WorldWideScience

Sample records for two-phase spherical electric

  1. A Two-Phase Spherical Electric Machine for Generating Rotating Uniform Magnetic Fields

    Science.gov (United States)

    2007-06-01

    the skin depth of copper, with /1 = /10 = 471" X 10-7 Henries/meter and (J = 5.8 X 107 Siemens /meter, for frequencies between one and 1000 Hz. The...pods that contain 21.5 MW Alstom electric motors [.51]. 7.3. FUTURE MACHINERY EXPERIMENTS 93 the flux leakage from large electric motors and to test

  2. Analytical solution of two-phase spherical Stefan problem by heat polynomials and integral error functions

    Science.gov (United States)

    Kharin, Stanislav N.; Sarsengeldin, Merey M.; Nouri, Hassan

    2016-08-01

    On the base of the Holm model, we represent two phase spherical Stefan problem and its analytical solution, which can serve as a mathematical model for diverse thermo-physical phenomena in electrical contacts. Suggested solution is obtained from integral error function and its properties which are represented in the form of series whose coefficients have to be determined. Convergence of solution series is proved.

  3. Exact solution of two phase spherical Stefan problem with two free boundaries

    Science.gov (United States)

    Kavokin, Alexey A.; Nauryz, Targyn; Bizhigitova, Nazerke T.

    2016-08-01

    Solution of the heat equation in a spherical domain with two free boundaries (two-phase Stefan problem) when one of the subdomains degenerates at the initial time is considered. The use of conventional finite-difference methods in these cases is not expedient because of the degenerate domain. The solution is found in the form of combination of Integral Error functions series, [M. Sarsengeldin, and S. Kharin, Filomat, (2016), (in Press)] and then recurrent solvability of nonlinear algebraic equations for determining the coefficients of the series is proved. Such problems are of practical interest for the simulation of laser material processing as well for the modeling of thermal effects of electric arc that ignites during the opening of electric contacts [S. N. Kharin, and M. Sarsengeldin, Influence of contact materials on phenomena in a short electrical arc, in Key Engineering Materials, Trans tech publications, Islamabad, Pakistan, 2012, pp. 321-329].

  4. Novel Electrically Small Spherical Electric Dipole Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    of 72 ohms is numerically investigated and its performance is compared to that of the multiarm spherical helix antenna of the same size. Both antennas yield equal quality factors, which are about 1.5 times the Chu lower bound, but quite different cross-polarization characteristics.......This paper introduces a novel electrically small spherical meander antenna. Horizontal sections of the meander are composed of wire loops, radii of which are chosen so that the whole structure is conformal to a sphere of radius a. To form the meander the loops are connected by wires at a meridian...... plane. The antenna operates as an electric dipole, i.e. it radiates the TM10 spherical mode. The antenna is self-resonant and can be matched to a wide range of input feed lines without an external matching network. In this paper, a spherical meander antenna of the size ka = 0.27 and the input impedance...

  5. Theoretical aspects of electrical power generation from two-phase flow streaming potentials

    NARCIS (Netherlands)

    Sherwood, J.D.; Xie, Yanbo; van den Berg, Albert; Eijkel, Jan C.T.

    A theoretical analysis of the generation of electrical streaming currents and electrical power by two-phase flow in a rectangular capillary is presented. The injection of a second, non-conducting fluid phase tends to increase the internal electrical resistance of the electrical generator, thereby

  6. 3D Printing Electrically Small Spherical Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2013-01-01

    3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....

  7. 3D Printing Electrically Small Spherical Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2013-01-01

    3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....

  8. Stability of Spherical Vesicles in Electric Fields

    Science.gov (United States)

    2010-01-01

    The stability of spherical vesicles in alternating (ac) electric fields is studied theoretically for asymmetric conductivity conditions across their membranes. The vesicle deformation is obtained from a balance between the curvature elastic energies and the work done by the Maxwell stresses. The present theory describes and clarifies the mechanisms for the four types of morphological transitions observed experimentally on vesicles exposed to ac fields in the frequency range from 500 to 2 × 107 Hz. The displacement currents across the membranes redirect the electric fields toward the membrane normal to accumulate electric charges by the Maxwell−Wagner mechanism. These accumulated electric charges provide the underlying molecular mechanism for the morphological transitions of vesicles as observed on the micrometer scale. PMID:20575588

  9. Electrical Capacitance Probe Characterization in Vertical Annular Two-Phase Flow

    Directory of Open Access Journals (Sweden)

    Grazia Monni

    2013-01-01

    Full Text Available The paper presents the experimental analysis and the characterization of an electrical capacitance probe (ECP that has been developed at the SIET Italian Company, for the measurement of two-phase flow parameters during the experimental simulation of nuclear accidents, as LOCA. The ECP is used to investigate a vertical air/water flow, characterized by void fraction higher than 95%, with mass flow rates ranging from 0.094 to 0.15 kg/s for air and from 0.002 to 0.021 kg/s for water, corresponding to an annular flow pattern. From the ECP signals, the electrode shape functions (i.e., the signals as a function of electrode distances in single- and two-phase flows are obtained. The dependence of the signal on the void fraction is derived and the liquid film thickness and the phase’s velocity are evaluated by means of rather simple models. The experimental analysis allows one to characterize the ECP, showing the advantages and the drawbacks of this technique for the two-phase flow characterization at high void fraction.

  10. Electrical Characterization of Spherical Copper Oxide Memristive Array Sensors

    Science.gov (United States)

    2014-03-27

    running, dinner-table debate etiquette, sailing, electric guitar, and the Seattle bus system, but only earned his Bachelor of Science in Electrical ... ELECTRICAL CHARACTERIZATION OF SPHERICAL COPPER OXIDE MEMRISTIVE ARRAY SENSORS THESIS James P. Orta, Second Lieutenant, USAF AFIT-ENP-14-M-40...not subject to copyright protection in the United States. AFIT-ENP-14-M-40 ELECTRICAL CHARACTERIZATION OF SPHERICAL COPPER OXIDE MEMRISTIVE ARRAY

  11. Low-order statistics of effective permittivity and electric field fluctuations in two-phase heterostructures

    Science.gov (United States)

    Shamoon, D.; Lasquellec, S.; Brosseau, C.

    2017-07-01

    Understanding the collective, low-frequency dielectric properties of heterostructures is a major goal in condensed matter. In 1935, Bruggeman [Ann. Phys. Lpz. 24, 636 (1935)] conceived the concept of an effective medium approximation (EMA) involving a decoupling between the low-order statistics of the electric field fluctuations and the characteristic length scales. We report on and characterize, via finite element studies, the low-order statistics effective permittivity of two-phase 2D and 3D random and deterministic heterostructures as geometry, phase permittivity contrast, and inclusion content are varied. Since EMA analytical expressions become cumbersome even for simple shapes and arrangements, numerical approaches are more suitable for studying heterostructures with complex shapes and topologies. Our numerical study verifies the EMA analytic predictions when the scales are well-separated. Our numerical study compares two approaches for calculating effective permittivity by explicit calculations of local average fields and energy as geometry, phase permittivity contrast, and inclusion content are varied. We study the conditions under which these approaches give a reliable estimate of permittivity by comparing with 2D/3D EMA analytical models and duality relation. By considering 2D checkerboards which consist of a multitude of contiguous N × N square cells, the influence of the internal length scale (i.e., N) on permittivity is discussed.

  12. Low-Q Electrically Small Spherical Magnetic Dipole Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    Three novel electrically small antenna configurations radiating a TE10 spherical mode corresponding to a magnetic dipole are presented and investigated: multiarm spherical helix (MSH) antenna, spherical split ring resonator (S-SRR) antenna, and spherical split ring (SSR) antenna. All three antennas...... are self-resonant, with the input resistance tuned to 50 ohms by an excitation curved dipole/monopole. A prototype of the SSR antenna has been fabricated and measured, yielding results that are consistent with the numerical simulations. Radiation quality factors (Q) of these electrically small antennas (in...

  13. Electrically small circularly polarized spherical antenna with air core

    DEFF Research Database (Denmark)

    Kim, O. S.

    2013-01-01

    An electrically small circularly polarized self-resonant spherical antenna with air core is presented. The antenna is a modified multiarm spherical helix exciting TM10 and TE10 spherical modes with equal radiated power, and thus yielding perfect circular polarization over the entire far......-field sphere (except the polar regions, where the radiation is low). The self-resonance is achieved by exciting higher-order TM modes, which provide the necessary electric stored energy in the near-field, while contributing negligibly to the far-field radiation of the antenna. The antenna has electrical size...

  14. Rapid Prototyping of Electrically Small Spherical Wire Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2014-01-01

    It is shown how modern rapid prototyping technologies can be applied for quick and inexpensive, but still accurate, fabrication of electrically small wire antennas. A well known folded spherical helix antenna and a novel spherical zigzag antenna have been fabricated and tested, exhibiting...

  15. A simulation of the measurement of electrical conductivity in randomly generated two-phase rocks.

    Science.gov (United States)

    Mandolesi, Eric; Moorkamp, Max; Jones, Alan G.

    2014-05-01

    Geological models of the subsurface require detailed data, often unavailable from direct observation or well logs. Hence imaging the subsurface relies on models obtained by interpretation of geophysical data. Several electromagnetic (EM) geophysical methods focus on the EM properties of rocks and sediments to determine a reliable image of the subsurface, while the same electromagnetic properties are directly measured in laboratories. Often these laboratory measurements return equivocal results that are difficult to reconcile with field observations. Recently different numerical approaches have been investigated in order to understand the effects of the geometry and continuity of interconnected pathways of conductors on EM field measurements, often restricting the studies to direct current (DC) sources. Bearing in mind the time-varying nature of the natural electromagnetic sources that play a role in field measurements, we numerically simulate the effects of such EM sources on the conductivity measured on the surface of a randomly generated three-dimensional body embedded in a uniform host by using electromagnetic induction equations, thus simulating a magnetotelluric (MT) survey. A key point in such a simulation is the scalability of the problem: the deeper the target, the longer the period of the EM source is needed. On the other hand, a long period signal ignores small heterogeneous conductors in the target bulk of the material, averaging the different conductivities in a median value. Since most real rocks are poor conductors, we have modeled a two-phase mixture of rock and interconnected conductive elements (representing melts, saline fluids, sulphidic, carbonitic, or metallic sediments, etc.), randomly generated within the background host. We have compared the results from the simulated measurements with the target rock embedded at different depths with electrical conductivity predicted by both Hashin-Shtrikman (HS) bounds and an updated multi-phase Archie

  16. Experimental measurement of oil-water two-phase flow by data fusion of electrical tomography sensors and venturi tube

    Science.gov (United States)

    Liu, Yinyan; Deng, Yuchi; Zhang, Maomao; Yu, Peining; Li, Yi

    2017-09-01

    Oil-water two-phase flows are commonly found in the production processes of the petroleum industry. Accurate online measurement of flow rates is crucial to ensure the safety and efficiency of oil exploration and production. A research team from Tsinghua University has developed an experimental apparatus for multiphase flow measurement based on an electrical capacitance tomography (ECT) sensor, an electrical resistance tomography (ERT) sensor, and a venturi tube. This work presents the phase fraction and flow rate measurements of oil-water two-phase flows based on the developed apparatus. Full-range phase fraction can be obtained by the combination of the ECT sensor and the ERT sensor. By data fusion of differential pressures measured by venturi tube and the phase fraction, the total flow rate and single-phase flow rate can be calculated. Dynamic experiments were conducted on the multiphase flow loop in horizontal and vertical pipelines and at various flow rates.

  17. Oil-water two-phase flow measurement with combined ultrasonic transducer and electrical sensors

    Science.gov (United States)

    Tan, Chao; Yuan, Ye; Dong, Xiaoxiao; Dong, Feng

    2016-12-01

    A combination of ultrasonic transducers operated in continuous mode and a conductance/capacitance sensor (UTCC) is proposed to estimate the individual flow velocities in oil-water two-phase flows. Based on the Doppler effect, the transducers measure the flow velocity and the conductance/capacitance sensor estimates the phase fraction. A set of theoretical correlations based on the boundary layer models of the oil-water two-phase flow was proposed to describe the velocity profile. The models were separately established for the dispersion flow and the separate flow. The superficial flow velocity of each phase is calculated with the velocity measured in the sampling volume of the ultrasonic transducer with the phase fraction through the velocity profile models. The measuring system of the UTCC was designed and experimentally verified on a multiphase flow loop. The results indicate that the proposed system and correlations estimate the overall flow velocity at an uncertainty of U J   =  0.038 m s-1, and the water superficial velocity at U Jw   =  0.026 m s-1, and oil superficial velocity at U Jo   =  0.034 m s-1. The influencing factors of uncertainty were analyzed.

  18. Gravitational and electric energies in collapse of spherically thin capacitor

    CERN Document Server

    Ruffini, Remo

    2013-01-01

    In our previous article (PHYSICAL REVIEW D 86, 084004 (2012)), we present a study of strong oscillating electric fields and electron-positron pair-production in gravitational collapse of a neutral stellar core at or over nuclear densities. In order to understand the back-reaction of such electric energy building and radiating on collapse, we adopt a simplified model describing the collapse of a spherically thin capacitor to give an analytical description how gravitational energy is converted to both kinetic and electric energies in collapse. It is shown that (i) averaged kinetic and electric energies are the same order, about an half of gravitational energy of spherically thin capacitor in collapse; (ii) caused by radiating and rebuilding electric energy, gravitational collapse undergoes a sequence of "on and off" hopping steps in the microscopic Compton scale. Although such a collapse process is still continuous in terms of macroscopic scales, it is slowed down as kinetic energy is reduced and collapsing tim...

  19. Minimum Q circularly polarized electrically small spherical antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2011-01-01

    The radiation problem for the TM10- and TE10-mode electric current densities on the surface of a spherical magnetic-coated PEC core is solved analytically. The combination of the electric and magnetic dipole modes reduces the radiation Q of the antenna. Moreover, with an appropriately designed ma...... spherical helix antenna with a magnetic-coated PEC core radiating both TM10 and TE10 spherical modes exhibits a perfect circular polarization in almost all directions. The antenna is self-resonant with the radiation Q being 0.67QChu, or 1.27Qdual.......The radiation problem for the TM10- and TE10-mode electric current densities on the surface of a spherical magnetic-coated PEC core is solved analytically. The combination of the electric and magnetic dipole modes reduces the radiation Q of the antenna. Moreover, with an appropriately designed...... magnetic-coated PEC core the stored energies of these modes balance each other making the antenna self-resonant and at the same time ensuring a perfect circularly polarized radiation. Numerical results for a practical dual-mode electrically small antenna confirm the theoretical predictions. A 4-arm...

  20. Minimum Q Electrically Small Spherical Magnetic Dipole Antenna - Theory

    DEFF Research Database (Denmark)

    Breinbjerg, Olav; Kim, Oleksiy S.

    2009-01-01

    The stored energies, radiated power, and quality factor of a magnetic-dipole antenna, consisting of a spherical electrical surface current density enclosing a magnetic core, is obtained through direct spatial integration of the internally and externally radiated field expressed in terms of spheri...

  1. ELECTRICAL RESISTANCE IMAGING OF TWO-PHASE FLOW WITH A MESH GROUPING TECHNIQUE BASED ON PARTICLE SWARM OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    BO AN LEE

    2014-02-01

    Full Text Available An electrical resistance tomography (ERT technique combining the particle swarm optimization (PSO algorithm with the Gauss-Newton method is applied to the visualization of two-phase flows. In the ERT, the electrical conductivity distribution, namely the conductivity values of pixels (numerical meshes comprising the domain in the context of a numerical image reconstruction algorithm, is estimated with the known injected currents through the electrodes attached on the domain boundary and the measured potentials on those electrodes. In spite of many favorable characteristics of ERT such as no radiation, low cost, and high temporal resolution compared to other tomography techniques, one of the major drawbacks of ERT is low spatial resolution due to the inherent ill-posedness of conventional image reconstruction algorithms. In fact, the number of known data is much less than that of the unknowns (meshes. Recalling that binary mixtures like two-phase flows consist of only two substances with distinct electrical conductivities, this work adopts the PSO algorithm for mesh grouping to reduce the number of unknowns. In order to verify the enhanced performance of the proposed method, several numerical tests are performed. The comparison between the proposed algorithm and conventional Gauss-Newton method shows significant improvements in the quality of reconstructed images.

  2. A new two-phase homopolar switched reluctance motor for electric vehicle applications

    Science.gov (United States)

    Tsai, Mi-Ching; Huang, Chien-Chin; Huang, Zheng-Yi

    2003-12-01

    This paper presents a novel 2-phase homopolar switched reluctance motor (SRM), whose design successfully avoids dead-zone problems that afflict low cost 1- and/or 2-phase SRMs. Unlike conventional radial-winding-radial-gap motors, the proposed SRM has an interior stator that is of the pancake type with axial winding. Such a design allows for a high slot-fill factor and is suitable for implementation as a flat pancake-shaped stator. An efficient, compact prototype was produced with TMS320F240 DSP driving control unit. Experimental results indicate that the present SRM design has the potential to be used for electric bicycles and scooters.

  3. Minimum Q circularly polarized electrically small spherical antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2011-01-01

    The radiation problem for the TM10- and TE10-mode electric current densities on the surface of a spherical magnetic-coated PEC core is solved analytically. The combination of the electric and magnetic dipole modes reduces the radiation Q of the antenna. Moreover, with an appropriately designed...... magnetic-coated PEC core the stored energies of these modes balance each other making the antenna self-resonant and at the same time ensuring a perfect circularly polarized radiation. Numerical results for a practical dual-mode electrically small antenna confirm the theoretical predictions. A 4-arm...

  4. Preliminary evaluation of cryogenic two-phase flow imaging using electrical capacitance tomography

    Science.gov (United States)

    Xie, Huangjun; Yu, Liu; Zhou, Rui; Qiu, Limin; Zhang, Xiaobin

    2017-09-01

    The potential application of the 2-D eight-electrode electrical capacitance tomography (ECT) to the inversion imaging of the liquid nitrogen-vaporous nitrogen (LN2-VN2) flow in the tube is theoretically evaluated. The phase distribution of the computational domain is obtained using the simultaneous iterative reconstruction technique with variable iterative step size. The detailed mathematical derivations for the calculations are presented. The calculated phase distribution for the two detached LN2 column case shows the comparable results with the water-air case, regardless of the much reduced dielectric permittivity of LN2 compared with water. The inversion images of total eight different LN2-VN2 flow patterns are presented and quantitatively evaluated by calculating the relative void fraction error and the correlation coefficient. The results demonstrate that the developed reconstruction technique for ECT has the capacity to reconstruct the phase distribution of the complex LN2-VN2 flow, while the accuracy of the inversion images is significantly influenced by the size of the discrete phase. The influence of the measurement noise on the image quality is also considered in the calculations.

  5. Development of an electrical impedance computed tomographic two-phase flows analyzer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ovacik, L.; Jones, O.C.

    1998-08-01

    This report summarizes the work on the research project on this cooperative program between DOE and Hitachi, Ltd. Major advances were made in the computational reconstruction of images from electrical excitation and response data with respect to existing capabilities reported in the literature. A demonstration is provided of the imaging of one or more circular objects within the measurement plane with demonstrated linear resolution of six parts in two hundred. At this point it can be said that accurate excitation and measurement of boundary voltages and currents appears adequate to obtain reasonable images of the real conductivity distribution within a body and the outlines of insulating targets suspended within a homogeneous conducting medium. The quality of images is heavily dependent on the theoretical and numerical implementation of imaging algorithms. The overall imaging system described has the potential of being both fast and cost effective in comparison with alternative methods. The methods developed use multiple plate-electrode excitation in conjunction with finite element block decomposition, preconditioned voltage conversion, layer approximation of the third dimension and post processing of boundary measurements to obtain optimal boundary excitations. Reasonably accurate imaging of single and multiple targets of differing size, location and separation is demonstrated and the resulting images are better than any others found in the literature. Recommendations for future effort include the improvement in computational algorithms with emphasis on internal conductivity shape functions and the use of adaptive development of quadrilateral (2-D) or tetrahedral or hexahedral (3-D) elements to coincide with large discrete zone boundaries in the fields, development of a truly binary model and completion of a fast imaging system. Further, the rudimentary methods shown herein for three-dimensional imaging need improving.

  6. Effect of the application of an electric field on the performance of a two-phase loop device: preliminary results

    Science.gov (United States)

    Creatini, F.; Di Marco, P.; Filippeschi, S.; Fioriti, D.; Mameli, M.

    2015-11-01

    In the last decade, the continuous development of electronics has pointed out the need for a change in mind with regard to thermal management. In the present scenario, Pulsating Heat Pipes (PHPs) are novel promising two-phase passive heat transport devices that seem to meet all present and future thermal requirements. Nevertheless, PHPs governing phenomena are quite unique and not completely understood. In particular, single closed loop PHPs manifest several drawbacks, mostly related to the reduction of device thermal performance and reliability, i.e. the occurrence of multiple operational quasi-steady states. The present research work proposes the application of an electric field as a technique to promote the circulation of the working fluid in a preferential direction and stabilize the device operation. The tested single closed loop PHP is made of a copper tube with an inner tube diameter equal to 2.00 mm and filled with pure ethanol (60% filling ratio). The electric field is generated by a couple of wire-shaped electrodes powered with DC voltage up to 20 kV and laid parallel to the longitudinal axis of the glass tube constituting the adiabatic section. Although the electric field intensity in the working fluid region is weakened both by the polarization phenomenon of the working fluid and by the interposition of the glass tube, the experimental results highlight the influence of the electric field on the device thermal performance and encourage the continuation of the research in this direction.

  7. Spherical magnetic nanoparticles fabricated by electric explosion of wire

    Science.gov (United States)

    Kurlyandskaya, G. V.; Bhagat, S. M.; Safronov, A. P.; Beketov, I. V.; Larrañaga, A.

    2011-12-01

    We report the first use of an electrophysical method of electric explosion of wire for preparing magnetic nanoparticles of iron oxide. X-ray diffraction, transmission electron microscopy, magnetization and magnetic resonance measurements were comparatively analyzed. They indicated that the shape of magnetic nanoparticles is close to being spherical. The production order of 100g per hour by this method is advantageous when a large amount of material is needed for applications.

  8. Effect of Electric Field on Outwardly Propagating Spherical Flame

    KAUST Repository

    Mannaa, Ossama

    2012-06-01

    The thesis comprises effects of electric fields on a fundamental study of spheri­cal premixed flame propagation.Outwardly-propagating spherical laminar premixed flames have been investigated in a constant volume combustion vessel by applying au uni-directional electric potential.Direct photography and schlieren techniques have been adopted and captured images were analyzed through image processing. Unstretched laminar burning velocities under the influence of electric fields and their associated Markstein length scales have been determined from outwardly prop­agating spherical flame at a constant pressure. Methane and propane fuels have been tested to assess the effect of electric fields on the differential diffusion of the two fuels.The effects of varying equivalence ratios and applied voltages have been in­vestigated, while the frequency of AC was fixed at 1 KHz. Directional propagating characteristics were analyzed to identify the electric filed effect. The flame morphology varied appreciably under the influence of electric fields which in turn affected the burning rate of mixtures.The flame front was found to propagate much faster toward to the electrode at which the electric fields were supplied while the flame speeds in the other direction were minimally influenced. When the voltage was above 7 KV the combustion is markedly enhanced in the downward direction since intense turbulence is generated and as a result the mixing process or rather the heat and mass transfer within the flame front will be enhanced.The com­bustion pressure for the cases with electric fields increased rapidly during the initial stage of combustion and was relatively higher since the flame front was lengthened in the downward direction.

  9. Collective electric and magnetic plasmonic resonances in spherical nanoclusters.

    Science.gov (United States)

    Vallecchi, Andrea; Albani, Matteo; Capolino, Filippo

    2011-01-31

    We report an investigation on the optical properties of three-dimensional nanoclusters (NCs) made by spherical constellations of metallic nanospheres arranged around a central dielectric sphere, which can be realized and assembled by current state-of-the-art nanochemistry techniques. This type of NCs supports collective plasmon modes among which the most relevant are those associated with the induced electric and magnetic resonances. Combining a single dipole approximation for each nanoparticle and the multipole spherical-wave expansion of the scattered field, we achieve an effective characterization of the optical response of individual NCs in terms of their scattering, absorption, and extinction efficiencies. By this approximate model we analyze a few sample NCs identifying the electric and magnetic resonance frequencies and their dependence on the size and number of the constituent nanoparticles. Furthermore, we discuss the effective electric and magnetic polarizabilities of the NCs, and their isotropic properties. A homogenization method based on an extension of the Maxwell Garnett model to account for interaction effects due to higher order multipoles in dense packed arrays is applied to a distribution of NCs showing the possibility of obtaining metamaterials with very large, small, and negative values of permittivity and permeability, and even negative index.

  10. Electrical properties of spherical dipole antennas with lossy material cores

    DEFF Research Database (Denmark)

    Hansen, Troels Vejle; Kim, Oleksiy S.; Breinbjerg, Olav

    2012-01-01

    A spherical magnetic dipole antenna with a linear, isotropic, homogenous, passive, and lossy material core is modeled analytically, and closed form expressions are given for the internally stored magnetic and electric energies, the radiation efficiency, and radiation quality factor. This model...... size and permittivity, focusing on the effects of magnetic core losses for a simple magnetic dispersion model, to illustrate how stored energies, efficiency and quality factor are affected. This shows that large magnetic losses can be beneficial, as these can produce a relatively high efficiency....

  11. Minimum Q Electrically Small Spherical Magnetic Dipole Antenna - Practice

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    resonances of all other modes that are not sufficiently suppressed in the antenna. Numerical results for a 4-arm spherical helix antenna filled with magnetic material demonstrate the destroying effect of the parasitic TM11 mode on the antenna Q factor. Theoretical considerations as well as numerical results......Practical aspects of applying a magnetic core to approach the Chu lower bound for the radiation Q factor of an electrically small magnetic dipole antenna are considered. It is shown that although a magnetic core does reduce the Q factor, its effect is not as strong as predicted by Wheeler...... show that in a given range of magnetic permeabilities away from core resonances there is an optimum permeability for which the Q factor is lowest. In the given example, the antenna of the size ka~0.254 yields the Q ratio 1.28 times above the Chu lower bound....

  12. The use of rotating electric are for spherical particle production

    Directory of Open Access Journals (Sweden)

    Bica, Ion

    2000-08-01

    Full Text Available This work presents an experimental device designed to obtain spherical partióles by means of a rotating electric are. A rotation frequency of the electric are of 750 s-1, a voltage of 50 V (dc and a current of 100 A was used. The mass flow rate was 3 g.min-1. Under these conditions particles of 15 to 20 μm in diameter were obtained.

    Este trabajo presenta la instalación experimental destinada a la obtención de partículas esféricas utilizando un arco eléctrico rotatorio. Para ello se utilizó una frecuencia de rotación del arco eléctrico de 750 s-1 a un voltaje del arco de 50 V (cc y una corriente de 100 A. La velocidad de flujo de materia fue de 3 g.min-1 obteniéndose partículas de diámetros comprendidos entre 15 y 20 μm.

  13. Mathematical model of the two-phase flow in a vertical well with an electric centrifugal pump located in the permafrost region

    Science.gov (United States)

    Musakaev, N. G.; Borodin, S. L.

    2016-05-01

    The mathematical model of the two-phase flow in a vertical well with an electric centrifugal pump located in the permafrost region is presented. The comparison of the calculation's results with experimental data, the results of numerical experiments by determining the flow structure, the temperature distribution in a well, influence of the temperature distribution on paraffin deposition and change in time of the radius of thawing in the frozen ground are presented.

  14. Construction and characterization of spherical Si solar cells combined with SiC electric power inverter

    Science.gov (United States)

    Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2015-02-01

    Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.

  15. Spherical Ethylene/Air Diffusion Flames Subject to Concentric DC Electric Field in Microgravity

    Science.gov (United States)

    Yuan, Z. -G.; Hegde, U.; Faeth, G. M.

    2001-01-01

    It is well known that microgravity conditions, by eliminating buoyant flow, enable many combustion phenomena to be observed that are not possible to observe at normal gravity. One example is the spherical diffusion flame surrounding a porous spherical burner. The present paper demonstrates that by superimposing a spherical electrical field on such a flame, the flame remains spherical so that we can study the interaction between the electric field and flame in a one-dimensional fashion. Flames are susceptible to electric fields that are much weaker than the breakdown field of the flame gases owing to the presence of ions generated in the high temperature flame reaction zone. These ions and the electric current of the moving ions, in turn, significantly change the distribution of the electric field. Thus, to understand the interplay between the electric field and the flame is challenging. Numerous experimental studies of the effect of electric fields on flames have been reported. Unfortunately, they were all involved in complex geometries of both the flow field and the electric field, which hinders detailed study of the phenomena. In a one-dimensional domain, however, the electric field, the flow field, the thermal field and the chemical species field are all co-linear. Thus the problem is greatly simplified and becomes more tractable.

  16. Spherical active coated nano-particles – impact of the electric Hertzian dipole orientation

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Mostafavi, M.; Malureanu, Radu

    2011-01-01

    Spherical active coated nano-particles comprised of a silica nano-cylinder core covered with a plasmonic nano-shell are investigated with regard to their near- and far-field properties. The source of excitation is taken to be that of a tangential or a radial electric Hertizan dipole while three...

  17. Study of the Electrical Double Layer of a Spherical Micelle:Functional Theoretical Approach

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By using the iterative method in functional theory, an analytic expression of the Poisson-Boltzmann equation (PB eq.), which describes the distribution of the potential of electrical double layer of a spherical micelle, has been carried out under the general potential condition for the first time. The method also can give the radius, the surface potential, and the thickness of the layer.

  18. Reconstruction of electrical capacitance tomography images based on fast linearized alternating direction method of multipliers for two-phase flow system

    Institute of Scientific and Technical Information of China (English)

    Chongkun Xia; Chengli Su⁎; Jiangtao Cao; Ping Li

    2016-01-01

    Electrical capacitance tomography (ECT) has been applied to two-phase flow measurement in recent years. Image reconstruction algorithms play an important role in the successful applications of ECT. To solve the il-posed and nonlinear inverse problem of ECT image reconstruction, a new ECT image reconstruction method based on fast lin-earized alternating direction method of multipliers (FLADMM) is proposed in this paper. On the basis of theoretical analysis of compressed sensing (CS), the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section. A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge. A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function. Simulation data and experimental results indicate that compared with other methods, the quality and speed of reconstructed images are markedly improved. Also, the dynamic experimental results in-dicate that the proposed algorithm can fulfil the real-time requirement of ECT systems in the application.

  19. Effects of Oxide-Modified Spherical ZnO on Electrical Properties of Ag/ZnO Electrical Contact Material

    Science.gov (United States)

    Wei, Zhijun; Zhang, Lingjie; Shen, Tao; Qiao, Zhengyang; Yang, Hui; Fan, Xianping; Chen, Lawson

    2016-09-01

    Silver-zinc oxide (Ag/ZnO) electrical contact material is widely used as contacts of the medium duty switching devices. Effects of modified ZnO on properties of Ag/ZnO electrical contact material were investigated in this work. NiO and CuO were introduced to modify spherical ZnO by a chemical solution nano-coating method. Ag/ZnO contacts prepared using the modified spherical ZnO were produced by powder metallurgy (PM) method in a muffle furnace in temperature ranges from 750 to 900 °C. Results show that electrical conductivity, stability of relative density, and Vickers' hardness of Ag/ZnO electrical contact material can be improved by the addition of NiO because of the formation of NiO solid solution Zn0.2Ni0.8O. The addition of CuO to Ag/ZnO electrical contact material makes arcing energy and mass loss lower. Since this is attractive for a longer service life, using NiO and CuO co-modified ZnO as a second phase may be a promising way to improve properties of Ag/ZnO electrical contact material. Hence, the presented results could also be useful for the design of a new Ag/ZnO electrical contact material.

  20. Shaping of steel mold surface of lens array by electrical discharge machining with spherical ball electrode.

    Science.gov (United States)

    Takino, Hideo; Hosaka, Takahiro

    2016-06-20

    We propose a method for fabricating a spherical lens array mold by electrical discharge machining (EDM) with a ball-type electrode. The electrode is constructed by arranging conductive spherical balls in an array. To fundamentally examine the applicability of the proposed EDM method to the fabrication of lens array molds, we use an electrode having a single ball to shape a lens array mold made of stainless steel with 16 spherical elements, each having a maximum depth of 0.5 mm. As a result, a mold surface is successfully shaped with a peak-to-valley shape accuracy of approximately 10 μm, and an average surface roughness of 0.85 μm.

  1. Spherical harmonic series solution of fields excited by vertical electric dipole in earth-ionosphere cavity

    Institute of Scientific and Technical Information of China (English)

    Yuanxin WANG; Wensheng FAN; Weiyan PAN; Hongqi ZHANG

    2008-01-01

    The spherical harmonic series expression of electromagnetic fields excited by ELF/SLF vertical electric dipole in the spherical earth-ionosphere cavity is derived when the earth and ionosphere are regarded as non-ideal conductors. A method of speeding numerical convergence has been presented. The electromagnetic fields in the cavity are calculated by this algorithm, and the results show that the electromagnetic fields between the earth and the ionosphere are the sum of two traveling waves in the SLF band. Moreover, the results are in complete agreement with that of the well-known spherical second-order approximation in the SLF band. The electromagnetic fields in the cavity are a type of standing wave in the ELF band and the variation of the amplitude versus frequency coincides with Schumann's resonance.

  2. Two phase sampling

    CERN Document Server

    Ahmad, Zahoor; Hanif, Muhammad

    2013-01-01

    The development of estimators of population parameters based on two-phase sampling schemes has seen a dramatic increase in the past decade. Various authors have developed estimators of population using either one or two auxiliary variables. The present volume is a comprehensive collection of estimators available in single and two phase sampling. The book covers estimators which utilize information on single, two and multiple auxiliary variables of both quantitative and qualitative nature. Th...

  3. Experimental study of two-phase fluid flow in two different porosity types of sandstone by P-wave velocity and electrical Impedance measurement

    Science.gov (United States)

    Honda, H.; Mitani, Y.; Kitamura, K.; Ikemi, H.; Takaki, S.

    2015-12-01

    this study, we will discuss this mismatch by using fluid mechanical theory and numerical simulation of two-phase fluid flow in porous geological medium based on experimental results of two different types of sandstone.

  4. Frequency-dependent electrical conductivity of concentrated dispersions of spherical colloidal particles.

    Science.gov (United States)

    Bradshaw-Hajek, B H; Miklavcic, S J; White, L R

    2008-05-06

    This paper outlines the application of a self-consistent cell-model theory of electrokinetics to the problem of determining the electrical conductivity of a dense suspension of spherical colloidal particles. Numerical solutions of the standard electrokinetic equations, subject to self-consistent boundary conditions, are implemented in formulas for the electrical conductivity appropriate to the particle-averaged cell model of the suspension. Results of calculations as a function of frequency, zeta potential, volume fraction, and electrolyte composition, are presented and discussed.

  5. The effect of radial electric field on absorption in a quantum spherical layer

    CERN Document Server

    Arutyunyan, V A

    2002-01-01

    The electronic states in a quantized spherical layer are considered at the presence of the static radial field. The expressions for the energy spectrum and the wave functions of charge carriers are obtained. The coefficient of the electroabsorption has the resonant character while oscillations caused by the electric field are observed in each subband. The presence of the electric field results in absorption edge shifting into the short-wave range. The weak growth of the absorption coefficient is observed as the field increasing in each subband of dimensional quantization

  6. Study on the Radius of an Electrical Spherical Micelle:Functional Theoretical Approach

    Institute of Scientific and Technical Information of China (English)

    WANG,Zheng-Wu(王正武); HUANG,Dong-Yang(黄东阳); YI,Xi-Zhang(易希璋); LI,Gan-Zuo(李干佐)

    2004-01-01

    For the purpose of eliminating restriction,the Poisson-Boltzmann(PB)equation,which represents the potential of the electrical double layer of spherical micelles,can be solved analytically only under the lower potential condition,a kind of iterative method in functional analysis theory has been used.The radius of the spherical particle can be obtained from the diagram of the second iterative solution of the potential versus the distance from the center of the particle.The influences of the concentration of the ions,the charge number of ions,the aggregation number of the particle,the dielectric constant of solvent and the temperature of system on the radius also have been studied.

  7. Polyaniline-Doped Spherical Polyelectrolyte Brush Nanocomposites with Enhanced Electrical Conductivity, Thermal Stability, and Solubility Property

    Directory of Open Access Journals (Sweden)

    Na Su

    2015-09-01

    Full Text Available The synthesis procedure and dopant are crucial to the electrical conductivity, thermal stability, and solubility properties of polyaniline (PANI. In this paper, high-performance PANI was synthesized by means of chemical oxidative polymerization using anionic spherical polyelectrolyte brushes (ASPB as dopant. The bonding structure, crystallographic structure, morphology, and thermal stability of the conductive nanocomposite were analyzed by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, scanning electron microscopy (SEM, and thermo-gravimetric analysis (TGA respectively. Meanwhile, investigation on the electrical conductivity suggested that the room-temperature electrical conductivity of PANI doped with ASPB (PANI/ASPB was 19.3 S/cm, which was higher than that of PANI (7.0 S/cm, PANI doped with poly(sodium-p-styrenesulfonate (PSS (PANI/PSS (14.6 S/cm, PANI doped with SiO2 (PANI/SiO2 (18.2 S/cm, and PANI doped with canonic spherical polyelectrolyte brushes (CSPB (PANI/CSPB (8.0 S/cm. Meanwhile, the addition of ASPB improved the thermal stability and solubility properties of PANI. ASPB played the role of template. Conductive mechanism of PANI/ASPB nanocomposite can be explained by the theoretical models of three-dimensional variable range-hopping (3D VRH.

  8. Pressure distribution in an electrical conducting fluid in spherical form in the presence of crossed electrical and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Shchelukhin, E.M.; Tsarevskaya, I.I.; Bruskii, V.P.

    1977-01-01

    An examination is made of electromagnetic forces in an isotropic fluid having a spherical form with non-conducting walls in the presence of crossed electrical and magnetic fields. The problem was solved on the assumption that the fluid is in a quiescent state but that the magnetic field is uniform. Computations were made of static pressure distribution and the scalar potential of an electromagnetic field in a fluid. Experimental data are presented on the measurement of static pressure distributions which agree well with the theoretical calculations. The obtained results may be used for engineering estimates of pressure in technological MHD apparatus.

  9. Magnetic domains in multiferroic YMn$2O5 probed by Spherical Neutron Polarimetry under electric field

    Science.gov (United States)

    Vecchini, Carlo; Chapon, Laurent; Radaelli, Paolo; Daoud-Aladine, Aziz; Brown, Jane; Chatterji, Tapan; Park, Soonyong; Cheong, Sang-Wook

    2008-03-01

    Precise determination of the magnetic structures in multiferroics RMn2O5 (R: Y, Ho, Bi) have been obtained by single crystal neutron diffraction. The analysis shows the presence of zig-zag antiferromagnetic chains in the ab-plane. An additional weak magnetic component parallel to the c-axis was detected which is modulated in phase quadrature with the a-b components. The nature and population of the coexisting antiferromagnetic domains in YMn2O5 have been determined by Spherical Neutron Polarimetry under an external electric field. We have proved that reversing the electrical polarity results in the inversion of the population of two types of antiferromagnetic domains, with opposite in-plane spin components. This analysis strongly supports theories in which the coupling of the magnetic configuration to the ferroelectric polarisation is due to magnetic exchange striction and likely not related to the small cycloidal modulation in the bc-plane.

  10. Electrical four-point probing of spherical metallic thin films coated onto micron sized polymer particles

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Sigurd R., E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no; Stokkeland, August Emil; Zhang, Zhiliang; He, Jianying, E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Kristiansen, Helge [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway); Njagi, John; Goia, Dan V. [Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5814 (United States); Redford, Keith [Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway)

    2016-07-25

    Micron-sized metal-coated polymer spheres are frequently used as filler particles in conductive composites for electronic interconnects. However, the intrinsic electrical resistivity of the spherical thin films has not been attainable due to deficiency in methods that eliminate the effect of contact resistance. In this work, a four-point probing method using vacuum compatible piezo-actuated micro robots was developed to directly investigate the electric properties of individual silver-coated spheres under real-time observation in a scanning electron microscope. Poly(methyl methacrylate) spheres with a diameter of 30 μm and four different film thicknesses (270 nm, 150 nm, 100 nm, and 60 nm) were investigated. By multiplying the experimental results with geometrical correction factors obtained using finite element models, the resistivities of the thin films were estimated for the four thicknesses. These were higher than the resistivity of bulk silver.

  11. Measurements of plasma density fluctuations and electric wave fields using spherical electrostatic probes

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, A.I.; Bostroem, R.

    1995-04-01

    Spherical electrostatic probes are in wide use for the measurements of electric fields and plasma density. This report concentrates on the measurements of fluctuations of these quantities rather than background values. Potential problems with the technique include the influence of density fluctuations on electric field measurements and vice versa, effects of varying satellite potential, and non-linear rectification in the probe and satellite sheaths. To study the actual importance of these and other possible effects, we simulate the response of the probe-satellite system to various wave phenomena in the plasma by applying approximate analytical as well as numerical methods. We use a set of non-linear probe equations, based on probe characteristics experimentally obtained in space, and therefore essentially independent of any specific probe theory. This approach is very useful since the probe theory for magnetized plasmas is incomplete. 47 refs.

  12. A novel embeddable spherical smart aggregate for structural health monitoring: part I. Fabrication and electrical characterization

    Science.gov (United States)

    Kong, Qingzhao; Fan, Shuli; Bai, Xiaolong; Mo, Y. L.; Song, Gangbing

    2017-09-01

    Recently developed piezoceramic-based transducers, known as smart aggregates (SAs), have shown their applicability and versatility in various applications of structural health monitoring (SHM). The lead zirconate titanate (PZT) patches embedded inside SAs have different modes that are more suitable for generating or receiving different types of stress waves (e.g. P and S waves, each of which has a unique role in SHM). However, due to the geometry of the 2D PZT patch, the embedded SA can only generate or receive the stress wave in a single direction and thus greatly limits its applications. This paper is the first of a series of two companion papers that introduces the authors’ latest work in developing a novel, embeddable spherical smart aggregate (SSA) for the health monitoring of concrete structures. In addition to the 1D guided wave produced by SA, the SSA embedded in concrete structures can generate or receive omni-directional stress waves that can significantly improve the detection aperture and provide additional functionalities in SHM. In the first paper (Part I), the detailed fabrication procedures with the help of 3D printing technology and electrical characterization of the proposed SSA is presented. The natural frequencies of the SSA were experimentally obtained and further compared with the numerical results. In addition, the influence of the components’ thickness (spherical piezoceramic shell and epoxy) and outer radius (spherical piezoceramic shell and protection concrete) on the natural frequencies of the SSA were analytically studied. The results will help elucidate the key parameters that determine the natural frequencies of the SSA. The natural frequencies of the SSA can thus be designed for suitability in the damage detection of concrete structures. In the second paper (Part II), further numerical and experimental verifications on the performance of the proposed SSA in concrete structures will be discussed.

  13. Insight into the electrical properties and chain conformation of spherical polyelectrolyte brushes by dielectric spectroscopy

    Science.gov (United States)

    Guo, Xiaoxia; Zhao, Kongshuang

    2017-02-01

    We report here a dielectric study on three kinds of anionic spherical polyelectrolyte brush (SPBs, consisting of a polystyrene (PS) core and three different poly (acrylic acid) chains grafted onto the core) suspensions over a frequency ranging from 40 Hz to 110 MHz. The relaxation behavior of the SPB suspensions shows significant changes in the brush-layer properties when the mass fraction of SPBs and the pH of the suspensions change. Two definite relaxations related to the interfacial polarization are observed around 100 kHz and 10 MHz. A single-layer spherical-shell model is applied to describe the SPB suspensions wherein the suspended SPB is modeled as a spherical-shell composite particle in which an insulated PS sphere is surrounded by a conducting ion-permeable shell (the polyelectrolyte chain layer). We developed the curve-fitting procedure to analyze the dielectric spectrum in order to obtain the dielectric properties of the components of the SPBs, especially the properties of the polyelectrolyte brush. Based on this method and model, the permittivity and conductivity of the brush layer, ζ potential, etc are calculated. The ordered orientation of the water molecules in the layer leads to an additional electrical dipole moment; increasing pH causes the brush layer to swell. In addition, the repulsive force between the SPB particles are evaluated using the brush-layer thickness, which is obtained by fitting dielectric spectra, combined with relative theoretical formulas. Increasing PH values or SPB concentration would improve the stability of the SPBs dispersion.

