
Full Text Available The analysis of steam generators as an interface between primary and secondary circuits in light water nuclear power plants is crucial in terms of safety and design issues. VVER-1000 nuclear power plants use horizontal steam generators which demand a detailed thermal hydraulics investigation in order to predict their behavior during normal and transient operational conditions. Two phase flow field simulation on adjacent tube bundles is important in obtaining logical numerical results. However, the complexity of the tube bundles, due to geometry and arrangement, makes it complicated. Employment of porous media is suggested to simplify numerical modeling. This study presents the use of porous media to simulate the tube bundles within a general-purpose computational fluid dynamics code. Solved governing equations are generalized phase continuity, momentum, and energy equations. Boundary conditions, as one of the main challenges in this numerical analysis, are optimized. The model has been verified and tuned by simple two-dimensional geometry. It is shown that the obtained vapor volume fraction near the cold and hot collectors predict the experimental results more accurately than in previous studies.
Unsteady flow analysis of a two-phase hydraulic coupling
Hur, N.; Kwak, M.; Lee, W. J.; Moshfeghi, M.; Chang, C.-S.; Kang, N.-W.
2016-06-01
Hydraulic couplings are being widely used for torque transmitting between separate shafts. A mechanism for controlling the transmitted torque of a hydraulic system is to change the amount of working fluid inside the system. This paper numerically investigates three-dimensional turbulent flow in a real hydraulic coupling with different ratios of charged working fluid. Working fluid is assumed to be water and the Realizable k-ɛ turbulence model together with the VOF method are used to investigate two-phase flow inside the wheels. Unsteady simulations are conducted using the sliding mesh technique. The primary wheel is rotating at a fixed speed of 1780 rpm and the secondary wheel rotates at different speeds for simulating different speed ratios. Results are investigated for different blade angles, speed ratios and also different water volume fractions, and are presented in the form of flow patterns, fluid average velocity and also torques values. According to the results, blade angle severely affects the velocity vector and the transmitted torque. Also in the partially-filled cases, air is accumulated in the center of the wheel forming a toroidal shape wrapped by water and the transmitted torque sensitively depends on the water volume fraction. In addition, in the fully-filled case the transmitted torque decreases as the speed ration increases and the average velocity associated with lower speed ratios are higher.
Passive Two-Phase Cooling of Automotive Power Electronics: Preprint
Energy Technology Data Exchange (ETDEWEB)
Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.
2014-08-01
Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.
Simulation and modeling of two-phase bubbly flows
Energy Technology Data Exchange (ETDEWEB)
Sylvain L Pigny; Pierre F Coste [DEN/DER/SSTH, CEA/Grenoble, 38054 Grenoble Cedex 9 (France)
2005-07-01
Full text of publication follows: Phenomena related to bubbles in two-phase recirculating flows are investigated, via the computational code SIMMER, concerning an experiment in which air is injected in the lower part of a tank filled of water and initially at rest. Averaged mass and momentum transport equations are solved for air and water. Close to the injector, the formation of individual large bubbles is represented in the calculations, via direct simulation. Small scale phenomena, related to small bubbles behavior or turbulence in the liquid continuous phase, are modeled, in a statistical way, via classical closure laws. In a first calculation, the splitting of large bubbles is not represented. It is shown that this phenomenon, the space scale of which is close to the cell size, cannot be simulated, in view of the present computational resources. Nevertheless, relatively fine meshes are used, for an accurate description of hydrodynamical phenomena, and the splitting phenomenon is too large to be modeled via closure laws. A specific approach for the intermediate scales is therefore developed to represent it. (authors)
On Verb Functions in the Letters Addressed by Dimitry Rostovsky to Stefan Yavorsky
Directory of Open Access Journals (Sweden)
Elena Mikhaylovna Sheptukhina
2015-11-01
Full Text Available The article is focused on an actual issue of linguistics – verb functions in the epistolary texts, in particular, the studies deals with the analysis of Dimitry Rostovsky's personal letters addressed to his friend Stefan Yavorsky in the period from the edge of 1707 till the beg. of 1708. The choice of the verbal units is motivated by the fact that they denote various types of human activity, states and relations, and their presence in personal letters reflects processes of communication and interpersonal relations between an addressee and an addresser. The studies results have proved that the verbal units perform in the epistolary letters the text-constructing, style-denoting, and characterization functions. The text-constructing function is presented in the etiquette frame of the letter; it is shown in the content progression from an introduction to the main body of the letter, the verbs as linguistic means are explicitly developing the topic. The style-denoting function is associated with the personal literary manners of the author, it points to certain preferences in the choice of languages means and their usage and reflects individual rhetoric, expressiveness, irony of the addresser. The characterization as a function is viewed in two aspects: the text interpretation can make either addressee's features and personal relations or the addresser personality vivid and evident. Due to the results of the studies both addressee and addresser are educated people with a high level of language competence, they were masters of the language resources usage.
Qualitative Behaviour of Solutions for the Two-Phase Navier-Stokes Equations with Surface Tension
Köhne, Matthias; Wilke, Mathias
2010-01-01
The two-phase free boundary value problem for the isothermal Navier-Stokes system is studied for general bounded geometries in absence of phase transitions, external forces and boundary contacts. It is shown that the problem is well-posed in an Lp-setting, and that it generates a local semiflow on the induced phase manifold. If the phases are connected, the set of equilibria of the system forms a (n+1)-dimensional manifold, each equilibrium is stable, and it is shown that global solutions which do not develop singularities converge to an equilibrium as time goes to infinity. The latter is proved by means of the energy functional combined with the generalized principle of linearized stability.
STUDIES OF TWO-PHASE PLUMES IN STRATIFIED ENVIRONMENTS
Energy Technology Data Exchange (ETDEWEB)
Scott A. Socolofsky; Brian C. Crounse; E. Eric Adams
1998-11-18
Two-phase plumes play an important role in the more practical scenarios for ocean sequestration of CO{sub 2}--i.e. dispersing CO{sub 2} as a buoyant liquid from either a bottom-mounted or ship-towed pipeline. Despite much research on related applications, such as for reservoir destratification using bubble plumes, our understanding of these flows is incomplete, especially concerning the phenomenon of plume peeling in a stratified ambient. To address this deficiency, we have built a laboratory facility in which we can make fundamental measurements of plume behavior. Although we are using air, oil and sediments as our sources of buoyancy (rather than CO{sub 2}), by using models, our results can be directly applied to field scale CO{sub 2} releases to help us design better CO{sub 2} injection systems, as well as plan and interpret the results of our up-coming international field experiment. The experimental facility designed to study two-phase plume behavior similar to that of an ocean CO{sub 2} release includes the following components: 1.22 x 1.22 x 2.44 m tall glass walled tank; Tanks and piping for the two-tank stratification method for producing step- and linearly-stratified ambient conditions; Density profiling system using a conductivity and temperature probe mounted to an automated depth profiler; Lighting systems, including a virtual point source light for shadowgraphs and a 6 W argon-ion laser for laser induced fluorescence (LIF) imaging; Imaging system, including a digital, progressive scanning CCD camera, computerized framegrabber, and image acquisition and analysis software; Buoyancy source diffusers having four different air diffusers, two oil diffusers, and a planned sediment diffuser; Dye injection method using a Mariotte bottle and a collar diffuser; and Systems integration software using the Labview graphical programming language and Windows NT. In comparison with previously reported experiments, this system allows us to extend the parameter range of
Numerical flow analyses of a two-phase hydraulic coupling
Energy Technology Data Exchange (ETDEWEB)
Hur, N.; Kwak, M.; Moshfeghi, M. [Sogang University, Seoul (Korea, Republic of); Chang, C.-S.; Kang, N.-W. [VS Engineering, Seoul (Korea, Republic of)
2017-05-15
We investigated flow characteristics in a hydraulic coupling at different charged water conditions and speed ratios. Hence, simulations were performed for three-dimensional two-phase flow by using the VOF method. The realizable k-ε turbulence model was adopted. To resolve the interaction of passing blades of the primary and secondary wheels, simulations were conducted in the unsteady framework using a sliding grid technique. The results show that the water-air distribution inside the wheel is strongly dependent upon both amount of charged water and speed ratio. Generally, air is accumulated in the center of the wheel, forming a toroidal shape wrapped by the circulating water. The results also show that at high speed ratios, the solid-body-like rotation causes dry areas on the periphery of the wheels and, hence, considerably decreases the circulating flow rate and the transmitted torque. Furthermore, the momentum transfer was investigated through the concept of a mass flux triangle based on the local velocity multiplied by the local mixture density instead of the velocity triangle commonly used in a single-phase turbomachine analysis. Also, the mass fluxes along the radius of the coupling in the partially charged and fully charged cases were found to be completely different. It is shown that the flow rate at the interfacial plane and also the transmitted torque are closely related and are strongly dependent upon both the amount of charged water and speed ratio. Finally, a conceptual categorization together with two comprehensive maps was provided for the torque transmission and also circulating flow rates. These two maps in turn exhibit valuable engineering information and can serve as bases for an optimal design of a hydraulic coupling.
Two Phase Flow Mapping and Transition Under Microgravity Conditions
Parang, Masood; Chao, David F.
1998-01-01
In this paper, recent microgravity two-phase flow data for air-water, air-water-glycerin, and air- water-Zonyl FSP mixtures are analyzed for transition from bubbly to slug and from slug to annular flow. It is found that Weber number-based maps are inadequate to predict flow-pattern transition, especially over a wide range of liquid flow rates. It is further shown that slug to annular flow transition is dependent on liquid phase Reynolds number at high liquid flow rate. This effect may be attributed to growing importance of liquid phase inertia in the dynamics of the phase flow and distribution. As a result a new form of scaling is introduced to present data using liquid Weber number based on vapor and liquid superficial velocities and Reynolds number based on liquid superficial velocity. This new combination of the dimensionless parameters seem to be more appropriate for the presentation of the microgravity data and provides a better flow pattern prediction and should be considered for evaluation with data obtained in the future. Similarly, the analysis of bubble to slug flow transition indicates a strong dependence on both liquid inertia and turbulence fluctuations which seem to play a significant role on this transition at high values of liquid velocity. A revised mapping of data using a new group of dimensionless parameters show a better and more consistent description of flow transition over a wide range of liquid flow rates. Further evaluation of the proposed flow transition mapping will have to be made after a wider range of microgravity data become available.
Interstellar Cloud Formation through Aggregation of Cold Blobs in a Two-Phase Gas Mixture
Kamaya, Hideyuki
1997-05-01
We propose a new formation scenario for interstellar clouds through the aggregation of dense cold blobs (phase II [PII]), which drift in a diffuse warm medium (phase I [PI]). We examine how important it is that there exist numerous PII blobs when the properties of such a two-phase flow are studied. First, we solve a one-dimensional shock-tube problem and find that the shock wave in the mixture is considerably damped because of the drag force between the two phases. This is because the PII blobs are left behind the shock front, since their inertia is larger than that of PI, thus suppressing large spatial variations of PI gas via the drag force. The PII blobs thus play the role of anchors. Therefore, mass aggregation by shocks may be ineffective in a two-phase medium. However, the PII blobs can still aggregate through a kind of fluid dynamical instability. We next suppose that the PI gas is accelerated upward by shocks against downward gravity, while the PII blobs are at rest because of balance between the drag force due to PI and gravity. If we put a positive perturbation in the number density of PII blobs, the upward PI flow above the perturbation is decelerated by the enhanced drag force, and the velocity difference between PI and PII is thereby reduced. Then the PII blobs above the perturbation are accelerated downward, since the gravity on PII now dominates the reduced drag force. As a result, the blobs will fall onto this perturbed region, and this region becomes denser and denser. This is the mechanism of the instability. Therefore, we expect efficient cloud formation by this instability in spiral arms, even when galactic shocks are extremely damped.
Adaptive, multi-domain techniques for two-phase flow computations
Uzgoren, Eray
Computations of immiscible two-phase flows deal with interfaces that may move and/or deform in response to the dynamics within the flow field. As interfaces move, one needs to compute the new shapes and the associated geometric information (such as curvatures, normals, and projected areas/volumes) as part of the solution. The present study employs the immersed boundary method (IBM), which uses marker points to track the interface location and continuous interface methods to model interfacial conditions. The large transport property jumps across the interface, and the considerations of the mechanism including convection, diffusion, pressure, body force and surface tension create multiple time/length scales. The resulting computational stiffness and moving boundaries make numerical simulations computationally expensive in three-dimensions, even when the computations are performed on adaptively refined 3D Cartesian grids that efficiently resolve the length scales. A domain decomposition method and a partitioning strategy for adaptively refined grids are developed to enable parallel computing capabilities. Specifically, the approach consists of multilevel additive Schwarz method for domain decomposition, and Hilbert space filling curve ordering for partitioning. The issues related to load balancing, communication and computation, convergence rate of the iterative solver in regard to grid size and the number of sub-domains and interface shape deformation, are studied. Moreover, interfacial representation using marker points is extended to model complex solid geometries for single and two-phase flows. Developed model is validated using a benchmark test case, flow over a cylinder. Furthermore, overall algorithm is employed to further investigate steady and unsteady behavior of the liquid plug problem. Finally, capability of handling two-phase flow simulations in complex solid geometries is demonstrated by studying the effect of bifurcation point on the liquid plug, which
Exact Jacobians in an implicit Newton method for two-phase flow in porous media
Büsing, H.; Clauser, C.
2012-04-01
Geological storage of CO2 is one option for mitigating the effects of CO2 emissions on global warming. Since extensive on-site monitoring of the CO2 plume propagation is expensive, numerical simulations are an attractive alternative for gaining deeper insight in the dynamics of this system. We consider a model for two-phase flow in porous media for representing the injection stage of a CO2 sequestration scenario, when the plume propagation is dominated by advection. The porous medium filled by the two phases CO2 and brine is modelled as an initial-boundary-value problem consisting of two nonlinear, coupled partial differential equations, which are complemented by appropriate boundary and initial conditions. We present a new numerical approach to solve this fully coupled system using exact Jacobians. The method is based on the finite element, finite volume, box method [Huber & Helmig(2000)] for the space discretization and, since stability of the method is one of the main concerns, the fully implicit Euler method for the time discretization. A simple first order upwind method takes into account advective contributions. The resulting system of nonlinear algebraic equations is linearized by Newton's method. The required Jacobians can be obtained elegantly by automatic differentiation (AD) [Griewank & Walther(2008), Rall(1981)], a source code transformation giving exact derivatives of the discretized equations with respect to primary variables. The resulting system of linear equations is then solved by an iterative method (BiCGStab) with ILU0 preconditioning in every Newton step. We compare the forward AD differentiation mode to the standard finite difference method in terms of precision and performance. It turns out that AD performs favourable in both aspects. We also illustrate the advantages of exact Jacobians for two-phase flow in a sequestration scenario investigating the evolution of pressure and saturation.
A two-phase fuzzy programming model for a complex bi-objective no-wait flow shop scheduling
Directory of Open Access Journals (Sweden)
Reza Tavakkoli-Moghaddam
2012-08-01
Full Text Available In this paper, we study no-wait flow shop problem where setup times depend on sequence of operations. The proposed problem considers sequence-independent removal times, release date with an additional assumption that there are some preliminary setup times. There are two objectives of weighted mean tardiness and makespan associated with the proposed model of this paper. We formulate the resulted problem as a mixed integer programming, where a two-phase fuzzy programming is implemented to solve the model. To examine the performance of the proposed model, we generate several sample data, randomly and compare the results with other methods. The preliminary results indicate that the proposed two-phase model of this paper performed relatively better than Zimmerman's single-phase fuzzy method.
Quasistatic analysis on configuration of two-phase flow in Y-shaped tubes
Zhong, Hua
2014-12-01
We investigate the two-phase flow in a horizontally placed Y-shaped tube with different Young\\'s angle and width in each branch. By using a quasistatic approach, we can determine the specific contact position and the equilibrium contact angle of fluid in each branch based on the minimization problem of the free energy of the system. The wettability condition and the width of the two branches play important roles in the distribution of fluid in each branch. We also consider the effect of gravity. Some fluid in the upper branch will be pulled down due to the competition of the surface energy and the gravitational energy. The result provides some insights on the theory of two-phase flow in porous media. In particular, it highlights that the inhomogeneous wettability distribution affects the direction of the fluid penetrating a given porous medium domain. It also sheds light on the current debate whether relative permeability may be considered as a full tensor rather than a scalar.
Two-Phase Flow in Pipes: Numerical Improvements and Qualitative Analysis for a Refining Process
Directory of Open Access Journals (Sweden)
Teixeira R.G.D.
2015-03-01
Full Text Available Two-phase flow in pipes occurs frequently in refineries, oil and gas production facilities and petrochemical units. The accurate design of such processing plants requires that numerical algorithms be combined with suitable models for predicting expected pressure drops. In performing such calculations, pressure gradients may be obtained from empirical correlations such as Beggs and Brill, and they must be integrated over the total length of the pipe segment, simultaneously with the enthalpy-gradient equation when the temperature profile is unknown. This paper proposes that the set of differential and algebraic equations involved should be solved as a Differential Algebraic Equations (DAE System, which poses a more CPU-efficient alternative to the “marching algorithm” employed by most related work. Demonstrating the use of specific regularization functions in preventing convergence failure in calculations due to discontinuities inherent to such empirical correlations is also a key feature of this study. The developed numerical techniques are then employed to examine the sensitivity to heat-transfer parameters of the results obtained for a typical refinery two-phase flow design problem.
Development of two-phase pipeline hydraulic analysis model based on Beggs-Brill correlation
Waluyo, Joko; Hermawan, Achilleus; Indarto
2016-06-01
The hydraulic analysis is an important stage in a reliable pipeline design. In the implementation, fluid distribution from a source to the sinks often occurs on parallel pipeline networks. The solution to the problem is complicated because of the iterative technique requirement. Regarding its solution effectiveness, there is a need for analysis related to the model and the solution method. This study aims to investigate pipeline hydraulic analysis on distributing of two-phase fluids flow. The model uses Beggs-Brill correlation to converse mass flow rates into pressure drops. In the solution technique, the Newton-Raphson iterative method is utilized. The iterative technique is solved using a computer program. The study is carried out using a certain pipeline network. The model is validated by comparing between Beggs-Brill towards Mukherjee-Brill correlation. The result reveals that the computer program enables solving of iterative calculation on the parallel pipeline hydraulic analysis. Convergence iteration is achieved by 50 iterations. The main results of the model are mass flow rate and pressure drop. The mass flow rate is obtained in the deviation up to 2.06%, between Beggs-Brill and Mukherjee-Brill correlation. On the other hand, the pressure gradient deviation is achieved on a higher deviation due to the different approach of the two correlations. The model can be further developed in the hydraulic pipeline analysis for two-phase flow.
Two Phase Compressible Flow Fields in One Dimensional and Eulerian Grid Framework
Lee, Sungsu; Park, Chan Wook
2008-11-01
Numerical investigation for two phase compressible flow fields of air-water in one dimensional tube are performed in the fixed Eulerian grid framework. Using an equation of states of Tait's type for a multiphase cell, the two phase compressible flow is modeled as equivalent single phase which is discretized using the Roe`s approximate Riemann solver, while the phase interface is captured via volume fractions of each phase. The most common problem found in the computational approaches in compressible multiphase flow is occurrence of the pressure oscillation at the phase interface. In order to suppress that phenomenon, tried are two approaches; a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The results show that the direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. This work was supported by a research fund granted from Agency for Defense Development, South Korea
Modeling and Simulation of Two-Phase Two-Component Flow with Disappearing Nonwetting Phase
Neumann, Rebecca; Ippisch, Olaf
2012-01-01
Carbon Capture and Storage (CCS) is a recently discussed new technology, aimed at allowing an ongoing use of fossil fuels while preventing the produced CO2 to be released to the atmosphere. CSS can be modeled with two components (water and CO2) in two phases (liquid and CO2). To simulate the process, a multiphase flow equation with equilibrium phase exchange is used. One of the big problems arising in two-phase two-component flow simulations is the disappearance of the nonwetting phase, which leads to a degeneration of the equations satisfied by the saturation. A standard choice of primary variables, which is the pressure of one phase and the saturation of the other phase, cannot be applied here. We developed a new approach using the pressure of the nonwetting phase and the capillary pressure as primary variables. One important advantage of this approach is the fact that we have only one set of primary variables that can be used for the biphasic as well as the monophasic case. We implemented this new choice o...
Multiphysics modeling of two-phase film boiling within porous corrosion deposits
Jin, Miaomiao; Short, Michael
2016-07-01
Porous corrosion deposits on nuclear fuel cladding, known as CRUD, can cause multiple operational problems in light water reactors (LWRs). CRUD can cause accelerated corrosion of the fuel cladding, increase radiation fields and hence greater exposure risk to plant workers once activated, and induce a downward axial power shift causing an imbalance in core power distribution. In order to facilitate a better understanding of CRUD's effects, such as localized high cladding surface temperatures related to accelerated corrosion rates, we describe an improved, fully-coupled, multiphysics model to simulate heat transfer, chemical reactions and transport, and two-phase fluid flow within these deposits. Our new model features a reformed assumption of 2D, two-phase film boiling within the CRUD, correcting earlier models' assumptions of single-phase coolant flow with wick boiling under high heat fluxes. This model helps to better explain observed experimental values of the effective CRUD thermal conductivity. Finally, we propose a more complete set of boiling regimes, or a more detailed mechanism, to explain recent CRUD deposition experiments by suggesting the new concept of double dryout specifically in thick porous media with boiling chimneys.
48 CFR 36.301 - Use of two-phase design-build selection procedures.
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Use of two-phase design... ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Two-Phase Design-Build Selection Procedures 36.301 Use of two-phase design-build selection procedures....
24 CFR 115.201 - The two phases of substantial equivalency certification.
2010-04-01
... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false The two phases of substantial... ENFORCEMENT AGENCIES Certification of Substantially Equivalent Agencies § 115.201 The two phases of.... The Department has developed a two-phase process of substantial equivalency certification....
A high brightness proton injector for the Tandetron accelerator at Jožef Stefan Institute
Energy Technology Data Exchange (ETDEWEB)
Pelicon, Primož, E-mail: primoz.pelicon@ijs.si [Jožef Stefan Institute, Association EURATOM-MHEST, Jamova 39, SI-1000 Ljubljana (Slovenia); Podaru, Nicolae C., E-mail: info@highvolteng.com [High Voltage Engineering Europa B.V., P.O. Box 99, Amersfoort 3800AB (Netherlands); Vavpetič, Primož; Jeromel, Luka [Jožef Stefan Institute, Association EURATOM-MHEST, Jamova 39, SI-1000 Ljubljana (Slovenia); Ogrinc Potocnik, Nina [Jožef Stefan Institute, Association EURATOM-MHEST, Jamova 39, SI-1000 Ljubljana (Slovenia); LOTRIČ Metrology ltd, Selca 163, SI-4227 Selca (Slovenia); Ondračka, Simon [Jožef Stefan Institute, Association EURATOM-MHEST, Jamova 39, SI-1000 Ljubljana (Slovenia); Gottdang, Andreas; Mous, Dirk J.M. [High Voltage Engineering Europa B.V., P.O. Box 99, Amersfoort 3800AB (Netherlands)
2014-08-01
Jožef Stefan Institute recently commissioned a high brightness H{sup −} ion beam injection system for its existing tandem accelerator facility. Custom developed by High Voltage Engineering Europa, the multicusp ion source has been tuned to deliver at the entrance of the Tandetron™ accelerator H{sup −} ion beams with a measured brightness of 17.1 A m{sup −2} rad{sup −2} eV{sup −1} at 170 μA, equivalent to an energy normalized beam emittance of 0.767 π mm mrad MeV{sup 1/2}. Upgrading the accelerator facility with the new injection system provides two main advantages. First, the high brightness of the new ion source enables the reduction of object slit aperture and the reduction of acceptance angle at the nuclear microprobe, resulting in a reduced beam size at selected beam intensity, which significantly improves the probe resolution for micro-PIXE applications. Secondly, the upgrade strongly enhances the accelerator up-time since H and He beams are produced by independent ion sources, introducing a constant availability of {sup 3}He beam for fusion-related research with NRA. The ion beam particle losses and ion beam emittance growth imply that the aforementioned beam brightness is reduced by transport through the ion optical system. To obtain quantitative information on the available brightness at the high-energy side of the accelerator, the proton beam brightness is determined in the nuclear microprobe beamline. Based on the experience obtained during the first months of operation for micro-PIXE applications, further necessary steps are indicated to obtain optimal coupling of the new ion source with the accelerator to increase the normalized high-energy proton beam brightness at the JSI microprobe, currently at 14 A m{sup −2} rad{sup −2} eV{sup −1}, with the output current at 18% of its available maximum.
Two-phase flow for fouling control in membranes
Wibisono, Yusuf
2014-01-01
The real challenge of the use of NF/RO spiral-wound membrane modules in water treatment is membrane fouling. Fouling problems in NF/RO systems are more complicated than in low pressure membrane processes, becaused fouling usually occurs on the nanoscale, combined with the complex geometry of spiral-
Energy Technology Data Exchange (ETDEWEB)
Touma, Rony [Department of Computer Science & Mathematics, Lebanese American University, Beirut (Lebanon); Zeidan, Dia [School of Basic Sciences and Humanities, German Jordanian University, Amman (Jordan)
2016-06-08
In this paper we extend a central finite volume method on nonuniform grids to the case of drift-flux two-phase flow problems. The numerical base scheme is an unstaggered, non oscillatory, second-order accurate finite volume scheme that evolves a piecewise linear numerical solution on a single grid and uses dual cells intermediately while updating the numerical solution to avoid the resolution of the Riemann problems arising at the cell interfaces. We then apply the numerical scheme and solve a classical drift-flux problem. The obtained results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potential of the proposed scheme.
Simulation of horizontal pipe two-phase slug flows using the two-fluid model
Energy Technology Data Exchange (ETDEWEB)
Ortega Malca, Arturo J. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica. Nucleo de Simulacao Termohidraulica de Dutos (SIMDUT); Nieckele, Angela O. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica
2005-07-01
Slug flow occurs in many engineering applications, mainly in the transport of hydrocarbon fluids in pipelines. The intermittency of slug flow causes severe unsteady loading on the pipelines carrying the fluids, which gives rise to design problems. Therefore, it is important to be able to predict the onset and development of slug flow as well as slug characteristics. The present work consists in the simulation of two-phase flow in slug pattern through horizontal pipes using the two-fluid model in its transient and one-dimensional form. The advantage of this model is that the flow field is allowed to develop naturally from a given initial conditions as part of the transient calculation; the slug evolves automatically as a product of the computed flow development. Simulations are then carried out for a large number of flow conditions that lead a slug flow. (author)
Droplet in micro-channels: A numerical approach using an adaptive two phase flow solver
Fullana, Jose-Maria; Popinet, Stéphane; Josserand, Christophe
2015-01-01
We propose a numerical approach to study the mechanics of a flowing bubble in a constraint micro channel. Using an open source two phase flow solver (Gerris, gfs.sourceforge.net) we compute solutions of the bubble dynamics (i.e. shape and terminal velocity) induced by the interaction between the bubble movement, the Laplace pressure variation, and the lubrication film near the channel wall. Quantitative and qualitative results are presented and compared against both theory and experimental data for small Capillary numbers. We discuss the technical issues of explicit integration methods on small Capillary numbers computations, and the possibility of adding Van der Walls forces to give a more precise picture of the Droplet-based microfluidic problem.
Numerical Treatment of Two-phase Flow in Porous Media Including Specific Interfacial Area
El-Amin, Mohamed
2015-06-01
In this work, we present a numerical treatment for the model of two-phase flow in porous media including specific interfacial area. For numerical discretization we use the cell-centered finite difference (CCFD) method based on the shifting-matrices method which can reduce the time-consuming operations. A new iterative implicit algorithm has been developed to solve the problem under consideration. All advection and advection-like terms that appear in saturation equation and interfacial area equation are treated using upwind schemes. Selected simulation results such as pc–Sw–awn surface, capillary pressure, saturation and specific interfacial area with various values of model parameters have been introduced. The simulation results show a good agreement with those in the literature using either pore network modeling or Darcy scale modeling.
A modified Rusanov scheme for shallow water equations with topography and two phase flows
Mohamed, Kamel; Benkhaldoun, F.
2016-06-01
In this work, we introduce a finite volume method for numerical simulation of shallow water equations with source terms in one and two space dimensions, and one-pressure model of two-phase flows in one space dimension. The proposed method is composed of two steps. The first, called predictor step, depends on a local parameter allowing to control the numerical diffusion. A strategy based on limiters theory enables to control this parameter. The second step recovers the conservation equation. The scheme can thus be turned to order 1 in the regions where the flow has a strong variation, and order 2 in the regions where the flow is regular. The numerical scheme is applied to several test cases in one and two space dimensions. This scheme demonstrates its well-balanced property, and that it is an efficient and accurate approach for solving shallow water equations with and without source terms, and water faucet problem.
A two phase field model for tracking vesicle-vesicle adhesion.
Gu, Rui; Wang, Xiaoqiang; Gunzburger, Max
2016-11-01
A multi-phase-field model for simulating the adhesion between two vesicles is constructed. Two phase field functions are introduced to simulate each of the two vesicles. An energy model is defined which accounts for the elastic bending energy of each vesicle and the contact potential energy between the two vesicles; the vesicle volume and surface area constraints are imposed using a penalty method. Numerical results are provided to verify the efficacy of our model and to provide visual illustrations of the different types of contact. The method can be adjusted to solve endocytosis problems by modifying the bending rigidity coefficients of the two elastic bending energies. The method can also be extended to simulate multi-cell adhesions, one example of which is erythrocyte rouleaux. A comparison with laboratory observations demonstrates the effectiveness of the multi-phase field approach.
Optimal ground state energy of two-phase conductors
Directory of Open Access Journals (Sweden)
Abbasali Mohammadi
2014-08-01
Full Text Available We consider the problem of distributing two conducting materials in a ball with fixed proportion in order to minimize the first eigenvalue of a Dirichlet operator. It was conjectured that the optimal distribution consists of putting the material with the highest conductivity in a ball around the center. In this paper, we show that the conjecture is false for all dimensions greater than or equal to two.
Unsteady MHD two-phase Couette flow of fluid-particle suspension in an annulus
Directory of Open Access Journals (Sweden)
Basant K. Jha
2011-12-01
Full Text Available The problem of two-phase unsteady MHD flow between two concentric cylinders of infinite length has been analysed when the outer cylinder is impulsively started. The system of partial differential equations describing the flow problem is formulated taking the viscosity of the particle phase into consideration. Unified closed form expressions are obtained for the velocities and the skin frictions for both cases of the applied magnetic field being fixed to either the fluid or the moving outer cylinder. The problem is solved using a combination of the Laplace transform technique, D’Alemberts and the Riemann-sum approximation methods. The solution obtained is validated by comparisons with the closed form solutions obtained for the steady states which has been derived separately. The governing equations are also solved using the implicit finite difference method to verify the present proposed method. The variation of the velocity and the skin friction with the dimensionless parameters occuring in the problem are illustrated graphically and discussed for both phases.
Numerical Simulation of Two-phase flow with Phase Change Using the Level-set Method
Li, Hongying; Lou, Jing; Pan, Lunsheng; Yap, Yitfatt
2016-11-01
Multiphase flow with phase change is widely encountered in many engineering applications. A distinct feature involves in these applications is the phase transition from one phase to another due to the non-uniform temperature distribution. Such kind of process generally releases or absorbs large amount of energy with mass transfer happened simultaneously. It demands great cautions occasionally such as the high pressure due to evaporation. This article presents a numerical model for simulation of two-fluid flow with phase change problem. In these two fluids, one of them changes its state due to phase change. Such a problem then involves two substances with three phases as well as two different interfaces, i.e. the interface between two substances and the interface of one substance between its two phases. Two level-set functions are used to capture the two interfaces in the current problem. The current model is validated against one-dimensional and two-dimensional liquid evaporation. With the code validated, it is applied to different phase change problems including (1) a falling evaporating droplet and the rising of one bubble and (2) two-fluid stratified flow with solidification of one fluid. Comparisons on the bubble and droplet topologies, flow and temperature fields are made for the first case between the falling evaporating droplet and the falling droplet without evaporation. For the second demonstration case, the effect of the superheated temperature on the solidification process is investigated.
Domain decomposition parallel computing for transient two-phase flow of nuclear reactors
Energy Technology Data Exchange (ETDEWEB)
Lee, Jae Ryong; Yoon, Han Young [KAERI, Daejeon (Korea, Republic of); Choi, Hyoung Gwon [Seoul National University, Seoul (Korea, Republic of)
2016-05-15
KAERI (Korea Atomic Energy Research Institute) has been developing a multi-dimensional two-phase flow code named CUPID for multi-physics and multi-scale thermal hydraulics analysis of Light water reactors (LWRs). The CUPID code has been validated against a set of conceptual problems and experimental data. In this work, the CUPID code has been parallelized based on the domain decomposition method with Message passing interface (MPI) library. For domain decomposition, the CUPID code provides both manual and automatic methods with METIS library. For the effective memory management, the Compressed sparse row (CSR) format is adopted, which is one of the methods to represent the sparse asymmetric matrix. CSR format saves only non-zero value and its position (row and column). By performing the verification for the fundamental problem set, the parallelization of the CUPID has been successfully confirmed. Since the scalability of a parallel simulation is generally known to be better for fine mesh system, three different scales of mesh system are considered: 40000 meshes for coarse mesh system, 320000 meshes for mid-size mesh system, and 2560000 meshes for fine mesh system. In the given geometry, both single- and two-phase calculations were conducted. In addition, two types of preconditioners for a matrix solver were compared: Diagonal and incomplete LU preconditioner. In terms of enhancement of the parallel performance, the OpenMP and MPI hybrid parallel computing for a pressure solver was examined. It is revealed that the scalability of hybrid calculation was enhanced for the multi-core parallel computation.
SIMULATION OF MULTIPLEXING OF TWO PHASE SOIL IN CASE OF COMPRESSION COMPRESSION
Directory of Open Access Journals (Sweden)
G. E. Agakhanov
2016-01-01
Full Text Available Aim.The article is devoted to solving the problem of finding metodoa seal a two phase soil layer under compression compression uniformly distributed load.Methods.On estimated model of a continuous isotropic body with linear and hereditary creep in case of invariance of the environment and a persistence of coefficient of Poisson in time, and also taking into account different resilience of a skeleton of soil when multiplexing and demultiplexing the decision of the task of multiplexing of a layer of two-phase soil in case of compression is received by a uniformly distributed load. Special cases of the intense deformed status are considered.Results.The analysis of the received decision shows that in case of a persistence in time of coefficient of Poisson of the environment, creep doesn't influence tension, and only affects deformation or relocation (settling that corresponds to earlier set provisions. In case of a persistence of coefficient of Poisson the intense deformed status of the environment can be determined also by method of elastic analogy, solving the appropriate uprugomgnovenny problem. The solution of the equation for pore pressure is executed by Fourier method. According to the received analytical decision the flowchart and the program in Matlab packet with use of the built-in programming language of the Matlab system is made.Conclusion. For two options of conditions of drainage calculation of function of pore pressure, function of a side raspor and level of consolidation of a layer taking into account and without creep is executed and their surfaces of distribution and a graphics of change are constructed.
Directory of Open Access Journals (Sweden)
Zhangxin Chen
1999-12-01
Full Text Available This is the third paper of a three-part series where we develop and analyze a finite element approximation for a degenerate elliptic-parabolic partial differential system which describes the flow of two incompressible, immiscible fluids in porous media. The approximation uses a mixed finite element method for the pressure equation and a Galerkin finite element method for the saturation equation. It is based on a regularization of the saturation equation. In the first paper cite{RckA} we analyzed the regularized differential system and presented numerical results. In the second paper cite{RckB} we obtained error estimates. In the present paper we describe a perturbation analysis for the saturation equation and numerical experiments for complementing this analysis.
Spazi “affettivi”: un’analisi spaziale di «Brennendes Geheimnis» di Stefan Zweig
Directory of Open Access Journals (Sweden)
Silvia Ulrich
2015-05-01
Full Text Available This article aims at providing an interpretation and analysis of German literary works, especially of Stefan Zweig’s short story Burning Secret (2011, read through the lenses of recent theories on the interconnectedness of living space, identity formation and emotions. The reading here suggested moves from the analogy between literary investigations and proper Freudian suggestions. Zweig’s optimism in coming to terms with – and working through – the inner struggle of the adolescent main protagonist is here assimilated to a kind of modern folktale and becomes the “untimely” humane message that echoes classical ideals of the Weimar culture.
Mendes, Albert C R; Abreu, Everton M C; Neto, Jorge Ananias
2016-01-01
In this work we have obtained a higher-derivative Lagrangian for a charged fluid coupled with the electromagnetic fluid and the Dirac's constraints analysis was discussed. A set of first-class constraints fixed by noncovariant gauge condition was obtained. The path integral formalism was used to obtain the partition function for the corresponding higher-derivative Hamiltonian and the Faddeev-Popov ansatz was used to construct an effective Lagrangian. Through the partition function, a Stefan-Boltzmann type law was obtained.
Manthripragada, Ashwin Jayant
2014-01-01
This study explains how “India” can sometimes be used in German-language literature in non-Orientalist terms. As I closely analyze Stefan Zweig's Die Augen des ewigen Bruders: Eine Legende, his essay “Die indische Gefahr für England,” and Hermann Hesse's Siddhartha all within a postcolonial theoretical framework, I argue that these texts that either take place in India or contend with Indian themes are less about India than about coming to terms with self-identit...
Dynamics of a "Two-Phase" Bubble in Compression Waves
Khabeev, N. S.
2016-07-01
The behavior of a vapor envelope around a heated solid particle in a variable pressure field has been studied. Problems of this kind arise in propagation of shock waves in three-phase systems ″liquid-hot solid particles surrounded by vapor envelopes.″ The behavior of the system in the vicinity of the forward shock wave front on a linear rise in pressure in the system has been studied analytically. A simple formula describing the change in the radius of the vapor layer in time has been obtained.
MODELING TWO-PHASE FLOW IN PULSED FLUIDIZED BED
Institute of Scientific and Technical Information of China (English)
Dayou Liu; Guodong Jin
2003-01-01
Mathematical models for pulsed fluidization are systematically discussed. Several undetermined constitutive relationships are included in the General Two-Fluid Model (GTFM), the adjustable parameters of which are always chosen at will to some extent. Although there are no adjustable parameters in the Basic Two-Fluid Model (BTFM), its eigenvalues are complex numbers and it is ill-posed for initial-value problems. The Local Equilibrium Model (LEM), a further simplification of BTFM, is discussed at length. Although the model is very simple, it is highly capable of simulating complex processes in pulsed fluidization over a broad range of operating parameters, and its numerical results well fit experimental results in both the variation of bed height and the distribution of particle concentration as fluidizing velocity varies.
Mathematical models for two-phase stratified pipe flow
Energy Technology Data Exchange (ETDEWEB)
Biberg, Dag
2005-06-01
The simultaneous transport of oil, gas and water in a single multiphase flow pipe line has for economical and practical reasons become common practice in the gas and oil fields operated by the oil industry. The optimal design and safe operation of these pipe lines require reliable estimates of liquid inventory, pressure drop and flow regime. Computer simulations of multiphase pipe flow have thus become an important design tool for field developments. Computer simulations yielding on-line monitoring and look ahead predictions are invaluable in day-to-day field management. Inaccurate predictions may have large consequences. The accuracy and reliability of multiphase pipe flow models are thus important issues. Simulating events in large pipelines or pipeline systems is relatively computer intensive. Pipe-lines carrying e.g. gas and liquefied gas (condensate) may cover distances of several hundred km in which transient phenomena may go on for months. The evaluation times associated with contemporary 3-D CFD models are thus not compatible with field applications. Multiphase flow lines are therefore normally simulated using specially dedicated 1-D models. The closure relations of multiphase pipe flow models are mainly based on lab data. The maximum pipe inner diameter, pressure and temperature in a multiphase pipe flow lab is limited to approximately 0.3 m, 90 bar and 60{sup o}C respectively. The corresponding field values are, however, much higher i.e.: 1 m, 1000 bar and 200{sup o}C respectively. Lab data does thus not cover the actual field conditions. Field predictions are consequently frequently based on model extrapolation. Applying field data or establishing more advanced labs will not solve this problem. It is in fact not practically possible to acquire sufficient data to cover all aspects of multiphase pipe flow. The parameter range involved is simply too large. Liquid levels and pressure drop in three-phase flow are e.g. determined by 13 dimensionless parameters
A numerical study of steady-state two-phase flow in porous media
Energy Technology Data Exchange (ETDEWEB)
Knudsen, Henning Arendt
2002-07-01
Two-phase flow in porous media means the simultaneous flow of two phases, say two liquids, e.g., oil and water. This flow is restrained to be within a porous medium. For example sandstone and limestone are typical porous stones that can contain oil and gas in nature. In the extraction of oil from reservoirs, oil is usually displaced by water. So on a large scale we can consider it to be a displacement process. However, on pore scale the ''mix'' and flow processes are complicated. Idealistically, one might consider the search for truth a sufficient motivation for work in this field. Nevertheless, from an economic and technological point of view, enhanced oil recovery is the main motivation for the study of two-phase flow in porous media. Luckily, there are additional systems in real world that falls into this category. One such system is the flow of water and pollutants in aquifers. General knowledge in the field might be beneficial for preserving ground water reserves in the future. In the laboratory one often encounters artificially made porous media. For example glass beads between two glass plates. Therein, one of the phases flowing may be a mixture of glycerol and water. The other phase can be air which then is the non-wetting phase; air does not wet glass. It can also be silicone oil, and in that case the water/glycerol is normally the nonwetting phase. There are other possibilities. In general, laboratory studies are performed on systems on pore scale. The flow properties on the various length scales found in flow systems in nature depend on these properties on pore scale. The so-called upscaling problem concerns how to relate pore scale properties with properties on larger scales. The scope of this thesis is the study of properties on pore scale. The upscaling problem, which is a large research field in itself, is thus outside the scope of this thesis. The results of Paper 3 is an exception since they may infer also to larger scales than
Heat transfer studies in a spiral plate heat exchanger for water: palm oil two phase system
Directory of Open Access Journals (Sweden)
S. Ramachandran
2008-09-01
Full Text Available Experimental studies were conducted in a spiral plate heat exchanger with hot water as the service fluid and the two-phase system of water palm oil in different mass fractions and flow rates as the cold process fluid. The two phase heat transfer coefficients were correlated with Reynolds numbers (Re in the form h = a Re m, adopting an approach available in literature for two phase fluid flow. The heat transfer coefficients were also related to the mass fraction of palm oil for identical Reynolds numbers. The two-phase multiplier (ratio of the heat transfer coefficient of the two phase fluid and that of the single phase fluid was correlated with the Lockhart Martinelli parameter in a polynomial form. This enables prediction of the two-phase coefficients using single-phase data. The predicted coefficients showed a spread of ± 10 % in the laminar range.
Effect of large-scale parameters for two-phase flow in heterogeneous porous media
Energy Technology Data Exchange (ETDEWEB)
Girgrah, B.
1994-01-01
Important problems in environmental protection and resource management require quantification of parameters at field (large) scale. A numerical model is utilized to construct large-scale capillary pressure (CP) and relative permeability (RP) curves for two-phase flow in heterogeneous porous media. Two-phase flow simulations were performed over a two-dimensional, numerically generated, heterogeneous permeability field. CP and RP curves were constructed for each simulation. The fields ranged in size from 1.25x1.25 m to 5x10 m and had a mean overall log-hydraulic conductivity of [minus]4.6. Flow was vertically downward with the left and right boundaries of the domain remaining impermeable. Following the simulations on heterogeneous fields, homogeneous equivalents were determined and run for sample simulations. The heterogeneous simulations included investigations into the representative elementary volume (REV) for two permeability fields, the effects of fluid properties on CP and RP, and the effects of correlation structure. The equivalent homogeneous simulations explored the feasibility of homogeneous solutions to predict heterogeneous behavior. Results showed that the REVs for fields one and two were a domain size of 50x50 nodes. Fluid property investigations showed that CP decreased when interfacial tension decreased. Structural explorations showed vertical bedding caused an increase in both CP and RP results. A decrease in log-hydraulic conductivity variance caused slight increases in RP and CP. No direct correlation was obtained between homogeneous and heterogeneous flow behavior. A modification could be made to the homogeneous model to allow it to accurately predict heterogeneous flow. 49 refs., 28 figs., 10 tabs.
A study of relative permeability parameters on rock cores using a two-phase flow test
Directory of Open Access Journals (Sweden)
Chung-Hui Chiao
2017-01-01
Full Text Available To ensure sequestration safety, confirming the injectivity of the reservoir rock formation is of critical importance, requiring studies of the rock permeability to uncover the fluid migration scenarios within the porous reservoir rock. Two-phase (super-critical CO2-brine flow behavior following the post CO2 injection is believed to be a dominating factor; its flooding behavior within the porous rock media needs to be further clarified prior to confirming the feasibility of domestic CO2 geo-sequestration. This study aims to determine the relative permeability of rock cores obtained from field outcropping. A test facility was established to determine the relative permeability during drainage and imbibition processes using a core-flooding test characterized by displacement method. The test facility was assembled locally and is regarded as a pioneering attempt. By relevant data interpretation, the parameters of relative permeability for predicting the movement of super-critical CO2 after injection can be modeled. More reliable parameters can be obtained using history matching processes wherein time-elapsed data calibration is used in conjunction with a computer code, TOUGH2. The test results were iteratively calibrated using numerical simulation by conducting a history matching process. The K-S curves derived from best-fit parameters are believed to be the most relevant relative permeability for the reservoir rock. Through this preliminary study, a better understanding of some of the problems and limitations associated with the determination of the rock relative permeability using two-phase flow test is achieved, but more advanced research is required.
A Two-Phase Time Synchronization-Free Localization Algorithm for Underwater Sensor Networks.
Luo, Junhai; Fan, Liying
2017-03-30
Underwater Sensor Networks (UWSNs) can enable a broad range of applications such as resource monitoring, disaster prevention, and navigation-assistance. Sensor nodes location in UWSNs is an especially relevant topic. Global Positioning System (GPS) information is not suitable for use in UWSNs because of the underwater propagation problems. Hence, some localization algorithms based on the precise time synchronization between sensor nodes that have been proposed for UWSNs are not feasible. In this paper, we propose a localization algorithm called Two-Phase Time Synchronization-Free Localization Algorithm (TP-TSFLA). TP-TSFLA contains two phases, namely, range-based estimation phase and range-free evaluation phase. In the first phase, we address a time synchronization-free localization scheme based on the Particle Swarm Optimization (PSO) algorithm to obtain the coordinates of the unknown sensor nodes. In the second phase, we propose a Circle-based Range-Free Localization Algorithm (CRFLA) to locate the unlocalized sensor nodes which cannot obtain the location information through the first phase. In the second phase, sensor nodes which are localized in the first phase act as the new anchor nodes to help realize localization. Hence, in this algorithm, we use a small number of mobile beacons to help obtain the location information without any other anchor nodes. Besides, to improve the precision of the range-free method, an extension of CRFLA achieved by designing a coordinate adjustment scheme is updated. The simulation results show that TP-TSFLA can achieve a relative high localization ratio without time synchronization.
Gamma-ray CT from incomplete projections for two-phase pipe flow
Xin, S.; Wang, H. X.
2017-02-01
A low-energy low-dose γ-ray computed tomography (CT) system used in the gas-liquid two-phase pipe flow measurement has been studied at Tianjin University in recent years. The γ-ray CT system, having a third-generation X-ray CT scanning configuration, is comprised of one 300mCi 241Am source and 17 CdZnTe detector units and achieves a spatial image resolution of about 7 mm. It is primarily intended to measure the two-phase pipe flow and provide improvement suggestions for industrial CT system. Recently we improve the design for image reconstruction from incomplete projection to optimize the scanning parameters and reduce the radiation dose. First, tomographic problem from incomplete projections is briefly described. Next, a system structure and a hardware circuit design are listed and explained, especially on time parameter setting of the pulse shaper. And then a detailed system analysis is provided in Section II, mainly focusing on spatial resolution, temporal resolution, system noise, and imaging algorithm. Finally, we carry on necessary static and dynamic experiments in a full scan (360°) and two sets of partial scan reconstruction tests to determine the feasibility of this γ-ray CT system for reconstructing the images from insufficient projections. And based on an A-variable algebraic reconstruction technique method, a specially designed algorithm, we evaluate the system performance and noise level of this CT system working quantitatively and qualitatively. Results of dynamic test indicate that the acceptable results can be acquired using a multi-source γ-ray CT system with the same parameters when the flow rate is less than 0.04 m/s and the imaging speed is slower than 33 frames/s.