  14. Polaron effect on the optical rectification in spherical quantum dots with electric field

    Science.gov (United States)

    Feng, Zhen-Yu; Yan, Zu-Wei

    2016-10-01

    The polaron effect on the optical rectification in spherical quantum dots with a shallow hydrogenic impurity in the presence of electric field is theoretically investigated by taking into account the interactions of the electrons with both confined and surface optical phonons. Besides, the interaction between impurity and phonons is also considered. Numerical calculations are presented for typical Zn1-x Cd x Se/ZnSe material. It is found that the polaronic effect or electric field leads to the redshifted resonant peaks of the optical rectification coefficients. It is also found that the peak values of the optical rectification coefficients with the polaronic effect are larger than without the polaronic effect, especially for smaller Cd concentrations or stronger electric field. Project supported by the National Natural Science Foundation of China (Grant No. 11364028), the Major Projects of the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2013ZD02), and the Project of “Prairie Excellent” Engineering in Inner Mongolia Autonomous Region, China.

  15. Optical and electrical properties of colloidal (spherical Au)-(spinel ferrite nanorod) heterostructures

    Science.gov (United States)

    George, Chandramohan; Genovese, Alessandro; Qiao, Fen; Korobchevskaya, Kseniya; Comin, Alberto; Falqui, Andrea; Marras, Sergio; Roig, Anna; Zhang, Yang; Krahne, Roman; Manna, Liberato

    2011-11-01

    We report here a simple synthetic route to Au-FexOy heterostructures in which spinel ferrite (FexOy) grows as a nanorod on a spherical gold (Au) seed. The large red shift in the plasmon resonance in the heterostructures could be explained by a dielectric effect (although we could not entirely exclude a contribution due to electron transfer from Au to defect states at the Au-FexOy interface), while the magnetic properties of the Au-FexOy heterostructures were basically the same as those of the corresponding nanocrystals after Au leaching. In films of Au-FexOy heterostructures the electrical conductivity appeared to be mediated by the Au domains.We report here a simple synthetic route to Au-FexOy heterostructures in which spinel ferrite (FexOy) grows as a nanorod on a spherical gold (Au) seed. The large red shift in the plasmon resonance in the heterostructures could be explained by a dielectric effect (although we could not entirely exclude a contribution due to electron transfer from Au to defect states at the Au-FexOy interface), while the magnetic properties of the Au-FexOy heterostructures were basically the same as those of the corresponding nanocrystals after Au leaching. In films of Au-FexOy heterostructures the electrical conductivity appeared to be mediated by the Au domains. Electronic supplementary information (ESI) available: TEM/HRTEM images of (i) aliquots at the earliest stages of the growth of Au-FexOy HSs; (ii) Au-FexOy HSs synthesized at low DDAB concentrations; (iii) spherical iron oxide nanocrystals synthesized under the same conditions as the HSs, but in the absence of Au seeds; (iv) Au-FexOy urchin like nanostructures, also after attempts to leach out Au; (v) Au-FexOy HSs after treatment with hydrazine; (vi) FexOy HSs after Au leaching from Au-FexOy HSs; additional optical absorption spectra; additional I-V curves, also from films made of Au-FexOy dumbbells; and additional SEM images; vii) X-ray diffraction (XRD) pattern of a sample of Au

  16. Generation of extreme state of water by spherical wire array underwater electrical explosion

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, O.; Gilburd, L.; Efimov, S.; Bazalitski, G.; Gurovich, V. Tz.; Krasik, Ya. E. [Physics Department, Technion, Haifa 3200 (Israel)

    2012-10-15

    The results of the first experiments on the underwater electrical explosion of a spherical wire array generating a converging strong shock wave are reported. Using a moderate pulse power generator with a stored energy of {<=}6 kJ and discharge current of {<=}500 kA with a rise-time of {approx}300 ns, explosions of Cu and Al wire arrays of different diameters and with a different number and diameter of wires were tested. Electrical, optical, and destruction diagnostics were used to determine the energy deposited into the array, the time-of-flight of the shock wave to the origin of the implosion, and the parameters of water at that location. The experimental and numerical simulation results indicate that the convergence of the shock wave leads to the formation of an extreme state of water in the vicinity of the implosion origin that is characterized by pressure, temperature, and compression factors of (2 {+-} 0.2) Multiplication-Sign 10{sup 12} Pa, 8 {+-} 0.5 eV, and 7 {+-} 0.5, respectively.

  17. The effect of electric field on an on-center hydrogenic impurity spherical quantum dot GaAs/AlAs

    Directory of Open Access Journals (Sweden)

    M Abdollahi

    2012-09-01

    Full Text Available  In this research, the effect of the uniform electric field on the ground-state of a centered hydrogenic donor impurity in a GaAs/AlAs spherical quantum dot was studied using infinite potential model. In presence of strong electric field, due to the stark effect (perturbing electric field, the ground state energy would increase linearly. In presence of weak electric fields, the normalized binding energy was calculated by using perturbation method with effective mass approximation. This energy was investigated with respect to electric field strength. Studies show the proper choice of radius of quantum dot and electric field will clearly influence the normalized binding energy. The resulting influence may be used to calculate the small changes in quantum dot radius and thus detect different electric field strengths .

  18. Interband transition in narrow gap InSb spherical layer quantum dot in the presence of electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zuhair, Marwan; Manaselyan, Aram; Sarkisyan, Hayk [Yereven State University, Yerevan (Armenia)

    2008-10-15

    We perform the theoretical investigation of interband dipole transitions in a narrow-gap InSb spherical layer quantum dot. We consider the transitions from the light hole and heavy hole states to the electron state of the conduction band. The dispersion law for electron and light hole is approximated using a two-band Kane model, while the heavy hole is described in the parabolic approximation. The effect of electric field on interband transitions is investigated.

  19. Electronic structure of a spherical quantum dot: Effects of the Kratzer potential, hydrogenic impurity, external electric and magnetic fields

    Science.gov (United States)

    Dehyar, A.; Rezaei, G.; Zamani, A.

    2016-10-01

    In the present work, we have investigated the simultaneous effects of external electric and magnetic fields on the energy spectrum of an electron bound to an impurity confined in a spherical quantum dot with Kratzer potential. To this end, energy eigenvalues are obtained using the asymptotic iteration method. The energy dependencies upon the confinement potential and external fields are reported. Our results indicate that the confinement potential, external electric and magnetic fields have a great influence on the energy eigenvalues of the system. We found that, an increase in the magnetic field increases the energy eigenvalues of the states with positive magnetic quantum number, m ≽ 0 . While, the states with negative m decrease, reaching to their minimum values and increase again, with increasing the magnetic field. Moreover, an increase in electric field strength leads to decrease the confinement effects and energy eigenvalues of the system.

  20. Electric double layer electrostatics of pH-responsive spherical polyelectrolyte brushes in the decoupled regime.

    Science.gov (United States)

    Li, Hao; Chen, Guang; Das, Siddhartha

    2016-11-01

    Understanding the behavior and properties of spherical polyelectrolyte brushes (SPEBs), which are polyelectrolyte brushes grafted to a spherical core, is fundamental to many applications in biomedical, chemical and petroleum engineering as well as in pharmaceutics. In this paper, we study the pH-responsive electrostatics of such SPEBs in the decoupled regime. In the first part of the paper, we derive the scaling conditions in terms of the grafting density of the PEs on the spherical core that ensure that the analysis can be performed in the decoupled regime. In such a regime the elastic and the excluded volume effects of polyelectrolyte brushes (PEBs) can be decoupled from the electrostatic effects associated with the PE charge and the induced EDL. As a consequence the PE brush height, assumed to be dictated by the balance of the elastic and excluded volume effects, can be independent of the electrostatic effects. In the second part, we quantify the pH-responsive electrostatics of the SPEBs - we pinpoint that the radial monomer distribution for a given brush molecule exhibit a non-unique cubic distribution that decays away from the spherical core. Such a monomer distribution ensures that the hydrogen ion concentration is appropriately accounted for in the description of the SPEB thermodynamics. We anticipate that the present analysis, which provides possibly one of the first models for probing the electrostatics of pH-responsive SPEBs in a thermodynamically-consistent framework, will be vital for understanding the behavior of a large number of entities ranging from PE-coated NPs and stealth liposomes to biomolecules like bacteria and viruses.

  1. Self-propulsion of a spherical electric or magnetic microbot in a polar viscous fluid

    CERN Document Server

    Felderhof, B U

    2014-01-01

    The self-propulsion of a sphere immersed in a polar liquid or ferrofluid is studied on the basis of ferrohydrodynamics. In the electrical case an oscillating charge density located inside the sphere generates an electrical field which polarizes the fluid. The lag of polarization with respect to the electrical field due to relaxation generates a time-independent electrical torque density acting on the fluid causing it to move. The resulting propulsion velocity of the sphere is calculated in perturbation theory to second order in powers of the charge density.

  2. Electrical and magnetic properties of spherical SmFeO{sub 3} synthesized by aspartic acid assisted combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Yuvaraj, Subramanian [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Layek, Samar [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India); Vidyavathy, S. Manisha [Department of Ceramic Technology, Anna University, Chennai 600 025 (India); Yuvaraj, Selvaraj [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Meyrick, Danielle [School of Engineering and Information Technology, Murdoch University, South St. Murdoch, WA 6150 (Australia); Selvan, R. Kalai, E-mail: selvankram@buc.edu.in [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India)

    2015-12-15

    Highlights: • SmFeO{sub 3} is synthesized by simple combustion method using aspartic acid as the fuel. • The particles are spherical in shape with the size ranges between 150 and 300 nm. • Cole–Cole plot infers the bulk conduction mechanism. • Room temperature VSM analysis reveal the weak ferromagnetic behaviour of SmFeO{sub 3}. • Mössbauer analysis elucidates the +3 oxidation state of Fe atoms. - Abstract: Samarium orthoferrite (SmFeO{sub 3}) is synthesized by a simple combustion method using aspartic acid as fuel. Phase purity and functional groups are analyzed via X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) analysis, which confirms the single phase formation of orthorhombic SmFeO{sub 3}. Approximately spherical particles with size range 150–300 nm is revealed by scanning electron microscope (SEM). The conductivity of the material is identified by the single semicircle obtained in the solid state impedance spectra at elevated temperatures. The calculated electrical conductivity increases with increasing temperature, inferring the semiconducting nature of SmFeO{sub 3}. A magnetic study at room temperature revealed weak ferromagnetic behaviour in SmFeO{sub 3} due to Dzyaloshinsky–Moriya antisymmetric exchange interaction mechanism. Mössbauer analysis confirmed the +3 oxidation state of iron and magnetic ordering of the sample at room temperature.

  3. Two-phase viscoelastic jetting

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J-D; Sakai, S.; Sethian, J.A.

    2008-12-10

    A coupled finite difference algorithm on rectangular grids is developed for viscoelastic ink ejection simulations. The ink is modeled by the Oldroyd-B viscoelastic fluid model. The coupled algorithm seamlessly incorporates several things: (1) a coupled level set-projection method for incompressible immiscible two-phase fluid flows; (2) a higher-order Godunov type algorithm for the convection terms in the momentum and level set equations; (3) a simple first-order upwind algorithm for the convection term in the viscoelastic stress equations; (4) central difference approximations for viscosity, surface tension, and upper-convected derivative terms; and (5) an equivalent circuit model to calculate the inflow pressure (or flow rate) from dynamic voltage.

  4. Effect of irregularities of nanosatellites position and size on collective electric and magnetic plasmonic resonances in spherical nanoclusters.

    Science.gov (United States)

    Vallecchi, Andrea; Albani, Matteo; Capolino, Filippo

    2013-03-25

    Spherical nanoclusters (NCs) with a central dielectric core surrounded by several satellite plasmonic nanospheres have been recently investigated as aggregates supporting electric and magnetic collective resonances. Notably, the collective magnetic resonance has been exploited to provide magnetic properties in optics, i.e., materials with macroscopic relative permeability different from unity. The NCs discussed in this paper can be realized using state-of-the-art nanochemistry self-assembly techniques. Accordingly, perfectly regular disposition of the nanoplasmonic satellites is not possible and this paper constitutes the first comprehensive analysis of the effect of such irregularities onto the electric and magnetic collective resonances. In particular we will show that the peak of the scattering cross section associated to the magnetic resonance is very sensitive to certain irregularities and significantly less to others. It is shown here that "artificial magnetic" properties of NCs are preserved for certain degrees of irregularities of the nanosatellites positions, however they are strongly affected by irregularities in the plasmonic nanosatellites sizes and by the presence of "defects" caused by the absence of satellites in the process of self-assembly around the dielectric core. The "artificial electric" resonance is instead less affected by irregularities mainly because of its wider frequency bandwidth.

  5. Optical and electrical characterization of tin(II) 2,3-naphthalocyanine thin films containing agglomerated spherical particles

    Energy Technology Data Exchange (ETDEWEB)

    Panicker, Nisha S. [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560 (India); Gopinathan, T.G. [KE College, Mannanam, Kottayam, Kerala (India); Dhanya, I. [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560 (India); Menon, C.S., E-mail: prof.menoncs@gmail.co [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560 (India)

    2010-11-01

    Vacuum deposited tin(II)2,3-naphthalocyanine (SnNc) crystalline thin films were produced. The structural properties of the thin films were characterized using Fourier transform infrared spectroscopy (FTIR), which reveals traces of organic compounds within the as-deposited films. Surface morphological studies by scanning electron microscopy (SEM) were done and the films were found to be grainy in nature, comprising of small agglomerated spherical particles. Heat treatment decreased the optical band gap of the films due to the dependence of dilatation of the lattice and/or electron-lattice interaction. The electrical conductivity of the films at various heat treated stages shows that SnNc has a better conductivity by 10-50 times that of its earlier reported phthalocyanine counterpart and the activation energy was found to increase with annealing temperature.

  6. Two Phase Technology Development Initiatives

    Science.gov (United States)

    Didion, Jeffrey R.

    1999-01-01

    Three promising thermal technology development initiatives, vapor compression thermal control system, electronics cooling, and electrohydrodynamics applications are outlined herein. These technologies will provide thermal engineers with additional tools to meet the thermal challenges presented by increased power densities and reduced architectural options that will be available in future spacecraft. Goddard Space Flight Center and the University of Maryland are fabricating and testing a 'proto- flight' vapor compression based thermal control system for the Ultra Long Duration Balloon (ULDB) Program. The vapor compression system will be capable of transporting approximately 400 W of heat while providing a temperature lift of 60C. The system is constructed of 'commercial off-the-shelf' hardware that is modified to meet the unique environmental requirements of the ULDB. A demonstration flight is planned for 1999 or early 2000. Goddard Space Flight Center has embarked upon a multi-discipline effort to address a number of design issues regarding spacecraft electronics. The program addressed the high priority design issues concerning the total mass of standard spacecraft electronics enclosures and the impact of design changes on thermal performance. This presentation reviews the pertinent results of the Lightweight Electronics Enclosure Program. Electronics cooling is a growing challenge to thermal engineers due to increasing power densities and spacecraft architecture. The space-flight qualification program and preliminary results of thermal performance tests of copper-water heat pipes are presented. Electrohydrodynamics (EHD) is an emerging technology that uses the secondary forces that result from the application of an electric field to a flowing fluid to enhance heat transfer and manage fluid flow. A brief review of current EHD capabilities regarding heat transfer enhancement of commercial heat exchangers and capillary pumped loops is presented. Goddard Space Flight

  7. Investigations of two-phase flame propagation under microgravity conditions

    Science.gov (United States)

    Gokalp, Iskender

    2016-07-01

    Investigations of two-phase flame propagation under microgravity conditions R. Thimothée, C. Chauveau, F. Halter, I Gökalp Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France This paper presents and discusses recent results on two-phase flame propagation experiments we carried out with mono-sized ethanol droplet aerosols under microgravity conditions. Fundamental studies on the flame propagation in fuel droplet clouds or sprays are essential for a better understanding of the combustion processes in many practical applications including internal combustion engines for cars, modern aircraft and liquid rocket engines. Compared to homogeneous gas phase combustion, the presence of a liquid phase considerably complicates the physico-chemical processes that make up combustion phenomena by coupling liquid atomization, droplet vaporization, mixing and heterogeneous combustion processes giving rise to various combustion regimes where ignition problems and flame instabilities become crucial to understand and control. Almost all applications of spray combustion occur under high pressure conditions. When a high pressure two-phase flame propagation is investigated under normal gravity conditions, sedimentation effects and strong buoyancy flows complicate the picture by inducing additional phenomena and obscuring the proper effect of the presence of the liquid droplets on flame propagation compared to gas phase flame propagation. Conducting such experiments under reduced gravity conditions is therefore helpful for the fundamental understanding of two-phase combustion. We are considering spherically propagating two-phase flames where the fuel aerosol is generated from a gaseous air-fuel mixture using the condensation technique of expansion cooling, based on the Wilson cloud chamber principle. This technique is widely recognized to create well-defined mono-size droplets

  8. Two-Phase flow instrumentation for nuclear accidents simulation

    Science.gov (United States)

    Monni, G.; De Salve, M.; Panella, B.

    2014-11-01

    The paper presents the research work performed at the Energy Department of the Politecnico di Torino, concerning the development of two-phase flow instrumentation and of models, based on the analysis of experimental data, that are able to interpret the measurement signals. The study has been performed with particular reference to the design of power plants, such as nuclear water reactors, where the two-phase flow thermal fluid dynamics must be accurately modeled and predicted. In two-phase flow typically a set of different measurement instruments (Spool Piece - SP) must be installed in order to evaluate the mass flow rate of the phases in a large range of flow conditions (flow patterns, pressures and temperatures); moreover, an interpretative model of the SP need to be developed and experimentally verified. The investigated meters are: Turbine, Venturi, Impedance Probes, Concave sensors, Wire mesh sensor, Electrical Capacitance Probe. Different instrument combinations have been tested, and the performance of each one has been analyzed.

  9. Two-phase mixed media dielectric with macro dielectric beads for enhancing resistivity and breakdown strength

    Science.gov (United States)

    Falabella, Steven; Meyer, Glenn A; Tang, Vincent; Guethlein, Gary

    2014-06-10

    A two-phase mixed media insulator having a dielectric fluid filling the interstices between macro-sized dielectric beads packed into a confined volume, so that the packed dielectric beads inhibit electro-hydrodynamically driven current flows of the dielectric liquid and thereby increase the resistivity and breakdown strength of the two-phase insulator over the dielectric liquid alone. In addition, an electrical apparatus incorporates the two-phase mixed media insulator to insulate between electrical components of different electrical potentials. And a method of electrically insulating between electrical components of different electrical potentials fills a confined volume between the electrical components with the two-phase dielectric composite, so that the macro dielectric beads are packed in the confined volume and interstices formed between the macro dielectric beads are filled with the dielectric liquid.

  10. Two-phase flow in refrigeration systems

    CERN Document Server

    Gu, Junjie; Gan, Zhongxue

    2013-01-01

    Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b

  11. Two-phase flow studies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kestin, J.; Maeder, P.F.

    1980-08-01

    Progress on the following is reported: literature survey, design of two-phase flow testing facility, design of nozzle loop, thermophysical properties, design manual, and advanced energy conversion systems. (MHR)

  12. Hydrogenic impurity, external electric and magnetic fields effects on the nonlinear optical properties of a multi-layer spherical quantum dot

    Science.gov (United States)

    Tanhaei, M. H.; Rezaei, G.

    2016-10-01

    In this work, effects of an on-center hydrogenic impurity, external electric and magnetic fields on the optical rectification coefficient (ORC), second and third harmonic generations (SHG and THG) of a multi-layer spherical quantum dot (MLSQD) are studied. Energy eigenvalues and eigenvectors are calculated using the direct matrix diagonalization method and optical properties are obtained using the compact density matrix approach. Our results reveal that the hydrogenic impurity and external fields have a great influence on these optical quantities. Hydrogenic impurity reduces the magnitude of the resonant peaks and shifts them to the higher energies. An increase in the magnetic (electric) field, leads to increase (decrease) the interval energies and the dipole moment matrix elements. Therefore, resonant peaks of these optical quantities find an obvious blue (red) shift and their magnitudes enhance (diminish) with increasing the external magnetic (electric) field.

  13. Spectral and electrical diagnosis of complex space-charge structures excited by a spherical grid cathode with orifice

    Science.gov (United States)

    Schrittwieser, R. W.; Ionita, C.; Teodorescu-Soare, C. T.; Vasilovici, O.; Gurlui, S.; Irimiciuc, S. A.; Dimitriu, D. G.

    2017-04-01

    Optical emission spectroscopy and Langmuir probes were used to diagnose complex space-charge structures that appear inside and around a spherical grid with orifice applying a negative voltage below a critical value to it. Measurements (through the orifice) delivered the axial profiles of plasma potential, electron temperature and density, and of the densities of excited atoms and ions. Thereby the formation of a double layer was found in the region near the orifice with a potential drop close to the ionisation potential of the applied gas, confirming the presence of a fireball in that region (also evidenced by visual observation), i.e. of a quasi-spherical bright plasma region consisting of a positive core (an ion-rich plasma) confined by a double layer. Spectral investigations confirmed the presence of high ion density inside the spherical grid (due to the hollow cathode effect), while outside the grid a transition region with a strong rate of ionisation and excitation processes appears. Information on the nonlinear dynamics of this space-charge structure was obtained from the analysis of the oscillations of the discharge current, as well as of the floating potential inside and outside the spherical grid. Dedicated to Hans Pécseli at the occasion of his 70th birthday, an extraordinary plasma physicist and a wonderful, noble and warm-hearted friend for more than 40 years.

  14. Two-Phase Cavitating Flow in Turbomachines

    Directory of Open Access Journals (Sweden)

    Sandor I. Bernad

    2012-11-01

    Full Text Available Cavitating flows are notoriously complex because they are highly turbulent and unsteady flows involving two species (liquid/vapor with a large density difference. These features pose a unique challenge to numerical modeling works. The study briefly reviews the methodology curently employed for industrial cavitating flow simulations using the two-phase mixture model. The two-phase mixture model is evaluated and validated using benchmark problem where experimental data are available. A 3D cavitating flow computation is performed for the GAMM Francis runner. The model is able to qualitatively predict the location and extent of the 3D cavity on the blade, but further investigation are needed to quatitatively assess the accuracy for real turbomachinery cavitating flows.

  15. Review of two-phase instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han Ok; Seo, Han Ok; Kang, Hyung Suk; Cho, Bong Hyun; Lee, Doo Jeong

    1997-06-01

    KAERI is carrying out a development of the design for a new type of integral reactors. The once-through helical steam generator is important design features. The study on designs and operating conditions which prevent flow instability should precede the introduction of one-through steam generator. Experiments are currently scheduled to understand two-phase instability, evaluate the effect of each design parameter on the critical point, and determine proper inlet throttling for the prevention of instability. This report covers general two-phase instability with review of existing studies on this topics. The general classification of two phase flow instability and the characteristics of each type of instability are first described. Special attention is paid to BWR core flow instability and once-through steam generator instability. The reactivity feedback and the effect of system parameters are treated mainly for BWR. With relation to once-through steam generators, the characteristics of convective heating and dryout point oscillation are first investigated and then the existing experimental studies are summarized. Finally chapter summarized the proposed correlations for instability boundary conditions. (author). 231 refs., 5 tabs., 47 figs

  16. Critical thinking: a two-phase framework.

    Science.gov (United States)

    Edwards, Sharon L

    2007-09-01

    This article provides a comprehensive review of how a two-phase framework can promote and engage nurses in the concepts of critical thinking. Nurse education is required to integrate critical thinking in their teaching strategies, as it is widely recognised as an important part of student nurses becoming analytical qualified practitioners. The two-phase framework can be incorporated in the classroom using enquiry-based scenarios or used to investigate situations that arise from practice, for reflection, analysis, theorising or to explore issues. This paper proposes a two-phase framework for incorporation in the classroom and practice to promote critical thinking. Phase 1 attempts to make it easier for nurses to organise and expound often complex and abstract ideas that arise when using critical thinking, identify more than one solution to the problem by using a variety of cues to facilitate action. Phase 2 encourages nurses to be accountable and responsible, to justify a decision, be creative and innovative in implementing change.

  17. Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media

    KAUST Repository

    Chen, J.

    2014-06-03

    This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow. 2014 Jie Chen et al.

  18. Spectroscopy of a plasma formed in the vicinity of implosion of the shock wave generated by underwater electrical explosion of spherical wire array

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, O.; Efimov, S.; Gurovich, V. Tz.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel); Bernshtam, V. [Weizmann Institute of Science, Rehovot 76100 (Israel)

    2015-05-15

    The results of visible spectroscopy of the plasma formed inside a copper capillary placed at the equatorial plane of an underwater electrically exploded spherical wire array (30 mm in diameter; 40 wires, each of 100 μm in diameter) are reported. In the experiments, a pulsed power generator with current amplitude of ∼300 kA and rise time of ∼1.1 μs was used to produce wire array explosion accompanied by the formation of a converging strong shock wave. The data obtained support the assumption of uniformity of the shock wave along the main path of its convergence. The spectroscopic measurements show that this rather simple method of formation of a converging strong shock wave can be used successfully for studying the shock wave's interaction with matter and the evaporation processes of atoms from a target.

  19. Two phase gap cooling of an electrical machine

    Energy Technology Data Exchange (ETDEWEB)

    Shoykhet, Boris A.

    2016-10-04

    An electro-dynamic machine has a rotor and stator with a gap therebetween. The machine has a frame defining a hollow interior with end cavities on axially opposite ends of the frame. A gas circulating system has an inlet that supplies high pressure gas to the frame interior and an outlet to collect gas passing therethrough. A liquid coolant circulating system has an inlet that supplies coolant to the frame interior and an outlet that collects coolant passing therethrough. The coolant inlet and gas inlet are generally located on the frame in a manner to allow coolant from the coolant inlet to flow with gas from the gas inlet to the gap. The coolant outlet and gas outlet are generally located on the frame in a manner to allow the coolant to be separated from the gas with the separated coolant and gas collected for circulation through their respective circulating systems.

  20. Two phase gap cooling of an electrical machine

    Science.gov (United States)

    Shoykhet, Boris A.

    2016-10-04

    An electro-dynamic machine has a rotor and stator with a gap therebetween. The machine has a frame defining a hollow interior with end cavities on axially opposite ends of the frame. A gas circulating system has an inlet that supplies high pressure gas to the frame interior and an outlet to collect gas passing therethrough. A liquid coolant circulating system has an inlet that supplies coolant to the frame interior and an outlet that collects coolant passing therethrough. The coolant inlet and gas inlet are generally located on the frame in a manner to allow coolant from the coolant inlet to flow with gas from the gas inlet to the gap. The coolant outlet and gas outlet are generally located on the frame in a manner to allow the coolant to be separated from the gas with the separated coolant and gas collected for circulation through their respective circulating systems.

  1. Experimental study of two-phase natural circulation circuit

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley Freitas; Su, Jian, E-mail: wlemos@lasme.coppe.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose Luiz Horacio, E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), RIo de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2012-07-01

    This paper reports an experimental study on the behavior of fluid flow in natural circulation under single-and two-phase flow conditions. The natural circulation circuit was designed based on concepts of similarity and scale in proportion to the actual operating conditions of a nuclear reactor. This test equipment has similar performance to the passive system for removal of residual heat presents in Advanced Pressurized Water Reactors (A PWR). The experiment was carried out by supplying water to primary and secondary circuits, as well as electrical power resistors installed inside the heater. Power controller has available to adjust the values for supply of electrical power resistors, in order to simulate conditions of decay of power from the nuclear reactor in steady state. Data acquisition system allows the measurement and control of the temperature at different points by means of thermocouples installed at several points along the circuit. The behavior of the phenomenon of natural circulation was monitored by a software with graphical interface, showing the evolution of temperature measurement points and the results stored in digital format spreadsheets. Besides, the natural circulation flow rate was measured by a flowmeter installed on the hot leg. A flow visualization technique was used the for identifying vertical flow regimes of two-phase natural circulation. Finally, the Reynolds Number was calculated for the establishment of a friction factor correlation dependent on the scale geometrical length, height and diameter of the pipe. (author)

  2. Spherical models

    CERN Document Server

    Wenninger, Magnus J

    2012-01-01

    Well-illustrated, practical approach to creating star-faced spherical forms that can serve as basic structures for geodesic domes. Complete instructions for making models from circular bands of paper with just a ruler and compass. Discusses tessellation, or tiling, and how to make spherical models of the semiregular solids and concludes with a discussion of the relationship of polyhedra to geodesic domes and directions for building models of domes. "". . . very pleasant reading."" - Science. 1979 edition.

  3. Microgravity Two-Phase Flow Transition

    Science.gov (United States)

    Parang, M.; Chao, D.

    1999-01-01

    Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.

  4. Droplet Manipulations in Two Phase Flow Microfluidics

    Directory of Open Access Journals (Sweden)

    Arjen M. Pit

    2015-11-01

    Full Text Available Even though droplet microfluidics has been developed since the early 1980s, the number of applications that have resulted in commercial products is still relatively small. This is partly due to an ongoing maturation and integration of existing methods, but possibly also because of the emergence of new techniques, whose potential has not been fully realized. This review summarizes the currently existing techniques for manipulating droplets in two-phase flow microfluidics. Specifically, very recent developments like the use of acoustic waves, magnetic fields, surface energy wells, and electrostatic traps and rails are discussed. The physical principles are explained, and (potential advantages and drawbacks of different methods in the sense of versatility, flexibility, tunability and durability are discussed, where possible, per technique and per droplet operation: generation, transport, sorting, coalescence and splitting.

  5. Two phase decision algorithm of replica allocation

    Institute of Scientific and Technical Information of China (English)

    Zuo Chaoshu; Liu Xinsong; Wang Zheng; Li Yi

    2006-01-01

    In distributed parallel server system, location and redundancy of replicas have great influence on availability and efficiency of the system. In order to improve availahility and efficiency of the system, two phase decision algorithm of replica allocation is proposed. The algorithm which makes use of auto-regression model dynamically predicts the future count of READ and WRITE operation, and then determines location and redundancy of replicas by considering availability, CPU and bands of the network. The algorithm can not only ensure the requirement of availability, but also reduce the system resources consumed by all the operations in a great scale. Analysis and test show that communication complexity and time complexity of the algorithm satisfy O( n ), resource optimizing scale increases with the increase of READ count.

  6. Ion size effects on the electric double layer of a spherical particle in a realistic salt-free concentrated suspension.

    Science.gov (United States)

    Roa, Rafael; Carrique, Félix; Ruiz-Reina, Emilio

    2011-05-28

    A new modified Poisson-Boltzmann equation accounting for the finite size of the ions valid for realistic salt-free concentrated suspensions has been derived, extending the formalism developed for pure salt-free suspensions [Roa et al., Phys. Chem. Chem. Phys., 2011, 13, 3960-3968] to real experimental conditions. These realistic suspensions include water dissociation ions and those generated by atmospheric carbon dioxide contamination, in addition to the added counterions released by the particles to the solution. The electric potential at the particle surface will be calculated for different ion sizes and compared with classical Poisson-Boltzmann predictions for point-like ions, as a function of particle charge and volume fraction. The realistic predictions turn out to be essential to achieve a closer picture of real salt-free suspensions, and even more important when ionic size effects are incorporated to the electric double layer description. We think that both corrections have to be taken into account when developing new realistic electrokinetic models, and surely will help in the comparison with experiments for low-salt or realistic salt-free systems. This journal is © the Owner Societies 2011

  7. Droplets Formation and Merging in Two-Phase Flow Microfluidics

    Directory of Open Access Journals (Sweden)

    Hao Gu

    2011-04-01

    Full Text Available Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i the emulsification step should lead to a very well controlled drop size (distribution; and (ii the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  8. Two-phase electrochemical lithiation in amorphous silicon.

    Science.gov (United States)

    Wang, Jiang Wei; He, Yu; Fan, Feifei; Liu, Xiao Hua; Xia, Shuman; Liu, Yang; Harris, C Thomas; Li, Hong; Huang, Jian Yu; Mao, Scott X; Zhu, Ting

    2013-02-13

    Lithium-ion batteries have revolutionized portable electronics and will be a key to electrifying transport vehicles and delivering renewable electricity. Amorphous silicon (a-Si) is being intensively studied as a high-capacity anode material for next-generation lithium-ion batteries. Its lithiation has been widely thought to occur through a single-phase mechanism with gentle Li profiles, thus offering a significant potential for mitigating pulverization and capacity fade. Here, we discover a surprising two-phase process of electrochemical lithiation in a-Si by using in situ transmission electron microscopy. The lithiation occurs by the movement of a sharp phase boundary between the a-Si reactant and an amorphous Li(x)Si (a-Li(x)Si, x ~ 2.5) product. Such a striking amorphous-amorphous interface exists until the remaining a-Si is consumed. Then a second step of lithiation sets in without a visible interface, resulting in the final product of a-Li(x)Si (x ~ 3.75). We show that the two-phase lithiation can be the fundamental mechanism underpinning the anomalous morphological change of microfabricated a-Si electrodes, i.e., from a disk shape to a dome shape. Our results represent a significant step toward the understanding of the electrochemically driven reaction and degradation in amorphous materials, which is critical to the development of microstructurally stable electrodes for high-performance lithium-ion batteries.

  9. Droplets formation and merging in two-phase flow microfluidics.

    Science.gov (United States)

    Gu, Hao; Duits, Michel H G; Mugele, Frieder

    2011-01-01

    Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  10. Particle migration in two-phase, viscoelastic flows

    Science.gov (United States)

    Jaensson, Nick; Hulsen, Martien; Anderson, Patrick

    2014-11-01

    Particles suspended in creeping, viscoelastic flows can migrate across stream lines due to gradients in normal stresses. This phenomenon has been investigated both numerically and experimentally. However, particle migration in the presence of fluid-fluid interfaces is hardly studied. We present results of simulations in 2D and 3D of rigid spherical particles in two-phase flows, where either one or both of the fluids are viscoelastic. The fluid-fluid interface is assumed to be diffuse and is described using Cahn-Hilliard theory. The particle boundary is assumed to be sharp and is described by a boundary-fitted, moving mesh. The governing equations are solved using the finite element method. We show that differences in normal stresses between the two fluids can induce a migration of the particle towards the interface in a shear flow. Depending on the magnitude of the surface tension and the properties of the fluids, particle migration can be halted due to the induced Laplace pressure, the particle can be adsorbed at the interface, or the particle can cross the interface into the other fluid. Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands.

  11. Two-Phase Quality/Flow Meter

    Science.gov (United States)

    Moerk, J. Steven (Inventor); Youngquist, Robert C. (Inventor); Werlink, Rudy J. (Inventor)

    1999-01-01

    A quality and/or flow meter employs a capacitance probe assembly for measuring the dielectric constant of flow stream, particularly a two-phase flow stream including liquid and gas components.ne dielectric constant of the flow stream varies depending upon the volume ratios of its liquid and gas components, and capacitance measurements can therefore be employed to calculate the quality of the flow, which is defined as the volume ratio of liquid in the flow to the total volume ratio of gas and liquid in the flow. By using two spaced capacitance sensors, and cross-correlating the time varying capacitance values of each, the velocity of the flow stream can also be determined. A microcontroller-based processing circuit is employed to measure the capacitance of the probe sensors.The circuit employs high speed timer and counter circuits to provide a high resolution measurement of the time interval required to charge each capacitor in the probe assembly. In this manner, a high resolution, noise resistant, digital representation of each of capacitance value is obtained without the need for a high resolution A/D converter, or a high frequency oscillator circuit. One embodiment of the probe assembly employs a capacitor with two ground plates which provide symmetry to insure that accurate measurements are made thereby.

  12. Transient thermohydraulic modeling of two-phase fluid systems

    Science.gov (United States)

    Blet, N.; Delalandre, N.; Ayel, V.; Bertin, Y.; Romestant, C.; Platel, V.

    2012-11-01

    This paper presents a transient thermohydraulic modeling, initially developed for a capillary pumped loop in gravitational applications, but also possibly suitable for all kinds of two-phase fluid systems. Using finite volumes method, it is based on Navier-Stokes equations for transcribing fluid mechanical aspects. The main feature of this 1D-model is based on a network representation by analogy with electrical. This paper also proposes a parametric study of a counterflow condenser following the sensitivity to inlet mass flow rate and cold source temperature. The comparison between modeling results and experimental data highlights a good numerical evaluation of temperatures. Furthermore, the model is able to represent a pretty good dynamic evolution of hydraulic variables.

  13. Pressure Loss across Tube Bundles in Two-phase Flow

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Woo Gun; Banzragch, Dagdan [Hannam Univ., Daejon (Korea, Republic of)

    2016-03-15

    An analytical model was developed by Sim to estimate the two-phase damping ratio for upward two-phase flow perpendicular to horizontal tube bundles. The parameters of two-phase flow, such as void fraction and pressure loss evaluated in the model, were calculated based on existing experimental formulations. However, it is necessary to implement a few improvements in the formulations for the case of tube bundles. For the purpose of the improved formulation, we need more information about the two-phase parameters, which can be found through experimental test. An experiment is performed with a typical normal square array of cylinders subjected to the two-phase flow of air-water in the tube bundles, to calculate the two-phase Euler number and the two-phase friction multiplier. The pitch-to-diameter ratio is 1.35 and the diameter of cylinder is 18mm. Pressure loss along the flow direction in the tube bundles is measured with a pressure transducer and data acquisition system to calculate the two-phase Euler number and the two-phase friction multiplier. The void fraction model by Feenstra et al. is used to estimate the void fraction of the two-phase flow in tube bundles. The experimental results of the two phase friction multiplier and two-phase Euler number for homogeneous and non-homogeneous two-phase flows are compared and evaluated against the analytical results given by Sim's model.

  14. Vapor Compressor Driven Hybrid Two-Phase Loop Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will demonstrate a vapor compressor driven hybrid two-phase loop technology. The hybrid two-phase loop...

  15. Two-phase flow modeling for low concentration spherical particle motion through a Newtonian fluid

    CSIR Research Space (South Africa)

    Smit GJF

    2010-11-01

    Full Text Available number is given by Re ? qf eds l kv f � v sk; ?9? and a = 2.65[10]; a = 2.70[11]; a = 2.78[9]. The equation developed by Lewis et al. [10] is usually adopted as a default correlation in commercial CFD codes when the void fraction of the suspension... with the Ergun equation, as illustrated in Fig. 8. As expected, the model of Lewis et al. [10], over-predicts the momentum transfer coefficient as the particular void fraction falls outside the model?s range of applicability. Fig. 9 shows that the predicted...

  16. Thermo-fluid dynamics of two-phase flow

    CERN Document Server

    Ishii, Mamoru; Ishii, Mamoru; Ishii, M

    2006-01-01

    Provides a very systematic treatment of two phase flow problems from a theoretical perspectiveProvides an easy to follow treatment of modeling and code devlopemnt of two phase flow related phenomenaCovers new results of two phase flow research such as coverage of fuel cells technology.

  17. Three-dimensional electric-field sensor for spherical fiber transmission%球形光纤传输三维电场传感器

    Institute of Scientific and Technical Information of China (English)

    司荣仁; 石立华; 陈锐; 李炎新

    2012-01-01

    A small size 3D fiber-optic electric field sensor for measurement of electromagnetic pulse (EMP) in small volumes is developed. The influence of the sensor structure on the tested field is analyzed by CST2011. Meanwhile, the disturbance from shielding enclosure can be effectively reduced by simulating its embedded and spherical structure. The sensor interelectrode coupling and the three-dimensional field error of the synthesized field are discussed. Design parameters are defined based on the analysis results. A conformal sensor structure is utilized to act both as the dipole antenna and the shielding enclosure. The shielding efficiency of the external electric field can reach 60 dB. Experiments in the bounded-wave EMP simulator show the sensor can meet the requirements for three-dimensional electric field measurement and has smaller perturbation to the measured field. The interelectrode coupling coefficient is less than 6% and the error of the synthesized field is less than 5%. The balanced structure of the sensor makes it suitable for EMP measurement in small volumes and in free field.%研制了一套用于小空间电磁脉冲测试的光纤传输电磁脉冲三维电场传感器.通过电磁仿真软件CST2011,研究了天线结构对被测场的影响,发现嵌入式探头与球形结构可以有效减小屏蔽壳体对电场扰动.讨论了传感器极间耦合及三维场合成误差,确定了主要设计参数.研制的三维传感器采用了屏蔽结构与偶极子天线的一体化设计,对外部电场屏蔽可达60 dB.在有界波电磁脉冲模拟器中的实验表明,传感器系统对于三维电场测量可达到设计要求,对被测电场扰动较小,极间耦合系数小于6%,三维场角度与峰值合成误差小于5%.传感器采用对称结构,满足自由空间场测量的需要.

  18. Emerging Two-Phase Cooling Technologies for Power Electronic Inverters

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.S.

    2005-08-17

    In order to meet the Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FVCT) goals for volume, weight, efficiency, reliability, and cost, the cooling of the power electronic devices, traction motors, and generators is critical. Currently the power electronic devices, traction motors, and generators in a hybrid electric vehicle (HEV) are primarily cooled by water-ethylene glycol (WEG) mixture. The cooling fluid operates as a single-phase coolant as the liquid phase of the WEG does not change to its vapor phase during the cooling process. In these single-phase systems, two cooling loops of WEG produce a low temperature (around 70 C) cooling loop for the power electronics and motor/generator, and higher temperature loop (around 105 C) for the internal combustion engine. There is another coolant option currently available in automobiles. It is possible to use the transmission oil as a coolant. The oil temperature exists at approximately 85 C which can be utilized to cool the power electronic and electrical devices. Because heat flux is proportional to the temperature difference between the device's hot surface and the coolant, a device that can tolerate higher temperatures enables the device to be smaller while dissipating the same amount of heat. Presently, new silicon carbide (SiC) devices and high temperature direct current (dc)-link capacitors, such as Teflon capacitors, are available but at significantly higher costs. Higher junction temperature (175 C) silicon (Si) dies are gradually emerging in the market, which will eventually help to lower hardware costs for cooling. The development of high-temperature devices is not the only way to reduce device size. Two-phase cooling that utilizes the vaporization of the liquid to dissipate heat is expected to be a very effective cooling method. Among two-phase cooling methods, different technologies such as spray, jet impingement, pool boiling and submersion, etc. are being developed. The

  19. Two phase exhaust for internal combustion engine

    Science.gov (United States)

    Vuk, Carl T [Denver, IA

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  20. Reynolds transport theorem for a two-phase flow

    Science.gov (United States)

    Collado, Francisco J.

    2007-01-01

    Transport equations for one-dimensional (1d), steady, two-phase flow have been proposed based on the fact that if the phases have different velocities, they cannot cover the same distance (the control volume length) in the same time. Thus, working in the same control volume for the two phases, the time scales of the phases have to be different. From this approach, transport balances for 1D, steady, two-phase flow have been already derived, supplying acceptable correlations for two-phase flow. Here, based on the strict application of the Reynolds transport theorem, general transport balances for two-phase flow are suggested.

  1. Stored Energy and Quality Factor of Spherical Wave Functions–in Relation to Spherical Antennas With Material Cores

    DEFF Research Database (Denmark)

    Hansen, Troels V.; Kim, Oleksiy S.; Breinbjerg, Olav

    2012-01-01

    We present closed-form expressions for central properties of spherical wave functions of arbitrary order in relation to arbitrarily sized spherical antennas with lossless solid material cores. These properties are the electric or magnetic spherical surface current distribution radiating a spherical...

  2. Lamb's integral formulas of two-phase saturated medium for soil dynamic with drainage

    Institute of Scientific and Technical Information of China (English)

    Bo-yang DING; Gai-hong DANG; Jin-hua YUAN

    2010-01-01

    When dynamic force is applied to a saturated porous soil,drainage is common.In this paper,the saturated porous soil with a two-phase saturated medium is simulated,and Lamb's integral formulas with drainage and stress formulas for a two-phase saturated medium are given based on Biot's equation and Betti's theorem(the reciprocal theorem).According to the basic solution to Biot's equation,Green's function Gij and three terms of Green's function G4i,Gi4,and G44 of a two-phase saturated medium subject to a concentrated force on a spherical coordinate are presented.The displacement field with drainage,the magnitude of drainage,and the pore pressure of the center explosion source are obtained in computation.The results of the classical Sharpe's solutions and the solutions of the two-phase saturated medium that decays to a single-phase medium are compared.Good agreement is observed.

  3. Next steps in two-phase flow: executive summary

    Energy Technology Data Exchange (ETDEWEB)

    DiPippo, R.

    1980-09-01

    The executive summary includes the following topics of discussion: the state of affairs; the fundamental governing equations; the one-dimensional mixture model; the drift-flux model; the Denver Research Institute two-phase geothermal flow program; two-phase flow pattern transition criteria; a two-fluid model under development; the mixture model as applied to geothermal well flow; DRI downwell instrumentation; two-phase flow instrumentation; the Sperry Research Corporation downhole pump and gravity-head heat exchanger systems; and the Brown University two-phase flow experimental program. (MHR)

  4. Criteria for guaranteed breakdown in two-phase inhomogeneous bodies

    Science.gov (United States)

    Bardsley, Patrick; Primrose, Michael S.; Zhao, Michael; Boyle, Jonathan; Briggs, Nathan; Koch, Zoe; Milton, Graeme W.