Vertex centred Discretization of Two-Phase Darcy flows on General Meshes
Directory of Open Access Journals (Sweden)
Herbin Raphaèle
2012-04-01
Full Text Available This paper concerns the discretization of multiphase Darcy flows, in the case of heterogeneous anisotropic porous media and general 3D meshes used in practice to represent reservoir and basin geometries. An unconditionally coercive and symmetric vertex centred approach is introduced in this paper. This scheme extends the Vertex Approximate Gradient scheme (VAG, already introduced for single phase diffusive problems in [9], to multiphase Darcy flows. The convergence of the VAG scheme is proved for a simplified two-phase Darcy flow model, coupling an elliptic equation for the pressure and a linear hyperbolic equation for the saturation. The ability for the VAG scheme to efficiently deal with highly heterogeneous media and complex meshes is exhibited on immiscible and miscible two phase Darcy flow models. Cet article porte sur la discrétisation des flux de Darcy polyphasiques au sein de milieux poreux hétérogènes et anisotropes, dans des maillages tridimensionnels généraux utilisés dans le contexte de la simulation de réservoir ou de bassin. Un schéma avec inconnues aux sommets [9], qui a l’avantage d’être inconditionnellement coercif et symétrique, est généralisé au cas des écoulements de Darcy polyphasiques. La convergence du schéma est démontrée sur un modèle diphasique simplifié, couplant une équation elliptique pour la pression à une équation hyperbolique linéaire pour la saturation. On illustre ensuite la capacité du schéma à prendre en compte efficacement les fortes hétérogénéités et les maillages complexes sur des exemples d’écoulements diphasiques immiscibles et miscibles.
Zeng, Chao-Xi; Xin, Rui-Pu; Qi, Sui-Jian; Yang, Bo; Wang, Yong-Hua
2016-02-01
Aqueous two-phase systems, based on the use of natural quaternary ammonium compounds, were developed to establish a benign biotechnological route for efficient protein separation. In this study, aqueous two-phase systems of two natural resources betaine and choline with polyethyleneglycol (PEG400/600) or inorganic salts (K2 HPO4 /K3 PO4 ) were formed. It was shown that in the K2 HPO4 -containing aqueous two-phase system, hydrophobic interactions were an important driving force of protein partitioning, while protein size played a vital role in aqueous two-phase systems that contained polyethylene glycol. An extraction efficiency of more than 90% for bovine serum albumin in the betaine/K2 HPO4 aqueous two-phase system can be obtained, and this betaine-based aqueous two-phase system provided a gentle and stable environment for the protein. In addition, after investigation of the cluster phenomenon in the betaine/K2 HPO4 aqueous two-phase systems, it was suggested that this phenomenon also played a significant role for protein extraction in this system. The development of aqueous two-phase systems based on natural quaternary ammonium compounds not only provided an effective and greener method of aqueous two-phase system to meet the requirements of green chemistry but also may help to solve the mystery of the compartmentalization of biomolecules in cells.
One-phase or two-phase orthodontic treatment?
Mir, Carlos Flores
2016-12-01
. Further trials of high quality of evidence are required assessing the effectiveness of interceptive treatment for a range of occlusal problems, particularly those not known to hinge on growth potential, with long-term follow up to ascertain whether short-term effects are maintained once growth has ceased and to delineate the effects of intervention timing on the overall treatment duration.
Energy Technology Data Exchange (ETDEWEB)
Doughty, C.; Pruess, K. [Lawrence Berkeley Lab., CA (United States)
1991-06-01
Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository for heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.
Energy Technology Data Exchange (ETDEWEB)
Randelia, R.R.; Sahai, V.
1987-01-01
A numerical analysis of a two-phase, laminar boundary layer is carried out using the Keller Box method. The two phases are assumed to be immiscible. The problem considered involves the boundary layer flow of a compressible gas with variable properties over a flat surface in the presence of a thin liquid film with power law temperature dependent viscosity. Both zero and nonzero pressure gradients are considered. The main purpose of the study was to investigate the effect of the presence of the liquid layer on the velocity and temperature distributions. A limited set of results are presented in terms of varying liquid Prandtl numbers, film thickness, and viscosity exponents on these distributions as well as the shear stress and heat transfer parameters at the wall and at the interface between the two fluids.
ANALYSIS OF TWO-PHASE FLOW PRESSURE BUILDUP DATA FROM A WELL IN AN INFINITE MULTIWELL RESERVOIR
Institute of Scientific and Technical Information of China (English)
LIN Jia-en; YANG Hui-zhu
2005-01-01
A general method has been developed for analyzing two-phase flow pressure buildup data from a well located in a system of both production and injection wells completed in an infinite multiwell reservoir. The analysis technique assumes that the tested well has established its own drainage area before shut-in and a linear reservoir pressure trend dominates the well pressure behavior at the instant of shut-in. And for the two-phase flow problems the horizontal saturation gradients are assumed to be negligible. The entire pressure response, whether or not conventional semilog straight lines exist, can be analyzed and the Injection-Production Ratio (IPR), the total fluid (oil/water) mobility, the average drainage-area pressure, and also the skin factor can be calculated much easily. The validity and applicability of the method are demonstrated by a field example. The technique by using the type curves for analyzing the pressure-buildup data is also presented here.
Numerical simulation of wave impact on a rigid wall using a two--phase compressible SPH method
Rafiee, Ashkan; Dias, Frédéric
2013-01-01
In this paper, an SPH method based on the SPH--ALE formulation is used for modelling two-phase flows with large density ratios and realistic sound speeds. The SPH scheme is further improved to circumvent the tensile instability that may occur in the SPH simulations. The two-phase SPH solver is then used to model a benchmark problem of liquid impact on a rigid wall. The results are compared with an incompressible Level Set solver. Furthermore, a wave impact on a rigid wall with a large entrained air pocket is modelled. The SPH simulation is initialised by the output of a fully non-linear potential flow solver. The pressure distribution, velocity field and impact pressure are then analysed.
Direct computation of two-phase icosahedral equilibria of lipid bilayer vesicles
Zhao, Siming; Healey, Timothy; Li, Qingdu
2017-02-01
Correctly formulated continuum models for lipid-bilayer membranes present a significant challenge to computational mechanics. In particular, the mid-surface behavior is that of a 2-dimensional fluid, while the membrane resists bending much like an elastic shell. Here we consider a well-known Helfrich-Cahn-Hilliard model for two-phase lipid-bilayer vesicles, incorporating mid-surface fluidity, curvature elasticity and a phase field. We present a systematic approach to the direct computation of vesical configurations possessing icosahedral symmetry, which have been observed in experiment and whose mathematical existence has recently been established. We first introduce a radial-graph formulation to overcome the difficulties associated with fluidity within a conventional Lagrangian description. We use the so-called subdivision surface finite element method combined with an icosahedral-symmetric mesh. The resulting discrete equations are well-conditioned and inherit equivariance properties under a representation of the icosahedral group. We use group-theoretic methods to obtain a reduced problem that captures all icosahedral-symmetric solutions of the full problem. Finally we explore the behavior of our reduced model, varying numerous physical parameters present in the mathematical model.
Cell-laden microgel prepared using a biocompatible aqueous two-phase strategy.
Liu, Yang; Nambu, Natalia Oshima; Taya, Masahito
2017-09-01
Microfluidic methods are frequently used to produce cell-laden microgels for various biomedical purposes. Such microfluidic methods generally employ oil-water systems. The poor distribution of crosslinking reagents in the oil phase limits the available gelation strategies. Extracting the microgel from the oil-phase also reduces its production efficiency. In this study, an aqueous two-phase system (ATPS) involving dextran (DEX) and polyethylene glycol (PEG) was used to prepare cell-laden microgel. This avoided the problems associated with an oil phase. The microgel precursor polymers and crosslinking reagents were dispersed in the DEX and PEG phases, respectively. The ultra-low interfacial tension of the ATPS hindered droplet formation. A co-flow microfluidic device was fabricated to overcome this problem. The device incorporated a square-wave-changing injection force, to improve the efficiency of droplet formation. The microgel precursor (including alginate and carboxymethyl cellulose derivatives possessing phenolic hydroxyl moieties) could be dispersed in the DEX solution at various concentrations. Uniform droplets were formed with controllable diameters, and were sequentially converted to microgel by horseradish peroxidase-catalyzed crosslinking. Cells were dispersed in the DEX phase with the microgel precursor polymer, and retained their high viability and proliferation in the resulting microgel. The solubility of gelatin derivatives in the DEX phase was low, but was sufficient to impart cell adhesion properties on the microgel.
Numerical modelling of two phase flow with hysteresis in heterogeneous porous media
Energy Technology Data Exchange (ETDEWEB)
Abreu, E. [Instituto Nacional de Matematica Pura e Aplicada (IMPA), Rio de Janeiro, RJ (Brazil); Furtado, F.; Pereira, F. [University of Wyoming, Laramie, WY (United States). Dept. of Mathematicsatics; Souza, G. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)
2008-07-01
Numerical simulators are necessary for the understanding of multiphase flow in porous media in order to optimize hydrocarbon recovery. In this work, the immiscible flow of two incompressible phases, a problem very common in waterflooding of petroleum reservoirs, is considered and numerical simulation techniques are presented. The system of equations which describe this type of flow form a coupled, highly nonlinear system of time-dependent partial differential equations (PDEs). The equation for the saturation of the invading fluid is a convection-dominated, degenerate parabolic PDE whose solutions typically exhibit sharp fronts (i.e., internal layers with strong gradients) and is very difficult to approximate numerically. It is well known that accurate modeling of convective and diffusive processes is one of the most daunting tasks in the numerical approximation of PDEs. Particularly difficult is the case where convection dominates diffusion. Specifically, we consider the injection problem for a model of two-phase (water/oil) flow in a core sample of porous rock, taking into account hysteresis effects in the relative permeability of the oil phase. (author)
Numerical and dimensional investigation of two-phase countercurrent imbibition in porous media
El-Amin, Mohamed
2013-04-01
In this paper, we introduce a numerical solution of the problem of two-phase immiscible flow in porous media. In the first part of this work, we present the general conservation laws for multiphase flows in porous media as outlined in the literature for the sake of completion where we emphasize the difficulties associated with these equations in their primitive form and the fact that they are, generally, unclosed. The second part concerns the 1D computation for dimensional and non-dimensional cases and a theoretical analysis of the problem under consideration. A time-scale based on the characteristic velocity is used to transform the macroscopic governing equations into a non-dimensional form. The resulting dimensionless governing equations involved some important dimensionless physical parameters such as Bond number Bo, capillary number Ca and Darcy number Da. Numerical experiments on the Bond number effect is performed for two cases, gravity opposing and assisting. The theoretical analysis illustrates that common formulations of the time-scale forces the coefficient Da12Ca to be equal to one, while formulation of dimensionless time based on a characteristic velocity allows the capillary and Darcy numbers to appear in the dimensionless governing equation which leads to a wide range of scales and physical properties of fluids and rocks. The results indicate that the buoyancy effects due to gravity force take place depending on the location of the open boundary. © 2012 Elsevier B.V. All rights reserved.
2004-04-27
section 4.2.3, the interface velocity is constant in time , i.e. [Tx]Γ = 1. Therefore, this example focused on the spatial discretization and velocity...the L∞-norm for the one dimensional Frank spheres solution (the interface velocity is not constant in time ). The ghost cells are defined by cubic...dimensional Frank spheres solution (the interface velocity is not constant in time ). The ghost cells are defined via cubic extrapolation, and we use the
Directory of Open Access Journals (Sweden)
Yekini Shehu
2010-01-01
real Banach space which is also uniformly smooth using the properties of generalized f-projection operator. Using this result, we discuss strong convergence theorem concerning general H-monotone mappings and system of generalized mixed equilibrium problems in Banach spaces. Our results extend many known recent results in the literature.
CALCULATION ON TWO-PHASE FLOW TRANSIENTS AND THEIR EXPERIMENTAL RESEARCH
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
From basic equations of gas-liquid, solid-liquid, solid-gas two-phase flow, the calculating method on flowtransients of two-phase flow is developed by means of characteristic method. As one example, a gas-liquid flow transientis calculated and it agrees well with the experimental result. It is shown that the method is satisfactory for engineeringdemand.
48 CFR 570.105-2 - Two-phase design-build selection procedures.
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Two-phase design-build... ADMINISTRATION SPECIAL CONTRACTING PROGRAMS ACQUIRING LEASEHOLD INTERESTS IN REAL PROPERTY General 570.105-2 Two..., you must use the two-phase design-build selection procedures in section 303M of the Federal Property...
Two-phase flow experimental studies in micro-models (Utrecht Studies in Earth Sciences 034)
Karadimitriou, N.K.
2013-01-01
The aim of this research project was to put more physics into theories of two-phase flow. The significance of including interfacial area as a separate variable in two-phase flow and transport models was investigated. In order to investigate experimentally the significance of the inclusion of interfa
Chiaramonte, Francis; Motil, Brian; McQuillen, John
2014-01-01
The Two-phase Heat Transfer International Topical Team consists of researchers and members from various space agencies including ESA, JAXA, CSA, and RSA. This presentation included descriptions various fluid experiments either being conducted by or planned by NASA for the International Space Station in the areas of two-phase flow, flow boiling, capillary flow, and crygenic fluid storage.
NUMERICAL SIMULATION OF CHARGED GAS-LIQUID TWO PHASE JET FLOW IN ELECTROSTATIC SPRAYING
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Multi-fluid k-ε-kp two phase turbulence model is used to simulate charged gas-liquid two phase coaxial jet, which is the transorting flow field in electrostatic spraying. Compared with the results of experiment, charged gas-liquid twophase turbulence can be well predicted by this model.
Symmetrical components and power analysis for a two-phase microgrid system
DEFF Research Database (Denmark)
Alibeik, M.; Santos Jr., E. C. dos; Blaabjerg, Frede
2014-01-01
This paper presents a mathematical model for the symmetrical components and power analysis of a new microgrid system consisting of three wires and two voltages in quadrature, which is designated as a two-phase microgrid. The two-phase microgrid presents the following advantages: 1) constant power...
Frank, M.J.W.; Kuipers, J.A.M.; Versteeg, G.F.; Swaaij, W.P.M. van
1995-01-01
A general applicable model has been developed which can predict mass and heat transfer fluxes through a vapour/gas-liquid interface in case a reversible chemical reaction with associated heat effect takes place in the liquid phase. In this model the Maxwell-Stefan theory has been used to describe th
Frank, M.J.W.; Frank, M.J.W.; Kuipers, J.A.M.; Krishna, R.; van Swaaij, Willibrordus Petrus Maria
1995-01-01
In Part I a general applicable model has been developed which calculates mass and heat transfer fluxes through a vapour/gas-liquid interface in case a reversible chemical reaction with associated heat effect takes place in the liquid phase. In this model the Maxwell-Stefan theory has been used to
Majhi, Bijoy Kumar; Jash, Tushar
2016-12-01
Biogas production from vegetable market waste (VMW) fraction of municipal solid waste (MSW) by two-phase anaerobic digestion system should be preferred over the single-stage reactors. This is because VMW undergoes rapid acidification leading to accumulation of volatile fatty acids and consequent low pH resulting in frequent failure of digesters. The weakest part in the two-phase anaerobic reactors was the techniques applied for solid-liquid phase separation of digestate in the first reactor where solubilization, hydrolysis and acidogenesis of solid organic waste occur. In this study, a two-phase reactor which consisted of a solid-phase reactor and a methane reactor was designed, built and operated with VMW fraction of Indian MSW. A robust type filter, which is unique in its implementation method, was developed and incorporated in the solid-phase reactor to separate the process liquid produced in the first reactor. Experiments were carried out to assess the long term performance of the two-phase reactor with respect to biogas production, volatile solids reduction, pH and number of occurrence of clogging in the filtering system or choking in the process liquid transfer line. The system performed well and was operated successfully without the occurrence of clogging or any other disruptions throughout. Biogas production of 0.86-0.889m(3)kg(-1)VS, at OLR of 1.11-1.585kgm(-3)d(-1), were obtained from vegetable market waste, which were higher than the results reported for similar substrates digested in two-phase reactors. The VS reduction was 82-86%. The two-phase anaerobic digestion system was demonstrated to be stable and suitable for the treatment of VMW fraction of MSW for energy generation.
Analysis of transient gas-liquid two-phase natural circulation
Energy Technology Data Exchange (ETDEWEB)
Kataoka, Isao; Matsumoto, Tadayoshi; Morita, Yu; Kawashima, Atsushi [Department of Mechanophysics Engineering, Osaka University, Suita, Osaka (Japan); Nakayama, Akio
1999-07-01
Analyses were made on the transient behavior of two-phase natural circulation in annular passage. Drift flux model was used in the analyses and several correlations of drift velocity were used and compared. Transient variation of void fraction, inlet liquid flux and length of two-phase region were predicted based on simplified model. It was revealed that in transient two-phase natural circulation, the condition for pressure difference between inlet and outlet is quite important and difficult to be specified. A simplified model for inlet pressure condition was assumed and transient two-phase natural circulation was reasonably predicted. The correlation of drift velocity was shown to have important effect on the flow behavior particularly for the transient variation of two-phase length. (author)
A MODEL FOR PREDICTING PHASE INVERSION IN OIL-WATER TWO-PHASE PIPE FLOW
Institute of Scientific and Technical Information of China (English)
GONG Jing; LI Qing-ping; YAO Hai-yuan; YU Da
2006-01-01
Experiments of phase inversion characteristics for horizontal oil-water two-phase flow in a stainless steel pipe loop (25.7 mm inner diameter,52 m long) are conducted. A new viewpoint is brought forward about the process of phase inversion in oil-water two-phase pipe flow. Using the relations between the total free energies of the pre-inversion and post-inversion dispersions, a model for predicting phase inversion in oil-water two-phase pipe flow has been developed that considers the characteristics of pipe flow. This model is compared against other models with relevant data of phase inversion in oil-water two-phase pipe flow. Results indicate that this model is better than other models in terms of calculation precision and applicability. The model is useful for guiding the design for optimal performance and safety in the operation of oil-water two-phase pipe flow in oil fields.
The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow
Directory of Open Access Journals (Sweden)
Weihang Kong
2016-08-01
Full Text Available Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM. Firstly, using the finite element method (FEM, the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.
Kong, Weihang; Li, Lei; Kong, Lingfu; Liu, Xingbin
2016-08-01
In order to solve the problem of dynamic pure-water electrical conductivity measurement in the process of calculating water content of oil-water two-phase flow of production profile logging in horizontal wells, a six-group local-conductance probe (SGLCP) is proposed to measure dynamic pure-water electrical conductivity in horizontal oil-water two-phase flow. The structures of conductance sensors which include the SGLCP and ring-shaped conductance probe (RSCP) are analyzed by using the finite-element method (FEM). In the process of simulation, the electric field distribution generated by the SGLCP and RSCP are investigated, and the responses of the measuring electrodes are calculated under the different values of the water resistivity. The static experiments of the SGLCP and RSCP under different mineralization degrees in horizontal oil-water two-phase flow are carried out. Results of simulation and experiments demonstrate a nice linearity between the SGLCP and RSCP under different mineralization degrees. The SGLCP has also a good adaptability to stratified flow, stratified flow with mixing at the interface and dispersion of oil in water and water flow. The validity and feasibility of pure-water electrical conductivity measurement with the designed SGLCP under different mineralization degrees are verified by experimental results.
Bieberle, M; Hampel, U
2015-06-13
Tomographic image reconstruction is based on recovering an object distribution from its projections, which have been acquired from all angular views around the object. If the angular range is limited to less than 180° of parallel projections, typical reconstruction artefacts arise when using standard algorithms. To compensate for this, specialized algorithms using a priori information about the object need to be applied. The application behind this work is ultrafast limited-angle X-ray computed tomography of two-phase flows. Here, only a binary distribution of the two phases needs to be reconstructed, which reduces the complexity of the inverse problem. To solve it, a new reconstruction algorithm (LSR) based on the level-set method is proposed. It includes one force function term accounting for matching the projection data and one incorporating a curvature-dependent smoothing of the phase boundary. The algorithm has been validated using simulated as well as measured projections of known structures, and its performance has been compared to the algebraic reconstruction technique and a binary derivative of it. The validation as well as the application of the level-set reconstruction on a dynamic two-phase flow demonstrated its applicability and its advantages over other reconstruction algorithms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow.
Kong, Weihang; Kong, Lingfu; Li, Lei; Liu, Xingbin; Xie, Ronghua; Li, Jun; Tang, Haitao
2016-08-24
Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP) for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM). Firstly, using the finite element method (FEM), the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.
Implementation of the LAX-Wendroff Method in Cobra-TF for Solving Two-Phase Flow Transport Equations
Energy Technology Data Exchange (ETDEWEB)
Salko, Robert K [ORNL; Wang, Dean [ORNL; Ren, Kangyu [University of Massachusetts, Lowell
2016-01-01
COBRA-TF (Coolant Boiling in Rod Arrays Two Fluid), or CTF, is a subchannel code used to conduct the reactor core thermal hydraulic (T/H) solution in both standalone and coupled multi-physics applications. CTF applies the first-order upwind spatial discretization scheme for solving two-phase flow conservation equations. In this work, the second-order Lax-Wendroff (L-W) scheme has been implemented in CTF to solve the two-phase flow transport equations to improve numerical accuracy in both temporal and spatial discretization. To avoid the oscillation issue, a non-linear flux limiter VA (Van Albada) is employed for the convective terms in the transport equations. Assessments have been carried out to evaluate the performance and stability of the implemented second-order L-W scheme. It has been found that the L-W scheme performs better than the upwind scheme for the single-phase and two-phase flow problems in terms of numerical accuracy and computational efficiency.
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
Kou, Jisheng
2016-05-10
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests
Liu, Lulu
2013-01-01
The fully implicit approach is attractive in reservoir simulation for reasons of numerical stability and the avoidance of splitting errors when solving multiphase flow problems, but a large nonlinear system must be solved at each time step, so efficient and robust numerical methods are required to treat the nonlinearity. The Additive Schwarz Preconditioned Inexact Newton (ASPIN) framework, as an option for the outermost solver, successfully handles strong nonlinearities in computational fluid dynamics, but is barely explored for the highly nonlinear models of complex multiphase flow with capillarity, heterogeneity, and complex geometry. In this paper, the fully implicit ASPIN method is demonstrated for a finite volume discretization based on incompressible two-phase reservoir simulators in the presence of capillary forces and gravity. Numerical experiments show that the number of global nonlinear iterations is not only scalable with respect to the number of processors, but also significantly reduced compared with the standard inexact Newton method with a backtracking technique. Moreover, the ASPIN method, in contrast with the IMPES method, saves overall execution time because of the savings in timestep size.
Non-isothermal two-phase flow in low-permeable porous media
Kolditz, O.; De Jonge, J.
In this paper, we consider non-isothermal two-phase flow of two components (air and water) in gaseous and liquid phases in extremely low-permeable porous media through the use of the finite element method (FEM). Interphase mass transfer of the components between any of the phases is evaluated by assuming local thermodynamic equilibrium between the phases. Heat transfer occurs by conduction and multiphase advection. General equations of state for phase changes (Clausius-Clapeyron and Henry law) as well as multiphase properties for the low-permeable bentonites are implemented in the code. Additionally we consider the impact of swelling/shrinking processes on porosity and permeability changes. The numerical model is implemented in the context of the simulator RockFlow/RockMech (RF/RM), which is based on object-oriented programming techniques. The finite element formulations are written in terms of dimensionless quantities. This has proved to be advantageous for preconditioning composite system matrices of coupled multi-field problems. Three application examples are presented. The first one examines differences between the Richards' approximation and the multicomponent/multiphase approach, and between two numerical coupling schemes. The second example serves as partial verification against experimental results and to demonstrate coherence between different element types. The last example shows simultaneous desaturation and resaturation in one system.
Lattice-Boltzmann-based two-phase thermal model for simulating phase change.
Kamali, M R; Gillissen, J J J; van den Akker, H E A; Sundaresan, Sankaran
2013-09-01
A lattice Boltzmann (LB) method is presented for solving the energy conservation equation in two phases when the phase change effects are included in the model. This approach employs multiple distribution functions, one for a pseudotemperature scalar variable and the rest for the various species. A nonideal equation of state (EOS) is introduced by using a pseudopotential LB model. The evolution equation for the pseudotemperature variable is constructed in such a manner that in the continuum limit one recovers the well known macroscopic energy conservation equation for the mixtures. Heats of reaction, the enthalpy change associated with the phase change, and the diffusive transport of enthalpy are all taken into account; but the dependence of enthalpy on pressure, which is usually a small effect in most nonisothermal flows encountered in chemical reaction systems, is ignored. The energy equation is coupled to the LB equations for species transport and pseudopotential interaction forces through the EOS by using the filtered local pseudotemperature field. The proposed scheme is validated against simple test problems for which analytical solutions can readily be obtained.