    2017-08-01

    Lower bounds are obtained on the maximum field strength in one or both phases in a body containing two-phases. These bounds only incorporate boundary data that can be obtained from measurements at the surface of the body, and thus may be useful for determining if breakdown has necessarily occurred in one of the phases, or that some other nonlinearities have occurred. It is assumed the response of the phases is linear up to the point of electric, dielectric, or elastic breakdown, or up to the point of the onset of nonlinearities. These bounds are calculated for conductivity, with one or two sets of boundary conditions, for complex conductivity (as appropriate at fixed frequency when the wavelength is much larger than the body, i.e. for quasistatics), and for two-dimensional elasticity. Sometimes the bounds are optimal when the field is constant in one of the phases, and using the algorithm of Kang, Kim, and Milton (2012) a wide variety of inclusion shapes having this property, for appropriately chosen bodies and appropriate boundary conditions, are numerically constructed. Such inclusions are known as E_Ω -inclusions.

  5. Response of two-phase droplets to intense electromagnetic radiation

    Science.gov (United States)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-04-01

    The behavior of two-phase droplets subjected to high intensity radiation pulses is studied. Droplets are highly absorbing solids in weakly absorbing liquid medium. The objective of the study was to define heating thresholds required for causing explosive boiling and secondary atomization of the fuel droplet. The results point to mechanisms for energy storage and transport in two-phase systems.

  6. Two-Phase Technology at NASA/Johnson Space Center

    Science.gov (United States)

    Ungar, Eugene K.; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    Since the baseline International Space Station (ISS) External Active Thermal Control System (EATCS) was changed from a two-phase mechanically pumped system to a single phase cascade system in the fall of 1993, two-phase EATCS research has continued at a low level at JSC. One of-the lessons of the ISS EATCS selection was that two-phase thermal control systems must have significantly lower power than comparable single phase systems to overcome their larger radiator area, larger line and fluid mass, and perceived higher technical risk. Therefore, research at JSC has concentrated on low power mechanically pumped two-phase EATCSs. In the presentation, the results of a study investigating the trade of single and two-phase mechanically pumped EATCSs for space vehicles will be summarized. The low power two-phase mechanically pumped EATCS system under development at JSC will be described in detail and the current design status of the subscale test unit will be reviewed. Also, performance predictions for a full size EATCS will be presented. In addition to the discussion of two-phase mechanically pumped EATCS development at JSC, two-phase technologies under development for biological water processing will be discussed. These biological water processor technologies are being prepared for a 2001 flight experiment and subsequent usage on the TransHab module on the International Space Station.

  7. Two Phases of Coherent Structure Motions in Turbulent Boundary Layer

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Hua; JIANG Nan

    2007-01-01

    Two phases of coherent structure motion are acquired after obtaining conditional phase-averaged waveforms for longitudinal velocity of coherent structures in turbulent boundary layer based on Harr wavelet transfer. The correspondences of the two phases to the two processes (i.e. ejection and sweep) during a burst are determined.

  8. Thermo-Fluid Dynamics of Two-Phase Flow

    CERN Document Server

    Ishii, Mamrou

    2011-01-01

    "Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part

  9. Critical transport velocity in two-phase, horizontal pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Sommerville, D. (U.S. Army Chemical Research, Development and Engineering Center, Aberdeen Proving Grounds, MD (US))

    1991-02-01

    This paper reports on the suspension of solid particles or entrainment of liquid droplets in two- phase flow. Theoretical and empirical relationships have been derived for both instances without any consideration to the similarities between the two. However, a general relation for two-phase flow is desirable since there are systems that cannot be readily defined due to the dual (solid/liquid) nature of the transported material, such as colloids, pulp, slurries, and sludge. Using turbulence theory, one general equation can be derived to predict critical transport velocities for two-phase horizontal flow.

  10. What types of investors generate the two-phase phenomenon?

    Science.gov (United States)

    Ryu, Doojin

    2013-12-01

    We examine the two-phase phenomenon described by Plerou, Gopikrishnan, and Stanley (2003) [1] in the KOSPI 200 options market, one of the most liquid options markets in the world. By analysing a unique intraday dataset that contains information about investor type for each trade and quote, we find that the two-phase phenomenon is generated primarily by domestic individual investors, who are generally considered to be uninformed and noisy traders. In contrast, our empirical results indicate that trades by foreign institutions, who are generally considered informed and sophisticated investors, do not exhibit two-phase behaviour.

  11. Tunable two-phase coexistence in half-doped manganites

    Indian Academy of Sciences (India)

    P Chaddah; A Banerjee

    2008-02-01

    We discuss our very interesting experimental observation that the low-temperature two-phase coexistence in half-doped manganites is multi-valued (at any field) in that we can tune the coexisting antiferromagnetic-insulating (AF-I) and the ferromagnetic-metallic (FM-M) phase fractions by following different paths in (; ) space. We have shown experimentally that the phase fraction, in this two-phase coexistence, can take continuous infinity of values. All but one of these are metastable, and two-phase coexistence is not an equilibrium state.

  12. Dielectric Response of Graded Spherical Composites

    Institute of Scientific and Technical Information of China (English)

    LI Zhi; WEI En-Bo; ZHANG Han-De; TIAN Ji-Wei

    2005-01-01

    @@ We investigate the effective dielectric responses of graded spherical composites under an external uniform electric field by taking the dielectric function of spherical inclusion, εi = crkeβr, where r is the inner distance of a point inside the particle from the centre of the spherical particle in the coordination. In the dilute limit, our exact result is used to test the validity of differential effective dipole approximation (DEDA) for estimating the effective response of graded spherical composites and it is shown that the DEDA is in excellent agreement with the exact result.

  13. Time dependent two phase flows in Magnetohydrodynamics: A ...

    African Journals Online (AJOL)

    Journal of the Nigerian Association of Mathematical Physics ... Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Time dependent two phase flows in Magnetohydrodynamics: A Greens function approach. BK Jha, HM Jibril ...

  14. Gravity Independence of Microchannel Two-Phase Flow Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Most of the amassed two-phase flow and heat transfer knowledge comes from experiments conducted in Earth’s gravity. Space missions span varying gravity levels,...

  15. Vapor Compressor Driven Hybrid Two-Phase Loop Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase I project successfully demonstrated the feasibility of the vapor compression hybrid two-phase loop (VCHTPL). The test results showed the high...

  16. TWO PHASE FLOW SPLIT MODEL FOR PARALLEL CHANNELS

    African Journals Online (AJOL)

    Ifeanyichukwu Onwuka

    The equations are solved using the Broyden'smethod ... channel system subjected to a two-phase flow transient, and the results have been very .... system pressure, the heat addition rates inside ... three dimensional flows in the LP.

  17. Particle modulations to turbulence in two-phase round jets

    Institute of Scientific and Technical Information of China (English)

    Bing Wang; Huiqiang Zhang; Yi Liu; Xiaofen Yan; Xilin Wang

    2009-01-01

    The particle modulations to turbulence in round jets were experimentally studied by means of two-phase velocity measurements with Phase Doppler Anemometer (PDA). Laden with very large particles, no significant attenuations of turbulence intensities were measured in the far-fields, due to small two-phase slip velocities and particle Reynolds number. The gas-phase turbulence is enhanced by particles in the near-fields, but it is significantly attenuated by the small particles in the far-fields. The smaller particles have a more profound effect on the attenuation of turbulence intensities. The enhancements or attenuations of turbulence intensities in the far-fields depends on the energy production, transport and dissipation mechanisms between the two phases, which are determined by the particle prop-erties and two-phase velocity slips. The non-dimensional parameter CTI is introduced to represent the change of turbulence intensity.

  18. Transient two-phase performance of LOFT reactor coolant pumps

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.H.; Modro, S.M.

    1983-01-01

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed.

  19. Scaling of Two-Phase Systems Across Gravity Levels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a defined need for long term earth based testing for the development and deployment of two-phase flow systems in reduced-gravity, including lunar gravity,...

  20. Two-phase cooling fluids; Les fluides frigoporteurs diphasiques

    Energy Technology Data Exchange (ETDEWEB)

    Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Lyon (France)

    1997-12-31

    In the framework of the diminution of heat transfer fluid consumption, the concept of indirect refrigerating circuits, using cooling intermediate fluids, is reviewed and the fluids that are currently used in these systems are described. Two-phase cooling fluids advantages over single-phase fluids are presented with their thermophysical characteristics: solid fraction, two-phase mixture enthalpy, thermal and rheological properties, determination of heat and mass transfer characteristics, and cold storage through ice slurry

  1. Study of two-phase flows in reduced gravity

    Science.gov (United States)

    Roy, Tirthankar

    Study of gas-liquid two-phase flows under reduced gravity conditions is extremely important. One of the major applications of gas-liquid two-phase flows under reduced gravity conditions is in the design of active thermal control systems for future space applications. Previous space crafts were characterized by low heat generation within the spacecraft which needed to be redistributed within the craft or rejected to space. This task could easily have been accomplished by pumped single-phase loops or passive systems such as heat pipes and so on. However with increase in heat generation within the space craft as predicted for future missions, pumped boiling two-phase flows are being considered. This is because of higher heat transfer co-efficients associated with boiling heat transfer among other advantages. Two-phase flows under reduced gravity conditions also find important applications in space propulsion as in space nuclear power reactors as well as in many other life support systems of space crafts. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to predict the behavior of gas-liquid two-phase flows under reduced gravity conditions. It should be noted that considerable differences exist between two-phase flows under reduced and normal gravity conditions especially for low inertia flows. This is because due to suppression of the gravity field the gas-liquid two-phase flows take a considerable time to develop under reduced gravity conditions as compared to normal gravity conditions. Hence other common methods of analysis applicable for fully developed gas-liquid two-phase flows under normal gravity conditions, like flow regimes and flow regime transition criteria, will not be applicable to gas-liquid two-phase flows under reduced gravity conditions. However the two-fluid model and the IATE need to be evaluated first against detailed experimental data obtained under reduced gravity conditions. Although lot of studies

  2. A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces

    KAUST Repository

    Shao, Sihong

    2012-01-01

    We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager principle of minimum energy dissipation. This approach was first presented in the derivation of a continuum hydrodynamic model for moving contact line in neutral two-phase immiscible flows (Qian, Wang, and Sheng, J. Fluid Mech. 564, 333-360 (2006)). Physically, the electroosmotic effect can be formulated by the Onsager principle as well in the linear response regime. Therefore, the same variational approach is applied here to the derivation of the continuum hydrodynamic model for charged two-phase immiscible flows where one fluid component is an electrolyte exhibiting electroosmotic effect on a charged surface. A phase field is employed to model the diffuse interface between two immiscible fluid components, one being the electrolyte and the other a nonconductive fluid, both allowed to slip at solid surfaces. Our model consists of the incompressible Navier-Stokes equation for momentum transport, the Nernst-Planck equation for ion transport, the Cahn-Hilliard phase-field equation for interface motion, and the Poisson equation for electric potential, along with all the necessary boundary conditions. In particular, all the dynamic boundary conditions at solid surfaces, including the generalized Navier boundary condition for slip, are derived together with the equations of motion in the bulk region. Numerical examples in two-dimensional space, which involve overlapped electric double layer fields, have been presented to demonstrate the validity and applicability of the model, and a few salient features of the two-phase immiscible electroosmotic flows at solid surface. The wall slip in the vicinity of moving contact line and the Smoluchowski slip in the electric double layer are both investigated. © 2012 Global-Science Press.

  3. Mathematical modeling of disperse two-phase flows

    CERN Document Server

    Morel, Christophe

    2015-01-01

    This book develops the theoretical foundations of disperse two-phase flows, which are characterized by the existence of bubbles, droplets or solid particles finely dispersed in a carrier fluid, which can be a liquid or a gas. Chapters clarify many difficult subjects, including modeling of the interfacial area concentration. Basic knowledge of the subjects treated in this book is essential to practitioners of Computational Fluid Dynamics for two-phase flows in a variety of industrial and environmental settings. The author provides a complete derivation of the basic equations, followed by more advanced subjects like turbulence equations for the two phases (continuous and disperse) and multi-size particulate flow modeling. As well as theoretical material, readers will discover chapters concerned with closure relations and numerical issues. Many physical models are presented, covering key subjects including heat and mass transfers between phases, interfacial forces and fluid particles coalescence and breakup, a...

  4. Velocity and energy relaxation in two-phase flows

    CERN Document Server

    Meyapin, Yannick; Gisclon, Marguerite

    2009-01-01

    In the present study we investigate analytically the process of velocity and energy relaxation in two-phase flows. We begin our exposition by considering the so-called six equations two-phase model [Ishii1975, Rovarch2006]. This model assumes each phase to possess its own velocity and energy variables. Despite recent advances, the six equations model remains computationally expensive for many practical applications. Moreover, its advection operator may be non-hyperbolic which poses additional theoretical difficulties to construct robust numerical schemes |Ghidaglia et al, 2001]. In order to simplify this system, we complete momentum and energy conservation equations by relaxation terms. When relaxation characteristic time tends to zero, velocities and energies are constrained to tend to common values for both phases. As a result, we obtain a simple two-phase model which was recently proposed for simulation of violent aerated flows [Dias et al, 2010]. The preservation of invariant regions and incompressible li...

  5. A SAS Package for Logistic Two-Phase Studies

    Directory of Open Access Journals (Sweden)

    Walter Schill

    2014-04-01

    Full Text Available Two-phase designs, in which for a large study a dichotomous outcome and partial or proxy information on risk factors is available, whereas precise or complete measurements on covariates have been obtained only in a stratified sub-sample, extend the standard case-control design and have been proven useful in practice. The application of two-phase designs, however, seems to be hampered by the lack of appropriate, easy-to-use software. This paper introduces sas-twophase-package, a collection of SAS-macros, to fulfill this task. sas-twophase-package implements weighted likelihood, pseudo likelihood and semi- parametric maximum likelihood estimation via the EM algorithm and via profile likelihood in two-phase settings with dichotomous outcome and a given stratification.

  6. A mechanical erosion model for two-phase mass flows

    CERN Document Server

    Pudasaini, Shiva P

    2016-01-01

    Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, process-based, two-phase, erosion-deposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transport. The model is based on the jump in the momentum flux including changes of material and flow properties along the flow-bed interface and enhances an existing general two-phase mass flow model (Pudasaini, 2012). A two-phase variably saturated erodible basal morphology is introduced and allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process including momentum and rheological changes of the flowing mixture. By rigorous derivation, we show that appropriate incorporation of the mass and momentum productions or losses in conservative model formulation is essential for the physically correct and mathematically consistent descript...

  7. Simulating confined swirling gas-solid two phase jet

    Institute of Scientific and Technical Information of China (English)

    金晗辉; 夏钧; 樊建人; 岑可法

    2002-01-01

    A k-ε-kp multi-fluid model was used to simulate confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. After considering the drag force between the two phases and gravity, a series of numerical simulations of the two-phase flow of 30μm, 45μm, 60μm diameter particles were performed on a x×r=50×50 mesh grid respectively. The results showed that the k-ε-kp multi-fluid model can be applied to predict moderate swirling multi-phase flow. When the particle diameter is large, the collision of the particles with the wall will influence the prediction accuracy. The bigger the diameter of the particles, the stronger the collision with the wall, and the more obvious the difference between measured and calculated results.

  8. Dynamic Modeling of Phase Crossings in Two-Phase Flow

    DEFF Research Database (Denmark)

    Madsen, Søren; Veje, Christian; Willatzen, Morten

    2012-01-01

    of the variables and are usually very slow to evaluate. To overcome these challenges, we use an interpolation scheme with local refinement. The simulations show that the method handles crossing of the saturation lines for both liquid to two-phase and two-phase to gas regions. Furthermore, a novel result obtained...... in this work, the method is stable towards dynamic transitions of the inlet/outlet boundaries across the saturation lines. Results for these cases are presented along with a numerical demonstration of conservation of mass under dynamically varying boundary conditions. Finally we present results...

  9. Shock wave of vapor-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN

    2008-01-01

    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  10. Two Phase Flow and Space-Based Applications

    Science.gov (United States)

    McQuillen, John

    1999-01-01

    A reduced gravity environment offers the ability to remove the effect of buoyancy on two phase flows whereby density differences that normally would promote relative velocities between the phases and also alter the shape of the interface are removed. However, besides being a potent research tool, there are also many space-based technologies that will either utilize or encounter two-phase flow behavior, and as a consequence, several questions must be addressed. This paper presents some of these technologies missions. Finally, this paper gives a description of web-sites for some funding.

  11. Modelling two-phase transport of 3H/3He

    NARCIS (Netherlands)

    Visser, A.; Schaap, J.D.; Leijnse, T.; Broers, H.P.; Bierkens, M.F.P.

    2008-01-01

    Degassing of groundwater by excess denitrification of agricultural pollution complicates the interpretation of 3H/3He data and hinders the estimation of travel times in nitrate pollution studies. In this study we used a two-phase flow and transport model (STOMP) to evaluate the method presented by

  12. Two-phase alkali-metal experiments in reduced gravity

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.

  13. Coal-Face Fracture With A Two-Phase Liquid

    Science.gov (United States)

    Collins, E. R., Jr.

    1985-01-01

    In new method for mining coal without explosive, two-phase liquid such as CO2 and water, injected at high pressure into deeper ends of holes drilled in coal face. Liquid permeates coal seam through existing microfractures; as liquid seeps back toward face, pressure eventually drops below critical value at which dissolved gas flashvaporizes, breaking up coal.

  14. Two-phase flow in micro and nanofluidic devices

    NARCIS (Netherlands)

    Shui, Lingling

    2009-01-01

    This thesis provides experimental data and theoretical analysis on two-phase flow in devices with different layouts of micrometer or nanometer-size channels. A full flow diagram is presented for oil and water flow in head-on microfluidic devices. Morphologically different flow regimes (dripping, jet

  15. Modelling two-phase transport of 3H/3He

    NARCIS (Netherlands)

    Visser, A.; Schaap, J.D.; Leijnse, T.; Broers, H.P.; Bierkens, M.F.P.

    2008-01-01

    Degassing of groundwater by excess denitrification of agricultural pollution complicates the interpretation of 3H/3He data and hinders the estimation of travel times in nitrate pollution studies. In this study we used a two-phase flow and transport model (STOMP) to evaluate the method presented by V

  16. Experimental Investigation of two-phase nitrogen Cryo transfer line

    Science.gov (United States)

    Singh, G. K.; Nimavat, H.; Panchal, R.; Garg, A.; Srikanth, GLN; Patel, K.; Shah, P.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    A 6-m long liquid nitrogen based cryo transfer line has been designed, developed and tested at IPR. The test objectives include the thermo-hydraulic characteristics of Cryo transfer line under single phase as well as two phase flow conditions. It is always easy in experimentation to investigate the thermo-hydraulic parameters in case of single phase flow of cryogen but it is real challenge when one deals with the two phase flow of cryogen due to availibity of mass flow measurements (direct) under two phase flow conditions. Established models have been reported in the literature where one of the well-known model of Lockhart-Martenelli relationship has been used to determine the value of quality at the outlet of Cryo transfer line. Under homogenous flow conditions, by taking the ratio of the single-phase pressure drop and the two-phase pressure drop, we estimated the quality at the outlet. Based on these equations, vapor quality at the outlet of the transfer line was predicted at different heat loads. Experimental rresults shown that from inlet to outlet, there is a considerable increment in the pressure drop and vapour quality of the outlet depending upon heat load and mass flow rate of nitrogen flowing through the line.

  17. Numerical simulation of two-phase flow in offshore environments

    NARCIS (Netherlands)

    Wemmenhove, Rik

    2008-01-01

    Numerical Simulation of Two-Phase Flow in Offshore Environments Rik Wemmenhove Weather conditions on full sea are often violent, leading to breaking waves and lots of spray and air bubbles. As high and steep waves may lead to severe damage on ships and offshore structures, there is a great need for

  18. TWO-PHASE EJECTOR of CARBON DIOXIDE HEAT PUMP CALCULUS

    Directory of Open Access Journals (Sweden)

    Sit B.M.

    2010-12-01

    Full Text Available It is presented the calculus of the two-phase ejector for carbon dioxide heat pump. The method of calculus is based on the method elaborated by S.M. Kandil, W.E. Lear, S.A. Sherif, and is modified taking into account entrainment ratio as the input for the calculus.

  19. Relativistic spherical plasma waves

    Science.gov (United States)

    Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.

    2012-02-01

    Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.

  20. Correlations for predicting single phase and two-phase flow pressure drop in pebble bed flow channels

    Energy Technology Data Exchange (ETDEWEB)

    Bai Bofeng, E-mail: bfbai@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Liu Maolong; Lv Xiaofei; Yan Junjie [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Yan Xiao; Xiao Zejun [Lab of Bubble Physics and Natural Circulation, Nuclear Power Institute of China, Chengdu 610041 (China)

    2011-12-15

    An experimental study was conducted on the pressure drop of the single phase and the air-water two-phase flow in the bed of rectangular cross sections densely filled with uniform spheres. Three kinds of glass spheres with different equivalent diameters (3 mm, 6 mm, and 8 mm) were used for the establishment of the test sections. The Reynolds number in the experiment ranged from a dozen to thousands for the single-phase flow and from hundreds to tens of thousands for the two-phase flow. In the present flow-regime model, the bed was subdivided into a near-wall region and a central region in order to take the wall effect into account to improve the prediction at low tube-to-particle diameter ratios. Improved correlations are obtained based on the previous study to consider the single-phase flow pressure drops for finite pebble beds with spherical particles and nonspherical particles by fitting the coefficients of that equation to both the database and the present experiment. The correlation is consistent with the observed physical behavior which explains its comparatively good agreement with the experimental data. A new empirical correlation for the prediction of two-phase flow pressure drops was proposed based on the gas phase relative permeability as a function of the gas phase saturation and the void fraction. The correlation fit well for both experimental data of spherical particles and nonspherical particles.

  1. Design and Development of a New Electrically Small 3D UHF Spherical Antenna with 360° of Opening Angle in the Whole Space for RFID, WSN, and RSN Applications

    Directory of Open Access Journals (Sweden)

    Abdelhamid Bou-El-Harmel

    2016-01-01

    Full Text Available Several antenna designs have been made in order to obtain a novel electrically small 3D UHF spherical antenna (ka = 0.1916, which has a resonance frequency close to 915 MHz, produces a quasi-isotropic radiation with an opening angle equal to 360° in the whole space, and is used for RFID, WSN, and RSN applications. These antennas are based on different shapes and are wrapped on the Styrofoam sphere surface of dielectric constant close to air (ɛr=1.06. A T-match configuration is used to adapt the input impedance of antennas to a value of 50 Ω. The antennas form allows for placing the sensor electronics in its interior, to reconfigure it for numerous values of impedances and to operate it in other ISM bands by adjusting their geometric parameters.

  2. Two-phase relative permeability models in reservoir engineering calculations

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, S.; Hicks, P.J.; Ertekin, T.

    1999-01-15

    A comparison of ten two-phase relative permeability models is conducted using experimental, semianalytical and numerical approaches. Model predicted relative permeabilities are compared with data from 12 steady-state experiments on Berea and Brown sandstones using combinations of three white mineral oils and 2% CaCl1 brine. The model results are compared against the experimental data using three different criteria. The models are found to predict the relative permeability to oil, relative permeability to water and fractional flow of water with varying degrees of success. Relative permeability data from four of the experimental runs are used to predict the displacement performance under Buckley-Leverett conditions and the results are compared against those predicted by the models. Finally, waterflooding performances predicted by the models are analyzed at three different viscosity ratios using a two-dimensional, two-phase numerical reservoir simulator. (author)

  3. Computer simulation of two-phase flow in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, W.

    1992-09-01

    Two-phase flow models dominate the economic resource requirements for development and use of computer codes for analyzing thermohydraulic transients in nuclear power plants. Six principles are presented on mathematical modeling and selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited for two-phase flow analysis in nuclear reactors than the two-fluid model, because of the latter`s closure problem. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost.

  4. Computer simulation of two-phase flow in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, W.

    1992-01-01

    Two-phase flow models dominate the economic resource requirements for development and use of computer codes for analyzing thermohydraulic transients in nuclear power plants. Six principles are presented on mathematical modeling and selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited for two-phase flow analysis in nuclear reactors than the two-fluid model, because of the latter's closure problem. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost.

  5. Two-phase Flow Distribution in Heat Exchanger Manifolds

    OpenAIRE

    Vist, Sivert

    2004-01-01

    The current study has investigated two-phase refrigerant flow distribution in heat exchange manifolds. Experimental data have been acquired in a heat exchanger test rig specially made for measurement of mass flow rate and gas and liquid distribution in the manifolds of compact heat exchangers. Twelve different manifold designs were used in the experiments, and CO2 and HFC-134a were used as refrigerants.

  6. Computational methods for two-phase flow and particle transport

    CERN Document Server

    Lee, Wen Ho

    2013-01-01

    This book describes mathematical formulations and computational methods for solving two-phase flow problems with a computer code that calculates thermal hydraulic problems related to light water and fast breeder reactors. The physical model also handles the particle and gas flow problems that arise from coal gasification and fluidized beds. The second part of this book deals with the computational methods for particle transport.

  7. Viscosity Solutions for the two-phase Stefan Problem

    CERN Document Server

    Kim, Inwon C

    2010-01-01

    We introduce a notion of viscosity solutions for the two-phase Stefan problem, which incorporates possible existence of a mushy region generated by the initial data. We show that a comparison principle holds between viscosity solutions, and investigate the coincidence of the viscosity solutions and the weak solutions defined via integration by parts. In particular, in the absence of initial mushy region, viscosity solution is the unique weak solution with the same boundary data.

  8. Recent advances in two-phase flow numerics

    Energy Technology Data Exchange (ETDEWEB)

    Mahaffy, J.H.; Macian, R. [Pennsylvania State Univ., University Park, PA (United States)

    1997-07-01

    The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.

  9. Estimating disease prevalence in two-phase studies.

    Science.gov (United States)

    Alonzo, Todd A; Pepe, Margaret Sullivan; Lumley, Thomas

    2003-04-01

    Disease prevalence is ideally estimated using a 'gold standard' to ascertain true disease status on all subjects in a population of interest. In practice, however, the gold standard may be too costly or invasive to be applied to all subjects, in which case a two-phase design is often employed. Phase 1 data consisting of inexpensive and non-invasive screening tests on all study subjects are used to determine the subjects that receive the gold standard in the second phase. Naive estimates of prevalence in two-phase studies can be biased (verification bias). Imputation and re-weighting estimators are often used to avoid this bias. We contrast the forms and attributes of the various prevalence estimators. Distribution theory and simulation studies are used to investigate their bias and efficiency. We conclude that the semiparametric efficient approach is the preferred method for prevalence estimation in two-phase studies. It is more robust and comparable in its efficiency to imputation and other re-weighting estimators. It is also easy to implement. We use this approach to examine the prevalence of depression in adolescents with data from the Great Smoky Mountain Study.

  10. Two-phase Flow Ejector as Water Refrigerant by Using Waste Heat

    Science.gov (United States)

    Yamanaka, H.; Nakagawa, M.

    2013-04-01

    Energy saving and the use of clean energy sources have recently become significant issues. It is expected that clean energy sources such as solar panels and fuel cells will be installed in many private dwellings. However, when electrical power is generated, exhaust heat is simultaneously produced. Especially for the summer season, the development of refrigeration systems that can use this waste heat is highly desirable. One approach is an ejector that can reduce the mechanical compression work required in a normal refrigeration cycle. We focus on the use of water as a refrigerant, since this can be safely implemented in private dwellings. Although the energy conversion efficiency is low, it is promising because it can use heat that would otherwise be discarded. However, a steam ejector refrigeration cycle requires a large amount of energy to change saturated water into vapour. Thus, we propose a more efficient two-phase flow ejector cycle. Experiments were carried out in which the quality of the two-phase flow from a tank was varied, and the efficiency of the ejector and nozzle was determined. The results show that a vacuum state can be achieved and suction exerted with a two-phase flow state at the ejector nozzle inlet.

  11. Proportional electroluminescence in two-phase argon and its relevance to rare-event experiments

    CERN Document Server

    Bondar, A; Dolgov, A; Nosov, V; Shekhtman, L; Shemyakina, E; Sokolov, A

    2015-01-01

    Proportional electroluminescence (EL) in gaseous Ar has for the first time been systematically studied in the two-phase mode, at 87 K and 1.00 atm. Liquid Ar had a minor (56 ppm) admixture of N2, which allowed to understand, inter alia, the effect of N2 doping on the EL mechanism in rare-event experiments using two-phase Ar detectors. The measurements were performed in a two-phase Cryogenic Avalanche Detector (CRAD) with EL gap located directly above the liquid-gas interface. The EL gap was optically read out in the Vacuum Ultraviolet (VUV), near 128 nm (Ar excimer emission), and in the near Ultraviolet (UV), at 300-450 nm (N2 Second Positive System emission), via cryogenic PMTs and a Geiger-mode APD (GAPD). Proportional electroluminescence was measured to have an amplification parameter of 109+-10 photons per drifting electron per kV overall in the VUV and UV, of which 51+-6% were emitted in the UV. The measured EL threshold, at an electric field of 3.7+-0.2 kV/cm, was in accordance with that predicted by th...

  12. Detection and characterization of elongated bubbles and drops in two-phase flow using magnetic fields

    Science.gov (United States)

    Wiederhold, A.; Boeck, T.; Resagk, C.

    2017-08-01

    We report a method to detect and to measure the size and velocity of elongated bubbles or drops in a dispersed two-phase flow. The difference of the magnetic susceptibilities between two phases causes a force on the interface between both phases when it is exposed to an external magnetic field. The force is measured with a state-of-the-art electromagnetic compensation balance. While the front and the back of the bubble pass the magnetic field, two peaks in the force signal appear, which can be used to calculate the velocity and geometry parameters of the bubble. We achieve a substantial advantage over other bubble detection techniques because this technique is contactless, non-invasive, independent of the electrical conductivity and can be applied to opaque or aggressive fluids. The measurements are performed in an inclined channel with air bubbles and paraffin oil drops in water. The bubble length is in the range of 0.1-0.25 m and the bubble velocity lies between 0.02-0.22 m s-1. Furthermore we show that it is possible to apply this measurement principle for nondestructive testing (NDT) of diamagnetic and paramagnetic materials like metal, plastics or glass, provided that defects are in the range of 10‒2 m. This technique opens up new possibilities in industrial applications to measure two-phase flow parameters and in material testing.

  13. Characterization of horizontal air–water two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Ran; Kim, Seungjin, E-mail: skim@psu.edu

    2017-02-15

    Highlights: • A visualization study is performed to develop flow regime map in horizontal flow. • Database in horizontal bubbly flow is extended using a local conductivity probe. • Frictional pressure drop analysis is performed in horizontal bubbly flow. • Drift flux analysis is performed in horizontal bubbly flow. - Abstract: This paper presents experimental studies performed to characterize horizontal air–water two-phase flow in a round pipe with an inner diameter of 3.81 cm. A detailed flow visualization study is performed using a high-speed video camera in a wide range of two-phase flow conditions to verify previous flow regime maps. Two-phase flows are classified into bubbly, plug, slug, stratified, stratified-wavy, and annular flow regimes. While the transition boundaries identified in the present study compare well with the existing ones (Mandhane et al., 1974) in general, some discrepancies are observed for bubbly-to-plug/slug, and plug-to-slug transition boundaries. Based on the new transition boundaries, three additional test conditions are determined in horizontal bubbly flow to extend the database by Talley et al. (2015a). Various local two-phase flow parameters including void fraction, interfacial area concentration, bubble velocity, and bubble Sauter mean diameter are obtained. The effects of increasing gas flow rate on void fraction, bubble Sauter mean diameter, and bubble velocity are discussed. Bubbles begin to coalesce near the gas–liquid layer instead of in the highly packed region when gas flow rate increases. Using all the current experimental data, two-phase frictional pressure loss analysis is performed using the Lockhart–Martinelli method. It is found that the coefficient C = 24 yields the best agreement with the data with the minimum average difference. Moreover, drift flux analysis is performed to predict void-weighted area-averaged bubble velocity and area-averaged void fraction. Based on the current database, functional

  14. Negative DC corona discharge current characteristics in a flowing two-phase (air + suspended smoke particles) fluid

    Science.gov (United States)

    Berendt, Artur; Domaszka, Magdalena; Mizeraczyk, Jerzy

    2017-04-01

    The electrical characteristics of a steady-state negative DC corona discharge in a two-phase fluid (air with suspended cigarette smoke particles) flowing along a chamber with a needle-to-plate electrode arrangement were experimentally investigated. The two-phase flow was transverse in respect to the needle-to-plate axis. The velocity of the transverse two-phase flow was limited to 0.8 m/s, typical of the electrostatic precipitators. We found that three discharge current modes of the negative corona exist in the two-phase (air + smoke particles) fluid: the Trichel pulses mode, the "Trichel pulses superimposed on DC component" mode and the DC component mode, similarly as in the corona discharge in air (a single-phase fluid). The shape of Trichel pulses in the air + suspended particles fluid is similar to that in air. However, the Trichel pulse amplitudes are higher than those in "pure" air while their repetition frequency is lower. As a net consequence of that the averaged corona discharge current in the two-phase fluid is lower than in "pure" air. It was also found that the average discharge current decreases with increasing suspended particle concentration. The calculations showed that the dependence of the average negative corona current (which is a macroscopic corona discharge parameter) on the particle concentration can be explained by the particle-concentration dependencies of the electric charge of Trichel pulse and the repetition frequency of Trichel pulses, both giving a microscopic insight into the electrical phenomena in the negative corona discharge. Our investigations showed also that the average corona discharge current in the two-phase fluid is almost unaffected by the transverse fluid flow up to a velocity of 0.8 m/s. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  15. Miniaturization of Spherical Magnetodielectric Antennas

    DEFF Research Database (Denmark)

    Hansen, Troels Vejle

    The fundamental limitations in performance of electrically small antennas (ESAs) - and how far these may be approached - have been of great interest for over a century. Particularly over the past few decades, it has become increasingly relevant and important, to approach these limits in view...... to the important antenna parameters of radiation efficiency e and impedance bandwidth. For single-mode antennas the fundamental minimum Q is the Chu lower bound. In this Ph.D. dissertation, the topic is miniaturization of spherical antennas loaded by an internal magnetodielectric core. The goal is to determine......, quantify, and assess the effects of an internal material loading upon antenna performance, including its potentials towards miniaturization. Emphasis have been upon performing an exhaustive and exact analysis of rigorous validity covering a large class of spherical antennas. In the context of this study...

  16. INFLUENCE OF SURFACTANT ON TWO-PHASE FLOW REGIME AND PRESSURE DROP IN UPWARD INCLINED PIPES

    Institute of Scientific and Technical Information of China (English)

    XIA Guo-dong; CHAI Lei

    2012-01-01

    The influence of a surfactant on the two-phase flow regime and the pressure drop in upward inclined pipes is investigated for various gas/liquid flow rates.The air/water and air/100 ppm sodium dodecyl sulphate aqueous solution are used as the working fluids.The influence of the surfactant on the two-phase flow regime in upward inclined pipes is investigated using the electrical tomographic technique.For 0°,2.5° and 5° pipe inclinations,the surfactant has obvious effect on the transition from the stratified wavy flow to the annular flow,and the range of the stratified smooth flow regime is also extended to higher gas velocities.For 10°pipe inclination,no stratified flow regime is observed in the air/water flow.In the air/surfactant solution system,however,the stratified flow regime can be found in the range of USG =10m/s-28m/s and USL =0.07 m/s-0.2 m/s.For all inclination angles,the changes of the pressure gradient characteristics are accompanied with the flow pattern transitions.Adding surfactant in a two-phase flow would reduce the pressure gradient significantly in the slug flow and annular flow regimes.In the annular flow regime,the pressure gradient gradually becomes free of the influence of the upward inclined angle,and is only dependent on the property of the two-phase flow.

  17. Bubble Dynamics in a Two-Phase Medium

    CERN Document Server

    Jayaprakash, Arvind; Chahine, Georges

    2010-01-01

    The spherical dynamics of a bubble in a compressible liquid has been studied extensively since the early work of Gilmore. Numerical codes to study the behavior, including when large non-spherical deformations are involved, have since been developed and have been shown to be accurate. The situation is however different and common knowledge less advanced when the compressibility of the medium surrounding the bubble is provided mainly by the presence of a bubbly mixture. In one of the present works being carried out at DYNAFLOW, INC., the dynamics of a primary relatively large bubble in a water mixture including very fine bubbles is being investigated experimentally and the results are being provided to several parallel on-going analytical and numerical approaches. The main/primary bubble is produced by an underwater spark discharge from two concentric electrodes placed in the bubbly medium, which is generated using electrolysis. A grid of thin perpendicular wires is used to generate bubble distributions of vary...

  18. INTERACTION OF A SCREW DISLOCATION WITH AN INTERFACIAL EDGE CRACK IN A TWO-PHASE PIEZOELECTRIC MATERIAL

    Institute of Scientific and Technical Information of China (English)

    LIU Jinxi; LIU Ai; JIANG Zhiqing

    2004-01-01

    The interaction of a screw dislocation with an interfacial edge crack in a two-phase piezoelectric medium is investigated. Closed-form solutions of the elastic and electrical fields induced by the screw dislocation are derived using the conformal mapping method in conjunction with the image principle. Based on the electroelastic fields derived, the stress and electric displacement intensity factors, the image force acting on the dislocation are given explicitly. We find that the stress and electric displacement intensity factors depend on the effective electroelastic material constants. In the case where one of two phases is purely elastic, the stress intensity factor and image force are plotted to illustrate the influences of electromechanical coupling effect, the position of the dislocation and the material properties on the interaction mechanism.

  19. Experimental Two-Phase Liquid-Metal Magnetohydrodynamic Generator Program

    Science.gov (United States)

    1979-04-01

    efficiencies in excess of 0.8 are attainable. Initial measurements of local flow parameters in a NaK -nitrogen two-phase liquid - metal MHD generator...hot liquid metals . Thus, the concept of using surface-active aaents in MHD generators can be evaluated more rapidly and inexpensively with NaK , the...describe this aggregation of bchbles as a foam. When the Ba- NaK solution was transferred, helium was blown under the surface of the liquid metal with the

  20. A real two-phase submarine debris flow and tsunami

    Energy Technology Data Exchange (ETDEWEB)

    Pudasaini, Shiva P.; Miller, Stephen A. [Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn Nussallee 8, D-53115, Bonn (Germany)

    2012-09-26

    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  1. Recurrent pyogenic cholangitis : efficacy of two-phase helical CT

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ki Ho; Cho, June Sik; Shin, Kyung Sook; Lee, Se Hyo; Yu, Ho Jun; Park, Jin Yong; Kim, Young Min [College of Medicine, Chungnam National University, Taejon (Korea, Republic of)

    2000-01-01

    To evaluate the usefulness of two-phase helical CT in patients with recurrent pyogenic cholangitis (RPC) for the detection of acute inflammation and assessment of the degree of portal vein (PV) stenosis as a cause of hepatic parenchymal atrophy. We retrospectively reviewed two-phase CT findings in 30 patients with RPC diagnosed by CT, ERCP (endoscopic retrograde cholangiopancreatography), and surgery. Two-phase helical CT scans were obtained 30 sec (arterial phase, AP) and 70 sec (portal phase, PP) after the start of IV administration of contrast material. Without prior information, we analyzed periductal parenchymal and ductal wall enhancement during the AP and PP, and the degree of PV stenosis during the PP. Acute inflammation was diagnosed on the basis of symptoms and laboratory findings. To evaluate the relationship between parenchymal a trophy and PV stenosis, the degree of PV stenosis in affected parenchyma was classified as one of three types (mild, less than 25%; moderate, 25-75%; severe, greater than 75%), as compared with the diameter of normal PV in unaffected parenchyma. Ten of the 30 patients underwent CT during the acute inflammatory stage and 20 during the remission stage. Of the ten patients with acute inflammation, eight (80%) showed transient periductal parenchymal enhancement during the AP (p less than 0.05), which correlated closely with acute inflammation. Only three (15%) of the 20 patients with remission, however, showed transient parenchymal enhancement during this phase, at which time ductal wall enhancement was seen in three (30%) of the ten patients with acute inflammation and in seven (35%) of the 20 who showed remission (p greater than 0.05). There was no significant difference in parenchymal and ductal wall enhancement during the PP between patients with acute inflammation and those who showed remission (p greater than 0.05). Hepatic parenchymal atrophy of the lesion was seen in 24 patients. Among these, PV stenosis was mild in five

  2. Two algorithms for two-phase Stefan type problems

    Institute of Scientific and Technical Information of China (English)

    LIAN Xiao-peng; CHENG Xiao-liang; HAN Wei-min

    2009-01-01

    In this paper, the relaxation algorithm and two Uzawa type algorithms for solving discretized variational inequalities arising from the two-phase Stefan type problem are proposed. An analysis of their convergence is presented and the upper bounds of the convergence rates are derived. Some numerical experiments are shown to demonstrate that for the second Uzawa algorithm which is an improved version of the first Uzawa algorithm, the convergence rate is uniformly bounded away from 1 if τh-2 is kept bounded, where τ is the time step size and h the space mesh size.

  3. Stochastic analysis of particle-fluid two-phase flows

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper is devoted to exploring approaches to understanding the stochastic characteristics of particle-fluid two-phase flow. By quantifying the forces dominating the particle motion and modelling the less important and/or unclear forces as random forces, a stochastic differential equation is proposed to describe the complex behavior of a particle motion. An exploratory simulation has shown satisfactory agreement with phase doppler particle analyzer (PDPA) measurements, which indicates that stochastic analysis is a potential approach for revealing the details of particle-fluid flow phenomena.

  4. Experimental and numerical investigation on two-phase flow instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Ruspini, Leonardo Carlos

    2013-03-01

    Two-phase flow instabilities are experimentally and numerically studied within this thesis. In particular, the phenomena called Ledinegg instability, density wave oscillations and pressure drop oscillations are investigated. The most important investigations regarding the occurrence of two-phase flow instabilities are reviewed. An extensive description of the main contributions in the experimental and analytical research is presented. In addition, a critical discussion and recommendations for future investigations are presented. A numerical framework using a hp-adaptive method is developed in order to solve the conservation equations modelling general thermo-hydraulic systems. A natural convection problem is analysed numerically in order to test the numerical solver. Moreover, the description of an adaptive strategy to solve thermo-hydraulic problems is presented. In the second part of this dissertation, a homogeneous model is used to study Ledinegg, density wave and pressure drop oscillations phenomena numerically. The dynamic characteristics of the Ledinegg (flow excursion) phenomenon are analysed through the simulation of several transient examples. In addition, density wave instabilities in boiling and condensing systems are investigated. The effects of several parameters, such as the fluid inertia and compressibility volumes, on the stability limits of Ledinegg and density wave instabilities are studied, showing a strong influence of these parameters. Moreover, the phenomenon called pressure drop oscillations is numerically investigated. A discussion of the physical representation of several models is presented with reference to the obtained numerical results. Finally, the influence of different parameters on these phenomena is analysed. In the last part, an experimental investigation of these phenomena is presented. The designing methodology used for the construction of the experimental facility is described. Several simulations and a non

  5. Two-phase nozzle flow and the subcharacteristic condition

    DEFF Research Database (Denmark)

    Linga, Gaute; Aursand, Peder; Flåtten, Tore

    2015-01-01

    We consider nozzle flow models for two-phase flow with phase transfer. Such models are based on energy considerations applied to the frozen and equilibrium limits of the underlying relaxation models. In this paper, we provide an explicit link between the mass flow rate predicted by these models a...... leakage of CO2 is presented, indicating that the frozen and equilibrium models provide significantly different predictions. This difference is comparable in magnitude to the modeling error introduced by applying simple ideal-gas/incompressible-liquid equations-of-state for CO2....

  6. Acute cholecystitis: two-phase spiral CT finding

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Eung Young; Yoon, Myung Hwan; Yang, Dal Mo; Chun Seok; Bae, Jun Gi; Kim, Hak Soo; Kim, Hyung Sik [Chungang Ghil Hospital, Incheon (Korea, Republic of)

    1998-07-01

    To describe the two-phase spiral CT findings of acute cholecystitis. Materials and Methods : CT scans of nine patients with surgically-proven acute cholecystitis were retrospectively reviewed for wall thickening, enhancement pattern of the wall, attenuation of the liver adjacent to the gallbladder, gallstones,gallbladder distension, gas collection within the gallbladder, pericholecystic fluid and infiltration of pericholecystic fat. Results : In all cases, wall thickening of the gallbladder was seen, though this was more distinct on delayed images, Using high-low-high attenuation, one layer was seen in five cases, nd three layers in four. On arterial images, eight cases showed transient focal increased attenuation of the liver adjacent to the gall bladder;four of these showed curvilinear attenuation and four showed subsegmental attenuation. One case showed curvilinear decreased attenuation between increased attenuation of the liver and the gallbladder, and during surgery, severe adhesion between the liver and gallbladder was confirmed. Additional CT findings were infiltration of pericholecystic fat (n=9), gallstones (n=7), gallbladder distension (n=6), pericholecystic fluid(n=3), and gas collection within the gallbladder (n=2). Conclusion : In patients with acute cholecystitis,two-phase spiral CT revealed wall thickening in one or three layers ; on delayed images this was more distinct. In many cases, arterial images showed transient focal increased attenuation of the liver adjacent to the gallbladder.