Soares, Ruben R G; Azevedo, Ana M; Van Alstine, James M; Aires-Barros, M Raquel
2015-08-01
For half a century aqueous two-phase systems (ATPSs) have been applied for the extraction and purification of biomolecules. In spite of their simplicity, selectivity, and relatively low cost they have not been significantly employed for industrial scale bioprocessing. Recently their ability to be readily scaled and interface easily in single-use, flexible biomanufacturing has led to industrial re-evaluation of ATPSs. The purpose of this review is to perform a SWOT analysis that includes a discussion of: (i) strengths of ATPS partitioning as an effective and simple platform for biomolecule purification; (ii) weaknesses of ATPS partitioning in regard to intrinsic problems and possible solutions; (iii) opportunities related to biotechnological challenges that ATPS partitioning may solve; and (iv) threats related to alternative techniques that may compete with ATPS in performance, economic benefits, scale up and reliability. This approach provides insight into the current status of ATPS as a bioprocessing technique and it can be concluded that most of the perceived weakness towards industrial implementation have now been largely overcome, thus paving the way for opportunities in fermentation feed clarification, integration in multi-stage operations and in single-step purification processes.
Efficient and robust compositional two-phase reservoir simulation in fractured media
Zidane, A.; Firoozabadi, A.
2015-12-01
Compositional and compressible two-phase flow in fractured media has wide applications including CO2 injection. Accurate simulations are currently based on the discrete fracture approach using the cross-flow equilibrium model. In this approach the fractures and a small part of the matrix blocks are combined to form a grid cell. The major drawback is low computational efficiency. In this work we use the discrete-fracture approach to model the fractures where the fracture entities are described explicitly in the computational domain. We use the concept of cross-flow equilibrium in the fractures (FCFE). This allows using large matrix elements in the neighborhood of the fractures. We solve the fracture transport equations implicitly to overcome the Courant-Freidricks-Levy (CFL) condition in the small fracture elements. Our implicit approach is based on calculation of the derivative of the molar concentration of component i in phase (cαi ) with respect to the total molar concentration (ci ) at constant volume V and temperature T. This contributes to significant speed up of the code. The hybrid mixed finite element method (MFE) is used to solve for the velocity in both the matrix and the fractures coupled with the discontinuous Galerkin (DG) method to solve the species transport equations in the matrix, and a finite volume (FV) discretization in the fractures. In large scale problems the proposed approach is orders of magnitude faster than the existing models.
Broadcast classical-quantum capacity region of two-phase bidirectional relaying channels
Energy Technology Data Exchange (ETDEWEB)
Boche, Holger; Cai, Minglai; Deppe, Christian [Technische Universitaet Muenchen, Fakultaet fuer Elektrotechnik und Informationstechnik, Lehrstuhl fuer Theoretische Informationstechnik (Germany)
2014-07-01
The transmission of quantum states over long distances is essential for future applications such as quantum networks. The direct transmission is limited by unavoidable losses of the channel. A promising alternative for long distance quantum states distribution is the use of quantum repeaters. We analyze a quantum repeater protocol which takes advantage of bidirectional communication. We consider a three-node quantum network which enables bidirectional communication between two nodes with a half-duplex relay node. The message m{sub 2} element of M{sub 2} is located at node 1 and the message m{sub 1} element of M{sub 1} is located at node 2, respectively. Our goal is that the message m{sub 2} element of M{sub 2} is known at node 2 and the message m{sub 1} element of M{sub 1} is known at node 1, respectively. We simplify the problem by assuming an a priori separation of the communication into two phases. The capacity of the first phase (MAC) is known. We determine the capacity region of the second phase (broadcast).
Homogenized Model of Two-Phase Flow with Local Nonequilibrium in Double Porosity Media
Directory of Open Access Journals (Sweden)
Brahim Amaziane
2016-01-01
Full Text Available We consider two-phase flow in a heterogeneous porous medium with highly permeable fractures and low permeable periodic blocks. The flow in the blocks is assumed to be in local capillary disequilibrium and described by Barenblatt’s relaxation relationships for the relative permeability and capillary pressure. It is shown that the homogenization of such equations leads to a new macroscopic model that includes two kinds of long-memory effects: the mass transfer between the blocks and fractures and the memory caused by the microscopic Barenblatt disequilibrium. We have obtained a general relationship for the double nonequilibrium capillary pressure which represents great interest for applications. Due to the nonlinear coupling and the nonlocality in time, the macroscopic model remains incompletely homogenized in general case. The completely homogenized model was obtained for two different regimes. The first case corresponds to a linearized flow in the blocks. In the second case, we assume a low contrast in the block-fracture permeability. Numerical results for the two-dimensional problem are presented for two test cases to demonstrate the effectiveness of the methodology.
Kou, Jisheng
2015-07-16
In this paper, we consider an interface model for multicomponent two-phase fluids with geometric mean influence parameters, which is popularly used to model and predict surface tension in practical applications. For this model, there are two major challenges in theoretical analysis and numerical simulation: the first one is that the influence parameter matrix is not positive definite; the second one is the complicated structure of the energy function, which requires us to find out a physically consistent treatment. To overcome these two challenging problems, we reduce the formulation of the energy function by employing a linear transformation and a weighted molar density, and furthermore, we propose a local minimum grand potential energy condition to establish the relation between the weighted molar density and mixture compositions. From this, we prove the existence of the solution under proper conditions and prove the maximum principle of the weighted molar density. For numerical simulation, we propose a modified Newton\\'s method for solving this nonlinear model and analyze its properties; we also analyze a finite element method with a physical-based adaptive mesh-refinement technique. Numerical examples are tested to verify the theoretical results and the efficiency of the proposed methods.
Determination of volume fractions in two-phase flows from sound speed measurement
Energy Technology Data Exchange (ETDEWEB)
Chaudhuri, Anirban [Los Alamos National Laboratory; Sinha, Dipen N. [Los Alamos National Laboratory; Osterhoudt, Curtis F. [University of Alaska
2012-08-15
Accurate measurement of the composition of oil-water emulsions within the process environment is a challenging problem in the oil industry. Ultrasonic techniques are promising because they are non-invasive and can penetrate optically opaque mixtures. This paper presents a method of determining the volume fractions of two immiscible fluids in a homogenized two-phase flow by measuring the speed of sound through the composite fluid along with the instantaneous temperature. Two separate algorithms are developed by representing the composite density as (i) a linear combination of the two densities, and (ii) a non-linear fractional formulation. Both methods lead to a quadratic equation with temperature dependent coefficients, the root of which yields the volume fraction. The densities and sound speeds are calibrated at various temperatures for each fluid component, and the fitted polynomial is used in the final algorithm. We present results when the new algorithm is applied to mixtures of crude oil and process water from two different oil fields, and a comparison of our results with a Coriolis meter; the difference between mean values is less than 1%. Analytical and numerical studies of sensitivity of the calculated volume fraction to temperature changes and calibration errors are also presented.
Energy Technology Data Exchange (ETDEWEB)
Huff, B. D.; Warren, P. B. [CalResources LLC (Canada); Whorff, F. [ITT Barton (Canada)
1995-11-01
The development of a two phase steam measurement system was documented. The system consists of a `V` cone differential pressure device and a vortex meter velocity device in series through which the steam flows. Temperature and pressure sensors are electronically interfaced with a data logging system. The design was described as being very simple and rugged, consequently, well suited to monitoring in the field.. Steam quality measurements were made in the Kern River Field and the Coalinga Field thermal projects using a surface steam separator. In steam flood operations, steam cost is very high, hence appropriate distribution of the steam can result in significant cost reduction. This technology allows the measurement of steam flow and quality at any point in the steam distribution system. The metering system`s orifice meter was found to have a total average error of 45%, with 25% of that attributable to `cold leg` problem. Installation of the metering system was expected to result in a steam use reduction of 8%, without any impact on production. Steam re-distribution could result in a potential oil production increase of 10%. 12 refs., 8 tabs., 9 figs.
Exploring the hole cleaning parameters of horizontal wellbore using two-phase Eulerian CFD approach
Directory of Open Access Journals (Sweden)
Satish K Dewangan
2016-03-01
Full Text Available The present investigation deals with the flow through concentric annulus with the inner cylinder in rotation. This work has got its importance in the petroleum industries in relation to the wellbore drilling. In wellbore drilling, the issue of the hole-cleaning is very serious problem especially in case of the horizontal drilling process. The effect of the various parameters like slurry flow velocity, inner cylinder rotational speed, inlet solid concentration which affect hole cleaning was discussed. Their effect on the pressure drop, wall shear stress, mixture turbulence kinetic energy, and solid-phase velocity and slip velocity were analyzed, which are responsible for solid-phase distribution. Flow was considered to be steady, incompressible and two-phase slurry flow with water as carrier fluid and silica sand as the secondary phase. Eulerian approach was used for modeling the slurry flow. Silica sand was considered of spherical shape with particle size of 180 µm. ANSYS FLUENT software was used for modeling and solution. Plotting was done using Tecplot software and Microsoft Office.
Two-Phase Flow Modeling in a Single Closed Loop Pulsating Heat Pipes
Institute of Scientific and Technical Information of China (English)
YANG Hong-hai; Sameer Khandekar; Sanka V. V. S. N. S. Manyam; Manfred Groll
2007-01-01
Mathematical modeling of pulsating heat pipes through 'first’ principles is a contemporary problem which remains quite elusive. Simplifications and assumptions made in all the modeling approaches developed so far render them unsuitable for engineering design. In this paper, a more realistic modeling scheme is presented which provides considerable try for thought toward the next progressive step. At high enough heat flux level, closed loop pulsating heat pipes experience a bulk internal unidirectional fluid circulation. Under such a condition, conventional two-phaseflow modeling in capillary tubes may be applied. This has been attempted for single-loop PHPs. A homogeneous model and a separated two-fluid flow model based on simultaneous conservation of mass, momentum and energy, have been developed for an equivalent 'open flow' system. The model allows prediction of two-phase flow parameters in each subsection of the device thereby providing important insights into its operation. The concept of 'void fraction constraint'in pulsating heat pipe operation is introduced and its relevance to future modeling attempts is outlined.
A two-phased multi-criteria decision-making approach for selecting the best smartphone
Directory of Open Access Journals (Sweden)
Yildiz, Aytac
2015-11-01
Full Text Available In the last 20 years, rapid and significant developments have occurred in communication and information technologies. In parallel with these developments, the importance of smartphones has increased. In addition, many smartphone manufacturers have launched and continue to launch a number of new models with many features. People who want to buy a new smartphone have difficulties selecting the best smartphone among the numerous models available on the technology markets. Therefore, smartphone selection has become a complex multi-criteria decision-making (MCDM problem for people. Hence, decision-making processes will be facilitated by using MCDM methods, and these will provide the most appropriate decision. In this paper, the best smartphone among the 28 alternatives determined by the person who will buy them are selected by using three main criteria and 17 sub-criteria with the help of a two-phased MCDM approach. In the first phase, 28 smartphone alternatives are ranked using the analytic network process (ANP. In the second phase, a model that includes the best four alternatives of ANP is created. Afterwards, the best smartphone is selected using the generalised Choquet integral (GCI method according to this model. Finally, the findings and the results are given.
A Two-Phase Coverage-Enhancing Algorithm for Hybrid Wireless Sensor Networks.
Zhang, Qingguo; Fok, Mable P
2017-01-09
Providing field coverage is a key task in many sensor network applications. In certain scenarios, the sensor field may have coverage holes due to random initial deployment of sensors; thus, the desired level of coverage cannot be achieved. A hybrid wireless sensor network is a cost-effective solution to this problem, which is achieved by repositioning a portion of the mobile sensors in the network to meet the network coverage requirement. This paper investigates how to redeploy mobile sensor nodes to improve network coverage in hybrid wireless sensor networks. We propose a two-phase coverage-enhancing algorithm for hybrid wireless sensor networks. In phase one, we use a differential evolution algorithm to compute the candidate's target positions in the mobile sensor nodes that could potentially improve coverage. In the second phase, we use an optimization scheme on the candidate's target positions calculated from phase one to reduce the accumulated potential moving distance of mobile sensors, such that the exact mobile sensor nodes that need to be moved as well as their final target positions can be determined. Experimental results show that the proposed algorithm provided significant improvement in terms of area coverage rate, average moving distance, area coverage-distance rate and the number of moved mobile sensors, when compare with other approaches.
Two-phase aqueous micellar systems: an alternative method for protein purification
Directory of Open Access Journals (Sweden)
Rangel-Yagui C. O.
2004-01-01
Full Text Available Two-phase aqueous micellar systems can be exploited in separation science for the extraction/purification of desired biomolecules. This article reviews recent experimental and theoretical work by Blankschtein and co-workers on the use of two-phase aqueous micellar systems for the separation of hydrophilic proteins. The experimental partitioning behavior of the enzyme glucose-6-phosphate dehydrogenase (G6PD in two-phase aqueous micellar systems is also reviewed and new results are presented. Specifically, we discuss very recent work on the purification of G6PD using: i a two-phase aqueous micellar system composed of the nonionic surfactant n-decyl tetra(ethylene oxide (C10E4, and (ii a two-phase aqueous mixed micellar system composed of C10E4 and the cationic surfactant decyltrimethylammonium bromide (C10TAB. Our results indicate that the two-phase aqueous mixed (C10E4/C10TAB micellar system can improve significantly the partitioning behavior of G6PD relative to that observed in the two-phase aqueous C10E4 micellar system.
Numerical investigation on the characteristics of two-phase flow in fuel assemblies with spacer grid
Energy Technology Data Exchange (ETDEWEB)
Chen, D.; Yang, Z.; Zhong, Y.; Xiao, Y.; Hu, L. [Chongqing Univ. (China). Key Lab. of Low-grade Energy Utilization Technologies and Systems
2016-07-15
In pressurized water reactors (PWRs), the spacer grids of the fuel assembly has significant impact on the thermal-hydraulic performance of the fuel assembly. Particularly, the spacer grids with the mixing vanes can dramatically enhance the secondary flow and have significant effect on the void distribution in the fuel assembly. In this paper, the CFD study has been carried out to analyze the effects of the spacer grid with the steel contacts, dimples and mixing vanes on the boiling two-phase flow characteristics, such as the two-phase flow field, the void distribution, and so on. Considered the influence of the boiling phase change on two-phase flow, a boiling model was proposed and applied in the CFD simulation by using the UDF (User Defined Function) method. Furthermore, in order to analyze the effects of the spacer grid with mixing vanes, the adiabatic (without boiling) two-phase flow has also been investigated as comparison with the boiling two-phase flow in the fuel assembly with spacer grids. The CFD simulation on two-phase flow in the fuel assembly with the proposed boiling model can predict the characteristics of two-phase flow better.
Institute of Scientific and Technical Information of China (English)
王经明; 李竞生; 高智联; 杨保禹
1998-01-01
This study is concerned with developing a two-dimensional two-phase model thatsimulate the movement of non-aqueous phase liquid (NAPL) in a fracture-rock matrix system. Theintrinsic permeability and the fracture aperture are represented in the model via its Karhunen-Loeve expansion. Other parameters and the nodal unknowns, water saturations and waterpressures, are represented by their stochastic spectral expanions. The errors resulting fromtruncation of Karhunen - Loeve and polynomial chaos expansions to a finite number of terms areanalyzed. The eigenvalues of stochastic process is found out for any point in the special domain ofthe problem at any instant in time.
Conroy, M.J.; Runge, J.P.; Barker, R.J.; Schofield, M.R.; Fonnesbeck, C.J.
2008-01-01
Many organisms are patchily distributed, with some patches occupied at high density, others at lower densities, and others not occupied. Estimation of overall abundance can be difficult and is inefficient via intensive approaches such as capture-mark-recapture (CMR) or distance sampling. We propose a two-phase sampling scheme and model in a Bayesian framework to estimate abundance for patchily distributed populations. In the first phase, occupancy is estimated by binomial detection samples taken on all selected sites, where selection may be of all sites available, or a random sample of sites. Detection can be by visual surveys, detection of sign, physical captures, or other approach. At the second phase, if a detection threshold is achieved, CMR or other intensive sampling is conducted via standard procedures (grids or webs) to estimate abundance. Detection and CMR data are then used in a joint likelihood to model probability of detection in the occupancy sample via an abundance-detection model. CMR modeling is used to estimate abundance for the abundance-detection relationship, which in turn is used to predict abundance at the remaining sites, where only detection data are collected. We present a full Bayesian modeling treatment of this problem, in which posterior inference on abundance and other parameters (detection, capture probability) is obtained under a variety of assumptions about spatial and individual sources of heterogeneity. We apply the approach to abundance estimation for two species of voles (Microtus spp.) in Montana, USA. We also use a simulation study to evaluate the frequentist properties of our procedure given known patterns in abundance and detection among sites as well as design criteria. For most population characteristics and designs considered, bias and mean-square error (MSE) were low, and coverage of true parameter values by Bayesian credibility intervals was near nominal. Our two-phase, adaptive approach allows efficient estimation of
Study on Two-Phase Flow in Heterogeneous Porous Media by Light Transmission Method
Qiao, W.
2015-12-01
The non-aqueous phase liquid (NAPL) released to the subsurface can form residual ganglia and globules occupying pores and also accumulate and form pools, in which multiphase system forms. Determining transient fluid saturations in a multiphase system is essential to understand the flow characteristics of systems and to perform effective remediation strategies. As a non-destructive and non-invasive laboratory technique utilized for the measurement of liquid saturation in porous media, light transmission is of the lowest cost and safe. Utilization of Coupled Charge Device camera in light transmission systems provides a nearly instantaneous high-density array of spatial measurements over a very large dynamic range. The migration of NAPL and air spariging technique applied to remove NAPL in aquifer systems are typically two-phase flow problem. Because of the natural aquifer normally being heterogeneous, two 2-D sandboxes (Length55cm×width1.3cm×hight45cm) are set up to study the migration of gas and DNAPL in heterogeneous porous media based on light transmission method and its application in two-phase flow. Model D for water/gas system developed by Niemet and Selker (2001) and Model NW-A for water/NAPL system developed by Zhang et al. (2014) are applied for the calculation of fluid saturation in the two experiments, respectively. The gas injection experiments show that the gas moves upward in the irregular channels, piling up beneath the low permeability lenses and starting lateral movement. Bypassing the lenses, the gas moves upward and forms continuous distribution in the top of the sandbox. The faster of gas injects, the wider of gas migration will be. The DNAPL infiltration experiment shows that TCE mainly moves downward as the influence of gravity, stopping vertical infiltration when reaching the low permeability lenses because of its failure to overcome the capillary pressure. Then, TCE accumulates on the surface and starts transverse movement. Bypassing the
Zhou, Mingxing; Liu, Jing
2017-02-01
Designing robust networks has attracted increasing attentions in recent years. Most existing work focuses on improving the robustness of networks against a specific type of attacks. However, networks which are robust against one type of attacks may not be robust against another type of attacks. In the real-world situations, different types of attacks may happen simultaneously. Therefore, we use the Pearson's correlation coefficient to analyze the correlation between different types of attacks, model the robustness measures against different types of attacks which are negatively correlated as objectives, and model the problem of optimizing the robustness of networks against multiple malicious attacks as a multiobjective optimization problem. Furthermore, to effectively solve this problem, we propose a two-phase multiobjective evolutionary algorithm, labeled as MOEA-RSFMMA. In MOEA-RSFMMA, a single-objective sampling phase is first used to generate a good initial population for the later two-objective optimization phase. Such a two-phase optimizing pattern well balances the computational cost of the two objectives and improves the search efficiency. In the experiments, both synthetic scale-free networks and real-world networks are used to validate the performance of MOEA-RSFMMA. Moreover, both local and global characteristics of networks in different parts of the obtained Pareto fronts are studied. The results show that the networks in different parts of Pareto fronts reflect different properties, and provide various choices for decision makers.
Spacecraft Thermal Management using Advanced Hybrid Two-Phase Loop Technology
2007-02-01
HYBRID TWO-PHASE LOOPS The schematic of the Hybrid Two-Phase Loop (HTPL) used for a thermal testing is shown in Figure 3. Main components for the...hybrid two-phase loop with single evaporator. The thermal test starts first by turning on the liquid pump to circulate liquid along the loop. Once the...Vapor Out Evaporator Body (E1) Evaporator Body (E2) Total Heat Input Heat Input (E1) Heat Input (E2) Thermal Resistance (E1) FIGURE 10. Thermal test results
Two phase flow bifurcation due to turbulence: transition from slugs to bubbles
Górski, Grzegorz; Litak, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej
2015-09-01
The bifurcation of slugs to bubbles within two-phase flow patterns in a minichannel is analyzed. The two-phase flow (water-air) occurring in a circular horizontal minichannel with a diameter of 1 mm is examined. The sequences of light transmission time series recorded by laser-phototransistor sensor is analyzed using recurrence plots and recurrence quantification analysis. Recurrence parameters allow the two-phase flow patterns to be found. On changing the water flow rate we identified partitioning of slugs or aggregation of bubbles.
Numerical simulation of bubbly two-phase flow using the lattice Boltzmann method
Energy Technology Data Exchange (ETDEWEB)
Watanabe, Tadashi; Ebihara, Kenichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2000-09-01
The two-component two-phase lattice Boltzmann method, in which two distribution functions are used to represent two phases, is used to simulate bubbly flows as one of the fundamental two-phase flow phenomena in nuclear application fields. The inlet flow condition is proposed to simulate steady-state flow fields. The time variation and the spatial distribution of the volume fraction and the interfacial area are measured numerically. The simulation program is parallelized in one direction by the domain decomposition method using the MPI (Message Passing Interface) libraries, and parallel computations are performed on a workstation cluster. (author)
Rarefaction Waves at the Outlet of the Supersonic Two-Phase Flow Nozzle
Nakagawa, Masafumi; Miyazaki, Hiroki; Harada, Atsushi
Two-phase flow nozzles are used in the total flow system for geothermal power plants and in the ejector of the refrigerant cycle, etc. One of the most important functions of a two-phase flow nozzle is to convert the thermal energy to the kinetic energy of the two-phase flow. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. There exist the shock waves or rarefaction waves at the outlet of a supersonic nozzle in the case of non-best fitting expansion conditions when the operation conditions of the nozzle are widely chosen. Those waves affect largely on the energy conversion efficiency of the two-phase flow nozzle. The purpose of the present study is to elucidate the character of the rarefaction waves at the outlet of the supersonic two-phase flow nozzle. The high pressure hot water blow down experiment has been carried out. The decompression curves by the rarefaction waves are measured by changing the flow rate of the nozzle and inlet temperature of the hot water. The back pressures of the nozzle are also changed in those experiments. The divergent angles of the two-phase flow flushed out from the nozzle are measured by means of the photograph. The experimental results show that the recompression curves are different from those predicted by the isentropic homogenous two-phase flow. The regions where the rarefaction waves occur become wide due to the increased outlet speed of two-phase flow. The qualitative dependency of this expansion character is the same as the isotropic homogenous flow, but the values obtained from the experiments are quite different. When the back pressure of the nozzle is higher, these regions do not become small in spite of the super sonic two-phase flow. This means that the disturbance of the down-stream propagate to the up-stream. It is shown by the present experiments that the rarefaction waves in the supersonic two-phase flow of water have a subsonic feature. The measured
Expansion Waves at the Outlet of the Supersonic Two-Phase Flow Nozzle
Nakagawa, Masafumi; Miyazaki, Hiroki; Harada, Atsushi; Ibragimov, Zokirjon
Two-phase flow nozzles are used in the total flow system of geothermal power plants and in the ejector of the refrigeration cycle, etc. One of the most important functions of the two-phase flow nozzle is converting two-phase flow thermal energy into kinetic energy. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. In the case of non-best fitting expansion conditions, when the operation conditions of the supersonic nozzle are widely chosen, there exist shock waves or expansion waves at the outlet of the nozzle. Those waves affect largely the energy conversion efficiency of the two-phase flow nozzle. The purpose of the present study is to elucidate character of the expansion waves at the outlet of the supersonic two-phase flow nozzle. High-pressure hot water blowdown experiments have been carried out. The decompression curves of the expansion waves are measured by changing the flowrate in the nozzle and inlet temperature of the hot water. The back pressures of the nozzle are also changed in those experiments. The expansion angles of the two-phase flow flushed out from the nozzle are measured by means of the photograph. The experimental results show that the decompression curves are different from those predicted by the isentropic homogeneous two-phase flow theory. The regions where the expansion waves occur become wide due to the increased outlet speed of the two-phase flow. The qualitative dependency of this expansion character is the same as the isentropic homogeneous flow, but the values obtained from the experiments are quite different. When the back pressure of the nozzle is higher, these regions do not become small in spite of the supersonic two-phase flow. This means that the disturbance in the downstream propagates to the upstream. It is shown by the present experiments that the expansion waves in the supersonic two-phase flow of water have a subsonic feature. The measured expansion angles become
Investigation of Two-Phase Flow in AxialCentrifugal Impeller by Hydrodynamic Modeling Methods
Directory of Open Access Journals (Sweden)
V. O. Lomakin
2014-01-01
Full Text Available The article provides a methodology to study the flow in the wet part of the pump with fundamentally new axial-centrifugal impeller by methods of hydrodynamic modeling in the software package STAR CCM +. The objective of the study was to determine the normal and cavitation characteristics of the pump with a new type of wet part, as well as optimization of the geometrical parameters of the pump. Authors solved this problem using an example of the hot coolant pump, which should meet high requirements for cavitation quality and efficiency (hydraulic efficiency up to 87%, critical value of NPSH to 2.2 m.Also, the article focuses on the methods of numerical solution of two-phase flow simulation in a pump that are needed for a more accurate simulation of cavitation in the pump and research work in liquids with high gas content.Hydrodynamic modeling was performed on a computing cluster at the department E-10 of BMSTU for pump flow simulation in unsteady statement of problem using the computational grid size to 1.5 million cells. Simultaneously, the experimental model of the pump was made by 3D printing and tested at the stand in the BMSTU. Test results, which were compared with the calculated data are also given in the article. Inaccuracy of the calculation of pump head does not exceed 5%.The simulation results may be of interest to specialists in the field of hydrodynamic modeling, and for designers of such pumps. The authors also report production of a full-length prototype of the pump in order to conduct further testing for the verification of the data in the article, primarily in terms of cavitation characteristics.
Intermediate scales between simulation and modeling of two-phase flows
Energy Technology Data Exchange (ETDEWEB)
Pigny, Sylvain L., E-mail: sylvain.pigny@cea.f [CEA/DEN, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)
2011-03-15
Research highlights: Simulation and modeling of bubbles are done at high Reynolds number. Intermediate scales between simulation and modeling are of importance. Specific approaches can be envisaged in accurate multiphase codes. An attempt leads to agreement with experimental data. We establish a link between multiphase codes and DNS ones. - Abstract: Phenomena related to two-phase flows in an experiment in which air is injected in the lower part of a tank filled with water are investigated, via the SIMMER-IV software. The Reynolds and Weber numbers of the bubbly flow have high values. Small scale phenomena, related to small bubbles behavior or turbulence in the liquid continuous phase, are modeled via classical closure laws. An attempt to represent the formation of individual large bubbles, close to the injector, via direct simulation is done. In a first calculation, the large bubbles break-up is not represented. This phenomenon, the space scale of which is close to the cell size, cannot be simulated, with the present computational resources. Nevertheless, relatively fine meshes are used, for an accurate description of hydrodynamical phenomena, and these phenomena are too large to be modeled via closure laws. The case is therefore useful to underline some basic limits in the potentialities of direct simulation and modeling and to propose an attempt to face the problem. The breakup of bubbles is now represented. Finally the validity of the approach is checked directly by simulating a single bubble experiment. The problem of the convergence between multiphase codes and direct simulation ones is pointed.
New results in gravity dependent two-phase flow regime mapping
Kurwitz, Cable; Best, Frederick
2002-01-01
Accurate prediction of thermal-hydraulic parameters, such as the spatial gas/liquid orientation or flow regime, is required for implementation of two-phase systems. Although many flow regime transition models exist, accurate determination of both annular and slug regime boundaries is not well defined especially at lower flow rates. Furthermore, models typically indicate the regime as a sharp transition where data may indicate a transition space. Texas A&M has flown in excess of 35 flights aboard the NASA KC-135 aircraft with a unique two-phase package. These flights have produced a significant database of gravity dependent two-phase data including visual observations for flow regime identification. Two-phase flow tests conducted during recent zero-g flights have added to the flow regime database and are shown in this paper with comparisons to selected transition models. .
Concurrent two-phase downflow measurement with an induced voltage electro-magnetic flowmeter
Opara, Uroš; Bajsič, Ivan
2015-01-01
With a set of polynomial approximations a possibility is shown of the use of an induced voltage electromagnetic flowmeter in the area of measuring cocurrent two-phase downflow in tubes. The principle of the meter operation remains hereby unchanged
Numerical simulation of multi-dimensional two-phase flow based on flux vector splitting
Energy Technology Data Exchange (ETDEWEB)
Staedtke, H.; Franchello, G.; Worth, B. [Joint Research Centre - Ispra Establishment (Italy)
1995-09-01
This paper describes a new approach to the numerical simulation of transient, multidimensional two-phase flow. The development is based on a fully hyperbolic two-fluid model of two-phase flow using separated conservation equations for the two phases. Features of the new model include the existence of real eigenvalues, and a complete set of independent eigenvectors which can be expressed algebraically in terms of the major dependent flow parameters. This facilitates the application of numerical techniques specifically developed for high speed single-phase gas flows which combine signal propagation along characteristic lines with the conservation property with respect to mass, momentum and energy. Advantages of the new model for the numerical simulation of one- and two- dimensional two-phase flow are discussed.
Directory of Open Access Journals (Sweden)
Mosdorf Romuald
2015-06-01
Full Text Available The two-phase flow (water-air occurring in square minichannel (3x3 mm has been analysed. In the minichannel it has been observed: bubbly flow, flow of confined bubbles, flow of elongated bubbles, slug flow and semi-annular flow. The time series recorded by laser-phototransistor sensor was analysed using the recurrence quantification analysis. The two coefficients:Recurrence rate (RR and Determinism (DET have been used for identification of differences between the dynamics of two-phase flow patterns. The algorithm which has been used normalizes the analysed time series before calculating the recurrence plots.Therefore in analysis the quantitative signal characteristicswas neglected. Despite of the neglect of quantitative signal characteristics the analysis of its dynamics (chart of DET vs. RR allows to identify the two-phase flow patterns. This confirms that this type of analysis can be used to identify the two-phase flow patterns in minichannels.
Reversible, on-demand generation of aqueous two-phase microdroplets
Energy Technology Data Exchange (ETDEWEB)
Collier, Charles Patrick; Retterer, Scott Thomas; Boreyko, Jonathan Barton; Mruetusatorn, Prachya
2017-08-15
The present invention provides methods of on-demand, reversible generation of aqueous two-phase microdroplets core-shell microbeads, microparticle preparations comprising the core-shell microbeads, and drug delivery formulation comprising the microparticle preparations. Because these aqueous microdroplets have volumes comparable to those of cells, they provide an approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Hence, the present methods generate femtoliter aqueous two-phase droplets within a microfluidic oil channel using gated pressure pulses to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phase transitions between single-phase, two-phase, and core-shell microbead states are obtained via evaporation-induced dehydration and water rehydration.
Non-local two phase flow momentum transport in S BWR
Energy Technology Data Exchange (ETDEWEB)
Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)
2015-09-15
The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)
Research of Characteristics of Gas-liquid Two-phase Pressure Drop in Microreactor
Directory of Open Access Journals (Sweden)
Li Dan
2015-01-01
Full Text Available With the research system of nitrogen and deionized water, this paper researches the pressure drop of gas-liquid two-phase flow in the circular microchannel with an inner diameter which is respectively 0.9mm and 0.5mm, analyzes the effect of microchannel diameter on gas-liquid two-phase frictional pressure drop in the microchannel reactor, and compares with the result of frictional pressure drop and the predicting result of divided-phase flow pattern. The result shows that, the gas-liquid two-phase frictional pressure drop in the microchannel significantly increases with the decreasing microchannel diameter; Lockhart-Martinelli relationship in divided-phase flow pattern can preferably predict the gas-liquid two-phase frictional pressure drop in the microchannel, but the Tabular constant needs to be corrected.
Falabella, Steven; Meyer, Glenn A; Tang, Vincent; Guethlein, Gary
2014-06-10
A two-phase mixed media insulator having a dielectric fluid filling the interstices between macro-sized dielectric beads packed into a confined volume, so that the packed dielectric beads inhibit electro-hydrodynamically driven current flows of the dielectric liquid and thereby increase the resistivity and breakdown strength of the two-phase insulator over the dielectric liquid alone. In addition, an electrical apparatus incorporates the two-phase mixed media insulator to insulate between electrical components of different electrical potentials. And a method of electrically insulating between electrical components of different electrical potentials fills a confined volume between the electrical components with the two-phase dielectric composite, so that the macro dielectric beads are packed in the confined volume and interstices formed between the macro dielectric beads are filled with the dielectric liquid.
Formation of a two-phase microstructure in Fe-Cr-Ni alloy during directional solidification
Fu, J. W.; Yang, Y. S.; Guo, J. J.; Ma, J. C.; Tong, W. H.
2008-12-01
The formation and evolution of a two-phase coupled growth microstructure in AISI 304 stainless steel are investigated using a quenching method during directional solidification. It is found that the two-phase microstructure, which is composed of coupled growth of thin lathy delta ferrite (δ) and austenite (γ), forms from the melt first during solidification. As solidification proceeds, the retained liquid transforms into austenite directly. On cooling, the subsequent incomplete solid-state transformation from ferrite to austenite results in the disappearance of the thinner lathy delta ferrite, and the final two-phase coupled growth microstructure is formed. The formation mechanism of the two-phase coupled growth microstructure is analyzed theoretically based on the nucleation and constitutional undercooling (NCU) criterion. Transmission electron microscope (TEM) and EDS analyses were carried out to identify the phases and determine the phase composition, respectively.
Experimental study on transient behavior of semi-open two-phase thermosyphon
Institute of Scientific and Technical Information of China (English)
朱华; 王建新; 张巧惠; 屠传经
2004-01-01
An experimental system was set up to measure the temperature, pressure, heat transfer rate and mass flow rate in a semi-open two-phase thermosyphon. The behaviors of a semi-open two-phase thermosyphon during startup, shutdown and lack of water were studied to get complete understanding of its thermal characteristics. The variation of wall temperature, heat-exchange condition and pressure fluctuations of semi-open two-phase thermosyphons showed that the startup of SOTPT needs about 60-70 min; the startup speed of SOTPT is determined by the startup speed of the condensation section; the average pressure in the heat pipe is equal to the environmental pressure usually; the shutdown of SOTPT needs about 30-50min; a semi-open two-phase thermosyphon has good response to lack of water accident.
A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries.
Dong, S; Wang, X
2016-01-01
Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries.
Single and two-phase flow pressure drop for CANFLEX bundle
Energy Technology Data Exchange (ETDEWEB)
Park, Joo Hwan; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G. R.; Bullock, D. E. [Atomic Energy of Canada Limited, Ontario (Canada)
1998-12-31
Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-134a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLEX bundle is found to be about 20% higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within {+-} 5% error. 11 refs., 5 figs. (Author)
Bioconversion of apigenin-7-O-β-glucoside in aqueous two-phase system
Ilić Sanja M.; Đaković Sanja D.; Cvejić Jelena H.; Antov Mirjana G.; Zeković Zoran P.
2005-01-01
The study is concerned with the conversion of apigenin-7-O-β-glucoside into apigenin in polyethylene glycol 6000 / dextran 20000 aqueous two-phase system by β-glucosidase. Apigenin was separated from apigenin-7-O-β-glucoside and β-glucosidase by their partition into opposite phases. In 14% PEG / 22.5% DEX aqueous two-phase system obtained yield of apigenin in top phase was 108%.
Bioconversion of apigenin-7-O-β-glucoside in aqueous two-phase system
Directory of Open Access Journals (Sweden)
Ilić Sanja M.
2005-01-01
Full Text Available The study is concerned with the conversion of apigenin-7-O-β-glucoside into apigenin in polyethylene glycol 6000 / dextran 20000 aqueous two-phase system by β-glucosidase. Apigenin was separated from apigenin-7-O-β-glucoside and β-glucosidase by their partition into opposite phases. In 14% PEG / 22.5% DEX aqueous two-phase system obtained yield of apigenin in top phase was 108%.
CURE OF A MICROGEL-EPOXY RESIN TWO-PHASE POLYMER WITH ETHYLENE DIAMINE
Institute of Scientific and Technical Information of China (English)
SONG Aiteng; HUANG Wei; YU Yunzhao
1992-01-01
The curing of a microgel-epoxy resin two phase polymer prepared by in situ copolymerization of unsaturated polyester with acrylic monomer was studied. The unsaturated unit reacted with N- H during the cure of the resin with ethylene diamine. The Michael type reaction was ten times more rapid than the addition of N -H to epoxide .This was accounted for the lower apparent activation energy of the curing of the two phase resin.
Estimation of the sugar cane cultivated area from LANDSAT images using the two phase sampling method
Parada, N. D. J. (Principal Investigator); Cappelletti, C. A.; Mendonca, F. J.; Lee, D. C. L.; Shimabukuro, Y. E.
1982-01-01
A two phase sampling method and the optimal sampling segment dimensions for the estimation of sugar cane cultivated area were developed. This technique employs visual interpretations of LANDSAT images and panchromatic aerial photographs considered as the ground truth. The estimates, as a mean value of 100 simulated samples, represent 99.3% of the true value with a CV of approximately 1%; the relative efficiency of the two phase design was 157% when compared with a one phase aerial photographs sample.
Numerical investigation of confined swirling gas-solid two phase jet
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
This paper presents a k-ε-kp multi-fluid model for simulating confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. A series of numerical simulations of the two-phase flow of 30 μm, 45 μm, 60 μm diameter particles respectively yielded results fitting well with published experimental data.
Numerical Simulation of Swirling Gas-solid Two Phase Flow through a Pipe Expansion
Institute of Scientific and Technical Information of China (English)
Jin Hanhui; Xia Jun; Fan Jianren; Cen Kefa
2001-01-01
A k- ε -kp multi-fluid model is stated and adopted to simulate swirling gas-solid two phase flow. A particle-laden flow from a center tube and a swirling air stream from the coaxial annular enter the test section. A series of numerical simulations of the two-phase flow are performed based on 30 μ m, 45 μ m, 60 μ m diameter particles respectively. The results fit well with published experimental data.
Numerical investigation of confined swirling gas-solid two phase jet
Institute of Scientific and Technical Information of China (English)
金晗辉; 夏钧; 樊建人; 岑可法
2002-01-01
This paper presents a k-e-kp multi-fluid model for simulating confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. A series of numerical simulations of the two-phase flow of 30μm, 45μm, 60μm diameter particles respectively yielded results fitting well with published experimental data.
CHOOSING STRUCTURE-DEPENDENT DRAG COEFFICIENT IN MODELING GAS-SOLID TWO-PHASE FLOW
Institute of Scientific and Technical Information of China (English)
Ning Yang; Wei Wang; Wei Ge; Jinghai Li
2003-01-01
@@ Introduction Gas-solid two-phase flow is often encountered in chemical reactors for the process industry. For industrial users, design, scale-up, control and optimization for these reactors require a good understanding of the hydrodynamics of gas-solid two-phase flow. For researchers, exploration and prediction of the complex phenomena call for a good comprehension of the heterogeneous structure and of the dominant mechanisms of gas-solid and solid-solid interactions.
Scaling analysis of gas-liquid two-phase flow pattern in microgravity
Lee, Jinho
1993-01-01
A scaling analysis of gas-liquid two-phase flow pattern in microgravity, based on the dominant physical mechanism, was carried out with the goal of predicting the gas-liquid two-phase flow regime in a pipe under conditions of microgravity. The results demonstrated the effect of inlet geometry on the flow regime transition. A comparison of the predictions with existing experimental data showed good agreement.
Energy Technology Data Exchange (ETDEWEB)
Yim, Che Wook; Kim, Song Hyun; Shin, Chang Ho [Hanyang University, Seoul (Korea, Republic of)
2015-05-15
In two-phase flow, the motions of dispersed bubbles influence fluid properties such as heat transfer. In order to analyze how the bubble motion affects the fluid property, various techniques have been developed. An optical method has been used for the analysis of the single-phase flow such as Liquid Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV). However, it has some significant application problems which cannot be used for the opaque fluid and two phase flows. Phase-Doppler Method, another optical method, can be applied to the two-phase flow analysis. It is noted that the method also has difficulty to analyze the opaque flows. In a previous study, x-ray PIV method was proposed as the technique to measure the flow velocity and to get the flow vector field. However, there is no appropriate approach to analyze the bubble size for the two phase flows. In this study, a technique to estimate the bubble size by using x-ray is proposed as a preliminary study to develop an algorithm of the two phase flow analysis. In this study, a reconstruction algorithm of bubble size in two-phase flows using single x-ray was proposed. The analysis shows that 3-dimensional bubble size can be estimated by the multichannel detectors with the detection information. Also, a preliminary study on multi-bubble cases was performed. The analysis of the results show that that multiple bubbles can be separated by using the property that is the symmetry of bubbles. This proposed algorithm can detect the bubbles in flow of opaque fluids or nontransparent pipes which cannot be analyzed by optical methods. It is expected that the proposed method can utilized to inspect the bubbles in two-phase bubbly flow.
Measurement of local two-phase flow parameters of nanofluids using conductivity double-sensor probe
Directory of Open Access Journals (Sweden)
Park Yu sun
2011-01-01
Full Text Available Abstract A two-phase flow experiment using air and water-based γ-Al2O3 nanofluid was conducted to observe the basic hydraulic phenomenon of nanofluids. The local two-phase flow parameters were measured with a conductivity double-sensor two-phase void meter. The void fraction, interfacial velocity, interfacial area concentration, and mean bubble diameter were evaluated, and all of those results using the nanofluid were compared with the corresponding results for pure water. The void fraction distribution was flattened in the nanofluid case more than it was in the pure water case. The higher interfacial area concentration resulted in a smaller mean bubble diameter in the case of the nanofluid. This was the first attempt to measure the local two-phase flow parameters of nanofluids using a conductivity double-sensor two-phase void meter. Throughout this experimental study, the differences in the internal two-phase flow structure of the nanofluid were identified. In addition, the heat transfer enhancement of the nanofluid can be resulted from the increase of the interfacial area concentration which means the available area of the heat and mass transfer.
Oppermann, Sebastian; Stein, Florian; Kragl, Udo
2011-02-01
The development of biotechnological processes using novel two-phase systems based on molten salts known as ionic liquids (ILs) got into the focus of interest. Many new approaches for the beneficial application of the interesting solvent have been published over the last years. ILs bring beneficial properties compared to organic solvents like nonflammability and nonvolatility. There are two possible ways to use the ILs: first, the hydrophobic ones as a substitute for organic solvents in pure two-phase systems with water and second, the hydrophilic ones in aqueous two-phase systems (ATPS). To effectively utilise IL-based two-phase systems or IL-based ATPS in biotechnology, extensive experimental work is required to gain the optimal system parameters to ensure selective extraction of the product of interest. This review will focus on the most actual findings dealing with the basic driving forces for the target extraction in IL-based ATPS as well as presenting some selected examples for the beneficial application of ILs as a substitute for organic solvents. Besides the research focusing on IL-based two-phase systems, the "green aspect" of ILs, due to their negligible vapour pressure, is widely discussed. We will present the newest results concerning ecotoxicity of ILs to get an overview of the state of the art concerning ILs and their utilisation in novel two-phase systems in biotechnology.
Living between two worlds: two-phase culture systems for producing plant secondary metabolites.
Malik, Sonia; Hossein Mirjalili, Mohammad; Fett-Neto, Arthur Germano; Mazzafera, Paulo; Bonfill, Mercedes
2013-03-01
The two-phase culture system is an important in vitro strategy to increase the production of secondary metabolites (SMs) by providing an enhanced release of these compounds from plant cells. Whereas the first phase supports cell growth, the second phase provides an additional site or acts as a metabolic sink for the accumulation of SMs and also reduces feedback inhibition. This review is focused on several aspects of the two-phase culture system and aims to show the diverse possibilities of employing this technique for the in vitro production of SMs from plant cells. Depending on the material used in the secondary phase, two-phase culture systems can be broadly categorised as liquid-liquid or liquid-solid. The choice of material for the second phase depends on the type of compound to be recovered and the compatibility with the other phase. Different factors affecting the efficiency of two-phase culture systems include the choice of material for the secondary phase, its concentration, volume, and time of addition. Factors such as cell elicitation, immobilization, and permeabilization, have been suggested as important strategies to make the two-phase culture system practically reliable on a commercial scale. Since there are many possibilities for designing a two-phase system, more detailed studies are needed to broaden the range of secondary phases compatible with the various plant species producing SMs with potential applications, mainly in the food and pharmacology industries.
IMPROVED SUBGRID SCALE MODEL FOR DENSE TURBULENT SOLID-LIQUID TWO-PHASE FLOWS
Institute of Scientific and Technical Information of China (English)
TANG Xuelin; QIAN Zhongdong; WU Yulin
2004-01-01
The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules. Assuming that the solid-phase velocity distributions obey the Maxwell equations, the collision term for particles under dense two-phase flow conditions is also derived.In comparison with the governing equations of a dilute two-phase flow, the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations. Based on Cauchy-Helmholtz theorem and Smagorinsky model,a second-order dynamic sub-grid-scale (SGS) model, in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor, is proposed to model the two-phase governing equations by applying dimension analyses. Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls, the velocity and pressure fields, and the volumetric concentration are calculated. The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.
Mixed Model for Silt-Laden Solid-Liquid Two-Phase Flows
Institute of Scientific and Technical Information of China (English)
唐学林; 徐宇; 吴玉林
2003-01-01
The kinetic theory of molecular gases was used to derive the governing equations for dense solid-liquid two-phase flows from a microscopic flow characteristics viewpoint by multiplying the Boltzmann equation for each phase by property parameters and integrating over the velocity space. The particle collision term was derived from microscopic terms by comparison with dilute two-phase flow but with consideration of the collisions between particles for dense two-phase flow conditions and by assuming that the particle-phase velocity distribution obeys the Maxwell equations. Appropriate terms from the dilute two-phase governing equations were combined with the dense particle collision term to develop the governing equations for dense solid-liquid turbulent flows. The SIMPLEC algorithm and a staggered grid system were used to solve the discretized two-phase governing equations with a Reynolds averaged turbulence model. Dense solid-liquid turbulent two-phase flows were simulated for flow in a duct. The simulation results agree well with experimental data.
Directory of Open Access Journals (Sweden)
Michal Prazenica
2011-01-01
Full Text Available This paper deals with the two-stage two-phase electronic systems with orthogonal output voltages and currents - DC/AC/AC. Design of two-stage DC/AC/AC high frequency converter with two-phase orthogonal output using single-phase matrix converter is also introduced. Output voltages of them are strongly nonharmonic ones, so they must be pulse-modulated due to requested nearly sinusoidal currents with low total harmonic distortion. Simulation experiment results of matrix converter for both steady and transient states for IM motors are given in the paper, also experimental verification under R-L load, so far. The simulation results confirm a very good time-waveform of the phase current and the system seems to be suitable for low-cost application in automotive/aerospace industries and application with high frequency voltage sources.
Energy Technology Data Exchange (ETDEWEB)
Castro Neto, Lindolfo Marra de [Centro Federal de Educacao Tecnologica da Bahia (CEFET-BA), Santo Amaro, BA (Brazil). Curso de Eletromecanica; Camacho, Jose Roberto; Leva, Flavia Fernandes de [Universidade Federal de Uberlandia (FEE/UFU), MG (Brazil). Fac. de Engenharia Eletrica. Nucleo de Eletricidade Rural e Fontes Alternativas de Energia
2008-07-01
The main objective of this work is to make one analyzes of the speed of the two-phase induction machines with return. This analyzes is of addition importance, because it will define which the best relationship among the angles {beta} (angle among the feeding tensions) {alpha} (angle among the axes of the rolling up of the motor). This relationship in and it had defined the best condition of operation of the motor, so that the same doesn't come to have problems in the departure and it had also defined the best relationship for the operation in permanent regime. In this work a dynamic model will be developed for two-phase machines that it will be used in the it analyzes of the two-phase induction motors with return. (author)
Online monitoring of gas-solid two-phase flow using projected CG method in ECT image reconstruction
Institute of Scientific and Technical Information of China (English)
Qi wang; Chengyi Yang; Huaxiang Wang; Ziqiang Cui; Zhentao Gao
2013-01-01
Electrical capacitance tomography (ECT) is a promising technique for multi-phase flow measurement due to its high speed,low cost and non-intrusive sensing.Image reconstruction for ECT is an inverse problem of finding the permittivity distribution of an object by measuring the electrical capacitances between sets of electrodes placed around its periphery.The conjugate gradient (CG) method is a popular image reconstruction method for ECT,in spite of its low convergence rate.In this paper,an advanced version of the CG method,the projected CG method,is used for image reconstruction of an ECT system.The solution space is projected into the Krylov subspace and the inverse problem is solved by the CG method in a low-dimensional specific subspace.Both static and dynamic experiments were carried out for gas-solid two-phase flows.The flow regimes are identified using the reconstructed images obtained with the projected CG method.The results obtained indicate that the projected CG method improves the quality of reconstructed images and dramatically reduces computation time,as compared to the traditional sensitivity,Landweber,and CG methods.Furthermore,the projected CG method was also used to estimate the important parameters of the pneumatic conveying process,such as the volume concentration,flow velocity and mass flow rate of the solid phase.Therefore,the projected CG method is considered suitable for online gas-solid two-phase flow measurement.