  7. Experimental study of a two-phase surface jet

    Science.gov (United States)

    Perret, Matias; Esmaeilpour, Mehdi; Politano, Marcela S.; Carrica, Pablo M.

    2013-04-01

    Results of an experimental study of a two-phase jet are presented, with the jet issued near and below a free surface, parallel to it. The jet under study is isothermal and in fresh water, with air injectors that allow variation of the inlet air volume fraction between 0 and 13 %. Measurements of water velocity have been performed using LDV, and the jet exit conditions measured with PIV. Air volume fraction, bubble velocity and chord length distributions were measured with sapphire optical local phase detection probes. The mean free surface elevation and RMS fluctuations were obtained using local phase detection probes as well. Visualization was performed with laser-induced fluorescence. Measurements reveal that the mean free surface elevation and turbulent fluctuations significantly increase with the injection of air. The water normal Reynolds stresses are damped by the presence of bubbles in the bulk of the liquid, but very close to the free surface the effect is reversed and the normal Reynolds stresses increase slightly for the bubbly flow. The Reynolds shear stresses time it takes the bubbles to pierce the free surface, resulting in a considerable increase in the local air volume fraction. In addition to first explore a bubbly surface jet, the comprehensive dataset reported herein can be used to validate two-phase flow models and computational tools.

  8. Experimental study of two phase flow in inclined channel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Goon Cherl; Lee, Tae Ho; Lee, Sang Won [Seoul National University, Seoul (Korea, Republic of)

    1997-07-01

    Local two-phase flow parameters were measured to investigate the internal flow structures of steam-water boiling flow in an inclined channel. The vapor phase local flow parameters, such as void fraction, bubble frequency, vapor velocity, interfacial area concentration and chord length, were measured, using two conductivity probe method, and local liquid phase velocity was measured by pitot tube. In order to investigate the effects of channel inclination on two phase flow structure, the experiments were conducted for three angles of inclination; 0 degree(vertical), 30 degree and 60 degree. The experimental flow conditions were confined to the liquid superficial velocities less than 1.4 m/sec and nearly atmospheric pressure, and the flow regime was limited to the subcooled boiling. Using the measured distributions of the local phasic parameters, correlations for the drift-flux parameters such as distribution parameter and drift velocity were proposed. Those correlations were compared with the available correlation applicable to the inclined channel by the calculation of average void fraction using the present data. 44 refs., 4 tabs., 88 figs. (author)

  9. Spherically symmetric brane spacetime with bulk gravity

    Science.gov (United States)

    Chakraborty, Sumanta; SenGupta, Soumitra

    2015-01-01

    Introducing term in the five-dimensional bulk action we derive effective Einstein's equation on the brane using Gauss-Codazzi equation. This effective equation is then solved for different conditions on dark radiation and dark pressure to obtain various spherically symmetric solutions. Some of these static spherically symmetric solutions correspond to black hole solutions, with parameters induced from the bulk. Specially, the dark pressure and dark radiation terms (electric part of Weyl curvature) affect the brane spherically symmetric solutions significantly. We have solved for one parameter group of conformal motions where the dark radiation and dark pressure terms are exactly obtained exploiting the corresponding Lie symmetry. Various thermodynamic features of these spherically symmetric space-times are studied, showing existence of second order phase transition. This phenomenon has its origin in the higher curvature term with gravity in the bulk.

  10. Microfluidic energy conversion by application of two phase flow

    NARCIS (Netherlands)

    Xie, Yanbo

    2013-01-01

    The classical electrokinetic energy conversion mechanism relies on a single stage conversion by forcing liquid through a channel with charged walls. When the net charges inside the electrical double layer (EDL) are transported by water flow, the produced electrical energy can be harvested via connec

  11. The Effect of pH Difference Between Two Phases on the Partition of Lysozyme in Aqueous Two-Phase System

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In the investigation of effect of KSCN on the partitioning of lysozyme in PEG2000/ammonium sulfate aqueous two-phase system, it was found that the KSCN could alter the pH difference between the two phases, and thus affect the partition of lysozyme. The relationship between partition coefficients of lysozyme and pH differences between two phases was discussed.

  12. Calibration of Mineralization Degree for Dynamic Pure-water Measurement in Horizontal Oil-water Two-phase Flow

    Science.gov (United States)

    Kong, Weihang; Li, Lei; Kong, Lingfu; Liu, Xingbin

    2016-08-01

    In order to solve the problem of dynamic pure-water electrical conductivity measurement in the process of calculating water content of oil-water two-phase flow of production profile logging in horizontal wells, a six-group local-conductance probe (SGLCP) is proposed to measure dynamic pure-water electrical conductivity in horizontal oil-water two-phase flow. The structures of conductance sensors which include the SGLCP and ring-shaped conductance probe (RSCP) are analyzed by using the finite-element method (FEM). In the process of simulation, the electric field distribution generated by the SGLCP and RSCP are investigated, and the responses of the measuring electrodes are calculated under the different values of the water resistivity. The static experiments of the SGLCP and RSCP under different mineralization degrees in horizontal oil-water two-phase flow are carried out. Results of simulation and experiments demonstrate a nice linearity between the SGLCP and RSCP under different mineralization degrees. The SGLCP has also a good adaptability to stratified flow, stratified flow with mixing at the interface and dispersion of oil in water and water flow. The validity and feasibility of pure-water electrical conductivity measurement with the designed SGLCP under different mineralization degrees are verified by experimental results.

  13. Contrast enhanced two-phase spiral CT of urinary bladder

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeung Uk; Cha, Seong Sook; Ryu, Ji Hwa; Oh, Jeong Geun; Chang, Seung Kuk; Choi, Seok Jin; Eun, Choong Kie [Inje Univ. College of Medicine, Pusan (Korea, Republic of); Seo, Chang Hye [Daedong General Hospital, Pusan (Korea, Republic of)

    1997-10-01

    To determine optimal scan time for the early phase of two-phase spiral CT and to evaluate its usefulness in the detection and assessment of extension of urinary bladder lesions. In four normal adults, we performed dynamic scanning and obtained time-density curves for internal and external iliac arteries and veins, and the wall of the urinary bladder. Sixty patients with 68 lesions of the urinary bladder or prostate underwent precontrast and two-phase spiral CT scanning. After injection of 100ml of noninonic contrast material, images for the early and delayed phases were obtained at 60 seconds and 5 minutes, respectively. We measured CT H. U. of the wall, the lesion, and lumen of urinary bladder as seen on axial scanning, in each image in which the lesion was best shown. For the detection of bladder lesions and assessment of their extension, precontrast, early-, and delayed phsed images were compared. Dynamic study of normal adults showed maximum enhancement of bladder wall between 60 and 100 seconds. The difference of CT H. U. between bladder wall and the lesion was greatest in the early phase. The best detection rate(98.5%) was seen during this phase, and for the detection of bladder lesion, this same phase was superior or equal (66/68, 97.1%) to the delayed phase. The precontrast image was also superior or equal (31/68, 45.6%) to that of the delayed phase. For the assessment of extension of bladder lesion, the early phase was superior (36/68, 52.9%) to the delayed phase, and precontrast image was superiour (1/68, 1.5%) to that of the delayed phase. For determining the stage of bladder cancer, the early phase was most accurate if the stages was below B{sub 2} or D, while for stage C, the delayed phase was most accurate. In two-hpase spiral CT scanning, we consider the optimal time for the early phase to be between 60 and 100 seconds after injection of contrast material. For the detection and assessment of extension of urinary bladder lesion, the early phase was

  14. Stability of stratified two-phase flows in horizontal channels

    CERN Document Server

    Barmak, Ilya; Ullmann, Amos; Brauner, Neima; Vitoshkin, Helen

    2016-01-01

    Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems the stratified flow with smooth interface is stable only in confined zone of relatively lo...

  15. Two-phase microfluidics: thermophysical fundamentals and engineering concepts

    Science.gov (United States)

    Kuznetsov, V. V.

    2016-10-01

    Thermophysical fundamentals and engineering concepts of the two-phase microfluidic devises based on controlled liquid decay are discussed in this paper. The results of an experimental study of the explosive evaporation at a thin film heater of the MEMS devise in application to thermal inkjet printing are presented. The peculiarities of homogeneous nucleation and bubble growth in the liquid subjected to pulse heating are discussed. Using experimental data a simple equation suitable for predicting the growth rate of a vapor bubble in a non-uniformly superheated liquid was obtained and used to complete a mathematical model of the self-consistent nucleation and vapor bubbles growth in the induced pressure field. The results of numerical calculations according to the proposed model showed good agreement with the experimental data on a time of nucleation and duration of the initial stage of an explosive evaporation of water.

  16. Two-phase flow instability in a parallel multichannel system

    Institute of Scientific and Technical Information of China (English)

    HOU Suxia

    2009-01-01

    The two-phase flow instabilities observed in through parallel multichannel can be classified into three types, of which only one is intrinsic to parallel multichannel systems. The intrinsic instabilities observed in parallel multichannel system have been studied experimentally. The stable boundary of the flow in such a parallel-channel system are sought, and the nature of inlet flow oscillation in the unstable region has been examined experimentally under various conditions of inlet velocity, heat flux, liquid temperature, cross section of channel and entrance throttling. The results show that parallel multichannel system possess a characteristic oscillation that is quite independent of the magnitude and duration of the initial disturbance, and the stable boundary is influenced by the characteristic frequency of the system as well as by the exit quality when this is low, and upon raising the exit quality and reducing the characteristic frequency, the system increases its instability, and entrance throttling effectively contributes to stabilization of the system.

  17. Response of two-phase droplets to intense electromagnetic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Spann, J.F. (Morgantown Energy Technology Center, U.S. Department of Energy, P.O. Box 880, Morgantown, West Virginia 26507-0880 (United States)); Maloney, D.J.; Lawson, W.F.; Casleton, K.H. (Morgantown Energy Technology Center, U.S. Department of Energy, P.O. Box 880, Morgantown, West Virginia 26507-0880 (United States))

    1993-04-20

    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii = 37, 55, and 80 [mu]m) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.

  18. Mathematical model of two-phase flow in accelerator channel

    Directory of Open Access Journals (Sweden)

    О.Ф. Нікулін

    2010-01-01

    Full Text Available  The problem of  two-phase flow composed of energy-carrier phase (Newtonian liquid and solid fine-dispersed phase (particles in counter jet mill accelerator channel is considered. The mathematical model bases goes on the supposition that the phases interact with each other like independent substances by means of aerodynamics’ forces in conditions of adiabatic flow. The mathematical model in the form of system of differential equations of order 11 is represented. Derivations of equations by base physical principles for cross-section-averaged quantity are produced. The mathematical model can be used for estimation of any kinematic and thermodynamic flow characteristics for purposely parameters optimization problem solving and transfer functions determination, that take place in  counter jet mill accelerator channel design.

  19. Two phase coexistence for the hydrogen-helium mixture

    CERN Document Server

    Fantoni, Riccardo

    2015-01-01

    We use our newly constructed quantum Gibbs ensemble Monte Carlo algorithm to perform computer experiments for the two phase coexistence of a hydrogen-helium mixture. Our results are in quantitative agreement with the experimental results of C. M. Sneed, W. B. Streett, R. E. Sonntag, and G. J. Van Wylen. The difference between our results and the experimental ones is in all cases less than 15% relative to the experiment, reducing to less than 5% in the low helium concentration phase. At the gravitational inversion between the vapor and the liquid phase, at low temperatures and high pressures, the quantum effects become relevant. At extremely low temperature and pressure the first component to show superfluidity is the helium in the vapor phase.

  20. Phase appearance or disappearance in two-phase flows

    CERN Document Server

    Cordier, Floraine; Kumbaro, Anela

    2011-01-01

    This paper is devoted to the treatment of specific numerical problems which appear when phase appearance or disappearance occurs in models of two-phase flows. Such models have crucial importance in many industrial areas such as nuclear power plant safety studies. In this paper, two outstanding problems are identified: first, the loss of hyperbolicity of the system when a phase appears or disappears and second, the lack of positivity of standard shock capturing schemes such as the Roe scheme. After an asymptotic study of the model, this paper proposes accurate and robust numerical methods adapted to the simulation of phase appearance or disappearance. Polynomial solvers are developed to avoid the use of eigenvectors which are needed in usual shock capturing schemes, and a method based on an adaptive numerical diffusion is designed to treat the positivity problems. An alternate method, based on the use of the hyperbolic tangent function instead of a polynomial, is also considered. Numerical results are presente...

  1. Two-phase flow simulation of aeration on stepped spillway

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiangju; LUO Lin; ZHAO Wenqian; LI Ran

    2004-01-01

    Stepped spillways have existed as escape works for a very long time. It is found that water can trap a lot of air when passing through steps and then increasing oxygen content in water body, so stepped spillways can be used as a measure of re-aeration and to improve water quality of water body. However, there is no reliable theoretical method on quantitative calculation of re-aeration ability for the stepped spillways. By introducing an air-water two-phase flow model, this paper used k-ε turbulence model to calculate the characteristic variables of free-surface aeration on stepped spillway. The calculated results fit with the experimental results well. It supports that the numerical modeling method is reasonable and offers firm foundation on calculating re-aeration ability of stepped spillways. The simulation approach can provide a possible optimization tool for designing stepped spillways of more efficient aeration capability.

  2. A TWO-PHASE APPROACH TO FUZZY SYSTEM IDENTIFICATION

    Institute of Scientific and Technical Information of China (English)

    Ta-Wei HUNG; Shu-Cherng FANG; Henry L.W.NUTTLE

    2003-01-01

    A two-phase approach to fuzzy system identification is proposed. The first phase produces a baseline design to identify a prototype fuzzy system for a target system from a coIlection of input-output data pairs. It uses two easily implemented clustering techniques: the subtractive clustering method and the fuzzy c-means (FCM) clustering algorithm. The second phase (fine tuning)is executed to adjust the parameters identified in the baseline design. This phase uses the steepest descent and recursive least-squares estimation methods. The proposed approach is validated by applying it to both a function approximation type of problem and a classification type of problem. An analysis of the learning behavior of the proposed approach for the two test problems is conducted for further confirmation.

  3. Solutal Marangoni instability in layered two-phase flows

    CERN Document Server

    Picardo, Jason R; Pushpavanam, S

    2015-01-01

    In this paper, the instability of layered two-phase flows caused by the presence of a soluble surfactant (or a surface active solute) is studied. The fluids have different viscosities, but are density matched to focus on Marangoni effects. The fluids flow between two flat plates, which are maintained at different solute concentrations. This establishes a constant flux of solute from one fluid to the other in the base state. A linear stability analysis is performed, using a combination of asymptotic and numerical methods. In the creeping flow regime, Marangoni stresses destabilize the flow, provided a concentration gradient is maintained across the fluids. One long wave and two short wave Marangoni instability modes arise, in different regions of parameter space. A well-defined condition for the long wave instability is determined in terms of the viscosity and thickness ratios of the fluids, and the direction of mass transfer. Energy budget calculations show that the Marangoni stresses that drive long and shor...

  4. Two-Phase Algorithm for Optimal Camera Placement

    Directory of Open Access Journals (Sweden)

    Jun-Woo Ahn

    2016-01-01

    Full Text Available As markers for visual sensor networks have become larger, interest in the optimal camera placement problem has continued to increase. The most featured solution for the optimal camera placement problem is based on binary integer programming (BIP. Due to the NP-hard characteristic of the optimal camera placement problem, however, it is difficult to find a solution for a complex, real-world problem using BIP. Many approximation algorithms have been developed to solve this problem. In this paper, a two-phase algorithm is proposed as an approximation algorithm based on BIP that can solve the optimal camera placement problem for a placement space larger than in current studies. This study solves the problem in three-dimensional space for a real-world structure.

  5. Two-phase flow instabilities in a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)

    1995-09-01

    An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.

  6. Equations of two-phase flow in spray chamber

    Institute of Scientific and Technical Information of China (English)

    李新禹; 张志红; 金星; 徐杰

    2009-01-01

    The downstream water-air heat and moisture transfer system in a moving coordinate was studied. The relationship between the diameter of the misted droplets and the spray pressure was determined. Based on the theory of the relative velocity,the two-phase flow mode of the spray chamber and the efficiency equation for heat and moisture exchange were established. Corrections were carried out for the efficiency equation with spray pressure of 157 kPa. The results show that the pressure plays an important part in determining the efficiency of heat and moisture exchange. When the spray pressure is less than 157 kPa,better coincidence is noticed between the theoretical analysis and the test results with the error less than 6%. Greater error will be resulted in the case when the spray pressure is beyond 157 kPa. After the correction treatment,the coincidence between the theoretical and the experimental results is greatly improved.

  7. Flooding in counter-current two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Ragland, W.A.; Ganic, E.N.

    1982-01-01

    Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding.

  8. Response of two-phase droplets to intense electromagnetic radiation

    Science.gov (United States)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.

  9. Note on Two-Phase Phenomena in Financial Markets

    Institute of Scientific and Technical Information of China (English)

    JIANG Shi-Mei; CAI Shi-Min; ZHOU Wao; ZHOU Pei-Ling

    2008-01-01

    The two-phase behaviour in financial markets actually means the bifurcation phenomenon, which represents the change of the conditional probability from an unimodal to a bimodal distribution. We investigate the bifurcation phenomenon in Hang-Seng index. It is observed that the bifurcation phenomenon in financial index is not universal, but specific under certain conditions. For Hang-Seng index and randomly generated time series, the phenomenon just emerges when the power-law exponent of absolute increment distribution is between i and 2 with appropriate period. Simulations on a randomly generated time series suggest the bifurcation phenomenon itself is subject to the statistics of absolute increment, thus it may not be able to reflect essential financial behaviours. However, even under the same distribution of absolute increment, the range where bifurcation phenomenon occurs is far different from real market to artificial data, which may reflect certain market information.

  10. Thirty-two phase sequences design with good autocorrelation properties

    Indian Academy of Sciences (India)

    S P Singh; K Subba Rao

    2010-02-01

    Polyphase Barker Sequences are finite length, uniform complex sequences; the magnitude of their aperiodic autocorrelation sidelobes are bounded by 1. Such sequences have been used in numerous real-world applications such as channel estimation, radar and spread spectrum communication. In this paper, thirty-two phase Barker sequences up to length 24 with an alphabet size of only 32 are presented. The sequences from length 25 to 289 have autocorrelation properties better than well-known Frank codes. Because of the complex structure the sequences are very difficult to detect and analyse by an enemy’s electronic support measures (ESMs). The synthesized sequences are promising for practical application to radar and spread spectrum communication systems. These sequences are found using the Modified Simulated Annealing Algorithm (MSAA). The convergence rate of the algorithm is good.

  11. Two-phase methanization of food wastes in pilot scale.

    Science.gov (United States)

    Lee, J P; Lee, J S; Park, S C

    1999-01-01

    A 5 ton/d pilot scale two-phase anaerobic digester was constructed and tested to treat Korean food wastes in Anyang city near Seoul. The easily degradable presorted food waste was efficiently treated in the two-phase anaerobic digestion process. The waste contained in plastic bags was shredded and then screened for the removal of inert materials such as fabrics and plastics, and subsequently put into the two-stage reactors. Heavy and light inerts such as bones, shells, spoons, and plastic pieces were again removed by gravity differences. The residual organic component was effectively hydrolyzed and acidified in the first reactor with 5 d space time at pH of about 6.5. The second, methanization reactor converted the acids into methane with pH between 7.4 and 7.8. The space time for the second reactor was 15 d. The effluent from the second reactor was recycled to the first reactor to provide alkalinities. The process showed stable steady-state operation with the maximum organic loading rate of 7.9 kg volatile solid (VS)/m3/d and the volatile solid reduction efficiency of about 70%. The total of 3.6 tons presorted MSW containing 2.9 tons of food organic was treated to produce about 230 m3 of biogas with 70% (v/v) of methane and 80 kg of humus. This process is extended to full-scale treating 15 tons of food waste a day in Euiwang city and the produced biogas is utilized for the heating/cooling of adjacent buildings.

  12. Two phase continuous digestion of solid manure on-farm

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, W.; Lehto, M. [MTT Agrifood Research Finland, Vihti (Finland). Animal Production Research; Evers, L.; Granstedt, A. [Biodynamic Research Inst., Jaerna (Sweden)

    2007-07-01

    Present commercially available biogas plants are mainly suitable for slurry and co-substrates. Cattle, horse and poultry farms using a solid manure chain experience a crucial competitive disadvantage, because conversion to slurry technology requires additional investments. Based on the technological progress of anaerobic digestion of municipal solid waste, so called 'dry fermentation' prototype plants were developed for anaerobic digestion of organic material containing 15-50% total solids (Hoffman, 2001). These plants show added advantages compared to slurry digestion plants: Less reactor volume, less process energy, less transport capacity, less odour emissions. On-farm research (Gronauer and Aschmann, 2004; Kusch and Oechsner, 2004) and prototype research (Linke, 2004) on dry fermentation in batch reactors show that loading and discharging of batch reactors remains difficult and/or time-consuming compared to slurry reactors. Additionally a constant level of gas generation requires offset operation of several batch reactors. Baserga et al. (1994) developed a pilot plant of 9.6 m{sup 3} capacity for continuous digestion of solid beef cattle manure on-farm. However, on-farm dry fermentation plants are not common and rarely commercially available. We assume that lack of tested technical solutions and scarceness of on-farm research results are the main reason for low acceptance of dry fermentation technology on-farm. We report about an innovative two phase farm-scale biogas plant. The plant continuously digests dairy cattle manure and organic residues of the farm and the surrounding food processing units. The two phase reactor technology was chosen for two reasons: first it offers the separation of a liquid fraction and a solid fraction for composting after hydrolysis and secondly the methanation of the liquid fraction using fixed film technology results in a very short hydraulic retention time, reduction in reactor volume, and higher methane content of the

  13. Correct numerical simulation of a two-phase coolant

    Science.gov (United States)

    Kroshilin, A. E.; Kroshilin, V. E.

    2016-02-01

    Different models used in calculating flows of a two-phase coolant are analyzed. A system of differential equations describing the flow is presented; the hyperbolicity and stability of stationary solutions of the system is studied. The correctness of the Cauchy problem is considered. The models' ability to describe the following flows is analyzed: stable bubble and gas-droplet flows; stable flow with a level such that the bubble and gas-droplet flows are observed under and above it, respectively; and propagation of a perturbation of the phase concentration for the bubble and gas-droplet media. The solution of the problem about the breakdown of an arbitrary discontinuity has been constructed. Characteristic times of the development of an instability at different parameters of the flow are presented. Conditions at which the instability does not make it possible to perform the calculation are determined. The Riemann invariants for the nonlinear problem under consideration have been constructed. Numerical calculations have been performed for different conditions. The influence of viscosity on the structure of the discontinuity front is studied. Advantages of divergent equations are demonstrated. It is proven that a model used in almost all known investigating thermohydraulic programs, both in Russia and abroad, has significant disadvantages; in particular, it can lead to unstable solutions, which makes it necessary to introduce smoothing mechanisms and a very small step for describing regimes with a level. This does not allow one to use efficient numerical schemes for calculating the flow of two-phase currents. A possible model free from the abovementioned disadvantages is proposed.

  14. Supporting universal prevention programs: a two-phased coaching model.

    Science.gov (United States)

    Becker, Kimberly D; Darney, Dana; Domitrovich, Celene; Keperling, Jennifer Pitchford; Ialongo, Nicholas S

    2013-06-01

    Schools are adopting evidence-based programs designed to enhance students' emotional and behavioral competencies at increasing rates (Hemmeter et al. in Early Child Res Q 26:96-109, 2011). At the same time, teachers express the need for increased support surrounding implementation of these evidence-based programs (Carter and Van Norman in Early Child Educ 38:279-288, 2010). Ongoing professional development in the form of coaching may enhance teacher skills and implementation (Noell et al. in School Psychol Rev 34:87-106, 2005; Stormont et al. 2012). There exists a need for a coaching model that can be applied to a variety of teacher skill levels and one that guides coach decision-making about how best to support teachers. This article provides a detailed account of a two-phased coaching model with empirical support developed and tested with coaches and teachers in urban schools (Becker et al. 2013). In the initial universal coaching phase, all teachers receive the same coaching elements regardless of their skill level. Then, in the tailored coaching phase, coaching varies according to the strengths and needs of each teacher. Specifically, more intensive coaching strategies are used only with teachers who need additional coaching supports, whereas other teachers receive just enough support to consolidate and maintain their strong implementation. Examples of how coaches used the two-phased coaching model when working with teachers who were implementing two universal prevention programs (i.e., the PATHS curriculum and PAX Good Behavior Game [PAX GBG]) provide illustrations of the application of this model. The potential reach of this coaching model extends to other school-based programs as well as other settings in which coaches partner with interventionists to implement evidence-based programs.

  15. Vibration Analysis of the Piezoelectric, Piezomagnetic Materials in Spherical Symmetry

    Directory of Open Access Journals (Sweden)

    Qun Guan

    2013-01-01

    Full Text Available Considering that the piezoelectric, piezomagnetic materials are in the spherical coordinate system and not accounting the body weight, body electric charge and body electric current, from the motion equation, gradient equation and the piezoelectric, piezomagnetic constructive equation, the steady-state solutions of variables such as stress, strain, displacement, electric displacement, electric field intensity, electric potential, magnetic intensity, magnetic potential under additional stimulations are deduced, thereof it can provide good theoretical basement for the dynamic control of the piezoelectric, piezomagnetic materials in the space spherical symmetry.

  16. A Hydrodynamic Model for Slug Frequency in Horizontal Gas-Liquid Two-Phase Flow

    Institute of Scientific and Technical Information of China (English)

    刘磊; 孙贺东; 胡志华; 周芳德

    2003-01-01

    The prediction of slug frequency has important significance on gas-liquid two-phase flow. A hydrodynamic model was put forward to evaluate slug frequency for horizontal two-phase flow, based on the dependence of slug frequency on the frequency of unstable interfacial wave. Using air and water, experimental verification of the model was carried out in a large range of flow parameters. Six electrical probes were installed at different positions of a horizontal plexiglass pipe to detect slug frequency development. The pipe is 30 m long and its inner diameter is 24 ram. It is observed experimentally that the interracial wave frequency at the inlet is about i to 3 times the frequency of stable slug. The slug frequencies predicted by the model fit well with Tronconi (1990) model and the experimental data. The combination of the hydrodynamic model and the experimental data results in a conclusion that the frequency of equilibrium liquid slug is approximately half the minimum frequency of interfacial wave.

  17. Creep of Two-Phase Microstructures for Microelectronic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Heidi Linch [Univ. of California, Berkeley, CA (United States)

    1998-12-01

    The mechanical properties of low-melting temperature alloys are highly influenced by their creep behavior. This study investigates the dominant mechanisms that control creep behavior of two-phase, low-melting temperature alloys as a function of microstructure. The alloy systems selected for study were In-Ag and Sn-Bi because their eutectic compositions represent distinctly different microstructure.” The In-Ag eutectic contains a discontinuous phase while the Sn-Bi eutectic consists of two continuous phases. In addition, this work generates useful engineering data on Pb-free alloys with a joint specimen geometry that simulates microstructure found in microelectronic applications. The use of joint test specimens allows for observations regarding the practical attainability of superplastic microstructure in real solder joints by varying the cooling rate. Steady-state creep properties of In-Ag eutectic, Sn-Bi eutectic, Sn-xBi solid-solution and pure Bi joints have been measured using constant load tests at temperatures ranging from O°C to 90°C. Constitutive equations are derived to describe the steady-state creep behavior for In-Ageutectic solder joints and Sn-xBi solid-solution joints. The data are well represented by an equation of the form proposed by Dom: a power-law equation applies to each independent creep mechanism. Rate-controlling creep mechanisms, as a function of applied shear stress, test temperature, and joint microstructure, are discussed. Literature data on the steady-state creep properties of Sn-Bi eutectic are reviewed and compared with the Sn-xBi solid-solution and pure Bi joint data measured in the current study. The role of constituent phases in controlling eutectic creep behavior is discussed for both alloy systems. In general, for continuous, two-phase microstructure, where each phase exhibits significantly different creep behavior, the harder or more creep resistant phase will dominate the creep behavior in a lamellar microstructure. If a

  18. Statistical descriptions of polydisperse turbulent two-phase flows

    Science.gov (United States)

    Minier, Jean-Pierre

    2016-12-01

    Disperse two-phase flows are flows containing two non-miscible phases where one phase is present as a set of discrete elements dispersed in the second one. These discrete elements, or 'particles', can be droplets, bubbles or solid particles having different sizes. This situation encompasses a wide range of phenomena, from nano-particles and colloids sensitive to the molecular fluctuations of the carrier fluid to inertia particles transported by the large-scale motions of turbulent flows and, depending on the phenomenon studied, a broad spectrum of approaches have been developed. The aim of the present article is to analyze statistical models of particles in turbulent flows by addressing this issue as the extension of the classical formulations operating at a molecular or meso-molecular level of description. It has a three-fold purpose: (1) to bring out the thread of continuity between models for discrete particles in turbulent flows (above the hydrodynamical level of description) and classical mesoscopic formulations of statistical physics (below the hydrodynamical level); (2) to reveal the specific challenges met by statistical models in turbulence; (3) to establish a methodology for modeling particle dynamics in random media with non-zero space and time correlations. The presentation is therefore centered on organizing the different approaches, establishing links and clarifying physical foundations. The analysis of disperse two-phase flow models is developed by discussing: first, approaches of classical statistical physics; then, by considering models for single-phase turbulent flows; and, finally, by addressing current formulations for discrete particles in turbulent flows. This brings out that particle-based models do not cease to exist above the hydrodynamical level and offer great interest when combined with proper stochastic formulations to account for the lack of equilibrium distributions and scale separation. In the course of this study, general results

  19. A phenomenological two-phase constitutive model for porous shape memory alloys

    KAUST Repository

    El Sayed, Tamer S.

    2012-07-01

    We present a two-phase constitutive model for pseudoelastoplastic behavior of porous shape memory alloys (SMAs). The model consists of a dense SMA phase and a porous plasticity phase. The overall response of the porous SMA is obtained by a weighted average of responses of individual phases. Based on the chosen constitutive model parameters, the model incorporates the pseudoelastic and pseudoplastic behavior simultaneously (commonly reported for porous SMAs) as well as sequentially (i.e. dense SMAs; pseudoelastic deformation followed by the pseudoplastic deformation until failure). The presented model also incorporates failure due to the deviatoric (shear band formation) and volumetric (void growth and coalescence) plastic deformation. The model is calibrated by representative volume elements (RVEs) with different sizes of spherical voids that are solved by unit cell finite element calculations. The overall response of the model is tested against experimental results from literature. Finally, application of the presented constitutive model has been presented by performing finite element simulations of the deformation and failure in unaixial dog-bone shaped specimen and compact tension (CT) test specimen. Results show a good agreement with the experimental data reported in the literature. © 2012 Elsevier B.V. All rights reserved.

  20. Exploring the hole cleaning parameters of horizontal wellbore using two-phase Eulerian CFD approach

    Directory of Open Access Journals (Sweden)

    Satish K Dewangan

    2016-03-01

    Full Text Available The present investigation deals with the flow through concentric annulus with the inner cylinder in rotation. This work has got its importance in the petroleum industries in relation to the wellbore drilling. In wellbore drilling, the issue of the hole-cleaning is very serious problem especially in case of the horizontal drilling process. The effect of the various parameters like slurry flow velocity, inner cylinder rotational speed, inlet solid concentration which affect hole cleaning was discussed. Their effect on the pressure drop, wall shear stress, mixture turbulence kinetic energy, and solid-phase velocity and slip velocity were analyzed, which are responsible for solid-phase distribution. Flow was considered to be steady, incompressible and two-phase slurry flow with water as carrier fluid and silica sand as the secondary phase. Eulerian approach was used for modeling the slurry flow. Silica sand was considered of spherical shape with particle size of 180 µm. ANSYS FLUENT software was used for modeling and solution. Plotting was done using Tecplot software and Microsoft Office.

  1. Relativistic spherical plasma waves

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P

    2011-01-01

    Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.

  2. Diagnosing Traffic Anomalies Using a Two-Phase Model

    Institute of Scientific and Technical Information of China (English)

    Bin Zhang; Jia-Hai Yang; Jian-Ping Wu; Ying-Wu Zhu

    2012-01-01

    Network traffic anomalies are unusual changes in a network,so diagnosing anomalies is important for network management.Feature-based anomaly detection models (ab)normal network traffic behavior by analyzing packet header features. PCA-subspace method (Principal Component Analysis) has been verified as an efficient feature-based way in network-wide anomaly detection.Despite the powerful ability of PCA-subspace method for network-wide traffic detection,it cannot be effectively used for detection on a single link.In this paper,different from most works focusing on detection on flow-level traffic,based on observations of six traffc features for packet-level traffic,we propose a new approach B6SVM to detect anomalies for packet-level traffic on a single link.The basic idea of B6-SVM is to diagnose anomalies in a multi-dimensional view of traffic features using Support Vector Machine (SVM).Through two-phase classification,B6-SVM can detect anomalies with high detection rate and low false alarm rate.The test results demonstrate the effectiveness and potential of our technique in diagnosing anomalies.Further,compared to previous feature-based anomaly detection approaches,B6-SVM provides a framework to automatically identify possible anomalous types.The framework of B6-SVM is generic and therefore,we expect the derived insights will be helpful for similar future research efforts.

  3. Thermal performance of closed two-phase thermosyphon using nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Khandekar, Sameer; Mehta, Balkrishna [Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Joshi, Yogesh M. [Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2008-06-15

    Nanofluids, stabilized suspensions of nanoparticles typically <100 nm in conventional fluids, are evolving as potential enhanced heat transfer fluids due to their improved thermal conductivity, increase in single phase heat transfer coefficient and significant increase in critical boiling heat flux. In the present paper, we investigate the overall thermal resistance of closed two-phase thermosyphon using pure water and various water based nanofluids (of Al{sub 2}O{sub 3}, CuO and laponite clay) as working fluids. We observe that all these nanofluids show inferior thermal performance than pure water. Furthermore, we observe that the wettability of all nanofluids on copper substrate, having the same average roughness as that of the thermosyphon container pipe, is better than that of pure water. A scaling analysis is presented which shows that the increase in wettability and entrapment of nanoparticles in the grooves of the surface roughness cause decrease in evaporator side Peclet number that finally leads to poor thermal performance. (author)

  4. Aqueous Nanofluid as a Two-Phase Coolant for PWR

    Directory of Open Access Journals (Sweden)

    Pavel N. Alekseev

    2012-01-01

    Full Text Available Density fluctuations in liquid water consist of two topological kinds of instant molecular clusters. The dense ones have helical hydrogen bonds and the nondense ones are tetrahedral clusters with ice-like hydrogen bonds of water molecules. Helical ordering of protons in the dense water clusters can participate in coherent vibrations. The ramified interface of such incompatible structural elements induces clustering impurities in any aqueous solution. These additives can enhance a heat transfer of water as a two-phase coolant for PWR due to natural forming of nanoparticles with a thermal conductivity higher than water. The aqueous nanofluid as a new condensed matter has a great potential for cooling applications. It is a mixture of liquid water and dispersed phase of extremely fine quasi-solid particles usually less than 50 nm in size with the high thermal conductivity. An alternative approach is the formation of gaseous (oxygen or hydrogen nanoparticles in density fluctuations of water. It is possible to obtain stable nanobubbles that can considerably exceed the molecular solubility of oxygen (hydrogen in water. Such a nanofluid can convert the liquid water in the nonstoichiometric state and change its reduction-oxidation (RedOx potential similarly to adding oxidants (or antioxidants for applying 2D water chemistry to aqueous coolant.

  5. Stability of stratified two-phase flows in horizontal channels

    Science.gov (United States)

    Barmak, I.; Gelfgat, A.; Vitoshkin, H.; Ullmann, A.; Brauner, N.

    2016-04-01

    Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems, the stratified flow with a smooth interface is stable only in confined zone of relatively low flow rates, which is in agreement with experiments, but is not predicted by long-wave analysis. Depending on the flow conditions, the critical perturbations can originate mainly at the interface (so-called "interfacial modes of instability") or in the bulk of one of the phases (i.e., "shear modes"). The present analysis revealed that there is no definite correlation between the type of instability and the perturbation wavelength.

  6. Microporous silica gels from alkylsilicate-water two phase hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chu, L.; Tejedor-Tejedor, M.I.; Anderson, M.A. [Univ. of Wisconsin, Madison, WI (United States). Water Chemistry Program

    1994-12-31

    Microporous silica gels have been synthesized through a nano-particulate sol-gel route. These gels have uniformly distributed and extremely small pores(< 15 {angstrom} in diameter). Hydrolysis and condensation reactions leading to these gels were carried out in an alkyl silicate-water (ammonia) two phase system. These reactions took place at the alkyl silicate droplet-water interfacial boundary. No alcohol was added. A clear, stable and uniformly distributed colloidal silica suspension having an average particle size less than 6 nm was prepared by this method. Fast hydrolysis, slow condensation and low solubility all contribute to a high supersaturation level and result in the formation of small particles. This process is consistent with classic nucleation theory. When the particles are produced under acidic rather than under basic reaction conditions, smaller particles are formed due to the slower condensation rate and lower solubility of these silica particles in acidic conditions. At the same pH, alkylsilicates having smaller alkyl groups react faster with water leading to smaller primary particles. Homogeneous nucleation conditions are achieved when the water/alkylsilicate ratio is high.

  7. Pressure transient analysis of two-phase flow problems

    Energy Technology Data Exchange (ETDEWEB)

    Chu, W.C.; Reynolds, A.C.; Raghavan, R.

    1986-04-01

    This paper considers the analysis of pressure drawdown and buildup data for two-phase flow problems. Of primary concern is the analysis of data influenced by saturation gradients that exist within the reservoir. Wellbore storage effects are assumed to be negligible. The pressure data considered are obtained from a two-dimensional (2D) numerical coning model for an oil/water system. The authors consider constant-rate production followed by a buildup period and assume that the top, bottom, and outer boundaries of the reservoir are sealed. First, they consider the case where the producing interval is equal to the total formation thickness. Second, they discuss the effect of partial penetration. In both cases, they show that average pressure can be estimated by the Matthews-Brons-Hazebroek method and consider the computation of the skin factor. They also show that a reservoir limit test can estimate reservoir PV only if the total mobility adjacent to the wellbore does not vary with time.

  8. Two-Phase Flow Hydrodynamics in Superhydrophobic Channels

    Science.gov (United States)

    Stevens, Kimberly; Crockett, Julie; Maynes, Daniel; Iverson, Brian

    2015-11-01

    Superhydrophobic surfaces promote drop-wise condensation and droplet removal leading to the potential for increased thermal transport. Accordingly, great interest exists in using superhydrophobic surfaces in flow condensing environments, such as power generation and desalination. Adiabatic air-water mixtures were used to gain insight into the effect of hydrophobicity on two-phase flows and the hydrodynamics present in flow condensation. Pressure drop and onset of various flow regimes in hydrophilic, hydrophobic, and superhydrophobic mini (0.5 x 10 mm) channels were explored. Data for air/water mixtures with superficial Reynolds numbers from 20-200 and 250-1800, respectively, were obtained. Agreement between experimentally obtained pressure drops and correlations in literature for the conventional smooth control surfaces was better than 20 percent. Transitions between flow regimes for the hydrophobic and hydrophilic channels were similar to commonly recognized flow types. However, the superhydrophobic channel demonstrated significantly different flow regime behavior from conventional surfaces including a different shape of the air slugs, as discussed in the presentation.

  9. An automated two-phase system for hydrogel microbead production.

    Science.gov (United States)

    Coutinho, Daniela F; Ahari, Amir F; Kachouie, Nezamoddin N; Gomes, Manuela E; Neves, Nuno M; Reis, Rui L; Khademhosseini, Ali

    2012-09-01

    Polymeric beads have been used for protection and delivery of bioactive materials, such as drugs and cells, for different biomedical applications. Here, we present a generic two-phase system for the production of polymeric microbeads of gellan gum or alginate, based on a combination of in situ polymerization and phase separation. Polymer droplets, dispensed using a syringe pump, formed polymeric microbeads while passing through a hydrophobic phase. These were then crosslinked, and thus stabilized, in a hydrophilic phase as they crossed through the hydrophobic-hydrophilic interface. The system can be adapted to different applications by replacing the bioactive material and the hydrophobic and/or the hydrophilic phases. The size of the microbeads was dependent on the system parameters, such as needle size and solution flow rate. The size and morphology of the microbeads produced by the proposed system were uniform, when parameters were kept constant. This system was successfully used for generating polymeric microbeads with encapsulated fluorescent beads, cell suspensions and cell aggregates proving its ability for generating bioactive carriers that can potentially be used for drug delivery and cell therapy.

  10. Two-Phase Flow Field Simulation of Horizontal Steam Generators

    Directory of Open Access Journals (Sweden)

    Ataollah Rabiee

    2017-02-01

    Full Text Available The analysis of steam generators as an interface between primary and secondary circuits in light water nuclear power plants is crucial in terms of safety and design issues. VVER-1000 nuclear power plants use horizontal steam generators which demand a detailed thermal hydraulics investigation in order to predict their behavior during normal and transient operational conditions. Two phase flow field simulation on adjacent tube bundles is important in obtaining logical numerical results. However, the complexity of the tube bundles, due to geometry and arrangement, makes it complicated. Employment of porous media is suggested to simplify numerical modeling. This study presents the use of porous media to simulate the tube bundles within a general-purpose computational fluid dynamics code. Solved governing equations are generalized phase continuity, momentum, and energy equations. Boundary conditions, as one of the main challenges in this numerical analysis, are optimized. The model has been verified and tuned by simple two-dimensional geometry. It is shown that the obtained vapor volume fraction near the cold and hot collectors predict the experimental results more accurately than in previous studies.

  11. Unsteady flow analysis of a two-phase hydraulic coupling

    Science.gov (United States)

    Hur, N.; Kwak, M.; Lee, W. J.; Moshfeghi, M.; Chang, C.-S.; Kang, N.-W.

    2016-06-01

    Hydraulic couplings are being widely used for torque transmitting between separate shafts. A mechanism for controlling the transmitted torque of a hydraulic system is to change the amount of working fluid inside the system. This paper numerically investigates three-dimensional turbulent flow in a real hydraulic coupling with different ratios of charged working fluid. Working fluid is assumed to be water and the Realizable k-ɛ turbulence model together with the VOF method are used to investigate two-phase flow inside the wheels. Unsteady simulations are conducted using the sliding mesh technique. The primary wheel is rotating at a fixed speed of 1780 rpm and the secondary wheel rotates at different speeds for simulating different speed ratios. Results are investigated for different blade angles, speed ratios and also different water volume fractions, and are presented in the form of flow patterns, fluid average velocity and also torques values. According to the results, blade angle severely affects the velocity vector and the transmitted torque. Also in the partially-filled cases, air is accumulated in the center of the wheel forming a toroidal shape wrapped by water and the transmitted torque sensitively depends on the water volume fraction. In addition, in the fully-filled case the transmitted torque decreases as the speed ration increases and the average velocity associated with lower speed ratios are higher.

  12. Passive Two-Phase Cooling of Automotive Power Electronics: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-08-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  13. Simulation and modeling of two-phase bubbly flows

    Energy Technology Data Exchange (ETDEWEB)

    Sylvain L Pigny; Pierre F Coste [DEN/DER/SSTH, CEA/Grenoble, 38054 Grenoble Cedex 9 (France)

    2005-07-01

    Full text of publication follows: Phenomena related to bubbles in two-phase recirculating flows are investigated, via the computational code SIMMER, concerning an experiment in which air is injected in the lower part of a tank filled of water and initially at rest. Averaged mass and momentum transport equations are solved for air and water. Close to the injector, the formation of individual large bubbles is represented in the calculations, via direct simulation. Small scale phenomena, related to small bubbles behavior or turbulence in the liquid continuous phase, are modeled, in a statistical way, via classical closure laws. In a first calculation, the splitting of large bubbles is not represented. It is shown that this phenomenon, the space scale of which is close to the cell size, cannot be simulated, in view of the present computational resources. Nevertheless, relatively fine meshes are used, for an accurate description of hydrodynamical phenomena, and the splitting phenomenon is too large to be modeled via closure laws. A specific approach for the intermediate scales is therefore developed to represent it. (authors)

  14. Mathematical modeling of a gas jet impinging on a two phase bath

    Science.gov (United States)

    Delgado-Álvárez, J.; Ramírez-Argáez, Marco A.; González-Rivera, C.