Marrone, Salvatore; Colagrossi, Andrea; Di Mascio, Andrea; Le Touzé, David
2016-05-01
The study of energetic free-surface flows is challenging because of the large range of interface scales involved due to multiple fragmentations and reconnections of the air-water interface with the formation of drops and bubbles. Because of their complexity the investigation of such phenomena through numerical simulation largely increased during recent years. Actually, in the last decades different numerical models have been developed to study these flows, especially in the context of particle methods. In the latter a single-phase approximation is usually adopted to reduce the computational costs and the model complexity. While it is well known that the role of air largely affects the local flow evolution, it is still not clear whether this single-phase approximation is able to predict global flow features like the evolution of the global mechanical energy dissipation. The present work is dedicated to this topic through the study of a selected problem simulated with both single-phase and two-phase models. It is shown that, interestingly, even though flow evolutions are different, energy evolutions can be similar when including or not the presence of air. This is remarkable since, in the problem considered, with the two-phase model about half of the energy is lost in the air phase while in the one-phase model the energy is mainly dissipated by cavity collapses.
Hybrid Upwinding for Two-Phase Flow in Heterogeneous Porous Media with Buoyancy and Capillarity
Hamon, F. P.; Mallison, B.; Tchelepi, H.
2016-12-01
In subsurface flow simulation, efficient discretization schemes for the partial differential equations governing multiphase flow and transport are critical. For highly heterogeneous porous media, the temporal discretization of choice is often the unconditionally stable fully implicit (backward-Euler) method. In this scheme, the simultaneous update of all the degrees of freedom requires solving large algebraic nonlinear systems at each time step using Newton's method. This is computationally expensive, especially in the presence of strong capillary effects driven by abrupt changes in porosity and permeability between different rock types. Therefore, discretization schemes that reduce the simulation cost by improving the nonlinear convergence rate are highly desirable. To speed up nonlinear convergence, we present an efficient fully implicit finite-volume scheme for immiscible two-phase flow in the presence of strong capillary forces. In this scheme, the discrete viscous, buoyancy, and capillary spatial terms are evaluated separately based on physical considerations. We build on previous work on Implicit Hybrid Upwinding (IHU) by using the upstream saturations with respect to the total velocity to compute the relative permeabilities in the viscous term, and by determining the directionality of the buoyancy term based on the phase density differences. The capillary numerical flux is decomposed into a rock- and geometry-dependent transmissibility factor, a nonlinear capillary diffusion coefficient, and an approximation of the saturation gradient. Combining the viscous, buoyancy, and capillary terms, we obtain a numerical flux that is consistent, bounded, differentiable, and monotone for homogeneous one-dimensional flow. The proposed scheme also accounts for spatially discontinuous capillary pressure functions. Specifically, at the interface between two rock types, the numerical scheme accurately honors the entry pressure condition by solving a local nonlinear problem
Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation
Energy Technology Data Exchange (ETDEWEB)
Wu, Mengjie [Colorado School of Mines, Golden; Xiao, Feng [Colorado School of Mines, Golden; Johnson-Paben, Rebecca [Colorado School of Mines, Golden; Retterer, Scott T [ORNL; Yin, Xiaolong [Colorado School of Mines, Golden; Neeves, Keith B [ORNL
2012-01-01
The objective of this study was to create a microfluidic model of complex porous media for studying single and multiphase flows. Most experimental porous media models consist of periodic geometries that lend themselves to comparison with well-developed theoretical predictions. However, most real porous media such as geological formations and biological tissues contain a degree of randomness and complexity that is not adequately represented in periodic geometries. To design an experimental tool to study these complex geometries, we created microfluidic models of random homogeneous and heterogeneous networks based on Voronoi tessellations. These networks consisted of approximately 600 grains separated by a highly connected network of channels with an overall porosity of 0.11 0.20. We found that introducing heterogeneities in the form of large cavities within the network changed the permeability in a way that cannot be predicted by the classical porosity-permeability relationship known as the Kozeny equation. The values of permeability found in experiments were in excellent agreement with those calculated from three-dimensional lattice Boltzmann simulations. In two-phase flow experiments of oil displacement with water we found that the surface energy of channel walls determined the pattern of water invasion, while the network topology determined the residual oil saturation. These results suggest that complex network topologies lead to fluid flow behavior that is difficult to predict based solely on porosity. The microfluidic models developed in this study using a novel geometry generation algorithm based on Voronoi tessellation are a new experimental tool for studying fluid and solute transport problems within complex porous media.
Preliminary Study: Treatment of Food Industrial Wastewater using Two-Phase Anaerobic Treatments
Directory of Open Access Journals (Sweden)
Shahrul Shafendy Ibrahim
2013-11-01
Full Text Available Abstract: Food processing industrial wastewater is well known for its high concentration of COD, BOD and suspended solid. The condition of the wastewater formed makes it illegal for the industry to release the wastewater to the open body of water without essential treatment. The study is conducted on food manufacturing company which specializes in chips export business. The quality of the wastewater produced from the manufacturing is not appropriate to be discharged directly. Thus, a two phase treatment system involving UASB and HUASB reactors as primary treatment and followed by AF reactor as secondary treatment is proposed. Basically, this research will focus on the performance of UASB-AF and HUASB-AF treatment systems and the affect of adding palm oil shell into the HUASB and AF respectively as support media. Parameters measured are pH, COD, NH3-N, oil and grease and total phosphorus. The instruments used for collecting data in this research are pH meter and HACH DR5000. In this research, the highest COD removal for the effluents from the U1 and U2 were at the 14th day with 93.6% removal and at the 62th day with 96.6% each. Meanwhile, in the R2 treatment system, the highest COD removal for the effluents from the H1 and H2 were at the 14th day with 98.3% removal and at 110th day with 97.6% removal. It is hoped that this study will generate useful findings that could be applied to alleviate the current problem at the food factory and also at other food industry in the future.
DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS
Energy Technology Data Exchange (ETDEWEB)
X. Wang; X. Sun; H. Zhao
2011-09-01
In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in
El-Amin, Mohamed F.
2017-05-05
This paper is devoted to study the problem of nonisothermal two-phase flow with nanoparticles transport in heterogenous porous media, numerically. For this purpose, we introduce a multiscale adapted time-splitting technique to simulate the problem under consideration. The mathematical model consists of equations of pressure, saturation, heat, nanoparticles concentration in the water–phase, deposited nanoparticles concentration on the pore–walls, and entrapped nanoparticles concentration in the pore–throats. We propose a multiscale time splitting IMplicit Pressure Explicit Saturation–IMplicit Temperature Concentration (IMPES-IMTC) scheme to solve the system of governing equations. The time step-size adaptation is achieved by satisfying the stability Courant–Friedrichs–Lewy (CFL<1) condition. Moreover, numerical test of a highly heterogeneous porous medium is provided and the water saturation, the temperature, the nanoparticles concentration, the deposited nanoparticles concentration, and the permeability are presented in graphs.
Directory of Open Access Journals (Sweden)
Mehmet Tahir ÖNCÜ
2016-12-01
Full Text Available In the following study, how idioms had been translated from German to Turkish on the book of Chess Story by Stefan Zweig are tried to be analysed. Initially, the translation principles concerning idiom translation as well as a translation critical approach are disclosed. Thereafter, it is followed by the comparative analysis and how the idioms had been translated in each text of three Turkish variations are analysed. The textual basis of this article is constituted of “Chess Story” written by Stefan Zweig between the years of 1938 and 1941 and German to Turkish translation versions of Chess Story by Nedim Tuğlu (1991, Ayça Sabuncuoğlu (2002 and Selcuk Ünlü (2015. Finally, the consequence assessment is situated.
Baehr, Arthur L.; Bruell, Clifford J.
1990-01-01
The organic component of the vapor phase of a porous medium contaminated by an immiscible organic liquid can be significant enough to violate the condition of a dilute species diffusing in a bulk phase assumed by Fick's law. The Stefan-Maxwell equations provide a more comprehensive model for quantifying steady state transport for a vapor phase composed of arbitrary proportions of its constituents. The application of both types of models to the analysis of column experiments demonstrates that use of a Fickian-based transport model can lead to significant overestimates of soil tortuosity constants. Further, the physical displacement of naturally occurring gases (e.g., O2), predicted by the Stefan-Maxwell model but not by application of Fick's Law, can be attributed improperly to a sink term such as microbial degradation in a Fickian-based transport model.
STEFAN ZWEİG’IN “ACI DUYGULAR” ADLI ROMANINDA ÖZYAŞAMÖYKÜSÜNDEN İZLER
KAYĞIN, Şenay
2015-01-01
In this study, we tried to interpret the Stefan Zweig’s novel called bitter Feelings we are of the opinion that it carries traces from his own life story. In this novel, we took narration techniques used commonly by Zweig, we tried to detect the function on the novel, and we mentioned his mastery about biography. In addition, we mentioned the attitudes of the World and Turkish literature against Zeig
A Derivation of the Nonlocal Volume-Averaged Equations for Two-Phase Flow Transport
Directory of Open Access Journals (Sweden)
Gilberto Espinosa-Paredes
2012-01-01
Full Text Available In this paper a detailed derivation of the general transport equations for two-phase systems using a method based on nonlocal volume averaging is presented. The local volume averaging equations are commonly applied in nuclear reactor system for optimal design and safe operation. Unfortunately, these equations are limited to length-scale restriction and according with the theory of the averaging volume method, these fail in transition of the flow patterns and boundaries between two-phase flow and solid, which produce rapid changes in the physical properties and void fraction. The non-local volume averaging equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection diffusion and transport properties for two-phase flow; for instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail.
Gas-liquid two-phase flow across a bank of micropillars
Krishnamurthy, Santosh; Peles, Yoav
2007-04-01
Adiabatic nitrogen-water two-phase flow across a bank of staggered circular micropillars, 100μm long with a diameter of 100μm and a pitch-to-diameter ratio of 1.5, was investigated experimentally for Reynolds number ranging from 5 to 50. Flow patterns, void fraction, and pressure drop were obtained, discussed, and compared to large scale as well as microchannel results. Two-phase flow patterns were determined by flow visualization, and a flow map was constructed as a function of gas and liquid superficial velocities. Significant deviations from conventional scale systems, with respect to flow patterns and trend lines, were observed. A unique flow pattern, driven by surface tension, was observed and termed bridge flow. The applicability of conventional scale models to predict the void fraction and two-phase frictional pressure drop was also assessed. Comparison with a conventional scale void fraction model revealed good agreement, but was found to be in a physically wrong form. Thus, a modified physically based model for void fraction was developed. A two-phase frictional multiplier was found to be a strong function of mass flux, unlike in previous microchannel studies. It was observed that models from conventional scale systems did not adequately predict the two-phase frictional multiplier at the microscale, thus, a modified model accounting for mass flux was developed.
Multi-needle capacitance probe for non-conductive two-phase flows
Monrós-Andreu, G.; Martinez-Cuenca, R.; Torró, S.; Escrig, J.; Hewakandamby, B.; Chiva, S.
2016-07-01
Despite its variable degree of application, intrusive instrumentation is the most accurate way to obtain local information in a two-phase flow system, especially local interfacial velocity and local interfacial area parameters. In this way, multi-needle probes, based on conductivity or optical principles, have been extensively used in the past few decades by many researchers in two-phase flow investigations. Moreover, the signal processing methods used to obtain the time-averaged two-phase flow parameters in this type of sensor have been thoroughly discussed and validated by many experiments. The objective of the present study is to develop a miniaturized multi-needle probe, based on capacitance measurements applicable to a wide range of non-conductive two-phase flows and, thus, to extend the applicability of multi-needle sensor whilst also maintaining a signal processing methodology provided in the literature for conductivity probes. Results from the experiments performed assess the applicability of the proposed sensor measurement principle and signal processing method for the bubbly flow regime. These results also provide an insight into the sensor application for more complex two-phase flow regimes.
A new two-phase erosion-deposition model for mass flows
Pudasaini, Shiva P.; Fischer, Jan-Thomas
2016-04-01
Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, two-phase, erosion-deposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transports. The model enhances an existing general two-phase mass flow model (Pudasaini, 2012) by introducing a two-phase variably saturated erodible basal morphology. The adaptive basal morphology allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process and rheological changes of the flowing mixture. With rigorous derivation, we show that appropriate incorporation of the mass and momentum productions and losses in conservative model formulation is essential for the physically correct and mathematically consistent description of erosion-entrainment-deposition processes. Simulation indicates a sharp erosion-front and steady-state-rear erosion depth. The model appropriately captures the emergence and propagation of complex frontal surge dynamics associated with the frontal ambient-drag which is a new hypothesis associated with erosion. The novel enhanced real two-phase model also allows for simulating fluid-run-off during the deposition process. The model resembles laboratory experiments for particle-fluid mixture flows and reveals some major aspects of the mechanics associated with erosion, entrainment and deposition. Reference: Shiva P. Pudasaini (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.
Performance characteristics of two-phase-flow turbo-expanders used in water-cooled chillers
Energy Technology Data Exchange (ETDEWEB)
Brasz, J.J. [United Technologies Carrier, New York, NY (United States)
1999-07-01
Use of two-phase-flow throttle loss recovery devices in water-cooled chillers requires satisfactory part-load operation. This paper describes the results of two-phase-flow impulse turbine testing and the data reduction of the test results into a two-phase-flow turbine off-design performance model. It was found that the main parameter controlling the efficiency of two-phase-flow turbine is the ratio of the nozzle spouting velocity to the rotor speed. The turbine mass flow rate is mainly controlled by inlet subcooling of the entering liquid. The strong sensitivity of turbine mass flow rate on inlet subcooling allows the use of a conventional float valve upstream of the turbine as an effective means of controlling the turbine during part-load operation. For a well-designed two-phase-flow turbine, nozzle spouting velocity and therefore turbine efficiency is hardly affected by the amount of inlet subcooling. Also, capacity can be substantially reduced by a reduction in the amount of inlet subcooling entering the turbine nozzles. Hence, turbine part-load efficiency equals its full-load efficiency over a wide range of flow rates using this control concept. (Author)
New Results in Two-Phase Pressure Drop Calculations at Reduced Gravity Conditions
Braisted, Jon; Kurwitz, Cable; Best, Frederick
2004-02-01
The mass, power, and volume energy savings of two-phase systems for future spacecraft creates many advantages over current single-phase systems. Current models of two-phase phenomena such as pressure drop, void fraction, and flow regime prediction are still not well defined for space applications. Commercially available two-phase modeling software has been developed for a large range of acceleration fields including reduced-gravity conditions. Recently, a two-phase experiment has been flown to expand the two-phase database. A model of the experiment was created in the software to determine how well the software could predict the pressure drop observed in the experiment. Of the simulations conducted, the computer model shows good agreement of the pressure drop in the experiment to within 30%. However, the software does begin to over-predict pressure drop in certain regions of a flow regime map indicating that some models used in the software package for reduced-gravity modeling need improvement.
DSMC simulation of two-phase plume flow with UV radiation
Energy Technology Data Exchange (ETDEWEB)
Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073 (China)
2014-12-09
Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.
Design and evaluation of a two-phase turbine for low quality steam--water mixtures
Energy Technology Data Exchange (ETDEWEB)
Comfort, W.J. III
1977-05-16
A new two-phase turbine was designed and built for testing in the laboratory, using a low quality steam-water mixture as a working fluid. The measured performance compares well with performance predictions of a numerical model of the expander. Details of the selection of the type of expander are given. The design of an experimental expander for use in a clean two-phase flow laboratory experiment and the development of a numerical model for performance analysis and extrapolations are described. Experiments including static cascade performance with two-phase fluid, disk friction and windage measurements, and two-phase performance measurements of the experimental expander are reported. Comparisons of the numerical model and experimental results, and the prediction of the performance of an advanced design, indicating how performance improvements can be achieved, are also included. An engine efficiency of 23 percent for a single-nozzle test was measured. Full admission performance, based upon the numerical model and achievable nozzle thrust coefficients indicate that an engine efficiency of between 38 and 48 percent can be realized with present technology. If maximum liquid removal loss is assumed, this performance range is predicted to be 38 to 41 percent. Droplet size reduction and the development and implementation of enhanced two-phase flow analysis techniques should make it possible to achieve the research goal of 70 percent engine efficiency.
Two phase convective heat transfer augmentation in swirl flow with non-boiling
Energy Technology Data Exchange (ETDEWEB)
Cha, K.O. [Myong Ji University, Kyonggi-do (Korea, Republic of); Kim, J.G. [Myongji University Graduate School, Kyonggi-do (Korea, Republic of)
1995-10-01
Two phase flow phenomena are observed in many industrial facilities and make much importance of optimum design for nuclear power plant and various heat exchangers. This experimental study has been investigated the classification of the flow pattern, the local void distribution and convective heat transfer in swirl and non-swirl two phase flow under the isothermal and nonisothermal conditions. The convective heat transfer coefficients in the single phase water flow were measured and compared with the calculated results from the Sieder-Tate correlation. These coefficients were used for comparisons with the two-phase heat transfer coefficients in the flow orientations. The experimental results indicate, that the void probe signal and probability density function of void distribution can used into classify the flow patterns, no significant difference in voidage distribution was observed between isothermal and non-isothermal condition in non-swirl flow, the values of two phase heat transfer coefficients increase when superficial air velocities increase, and the enhancement of the values is observed to be most pronounced at the highest superficial water velocity in non-swirl flow. Also two phase heat transfer coefficients in swirl flow are increased when the twist ratios are decreased. (author). 13 refs., 15 figs.
The role of the Stefan-Boltzmann law in the thermodynamic optimization of an n-Müser engine
Ramírez-Moreno, M. A.; González-Hernández, S.; Angulo-Brown, F.
2016-02-01
A Müser-type engine model can be taken as a particular case of a Curzon-Ahlborn thermal cycle, when the upper thermal conductance is finite and the lower one is infinite. In addition, the upper heat exchange is given by the Stefan-Boltzmann law. That model is suitable to thermodynamically describe some aspects of energy converters as solar cells and photosynthetic systems. In the present article, we call n-Müser engine to an engine of the Müser type in which the T4 heat transfer law is substituted by a Tn-law, being n > 0 a real number. Here, we show that if we use the so-called ecological criterion of merit to optimize finite-time heat engines to compare the thermodynamic performance of the n-Müser engines under approximate terrestrial conditions (see below), we obtain that n = 4 accomplishes the best performance. This same result was obtained by using data from the rest of planets of the solar system.
Hod, Shahar
2016-01-01
It has recently been suggested [S. B. Giddings, Phys. Lett. B {\\bf 754}, 39 (2016)] that the Hawking black-hole radiation spectrum originates from an effective quantum "atmosphere" which extends well outside the black-hole horizon. In particular, comparing the Hawking radiation power of a $(3+1)$-dimensional Schwarzschild black hole of horizon radius $r_{\\text{H}}$ with the familiar Stefan-Boltzmann radiation power of a $(3+1)$-dimensional flat space perfect blackbody emitter, Giddings concluded that the source of the Hawking semi-classical black-hole radiation is a quantum region outside the Schwarzschild black-hole horizon whose effective radius $r_{\\text{A}}$ is characterized by the relation $\\Delta r\\equiv r_{\\text{A}}-r_{\\text{H}}\\sim r_{\\text{H}}$. It is of considerable physical interest to test the general validity of Giddings's intriguing conclusion. To this end, we study the Hawking radiation of $(D+1)$-dimensional Schwarzschild black holes. We find that the dimensionless radii $r_{\\text{A}}/r_{\\text...
Varady, Mark; Bringuier, Stefan; Pearl, Thomas; Stevenson, Shawn; Mantooth, Brent
Decontamination of polymers exposed to chemical warfare agents (CWA) often proceeds by application of a liquid solution. Absorption of some decontaminant components proceed concurrently with extraction of the CWA, resulting in multicomponent diffusion in the polymer. In this work, the Maxwell-Stefan equations were used with the Flory-Huggins model of species activity to mathematically describe the transport of two species within a polymer. This model was used to predict the extraction of the nerve agent O-ethyl S-[2(diisopropylamino)ethyl] methylphosphonothioate (VX) from a silicone elastomer into both water and methanol. Comparisons with experimental results show good agreement with minimal fitting of model parameters from pure component uptake data. Reaction of the extracted VX with sodium hydroxide in the liquid-phase was also modeled and used to predict the overall rate of destruction of VX. Although the reaction proceeds more slowly in the methanol-based solution compared to the aqueous solution, the extraction rate is faster due to increasing VX mobility as methanol absorbs into the silicone, resulting in an overall faster rate of VX destruction.
Two-Phase Cooling of Targets and Electronics for Particle Physics Experiments
Thome, J R; Park, J E
2009-01-01
An overview of the LTCM lab’s decade of experience with two-phase cooling research for computer chips and power electronics will be described with its possible beneficial application to high-energy physics experiments. Flow boiling in multi-microchannel cooling elements in silicon (or aluminium) have the potential to provide high cooling rates (up to as high as 350 W/cm2), stable and uniform temperatures of targets and electronics, and lightweight construction while also minimizing the fluid inventory. An overview of two-phase flow and boiling research in single microchannels and multi-microchannel test elements will be presented together with video images of these flows. The objective is to stimulate discussion on the use of two-phase cooling in these demanding applications, including the possible use of CO2.
Numerical simulation of the two-phase flow produced by spraying a liquid by a nozzle
Simakov, N. N.
2017-07-01
A numerical experiment on the simulation of the two-phase flow formed during spraying of a liquid by a nozzle has been described. The radial and axial velocity profiles of the droplets and gas in the free spray and in the two-phase flow through a cylindrical apparatus have been calculated and represented taking into account the early drag crisis of droplets and peculiarities of turbulent friction in the gas, which was detected in previous experiments. The distinguishing feature of the numerical model of the two-phase flow is that it employs the differential equations describing the nonstationary flow of a compressible gas as the initial equations. In transition to their difference analog, the familiar Lax-Wendorff algorithm has been used. A comparison of the results of calculations based on this model with experimental data has demonstrated their concordance.
Selective separation and enrichment of proteins in aqueous two-phase extraction system
Institute of Scientific and Technical Information of China (English)
Feng Qu; Hao Qin; Min Dong; Dong Xu Zhao; Xin Ying Zhao; Jing Hua Zhang
2009-01-01
A simple aqueous two-phase extraction system(ATPS)of PEG/phosphate was proposed for selective separation and enrichment of proteins.The combination of ATPE with HPLC was applied to identify the partition of proteins in two phases.Five proteins (bovine serum albumin,Cytochrome C,lysozyme,myoglobin,and trypsin)were used as model proteins to study the effect of phosphate concentration and pH on proteins partition.The PEG/phosphate system was firstly applied to real human saliva and plasma samples,some proteins showed obviously different partition in two phases.The primary results manifest the selective separation and enrichment of proteins in ATPS provided the potential for high abundance proteins depletion in proteomics.
Two-phase pressure drop across a hydrofoil-based micro pin device using R-123
Energy Technology Data Exchange (ETDEWEB)
Kosar, Ali [Mechatronics Engineering Program, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey)
2008-05-15
The two-phase pressure drop in a hydrofoil-based micro pin fin heat sink has been investigated using R-123 as the working fluid. Two-phase frictional multipliers have been obtained over mass fluxes from 976 to 2349 kg/m{sup 2} s and liquid and gas superficial velocities from 0.38 to 1.89 m/s and from 0.19 to 24 m/s, respectively. It has been found that the two-phase frictional multiplier is strongly dependent on flow pattern. The theoretical prediction using Martinelli parameter based on the laminar fluid and laminar gas flow represented the experimental data fairly well for the spray-annular flow. For the bubbly and wavy-intermittent flow, however, large deviations from the experimental data were recorded. The Martinelli parameter was successfully used to determine the flow patterns, which were bubbly, wavy-intermittent, and spray-annular flow in the current study. (author)
Reduced-gravity two-phase flow experiments in the NASA KC-135
Cuta, Judith M.; Michener, Thomas E.; Best, Frederick R.; Kachnik, Leo J.
1988-01-01
An adequate understanding is sought of flow and heat transfer behavior in reduced and zero gravity conditions. Microgravity thermal-hydraulic analysis capabilities were developed for application to space nuclear power systems. A series of reduced gravity two phase flow experiments using the NASA KC-135 were performed. The objective was to supply basic thermal hydraulic information that could be used in development of analytical tools for design of space power systems. The experiments are described. Two main conclusions were drawn. First, the tests demonstrate that the KC-135 is a suitable test environment for obtaining two phase flow and heat transfer data in reduced gravity conditions. Second, the behavior of two phase flow in low gravity is sufficiently different from that obtained in 1 g to warrant intensive investigation of the phenomenon if adequate analytical tools are to be developed for microgravity conditions.
Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces
Energy Technology Data Exchange (ETDEWEB)
Brauner, N.; Rovinsky, J.; Maron, D.M. [Tel-Aviv Univ. (Israel)
1995-09-01
The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the `flow monograms` describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the `interface monograms`, whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system `operational monogram`. The `operational monogram` enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop.
Investigation of two-phase heat transfer coefficients of argon-freon cryogenic mixed refrigerants
Baek, Seungwhan; Lee, Cheonkyu; Jeong, Sangkwon
2014-11-01
Mixed refrigerant Joule Thomson refrigerators are widely used in various kinds of cryogenic systems these days. Although heat transfer coefficient estimation for a multi-phase and multi-component fluid in the cryogenic temperature range is necessarily required in the heat exchanger design of mixed refrigerant Joule Thomson refrigerators, it has been rarely discussed so far. In this paper, condensation and evaporation heat transfer coefficients of argon-freon mixed refrigerant are measured in a microchannel heat exchanger. A Printed Circuit Heat Exchanger (PCHE) with 340 μm hydraulic diameter has been developed as a compact microchannel heat exchanger and utilized in the experiment. Several two-phase heat transfer coefficient correlations are examined to discuss the experimental measurement results. The result of this paper shows that cryogenic two-phase mixed refrigerant heat transfer coefficients can be estimated by conventional two-phase heat transfer coefficient correlations.
Adaptive sampling in two-phase designs: a biomarker study for progression in arthritis
McIsaac, Michael A; Cook, Richard J
2015-01-01
Response-dependent two-phase designs are used increasingly often in epidemiological studies to ensure sampling strategies offer good statistical efficiency while working within resource constraints. Optimal response-dependent two-phase designs are difficult to implement, however, as they require specification of unknown parameters. We propose adaptive two-phase designs that exploit information from an internal pilot study to approximate the optimal sampling scheme for an analysis based on mean score estimating equations. The frequency properties of estimators arising from this design are assessed through simulation, and they are shown to be similar to those from optimal designs. The design procedure is then illustrated through application to a motivating biomarker study in an ongoing rheumatology research program. Copyright © 2015 © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. PMID:25951124
Two-Phase Master Sintering Curve for 17-4 PH Stainless Steel
Jung, Im Doo; Ha, Sangyul; Park, Seong Jin; Blaine, Deborah C.; Bollina, Ravi; German, Randall M.
2016-11-01
The sintering behavior of 17-4 PH stainless steel has been efficiently characterized by a two-phase master sintering curve model (MSC). The activation energy for the sintering of gas-atomized and water-atomized 17-4 PH powders is derived using the mean residual method, and the relative density of both powders is well predicted by the two-phase MSC model. The average error between dilatometry data and MSC model has been reduced by 68 pct for gas-atomized powder and by 45 pct for water-atomized powder through the consideration of phase transformation of 17-4 PH in MSC model. The effect of δ-ferrite is considered in the two-phase MSC model, leading to excellent explanation of the sintering behavior for 17-4 PH stainless steel. The suggested model is useful in predicting the densification and phase change phenomenon during sintering of 17-4 PH stainless steel.
Numerical Simulation of Erosion-Corrosion in the Liquid Solid Two-Phase Flow
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main components: the liquid-solid two-phase flow model, erosion model and corrosion model. The Euierian-Lagranglan approach is used to simulate liquid-solid two-phase flow, while the stochastic trajectory model was adopted to obtain properties of particle phase. Two-way coupling effect between the fluid and the particle phase is considered in the model. The accuracy of the models is tested by the data in the reference. The comparison shows that the model is basically correct and feasible.
The solidification of two-phase heterogeneous materials: Theory versus experiment
Institute of Scientific and Technical Information of China (English)
ZHANG Bin; KIM Tongbeum; LU TianJian
2009-01-01
The solidification behavior of two-phase heterogeneous materials such as close-celled aluminum foams was analytically studied. The proposed analytical model can precisely predict the location of solidification front as well as the full solidification time for a two-phase heterogeneous material composed of aluminum melt and non-conducting air pores. Experiments using distilled water simulating the aluminum melt to be solidified (frozen) were subsequently conducted to validate the analytical model for two selected porosities (ε), ε=0 and 0.5. Full numerical simulations with the method of finite difference were also performed to examine the influence of pore shape on solidification. The remarkable agreement between theory and experiment suggests that the delay of solidification in the two-phase heterogeneous material is mainly caused by the reduction of bulk thermal conductivity due to the presence of pores, as this is the sole mechanism accounted for by the analytical model for solidification in a porous medium.
Thermodynamic properties and mixing thermodynamic parameters of two-phase metallic melts
Institute of Scientific and Technical Information of China (English)
Jian Zhang
2005-01-01
Based on the calculating model of metallic melts involving eutectic, the calculating equations of mixing thermodynamic parameters for two phase metallic melts have been formulated in the light of those equations of homogeneous solutions. Irrespective as to whether the activity deviation relative to Raoultian behavior is positive or negative, or the deviation is symmetrical or unsymmetrical, the evaluated results not only agree well with experimental values, but also strictly obey the mass action law. This testifies that these equations can authentically reflect the structural reality and mixing thermodynamic characteristics of two-phase metallic melts. The calculating equations of mixing thermodynamic parameters for the model of two phase metallic melts offer two practical criteria (activity and mixing thermodynamic parameters) and one theoretical criterion (the mass action law).
Thermodynamic calculations of a two-phase thermosyphon loop for cold neutron sources
de Haan, Victor-O.; Gommers, René; Rowe, J. Michael
2017-07-01
A new method is described for thermodynamic calculations of a two-phase thermosyphon loop based on a one-dimensional finite element division, where each time-step is split up in a change of enthalpy and a change in entropy. The method enables the investigation of process responses for a cooling loop from room temperature down to cryogenic temperatures. The method is applied for the simulation of two distinct thermosyphon loops: a two-phase deuterium and a two-phase hydrogen thermosyphon loop. The simulated process responses are compared to measurements on these loops. The comparisons show that the method can be used to optimize the design of such loops with respect to performance and resulting void fractions.
Two-phase application of multi-objective genetic algorithms in green building design
Energy Technology Data Exchange (ETDEWEB)
Wang, W.; Zmeureanu, R. [Concordia Univ., Centre for Building Studies, Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering; Rivard, H. [Ecole de Technologie Superieure, Montreal, PQ (Canada). Dept. of Construction Engineering
2005-07-01
The application of multi-objective genetic algorithms for green building design in two phases were presented in order to better help designers in the decision-making process. The purpose is to minimize two conflicting criteria: the life-cycle cost and the life-cycle environmental impact. Environmental impact criteria examined include energy and non-energy natural resources, global warming, and acidification. Variables focus on building envelope-related parameters. The application of multi-objective genetic algorithms is divided into two phases. The first phase intends to help designers in understanding the trade-off relationship between the two conflicting criteria. The second phase intends to refine the performance region that is of the designer's interest. The results after the two-phase application of the multi objective genetic algorithm were then presented. 13 refs., 4 tabs., 3 figs.
OPTIMIZATION DESIGN OF GAS-PARTICLE TWO-PHASE AXIAL-FLOW FAN
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Based on the shaping theory of writhed blade in streamline design, the geometric shape of blade is designed and then computational formulas for the dynamic design of fan with writhed the blades in gas-particle two-phase axial-flow are derived with the two-phase continuum coupling model. Concurrently, the correlation between the structure of impeller and flow-field dynamic functional parameters is presented. Further, the software for the optimization design of gas-particle two-phase axial-flow fan with writhed blades is obtained. By means of the available software, a sample fan is formed with its all dynamic characteristic curves and geometric shape. Finally, the conclusion on the effect of particles on fan running is reached, quantitatively and qualitatively, as is expected in the fan industry.
Numerical simulation of the two-phase flows in a hydraulic coupling by solving VOF model
Luo, Y.; Zuo, Z. G.; Liu, S. H.; Fan, H. G.; Zhuge, W. L.
2013-12-01
The flow in a partially filled hydraulic coupling is essentially a gas-liquid two-phase flow, in which the distribution of two phases has significant influence on its characteristics. The interfaces between the air and the liquid, and the circulating flows inside the hydraulic coupling can be simulated by solving the VOF two-phase model. In this paper, PISO algorithm and RNG k-ɛ turbulence model were employed to simulate the phase distribution and the flow field in a hydraulic coupling with 80% liquid fill. The results indicate that the flow forms a circulating movement on the torus section with decreasing speed ratio. In the pump impeller, the air phase mostly accumulates on the suction side of the blades, while liquid on the pressure side; in turbine runner, air locates in the middle of the flow passage. Flow separations appear near the blades and the enclosing boundaries of the hydraulic coupling.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume II. Chapters 6-10)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume III. Chapters 11-14)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume IV. Chapters 15-19)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume I. Chapters 1-5)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Numerical investigation of the mechanism of two-phase flow instability in parallel narrow channels
Energy Technology Data Exchange (ETDEWEB)
Hu, Lian [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University (China); Chen, Deqi, E-mail: chendeqi@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University (China); CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Huang, Yanping, E-mail: hyanping007@163.com [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Yuan, Dewen; Wang, Yanling [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Pan, Liangming [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University (China)
2015-06-15
Highlights: • A mathematical model is proposed to predict the two-phase flow instability. • The mathematical model predicted result agrees well with the experimental result. • Oscillation characteristics of the two-phase flow instability is discussed in detail. - Abstract: In this paper, the mechanism of two-phase flow instability in parallel narrow channels is studied theoretically, and the characteristic of the flow instability is discussed in detail. Due to the significant confining effect of the narrow channel on the vapor–liquid interface, the two-phase flow resistance in the narrow channel is probably different from that in conventional channel. Therefore, the vapor confined number (N{sub conf}), defined by the size of narrow channel and bubble detachment diameter, is considered in the “Chisholm B model” to investigate the two-phase flow pressure drop. The flow instability boundaries are plotted in parameter plane with phase-change-number (N{sub pch}) and subcooling-number (N{sub sub}) under different working conditions. It is found that the predicted result agrees well with the experimental result. According to the predicted result, the oscillation behaviors near the flow instability boundary indicate that the Supercritical Hopf bifurcation appears in high sub-cooled region and the Subcritical Hopf bifurcation appears in low sub-cooled region. Also, a detailed analysis about the effects of key parameters on the characteristic of two-phase flow instability and the flow instability boundary is proposed, including the effects of inlet subcooling, heating power, void distribution parameter and drift velocity.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Based on the Biot's theory about two-phase saturated medium, according to the character of d function, the Green function on two-phase saturated medium by the point source under concentrated force can be derived. By the Betti's theorem for the two-phase saturated medium field, the source vector and static displacement field by elastic dislocation on the two-phase saturated medium were comprehensively discussed.
RESEARCH ON THE FLOW STABILITY IN A CYLINDRICAL PARTICLE TWO-PHASE BOUNDARY LAYER
Institute of Scientific and Technical Information of China (English)
林建忠; 聂德明
2003-01-01
Based on the momentum and constitutive equations, the modified Orr-Sommerfeld equation describing the flow stability in a cylindrical particle two-phase flow was derived. For a cylindrical particle two-phase boundary layer, the neutral stability curves and critical Reynolds number were given with numerical simulation. The results show that the cylindrical particles have a suppression effect on the flow instability, the larger the particle volume fraction and the particle aspect-ratio are, the more obvious the suppression effect is.
Investigation on two-phase flow instability in steam generator of integrated nuclear reactor
Institute of Scientific and Technical Information of China (English)
无
1996-01-01
In the pressure range of 3-18MPa,high pressure steam-water two-phase flow density wave instability in vertical upward parallel pipes with inner diameter of 12mm is studied experimentally.The oscillation curves of two-phase flow instability and the effects of several parameters on the oscillation threshold of the system are obtained.Based on the small pertubation linearization method and the stability principles of automatic control system,a mathematical model is developed to predict the characteristics of density wave instability threshold.The predictions of the model are in good agreement with the experimental results.
Position Control of Synchronous Motor Drive by Modified Adaptive Two-phase Sliding Mode Controller
Institute of Scientific and Technical Information of China (English)
Mohamed Said Sayed Ahmed; Ping Zhang; Yun-Jie Wu
2008-01-01
A modified adaptive two-phase sliding mode controller for the synchronous motor drive that is highly robust to uncertain-ties and external disturbances is proposed in this paper. The proposed controller uses two-phase sliding mode control (SMC) where the 1st phase mainly controls the system in steady states and disturbed states-it is a smoothing phase. The 2nd phase is used mainly in the case of disturbed states. Also, it is an autotuning phase and uses a simple adaptive algorithm to tune the gain of conventional variable structure control (VSC). The modified controller is useful in position control of a permanent magnet synchronous drive.
Film boiling on spheres in single- and two-phase flows.
Energy Technology Data Exchange (ETDEWEB)
Liu, C.; Theofanous, T. G.
2000-08-29
Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40 C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900 C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1 - {alpha}){sup 1/4} (with a being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multi-sphere structure on the film boiling heat transfer in single- and two-phase flows.
A phenomenological model of two-phase (air/fuel droplet developing and breakup
Directory of Open Access Journals (Sweden)
Pavlović Radomir R.
2013-01-01
Full Text Available Effervescent atomization namely the air-filled liquid atomization comprehends certain complex two-phase phenomenon that are difficult to be modeled. Just a few researchers have found the mathematical expressions for description of the complex atomization model of the two-phase mixture air/diesel fuel. In the following review, developing model of twophase (air/fuel droplet of Cummins spray pump-injector is shown. The assumption of the same diameters of the droplet and the opening of the atomizer is made, while the air/fuel mass ratio inside the droplet varies.
Camomile autofermentation in polyethylene glycol/dextran two-phase system
Directory of Open Access Journals (Sweden)
Đaković Sanja D.
2008-01-01
Full Text Available The objective of this study was the investigation of the extractive bioconversion of apigenin-7-O-β-glucoside in camomile ligulate flowers into apigenin by autofermentation in polyethylene glycol 6000/dextran 200000 two-phase system. In 22.5% polyethylene glycol/14% dextran aqueous two-phase system the obtained yield of apigenin in the top phase was 96.5%. In the presence of plant material that partiotioned to the interphase, the yield of apigenin in the top phase was 3.5 times higher in comparison to the model system.
Preliminary Two-Phase Terry Turbine Nozzle Models for RCIC Off-Design Operation Conditions
Energy Technology Data Exchange (ETDEWEB)
Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, James [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2017-06-12
This report presents the effort to extend the single-phase analytical Terry turbine model to cover two-phase off-design conditions. The work includes: (1) adding well-established two-phase choking models – the Isentropic Homogenous Equilibrium Model (IHEM) and Moody’s model, and (2) theoretical development and implementation of a two-phase nozzle expansion model. The two choking models provide bounding cases for the two-phase choking mass flow rate. The new two-phase Terry turbine model uses the choking models to calculate the mass flow rate, the critical pressure at the nozzle throat, and steam quality. In the divergent stage, we only consider the vapor phase with a similar model for the single-phase case by assuming that the liquid phase would slip along the wall with a much slower speed and will not contribute the impulse on the rotor. We also modify the stagnation conditions according to two-phase choking conditions at the throat and the cross-section areas for steam flow at the nozzle throat and at the nozzle exit. The new two-phase Terry turbine model was benchmarked with the same steam nozzle test as for the single-phase model. Better agreement with the experimental data is observed than from the single-phase model. We also repeated the Terry turbine nozzle benchmark work against the Sandia CFD simulation results with the two-phase model for the pure steam inlet nozzle case. The RCIC start-up tests were simulated and compared with the single-phase model. Similar results are obtained. Finally, we designed a new RCIC system test case to simulate the self-regulated Terry turbine behavior observed in Fukushima accidents. In this test, a period inlet condition for the steam quality varying from 1 to 0 is applied. For the high quality inlet period, the RCIC system behaves just like the normal operation condition with a high pump injection flow rate and a nominal steam release rate through the turbine, with the net addition of water to the primary system; for
Two-phase flow stability structure in a natural circulation system
Energy Technology Data Exchange (ETDEWEB)
Zhou, Zhiwei [Nuclear Engineering Laboratory Zurich (Switzerland)
1995-09-01
The present study reports a numerical analysis of two-phase flow stability structures in a natural circulation system with two parallel, heated channels. The numerical model is derived, based on the Galerkin moving nodal method. This analysis is related to some design options applicable to integral heating reactors with a slightly-boiling operation mode, and is also of general interest to similar facilities. The options include: (1) Symmetric heating and throttling; (2) Asymmetric heating and symmetric throttling; (3) Asymmetric heating and throttling. The oscillation modes for these variants are discussed. Comparisons with the data from the INET two-phase flow stability experiment have qualitatively validated the present analysis.
Research of Characteristics of Gas-liquid Two-phase Pressure Drop in Microreactor
Li Dan
2015-01-01
With the research system of nitrogen and deionized water, this paper researches the pressure drop of gas-liquid two-phase flow in the circular microchannel with an inner diameter which is respectively 0.9mm and 0.5mm, analyzes the effect of microchannel diameter on gas-liquid two-phase frictional pressure drop in the microchannel reactor, and compares with the result of frictional pressure drop and the predicting result of divided-phase flow pattern. The result shows that, the gas-liquid two-...
Two-Phase Flow in Geothermal Wells: Development and Uses of a Good Computer Code
Energy Technology Data Exchange (ETDEWEB)
Ortiz-Ramirez, Jaime
1983-06-01
A computer code is developed for vertical two-phase flow in geothermal wellbores. The two-phase correlations used were developed by Orkiszewski (1967) and others and are widely applicable in the oil and gas industry. The computer code is compared to the flowing survey measurements from wells in the East Mesa, Cerro Prieto, and Roosevelt Hot Springs geothermal fields with success. Well data from the Svartsengi field in Iceland are also used. Several applications of the computer code are considered. They range from reservoir analysis to wellbore deposition studies. It is considered that accurate and workable wellbore simulators have an important role to play in geothermal reservoir engineering.
Determination of production-shipment policy using a two-phase algebraic approach
Directory of Open Access Journals (Sweden)
Huei-Hsin Chang
2012-04-01
Full Text Available The optimal production-shipment policy for end products using mathematicalmodeling and a two-phase algebraic approach is investigated. A manufacturing systemwith a random defective rate, a rework process, and multiple deliveries is studied with thepurpose of deriving the optimal replenishment lot size and shipment policy that minimisestotal production-delivery costs. The conventional method uses differential calculus on thesystem cost function to determine the economic lot size and optimal number of shipmentsfor such an integrated vendor-buyer system, whereas the proposed two-phase algebraicapproach is a straightforward method that enables practitioners who may not havesufficient knowledge of calculus to manage real-world systems more effectively.
The performance of a cryogenic pump for the two-phase flow condition
YAMADA, HITOSHI; WATANABE, Mitsuo; Hasegawa, Satoshi; Kamijo, Kenjiro; 山田, 仁; 渡辺, 光男; 長谷川, 敏; 上條, 謙二郎
1985-01-01
An experimental investigation was carried out in order to obtain the performance characteristics of a cryogenic pump under a two-phase flow condition. The experiment used an oxygen pump with an inducer and liquid nitrogen as the test fluid. The vapor volumetric fraction at the pump inlet was calculated with an assumption of a constant enthalpy process across an orifice which was used to generate the two-phase flow at the pump inlet. The results showed that the pump head rise did hardly decrea...
Estimation of flow velocity for a debris flow via the two-phase fluid model
Directory of Open Access Journals (Sweden)
S. Guo
2014-06-01
Full Text Available The two-phase fluid model is applied in this study to calculate the steady velocity of a debris flow along a channel bed. By using the momentum equations of the solid and liquid phases in the debris flow together with an empirical formula to describe the interaction between two phases, the steady velocities of the solid and liquid phases are obtained theoretically. The comparison of those velocities obtained by the proposed method with the observed velocities of two real-world debris flows shows that the proposed method can estimate accurately the velocity for a debris flow.
Characterization of annular two-phase gas-liquid flows in microgravity
Bousman, W. Scott; Mcquillen, John B.
1994-01-01
A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.
Two-dimensional Rarefaction Waves in the High-speed Two-phase Flow
Nakagawa, Masafumi; Harada, Atsushi
Two-phase flow nozzles are used in the total flow system for geothermal power plants and in the ejector of the refrigerant cycle, etc. One of the most important functions of a two-phase flow nozzle is to convert the thermal energy to the kinetic energy of the two-phase flow. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. There exist the shock waves or rarefaction waves at the outlet of a supersonic nozzle in the case of non-best fitting expansion conditions when the operation conditions of the nozzle are widely chosen. The purpose of the present study is to elucidate theoretically the character of the rarefaction waves at the outlet of the supersonic two-phase flow nozzle. Two-dimensional basic equations for the compressible two-phase flow are introduced considering the inter-phase momentum transfer. Sound velocities are obtained from these equations by using monochromatic wave approximation. Those depend on the relaxation time that determines the momentum transfer. The two-phase flow with large relaxation times has a frozen sound velocity, and with small one has an equilibrium sound velocity. Rarefaction waves which occurred behind the two-phase flow nozzle are calculated by the CIP method. Although the frozen Mach number, below one, controls these basic equations, the rarefaction waves appeared for small relaxation time. The Mach line behind which the expansion starts depends on the inlet velocity and the relaxation time. Those relationships are shown in this paper. The pressure expansion curves are only a function of the revolution angle around the corner of the nozzle outlet for the relaxation time less than 0.1. For the larger relaxation time, the pressure decays because of internal friction caused by inter phase momentum transfer, and the expansion curves are a function of not only the angle but also the flow direction. The calculated expansion curves are compared with the experimental ones
Conceptual design of two-phase fluid mechanics and heat transfer facility for spacelab
North, B. F.; Hill, M. E.
1980-01-01
Five specific experiments were analyzed to provide definition of experiments designed to evaluate two phase fluid behavior in low gravity. The conceptual design represents a fluid mechanics and heat transfer facility for a double rack in Spacelab. The five experiments are two phase flow patterns and pressure drop, flow boiling, liquid reorientation, and interface bubble dynamics. Hardware was sized, instrumentation and data recording requirements defined, and the five experiments were installed as an integrated experimental package. Applicable available hardware was selected in the experiment design and total experiment program costs were defined.
Energy Technology Data Exchange (ETDEWEB)
Mohammadi, M. [Petroleum Univ. of Technology, Ahwaz (Iran, Islamic Republic of). Gas Engineering Dept.
2006-07-01
Liquid holdup in pipelines refers to the fraction of pipe that is occupied by liquid. Accurate prediction of liquid holdup associated with multiphase flow is important for the design and operation of modern petroleum production systems. Multiphase flow refers to the concurrent flow of 2 or more phases, liquid, solid or gas, where motion affects the interface between the phases. The ability to predict liquid holdup makes it possible to calculate a pressure gradient based on a two-phase friction factor. However, this approach is dependent on the accuracy of flow pattern predictions and is subject to discontinuities in predictions made across flow pattern transition boundaries. Artificial neural networks (ANN) are computing tools that can recognize complex patterns within available data. ANN has been used successfully to solve many difficult engineering problems including multiphase flow problems that involve pressure drop, flow pattern identification and liquid holdup. This study used a 3-layer backpropagation ANN model for predicting the liquid holdup in gas-liquid two-phase flow at all ranges of pipe inclinations. Five independent sets of experimental data were used, covering a wide range of variables such as inclination from horizontal, pipe diameter, gas and liquid superficial velocity, liquid viscosity, density and surface tension. The model is independent of flow pattern determination and uses an individual method for all conditions. Experimental results have shown that the newly developed model can accurately predict liquid holdup in terms of the lowest absolute average percent error, the lowest standard deviation and the highest correlation coefficient. This study confirmed the power of ANN models in solving complicated engineering problems. 28 refs., 5 tabs., 4 figs., 1 appendix.
Moving boundary problems for the Harry Dym equation and its reciprocal associates
Rogers, Colin
2015-12-01
Moving boundary problems of generalised Stefan type are considered for the Harry Dym equation via a Painlevé II symmetry reduction. Exact solutions of such nonlinear boundary value problems are obtained in terms of Yablonski-Vorob'ev polynomials corresponding to an infinite sequence of values of the Painlevé II parameter. The action of two kinds of reciprocal transformation on the moving boundary problems is described.
Comparison of two-phase and three-phase methanol synthesis processes
van de Graaf, G.H; Beenackers, A.A C M
1996-01-01
A comparison is made between the ICI (two-phase) methanol synthesis process and a three-phase slurry process based on a multi-stage agitated reactor. The process calculations are based on a complete reactor system consisting of the reactor itself, a recycling system and a gas-liquid separator. The b
Pressure Buildup Analysis for Two-Phase Geothermal Wells: Application to the Baca Geothermal Field
Riney, T. D.; Garg, S. K.