    2012-09-01

    In this work a three phase 3D mathematical model was developed using the Volume Of Fluid (VOF) algorithm, which is able to accurately describe the cavity geometry and size as well as the liquid flow patterns created when a gas jet impinges on a two phase liquid free surface. These phenomena are commonly found in steelmaking operations such as in the Electric Arc Furnace (EAF) and the Basic Oxygen Furnace (BOF) where oxygen jets impinge on a steel bath and they control heat, momentum and mass transfer. The cavity formed in the liquids by the impinging jet depends on a force balance at the free surface where the inertial force of the jet governs these phenomena. The inertial force of the jet and its angle play important roles, being the lowest angle the best choice to shear the bath and promote stronger circulation and better mixing in the liquids.

  15. Design of a Driver of Two-phase Hybrid Stepper Motor Based on THB6064H

    Science.gov (United States)

    Zeng, Qi

    2017-05-01

    Stepper motor is a kind of motor which can change electric pulse signal into angular displacement or linear displacement, usually; it must have a driver in order to work effectively. A driver of two-phase hybrid stepper motor based on THB6064H and single-chip of STC89C52 is designed and proposed. The driver is with the function of driving the motor to start and stop, forward and reversal, adjusting the speed of the motor and realizing the step angle subdivided control. Moreover, the maximum output current of the proposed driver achieves 5 amperes which can drive 57 series stepper motor well. Touch keys are used to input the preset data and controlling instructions of the motor, and a 1602LCD display is also adopted to show the basic parameters of the stepper motor in operation.

  16. Bubble dynamics, two-phase flow, and boiling heat transfer in a microgravity environment

    Science.gov (United States)

    Chung, Jacob N.

    1994-01-01

    The two-phase bubbly flow and boiling heat transfer in microgravity represents a substantial challenge to scientists and engineers and yet there is an urgent need to seek fundamental understanding in this area for future spacecraft design and space missions. At Washington State University, we have successfully designed, built and tested a 2.1 second drop tower with an innovation airbag deceleration system. Microgravity boiling experiments performed in our 0.6 second Drop Tower produced data flow visualizations that agree with published results and also provide some new understanding concerning flow boiling and microgravity bubble behavior. On the analytical and numerical work, the edge effects of finite divergent electrode plates on the forces experienced by bubbles were investigated. Boiling in a concentric cylinder microgravity and an electric field was numerically predicted. We also completed a feasibility study for microgravity boiling in an acoustic field.

  17. Simulation of plasma discharge in liquids: A detailed two-phase fluid approach

    Science.gov (United States)

    Charchi Aghdam, Ali; Farouk, Tanvir; Reacting Systems; Advanced Energy Research Laboratory Team

    2015-09-01

    Plasma discharge in liquids has gained great attention recently due to its applications in biomedical engineering, fuel processing, and water treatment and so on. Despite the tremendous interest, a comprehensive understanding of the underlying physics still remains limited. In the current work, an attempt is made to present a mathematical multi-physics model to describe the discharge of plasma in liquids. An in-house modeling platform is developed for simulating plasma formation in multiphase fluids. The model resolves a detailed two-phase fluid including viscous effects, surface tension, gravitational forces and electrical body force. All the governing equations are solved for gas and liquid phases. Electric field and charged species equations along with the plasma reaction kinetics are solved to get the charge distribution in the different phases as well as at the gas-liquid interface to obtain the electric body force acting at the interface. By coupling the above sub-models, a comprehensive multi-physics model for plasma discharge in liquids is constructed which is able to capture several physical aspects of the phenomena especially the role of the bubble, its motion and distortion on plasma characteristics.

  18. STUDIES OF TWO-PHASE PLUMES IN STRATIFIED ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Scott A. Socolofsky; Brian C. Crounse; E. Eric Adams

    1998-11-18

    Two-phase plumes play an important role in the more practical scenarios for ocean sequestration of CO{sub 2}--i.e. dispersing CO{sub 2} as a buoyant liquid from either a bottom-mounted or ship-towed pipeline. Despite much research on related applications, such as for reservoir destratification using bubble plumes, our understanding of these flows is incomplete, especially concerning the phenomenon of plume peeling in a stratified ambient. To address this deficiency, we have built a laboratory facility in which we can make fundamental measurements of plume behavior. Although we are using air, oil and sediments as our sources of buoyancy (rather than CO{sub 2}), by using models, our results can be directly applied to field scale CO{sub 2} releases to help us design better CO{sub 2} injection systems, as well as plan and interpret the results of our up-coming international field experiment. The experimental facility designed to study two-phase plume behavior similar to that of an ocean CO{sub 2} release includes the following components: 1.22 x 1.22 x 2.44 m tall glass walled tank; Tanks and piping for the two-tank stratification method for producing step- and linearly-stratified ambient conditions; Density profiling system using a conductivity and temperature probe mounted to an automated depth profiler; Lighting systems, including a virtual point source light for shadowgraphs and a 6 W argon-ion laser for laser induced fluorescence (LIF) imaging; Imaging system, including a digital, progressive scanning CCD camera, computerized framegrabber, and image acquisition and analysis software; Buoyancy source diffusers having four different air diffusers, two oil diffusers, and a planned sediment diffuser; Dye injection method using a Mariotte bottle and a collar diffuser; and Systems integration software using the Labview graphical programming language and Windows NT. In comparison with previously reported experiments, this system allows us to extend the parameter range of

  19. Numerical methods for two-phase flow with contact lines

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Clauido

    2012-07-01

    This thesis focuses on numerical methods for two-phase flows, and especially flows with a moving contact line. Moving contact lines occur where the interface between two fluids is in contact with a solid wall. At the location where both fluids and the wall meet, the common continuum descriptions for fluids are not longer valid, since the dynamics around such a contact line are governed by interactions at the molecular level. Therefore the standard numerical continuum models have to be adjusted to handle moving contact lines. In the main part of the thesis a method to manipulate the position and the velocity of a contact line in a two-phase solver, is described. The Navier-Stokes equations are discretized using an explicit finite difference method on a staggered grid. The position of the interface is tracked with the level set method and the discontinuities at the interface are treated in a sharp manner with the ghost fluid method. The contact line is tracked explicitly and its dynamics can be described by an arbitrary function. The key part of the procedure is to enforce a coupling between the contact line and the Navier-Stokes equations as well as the level set method. Results for different contact line models are presented and it is demonstrated that they are in agreement with analytical solutions or results reported in the literature.The presented Navier-Stokes solver is applied as a part in a multiscale method to simulate capillary driven flows. A relation between the contact angle and the contact line velocity is computed by a phase field model resolving the micro scale dynamics in the region around the contact line. The relation of the microscale model is then used to prescribe the dynamics of the contact line in the macro scale solver. This approach allows to exploit the scale separation between the contact line dynamics and the bulk flow. Therefore coarser meshes can be applied for the macro scale flow solver compared to global phase field simulations

  20. Numerical flow analyses of a two-phase hydraulic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hur, N.; Kwak, M.; Moshfeghi, M. [Sogang University, Seoul (Korea, Republic of); Chang, C.-S.; Kang, N.-W. [VS Engineering, Seoul (Korea, Republic of)

    2017-05-15

    We investigated flow characteristics in a hydraulic coupling at different charged water conditions and speed ratios. Hence, simulations were performed for three-dimensional two-phase flow by using the VOF method. The realizable k-ε turbulence model was adopted. To resolve the interaction of passing blades of the primary and secondary wheels, simulations were conducted in the unsteady framework using a sliding grid technique. The results show that the water-air distribution inside the wheel is strongly dependent upon both amount of charged water and speed ratio. Generally, air is accumulated in the center of the wheel, forming a toroidal shape wrapped by the circulating water. The results also show that at high speed ratios, the solid-body-like rotation causes dry areas on the periphery of the wheels and, hence, considerably decreases the circulating flow rate and the transmitted torque. Furthermore, the momentum transfer was investigated through the concept of a mass flux triangle based on the local velocity multiplied by the local mixture density instead of the velocity triangle commonly used in a single-phase turbomachine analysis. Also, the mass fluxes along the radius of the coupling in the partially charged and fully charged cases were found to be completely different. It is shown that the flow rate at the interfacial plane and also the transmitted torque are closely related and are strongly dependent upon both the amount of charged water and speed ratio. Finally, a conceptual categorization together with two comprehensive maps was provided for the torque transmission and also circulating flow rates. These two maps in turn exhibit valuable engineering information and can serve as bases for an optimal design of a hydraulic coupling.

  1. Two Phase Flow Mapping and Transition Under Microgravity Conditions

    Science.gov (United States)

    Parang, Masood; Chao, David F.

    1998-01-01

    In this paper, recent microgravity two-phase flow data for air-water, air-water-glycerin, and air- water-Zonyl FSP mixtures are analyzed for transition from bubbly to slug and from slug to annular flow. It is found that Weber number-based maps are inadequate to predict flow-pattern transition, especially over a wide range of liquid flow rates. It is further shown that slug to annular flow transition is dependent on liquid phase Reynolds number at high liquid flow rate. This effect may be attributed to growing importance of liquid phase inertia in the dynamics of the phase flow and distribution. As a result a new form of scaling is introduced to present data using liquid Weber number based on vapor and liquid superficial velocities and Reynolds number based on liquid superficial velocity. This new combination of the dimensionless parameters seem to be more appropriate for the presentation of the microgravity data and provides a better flow pattern prediction and should be considered for evaluation with data obtained in the future. Similarly, the analysis of bubble to slug flow transition indicates a strong dependence on both liquid inertia and turbulence fluctuations which seem to play a significant role on this transition at high values of liquid velocity. A revised mapping of data using a new group of dimensionless parameters show a better and more consistent description of flow transition over a wide range of liquid flow rates. Further evaluation of the proposed flow transition mapping will have to be made after a wider range of microgravity data become available.

  2. Spherical coverage verification

    CERN Document Server

    Petkovic, Marko D; Latecki, Longin Jan

    2011-01-01

    We consider the problem of covering hypersphere by a set of spherical hypercaps. This sort of problem has numerous practical applications such as error correcting codes and reverse k-nearest neighbor problem. Using the reduction of non degenerated concave quadratic programming (QP) problem, we demonstrate that spherical coverage verification is NP hard. We propose a recursive algorithm based on reducing the problem to several lower dimension subproblems. We test the performance of the proposed algorithm on a number of generated constellations. We demonstrate that the proposed algorithm, in spite of its exponential worst-case complexity, is applicable in practice. In contrast, our results indicate that spherical coverage verification using QP solvers that utilize heuristics, due to numerical instability, may produce false positives.

  3. Spherical geodesic mesh generation

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Jimmy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kenamond, Mark Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Burton, Donald E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shashkov, Mikhail Jurievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-27

    In ALE simulations with moving meshes, mesh topology has a direct influence on feature representation and code robustness. In three-dimensional simulations, modeling spherical volumes and features is particularly challenging for a hydrodynamics code. Calculations on traditional spherical meshes (such as spin meshes) often lead to errors and symmetry breaking. Although the underlying differencing scheme may be modified to rectify this, the differencing scheme may not be accessible. This work documents the use of spherical geodesic meshes to mitigate solution-mesh coupling. These meshes are generated notionally by connecting geodesic surface meshes to produce triangular-prismatic volume meshes. This mesh topology is fundamentally different from traditional mesh topologies and displays superior qualities such as topological symmetry. This work describes the geodesic mesh topology as well as motivating demonstrations with the FLAG hydrocode.

  4. Two-phase analysis in consensus genetic mapping.

    Science.gov (United States)

    Ronin, Y; Mester, D; Minkov, D; Belotserkovski, R; Jackson, B N; Schnable, P S; Aluru, S; Korol, A

    2012-05-01

    Numerous mapping projects conducted on different species have generated an abundance of mapping data. Consequently, many multilocus maps have been constructed using diverse mapping populations and marker sets for the same organism. The quality of maps varies broadly among populations, marker sets, and software used, necessitating efforts to integrate the mapping information and generate consensus maps. The problem of consensus genetic mapping (MCGM) is by far more challenging compared with genetic mapping based on a single dataset, which by itself is also cumbersome. The additional complications introduced by consensus analysis include inter-population differences in recombination rate and exchange distribution along chromosomes; variations in dominance of the employed markers; and use of different subsets of markers in different labs. Hence, it is necessary to handle arbitrary patterns of shared sets of markers and different level of mapping data quality. In this article, we introduce a two-phase approach for solving MCGM. In phase 1, for each dataset, multilocus ordering is performed combined with iterative jackknife resampling to evaluate the stability of marker orders. In this phase, the ordering problem is reduced to the well-known traveling salesperson problem (TSP). Namely, for each dataset, we look for order that gives minimum sum of recombination distances between adjacent markers. In phase 2, the optimal consensus order of shared markers is selected from the set of allowed orders and gives the minimal sum of total lengths of nonconflicting maps of the chromosome. This criterion may be used in different modifications to take into account the variation in quality of the original data (population size, marker quality, etc.). In the foregoing formulation, consensus mapping is considered as a specific version of TSP that can be referred to as "synchronized TSP." The conflicts detected after phase 1 are resolved using either a heuristic algorithm over the

  5. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse...... the spherical deformation model in detail and describe how it may be used to summarize the shape of star-shaped three-dimensional objects with few parameters. It is of interest to make statistical inference about the three-dimensional shape parameters from continuous observations of the surface and from...

  6. Flow regime transition criteria for two-phase flow in a vertical annulus

    Energy Technology Data Exchange (ETDEWEB)

    Julia, J. Enrique, E-mail: bolivar@emc.uji.es [Departamento de Ingenieria Mecanica y Construccion, Universitat Jaume I., Campus de Riu Sec, 12071 Castellon (Spain); Hibiki, Takashi [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)

    2011-10-15

    Highlights: > Flow regime transition model is presented for two-phase flows in a vertical annulus. > The transition criteria is easy to be implemented in computational codes. > Final equations do not need experimental input. > New developed model shows better predicting capabilities than existing correlations. > New developed model shows good predicting capabilities in boiling flow. - Abstract: In this work, a new flow regime transition model is proposed for two-phase flows in a vertical annulus. Following previous works, the flow regimes considered are bubbly (B), slug (S) or cap-slug (CS), churn (C) and annular (A). The B to CS transition is modeled using the maximum bubble package criteria of small bubbles. The S to C transition takes place for small annulus perimeter flow channels and it is assumed to occur when the mean void fraction over the entire region exceeds that over the slug-bubble section. If the annulus perimeter is larger that the distorted bubble limit the cap-slug flow regime will be considered since in these conditions it is not possible to distinguish between cap and partial-slug bubbles. The CS to C transition is modeled using the maximum bubble package criteria. However, this transition considers the coalescence of cap and spherical bubbles in order to take into account the flow channel geometry. Finally, the C to A transition is modeled assuming two different mechanisms, (a) flow reversal in the liquid film section along large bubbles; (b) destruction on liquid slugs or large waves by entrainment or deformation. In the S to C and C to A flow regime transitions the annulus flow channel is considered as a rectangular flow channel with no side walls. In all the modeled transitions the drift-flux model is used to obtain the final correlations. The final equations for every flow regime transition are easy to be implemented in computational codes and not experimental input is needed. The prediction accuracy of the newly developed model has been

  7. 48 CFR 36.301 - Use of two-phase design-build selection procedures.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Use of two-phase design... ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Two-Phase Design-Build Selection Procedures 36.301 Use of two-phase design-build selection procedures....

  8. 24 CFR 115.201 - The two phases of substantial equivalency certification.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false The two phases of substantial... ENFORCEMENT AGENCIES Certification of Substantially Equivalent Agencies § 115.201 The two phases of.... The Department has developed a two-phase process of substantial equivalency certification....

  9. Micro- and Nano-Scale Electrically Driven Two-Phase Thermal Management

    Science.gov (United States)

    Didion, Jeffrey R.

    2016-01-01

    This presentation discusses ground based proof of concept hardware under development at NASA GSFC to address high heat flux thermal management in silicon substrates. The goal is to develop proof of concept hardware for space flight validation. The space flight hardware will provide gravity insensitive thermal management for electronics applications such as transmit receive modules that are severely limited by thermal concerns.

  10. Spherical distributions : Schoenberg revisited

    NARCIS (Netherlands)

    Steerneman, AGM; van Perlo-ten Kleij, F

    2005-01-01

    An in-dimensional random vector X is said to have a spherical distribution if and only if its characteristic function is of the form phi(parallel to t parallel to), where t is an element of R-m, parallel to.parallel to denotes the usual Euclidean norm, and phi is a characteristic function on R. A mo

  11. On the Stable Numerical Approximation of Two-Phase Flow with Insoluble Surfactant

    CERN Document Server

    Barrett, John W; Nürnberg, Robert

    2013-01-01

    We present a parametric finite element approximation of two-phase flow with insoluble surfactant. This free boundary problem is given by the Navier--Stokes equations for the two-phase flow in the bulk, which are coupled to the transport equation for the insoluble surfactant on the interface that separates the two phases. We combine the evolving surface finite element method with an approach previously introduced by the authors for two-phase Navier--Stokes flow, which maintains good mesh properties. The derived finite element approximation of two-phase flow with insoluble surfactant can be shown to be stable. Several numerical simulations demonstrate the practicality of our numerical method.

  12. Spherical colloidal photonic crystals.

    Science.gov (United States)

    Zhao, Yuanjin; Shang, Luoran; Cheng, Yao; Gu, Zhongze

    2014-12-16

    CONSPECTUS: Colloidal photonic crystals (PhCs), periodically arranged monodisperse nanoparticles, have emerged as one of the most promising materials for light manipulation because of their photonic band gaps (PBGs), which affect photons in a manner similar to the effect of semiconductor energy band gaps on electrons. The PBGs arise due to the periodic modulation of the refractive index between the building nanoparticles and the surrounding medium in space with subwavelength period. This leads to light with certain wavelengths or frequencies located in the PBG being prohibited from propagating. Because of this special property, the fabrication and application of colloidal PhCs have attracted increasing interest from researchers. The most simple and economical method for fabrication of colloidal PhCs is the bottom-up approach of nanoparticle self-assembly. Common colloidal PhCs from this approach in nature are gem opals, which are made from the ordered assembly and deposition of spherical silica nanoparticles after years of siliceous sedimentation and compression. Besides naturally occurring opals, a variety of manmade colloidal PhCs with thin film or bulk morphology have also been developed. In principle, because of the effect of Bragg diffraction, these PhC materials show different structural colors when observed from different angles, resulting in brilliant colors and important applications. However, this angle dependence is disadvantageous for the construction of some optical materials and devices in which wide viewing angles are desired. Recently, a series of colloidal PhC materials with spherical macroscopic morphology have been created. Because of their spherical symmetry, the PBGs of spherical colloidal PhCs are independent of rotation under illumination of the surface at a fixed incident angle of the light, broadening the perspective of their applications. Based on droplet templates containing colloidal nanoparticles, these spherical colloidal PhCs can be

  13. Analytical prediction of the electromagnetic torques in single-phase and two-phase ac motors

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, M.

    2004-07-01

    mathematical models can be used in preliminary design for further optimisation and accurate estimation in complex numerical models. Another important feature of the analytical models for single-phase and two-phase AC motors, is that they can be directly implemented in any suitable electrical drives control strategy. (orig.)

  14. Spherical coordinate descriptions of cylindrical and spherical Bessel beams.

    Science.gov (United States)

    Poletti, M A

    2017-03-01

    This paper derives a generalized spherical harmonic description of Bessel beams. The spherical harmonic description of the well-known cylindrical Bessel beams is reviewed and a family of spherical Bessel beams are introduced which can provide a number of azimuthal phase variations for a single beam radial amplitude. The results are verified by numerical simulations.

  15. Sensational spherical shells

    Science.gov (United States)

    Lee, M. C.; Kendall, J. M., Jr.; Bahrami, P. A.; Wang, T. G.

    1986-01-01

    Fluid-dynamic and capillary forces can be used to form nearly perfect, very small spherical shells when a liquid that can solidify is passed through an annular die to form an annular jet. Gravity and certain properties of even the most ideal materials, however, can cause slight asymmetries. The primary objective of the present work is the control of this shell formation process in earth laboratories rather than space microgravity, through the development of facilities and methods that minimize the deleterious effects of gravity, aerodynamic drag, and uncontrolled cooling. The spherical shells thus produced can be used in insulation, recyclable filter materials, fire retardants, explosives, heat transport slurries, shock-absorbing armor, and solid rocket motors.

  16. Multi-Scale Morphological Analysis of Conductance Signals in Vertical Upward Gas-Liquid Two-Phase Flow

    Science.gov (United States)

    Lian, Enyang; Ren, Yingyu; Han, Yunfeng; Liu, Weixin; Jin, Ningde; Zhao, Junying

    2016-11-01

    The multi-scale analysis is an important method for detecting nonlinear systems. In this study, we carry out experiments and measure the fluctuation signals from a rotating electric field conductance sensor with eight electrodes. We first use a recurrence plot to recognise flow patterns in vertical upward gas-liquid two-phase pipe flow from measured signals. Then we apply a multi-scale morphological analysis based on the first-order difference scatter plot to investigate the signals captured from the vertical upward gas-liquid two-phase flow loop test. We find that the invariant scaling exponent extracted from the multi-scale first-order difference scatter plot with the bisector of the second-fourth quadrant as the reference line is sensitive to the inhomogeneous distribution characteristics of the flow structure, and the variation trend of the exponent is helpful to understand the process of breakup and coalescence of the gas phase. In addition, we explore the dynamic mechanism influencing the inhomogeneous distribution of the gas phase in terms of adaptive optimal kernel time-frequency representation. The research indicates that the system energy is a factor influencing the distribution of the gas phase and the multi-scale morphological analysis based on the first-order difference scatter plot is an effective method for indicating the inhomogeneous distribution of the gas phase in gas-liquid two-phase flow.

  17. Heat transfer studies in a spiral plate heat exchanger for water: palm oil two phase system

    Directory of Open Access Journals (Sweden)

    S. Ramachandran

    2008-09-01

    Full Text Available Experimental studies were conducted in a spiral plate heat exchanger with hot water as the service fluid and the two-phase system of water – palm oil in different mass fractions and flow rates as the cold process fluid. The two phase heat transfer coefficients were correlated with Reynolds numbers (Re in the form h = a Re m, adopting an approach available in literature for two phase fluid flow. The heat transfer coefficients were also related to the mass fraction of palm oil for identical Reynolds numbers. The two-phase multiplier (ratio of the heat transfer coefficient of the two phase fluid and that of the single phase fluid was correlated with the Lockhart Martinelli parameter in a polynomial form. This enables prediction of the two-phase coefficients using single-phase data. The predicted coefficients showed a spread of ± 10 % in the laminar range.

  18. Aqueous two-phase system based on natural quaternary ammonium compounds for the extraction of proteins.

    Science.gov (United States)

    Zeng, Chao-Xi; Xin, Rui-Pu; Qi, Sui-Jian; Yang, Bo; Wang, Yong-Hua

    2016-02-01

    Aqueous two-phase systems, based on the use of natural quaternary ammonium compounds, were developed to establish a benign biotechnological route for efficient protein separation. In this study, aqueous two-phase systems of two natural resources betaine and choline with polyethyleneglycol (PEG400/600) or inorganic salts (K2 HPO4 /K3 PO4 ) were formed. It was shown that in the K2 HPO4 -containing aqueous two-phase system, hydrophobic interactions were an important driving force of protein partitioning, while protein size played a vital role in aqueous two-phase systems that contained polyethylene glycol. An extraction efficiency of more than 90% for bovine serum albumin in the betaine/K2 HPO4 aqueous two-phase system can be obtained, and this betaine-based aqueous two-phase system provided a gentle and stable environment for the protein. In addition, after investigation of the cluster phenomenon in the betaine/K2 HPO4 aqueous two-phase systems, it was suggested that this phenomenon also played a significant role for protein extraction in this system. The development of aqueous two-phase systems based on natural quaternary ammonium compounds not only provided an effective and greener method of aqueous two-phase system to meet the requirements of green chemistry but also may help to solve the mystery of the compartmentalization of biomolecules in cells.

  19. Buddly, slug, and annular two-phase flow in tight-lattice subchannels

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, Horst-Michael; Bolesch, Charistian; Cramer, Kerstin; Papadopoulos, Petros; Saxena, Abhishek; Zboray, Robert [ETH Zurich, Dept. of Mechanical and Process Engineering (D-MAVT), Zurich (Switzerland); Ito, Daisuke [Kyoto University, Research Reactor Institute, Osaka (Japan)

    2016-08-15

    An overview is given on the work of the Laboratory of Nuclear Energy Systems at ETH, Zurich (ETHZ) and of the Laboratory of Thermal Hydraulics at Paul Scherrer Institute (PSI), Switzerland on tight-lattice bundles. Two-phase flow in subchannels of a tight triangular lattice was studied experimentally and by computational fluid dynamics simulations. Two adiabatic facilities were used: (1) a vertical channel modeling a pair of neighboring subchannels; and (2) an arrangement of four subchannels with one subchannel in the center. The first geometry was equipped with two electrical film sensors placed on opposing rod surfaces forming the subchannel gap. They recorded 2D liquid film thickness distributions on a domain of 16 × 64 measuring points each, with a time resolution of 10 kHz. In the bubbly and slug flow regime, information on the bubble size, shape, and velocity and the residual liquid film thickness underneath the bubbles were obtained. The second channel was investigated using cold neutron tomography, which allowed the measurement of average liquid film profiles showing the effect of spacer grids with vanes. The results were reproduced by large eddy simulation + volume of fluid. In the outlook, a novel nonadiabatic subchannel experiment is introduced that can be driven to steady-state dryout. A refrigerant is heated by a heavy water circuit, which allows the application of cold neutron tomography.

  20. Bubbly, Slug, and Annular Two-Phase Flow in Tight-Lattice Subchannels

    Directory of Open Access Journals (Sweden)

    Horst-Michael Prasser

    2016-08-01

    Full Text Available An overview is given on the work of the Laboratory of Nuclear Energy Systems at ETH, Zurich (ETHZ and of the Laboratory of Thermal Hydraulics at Paul Scherrer Institute (PSI, Switzerland on tight-lattice bundles. Two-phase flow in subchannels of a tight triangular lattice was studied experimentally and by computational fluid dynamics simulations. Two adiabatic facilities were used: (1 a vertical channel modeling a pair of neighboring subchannels; and (2 an arrangement of four subchannels with one subchannel in the center. The first geometry was equipped with two electrical film sensors placed on opposing rod surfaces forming the subchannel gap. They recorded 2D liquid film thickness distributions on a domain of 16 × 64 measuring points each, with a time resolution of 10 kHz. In the bubbly and slug flow regime, information on the bubble size, shape, and velocity and the residual liquid film thickness underneath the bubbles were obtained. The second channel was investigated using cold neutron tomography, which allowed the measurement of average liquid film profiles showing the effect of spacer grids with vanes. The results were reproduced by large eddy simulation + volume of fluid. In the outlook, a novel nonadiabatic subchannel experiment is introduced that can be driven to steady-state dryout. A refrigerant is heated by a heavy water circuit, which allows the application of cold neutron tomography.

  1. Study on the Interface Effects Based on Two-Dimensional Green's Functions for the Fluid and Pyroelectric Two-Phase Plane under a Line Heat Source

    Directory of Open Access Journals (Sweden)

    Peng-Fei Hou

    2014-11-01

    Full Text Available Two-dimensional Green's functions for a line heat source applied in the fluid and pyroelectric two-phase plane are presented in this paper. By virtue of the two-dimensional general solutions which are expressed in harmonic functions, six newly introduced harmonic functions with undetermined constants are constructed. Then, all the pyroelectric components in the fluid and pyroelectric two-phase plane can be derived by substituting these harmonic functions into the corresponding general solutions. And the undetermined constants can be obtained by the interface compatibility conditions and the mechanical, electric, and thermal equilibrium conditions. Numerical results are given graphically by contours.

  2. Spherical long spirals

    Science.gov (United States)

    Georgiev, G. H.; Dinkova, C. L.

    2013-10-01

    Long spirals in the Euclidean plane have been introduced by A. Kurnosenko five years ago. Using a natural map of the shape sphere into the extended Gaussian plane we study spherical curves that are pre-images of plane long spirals. Loxodromes and spherical spiral antennas are typical examples of such spherical long spirals. The set of all planar spirals leaves invariant under an arbitrary similarity transformation. This set is divided in two disjoint classes by A. Kirnosenko. The first class is consist of the so-called short spirals which are widely used in geometric modeling. The second class of planar long spirals contains well-known logarithmic spiral and Archimedean spirals which have many applications in mathematics, astrophysics and industry. The notion of simplicial shape space is due to D. Kendall. The most popular simplicial shape space of order (2,3) is the set of equivalence classes of similar triangles in the plane. The sphere of radius 1/2 centered at the origin can be considered as a model of this quotient space, so-called the shape sphere. F. Bookstein and J. Lester showed that the one-point extension of the Euclidean plane, so-called the extended Gaussian plane, is another model of the same simplicial shape space. The present paper gives a description of long spirals on the shape sphere by the use a natural conformal mapping between two models. First, we examine long spirals in the extended Gaussian plane. After that, we describe some differential geometric properties of the shape sphere. Finally, we discuss parameterizations of long spirals on the shape sphere.

  3. Fractal Spherical Harmonics

    Directory of Open Access Journals (Sweden)

    M. A. Navascués

    2013-01-01

    Full Text Available This paper tackles the construction of fractal maps on the unit sphere. The functions defined are a generalization of the classical spherical harmonics. The methodology used involves an iterated function system and a linear and bounded operator of functions on the sphere. For a suitable choice of the coefficients of the system, one obtains classical maps on the sphere. The different values of the system parameters provide Bessel sequences, frames, and Riesz fractal bases for the Lebesgue space of the square integrable functions on the sphere. The Laplace series expansion is generalized to a sum in terms of the new fractal mappings.

  4. Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity

    Science.gov (United States)

    Pais, S. C.; Kamotani, Y.; Bhunia, A.; Ostrach, S.

    1999-01-01

    forming bubble decreases, as the superficial liquid velocity is in-creased. Furthermore, it is shown that the void fraction of the resulting two-phase flow increases with volumetric gas flow rate Q(sub d), pipe diameter and gas injection nozzle diameter, while they decrease with surrounding liquid flow. The important role played by flowing liquid in detaching bubbles in a reduced gravity environment is thus emphasized. We observe that the void fraction can be accurately controlled by using single nozzle gas injection, rather than by employing multiple port injection, since the later system gives rise to unpredictable coalescence of adjacent bubbles. It is of interest to note that empirical bubble size and corresponding void fraction are somewhat smaller for the co-flow geometry than the cross-flow configuration at similar flow conditions with similar pipe and nozzle diameters. In order to supplement the empirical data, a theoretical model is employed to study single bubble generation in the dynamic (Q(sub d) = 1 - 1000 cu cm/s) and bubbly flow regime within the framework of the co-flow configuration. This theoretical model is based on an overall force balance acting on the bubble during the two stages of generation, namely the expansion and the detachment stage. Two sets of forces, one aiding and the other inhibiting bubble detachment are identified. Under conditions of reduced gravity, gas momentum flux enhances, while the surface tension force at the air injection nozzle tip inhibits bubble detachment. In parallel, liquid drag and inertia can act as both attaching and detaching forces, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with our experimental results. However, at higher superficial liquid velocities, as the bubble loses its spherical form, empirical bubble size no longer matches the theoretical predictions. In summary, we have developed a combined experimental and

  5. Fundamental Studies on Two-Phase Gas-Liquid Flows Through Packed Beds in Microgravity

    Science.gov (United States)

    Balakotaiah, Vemuri; McCready, Mark J.; Motil, Brian J.

    2002-01-01

    In the typical operation of a packed-bed reactor, gas and liquid flow simultaneously through a fixed bed of solid particles. Depending on the application, the particles can be of various shapes and sizes and provide for intimate contact and high rates of transport between the phases needed to sustain chemical or biological reactions. The packing may also serve as either a catalyst or as a support for growing biological material. NASA has flown two of these packed-bed systems in a microgravity environment with limited or no success. The goal of this research is to develop models (with scale-up capability) needed for the design of the physicochemical equipment to carry out these unit operations in microgravity. New insight will also lead to improvements in normal gravity operations. Our initial experiment was flown using an existing KC-135 two-phase flow rig with a modified test section. The test section is a clear polycarbonate rectangular column with a depth of 2.54 cm, a width of 5.08 cm, and 60 cm long. The column was randomly packed with spherical glass beads by slowly dropping the beads into the bed. Even though care was taken in handling the column after it was filled with packing, the alternating high and low gravity cycles with each parabola created a slightly tighter packed bed than is typically reported for this type. By the usual method of comparing the weight difference of a completely dry column versus a column filled with water, the void fraction was found to be .345 for both sizes of beads used. Five flush mounted differential pressure transducers are spaced at even intervals with the first location 4 cm from the inlet port and the subsequent pressure transducers spaced at 13 cm intervals along the column. Differential pressure data was acquired at 1000 Hz to adequately observe pulse formation and characteristics. Visual images of the flow were recorded using a high-speed SVHS system at 500 frames per second. Over 250 different test conditions were

  6. Online monitoring of gas-solid two-phase flow using projected CG method in ECT image reconstruction

    Institute of Scientific and Technical Information of China (English)

    Qi wang; Chengyi Yang; Huaxiang Wang; Ziqiang Cui; Zhentao Gao

    2013-01-01

    Electrical capacitance tomography (ECT) is a promising technique for multi-phase flow measurement due to its high speed,low cost and non-intrusive sensing.Image reconstruction for ECT is an inverse problem of finding the permittivity distribution of an object by measuring the electrical capacitances between sets of electrodes placed around its periphery.The conjugate gradient (CG) method is a popular image reconstruction method for ECT,in spite of its low convergence rate.In this paper,an advanced version of the CG method,the projected CG method,is used for image reconstruction of an ECT system.The solution space is projected into the Krylov subspace and the inverse problem is solved by the CG method in a low-dimensional specific subspace.Both static and dynamic experiments were carried out for gas-solid two-phase flows.The flow regimes are identified using the reconstructed images obtained with the projected CG method.The results obtained indicate that the projected CG method improves the quality of reconstructed images and dramatically reduces computation time,as compared to the traditional sensitivity,Landweber,and CG methods.Furthermore,the projected CG method was also used to estimate the important parameters of the pneumatic conveying process,such as the volume concentration,flow velocity and mass flow rate of the solid phase.Therefore,the projected CG method is considered suitable for online gas-solid two-phase flow measurement.

  7. Holographic Spherically Symmetric Metrics

    Science.gov (United States)

    Petri, Michael

    The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.

  8. Spherical Helices for Resonant Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Maja Škiljo

    2013-01-01

    Full Text Available The capabilities of electrically small spherical helical antennas for wireless power transmission at small and moderate distances are analyzed. Influence of design on antenna radiation resistance, efficiency, and mode ratio is examined. These are the factors that, according to the theoretical considerations depicted herein, govern the maximum transfer performances. Various designs and configurations are considered for the purpose, with accent on small-size receivers suitable for implementation in powering common-sized gadgets. It is shown that spherical helix design is easily manipulated to achieve a reduced antenna size. Good radiation characteristics and impedance match are maintained by multiple-arm folded antenna design and by adjusting the separation between the arms.

  9. CALCULATION ON TWO-PHASE FLOW TRANSIENTS AND THEIR EXPERIMENTAL RESEARCH

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    From basic equations of gas-liquid, solid-liquid, solid-gas two-phase flow, the calculating method on flowtransients of two-phase flow is developed by means of characteristic method. As one example, a gas-liquid flow transientis calculated and it agrees well with the experimental result. It is shown that the method is satisfactory for engineeringdemand.

  10. 48 CFR 570.105-2 - Two-phase design-build selection procedures.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Two-phase design-build... ADMINISTRATION SPECIAL CONTRACTING PROGRAMS ACQUIRING LEASEHOLD INTERESTS IN REAL PROPERTY General 570.105-2 Two..., you must use the two-phase design-build selection procedures in section 303M of the Federal Property...

  11. Two-phase flow experimental studies in micro-models (Utrecht Studies in Earth Sciences 034)

    NARCIS (Netherlands)

    Karadimitriou, N.K.

    2013-01-01

    The aim of this research project was to put more physics into theories of two-phase flow. The significance of including interfacial area as a separate variable in two-phase flow and transport models was investigated. In order to investigate experimentally the significance of the inclusion of interfa

  12. NASA Physical Sciences - Presentation to Annual Two Phase Heat Transfer International Topical Team Meeting

    Science.gov (United States)

    Chiaramonte, Francis; Motil, Brian; McQuillen, John

    2014-01-01

    The Two-phase Heat Transfer International Topical Team consists of researchers and members from various space agencies including ESA, JAXA, CSA, and RSA. This presentation included descriptions various fluid experiments either being conducted by or planned by NASA for the International Space Station in the areas of two-phase flow, flow boiling, capillary flow, and crygenic fluid storage.

  13. NUMERICAL SIMULATION OF CHARGED GAS-LIQUID TWO PHASE JET FLOW IN ELECTROSTATIC SPRAYING

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Multi-fluid k-ε-kp two phase turbulence model is used to simulate charged gas-liquid two phase coaxial jet, which is the transorting flow field in electrostatic spraying. Compared with the results of experiment, charged gas-liquid twophase turbulence can be well predicted by this model.

  14. Solutions of Green s function for Lamb s problem of a two-phase saturated medium

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The solutions of Green's function are significant for simplification of problem on a two-phase saturated medium.Using transformation of axisymmetric cylindrical coordinate and Sommerfeld's integral,superposition of the influence field on a free surface,authors obtained the solutions of a two-phase saturated medium subjected to a concentrated force on the semi-space.

  15. Symmetrical components and power analysis for a two-phase microgrid system

    DEFF Research Database (Denmark)

    Alibeik, M.; Santos Jr., E. C. dos; Blaabjerg, Frede

    2014-01-01

    This paper presents a mathematical model for the symmetrical components and power analysis of a new microgrid system consisting of three wires and two voltages in quadrature, which is designated as a two-phase microgrid. The two-phase microgrid presents the following advantages: 1) constant power...

  16. Two-phase anaerobic digestion of vegetable market waste fraction of municipal solid waste and development of improved technology for phase separation in two-phase reactor.

    Science.gov (United States)

    Majhi, Bijoy Kumar; Jash, Tushar

    2016-12-01

    Biogas production from vegetable market waste (VMW) fraction of municipal solid waste (MSW) by two-phase anaerobic digestion system should be preferred over the single-stage reactors. This is because VMW undergoes rapid acidification leading to accumulation of volatile fatty acids and consequent low pH resulting in frequent failure of digesters. The weakest part in the two-phase anaerobic reactors was the techniques applied for solid-liquid phase separation of digestate in the first reactor where solubilization, hydrolysis and acidogenesis of solid organic waste occur. In this study, a two-phase reactor which consisted of a solid-phase reactor and a methane reactor was designed, built and operated with VMW fraction of Indian MSW. A robust type filter, which is unique in its implementation method, was developed and incorporated in the solid-phase reactor to separate the process liquid produced in the first reactor. Experiments were carried out to assess the long term performance of the two-phase reactor with respect to biogas production, volatile solids reduction, pH and number of occurrence of clogging in the filtering system or choking in the process liquid transfer line. The system performed well and was operated successfully without the occurrence of clogging or any other disruptions throughout. Biogas production of 0.86-0.889m(3)kg(-1)VS, at OLR of 1.11-1.585kgm(-3)d(-1), were obtained from vegetable market waste, which were higher than the results reported for similar substrates digested in two-phase reactors. The VS reduction was 82-86%. The two-phase anaerobic digestion system was demonstrated to be stable and suitable for the treatment of VMW fraction of MSW for energy generation.

  17. Analysis of transient gas-liquid two-phase natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Isao; Matsumoto, Tadayoshi; Morita, Yu; Kawashima, Atsushi [Department of Mechanophysics Engineering, Osaka University, Suita, Osaka (Japan); Nakayama, Akio

    1999-07-01

    Analyses were made on the transient behavior of two-phase natural circulation in annular passage. Drift flux model was used in the analyses and several correlations of drift velocity were used and compared. Transient variation of void fraction, inlet liquid flux and length of two-phase region were predicted based on simplified model. It was revealed that in transient two-phase natural circulation, the condition for pressure difference between inlet and outlet is quite important and difficult to be specified. A simplified model for inlet pressure condition was assumed and transient two-phase natural circulation was reasonably predicted. The correlation of drift velocity was shown to have important effect on the flow behavior particularly for the transient variation of two-phase length. (author)

  18. A MODEL FOR PREDICTING PHASE INVERSION IN OIL-WATER TWO-PHASE PIPE FLOW

    Institute of Scientific and Technical Information of China (English)

    GONG Jing; LI Qing-ping; YAO Hai-yuan; YU Da

    2006-01-01

    Experiments of phase inversion characteristics for horizontal oil-water two-phase flow in a stainless steel pipe loop (25.7 mm inner diameter,52 m long) are conducted. A new viewpoint is brought forward about the process of phase inversion in oil-water two-phase pipe flow. Using the relations between the total free energies of the pre-inversion and post-inversion dispersions, a model for predicting phase inversion in oil-water two-phase pipe flow has been developed that considers the characteristics of pipe flow. This model is compared against other models with relevant data of phase inversion in oil-water two-phase pipe flow. Results indicate that this model is better than other models in terms of calculation precision and applicability. The model is useful for guiding the design for optimal performance and safety in the operation of oil-water two-phase pipe flow in oil fields.

  19. The ETE spherical Tokamak project

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Andrade, Maria Celia Ramos de; Barbosa, Luis Filipe Wiltgen [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] [and others]. E-mail: ludwig@plasma.inpe.br

    1999-07-01

    This paper describes the general characteristics of spherical tokamaks, with a brief overview of work in the area of spherical torus already performed or in progress at several institutions. The paper presents also the historical development of the ETE (Spherical Tokamak Experiment) project, its research program, technical characteristics and status of construction in September, 1998 at the Associated plasma Laboratory (LAP) of the National Institute for Space Research (INPE) in Brazil. (author)

  20. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] (and others)

    2003-07-01

    The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  1. Spherical artifacts on ferrograms

    Science.gov (United States)

    Jones, W. R., Jr.

    1976-01-01

    In the past, hollow spheres detected on ferrograms have been interpreted as being due to fretting, abrasion, cavitation erosion, and fatigue-related processes. Here it is reported that such spheres were found to result from the fact that a routine grinding operation on a steel plate was carried out about 20 feet away from the ferrograph. A similar grinding operation was performed on a piece of low carbon steel a few feet from the ferrograph, and after a few minutes of grinding, the resulting ferrogram contained thousands of particles of which more than 90% were spherical. Because of the widespread occurrence of ordinary grinding operations, it seems prudent that those utilizing the ferrograph be cognizant of this type of artifact.

  2. Spherical grating spectrometers

    Science.gov (United States)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  3. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification.

    Science.gov (United States)

    Choi, Dongwhi; Lee, Donghyeon; Kim, Dong Sung

    2015-10-14

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.

  4. Spherical wave rotation in spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Wu, Jian; Larsen, Flemming Holm; Lemanczyk, J.

    1991-01-01

    The rotation of spherical waves in spherical near-field antenna measurement is discussed. Considering the many difficult but interesting features of the rotation coefficients, an efficient rotation scheme is derived. The main feature of the proposed scheme is to ignore the calculation of the very...

  5. Two-phase aqueous micellar systems: an alternative method for protein purification

    Directory of Open Access Journals (Sweden)

    Rangel-Yagui C. O.

    2004-01-01

    Full Text Available Two-phase aqueous micellar systems can be exploited in separation science for the extraction/purification of desired biomolecules. This article reviews recent experimental and theoretical work by Blankschtein and co-workers on the use of two-phase aqueous micellar systems for the separation of hydrophilic proteins. The experimental partitioning behavior of the enzyme glucose-6-phosphate dehydrogenase (G6PD in two-phase aqueous micellar systems is also reviewed and new results are presented. Specifically, we discuss very recent work on the purification of G6PD using: i a two-phase aqueous micellar system composed of the nonionic surfactant n-decyl tetra(ethylene oxide (C10E4, and (ii a two-phase aqueous mixed micellar system composed of C10E4 and the cationic surfactant decyltrimethylammonium bromide (C10TAB. Our results indicate that the two-phase aqueous mixed (C10E4/C10TAB micellar system can improve significantly the partitioning behavior of G6PD relative to that observed in the two-phase aqueous C10E4 micellar system.