1985-03-01
The recently published pressure transient analysis methods for two-phase geothermal wells are employed to analyze the pressure buildup data for several wells located in the Redondo Creek area of the Baca geothermal field in New Mexico. The downhole drilling information and pressure/temperature surveys are first interpreted to locate zones at which fluid enters the well bore from the formation and to estimate the initial reservoir temperature and pressure in these zones. All of the Baca wells considered here induced flashing in the formation upon production. Interpretation of the buildup data for each well considers well bore effects (e.g., phase change in the well bore fluid and location of the pressure sensor with respect to the permeable horizon) and the carbon dioxide content of the fluid and its effects on the phase behavior of the reservoir fluids and differentiates between the single- and two-phase portions of the pressure buildup data. Different straight-line approximations to the two portions (i.e., single- and two-phase) of the data on the Homer plot are used to obtain corresponding estimates for the single- and two-phase mobilities. Estimates for the formation permeability-thickness (kH) product are also given.
Vincent, Charles C.J.; Kok, Jacobus B.W.
1992-01-01
The two-phase closed loop thermosyphon is investigated with emphasis on the overall performance in transient operation. The control volume approach is the base of a global analysis describing the motion of vapor and liquid phases of the thermosyphon system in one-dimensional equations. Interfacial s
Affinity partitioning of human antibodies in aqueous two-phase systems
Rosa, P. A. J.; Azevedo, A. M.; Ferreira, I. F.; de Vries, J.; Korporaal, R.; Verhoef, H. J.; Visser, T. J.; Aires-Barros, M. R.
2007-01-01
The partitioning of human immunoglobulin (IgG) in a polymer-polymer and polymer-salt aqueous two-phase system (ATPS) in the presence of several functionalised polyethylene glycols (PEGs) was studied. As a first approach, the partition studies were performed with pure IgG using systems in which the t
Measurements of solids concentration and axial solids velocity in gas-solid two-phase flows.
Nieuwland, J.J.; Meijer, R.; Kuipers, J.A.M.; Swaaij, van W.P.M.
1996-01-01
Several techniques reported in the literature for measuring solids concentration and solids velocity in (dense) gas-solid two-phase flow have been briefly reviewed. An optical measuring system, based on detection of light reflected by the suspended particles, has been developed to measure local soli
A Dual-Stage Two-Phase Model of Selective Attention
Hubner, Ronald; Steinhauser, Marco; Lehle, Carola
2010-01-01
The dual-stage two-phase (DSTP) model is introduced as a formal and general model of selective attention that includes both an early and a late stage of stimulus selection. Whereas at the early stage information is selected by perceptual filters whose selectivity is relatively limited, at the late stage stimuli are selected more efficiently on a…
Two-phase (bio)catalytic reactions in a table-top centrifugal contact separator
Kraai, Gerard N.; Zwol, Floris van; Schuur, Boelo; Heeres, Hero J.; Vries, Johannes G. de
2008-01-01
A new spin on catalysis: A table-top centrifugal contact separator allows for fast continuous two-phase reactions to be performed by intimately mixing two immiscible phases and then separating them. Such a device has been used to produce biodiesel from sunflower oil and MeOH/NaOMe. A lipase-catalyze
Energy Technology Data Exchange (ETDEWEB)
Kang, Han-Ok; Han, Hun Sik; Kim, Young-In; Kim, Keung Koo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-05-15
Reduction of installation space for steam generators can lead to much smaller reactor vessel with resultant decrease of overall manufacturing cost for the components. A PCHE(Printed Circuit Heat Exchanger) is one of the compact types of heat exchangers available as an alternative to conventional shell and tube heat exchangers. Its name is derived from the procedure used to manufacture the flat metal plates that form the core of the heat exchanger, which is done by chemical milling. These plates are then stacked and diffusion bonded, converting the plates into a solid metal block containing precisely engineered fluid flow passages. PCSG(Printed Circuit Steam Generator) is a potential candidate to be applied to the integral reactor with its compactness and mechanical robustness. For the introduction of new steam generator, design requirement for the two-phase flow instability should be considered. This paper describes two-phase flow instability characteristics of PCSG for the low pressure condition. PCSG is a potential candidate to be applied to the integral reactor with its compactness and mechanical robustness. Interconnecting flow path was developed to mitigate the two-phase flow instability in the cold side. The flow characteristics of two-phase flow instability at the PCSG is examined experimentally in this study.
Comparison of two-phase and three-phase methanol synthesis processes
van de Graaf, G.H; Beenackers, A.A C M
1996-01-01
A comparison is made between the ICI (two-phase) methanol synthesis process and a three-phase slurry process based on a multi-stage agitated reactor. The process calculations are based on a complete reactor system consisting of the reactor itself, a recycling system and a gas-liquid separator. The
Lamb's integral formulas of two-phase saturated medium for soil dynamic with drainage
Institute of Scientific and Technical Information of China (English)
Bo-yang DING; Gai-hong DANG; Jin-hua YUAN
2010-01-01
When dynamic force is applied to a saturated porous soil,drainage is common.In this paper,the saturated porous soil with a two-phase saturated medium is simulated,and Lamb's integral formulas with drainage and stress formulas for a two-phase saturated medium are given based on Biot's equation and Betti's theorem(the reciprocal theorem).According to the basic solution to Biot's equation,Green's function Gij and three terms of Green's function G4i,Gi4,and G44 of a two-phase saturated medium subject to a concentrated force on a spherical coordinate are presented.The displacement field with drainage,the magnitude of drainage,and the pore pressure of the center explosion source are obtained in computation.The results of the classical Sharpe's solutions and the solutions of the two-phase saturated medium that decays to a single-phase medium are compared.Good agreement is observed.
Approaches to myosin modelling in a two-phase flow model for cell motility
Kimpton, L. S.; Whiteley, J. P.; Waters, S. L.; Oliver, J. M.
2016-04-01
A wide range of biological processes rely on the ability of cells to move through their environment. Mathematical models have been developed to improve our understanding of how cells achieve motion. Here we develop models that explicitly track the cell's distribution of myosin within a two-phase flow framework. Myosin is a small motor protein which is important for contracting the cell's actin cytoskeleton and enabling cell motion. The two phases represent the actin network and the cytosol in the cell. We start from a fairly general description of myosin kinetics, advection and diffusion in the two-phase flow framework, then identify a number of sub-limits of the model that may be relevant in practice, two of which we investigate further via linear stability analyses and numerical simulations. We demonstrate that myosin-driven contraction of the actin network destabilizes a stationary steady state leading to cell motion, but that rapid diffusion of myosin and rapid unbinding of myosin from the actin network are stabilizing. We use numerical simulation to investigate travelling-wave solutions relevant to a steadily gliding cell and we consider a reduction of the model in which the cell adheres strongly to the substrate on which it is crawling. This work demonstrates that a number of existing models for the effect of myosin on cell motility can be understood as different sub-limits of our two-phase flow model.
Theoretical aspects of electrical power generation from two-phase flow streaming potentials
Sherwood, J.D.; Xie, Yanbo; van den Berg, Albert; Eijkel, Jan C.T.
A theoretical analysis of the generation of electrical streaming currents and electrical power by two-phase flow in a rectangular capillary is presented. The injection of a second, non-conducting fluid phase tends to increase the internal electrical resistance of the electrical generator, thereby
Effects of Particles Collision on Separating Gas–Particle Two-Phase Turbulent Flows
Sihao, L. V.
2013-10-10
A second-order moment two-phase turbulence model incorporating a particle temperature model based on the kinetic theory of granular flow is applied to investigate the effects of particles collision on separating gas–particle two-phase turbulent flows. In this model, the anisotropy of gas and solid phase two-phase Reynolds stresses and their correlation of velocity fluctuation are fully considered using a presented Reynolds stress model and the transport equation of two-phase stress correlation. Experimental measurements (Xu and Zhou in ASME-FED Summer Meeting, San Francisco, Paper FEDSM99-7909, 1999) are used to validate this model, source codes and prediction results. It showed that the particles collision leads to decrease in the intensity of gas and particle vortices and takes a larger effect on particle turbulent fluctuations. The time-averaged velocity, the fluctuation velocity of gas and particle phase considering particles colli-sion are in good agreement with experimental measurements. Particle kinetic energy is always smaller than gas phase due to energy dissipation from particle collision. Moreover, axial– axial and radial–radial fluctuation velocity correlations have stronger anisotropic behaviors. © King Fahd University of Petroleum and Minerals 2013
Liquid-liquid extraction of enzymes by affinity aqueous two-phase systems
Directory of Open Access Journals (Sweden)
Xu Yan
2003-12-01
Full Text Available From analytical to commercial scale, aqueous two-phase systems have their application in the purification, characterization and study of biomaterials. In order to improve the selectivity of the systems, the biospecific affinity ligands were introduced. In the affinity partitioning aqueous two-phase system, have many enzymes been purified. This review discusses the partitioning of some enzymes in the affinity aqueous two-phase systems in regard to the different ligands, including reactive dyes, metal ions and other ligands. Some integration of aqueous two-phase system with other techniques for more effective purification of enzymes are also presented.Tanto em escala de laboratório como industrial, os sistemas de duas fases aquosas podem ser utilizados para a purificação, caracterização e estudos de biomateriais. Para aumentar a seletividade desse sistema, ligantes de afinidade bioespecíficos podem ser utilizados. No sistema de duas fases aquosas por afinidade, muitas enzimas podem ser purificadas. Neste artigo de revisão, a partição de algumas enzimas por esse tipo de afinidade, utilizando diferentes ligantes como corantes e íons metálicos, são discutidas. Além disso, a integração desse sistema de duas fases aquosas com outras técnicas de purificação estão sendo apresentados, com o objetivo mostrar a melhoria da eficiência do processo.
Two-phase (bio)catalytic reactions in a table-top centrifugal contact separator
Kraai, Gerard N.; Zwol, Floris van; Schuur, Boelo; Heeres, Hero J.; Vries, Johannes G. de
2008-01-01
A new spin on catalysis: A table-top centrifugal contact separator allows for fast continuous two-phase reactions to be performed by intimately mixing two immiscible phases and then separating them. Such a device has been used to produce biodiesel from sunflower oil and MeOH/NaOMe. A lipase-catalyze
Kraai, Gerard N.; Schuur, Boelo; van Zwol, Floris; Haak, Robert M.; Minnaard, Adriaan J.; Feringa, Ben L.; Heeres, Hero J.; de Vries, Johannes G.; Prunier, ML
2009-01-01
Production of fine chemicals is mostly performed in batch reactors. Use of continuous processes has many advantages which may reduce the cost of production. We have developed the use of centrifugal contact separators (CCSs) for continuous two-phase catalytic reactions. This equipment has previously
Visualization and research of gas-liquid two phase flow structures in cylindrical channel
Directory of Open Access Journals (Sweden)
Stefański Sebastian
2017-01-01
Full Text Available Two-phase flows are commonly found in many industries, especially in systems, where efficient and correct functioning depend on specific values of flow parameters. In thermal engineering and chemical technology the most popular types of two-phase mixture are gas-liquid or liquid-vapour mixtures. Bubbles can create in flow different structures and determine diverse properties of flow (velocity of phase, void fraction, fluctuations of pressure, pipe vibrations, etc.. That type of flow is difficult to observe, especially in liquid-vapour mixture, where vapour is being made by heating the medium. Production of vapour and nucleation process are very complicated issues, which are important part of two-phase flow phenomenon. Gas-liquid flow structures were observed and described with figures, but type of structure depends on many parameters. Authors of this paper made an attempt to simulate gas-liquid flow with air and water. In the paper there was presented specific test stand built to observe two-phase flow structures, methodology of experiment and conditions which were maintained during observation. The paper presents also the structures which were observed and the analysis of results with reference to theoretical models and diagrams available in literature.
Numerical Simulation of Hydrodynamic Wave Loading by a Compressible Two-Phase Model
Wemmenhove, R.; Loots, G.E.; Veldman, A.E.P.
2006-01-01
The numerical simulation of hydrodynamic wave loading on different types of offshore structures is important to predict forces on and water motion around these structures. This paper presents a numerical study of the effects of two-phase flow on an offshore structure subject to breaking waves. The
Lattice-Boltzmann-based two-phase thermal model for simulating phase change
Kamali, M.R.; Gillissen, J.J.J.; Van den Akker, H.E.A.; Sundaresan, S.
2013-01-01
A lattice Boltzmann (LB) method is presented for solving the energy conservation equation in two phases when the phase change effects are included in the model. This approach employs multiple distribution functions, one for a pseudotemperature scalar variable and the rest for the various species. A
Nonequilibrium capillarity effects in two-phase flow through porous media at different scales
Bottero, S.; Hassanizadeh, S.M.; Kleingeld, P.J.; Heimovaara, T.J.
2011-01-01
A series of primary drainage experiments was carried out in order to investigate nonequilibrium capillarity effects in two-phase flow through porous media. Experiments were performed with tetrachloroethylene (PCE) and water as immiscible fluids in a sand column 21 cm long. Four drainage experiments
Trapping and hysteresis in two-phase flow in porous media: A pore-network study
Joekar-Niasar, V.|info:eu-repo/dai/nl/30484229X; Doster, F.; Armstrong, R.T.; Wildenschild, D.; Celia, M.A.
2013-01-01
Several models for two-phase ﬂow in porous media identify trapping and connectivityof ﬂuids as an important contribution to macroscale hysteresis. This is especially true forhysteresis in relative permeabilities. The trapping models propose trajectories from theinitial saturation to the end saturati
Jafari, Davoud; Di Marco, Paolo; Filippeschi, Sauro; Franco, Alessandro
2017-01-01
Abstract Two-phase closed thermosyphons (TPCTs) are excellent thermal transfer devices that their integration into heat exchangers has been shown a strong potential for energy savings. The scope of this study is an experimental evaluation of the evaporation and condensation heat transfer of a TPCT
Effects of a two-phase oil-water mouthwash on halitosis.
Yaegaki, K; Sanada, K
1992-01-01
Many oral microorganisms possess hydrophobic outer surfaces. A two-phase, oil-water mouthwash has, therefore, recently been developed to remove such oral microorganisms. The oil phase consists of olive oil and other essential oils. The aqueous phase includes cetylpyridinium chloride, which is a disinfectant that promotes the adhesion of microorganisms to oil droplets. This study determined the effects of this mouthwash on the production of volatile sulfide in vivo and in vitro. Neither rinsing with water nor brushing teeth decreased the concentration of sulfide in mouth air at 3.5 h after treatment. A reduction of only 30% of sulfide was observed when a commercial mouthwash was used. However, this study demonstrated that use of the two-phase mouthwash led to approximately 80% reduction of sulfide. Furthermore, volatile sulfide and 2-ketobutyrate productions from methionine in a saliva putrefaction system were completely inhibited by the two-phase mouthwash; and consumption of methionine was decreased by 65 percent. It is concluded that the two-phase mouthwash strongly inhibits the production of volatile sulfide.
Gravity Effect on Two-Phase Immiscible Flows in Communicating Layered Reservoirs
DEFF Research Database (Denmark)
Zhang, Xuan; Shapiro, Alexander; Stenby, Erling Halfdan
2012-01-01
An upscaling method is developed for two-phase immiscible incompressible flows in layered reservoirs with good communication between the layers. It takes the effect of gravity into consideration. Waterflooding of petroleum reservoirs is used as a basic example for application of this method...... for gravity segregation. The effects of gravity are analyzed....
Generating a Two-Phase Lesson for Guiding Beginners to Learn Basic Dance Movements
Yang, Yang; Leung, Howard; Yue, Lihua; Deng, Liqun
2013-01-01
In this paper, an automated lesson generation system for guiding beginners to learn basic dance movements is proposed. It analyzes the dance to generate a two-phase lesson which can provide a suitable cognitive load thus offering an efficient learning experience. In the first phase, the dance is divided into small pieces which are patterns, and…
Forced Two-Phase Helium Cooling Scheme for the Mu2e Transport Solenoid
Energy Technology Data Exchange (ETDEWEB)
Tatkowski, G. [Fermilab; Cheban, S. [Fermilab; Dhanaraj, N. [Fermilab; Evbota, D. [Fermilab; Lopes, M. [Fermilab; Nicol, T. [Fermilab; Sanders, R. [Fermilab; Schmitt, R. [Fermilab; Voirin, E. [Fermilab
2015-01-01
The Mu2e Transport Solenoid (TS) is an S-shaped magnet formed by two separate but similar magnets, TS-u and TS-d. Each magnet is quarter-toroid shaped with a centerline radius of approximately 3 m utilizing a helium cooling loop consisting of 25 to 27 horizontal-axis rings connected in series. This cooling loop configuration has been deemed adequate for cooling via forced single phase liquid helium; however it presents major challenges to forced two-phase flow such as “garden hose” pressure drop, concerns of flow separation from tube walls, difficulty of calculation, etc. Even with these disadvantages, forced two-phase flow has certain inherent advantages which make it a more attractive option than forced single phase flow. It is for this reason that the use of forced two-phase flow was studied for the TS magnets. This paper will describe the analysis using helium-specific pressure drop correlations, conservative engineering approach, helium properties calculated and updated at over fifty points, and how the results compared with those in literature. Based on the findings, the use of forced-two phase helium is determined to be feasible for steady-state cooling of the TS solenoids
THE LINEAR HOMOGENEOUS FLOW MODEL FOR TWO-PHASE FLOW INSTABILITY IN BOILING CHANNELS
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
This paper presents liner homogeneous model describing two-phase flow instability. Dimensionless parameter η was derived by using the linear homogeneous model. Using parameter η the stability of a system could be easily judged. The calculated results agree with the experimental data well.
Extraction of peptide tagged cutinase in detergent-based aqueous two-phase systems
Rodenbrock, A.; Selber, K.; Egmond, M.R.; Kula, M.-R.
2010-01-01
Detergent-based aqueous two-phase systems have the advantage to require only one auxiliary chemical to induce phase separation above the cloud point. In a systematic study the efficiency of tryptophan-rich peptide tags was investigated to enhance the partitioning of an enzyme to the detergent-rich p
Model description of bactrial 3-methylcatechol production in one- and two-phase systems
Husken, L.E.; Hoogakker, J.; Bont, de J.A.M.; Tramper, J.; Beeftink, H.H.
2003-01-01
Pseudomonas putida MC2 produces 3-methylcatechol from toluene in aqueous medium. A second phase of 1-octanol may improve total product accumulation. To optimise the design of such a biphasic process, a process model was developed, both for one- and two-phase applications. The insights obtained by th
Multi-scale symbolic time reverse analysis of gas-liquid two-phase flow structures
Wang, Hongmei; Zhai, Lusheng; Jin, Ningde; Wang, Youchen
Gas-liquid two-phase flows are widely encountered in production processes of petroleum and chemical industry. Understanding the dynamic characteristics of multi-scale gas-liquid two-phase flow structures is of great significance for the optimization of production process and the measurement of flow parameters. In this paper, we propose a method of multi-scale symbolic time reverse (MSTR) analysis for gas-liquid two-phase flows. First, through extracting four time reverse asymmetry measures (TRAMs), i.e. Euclidean distance, difference entropy, percentage of constant words and percentage of reversible words, the time reverse asymmetry (TRA) behaviors of typical nonlinear systems are investigated from the perspective of multi-scale analysis, and the results show that the TRAMs are sensitive to the changing of dynamic characteristics underlying the complex nonlinear systems. Then, the MSTR analysis is used to study the conductance signals from gas-liquid two-phase flows. It is found that the multi-scale TRA analysis can effectively reveal the multi-scale structure characteristics and nonlinear evolution properties of the flow structures.
Milking microalga Dunaliella salina for Beta-carotene production in two-phase bioreactors
Hejazi, M.; Holwerda, E.; Wijffels, R.H.
2004-01-01
A new method was developed for production of beta-carotene from Dunaliella salina. Cells were grown in low light intensity and then transferred to a production bioreactor illuminated at a higher light intensity. It was a two-phase bioreactor consisting of an aqueous and a biocompatible organic phase
Lattice-Boltzmann-based two-phase thermal model for simulating phase change
Kamali, M.R.; Gillissen, J.J.J.; Van den Akker, H.E.A.; Sundaresan, S.
2013-01-01
A lattice Boltzmann (LB) method is presented for solving the energy conservation equation in two phases when the phase change effects are included in the model. This approach employs multiple distribution functions, one for a pseudotemperature scalar variable and the rest for the various species. A
Generating a Two-Phase Lesson for Guiding Beginners to Learn Basic Dance Movements
Yang, Yang; Leung, Howard; Yue, Lihua; Deng, Liqun
2013-01-01
In this paper, an automated lesson generation system for guiding beginners to learn basic dance movements is proposed. It analyzes the dance to generate a two-phase lesson which can provide a suitable cognitive load thus offering an efficient learning experience. In the first phase, the dance is divided into small pieces which are patterns, and…
Well logging interpretation of production profile in horizontal oil-water two phase flow pipes
Zhai, Lu-Sheng; Jin, Ning-De; Gao, Zhong-Ke; Zheng, Xi-Ke
2012-03-01
Due to the complicated distribution of local velocity and local phase hold up along the radial direction of pipe in horizontal oil-water two phase flow, it is difficult to measure the total flow rate and phase volume fraction. In this study, we carried out dynamic experiment in horizontal oil-water two phases flow simulation well by using combination measurement system including turbine flowmeter with petal type concentrating diverter, conductance sensor and flowpassing capacitance sensor. According to the response resolution ability of the conductance and capacitance sensor in different range of total flow rate and water-cut, we use drift flux model and statistical model to predict the partial phase flow rate, respectively. The results indicate that the variable coefficient drift flux model can self-adaptively tone the model parameter according to the oil-water two phase flow characteristic, and the prediction result of partial phase flow rate of oil-water two phase flow is of high accuracy.
23 CFR 636.202 - When are two-phase design-build selection procedures appropriate?
2010-04-01
... 23 Highways 1 2010-04-01 2010-04-01 false When are two-phase design-build selection procedures appropriate? 636.202 Section 636.202 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Selection Procedures, Award Criteria §...
Experimental study on two-phase flow pressure drop in small diameter bends
Directory of Open Access Journals (Sweden)
A.T. Autee
2016-09-01
Full Text Available Measurement of two-phase flow pressure drop and its prediction across curved tubes and bends is important for the enhancement of the performance and safety of the heat exchangers and flow transmitting devices. The comparative study of some of the available two-phase pressure drop correlations reveals that the predicted values of pressure drops by these leading methods may differ by large. The applicability of these correlations to the small diameter tubes of range 4.0–8.0 mm and different bend angles of the range 90–180° is not fully established. The basic objective of the present experimental investigation is to generate the experimental data to develop the unified correlation applicable for the small diameter tubes of range 4.0–8.0 mm and different bend angles of the range 90–180°. Hence, experimental facility was developed to conduct the experiments to generate the data and to assess the predictive capability of some of the available two-phase pressure drop correlations. It was observed that the correlations considered for comparisons were unable to satisfactorily predict the measured experimental data within the ±50% error bands. A new correlation is developed in terms of curvature multiplier to the straight tube two-phase pressure drop. The correlation is validated with the present measured experimental data. The statistical analysis suggests that correlation shows satisfactory results.
Two-phase flow-induced forces on bends in small scale tubes
Cargnelutti, M.F.; Belfroid, S.P.C.; Schiferli, W.
2010-01-01
Two-phase flow occurs in many situations in industry. Under certain circumstances, it can be a source of flow-induced vibrations. The forces generated can be sufficiently large to affect the performance or efficiency of an industrial device. In the worst-case scenario, the mechanical forces that ari
A simulation of the measurement of electrical conductivity in randomly generated two-phase rocks.
Mandolesi, Eric; Moorkamp, Max; Jones, Alan G.
2014-05-01
Geological models of the subsurface require detailed data, often unavailable from direct observation or well logs. Hence imaging the subsurface relies on models obtained by interpretation of geophysical data. Several electromagnetic (EM) geophysical methods focus on the EM properties of rocks and sediments to determine a reliable image of the subsurface, while the same electromagnetic properties are directly measured in laboratories. Often these laboratory measurements return equivocal results that are difficult to reconcile with field observations. Recently different numerical approaches have been investigated in order to understand the effects of the geometry and continuity of interconnected pathways of conductors on EM field measurements, often restricting the studies to direct current (DC) sources. Bearing in mind the time-varying nature of the natural electromagnetic sources that play a role in field measurements, we numerically simulate the effects of such EM sources on the conductivity measured on the surface of a randomly generated three-dimensional body embedded in a uniform host by using electromagnetic induction equations, thus simulating a magnetotelluric (MT) survey. A key point in such a simulation is the scalability of the problem: the deeper the target, the longer the period of the EM source is needed. On the other hand, a long period signal ignores small heterogeneous conductors in the target bulk of the material, averaging the different conductivities in a median value. Since most real rocks are poor conductors, we have modeled a two-phase mixture of rock and interconnected conductive elements (representing melts, saline fluids, sulphidic, carbonitic, or metallic sediments, etc.), randomly generated within the background host. We have compared the results from the simulated measurements with the target rock embedded at different depths with electrical conductivity predicted by both Hashin-Shtrikman (HS) bounds and an updated multi-phase Archie