  6. Numerical investigation on the characteristics of two-phase flow in fuel assemblies with spacer grid

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.; Yang, Z.; Zhong, Y.; Xiao, Y.; Hu, L. [Chongqing Univ. (China). Key Lab. of Low-grade Energy Utilization Technologies and Systems

    2016-07-15

    In pressurized water reactors (PWRs), the spacer grids of the fuel assembly has significant impact on the thermal-hydraulic performance of the fuel assembly. Particularly, the spacer grids with the mixing vanes can dramatically enhance the secondary flow and have significant effect on the void distribution in the fuel assembly. In this paper, the CFD study has been carried out to analyze the effects of the spacer grid with the steel contacts, dimples and mixing vanes on the boiling two-phase flow characteristics, such as the two-phase flow field, the void distribution, and so on. Considered the influence of the boiling phase change on two-phase flow, a boiling model was proposed and applied in the CFD simulation by using the UDF (User Defined Function) method. Furthermore, in order to analyze the effects of the spacer grid with mixing vanes, the adiabatic (without boiling) two-phase flow has also been investigated as comparison with the boiling two-phase flow in the fuel assembly with spacer grids. The CFD simulation on two-phase flow in the fuel assembly with the proposed boiling model can predict the characteristics of two-phase flow better.

  7. Bulk thermal conductivity of composites with spherical inclusions

    Science.gov (United States)

    Sangani, A. S.; Yao, C.

    1988-03-01

    The problem of determining the bulk or effective thermal conductivity of a two-phase composite material whose unit cells contain N(N>1) spherical particles of thermal conductivity αk suspended in a medium of thermal conductivity k has been treated by extending an earlier analysis of McPhedran and Milton [Appl. Phys. A 26, 207 (1981)] who considered the case N=1. The technique is applied to computer-generated two-phase composites with N=16 whose radial distribution functions approximately satisfy the Percus-Yevick equation. The results, which are presented for a wide range of α and φ (the volume fraction of the spheres), are shown to be in good agreement with the experimental values of conductivity of fluidized beds reported by Turner [Chem. Eng. Sci. 31, 487 (1976)].

  8. Spacecraft Thermal Management using Advanced Hybrid Two-Phase Loop Technology

    Science.gov (United States)

    2007-02-01

    HYBRID TWO-PHASE LOOPS The schematic of the Hybrid Two-Phase Loop (HTPL) used for a thermal testing is shown in Figure 3. Main components for the...hybrid two-phase loop with single evaporator. The thermal test starts first by turning on the liquid pump to circulate liquid along the loop. Once the...Vapor Out Evaporator Body (E1) Evaporator Body (E2) Total Heat Input Heat Input (E1) Heat Input (E2) Thermal Resistance (E1) FIGURE 10. Thermal test results

  9. Two phase flow bifurcation due to turbulence: transition from slugs to bubbles

    Science.gov (United States)

    Górski, Grzegorz; Litak, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej

    2015-09-01

    The bifurcation of slugs to bubbles within two-phase flow patterns in a minichannel is analyzed. The two-phase flow (water-air) occurring in a circular horizontal minichannel with a diameter of 1 mm is examined. The sequences of light transmission time series recorded by laser-phototransistor sensor is analyzed using recurrence plots and recurrence quantification analysis. Recurrence parameters allow the two-phase flow patterns to be found. On changing the water flow rate we identified partitioning of slugs or aggregation of bubbles.

  10. Numerical simulation of bubbly two-phase flow using the lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tadashi; Ebihara, Kenichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-09-01

    The two-component two-phase lattice Boltzmann method, in which two distribution functions are used to represent two phases, is used to simulate bubbly flows as one of the fundamental two-phase flow phenomena in nuclear application fields. The inlet flow condition is proposed to simulate steady-state flow fields. The time variation and the spatial distribution of the volume fraction and the interfacial area are measured numerically. The simulation program is parallelized in one direction by the domain decomposition method using the MPI (Message Passing Interface) libraries, and parallel computations are performed on a workstation cluster. (author)

  11. Rarefaction Waves at the Outlet of the Supersonic Two-Phase Flow Nozzle

    Science.gov (United States)

    Nakagawa, Masafumi; Miyazaki, Hiroki; Harada, Atsushi

    Two-phase flow nozzles are used in the total flow system for geothermal power plants and in the ejector of the refrigerant cycle, etc. One of the most important functions of a two-phase flow nozzle is to convert the thermal energy to the kinetic energy of the two-phase flow. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. There exist the shock waves or rarefaction waves at the outlet of a supersonic nozzle in the case of non-best fitting expansion conditions when the operation conditions of the nozzle are widely chosen. Those waves affect largely on the energy conversion efficiency of the two-phase flow nozzle. The purpose of the present study is to elucidate the character of the rarefaction waves at the outlet of the supersonic two-phase flow nozzle. The high pressure hot water blow down experiment has been carried out. The decompression curves by the rarefaction waves are measured by changing the flow rate of the nozzle and inlet temperature of the hot water. The back pressures of the nozzle are also changed in those experiments. The divergent angles of the two-phase flow flushed out from the nozzle are measured by means of the photograph. The experimental results show that the recompression curves are different from those predicted by the isentropic homogenous two-phase flow. The regions where the rarefaction waves occur become wide due to the increased outlet speed of two-phase flow. The qualitative dependency of this expansion character is the same as the isotropic homogenous flow, but the values obtained from the experiments are quite different. When the back pressure of the nozzle is higher, these regions do not become small in spite of the super sonic two-phase flow. This means that the disturbance of the down-stream propagate to the up-stream. It is shown by the present experiments that the rarefaction waves in the supersonic two-phase flow of water have a subsonic feature. The measured

  12. Expansion Waves at the Outlet of the Supersonic Two-Phase Flow Nozzle

    Science.gov (United States)

    Nakagawa, Masafumi; Miyazaki, Hiroki; Harada, Atsushi; Ibragimov, Zokirjon

    Two-phase flow nozzles are used in the total flow system of geothermal power plants and in the ejector of the refrigeration cycle, etc. One of the most important functions of the two-phase flow nozzle is converting two-phase flow thermal energy into kinetic energy. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. In the case of non-best fitting expansion conditions, when the operation conditions of the supersonic nozzle are widely chosen, there exist shock waves or expansion waves at the outlet of the nozzle. Those waves affect largely the energy conversion efficiency of the two-phase flow nozzle. The purpose of the present study is to elucidate character of the expansion waves at the outlet of the supersonic two-phase flow nozzle. High-pressure hot water blowdown experiments have been carried out. The decompression curves of the expansion waves are measured by changing the flowrate in the nozzle and inlet temperature of the hot water. The back pressures of the nozzle are also changed in those experiments. The expansion angles of the two-phase flow flushed out from the nozzle are measured by means of the photograph. The experimental results show that the decompression curves are different from those predicted by the isentropic homogeneous two-phase flow theory. The regions where the expansion waves occur become wide due to the increased outlet speed of the two-phase flow. The qualitative dependency of this expansion character is the same as the isentropic homogeneous flow, but the values obtained from the experiments are quite different. When the back pressure of the nozzle is higher, these regions do not become small in spite of the supersonic two-phase flow. This means that the disturbance in the downstream propagates to the upstream. It is shown by the present experiments that the expansion waves in the supersonic two-phase flow of water have a subsonic feature. The measured expansion angles become

  13. On the nonequilibrium segregation state of a two-phase mixture in a porous column

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1996-01-01

    The problem of segregation of a two-phase multicomponent mixture under the action of thermal gradient, gravity and capillary forces is studied with respect to component distribution in a thick oil-gas-condensate reservoir. Governing equations are derived on the basis of nonequilibrium thermodynam...... thermodynamics. A steady state of the two-phase mixture with nonzero diffusion fluxes and exchange between phases is described. In the case of binary mixtures analytical formulae for saturation, component distribution and flow in the two-phase zone are obtained....

  14. Rod-like particles matching algorithm based on SOM neural network in dispersed two-phase flow measurements

    Science.gov (United States)

    Abbasi Hoseini, Afshin; Zavareh, Zahra; Lundell, Fredrik; Anderson, Helge I.

    2014-04-01

    A matching algorithm based on self-organizing map (SOM) neural network is proposed for tracking rod-like particles in 2D optical measurements of dispersed two-phase flows. It is verified by both synthetic images of elongated particles mimicking 2D suspension flows and direct numerical simulations-based results of prolate particles dispersed in a turbulent channel flow. Furthermore, the potential benefit of this algorithm is evaluated by applying it to the experimental data of rod-like fibers tracking in wall turbulence. The study of the behavior of elongated particles suspended in turbulent flows has a practical importance and covers a wide range of applications in engineering and science. In experimental approach, particle tracking velocimetry of the dispersed phase has a key role together with particle image velocimetry of the carrier phase to obtain the velocities of both phases. The essential parts of particle tracking are to identify and match corresponding particles correctly in consecutive images. The present study is focused on the development of an algorithm for pairing non-spherical particles that have one major symmetry axis. The novel idea in the algorithm is to take the orientation of the particles into account for matching in addition to their positions. The method used is based on the SOM neural network that finds the most likely matching link in images on the basis of feature extraction and clustering. The fundamental concept is finding corresponding particles in the images with the nearest characteristics: position and orientation. The most effective aspect of this two-frame matching algorithm is that it does not require any preliminary knowledge of neither the flow field nor the particle behavior. Furthermore, using one additional characteristic of the non-spherical particles, namely their orientation, in addition to its coordinate vector, the pairing is improved both for more reliable matching at higher concentrations of dispersed particles and

  15. Quantum Radiation of Uniformly Accelerated Spherical Mirrors

    CERN Document Server

    Frolov, V

    2001-01-01

    We study quantum radiation generated by a uniformly accelerated motion of small spherical mirrors. To obtain Green's function for a scalar massless field we use Wick's rotation. In the Euclidean domain the problem is reduced to finding an electric potential in 4D flat space in the presence of a metallic toroidal boundary. The latter problem is solved by a separation of variables. After performing an inverse Wick's rotation we obtain the Hadamard function in the wave-zone regime and use it to calculate the vacuum fluctuations and the vacuum expectation for the energy density flux in the wave zone.

  16. Spherically symmetric brane spacetime with bulk f(R) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Sumanta [IUCAA, Ganeshkhind, Pune University Campus, Post Bag 4, Pune (India); SenGupta, Soumitra [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)

    2015-01-01

    Introducing f(R) term in the five-dimensional bulk action we derive effective Einstein's equation on the brane using Gauss-Codazzi equation. This effective equation is then solved for different conditions on dark radiation and dark pressure to obtain various spherically symmetric solutions. Some of these static spherically symmetric solutions correspond to black hole solutions, with parameters induced from the bulk. Specially, the dark pressure and dark radiation terms (electric part of Weyl curvature) affect the brane spherically symmetric solutions significantly. We have solved for one parameter group of conformal motions where the dark radiation and dark pressure terms are exactly obtained exploiting the corresponding Lie symmetry. Various thermodynamic features of these spherically symmetric space-times are studied, showing existence of second order phase transition. This phenomenon has its origin in the higher curvature term with f(R) gravity in the bulk. (orig.)

  17. Trapped ion imaging with a high numerical aperture spherical mirror

    Energy Technology Data Exchange (ETDEWEB)

    Shu, G; Dietrich, M R; Kurz, N; Blinov, B B, E-mail: shugang@u.washington.ed [Department of Physics, University of Washington, Seattle, WA 98105-1560 (United States)

    2009-08-14

    Efficient collection and analysis of trapped ion qubit fluorescence is essential for robust qubit state detection in trapped ion quantum computing schemes. We discuss simple techniques of improving photon collection efficiency using high numerical aperture (N.A.) reflective optics. To test these techniques we placed a spherical mirror with an effective N.A. of about 0.9 inside a vacuum chamber in the vicinity of a linear Paul trap. We demonstrate stable and reliable trapping of single barium ions, in excellent agreement with our simulations of the electric field in this setup. While a large N.A. spherical mirror introduces significant spherical aberration, the ion image quality can be greatly improved by a specially designed aspheric corrector lens located outside the vacuum system. Our simulations show that the spherical mirror/corrector design is an easy and cost-effective way to achieve high photon collection rates when compared to a more sophisticated parabolic mirror setup.

  18. Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase

    CERN Document Server

    Barsky, Eugene

    2010-01-01

    This book brings to light peculiarities of the formation of critical regimes of two-phase flows with a polydisperse solid phase. A definition of entropy is formulated on the basis of statistical analysis of these peculiarities. The physical meaning of entropy and its correlation with other parameters determining two-phase flows are clearly defined. The interrelations and main differences between this entropy and the thermodynamic one are revealed. The main regularities of two-phase flows both in critical and in other regimes are established using the notion of entropy. This parameter serves as a basis for a deeper insight into the physics of the process and for the development of exhaustive techniques of mass exchange estimation in such flows. The book is intended for graduate and postgraduate students of engineering studying two-phase flows, and to scientists and engineers engaged in specific problems of such fields as chemical technology, mineral dressing, modern ceramics, microelectronics, pharmacology, po...

  19. New results in gravity dependent two-phase flow regime mapping

    Science.gov (United States)

    Kurwitz, Cable; Best, Frederick

    2002-01-01

    Accurate prediction of thermal-hydraulic parameters, such as the spatial gas/liquid orientation or flow regime, is required for implementation of two-phase systems. Although many flow regime transition models exist, accurate determination of both annular and slug regime boundaries is not well defined especially at lower flow rates. Furthermore, models typically indicate the regime as a sharp transition where data may indicate a transition space. Texas A&M has flown in excess of 35 flights aboard the NASA KC-135 aircraft with a unique two-phase package. These flights have produced a significant database of gravity dependent two-phase data including visual observations for flow regime identification. Two-phase flow tests conducted during recent zero-g flights have added to the flow regime database and are shown in this paper with comparisons to selected transition models. .

  20. Concurrent two-phase downflow measurement with an induced voltage electro-magnetic flowmeter

    OpenAIRE

    Opara, Uroš; Bajsič, Ivan

    2015-01-01

    With a set of polynomial approximations a possibility is shown of the use of an induced voltage electromagnetic flowmeter in the area of measuring cocurrent two-phase downflow in tubes. The principle of the meter operation remains hereby unchanged

  1. Numerical simulation of multi-dimensional two-phase flow based on flux vector splitting

    Energy Technology Data Exchange (ETDEWEB)

    Staedtke, H.; Franchello, G.; Worth, B. [Joint Research Centre - Ispra Establishment (Italy)

    1995-09-01

    This paper describes a new approach to the numerical simulation of transient, multidimensional two-phase flow. The development is based on a fully hyperbolic two-fluid model of two-phase flow using separated conservation equations for the two phases. Features of the new model include the existence of real eigenvalues, and a complete set of independent eigenvectors which can be expressed algebraically in terms of the major dependent flow parameters. This facilitates the application of numerical techniques specifically developed for high speed single-phase gas flows which combine signal propagation along characteristic lines with the conservation property with respect to mass, momentum and energy. Advantages of the new model for the numerical simulation of one- and two- dimensional two-phase flow are discussed.

  2. Detection of Two-Phase Flow Patterns in a Vertical Minichannel Using the Recurrence Quantification Analysis

    Directory of Open Access Journals (Sweden)

    Mosdorf Romuald

    2015-06-01

    Full Text Available The two-phase flow (water-air occurring in square minichannel (3x3 mm has been analysed. In the minichannel it has been observed: bubbly flow, flow of confined bubbles, flow of elongated bubbles, slug flow and semi-annular flow. The time series recorded by laser-phototransistor sensor was analysed using the recurrence quantification analysis. The two coefficients:Recurrence rate (RR and Determinism (DET have been used for identification of differences between the dynamics of two-phase flow patterns. The algorithm which has been used normalizes the analysed time series before calculating the recurrence plots.Therefore in analysis the quantitative signal characteristicswas neglected. Despite of the neglect of quantitative signal characteristics the analysis of its dynamics (chart of DET vs. RR allows to identify the two-phase flow patterns. This confirms that this type of analysis can be used to identify the two-phase flow patterns in minichannels.

  3. Reversible, on-demand generation of aqueous two-phase microdroplets

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Charles Patrick; Retterer, Scott Thomas; Boreyko, Jonathan Barton; Mruetusatorn, Prachya

    2017-08-15

    The present invention provides methods of on-demand, reversible generation of aqueous two-phase microdroplets core-shell microbeads, microparticle preparations comprising the core-shell microbeads, and drug delivery formulation comprising the microparticle preparations. Because these aqueous microdroplets have volumes comparable to those of cells, they provide an approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Hence, the present methods generate femtoliter aqueous two-phase droplets within a microfluidic oil channel using gated pressure pulses to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phase transitions between single-phase, two-phase, and core-shell microbead states are obtained via evaporation-induced dehydration and water rehydration.

  4. Non-local two phase flow momentum transport in S BWR

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)

    2015-09-15

    The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)

  5. Research of Characteristics of Gas-liquid Two-phase Pressure Drop in Microreactor

    Directory of Open Access Journals (Sweden)

    Li Dan

    2015-01-01

    Full Text Available With the research system of nitrogen and deionized water, this paper researches the pressure drop of gas-liquid two-phase flow in the circular microchannel with an inner diameter which is respectively 0.9mm and 0.5mm, analyzes the effect of microchannel diameter on gas-liquid two-phase frictional pressure drop in the microchannel reactor, and compares with the result of frictional pressure drop and the predicting result of divided-phase flow pattern. The result shows that, the gas-liquid two-phase frictional pressure drop in the microchannel significantly increases with the decreasing microchannel diameter; Lockhart-Martinelli relationship in divided-phase flow pattern can preferably predict the gas-liquid two-phase frictional pressure drop in the microchannel, but the Tabular constant needs to be corrected.

  6. Formation of a two-phase microstructure in Fe-Cr-Ni alloy during directional solidification

    Science.gov (United States)

    Fu, J. W.; Yang, Y. S.; Guo, J. J.; Ma, J. C.; Tong, W. H.

    2008-12-01

    The formation and evolution of a two-phase coupled growth microstructure in AISI 304 stainless steel are investigated using a quenching method during directional solidification. It is found that the two-phase microstructure, which is composed of coupled growth of thin lathy delta ferrite (δ) and austenite (γ), forms from the melt first during solidification. As solidification proceeds, the retained liquid transforms into austenite directly. On cooling, the subsequent incomplete solid-state transformation from ferrite to austenite results in the disappearance of the thinner lathy delta ferrite, and the final two-phase coupled growth microstructure is formed. The formation mechanism of the two-phase coupled growth microstructure is analyzed theoretically based on the nucleation and constitutional undercooling (NCU) criterion. Transmission electron microscope (TEM) and EDS analyses were carried out to identify the phases and determine the phase composition, respectively.

  7. Experimental study on transient behavior of semi-open two-phase thermosyphon

    Institute of Scientific and Technical Information of China (English)

    朱华; 王建新; 张巧惠; 屠传经

    2004-01-01

    An experimental system was set up to measure the temperature, pressure, heat transfer rate and mass flow rate in a semi-open two-phase thermosyphon. The behaviors of a semi-open two-phase thermosyphon during startup, shutdown and lack of water were studied to get complete understanding of its thermal characteristics. The variation of wall temperature, heat-exchange condition and pressure fluctuations of semi-open two-phase thermosyphons showed that the startup of SOTPT needs about 60-70 min; the startup speed of SOTPT is determined by the startup speed of the condensation section; the average pressure in the heat pipe is equal to the environmental pressure usually; the shutdown of SOTPT needs about 30-50min; a semi-open two-phase thermosyphon has good response to lack of water accident.

  8. A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries.

    Science.gov (United States)

    Dong, S; Wang, X

    2016-01-01

    Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries.

  9. Single and two-phase flow pressure drop for CANFLEX bundle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G. R.; Bullock, D. E. [Atomic Energy of Canada Limited, Ontario (Canada)

    1998-12-31

    Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-134a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLEX bundle is found to be about 20% higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within {+-} 5% error. 11 refs., 5 figs. (Author)

  10. Bioconversion of apigenin-7-O-β-glucoside in aqueous two-phase system

    OpenAIRE

    Ilić Sanja M.; Đaković Sanja D.; Cvejić Jelena H.; Antov Mirjana G.; Zeković Zoran P.

    2005-01-01

    The study is concerned with the conversion of apigenin-7-O-β-glucoside into apigenin in polyethylene glycol 6000 / dextran 20000 aqueous two-phase system by β-glucosidase. Apigenin was separated from apigenin-7-O-β-glucoside and β-glucosidase by their partition into opposite phases. In 14% PEG / 22.5% DEX aqueous two-phase system obtained yield of apigenin in top phase was 108%.

  11. Bioconversion of apigenin-7-O-β-glucoside in aqueous two-phase system

    Directory of Open Access Journals (Sweden)

    Ilić Sanja M.

    2005-01-01

    Full Text Available The study is concerned with the conversion of apigenin-7-O-β-glucoside into apigenin in polyethylene glycol 6000 / dextran 20000 aqueous two-phase system by β-glucosidase. Apigenin was separated from apigenin-7-O-β-glucoside and β-glucosidase by their partition into opposite phases. In 14% PEG / 22.5% DEX aqueous two-phase system obtained yield of apigenin in top phase was 108%.

  12. CURE OF A MICROGEL-EPOXY RESIN TWO-PHASE POLYMER WITH ETHYLENE DIAMINE

    Institute of Scientific and Technical Information of China (English)

    SONG Aiteng; HUANG Wei; YU Yunzhao

    1992-01-01

    The curing of a microgel-epoxy resin two phase polymer prepared by in situ copolymerization of unsaturated polyester with acrylic monomer was studied. The unsaturated unit reacted with N- H during the cure of the resin with ethylene diamine. The Michael type reaction was ten times more rapid than the addition of N -H to epoxide .This was accounted for the lower apparent activation energy of the curing of the two phase resin.

  13. Estimation of the sugar cane cultivated area from LANDSAT images using the two phase sampling method

    Science.gov (United States)

    Parada, N. D. J. (Principal Investigator); Cappelletti, C. A.; Mendonca, F. J.; Lee, D. C. L.; Shimabukuro, Y. E.

    1982-01-01

    A two phase sampling method and the optimal sampling segment dimensions for the estimation of sugar cane cultivated area were developed. This technique employs visual interpretations of LANDSAT images and panchromatic aerial photographs considered as the ground truth. The estimates, as a mean value of 100 simulated samples, represent 99.3% of the true value with a CV of approximately 1%; the relative efficiency of the two phase design was 157% when compared with a one phase aerial photographs sample.

  14. Numerical investigation of confined swirling gas-solid two phase jet

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a k-ε-kp multi-fluid model for simulating confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. A series of numerical simulations of the two-phase flow of 30 μm, 45 μm, 60 μm diameter particles respectively yielded results fitting well with published experimental data.

  15. Numerical Simulation of Swirling Gas-solid Two Phase Flow through a Pipe Expansion

    Institute of Scientific and Technical Information of China (English)

    Jin Hanhui; Xia Jun; Fan Jianren; Cen Kefa

    2001-01-01

    A k- ε -kp multi-fluid model is stated and adopted to simulate swirling gas-solid two phase flow. A particle-laden flow from a center tube and a swirling air stream from the coaxial annular enter the test section. A series of numerical simulations of the two-phase flow are performed based on 30 μ m, 45 μ m, 60 μ m diameter particles respectively. The results fit well with published experimental data.

  16. Numerical investigation of confined swirling gas-solid two phase jet

    Institute of Scientific and Technical Information of China (English)

    金晗辉; 夏钧; 樊建人; 岑可法

    2002-01-01

    This paper presents a k-e-kp multi-fluid model for simulating confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. A series of numerical simulations of the two-phase flow of 30μm, 45μm, 60μm diameter particles respectively yielded results fitting well with published experimental data.

  17. CHOOSING STRUCTURE-DEPENDENT DRAG COEFFICIENT IN MODELING GAS-SOLID TWO-PHASE FLOW

    Institute of Scientific and Technical Information of China (English)

    Ning Yang; Wei Wang; Wei Ge; Jinghai Li

    2003-01-01

    @@ Introduction Gas-solid two-phase flow is often encountered in chemical reactors for the process industry. For industrial users, design, scale-up, control and optimization for these reactors require a good understanding of the hydrodynamics of gas-solid two-phase flow. For researchers, exploration and prediction of the complex phenomena call for a good comprehension of the heterogeneous structure and of the dominant mechanisms of gas-solid and solid-solid interactions.

  18. Scaling analysis of gas-liquid two-phase flow pattern in microgravity

    Science.gov (United States)

    Lee, Jinho

    1993-01-01

    A scaling analysis of gas-liquid two-phase flow pattern in microgravity, based on the dominant physical mechanism, was carried out with the goal of predicting the gas-liquid two-phase flow regime in a pipe under conditions of microgravity. The results demonstrated the effect of inlet geometry on the flow regime transition. A comparison of the predictions with existing experimental data showed good agreement.

  19. Measurement of local two-phase flow parameters of nanofluids using conductivity double-sensor probe

    Directory of Open Access Journals (Sweden)

    Park Yu sun

    2011-01-01

    Full Text Available Abstract A two-phase flow experiment using air and water-based γ-Al2O3 nanofluid was conducted to observe the basic hydraulic phenomenon of nanofluids. The local two-phase flow parameters were measured with a conductivity double-sensor two-phase void meter. The void fraction, interfacial velocity, interfacial area concentration, and mean bubble diameter were evaluated, and all of those results using the nanofluid were compared with the corresponding results for pure water. The void fraction distribution was flattened in the nanofluid case more than it was in the pure water case. The higher interfacial area concentration resulted in a smaller mean bubble diameter in the case of the nanofluid. This was the first attempt to measure the local two-phase flow parameters of nanofluids using a conductivity double-sensor two-phase void meter. Throughout this experimental study, the differences in the internal two-phase flow structure of the nanofluid were identified. In addition, the heat transfer enhancement of the nanofluid can be resulted from the increase of the interfacial area concentration which means the available area of the heat and mass transfer.

  20. Ionic liquids for two-phase systems and their application for purification, extraction and biocatalysis.

    Science.gov (United States)

    Oppermann, Sebastian; Stein, Florian; Kragl, Udo

    2011-02-01

    The development of biotechnological processes using novel two-phase systems based on molten salts known as ionic liquids (ILs) got into the focus of interest. Many new approaches for the beneficial application of the interesting solvent have been published over the last years. ILs bring beneficial properties compared to organic solvents like nonflammability and nonvolatility. There are two possible ways to use the ILs: first, the hydrophobic ones as a substitute for organic solvents in pure two-phase systems with water and second, the hydrophilic ones in aqueous two-phase systems (ATPS). To effectively utilise IL-based two-phase systems or IL-based ATPS in biotechnology, extensive experimental work is required to gain the optimal system parameters to ensure selective extraction of the product of interest. This review will focus on the most actual findings dealing with the basic driving forces for the target extraction in IL-based ATPS as well as presenting some selected examples for the beneficial application of ILs as a substitute for organic solvents. Besides the research focusing on IL-based two-phase systems, the "green aspect" of ILs, due to their negligible vapour pressure, is widely discussed. We will present the newest results concerning ecotoxicity of ILs to get an overview of the state of the art concerning ILs and their utilisation in novel two-phase systems in biotechnology.

  1. Living between two worlds: two-phase culture systems for producing plant secondary metabolites.

    Science.gov (United States)

    Malik, Sonia; Hossein Mirjalili, Mohammad; Fett-Neto, Arthur Germano; Mazzafera, Paulo; Bonfill, Mercedes

    2013-03-01

    The two-phase culture system is an important in vitro strategy to increase the production of secondary metabolites (SMs) by providing an enhanced release of these compounds from plant cells. Whereas the first phase supports cell growth, the second phase provides an additional site or acts as a metabolic sink for the accumulation of SMs and also reduces feedback inhibition. This review is focused on several aspects of the two-phase culture system and aims to show the diverse possibilities of employing this technique for the in vitro production of SMs from plant cells. Depending on the material used in the secondary phase, two-phase culture systems can be broadly categorised as liquid-liquid or liquid-solid. The choice of material for the second phase depends on the type of compound to be recovered and the compatibility with the other phase. Different factors affecting the efficiency of two-phase culture systems include the choice of material for the secondary phase, its concentration, volume, and time of addition. Factors such as cell elicitation, immobilization, and permeabilization, have been suggested as important strategies to make the two-phase culture system practically reliable on a commercial scale. Since there are many possibilities for designing a two-phase system, more detailed studies are needed to broaden the range of secondary phases compatible with the various plant species producing SMs with potential applications, mainly in the food and pharmacology industries.

  2. IMPROVED SUBGRID SCALE MODEL FOR DENSE TURBULENT SOLID-LIQUID TWO-PHASE FLOWS

    Institute of Scientific and Technical Information of China (English)

    TANG Xuelin; QIAN Zhongdong; WU Yulin

    2004-01-01

    The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules. Assuming that the solid-phase velocity distributions obey the Maxwell equations, the collision term for particles under dense two-phase flow conditions is also derived.In comparison with the governing equations of a dilute two-phase flow, the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations. Based on Cauchy-Helmholtz theorem and Smagorinsky model,a second-order dynamic sub-grid-scale (SGS) model, in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor, is proposed to model the two-phase governing equations by applying dimension analyses. Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls, the velocity and pressure fields, and the volumetric concentration are calculated. The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.

  3. Mixed Model for Silt-Laden Solid-Liquid Two-Phase Flows

    Institute of Scientific and Technical Information of China (English)

    唐学林; 徐宇; 吴玉林

    2003-01-01

    The kinetic theory of molecular gases was used to derive the governing equations for dense solid-liquid two-phase flows from a microscopic flow characteristics viewpoint by multiplying the Boltzmann equation for each phase by property parameters and integrating over the velocity space. The particle collision term was derived from microscopic terms by comparison with dilute two-phase flow but with consideration of the collisions between particles for dense two-phase flow conditions and by assuming that the particle-phase velocity distribution obeys the Maxwell equations. Appropriate terms from the dilute two-phase governing equations were combined with the dense particle collision term to develop the governing equations for dense solid-liquid turbulent flows. The SIMPLEC algorithm and a staggered grid system were used to solve the discretized two-phase governing equations with a Reynolds averaged turbulence model. Dense solid-liquid turbulent two-phase flows were simulated for flow in a duct. The simulation results agree well with experimental data.

  4. Electrical impedance-based void fraction measurement and flow regime identification in microchannel flows under adiabatic conditions

    OpenAIRE

    Paranjape, Sidharth; Ritchey, Susan N; Garimella, S V

    2012-01-01

    Electrical impedance of a two-phase mixture is a function of void fraction and phase distribution. The difference in the specific electrical conductance and permittivity of the two phases is exploited to measure electrical impedance for obtaining void fraction and flow regime characteristics. An electrical impedance meter is constructed for the measurement of void fraction in microchannel two-phase flow. The experiments are conducted in air–water two-phase flow under adiabatic conditions. A t...

  5. Co-composting of two-phase olive-mill pomace and poultry manure with tomato harvest stalks.

    Science.gov (United States)

    Sülük, Kemal; Tosun, İsmail; Ekinci, Kamil

    2017-04-01

    In this study, two-phase olive-mill pomace with poultry manure and chopped tomato harvest stalks were composted at different initial carbon/nitrogen (C/N) ratios with fixed free air space of 35%. Composting experiment was carried out in the 15 aerobic reactors made of stainless steel and was monitored for 28 days. During the composting process, temperature, moisture content, organic matter (OM), pH, electrical conductivity, oxygen and carbon dioxide concentrations, total carbon, total nitrogen, ammonium nitrogen ([Formula: see text]), nitrate nitrogen ([Formula: see text]), and total phosphorus were monitored. Compost mass and volume changes were determined at the beginning, during remixings, and at the end of composting. While the stabilization period took less time for the mixtures containing a high amount of poultry manure, the mixtures having the high portion of two-phase olive-mill pomace took a longer time due to the structure of olive stone and its lignin content. Dry matter loss (range: 18.1-34.0%.) in the mixtures increased with an increase in the share of poultry manure and tomato stalks in the initial mixture. OM loss (range: 21.7-46.1%) for tomato stalks (measured separately) during composting increased due to an increase in the ratio of poultry manure in the initial mixtures.

  6. Velocity Slip and Interfacial Momentum Transfer in the Transient Section of Supersonic Gas-Droplet Two-Phase Flows

    Institute of Scientific and Technical Information of China (English)

    魏文韫; 朱家骅; 夏素兰; 戴光清; 高旭东

    2002-01-01

    Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for super-sonic two-phase (gas-droplet) flow in the transient section inside and outside a Laval jet(L J). The initial velocity slipbetween gas and droplets causes an interfacial momentum transfer flux as high as (2.0-5.0) × 104 Pa. The relaxationtime corresponding to this transient process is in the range of 0.015-0.090 ms for the two-phase flow formed insidethe LJ and less than 0.5 ms outside the LJ. It demonstrates the unique performance of this system for application tofast chemical reactions using electrically active media with a lifetime in the order of 1 ms. Through the simulationsof the transient processes with initial Mach number Mg from 2.783 to 4.194 at different axial positions inside theLJ. it is found that Mg has the strongest effect on the process. The momentum flux increases as the Mach numberdecreases. Due to compression by the shock wave at the end of the L J, the flow pattern becomes two dimensionaland viscous outside the LJ. Laser Doppler velocimeter (LDV) measurements of droplet velocities outside the LJ arein reasonably good agreement with the results of the simulation.

  7. Design, Modelling and Simulation of Two-Phase Two-Stage Electronic System with Orthogonal Output for Supplying of Two-Phase ASM

    Directory of Open Access Journals (Sweden)

    Michal Prazenica

    2011-01-01

    Full Text Available This paper deals with the two-stage two-phase electronic systems with orthogonal output voltages and currents - DC/AC/AC. Design of two-stage DC/AC/AC high frequency converter with two-phase orthogonal output using single-phase matrix converter is also introduced. Output voltages of them are strongly nonharmonic ones, so they must be pulse-modulated due to requested nearly sinusoidal currents with low total harmonic distortion. Simulation experiment results of matrix converter for both steady and transient states for IM motors are given in the paper, also experimental verification under R-L load, so far. The simulation results confirm a very good time-waveform of the phase current and the system seems to be suitable for low-cost application in automotive/aerospace industries and application with high frequency voltage sources.

  8. DarkSide-20k: A 20 Tonne Two-Phase LAr TPC for Direct Dark Matter Detection at LNGS

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, C.E.; et al.

    2017-07-25

    Building on the successful experience in operating the DarkSide-50 detector, the DarkSide Collaboration is going to construct DarkSide-20k, a direct WIMP search detector using a two-phase Liquid Argon Time Projection Chamber (LArTPC) with an active (fiducial) mass of 23 t (20 t). The DarkSide-20k LArTPC will be deployed within a shield/veto with a spherical Liquid Scintillator Veto (LSV) inside a cylindrical Water Cherenkov Veto (WCV). Operation of DarkSide-50 demonstrated a major reduction in the dominant $^{39}$Ar background when using argon extracted from an underground source, before applying pulse shape analysis. Data from DarkSide-50, in combination with MC simulation and analytical modeling, shows that a rejection factor for discrimination between electron and nuclear recoils of $\\gt3\\times10^9$ is achievable. This, along with the use of the veto system, is the key to unlocking the path to large LArTPC detector masses, while maintaining an "instrumental background-free" experiment, an experiment in which less than 0.1 events (other than $\

  9. LIQUID PHASE FLOW ESTIMATION IN GAS-LIQUID TWO-PHASE FLOW USING INVERSE ANALYSIS AND PARTICLE TRACKING VELOCIMETRY

    Institute of Scientific and Technical Information of China (English)

    CHENG Wen; MURAI Yuichi; SASAKI Toshio; YAMAMOTO Fujio

    2004-01-01

    An inverse analysis algorithm is proposed for estimating liquid phase flow field from measurement data of bubble motion. This kind of technology will be applied in future for various estimation of fluid flow in rivers, lakes, sea surface flow, and also microscopic channel flow as the problem-handling in civil, mechanical, electronic, and chemical engineering. The relationship between the dispersion motion and the carrier phase flow is governed and expressed by the translational motion equation of spherical dispersion. The equation consists of all the force components including inertia, added inertia, drag, lift, pressure gradient force and gravity force. Using this equation enables us to estimate the carrier phase flow structure using only the data of the dispersion motion. Whole field liquid flow structure is also estimated using spatial or temporal interpolation method. In order to verify this principle, the Taylor-Green vortex flow, and the Karman vortex shedding from a square cylinder have been chosen. The results show that the combination of the inverse analysis and Particle Tracking Velocimetry (PTV) with the spatio-temporal post-processing algorithm could reconstruct well the carrier phase flow of the gas-liquid two-phase flow.

  10. Spherical 3D isotropic wavelets

    Science.gov (United States)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  11. Topological Lensing in Spherical Spaces

    CERN Document Server

    Gausmann, E; Luminet, Jean Pierre; Uzan, J P; Weeks, J; Gausmann, Evelise; Lehoucq, Roland; Luminet, Jean-Pierre; Uzan, Jean-Philippe; Weeks, Jeffrey

    2001-01-01

    This article gives the construction and complete classification of all three-dimensional spherical manifolds, and orders them by decreasing volume, in the context of multiconnected universe models with positive spatial curvature. It discusses which spherical topologies are likely to be detectable by crystallographic methods using three-dimensional catalogs of cosmic objects. The expected form of the pair separation histogram is predicted (including the location and height of the spikes) and is compared to computer simulations, showing that this method is stable with respect to observational uncertainties and is well suited for detecting spherical topologies.

  12. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    X. Wang; X. Sun; H. Zhao

    2011-09-01

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in

  13. Dynamic behavior of pipes conveying gas–liquid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    An, Chen, E-mail: anchen@cup.edu.cn [Offshore Oil/Gas Research Center, China University of Petroleum-Beijing, Beijing 102249 (China); Su, Jian, E-mail: sujian@lasme.coppe.ufrj.br [Nuclear Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, CP 68509, Rio de Janeiro 21941-972 (Brazil)

    2015-10-15

    Highlights: • Dynamic behavior of pipes conveying gas–liquid two-phase flow was analyzed. • The generalized integral transform technique (GITT) was applied. • Excellent convergence behavior and long-time stability were shown. • Effects of volumetric quality and volumetric flow rate on dynamic behavior were studied. • Normalized volumetric-flow-rate stability envelope of dynamic system was determined. - Abstract: In this paper, the dynamic behavior of pipes conveying gas–liquid two-phase flow was analytically and numerically investigated on the basis of the generalized integral transform technique (GITT). The use of the GITT approach in the analysis of the transverse vibration equation lead to a coupled system of second order differential equations in the dimensionless temporal variable. The Mathematica's built-in function, NDSolve, was employed to numerically solve the resulting transformed ODE system. The characteristics of gas–liquid two-phase flow were represented by a slip-ratio factor model that was devised and used for similar problems. Good convergence behavior of the proposed eigenfunction expansions is demonstrated for calculating the transverse displacement at various points of pipes conveying air–water two-phase flow. Parametric studies were performed to analyze the effects of the volumetric gas fraction and the volumetric flow rate on the dynamic behavior of pipes conveying air–water two-phase flow. Besides, the normalized volumetric-flow-rate stability envelope for the dynamic system was obtained.

  14. A Derivation of the Nonlocal Volume-Averaged Equations for Two-Phase Flow Transport

    Directory of Open Access Journals (Sweden)

    Gilberto Espinosa-Paredes

    2012-01-01

    Full Text Available In this paper a detailed derivation of the general transport equations for two-phase systems using a method based on nonlocal volume averaging is presented. The local volume averaging equations are commonly applied in nuclear reactor system for optimal design and safe operation. Unfortunately, these equations are limited to length-scale restriction and according with the theory of the averaging volume method, these fail in transition of the flow patterns and boundaries between two-phase flow and solid, which produce rapid changes in the physical properties and void fraction. The non-local volume averaging equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection diffusion and transport properties for two-phase flow; for instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail.

  15. Gas-liquid two-phase flow across a bank of micropillars

    Science.gov (United States)

    Krishnamurthy, Santosh; Peles, Yoav

    2007-04-01

    Adiabatic nitrogen-water two-phase flow across a bank of staggered circular micropillars, 100μm long with a diameter of 100μm and a pitch-to-diameter ratio of 1.5, was investigated experimentally for Reynolds number ranging from 5 to 50. Flow patterns, void fraction, and pressure drop were obtained, discussed, and compared to large scale as well as microchannel results. Two-phase flow patterns were determined by flow visualization, and a flow map was constructed as a function of gas and liquid superficial velocities. Significant deviations from conventional scale systems, with respect to flow patterns and trend lines, were observed. A unique flow pattern, driven by surface tension, was observed and termed bridge flow. The applicability of conventional scale models to predict the void fraction and two-phase frictional pressure drop was also assessed. Comparison with a conventional scale void fraction model revealed good agreement, but was found to be in a physically wrong form. Thus, a modified physically based model for void fraction was developed. A two-phase frictional multiplier was found to be a strong function of mass flux, unlike in previous microchannel studies. It was observed that models from conventional scale systems did not adequately predict the two-phase frictional multiplier at the microscale, thus, a modified model accounting for mass flux was developed.

  16. Multi-needle capacitance probe for non-conductive two-phase flows

    Science.gov (United States)

    Monrós-Andreu, G.; Martinez-Cuenca, R.; Torró, S.; Escrig, J.; Hewakandamby, B.; Chiva, S.

    2016-07-01

    Despite its variable degree of application, intrusive instrumentation is the most accurate way to obtain local information in a two-phase flow system, especially local interfacial velocity and local interfacial area parameters. In this way, multi-needle probes, based on conductivity or optical principles, have been extensively used in the past few decades by many researchers in two-phase flow investigations. Moreover, the signal processing methods used to obtain the time-averaged two-phase flow parameters in this type of sensor have been thoroughly discussed and validated by many experiments. The objective of the present study is to develop a miniaturized multi-needle probe, based on capacitance measurements applicable to a wide range of non-conductive two-phase flows and, thus, to extend the applicability of multi-needle sensor whilst also maintaining a signal processing methodology provided in the literature for conductivity probes. Results from the experiments performed assess the applicability of the proposed sensor measurement principle and signal processing method for the bubbly flow regime. These results also provide an insight into the sensor application for more complex two-phase flow regimes.

  17. A new two-phase erosion-deposition model for mass flows

    Science.gov (United States)

    Pudasaini, Shiva P.; Fischer, Jan-Thomas

    2016-04-01

    Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, two-phase, erosion-deposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transports. The model enhances an existing general two-phase mass flow model (Pudasaini, 2012) by introducing a two-phase variably saturated erodible basal morphology. The adaptive basal morphology allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process and rheological changes of the flowing mixture. With rigorous derivation, we show that appropriate incorporation of the mass and momentum productions and losses in conservative model formulation is essential for the physically correct and mathematically consistent description of erosion-entrainment-deposition processes. Simulation indicates a sharp erosion-front and steady-state-rear erosion depth. The model appropriately captures the emergence and propagation of complex frontal surge dynamics associated with the frontal ambient-drag which is a new hypothesis associated with erosion. The novel enhanced real two-phase model also allows for simulating fluid-run-off during the deposition process. The model resembles laboratory experiments for particle-fluid mixture flows and reveals some major aspects of the mechanics associated with erosion, entrainment and deposition. Reference: Shiva P. Pudasaini (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.

  18. Performance characteristics of two-phase-flow turbo-expanders used in water-cooled chillers

    Energy Technology Data Exchange (ETDEWEB)

    Brasz, J.J. [United Technologies Carrier, New York, NY (United States)

    1999-07-01

    Use of two-phase-flow throttle loss recovery devices in water-cooled chillers requires satisfactory part-load operation. This paper describes the results of two-phase-flow impulse turbine testing and the data reduction of the test results into a two-phase-flow turbine off-design performance model. It was found that the main parameter controlling the efficiency of two-phase-flow turbine is the ratio of the nozzle spouting velocity to the rotor speed. The turbine mass flow rate is mainly controlled by inlet subcooling of the entering liquid. The strong sensitivity of turbine mass flow rate on inlet subcooling allows the use of a conventional float valve upstream of the turbine as an effective means of controlling the turbine during part-load operation. For a well-designed two-phase-flow turbine, nozzle spouting velocity and therefore turbine efficiency is hardly affected by the amount of inlet subcooling. Also, capacity can be substantially reduced by a reduction in the amount of inlet subcooling entering the turbine nozzles. Hence, turbine part-load efficiency equals its full-load efficiency over a wide range of flow rates using this control concept. (Author)

  19. New Results in Two-Phase Pressure Drop Calculations at Reduced Gravity Conditions

    Science.gov (United States)

    Braisted, Jon; Kurwitz, Cable; Best, Frederick

    2004-02-01

    The mass, power, and volume energy savings of two-phase systems for future spacecraft creates many advantages over current single-phase systems. Current models of two-phase phenomena such as pressure drop, void fraction, and flow regime prediction are still not well defined for space applications. Commercially available two-phase modeling software has been developed for a large range of acceleration fields including reduced-gravity conditions. Recently, a two-phase experiment has been flown to expand the two-phase database. A model of the experiment was created in the software to determine how well the software could predict the pressure drop observed in the experiment. Of the simulations conducted, the computer model shows good agreement of the pressure drop in the experiment to within 30%. However, the software does begin to over-predict pressure drop in certain regions of a flow regime map indicating that some models used in the software package for reduced-gravity modeling need improvement.

  20. DSMC simulation of two-phase plume flow with UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073 (China)

    2014-12-09

    Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.

  1. Design and evaluation of a two-phase turbine for low quality steam--water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Comfort, W.J. III

    1977-05-16

    A new two-phase turbine was designed and built for testing in the laboratory, using a low quality steam-water mixture as a working fluid. The measured performance compares well with performance predictions of a numerical model of the expander. Details of the selection of the type of expander are given. The design of an experimental expander for use in a clean two-phase flow laboratory experiment and the development of a numerical model for performance analysis and extrapolations are described. Experiments including static cascade performance with two-phase fluid, disk friction and windage measurements, and two-phase performance measurements of the experimental expander are reported. Comparisons of the numerical model and experimental results, and the prediction of the performance of an advanced design, indicating how performance improvements can be achieved, are also included. An engine efficiency of 23 percent for a single-nozzle test was measured. Full admission performance, based upon the numerical model and achievable nozzle thrust coefficients indicate that an engine efficiency of between 38 and 48 percent can be realized with present technology. If maximum liquid removal loss is assumed, this performance range is predicted to be 38 to 41 percent. Droplet size reduction and the development and implementation of enhanced two-phase flow analysis techniques should make it possible to achieve the research goal of 70 percent engine efficiency.

  2. Two phase convective heat transfer augmentation in swirl flow with non-boiling

    Energy Technology Data Exchange (ETDEWEB)

    Cha, K.O. [Myong Ji University, Kyonggi-do (Korea, Republic of); Kim, J.G. [Myongji University Graduate School, Kyonggi-do (Korea, Republic of)

    1995-10-01

    Two phase flow phenomena are observed in many industrial facilities and make much importance of optimum design for nuclear power plant and various heat exchangers. This experimental study has been investigated the classification of the flow pattern, the local void distribution and convective heat transfer in swirl and non-swirl two phase flow under the isothermal and nonisothermal conditions. The convective heat transfer coefficients in the single phase water flow were measured and compared with the calculated results from the Sieder-Tate correlation. These coefficients were used for comparisons with the two-phase heat transfer coefficients in the flow orientations. The experimental results indicate, that the void probe signal and probability density function of void distribution can used into classify the flow patterns, no significant difference in voidage distribution was observed between isothermal and non-isothermal condition in non-swirl flow, the values of two phase heat transfer coefficients increase when superficial air velocities increase, and the enhancement of the values is observed to be most pronounced at the highest superficial water velocity in non-swirl flow. Also two phase heat transfer coefficients in swirl flow are increased when the twist ratios are decreased. (author). 13 refs., 15 figs.

  3. Optofluidic encapsulation of crystalline colloidal arrays into spherical membrane.

    Science.gov (United States)

    Kim, Shin-Hyun; Jeon, Seog-Jin; Yang, Seung-Man

    2008-05-07

    Double emulsion droplets encapsulating crystalline colloidal arrays (CCAs) with a narrow size distribution were produced using an optofluidic device. The shell phase of the double emulsion was a photocurable resin that was photopolymerized downstream of the fluidic channel within 1 s after drop generation. The present optofluidic synthesis scheme was very effective for fabricating highly monodisperse spherical CCAs that were made structurally stable by in situ photopolymerization of the encapsulating shells. The shell thickness and the number of core emulsion drops could be controlled by varying the flow rates of the three coflowing streams in the dripping regime. The spherical CCAs confined in the shell exhibited distinct diffraction patterns in the visible range, in contrast to conventional film-type CCAs. As a result of their structure, the spherical CCAs exhibited photonic band gaps for normal incident light independent of the position on the spherical surface. This property was induced by heterogeneous nucleation at the smooth wall of the spherical emulsion drop during crystallization into a face-centered cubic (fcc) structure. On the other hand, the solidified shells did not permit the penetration of ionic species, enabling the CCAs to maintain their structure in a continuous aqueous phase of high ionic strength for at least 1 month. In addition, the evaporation of water molecules inside the shell was slowed considerably when the core-shell microparticles were exposed to air: It took approximately 6 h for a suspension encapsulated in a thick shell to evaporate completely, which is approximately 1000 times longer than the evaporation time for water droplets with the same volume. Finally, the spherical CCAs additionally exhibited enhanced stability against external electric fields. The spherical geometry and high dielectric constant of the suspension contributed to reducing the electric field inside the shell, thereby inhibiting the electrophoretic movement of

  4. Minimum Q Electrically Small Antennas

    DEFF Research Database (Denmark)

    Kim, O. S.

    2012-01-01

    for a multiarm spherical helix antenna confirm the theoretical predictions. For example, a 4-arm spherical helix antenna with a magnetic-coated perfectly electrically conducting core (ka=0.254) exhibits the Q of 0.66 times the Chu lower bound, or 1.25 times the minimum Q.......Theoretically, the minimum radiation quality factor Q of an isolated resonance can be achieved in a spherical electrically small antenna by combining TM1m and TE1m spherical modes, provided that the stored energy in the antenna spherical volume is totally suppressed. Using closed-form expressions...... for the stored energies obtained through the vector spherical wave theory, it is shown that a magnetic-coated metal core reduces the internal stored energy of both TM1m and TE1m modes simultaneously, so that a self-resonant antenna with the Q approaching the fundamental minimum is created. Numerical results...

  5. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma; Barbosa, L.F.W. [Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Mecanica Espacial e Controle; The high-power microwave sources group

    2003-12-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  6. SPHERICAL SHOCK WAVES IN SOLIDS

    Science.gov (United States)

    Differential Equation of Self-Similar Motion; Application of the Theory of Self-Similar Motion to the Problem of Expansion of a Spherical...Self-Similar Solutions of the Problem of Cratering Due to Hypervelocity Impact, and Numerical Integration of the Differential Equation of Spherical...Aluminum, Blast Waves in Other Metals; and Consideration of the Non-Similar Aspects of the Blast Wave Problem ; Experimental Procedure and Results; Singular Point of Ordinary Differential Equations; Numerical Program-Fortran

  7. Spherical 3D Isotropic Wavelets

    CERN Document Server

    Lanusse, F; Starck, J -L

    2011-01-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis in is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the Fourier-Bessel decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. 2006. We also present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large...

  8. Two-Phase Cooling of Targets and Electronics for Particle Physics Experiments

    CERN Document Server

    Thome, J R; Park, J E

    2009-01-01

    An overview of the LTCM lab’s decade of experience with two-phase cooling research for computer chips and power electronics will be described with its possible beneficial application to high-energy physics experiments. Flow boiling in multi-microchannel cooling elements in silicon (or aluminium) have the potential to provide high cooling rates (up to as high as 350 W/cm2), stable and uniform temperatures of targets and electronics, and lightweight construction while also minimizing the fluid inventory. An overview of two-phase flow and boiling research in single microchannels and multi-microchannel test elements will be presented together with video images of these flows. The objective is to stimulate discussion on the use of two-phase cooling in these demanding applications, including the possible use of CO2.

  9. Numerical simulation of the two-phase flow produced by spraying a liquid by a nozzle

    Science.gov (United States)

    Simakov, N. N.

    2017-07-01

    A numerical experiment on the simulation of the two-phase flow formed during spraying of a liquid by a nozzle has been described. The radial and axial velocity profiles of the droplets and gas in the free spray and in the two-phase flow through a cylindrical apparatus have been calculated and represented taking into account the early drag crisis of droplets and peculiarities of turbulent friction in the gas, which was detected in previous experiments. The distinguishing feature of the numerical model of the two-phase flow is that it employs the differential equations describing the nonstationary flow of a compressible gas as the initial equations. In transition to their difference analog, the familiar Lax-Wendorff algorithm has been used. A comparison of the results of calculations based on this model with experimental data has demonstrated their concordance.

  10. Selective separation and enrichment of proteins in aqueous two-phase extraction system

    Institute of Scientific and Technical Information of China (English)

    Feng Qu; Hao Qin; Min Dong; Dong Xu Zhao; Xin Ying Zhao; Jing Hua Zhang

    2009-01-01

    A simple aqueous two-phase extraction system(ATPS)of PEG/phosphate was proposed for selective separation and enrichment of proteins.The combination of ATPE with HPLC was applied to identify the partition of proteins in two phases.Five proteins (bovine serum albumin,Cytochrome C,lysozyme,myoglobin,and trypsin)were used as model proteins to study the effect of phosphate concentration and pH on proteins partition.The PEG/phosphate system was firstly applied to real human saliva and plasma samples,some proteins showed obviously different partition in two phases.The primary results manifest the selective separation and enrichment of proteins in ATPS provided the potential for high abundance proteins depletion in proteomics.

  11. Two-phase pressure drop across a hydrofoil-based micro pin device using R-123

    Energy Technology Data Exchange (ETDEWEB)

    Kosar, Ali [Mechatronics Engineering Program, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey)

    2008-05-15

    The two-phase pressure drop in a hydrofoil-based micro pin fin heat sink has been investigated using R-123 as the working fluid. Two-phase frictional multipliers have been obtained over mass fluxes from 976 to 2349 kg/m{sup 2} s and liquid and gas superficial velocities from 0.38 to 1.89 m/s and from 0.19 to 24 m/s, respectively. It has been found that the two-phase frictional multiplier is strongly dependent on flow pattern. The theoretical prediction using Martinelli parameter based on the laminar fluid and laminar gas flow represented the experimental data fairly well for the spray-annular flow. For the bubbly and wavy-intermittent flow, however, large deviations from the experimental data were recorded. The Martinelli parameter was successfully used to determine the flow patterns, which were bubbly, wavy-intermittent, and spray-annular flow in the current study. (author)

  12. Reduced-gravity two-phase flow experiments in the NASA KC-135

    Science.gov (United States)

    Cuta, Judith M.; Michener, Thomas E.; Best, Frederick R.; Kachnik, Leo J.

    1988-01-01

    An adequate understanding is sought of flow and heat transfer behavior in reduced and zero gravity conditions. Microgravity thermal-hydraulic analysis capabilities were developed for application to space nuclear power systems. A series of reduced gravity two phase flow experiments using the NASA KC-135 were performed. The objective was to supply basic thermal hydraulic information that could be used in development of analytical tools for design of space power systems. The experiments are described. Two main conclusions were drawn. First, the tests demonstrate that the KC-135 is a suitable test environment for obtaining two phase flow and heat transfer data in reduced gravity conditions. Second, the behavior of two phase flow in low gravity is sufficiently different from that obtained in 1 g to warrant intensive investigation of the phenomenon if adequate analytical tools are to be developed for microgravity conditions.

  13. Entropy analysis on non-equilibrium two-phase flow models

    Energy Technology Data Exchange (ETDEWEB)

    Karwat, H.; Ruan, Y.Q. [Technische Universitaet Muenchen, Garching (Germany)

    1995-09-01

    A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.

  14. Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, N.; Rovinsky, J.; Maron, D.M. [Tel-Aviv Univ. (Israel)

    1995-09-01

    The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the `flow monograms` describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the `interface monograms`, whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system `operational monogram`. The `operational monogram` enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop.

  15. On Riemann Solvers and Kinetic Relations for Isothermal Two-Phase Flows with Surface Tension

    CERN Document Server

    Rohde, Christian

    2016-01-01

    We consider a sharp-interface approach for the inviscid isothermal dynamics of compressible two-phase flow, that accounts for phase transition and surface tension effects. To fix the mass exchange and entropy dissipation rate across the interface kinetic relations are frequently used. The complete uni-directional dynamics can then be understood by solving generalized two-phase Riemann problems. We present new well-posedness theorems for the Riemann problem and corresponding computable Riemann solvers, that cover quite general equations of state, metastable input data and curvature effects. The new Riemann solver is used to validate different kinetic relations on physically relevant problems including a comparison with experimental data. Riemann solvers are building blocks for many numerical schemes that are used to track interfaces in two-phase flow. It is shown that the new Riemann solver enables reliable and efficient computations for physical situations that could not be treated before.

  16. Investigation of two-phase heat transfer coefficients of argon-freon cryogenic mixed refrigerants

    Science.gov (United States)

    Baek, Seungwhan; Lee, Cheonkyu; Jeong, Sangkwon

    2014-11-01

    Mixed refrigerant Joule Thomson refrigerators are widely used in various kinds of cryogenic systems these days. Although heat transfer coefficient estimation for a multi-phase and multi-component fluid in the cryogenic temperature range is necessarily required in the heat exchanger design of mixed refrigerant Joule Thomson refrigerators, it has been rarely discussed so far. In this paper, condensation and evaporation heat transfer coefficients of argon-freon mixed refrigerant are measured in a microchannel heat exchanger. A Printed Circuit Heat Exchanger (PCHE) with 340 μm hydraulic diameter has been developed as a compact microchannel heat exchanger and utilized in the experiment. Several two-phase heat transfer coefficient correlations are examined to discuss the experimental measurement results. The result of this paper shows that cryogenic two-phase mixed refrigerant heat transfer coefficients can be estimated by conventional two-phase heat transfer coefficient correlations.

  17. The Two-Phase Hell-Shaw Flow: Construction of an Exact Solution

    Science.gov (United States)

    Malaikah, K. R.

    2013-03-01

    We consider a two-phase Hele-Shaw cell whether or not the gap thickness is time-dependent. We construct an exact solution in terms of the Schwarz function of the interface for the two-phase Hele-Shaw flow. The derivation is based upon the single-valued complex velocity potential instead of the multiple-valued complex potential. As a result, the construction is applicable to the case of the time-dependent gap. In addition, there is no need to introduce branch cuts in the computational domain. Furthermore, the interface evolution in a two-phase problem is closely linked to its counterpart in a one-phase problem

  18. Adaptive sampling in two-phase designs: a biomarker study for progression in arthritis

    Science.gov (United States)

    McIsaac, Michael A; Cook, Richard J

    2015-01-01

    Response-dependent two-phase designs are used increasingly often in epidemiological studies to ensure sampling strategies offer good statistical efficiency while working within resource constraints. Optimal response-dependent two-phase designs are difficult to implement, however, as they require specification of unknown parameters. We propose adaptive two-phase designs that exploit information from an internal pilot study to approximate the optimal sampling scheme for an analysis based on mean score estimating equations. The frequency properties of estimators arising from this design are assessed through simulation, and they are shown to be similar to those from optimal designs. The design procedure is then illustrated through application to a motivating biomarker study in an ongoing rheumatology research program. Copyright © 2015 © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. PMID:25951124

  19. Two-Phase Master Sintering Curve for 17-4 PH Stainless Steel

    Science.gov (United States)

    Jung, Im Doo; Ha, Sangyul; Park, Seong Jin; Blaine, Deborah C.; Bollina, Ravi; German, Randall M.

    2016-11-01

    The sintering behavior of 17-4 PH stainless steel has been efficiently characterized by a two-phase master sintering curve model (MSC). The activation energy for the sintering of gas-atomized and water-atomized 17-4 PH powders is derived using the mean residual method, and the relative density of both powders is well predicted by the two-phase MSC model. The average error between dilatometry data and MSC model has been reduced by 68 pct for gas-atomized powder and by 45 pct for water-atomized powder through the consideration of phase transformation of 17-4 PH in MSC model. The effect of δ-ferrite is considered in the two-phase MSC model, leading to excellent explanation of the sintering behavior for 17-4 PH stainless steel. The suggested model is useful in predicting the densification and phase change phenomenon during sintering of 17-4 PH stainless steel.

  20. An Implicit Numerical Method for the Simulation of Two-phase Flow

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Han Young; Lee, Seung-Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jeong, Jae Jun [Pusan National University, Busan (Korea, Republic of)

    2015-10-15

    An implicit numerical method is presented for the analysis of two-phase flows in PWRs. Numerical stability and efficiency are improved by decoupling energy equations from the pressure equation. All the convection and diffusion terms are calculated implicitly. The proposed numerical method is verified against conceptual two-phase flow problems. An implicit numerical method has been proposed for two-phase calculation where energy equations are decoupled from the pressure equation. Convection and diffusion terms are calculated implicitly. The calculation results are the same for PME-explicit, PM explicit, and PM-implicit. Large time step size has been tested with PM-implicit-c and the results are also the same.

  1. Numerical Study of Void Fraction Distribution Propagation in Gas-Liquid Two-Phase Flow

    Institute of Scientific and Technical Information of China (English)

    YANG Jianhui; LI Qing; LU Wenqiang

    2005-01-01

    A dynamic propagation model was developed for waves in two-phase flows by assuming that continuity waves and dynamic waves interact nonlinearly for certain flow conditions. The drift-flux model is solved with the one-dimensional continuity equation for gas-liquid two-phase flows as an initial-boundary value problem solved using the characteristic-curve method. The numerical results give the void fraction distribution propagation in a gas-liquid two-phase flow which shows how the flow pattern transition occurs. The numerical simulations of different flow patterns show that the void fraction distribution propagation is determined by the characteristics of the drift-flux between the liquid and gas flows and the void fraction range. Flow pattern transitions begin around a void fraction of 0.27 and end around 0.58. Flow pattern transitions do not occur for very high void concentrations.

  2. Numerical Simulation of Erosion-Corrosion in the Liquid Solid Two-Phase Flow

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main components: the liquid-solid two-phase flow model, erosion model and corrosion model. The Euierian-Lagranglan approach is used to simulate liquid-solid two-phase flow, while the stochastic trajectory model was adopted to obtain properties of particle phase. Two-way coupling effect between the fluid and the particle phase is considered in the model. The accuracy of the models is tested by the data in the reference. The comparison shows that the model is basically correct and feasible.

  3. The solidification of two-phase heterogeneous materials: Theory versus experiment

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bin; KIM Tongbeum; LU TianJian

    2009-01-01

    The solidification behavior of two-phase heterogeneous materials such as close-celled aluminum foams was analytically studied. The proposed analytical model can precisely predict the location of solidification front as well as the full solidification time for a two-phase heterogeneous material composed of aluminum melt and non-conducting air pores. Experiments using distilled water simulating the aluminum melt to be solidified (frozen) were subsequently conducted to validate the analytical model for two selected porosities (ε), ε=0 and 0.5. Full numerical simulations with the method of finite difference were also performed to examine the influence of pore shape on solidification. The remarkable agreement between theory and experiment suggests that the delay of solidification in the two-phase heterogeneous material is mainly caused by the reduction of bulk thermal conductivity due to the presence of pores, as this is the sole mechanism accounted for by the analytical model for solidification in a porous medium.

  4. Thermodynamic properties and mixing thermodynamic parameters of two-phase metallic melts

    Institute of Scientific and Technical Information of China (English)

    Jian Zhang

    2005-01-01

    Based on the calculating model of metallic melts involving eutectic, the calculating equations of mixing thermodynamic parameters for two phase metallic melts have been formulated in the light of those equations of homogeneous solutions. Irrespective as to whether the activity deviation relative to Raoultian behavior is positive or negative, or the deviation is symmetrical or unsymmetrical, the evaluated results not only agree well with experimental values, but also strictly obey the mass action law. This testifies that these equations can authentically reflect the structural reality and mixing thermodynamic characteristics of two-phase metallic melts. The calculating equations of mixing thermodynamic parameters for the model of two phase metallic melts offer two practical criteria (activity and mixing thermodynamic parameters) and one theoretical criterion (the mass action law).

  5. Thermodynamic calculations of a two-phase thermosyphon loop for cold neutron sources

    Science.gov (United States)

    de Haan, Victor-O.; Gommers, René; Rowe, J. Michael

    2017-07-01

    A new method is described for thermodynamic calculations of a two-phase thermosyphon loop based on a one-dimensional finite element division, where each time-step is split up in a change of enthalpy and a change in entropy. The method enables the investigation of process responses for a cooling loop from room temperature down to cryogenic temperatures. The method is applied for the simulation of two distinct thermosyphon loops: a two-phase deuterium and a two-phase hydrogen thermosyphon loop. The simulated process responses are compared to measurements on these loops. The comparisons show that the method can be used to optimize the design of such loops with respect to performance and resulting void fractions.

  6. Two-phase application of multi-objective genetic algorithms in green building design

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Zmeureanu, R. [Concordia Univ., Centre for Building Studies, Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering; Rivard, H. [Ecole de Technologie Superieure, Montreal, PQ (Canada). Dept. of Construction Engineering

    2005-07-01

    The application of multi-objective genetic algorithms for green building design in two phases were presented in order to better help designers in the decision-making process. The purpose is to minimize two conflicting criteria: the life-cycle cost and the life-cycle environmental impact. Environmental impact criteria examined include energy and non-energy natural resources, global warming, and acidification. Variables focus on building envelope-related parameters. The application of multi-objective genetic algorithms is divided into two phases. The first phase intends to help designers in understanding the trade-off relationship between the two conflicting criteria. The second phase intends to refine the performance region that is of the designer's interest. The results after the two-phase application of the multi objective genetic algorithm were then presented. 13 refs., 4 tabs., 3 figs.

  7. OPTIMIZATION DESIGN OF GAS-PARTICLE TWO-PHASE AXIAL-FLOW FAN

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the shaping theory of writhed blade in streamline design, the geometric shape of blade is designed and then computational formulas for the dynamic design of fan with writhed the blades in gas-particle two-phase axial-flow are derived with the two-phase continuum coupling model. Concurrently, the correlation between the structure of impeller and flow-field dynamic functional parameters is presented. Further, the software for the optimization design of gas-particle two-phase axial-flow fan with writhed blades is obtained. By means of the available software, a sample fan is formed with its all dynamic characteristic curves and geometric shape. Finally, the conclusion on the effect of particles on fan running is reached, quantitatively and qualitatively, as is expected in the fan industry.

  8. Numerical simulation of the two-phase flows in a hydraulic coupling by solving VOF model

    Science.gov (United States)

    Luo, Y.; Zuo, Z. G.; Liu, S. H.; Fan, H. G.; Zhuge, W. L.

    2013-12-01

    The flow in a partially filled hydraulic coupling is essentially a gas-liquid two-phase flow, in which the distribution of two phases has significant influence on its characteristics. The interfaces between the air and the liquid, and the circulating flows inside the hydraulic coupling can be simulated by solving the VOF two-phase model. In this paper, PISO algorithm and RNG k-ɛ turbulence model were employed to simulate the phase distribution and the flow field in a hydraulic coupling with 80% liquid fill. The results indicate that the flow forms a circulating movement on the torus section with decreasing speed ratio. In the pump impeller, the air phase mostly accumulates on the suction side of the blades, while liquid on the pressure side; in turbine runner, air locates in the middle of the flow passage. Flow separations appear near the blades and the enclosing boundaries of the hydraulic coupling.

  9. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume II. Chapters 6-10)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  10. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume III. Chapters 11-14)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  11. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume IV. Chapters 15-19)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  12. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume I. Chapters 1-5)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  13. Novel radio-frequency ion trap with spherical geometry

    CERN Document Server

    Noshad, Houshyar

    2014-01-01

    Confinement of single ions in a novel radio-frequency (RF) quadrupole ion trap with spherical shape is investigated. An optimization of this spherical ion trap (SIT) is carried out in order to suppress its nonlinearity substantially by eliminating the electric octupole moment. Hence, a trapping potential and consequently an electric field very similar to the ideal quadrupole ion trap (QIT) are obtained. Afterwards, three stability regions for the optimized SIT are numerically computed. The regions coincide well with those reported in the literature for the ideal QIT. The reason is attributed to the zero electric octupole moment of our proposed trap. The SIT simple geometry and relative ease of fabrication along with its increased trapping volume compared to the conventional hyperbolic quadrupole ion trap, make it an appropriate choice for miniaturization.

  14. Numerical investigation of the mechanism of two-phase flow instability in parallel narrow channels

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Lian [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University (China); Chen, Deqi, E-mail: chendeqi@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University (China); CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Huang, Yanping, E-mail: hyanping007@163.com [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Yuan, Dewen; Wang, Yanling [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Pan, Liangming [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University (China)

    2015-06-15

    Highlights: • A mathematical model is proposed to predict the two-phase flow instability. • The mathematical model predicted result agrees well with the experimental result. • Oscillation characteristics of the two-phase flow instability is discussed in detail. - Abstract: In this paper, the mechanism of two-phase flow instability in parallel narrow channels is studied theoretically, and the characteristic of the flow instability is discussed in detail. Due to the significant confining effect of the narrow channel on the vapor–liquid interface, the two-phase flow resistance in the narrow channel is probably different from that in conventional channel. Therefore, the vapor confined number (N{sub conf}), defined by the size of narrow channel and bubble detachment diameter, is considered in the “Chisholm B model” to investigate the two-phase flow pressure drop. The flow instability boundaries are plotted in parameter plane with phase-change-number (N{sub pch}) and subcooling-number (N{sub sub}) under different working conditions. It is found that the predicted result agrees well with the experimental result. According to the predicted result, the oscillation behaviors near the flow instability boundary indicate that the Supercritical Hopf bifurcation appears in high sub-cooled region and the Subcritical Hopf bifurcation appears in low sub-cooled region. Also, a detailed analysis about the effects of key parameters on the characteristic of two-phase flow instability and the flow instability boundary is proposed, including the effects of inlet subcooling, heating power, void distribution parameter and drift velocity.

  15. The source vector and static displacement field by elastic dislocation on the two-phase saturated medium

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the Biot's theory about two-phase saturated medium, according to the character of d function, the Green function on two-phase saturated medium by the point source under concentrated force can be derived. By the Betti's theorem for the two-phase saturated medium field, the source vector and static displacement field by elastic dislocation on the two-phase saturated medium were comprehensively discussed.

  16. RESEARCH ON THE FLOW STABILITY IN A CYLINDRICAL PARTICLE TWO-PHASE BOUNDARY LAYER

    Institute of Scientific and Technical Information of China (English)

    林建忠; 聂德明

    2003-01-01

    Based on the momentum and constitutive equations, the modified Orr-Sommerfeld equation describing the flow stability in a cylindrical particle two-phase flow was derived. For a cylindrical particle two-phase boundary layer, the neutral stability curves and critical Reynolds number were given with numerical simulation. The results show that the cylindrical particles have a suppression effect on the flow instability, the larger the particle volume fraction and the particle aspect-ratio are, the more obvious the suppression effect is.

  17. Investigation on two-phase flow instability in steam generator of integrated nuclear reactor

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    In the pressure range of 3-18MPa,high pressure steam-water two-phase flow density wave instability in vertical upward parallel pipes with inner diameter of 12mm is studied experimentally.The oscillation curves of two-phase flow instability and the effects of several parameters on the oscillation threshold of the system are obtained.Based on the small pertubation linearization method and the stability principles of automatic control system,a mathematical model is developed to predict the characteristics of density wave instability threshold.The predictions of the model are in good agreement with the experimental results.

  18. Position Control of Synchronous Motor Drive by Modified Adaptive Two-phase Sliding Mode Controller

    Institute of Scientific and Technical Information of China (English)

    Mohamed Said Sayed Ahmed; Ping Zhang; Yun-Jie Wu

    2008-01-01

    A modified adaptive two-phase sliding mode controller for the synchronous motor drive that is highly robust to uncertain-ties and external disturbances is proposed in this paper. The proposed controller uses two-phase sliding mode control (SMC) where the 1st phase mainly controls the system in steady states and disturbed states-it is a smoothing phase. The 2nd phase is used mainly in the case of disturbed states. Also, it is an autotuning phase and uses a simple adaptive algorithm to tune the gain of conventional variable structure control (VSC). The modified controller is useful in position control of a permanent magnet synchronous drive.

  19. Film boiling on spheres in single- and two-phase flows.

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.; Theofanous, T. G.

    2000-08-29

    Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40 C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900 C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1 - {alpha}){sup 1/4} (with a being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multi-sphere structure on the film boiling heat transfer in single- and two-phase flows.

  20. A phenomenological model of two-phase (air/fuel droplet developing and breakup

    Directory of Open Access Journals (Sweden)

    Pavlović Radomir R.

    2013-01-01

    Full Text Available Effervescent atomization namely the air-filled liquid atomization comprehends certain complex two-phase phenomenon that are difficult to be modeled. Just a few researchers have found the mathematical expressions for description of the complex atomization model of the two-phase mixture air/diesel fuel. In the following review, developing model of twophase (air/fuel droplet of Cummins spray pump-injector is shown. The assumption of the same diameters of the droplet and the opening of the atomizer is made, while the air/fuel mass ratio inside the droplet varies.

  1. Camomile autofermentation in polyethylene glycol/dextran two-phase system

    Directory of Open Access Journals (Sweden)

    Đaković Sanja D.

    2008-01-01

    Full Text Available The objective of this study was the investigation of the extractive bioconversion of apigenin-7-O-β-glucoside in camomile ligulate flowers into apigenin by autofermentation in polyethylene glycol 6000/dextran 200000 two-phase system. In 22.5% polyethylene glycol/14% dextran aqueous two-phase system the obtained yield of apigenin in the top phase was 96.5%. In the presence of plant material that partiotioned to the interphase, the yield of apigenin in the top phase was 3.5 times higher in comparison to the model system.

  2. Preliminary Two-Phase Terry Turbine Nozzle Models for RCIC Off-Design Operation Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, James [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-12

    This report presents the effort to extend the single-phase analytical Terry turbine model to cover two-phase off-design conditions. The work includes: (1) adding well-established two-phase choking models – the Isentropic Homogenous Equilibrium Model (IHEM) and Moody’s model, and (2) theoretical development and implementation of a two-phase nozzle expansion model. The two choking models provide bounding cases for the two-phase choking mass flow rate. The new two-phase Terry turbine model uses the choking models to calculate the mass flow rate, the critical pressure at the nozzle throat, and steam quality. In the divergent stage, we only consider the vapor phase with a similar model for the single-phase case by assuming that the liquid phase would slip along the wall with a much slower speed and will not contribute the impulse on the rotor. We also modify the stagnation conditions according to two-phase choking conditions at the throat and the cross-section areas for steam flow at the nozzle throat and at the nozzle exit. The new two-phase Terry turbine model was benchmarked with the same steam nozzle test as for the single-phase model. Better agreement with the experimental data is observed than from the single-phase model. We also repeated the Terry turbine nozzle benchmark work against the Sandia CFD simulation results with the two-phase model for the pure steam inlet nozzle case. The RCIC start-up tests were simulated and compared with the single-phase model. Similar results are obtained. Finally, we designed a new RCIC system test case to simulate the self-regulated Terry turbine behavior observed in Fukushima accidents. In this test, a period inlet condition for the steam quality varying from 1 to 0 is applied. For the high quality inlet period, the RCIC system behaves just like the normal operation condition with a high pump injection flow rate and a nominal steam release rate through the turbine, with the net addition of water to the primary system; for

  3. Two-phase flow stability structure in a natural circulation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhiwei [Nuclear Engineering Laboratory Zurich (Switzerland)

    1995-09-01

    The present study reports a numerical analysis of two-phase flow stability structures in a natural circulation system with two parallel, heated channels. The numerical model is derived, based on the Galerkin moving nodal method. This analysis is related to some design options applicable to integral heating reactors with a slightly-boiling operation mode, and is also of general interest to similar facilities. The options include: (1) Symmetric heating and throttling; (2) Asymmetric heating and symmetric throttling; (3) Asymmetric heating and throttling. The oscillation modes for these variants are discussed. Comparisons with the data from the INET two-phase flow stability experiment have qualitatively validated the present analysis.

  4. Problems of heat transfer and hydraulics of two-phase media

    CERN Document Server

    Kutateladze, S S

    1969-01-01

    Problems of Heat Transfer and Hydraulics of Two-Phase Media presents the theory of heat transfer and hydrodynamics. This book discusses the various aspects of heat transfer and the flow of two-phase systems. Organized into two parts encompassing 22 chapters, this book starts with an overview of the laws of similarity for heat transfer to or from a flowing liquid with various physical properties and allowed for variation in viscosity and thermal conductivity. This book then explores the general functional relationship that exists between viscosity and thermal conductivity for thermodynamically

  5. Research of Characteristics of Gas-liquid Two-phase Pressure Drop in Microreactor

    OpenAIRE

    Li Dan

    2015-01-01

    With the research system of nitrogen and deionized water, this paper researches the pressure drop of gas-liquid two-phase flow in the circular microchannel with an inner diameter which is respectively 0.9mm and 0.5mm, analyzes the effect of microchannel diameter on gas-liquid two-phase frictional pressure drop in the microchannel reactor, and compares with the result of frictional pressure drop and the predicting result of divided-phase flow pattern. The result shows that, the gas-liquid two-...

  6. Two-Phase Flow in Geothermal Wells: Development and Uses of a Good Computer Code

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Ramirez, Jaime

    1983-06-01

    A computer code is developed for vertical two-phase flow in geothermal wellbores. The two-phase correlations used were developed by Orkiszewski (1967) and others and are widely applicable in the oil and gas industry. The computer code is compared to the flowing survey measurements from wells in the East Mesa, Cerro Prieto, and Roosevelt Hot Springs geothermal fields with success. Well data from the Svartsengi field in Iceland are also used. Several applications of the computer code are considered. They range from reservoir analysis to wellbore deposition studies. It is considered that accurate and workable wellbore simulators have an important role to play in geothermal reservoir engineering.

  7. Determination of production-shipment policy using a two-phase algebraic approach

    Directory of Open Access Journals (Sweden)

    Huei-Hsin Chang

    2012-04-01

    Full Text Available The optimal production-shipment policy for end products using mathematicalmodeling and a two-phase algebraic approach is investigated. A manufacturing systemwith a random defective rate, a rework process, and multiple deliveries is studied with thepurpose of deriving the optimal replenishment lot size and shipment policy that minimisestotal production-delivery costs. The conventional method uses differential calculus on thesystem cost function to determine the economic lot size and optimal number of shipmentsfor such an integrated vendor-buyer system, whereas the proposed two-phase algebraicapproach is a straightforward method that enables practitioners who may not havesufficient knowledge of calculus to manage real-world systems more effectively.

  8. The performance of a cryogenic pump for the two-phase flow condition

    OpenAIRE

    YAMADA, HITOSHI; WATANABE, Mitsuo; Hasegawa, Satoshi; Kamijo, Kenjiro; 山田, 仁; 渡辺, 光男; 長谷川, 敏; 上條, 謙二郎

    1985-01-01

    An experimental investigation was carried out in order to obtain the performance characteristics of a cryogenic pump under a two-phase flow condition. The experiment used an oxygen pump with an inducer and liquid nitrogen as the test fluid. The vapor volumetric fraction at the pump inlet was calculated with an assumption of a constant enthalpy process across an orifice which was used to generate the two-phase flow at the pump inlet. The results showed that the pump head rise did hardly decrea...

  9. Estimation of flow velocity for a debris flow via the two-phase fluid model

    Directory of Open Access Journals (Sweden)

    S. Guo

    2014-06-01

    Full Text Available The two-phase fluid model is applied in this study to calculate the steady velocity of a debris flow along a channel bed. By using the momentum equations of the solid and liquid phases in the debris flow together with an empirical formula to describe the interaction between two phases, the steady velocities of the solid and liquid phases are obtained theoretically. The comparison of those velocities obtained by the proposed method with the observed velocities of two real-world debris flows shows that the proposed method can estimate accurately the velocity for a debris flow.

  10. Characterization of annular two-phase gas-liquid flows in microgravity

    Science.gov (United States)

    Bousman, W. Scott; Mcquillen, John B.

    1994-01-01

    A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.

  11. Thermal Marangoni Convection of Two-phase Dusty Fluid Flow along a Vertical Wavy Surface

    Directory of Open Access Journals (Sweden)

    S. Siddiqa

    2017-01-01

    Full Text Available The paper considers the influence of thermal Marangoni convection on boundary layer flow of two-phase dusty fluid along a vertical wavy surface. The dimensionless boundary layer equations for two-phase problem are reduced to a convenient form by primitive variable transformations (PVF and then integrated numerically by employing the implicit finite difference method along with the Thomas Algorithm. The effect of thermal Marangoni convection, dusty water and sinusoidal waveform are discussed in detail in terms of local heat transfer rate, skin friction coefficient, velocity and temperature distributions. This investigation reveals the fact that the water-particle mixture reduces the rate of heat transfer, significantly.

  12. Two-dimensional Rarefaction Waves in the High-speed Two-phase Flow

    Science.gov (United States)

    Nakagawa, Masafumi; Harada, Atsushi

    Two-phase flow nozzles are used in the total flow system for geothermal power plants and in the ejector of the refrigerant cycle, etc. One of the most important functions of a two-phase flow nozzle is to convert the thermal energy to the kinetic energy of the two-phase flow. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. There exist the shock waves or rarefaction waves at the outlet of a supersonic nozzle in the case of non-best fitting expansion conditions when the operation conditions of the nozzle are widely chosen. The purpose of the present study is to elucidate theoretically the character of the rarefaction waves at the outlet of the supersonic two-phase flow nozzle. Two-dimensional basic equations for the compressible two-phase flow are introduced considering the inter-phase momentum transfer. Sound velocities are obtained from these equations by using monochromatic wave approximation. Those depend on the relaxation time that determines the momentum transfer. The two-phase flow with large relaxation times has a frozen sound velocity, and with small one has an equilibrium sound velocity. Rarefaction waves which occurred behind the two-phase flow nozzle are calculated by the CIP method. Although the frozen Mach number, below one, controls these basic equations, the rarefaction waves appeared for small relaxation time. The Mach line behind which the expansion starts depends on the inlet velocity and the relaxation time. Those relationships are shown in this paper. The pressure expansion curves are only a function of the revolution angle around the corner of the nozzle outlet for the relaxation time less than 0.1. For the larger relaxation time, the pressure decays because of internal friction caused by inter phase momentum transfer, and the expansion curves are a function of not only the angle but also the flow direction. The calculated expansion curves are compared with the experimental ones

  13. Conceptual design of two-phase fluid mechanics and heat transfer facility for spacelab

    Science.gov (United States)

    North, B. F.; Hill, M. E.

    1980-01-01

    Five specific experiments were analyzed to provide definition of experiments designed to evaluate two phase fluid behavior in low gravity. The conceptual design represents a fluid mechanics and heat transfer facility for a double rack in Spacelab. The five experiments are two phase flow patterns and pressure drop, flow boiling, liquid reorientation, and interface bubble dynamics. Hardware was sized, instrumentation and data recording requirements defined, and the five experiments were installed as an integrated experimental package. Applicable available hardware was selected in the experiment design and total experiment program costs were defined.

  14. On the peculiarities of LDA method in two-phase flows with high concentrations of particles

    Science.gov (United States)

    Poplavski, S. V.; Boiko, V. M.; Nesterov, A. U.

    2016-10-01

    Popular applications of laser Doppler anemometry (LDA) in gas dynamics are reviewed. It is shown that the most popular method cannot be used in supersonic flows and two-phase flows with high concentrations of particles. A new approach to implementation of the known LDA method based on direct spectral analysis, which offers better prospects for such problems, is presented. It is demonstrated that the method is suitable for gas-liquid jets. Owing to the progress in laser engineering, digital recording of spectra, and computer processing of data, the method is implemented at a higher technical level and provides new prospects of diagnostics of high-velocity dense two-phase flows.

  15. Milking the spherical cow: on aspherical dynamics in spherical coordinates

    CERN Document Server

    Pontzen, Andrew; Teyssier, Romain; Governato, Fabio; Gualandris, Alessia; Roth, Nina; Devriendt, Julien

    2015-01-01

    Galaxies and the dark matter halos that host them are not spherically symmetric, yet spherical symmetry is a helpful simplifying approximation for idealised calculations and analysis of observational data. The assumption leads to an exact conservation of angular momentum for every particle, making the dynamics unrealistic. But how much does that inaccuracy matter in practice for analyses of stellar distribution functions, collisionless relaxation, or dark matter core-creation? We provide a general answer to this question for a wide class of aspherical systems; specifically, we consider distribution functions that are "maximally stable", i.e. that do not evolve at first order when external potentials (which arise from baryons, large scale tidal fields or infalling substructure) are applied. We show that a spherically-symmetric analysis of such systems gives rise to the false conclusion that the density of particles in phase space is ergodic (a function of energy alone). Using this idea we are able to demonstra...

  16. Electrically-conductive proppant and methods for making and using same

    Energy Technology Data Exchange (ETDEWEB)

    Cannan, Chad; Roper, Todd; Savoy, Steve; Mitchell, Daniel R.

    2016-09-06

    Electrically-conductive sintered, substantially round and spherical particles and methods for producing such electrically-conductive sintered, substantially round and spherical particles from an alumina-containing raw material. Methods for using such electrically-conductive sintered, substantially round and spherical particles in hydraulic fracturing operations.

  17. Spherical harmonics in texture analysis

    Science.gov (United States)

    Schaeben, Helmut; van den Boogaart, K. Gerald

    2003-07-01

    The objective of this contribution is to emphasize the fundamental role of spherical harmonics in constructive approximation on the sphere in general and in texture analysis in particular. The specific purpose is to present some methods of texture analysis and pole-to-orientation probability density inversion in a unifying approach, i.e. to show that the classic harmonic method, the pole density component fit method initially introduced as a distinct alternative, and the spherical wavelet method for high-resolution texture analysis share a common mathematical basis provided by spherical harmonics. Since pole probability density functions and orientation probability density functions are probability density functions defined on the sphere Ω3⊂ R3 or hypersphere Ω4⊂ R4, respectively, they belong at least to the space of measurable and integrable functions L1( Ωd), d=3, 4, respectively. Therefore, first a basic and simplified method to derive real symmetrized spherical harmonics with the mathematical property of providing a representation of rotations or orientations, respectively, is presented. Then, standard orientation or pole probability density functions, respectively, are introduced by summation processes of harmonic series expansions of L1( Ωd) functions, thus avoiding resorting to intuition and heuristics. Eventually, it is shown how a rearrangement of the harmonics leads quite canonically to spherical wavelets, which provide a method for high-resolution texture analysis. This unified point of view clarifies how these methods, e.g. standard functions, apply to texture analysis of EBSD orientation measurements.

  18. Comparison of two-phase and three-phase methanol synthesis processes

    NARCIS (Netherlands)

    van de Graaf, G.H; Beenackers, A.A C M

    1996-01-01

    A comparison is made between the ICI (two-phase) methanol synthesis process and a three-phase slurry process based on a multi-stage agitated reactor. The process calculations are based on a complete reactor system consisting of the reactor itself, a recycling system and a gas-liquid separator. The b

  19. Pressure Buildup Analysis for Two-Phase Geothermal Wells: Application to the Baca Geothermal Field

    Science.gov (United States)

    Riney, T. D.; Garg, S. K.

    1985-03-01

    The recently published pressure transient analysis methods for two-phase geothermal wells are employed to analyze the pressure buildup data for several wells located in the Redondo Creek area of the Baca geothermal field in New Mexico. The downhole drilling information and pressure/temperature surveys are first interpreted to locate zones at which fluid enters the well bore from the formation and to estimate the initial reservoir temperature and pressure in these zones. All of the Baca wells considered here induced flashing in the formation upon production. Interpretation of the buildup data for each well considers well bore effects (e.g., phase change in the well bore fluid and location of the pressure sensor with respect to the permeable horizon) and the carbon dioxide content of the fluid and its effects on the phase behavior of the reservoir fluids and differentiates between the single- and two-phase portions of the pressure buildup data. Different straight-line approximations to the two portions (i.e., single- and two-phase) of the data on the Homer plot are used to obtain corresponding estimates for the single- and two-phase mobilities. Estimates for the formation permeability-thickness (kH) product are also given.

  20. Effects of Macroparticle Sizes on Two-phase Mixture Discharge Under DC Voltage

    Institute of Scientific and Technical Information of China (English)

    YAO Wenjun; HE Zhenghao; DENG Heming; WANG Guoli; ZHANG Man; MA Jun; LI Jin; YE Qizheng; HU Hui

    2012-01-01

    The discharge laws of the two-phase mixtures are of significance to the lightning protection and external insulation of HV transmission lines under the influence of severe climatic conditions. The initiation and propagation of discharge and its influence factors are the fundamental problems to be studied.

  1. THE UPWIND OPERATOR SPLITTING FINITE DIFFERENCE METHOD FOR COMPRESSIBLE TWO-PHASE DISPLACEMENT PROBLEM AND ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    袁益让

    2002-01-01

    For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estinates in L2 norm are derived to determine the error in the approximate solution.

  2. Investigation of the overall transient performance of the industrial two-phase closed loop thermosyphon

    NARCIS (Netherlands)

    Vincent, Charles C.J.; Kok, Jacobus B.W.

    1992-01-01

    The two-phase closed loop thermosyphon is investigated with emphasis on the overall performance in transient operation. The control volume approach is the base of a global analysis describing the motion of vapor and liquid phases of the thermosyphon system in one-dimensional equations. Interfacial s

  3. Affinity partitioning of human antibodies in aqueous two-phase systems

    NARCIS (Netherlands)

    Rosa, P. A. J.; Azevedo, A. M.; Ferreira, I. F.; de Vries, J.; Korporaal, R.; Verhoef, H. J.; Visser, T. J.; Aires-Barros, M. R.

    2007-01-01

    The partitioning of human immunoglobulin (IgG) in a polymer-polymer and polymer-salt aqueous two-phase system (ATPS) in the presence of several functionalised polyethylene glycols (PEGs) was studied. As a first approach, the partition studies were performed with pure IgG using systems in which the t

  4. Measurements of solids concentration and axial solids velocity in gas-solid two-phase flows.

    NARCIS (Netherlands)

    Nieuwland, J.J.; Meijer, R.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    1996-01-01

    Several techniques reported in the literature for measuring solids concentration and solids velocity in (dense) gas-solid two-phase flow have been briefly reviewed. An optical measuring system, based on detection of light reflected by the suspended particles, has been developed to measure local soli

  5. A Dual-Stage Two-Phase Model of Selective Attention

    Science.gov (United States)

    Hubner, Ronald; Steinhauser, Marco; Lehle, Carola

    2010-01-01

    The dual-stage two-phase (DSTP) model is introduced as a formal and general model of selective attention that includes both an early and a late stage of stimulus selection. Whereas at the early stage information is selected by perceptual filters whose selectivity is relatively limited, at the late stage stimuli are selected more efficiently on a…

  6. A FINITE ELEMENT COLLOCATION METHOD FOR TWO-PHASE INCOMPRESSIBLE IMMISCIBLE PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Ma Ning

    2007-01-01

    Two-phase, incompressible, immiscible flow in porous media is governed by a coupled system of nonlinear partial differential equations. The pressure equation is elliptic,whereas the concentration equation is parabolic, and both are treated by the collocation scheme. Existence and uniqueness of solutions of the algorithm are proved. A optimal convergence analysis is given for the method.

  7. Two-phase (bio)catalytic reactions in a table-top centrifugal contact separator

    NARCIS (Netherlands)

    Kraai, Gerard N.; Zwol, Floris van; Schuur, Boelo; Heeres, Hero J.; Vries, Johannes G. de

    2008-01-01

    A new spin on catalysis: A table-top centrifugal contact separator allows for fast continuous two-phase reactions to be performed by intimately mixing two immiscible phases and then separating them. Such a device has been used to produce biodiesel from sunflower oil and MeOH/NaOMe. A lipase-catalyze

  8. Two-Phase Instability Characteristics of Printed Circuit Steam Generator for the Low Pressure Condition

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han-Ok; Han, Hun Sik; Kim, Young-In; Kim, Keung Koo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Reduction of installation space for steam generators can lead to much smaller reactor vessel with resultant decrease of overall manufacturing cost for the components. A PCHE(Printed Circuit Heat Exchanger) is one of the compact types of heat exchangers available as an alternative to conventional shell and tube heat exchangers. Its name is derived from the procedure used to manufacture the flat metal plates that form the core of the heat exchanger, which is done by chemical milling. These plates are then stacked and diffusion bonded, converting the plates into a solid metal block containing precisely engineered fluid flow passages. PCSG(Printed Circuit Steam Generator) is a potential candidate to be applied to the integral reactor with its compactness and mechanical robustness. For the introduction of new steam generator, design requirement for the two-phase flow instability should be considered. This paper describes two-phase flow instability characteristics of PCSG for the low pressure condition. PCSG is a potential candidate to be applied to the integral reactor with its compactness and mechanical robustness. Interconnecting flow path was developed to mitigate the two-phase flow instability in the cold side. The flow characteristics of two-phase flow instability at the PCSG is examined experimentally in this study.

  9. Comparison of two-phase and three-phase methanol synthesis processes

    NARCIS (Netherlands)

    van de Graaf, G.H; Beenackers, A.A C M

    1996-01-01

    A comparison is made between the ICI (two-phase) methanol synthesis process and a three-phase slurry process based on a multi-stage agitated reactor. The process calculations are based on a complete reactor system consisting of the reactor itself, a recycling system and a gas-liquid separator. The

  10. Effects of gravity and inlet location on a two-phase countercurrent imbibition in porous media

    KAUST Repository

    El-Amin, Mohamed

    2012-01-01

    We introduce a numerical investigation of the effect of gravity on the problem of two-phase countercurrent imbibition in porous media. We consider three cases of inlet location, namely, from, side, top, and bottom. A 2D rectangular domain is considered for numerical simulation. The results indicate that gravity has a significant effect depending on open-boundary location.

  11. A Chebyshev collocation method for solving two-phase flow stability problems

    NARCIS (Netherlands)

    Boomkamp, P.A.M.; Boersma, B.J.; Miesen, R.H.M.; Beijnon, G.V.

    1997-01-01

    This paper describes a Chebyshev collocation method for solving the eigenvalue problem that governs the stability of parallel two-phase flow. The method is based on the expansion of the eigenfunctions in terms of Chebyshev polynomials, point collocation, and the subsequent solution of the resulting

  12. Approaches to myosin modelling in a two-phase flow model for cell motility

    Science.gov (United States)

    Kimpton, L. S.; Whiteley, J. P.; Waters, S. L.; Oliver, J. M.

    2016-04-01

    A wide range of biological processes rely on the ability of cells to move through their environment. Mathematical models have been developed to improve our understanding of how cells achieve motion. Here we develop models that explicitly track the cell's distribution of myosin within a two-phase flow framework. Myosin is a small motor protein which is important for contracting the cell's actin cytoskeleton and enabling cell motion. The two phases represent the actin network and the cytosol in the cell. We start from a fairly general description of myosin kinetics, advection and diffusion in the two-phase flow framework, then identify a number of sub-limits of the model that may be relevant in practice, two of which we investigate further via linear stability analyses and numerical simulations. We demonstrate that myosin-driven contraction of the actin network destabilizes a stationary steady state leading to cell motion, but that rapid diffusion of myosin and rapid unbinding of myosin from the actin network are stabilizing. We use numerical simulation to investigate travelling-wave solutions relevant to a steadily gliding cell and we consider a reduction of the model in which the cell adheres strongly to the substrate on which it is crawling. This work demonstrates that a number of existing models for the effect of myosin on cell motility can be understood as different sub-limits of our two-phase flow model.

  13. Effects of Particles Collision on Separating Gas–Particle Two-Phase Turbulent Flows

    KAUST Repository

    Sihao, L. V.

    2013-10-10

    A second-order moment two-phase turbulence model incorporating a particle temperature model based on the kinetic theory of granular flow is applied to investigate the effects of particles collision on separating gas–particle two-phase turbulent flows. In this model, the anisotropy of gas and solid phase two-phase Reynolds stresses and their correlation of velocity fluctuation are fully considered using a presented Reynolds stress model and the transport equation of two-phase stress correlation. Experimental measurements (Xu and Zhou in ASME-FED Summer Meeting, San Francisco, Paper FEDSM99-7909, 1999) are used to validate this model, source codes and prediction results. It showed that the particles collision leads to decrease in the intensity of gas and particle vortices and takes a larger effect on particle turbulent fluctuations. The time-averaged velocity, the fluctuation velocity of gas and particle phase considering particles colli-sion are in good agreement with experimental measurements. Particle kinetic energy is always smaller than gas phase due to energy dissipation from particle collision. Moreover, axial– axial and radial–radial fluctuation velocity correlations have stronger anisotropic behaviors. © King Fahd University of Petroleum and Minerals 2013

  14. Two-Phase Flow in Rotating Hele-Shaw Cells with Coriolis Effects

    CERN Document Server

    Escher, Joachim; Walker, Christoph

    2011-01-01

    The free boundary problem of a two phase flow in a rotating Hele-Shaw cell with Coriolis effects is studied. Existence and uniqueness of solutions near spheres is established, and the asymptotic stability and instability of the trivial solution is characterized in dependence on the fluid densities.

  15. Liquid-liquid extraction of enzymes by affinity aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    Xu Yan

    2003-12-01

    Full Text Available From analytical to commercial scale, aqueous two-phase systems have their application in the purification, characterization and study of biomaterials. In order to improve the selectivity of the systems, the biospecific affinity ligands were introduced. In the affinity partitioning aqueous two-phase system, have many enzymes been purified. This review discusses the partitioning of some enzymes in the affinity aqueous two-phase systems in regard to the different ligands, including reactive dyes, metal ions and other ligands. Some integration of aqueous two-phase system with other techniques for more effective purification of enzymes are also presented.Tanto em escala de laboratório como industrial, os sistemas de duas fases aquosas podem ser utilizados para a purificação, caracterização e estudos de biomateriais. Para aumentar a seletividade desse sistema, ligantes de afinidade bioespecíficos podem ser utilizados. No sistema de duas fases aquosas por afinidade, muitas enzimas podem ser purificadas. Neste artigo de revisão, a partição de algumas enzimas por esse tipo de afinidade, utilizando diferentes ligantes como corantes e íons metálicos, são discutidas. Além disso, a integração desse sistema de duas fases aquosas com outras técnicas de purificação estão sendo apresentados, com o objetivo mostrar a melhoria da eficiência do processo.

  16. Two-phase (bio)catalytic reactions in a table-top centrifugal contact separator

    NARCIS (Netherlands)

    Kraai, Gerard N.; Zwol, Floris van; Schuur, Boelo; Heeres, Hero J.; Vries, Johannes G. de

    2008-01-01

    A new spin on catalysis: A table-top centrifugal contact separator allows for fast continuous two-phase reactions to be performed by intimately mixing two immiscible phases and then separating them. Such a device has been used to produce biodiesel from sunflower oil and MeOH/NaOMe. A lipase-catalyze

  17. Process Intensification. Continuous Two-Phase Catalytic Reactions in a Table-Top Centrifugal Contact Separator

    NARCIS (Netherlands)

    Kraai, Gerard N.; Schuur, Boelo; van Zwol, Floris; Haak, Robert M.; Minnaard, Adriaan J.; Feringa, Ben L.; Heeres, Hero J.; de Vries, Johannes G.; Prunier, ML

    2009-01-01

    Production of fine chemicals is mostly performed in batch reactors. Use of continuous processes has many advantages which may reduce the cost of production. We have developed the use of centrifugal contact separators (CCSs) for continuous two-phase catalytic reactions. This equipment has previously

  18. Visualization and research of gas-liquid two phase flow structures in cylindrical channel

    Directory of Open Access Journals (Sweden)

    Stefański Sebastian

    2017-01-01

    Full Text Available Two-phase flows are commonly found in many industries, especially in systems, where efficient and correct functioning depend on specific values of flow parameters. In thermal engineering and chemical technology the most popular types of two-phase mixture are gas-liquid or liquid-vapour mixtures. Bubbles can create in flow different structures and determine diverse properties of flow (velocity of phase, void fraction, fluctuations of pressure, pipe vibrations, etc.. That type of flow is difficult to observe, especially in liquid-vapour mixture, where vapour is being made by heating the medium. Production of vapour and nucleation process are very complicated issues, which are important part of two-phase flow phenomenon. Gas-liquid flow structures were observed and described with figures, but type of structure depends on many parameters. Authors of this paper made an attempt to simulate gas-liquid flow with air and water. In the paper there was presented specific test stand built to observe two-phase flow structures, methodology of experiment and conditions which were maintained during observation. The paper presents also the structures which were observed and the analysis of results with reference to theoretical models and diagrams available in literature.

  19. Numerical Simulation of Hydrodynamic Wave Loading by a Compressible Two-Phase Model

    NARCIS (Netherlands)

    Wemmenhove, R.; Loots, G.E.; Veldman, A.E.P.

    2006-01-01

    The numerical simulation of hydrodynamic wave loading on different types of offshore structures is important to predict forces on and water motion around these structures. This paper presents a numerical study of the effects of two-phase flow on an offshore structure subject to breaking waves. The

  20. Lattice-Boltzmann-based two-phase thermal model for simulating phase change

    NARCIS (Netherlands)

    Kamali, M.R.; Gillissen, J.J.J.; Van den Akker, H.E.A.; Sundaresan, S.

    2013-01-01

    A lattice Boltzmann (LB) method is presented for solving the energy conservation equation in two phases when the phase change effects are included in the model. This approach employs multiple distribution functions, one for a pseudotemperature scalar variable and the rest for the various species. A

  1. An ALE Finite Element Approach for Two-Phase Flow with Phase Change

    Science.gov (United States)

    Gros, Erik; Anjos, Gustavo; Thome, John; Ltcm Team; Gesar Team

    2016-11-01

    In this work, two-phase flow with phase change is investigated through the Finite Element Method (FEM) in the Arbitrary Lagrangian-Eulerian (ALE) framework. The equations are discretized on an unstructured mesh where the interface between the phases is explicitly defined as a sub-set of the mesh. The two-phase interface position is described by a set of interconnected nodes which ensures a sharp representation of the boundary, including the role of the surface tension. The methodology proposed for computing the curvature leads to very accurate results with moderate programming effort and computational costs. Such a methodology can be employed to study accurately many two-phase flow and heat transfer problems in industry such as oil extraction and refinement, design of refrigeration systems, modelling of microfluidic and biological systems and efficient cooling of electronics for computational purposes. The latter is the principal aim of the present research. The numerical results are discussed and compared to analytical solutions and reference results, thereby revealing the capability of the proposed methodology as a platform for the study of two-phase flow with phase change.

  2. Nonequilibrium capillarity effects in two-phase flow through porous media at different scales

    NARCIS (Netherlands)

    Bottero, S.; Hassanizadeh, S.M.; Kleingeld, P.J.; Heimovaara, T.J.

    2011-01-01

    A series of primary drainage experiments was carried out in order to investigate nonequilibrium capillarity effects in two-phase flow through porous media. Experiments were performed with tetrachloroethylene (PCE) and water as immiscible fluids in a sand column 21 cm long. Four drainage experiments

  3. Trapping and hysteresis in two-phase flow in porous media: A pore-network study

    NARCIS (Netherlands)

    Joekar-Niasar, V.|info:eu-repo/dai/nl/30484229X; Doster, F.; Armstrong, R.T.; Wildenschild, D.; Celia, M.A.

    2013-01-01

    Several models for two-phase flow in porous media identify trapping and connectivityof fluids as an important contribution to macroscale hysteresis. This is especially true forhysteresis in relative permeabilities. The trapping models propose trajectories from theinitial saturation to the end saturati

  4. An experimental investigation on the evaporation and condensation heat transfer of two-phase closed thermosyphons

    NARCIS (Netherlands)

    Jafari, Davoud; Di Marco, Paolo; Filippeschi, Sauro; Franco, Alessandro

    2017-01-01

    Abstract Two-phase closed thermosyphons (TPCTs) are excellent thermal transfer devices that their integration into heat exchangers has been shown a strong potential for energy savings. The scope of this study is an experimental evaluation of the evaporation and condensation heat transfer of a TPCT

  5. Effects of a two-phase oil-water mouthwash on halitosis.

    Science.gov (United States)

    Yaegaki, K; Sanada, K

    1992-01-01

    Many oral microorganisms possess hydrophobic outer surfaces. A two-phase, oil-water mouthwash has, therefore, recently been developed to remove such oral microorganisms. The oil phase consists of olive oil and other essential oils. The aqueous phase includes cetylpyridinium chloride, which is a disinfectant that promotes the adhesion of microorganisms to oil droplets. This study determined the effects of this mouthwash on the production of volatile sulfide in vivo and in vitro. Neither rinsing with water nor brushing teeth decreased the concentration of sulfide in mouth air at 3.5 h after treatment. A reduction of only 30% of sulfide was observed when a commercial mouthwash was used. However, this study demonstrated that use of the two-phase mouthwash led to approximately 80% reduction of sulfide. Furthermore, volatile sulfide and 2-ketobutyrate productions from methionine in a saliva putrefaction system were completely inhibited by the two-phase mouthwash; and consumption of methionine was decreased by 65 percent. It is concluded that the two-phase mouthwash strongly inhibits the production of volatile sulfide.

  6. Gravity Effect on Two-Phase Immiscible Flows in Communicating Layered Reservoirs

    DEFF Research Database (Denmark)

    Zhang, Xuan; Shapiro, Alexander; Stenby, Erling Halfdan

    2012-01-01

    An upscaling method is developed for two-phase immiscible incompressible flows in layered reservoirs with good communication between the layers. It takes the effect of gravity into consideration. Waterflooding of petroleum reservoirs is used as a basic example for application of this method...... for gravity segregation. The effects of gravity are analyzed....

  7. Generating a Two-Phase Lesson for Guiding Beginners to Learn Basic Dance Movements

    Science.gov (United States)

    Yang, Yang; Leung, Howard; Yue, Lihua; Deng, Liqun

    2013-01-01

    In this paper, an automated lesson generation system for guiding beginners to learn basic dance movements is proposed. It analyzes the dance to generate a two-phase lesson which can provide a suitable cognitive load thus offering an efficient learning experience. In the first phase, the dance is divided into small pieces which are patterns, and…

  8. Forced Two-Phase Helium Cooling Scheme for the Mu2e Transport Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Tatkowski, G. [Fermilab; Cheban, S. [Fermilab; Dhanaraj, N. [Fermilab; Evbota, D. [Fermilab; Lopes, M. [Fermilab; Nicol, T. [Fermilab; Sanders, R. [Fermilab; Schmitt, R. [Fermilab; Voirin, E. [Fermilab

    2015-01-01

    The Mu2e Transport Solenoid (TS) is an S-shaped magnet formed by two separate but similar magnets, TS-u and TS-d. Each magnet is quarter-toroid shaped with a centerline radius of approximately 3 m utilizing a helium cooling loop consisting of 25 to 27 horizontal-axis rings connected in series. This cooling loop configuration has been deemed adequate for cooling via forced single phase liquid helium; however it presents major challenges to forced two-phase flow such as “garden hose” pressure drop, concerns of flow separation from tube walls, difficulty of calculation, etc. Even with these disadvantages, forced two-phase flow has certain inherent advantages which make it a more attractive option than forced single phase flow. It is for this reason that the use of forced two-phase flow was studied for the TS magnets. This paper will describe the analysis using helium-specific pressure drop correlations, conservative engineering approach, helium properties calculated and updated at over fifty points, and how the results compared with those in literature. Based on the findings, the use of forced-two phase helium is determined to be feasible for steady-state cooling of the TS solenoids

  9. THE LINEAR HOMOGENEOUS FLOW MODEL FOR TWO-PHASE FLOW INSTABILITY IN BOILING CHANNELS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents liner homogeneous model describing two-phase flow instability. Dimensionless parameter η was derived by using the linear homogeneous model. Using parameter η the stability of a system could be easily judged. The calculated results agree with the experimental data well.

  10. Extraction of peptide tagged cutinase in detergent-based aqueous two-phase systems

    NARCIS (Netherlands)

    Rodenbrock, A.; Selber, K.; Egmond, M.R.; Kula, M.-R.

    2010-01-01

    Detergent-based aqueous two-phase systems have the advantage to require only one auxiliary chemical to induce phase separation above the cloud point. In a systematic study the efficiency of tryptophan-rich peptide tags was investigated to enhance the partitioning of an enzyme to the detergent-rich p

  11. Effects of Gravity and Inlet Location on a Two-Phase Countercurrent Imbibition in Porous Media

    Directory of Open Access Journals (Sweden)

    M. F. El-Amin

    2012-01-01

    Full Text Available We introduce a numerical investigation of the effect of gravity on the problem of two-phase countercurrent imbibition in porous media. We consider three cases of inlet location, namely, from, side, top, and bottom. A 2D rectangular domain is considered for numerical simulation. The results indicate that gravity has a significant effect depending on open-boundary location.

  12. Model description of bactrial 3-methylcatechol production in one- and two-phase systems

    NARCIS (Netherlands)

    Husken, L.E.; Hoogakker, J.; Bont, de J.A.M.; Tramper, J.; Beeftink, H.H.

    2003-01-01

    Pseudomonas putida MC2 produces 3-methylcatechol from toluene in aqueous medium. A second phase of 1-octanol may improve total product accumulation. To optimise the design of such a biphasic process, a process model was developed, both for one- and two-phase applications. The insights obtained by th

  13. Multi-scale symbolic time reverse analysis of gas-liquid two-phase flow structures

    Science.gov (United States)

    Wang, Hongmei; Zhai, Lusheng; Jin, Ningde; Wang, Youchen

    Gas-liquid two-phase flows are widely encountered in production processes of petroleum and chemical industry. Understanding the dynamic characteristics of multi-scale gas-liquid two-phase flow structures is of great significance for the optimization of production process and the measurement of flow parameters. In this paper, we propose a method of multi-scale symbolic time reverse (MSTR) analysis for gas-liquid two-phase flows. First, through extracting four time reverse asymmetry measures (TRAMs), i.e. Euclidean distance, difference entropy, percentage of constant words and percentage of reversible words, the time reverse asymmetry (TRA) behaviors of typical nonlinear systems are investigated from the perspective of multi-scale analysis, and the results show that the TRAMs are sensitive to the changing of dynamic characteristics underlying the complex nonlinear systems. Then, the MSTR analysis is used to study the conductance signals from gas-liquid two-phase flows. It is found that the multi-scale TRA analysis can effectively reveal the multi-scale structure characteristics and nonlinear evolution properties of the flow structures.

  14. Milking microalga Dunaliella salina for Beta-carotene production in two-phase bioreactors

    NARCIS (Netherlands)

    Hejazi, M.; Holwerda, E.; Wijffels, R.H.

    2004-01-01

    A new method was developed for production of beta-carotene from Dunaliella salina. Cells were grown in low light intensity and then transferred to a production bioreactor illuminated at a higher light intensity. It was a two-phase bioreactor consisting of an aqueous and a biocompatible organic phase

  15. Lattice-Boltzmann-based two-phase thermal model for simulating phase change

    NARCIS (Netherlands)

    Kamali, M.R.; Gillissen, J.J.J.; Van den Akker, H.E.A.; Sundaresan, S.

    2013-01-01

    A lattice Boltzmann (LB) method is presented for solving the energy conservation equation in two phases when the phase change effects are included in the model. This approach employs multiple distribution functions, one for a pseudotemperature scalar variable and the rest for the various species. A

  16. Generating a Two-Phase Lesson for Guiding Beginners to Learn Basic Dance Movements

    Science.gov (United States)

    Yang, Yang; Leung, Howard; Yue, Lihua; Deng, Liqun

    2013-01-01

    In this paper, an automated lesson generation system for guiding beginners to learn basic dance movements is proposed. It analyzes the dance to generate a two-phase lesson which can provide a suitable cognitive load thus offering an efficient learning experience. In the first phase, the dance is divided into small pieces which are patterns, and…

  17. Well logging interpretation of production profile in horizontal oil-water two phase flow pipes

    Science.gov (United States)

    Zhai, Lu-Sheng; Jin, Ning-De; Gao, Zhong-Ke; Zheng, Xi-Ke

    2012-03-01

    Due to the complicated distribution of local velocity and local phase hold up along the radial direction of pipe in horizontal oil-water two phase flow, it is difficult to measure the total flow rate and phase volume fraction. In this study, we carried out dynamic experiment in horizontal oil-water two phases flow simulation well by using combination measurement system including turbine flowmeter with petal type concentrating diverter, conductance sensor and flowpassing capacitance sensor. According to the response resolution ability of the conductance and capacitance sensor in different range of total flow rate and water-cut, we use drift flux model and statistical model to predict the partial phase flow rate, respectively. The results indicate that the variable coefficient drift flux model can self-adaptively tone the model parameter according to the oil-water two phase flow characteristic, and the prediction result of partial phase flow rate of oil-water two phase flow is of high accuracy.

  18. 23 CFR 636.202 - When are two-phase design-build selection procedures appropriate?

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false When are two-phase design-build selection procedures appropriate? 636.202 Section 636.202 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Selection Procedures, Award Criteria §...

  19. Experimental study on two-phase flow pressure drop in small diameter bends

    Directory of Open Access Journals (Sweden)

    A.T. Autee

    2016-09-01

    Full Text Available Measurement of two-phase flow pressure drop and its prediction across curved tubes and bends is important for the enhancement of the performance and safety of the heat exchangers and flow transmitting devices. The comparative study of some of the available two-phase pressure drop correlations reveals that the predicted values of pressure drops by these leading methods may differ by large. The applicability of these correlations to the small diameter tubes of range 4.0–8.0 mm and different bend angles of the range 90–180° is not fully established. The basic objective of the present experimental investigation is to generate the experimental data to develop the unified correlation applicable for the small diameter tubes of range 4.0–8.0 mm and different bend angles of the range 90–180°. Hence, experimental facility was developed to conduct the experiments to generate the data and to assess the predictive capability of some of the available two-phase pressure drop correlations. It was observed that the correlations considered for comparisons were unable to satisfactorily predict the measured experimental data within the ±50% error bands. A new correlation is developed in terms of curvature multiplier to the straight tube two-phase pressure drop. The correlation is validated with the present measured experimental data. The statistical analysis suggests that correlation shows satisfactory results.

  20. A Stable Parametric Finite Element Discretization of Two-Phase Navier--Stokes Flow

    CERN Document Server

    Barrett, John W; Nürnberg, Robert

    2013-01-01

    We present a parametric finite element approximation of two-phase flow. This free boundary problem is given by the Navier--Stokes equations in the two phases, which are coupled via jump conditions across the interface. Using a novel variational formulation for the interface evolution gives rise to a natural discretization of the mean curvature of the interface. The parametric finite element approximation of the evolving interface is then coupled to a standard finite element approximation of the two-phase Navier--Stokes equations in the bulk. Here enriching the pressure approximation space with the help of an XFEM function ensures good volume conservation properties for the two phase regions. In addition, the mesh quality of the parametric approximation of the interface in general does not deteriorate over time, and an equidistribution property can be shown for a semidiscrete continuous-in-time variant of our scheme in two space dimensions. Moreover, our finite element approximation can be shown to be uncondit...

  1. A two phase algorithm for solving a class of hard satissfiability problems

    NARCIS (Netherlands)

    J.P. Warners; H. van Maaren

    1998-01-01

    textabstractThe DIMACS suite of satisfiability (SAT) benchmarks contains a set of instances that are very hard for existing algorithms. These instances arise from learning the parity function on 32 bits. In this paper we develop a two phase algorithm that is capable of solving these instances. In

  2. Two-phase flow-induced forces on bends in small scale tubes

    NARCIS (Netherlands)

    Cargnelutti, M.F.; Belfroid, S.P.C.; Schiferli, W.

    2010-01-01

    Two-phase flow occurs in many situations in industry. Under certain circumstances, it can be a source of flow-induced vibrations. The forces generated can be sufficiently large to affect the performance or efficiency of an industrial device. In the worst-case scenario, the mechanical forces that ari

  3. Implementation of the interfacial area transport equation in trace for boiling two-phase flows

    Science.gov (United States)

    Bernard, Matthew S.

    Correctly predicting the interfacial area concentration (a i) is vital to the overall accuracy of the two-fluid model because ai describes the amount of surface area that exists between the two-phases, and is therefore directly related to interfacial mass, momentum and energy transfer. The conventional method for specifying ai in the two-fluid model is through flow regime-based empirical correlations coupled with regime transition criteria. However, a more physically consistent approach to predicting ai is through the interfacial area transport equation (IATE), which can address the deficiencies of the flow regime-based approach. Some previous studies have been performed to demonstrate the feasibility of IATE in developmental versions of the nuclear reactor systems analysis code, TRACE. However, a full TRACE version capable of predicting boiling two-phase flows with the IATE has not been established. Therefore, the current work develops a version of TRACE that is capable of predicting boiling two-phase flows using the IATE. The development is carried out in stages. First, a version of TRACE which employs the two-group IATE for adiabatic, vertical upward, air-water conditions is developed. An in-depth assessment on the existing experimental database is performed to select reliable experimental data for code assessment. Then, the implementation is assessed against the qualified air-water two-phase flow experimental data. Good agreement is observed between the experimental data for ai and the TRACE code with an average error of +/-9% for all conditions. Following the initial development, one-group IATE models for vertical downward and horizontal two-phase flows are implemented and assessed against qualified data. Finally, IATE models capable of predicting subcooled boiling two-phase flows are implemented. An assessment of the models shows that TRACE is capable of generating ai in subcooled boiling two-phase flows with the IATE and that heat transfer effects dominate

  4. Comparison of Experimental and Numerical Two-Phase Flows in a Porous Micro-Model

    Directory of Open Access Journals (Sweden)

    Dustin Crandall

    2009-12-01

    Full Text Available Characterizing two-phase flow in porous media is important to provide estimates of sweep efficiency in enhanced oil recovery and storage estimates in potential geological CO2 sequestration repositories. To further the current understanding of two-phase flow in porous media a micro-model of interconnected channels was designed and fabricated using stereolithography to experimentally study gas-liquid flows. This flowcell was created with a wide variability of throat dimensions to represent naturally occurring porous media. Low flow rate experiments of immiscible two-phase drainage were performed within this cell. Additionally, a computational model for analyzing two-phase flows in the same flowcell was developed and used to simulate conditions not possible with our laboratory settings. The computational model was first tested for the identical conditions used in the experimental studies, and was shown to be in good agreement with the experimentally determined fractal dimension of the invading gas structure, time until breakthrough, and fluid saturation. The numerical model was then used to study two-phase air-water flows in flowcells with the same geometry and different gas-liquid-solid contact angles. The percent saturation of air and the motion of the fluids through the cell were found to vary with changes in these parameters. Finally, to simulate flows expected during geologic carbon sequestration, the fluid properties and interface conditions were set to model the flow of CO2 into a brine-saturated porous medium at representative subsurface conditions. The CO2 flows were shown to have larger gas saturations than the previous air into water studies. Thus the accuracy of the computational model was supported by the flowcell experiments, and the computational model extended the laboratory results to conditions not possible with the apparatus used in the experiments.

  5. Two-phase flow and boiling heat transfer in two vertical narrow annuli

    Energy Technology Data Exchange (ETDEWEB)

    Peng Changhong [Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xian 710049 (China)]. E-mail: pxm321@163.com; Guo Yun [Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xian 710049 (China); Qiu Suizheng [Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xian 710049 (China); Jia Dounan [Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xian 710049 (China); Nie Changhua [Nuclear Power Institute of China, Chengdu 610041 (China)

    2005-07-01

    Experimental study associated with two-phase flow and heat transfer during flow boiling in two vertical narrow annuli has been conducted. The parameters examined were: mass flux from 38.8 to 163.1 kg/m{sup 2} s; heat flux from 4.9 to 50.7 kW/m{sup 2} for inside tube and from 4.2 to 78.8 kW/m{sup 2} for outside tube; equilibrium mass quality from 0.02 to 0.88; system pressure from 1.5 to 6.0 MPa. It was found that the boiling heat transfer was strongly influenced by heat flux, while the effect of mass velocity and mass quality were not very significant. This suggested that the boiling heat transfer was mainly via nucleate boiling. The data were used to develop a new correlation for boiling heat transfer in the narrow annuli. In the two-phase flow study, the comparison with the correlation of Chisholm [Chisholm, D., 1967. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow. Int. J. Heat Mass Transfer 10, 1767-1778] and Mishima and Hibiki [Mishima, K., Hibiki, T., 1996. Some characteristics of air-water two-phase flow in small diameter vertical tubes. Int. J. Multiphase Flow 22, 703-712] indicated that the existing correlations could not predict the two-phase multiplier in the narrow annuli well. Based on the experimental data, a new correlation was developed.

  6. Robust risk prediction with biomarkers under two-phase stratified cohort design.

    Science.gov (United States)

    Payne, Rebecca; Yang, Ming; Zheng, Yingye; Jensen, Majken K; Cai, Tianxi

    2016-12-01

    Identification of novel biomarkers for risk prediction is important for disease prevention and optimal treatment selection. However, studies aiming to discover which biomarkers are useful for risk prediction often require the use of stored biological samples from large assembled cohorts, and thus the depletion of a finite and precious resource. To make efficient use of such stored samples, two-phase sampling designs are often adopted as resource-efficient sampling strategies, especially when the outcome of interest is rare. Existing methods for analyzing data from two-phase studies focus primarily on single marker analysis or fitting the Cox regression model to combine information from multiple markers. However, the Cox model may not fit the data well. Under model misspecification, the composite score derived from the Cox model may not perform well in predicting the outcome. Under a general two-phase stratified cohort sampling design, we present a novel approach to combining multiple markers to optimize prediction by fitting a flexible nonparametric transformation model. Using inverse probability weighting to account for the outcome-dependent sampling, we propose to estimate the model parameters by maximizing an objective function which can be interpreted as a weighted C-statistic for survival outcomes. Regardless of model adequacy, the proposed procedure yields a sensible composite risk score for prediction. A major obstacle for making inference under two phase studies is due to the correlation induced by the finite population sampling, which prevents standard inference procedures such as the bootstrap from being used for variance estimation. We propose a resampling procedure to derive valid confidence intervals for the model parameters and the C-statistic accuracy measure. We illustrate the new methods with simulation studies and an analysis of a two-phase study of high-density lipoprotein cholesterol (HDL-C) subtypes for predicting the risk of coronary heart

  7. Spherical membranes in Matrix theory

    CERN Document Server

    Kabat, D; Kabat, Daniel; Taylor, Washington

    1998-01-01

    We consider membranes of spherical topology in uncompactified Matrix theory. In general for large membranes Matrix theory reproduces the classical membrane dynamics up to 1/N corrections; for certain simple membrane configurations, the equations of motion agree exactly at finite N. We derive a general formula for the one-loop Matrix potential between two finite-sized objects at large separations. Applied to a graviton interacting with a round spherical membrane, we show that the Matrix potential agrees with the naive supergravity potential for large N, but differs at subleading orders in N. The result is quite general: we prove a pair of theorems showing that for large N, after removing the effects of gravitational radiation, the one-loop potential between classical Matrix configurations agrees with the long-distance potential expected from supergravity. As a spherical membrane shrinks, it eventually becomes a black hole. This provides a natural framework to study Schwarzschild black holes in Matrix theory.

  8. Spherical Demons: Fast Surface Registration

    Science.gov (United States)

    Yeo, B.T. Thomas; Sabuncu, Mert; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina

    2009-01-01

    We present the fast Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizers for the modified demons objective function can be efficiently implemented on the sphere using convolution. Based on the one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast – registration of two cortical mesh models with more than 100k nodes takes less than 5 minutes, comparable to the fastest surface registration algorithms. Moreover, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different settings: (1) parcellation in a set of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces. PMID:18979813

  9. Spherical k-Means Clustering

    Directory of Open Access Journals (Sweden)

    Kurt Hornik

    2012-09-01

    Full Text Available Clustering text documents is a fundamental task in modern data analysis, requiring approaches which perform well both in terms of solution quality and computational efficiency. Spherical k-means clustering is one approach to address both issues, employing cosine dissimilarities to perform prototype-based partitioning of term weight representations of the documents.This paper presents the theory underlying the standard spherical k-means problem and suitable extensions, and introduces the R extension package skmeans which provides a computational environment for spherical k-means clustering featuring several solvers: a fixed-point and genetic algorithm, and interfaces to two external solvers (CLUTO and Gmeans. Performance of these solvers is investigated by means of a large scale benchmark experiment.

  10. [Spherical crystallization in pharmaceutical technology].

    Science.gov (United States)

    Szabóné, R P; Pintyéné, H K; Kása, P; Erös, I; Hasznosné, N M; Farkas, B

    1998-03-01

    Physical properties of crystals, such as size, crystal size distribution and morphology, may predetermine the usefulness of crystalline materials in many pharmaceutical application. The above properties can be regulated with the crystallization process. The spherical crystals are suitable for direct tablet-making because of their better flowability and compressibility properties. These crystals can be used in the filling of the capsule. In this work, the spherical crystals such as "single crystal", "poly-crystals" and agglomerates with other excipients are collected from the literature and the experimental results of the authors. A close cooperation between chemists and the pharmaceutical technologists can help for doing steps in this field.

  11. Spherical agglomeration of acetylsalicylic acid

    Directory of Open Access Journals (Sweden)

    Polowczyk Izabela

    2016-01-01

    Full Text Available In this paper spherical agglomeration of acetylsalicylic acid was described. In the first step, the system of good and poor solvents as well as bridging liquid was selected. As a result of a preliminary study, ethyl alcohol, water and carbon tetrachloride were used as the good solvent, poor one, and bridging liquid, respectively. Then, the amount of acetylsalicylic acid and the ratio of the solvents as well as the volume of the bridging liquid were examined. In the last step, the agglomeration conditions, such as mixing intensity and time, were investigated. The spherical agglomerates obtained under optimum conditions could be subjected to a tableting process afterwards.

  12. Basketballs as spherical acoustic cavities

    Science.gov (United States)

    Russell, Daniel A.

    2010-06-01

    The sound field resulting from striking a basketball is found to be rich in frequency content, with over 50 partials in the frequency range of 0-12 kHz. The frequencies are found to closely match theoretical expectations for standing wave patterns inside a spherical cavity. Because of the degenerate nature of the mode shapes, explicit identification of the modes is not possible without internal investigation with a microphone probe. A basketball proves to be an interesting application of a boundary value problem involving spherical coordinates.

  13. Advances in spherical neutron polarimetry with Cryopad

    Energy Technology Data Exchange (ETDEWEB)

    Lelievre-Berna, E. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, 38042 Grenoble cedex 9 (France)]. E-mail: lelievre@ill.fr; Bourgeat-Lami, E. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, 38042 Grenoble cedex 9 (France); Fouilloux, P. [CEA-DRFMC/SPSMS/MDN, 38054 Grenoble Cedex 9 (France); Geffray, B. [CEA-DRFMC/SPSMS/MDN, 38054 Grenoble Cedex 9 (France); Gibert, Y. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, 38042 Grenoble cedex 9 (France); Kakurai, K. [ASRC, JAERI, Tokai, Ibaraki 319-1195 (Japan); Kernavanois, N. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, 38042 Grenoble cedex 9 (France); Longuet, B. [CEA-DRFMC/SPSMS/MDN, 38054 Grenoble Cedex 9 (France); Mantegezza, F. [CEA-DRFMC/SPSMS/MDN, 38054 Grenoble Cedex 9 (France); Nakamura, M. [ASRC, JAERI, Tokai, Ibaraki 319-1195 (Japan); Pujol, S. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, 38042 Grenoble cedex 9 (France); Regnault, L.-P. [CEA-DRFMC/SPSMS/MDN, 38054 Grenoble Cedex 9 (France); Tasset, F. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, 38042 Grenoble cedex 9 (France); Takeda, M. [ASRC, JAERI, Tokai, Ibaraki 319-1195 (Japan); Thomas, M. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, 38042 Grenoble cedex 9 (France); Tonon, X. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, 38042 Grenoble cedex 9 (France)

    2005-02-15

    Within the frame of the ILL millennium programme, the European ENPI network and the ILL-ASRC/JAERI Memorandum of Understanding, a third-generation Cryopad has been developed and built in three copies. The aim of this collaboration is to open new fields of investigation on the D3/ILL diffractometer, the IN22/CEA and TAS-1/JAERI three-axis spectrometers: complex antiferromagnetic structures, precision determination of antiferromagnetic distributions, magnetic-lattice excitations spectra, search for the neutron electric dipole moment, etc. We present the progress performed with the new-generation devices and show how easy and reliable it is today to carry out spherical neutron polarimetry measurements with Cryopad.

  14. A two-phase solid/fluid model for dense granular flows including dilatancy effects

    Science.gov (United States)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys

    2016-04-01

    Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [{Iverson et al.}, 2010]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure [{Bouchut et al.}, 2016]. The model is derived from a 3D two-phase model proposed by {Jackson} [2000] based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work [{Bouchut et al.}, 2015]. In particular, {Pitman and Le} [2005] replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's model by closing the mixture equations by a weak compressibility relation following {Roux and Radjai} [1998]. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To

  15. Interfacial area transport for reduced-gravity two-phase flows

    Science.gov (United States)

    Vasavada, Shilp

    An extensive experimental and theoretical study of two-phase flow behavior in reduced-gravity conditions has been performed as part of the current research and the results of the same are presented in this thesis. The research was undertaken to understand the behavior of two-phase flows in an environment where the gravity field is reduced as compared to that on earth. The goal of the study was to develop a model capable of predicting the flow behavior. An experimental program was developed and accomplished which simulated reduced-gravity conditions on earth by using two liquids of similar density, thereby decreasing the body force effect akin to actual reduced-gravity conditions. The justification and validation of this approach has been provided based on physical arguments as well as comparison of acquired data with that obtained aboard parabolic flights by previous researchers. The experimental program produced an extensive dataset of local and averaged two-phase flow parameters using state-of-the-art instrumentation. Such data were acquired for a wide range of flow conditions at different radial and axial locations in a 25 mm inner diameter test facility. The current dataset is, in the author's opinion, the most extensive and detailed dataset available for such conditions at present. Analysis of the data revealed important differences between two-phase flows in normal and reduced-gravity conditions. The data analysis also highlighted key interaction mechanisms between the fluid particles and physical phenomena occurring in two-phase flows under reduced-gravity conditions. The interfacial area transport equation (IATE) for reduced-gravity conditions has been developed by considering two groups of bubbles/drops and mechanistically modeling the interaction mechanisms. The developed model has been benchmarked against the acquired data and the predictions of the model compared favorably against the experimental data. This signifies the success achieved in modeling

  16. Transport, geometrical, and topological properties of stealthy disordered hyperuniform two-phase systems.

    Science.gov (United States)

    Zhang, G; Stillinger, F H; Torquato, S

    2016-12-28

    Disordered hyperuniform many-particle systems have attracted considerable recent attention, since they behave like crystals in the manner in which they suppress large-scale density fluctuations, and yet also resemble statistically isotropic liquids and glasses with no Bragg peaks. One important class of such systems is the classical ground states of "stealthy potentials." The degree of order of such ground states depends on a tuning parameter χ. Previous studies have shown that these ground-state point configurations can be counterintuitively disordered, infinitely degenerate, and endowed with novel physical properties (e.g., negative thermal expansion behavior). In this paper, we focus on the disordered regime (0 two-phase media by circumscribing each point with a possibly overlapping sphere of a common radius a: the "particle" and "void" phases are taken to be the space interior and exterior to the spheres, respectively. The hyperuniformity of such two-phase media depends on the sphere sizes: While it was previously analytically proven that the resulting two-phase media maintain hyperuniformity if spheres do not overlap, here we show numerically that they lose hyperuniformity whenever the spheres overlap. We study certain transport properties of these systems, including the effective diffusion coefficient of point particles diffusing in the void phase as well as static and time-dependent characteristics associated with diffusion-controlled reactions. Besides these effective transport properties, we also investigate several related structural properties, including pore-size functions, quantizer error, an order metric, and percolation thresholds. We show that these transport, geometrical, and topological properties of our two-phase media derived from decorated stealthy ground states are distinctly different from those of equilibrium hard-sphere systems and spatially uncorrelated overlapping spheres. As the extent of short-range order increases, stealthy disordered

  17. Strongly coupled dispersed two-phase flows; Ecoulements diphasiques disperses fortement couples

    Energy Technology Data Exchange (ETDEWEB)

    Zun, I.; Lance, M.; Ekiel-Jezewska, M.L.; Petrosyan, A.; Lecoq, N.; Anthore, R.; Bostel, F.; Feuillebois, F.; Nott, P.; Zenit, R.; Hunt, M.L.; Brennen, C.E.; Campbell, C.S.; Tong, P.; Lei, X.; Ackerson, B.J.; Asmolov, E.S.; Abade, G.; da Cunha, F.R.; Lhuillier, D.; Cartellier, A.; Ruzicka, M.C.; Drahos, J.; Thomas, N.H.; Talini, L.; Leblond, J.; Leshansky, A.M.; Lavrenteva, O.M.; Nir, A.; Teshukov, V.; Risso, F.; Ellinsen, K.; Crispel, S.; Dahlkild, A.; Vynnycky, M.; Davila, J.; Matas, J.P.; Guazelli, L.; Morris, J.; Ooms, G.; Poelma, C.; van Wijngaarden, L.; de Vries, A.; Elghobashi, S.; Huilier, D.; Peirano, E.; Minier, J.P.; Gavrilyuk, S.; Saurel, R.; Kashinsky, O.; Randin, V.; Colin, C.; Larue de Tournemine, A.; Roig, V.; Suzanne, C.; Bounhoure, C.; Brunet, Y.; Tanaka, A.T.; Noma, K.; Tsuji, Y.; Pascal-Ribot, S.; Le Gall, F.; Aliseda, A.; Hainaux, F.; Lasheras, J.; Didwania, A.; Costa, A.; Vallerin, W.; Mudde, R.F.; Van Den Akker, H.E.A.; Jaumouillie, P.; Larrarte, F.; Burgisser, A.; Bergantz, G.; Necker, F.; Hartel, C.; Kleiser, L.; Meiburg, E.; Michallet, H.; Mory, M.; Hutter, M.; Markov, A.A.; Dumoulin, F.X.; Suard, S.; Borghi, R.; Hong, M.; Hopfinger, E.; Laforgia, A.; Lawrence, C.J.; Hewitt, G.F.; Osiptsov, A.N.; Tsirkunov, Yu. M.; Volkov, A.N.

    2003-07-01

    This document gathers the abstracts of the Euromech 421 colloquium about strongly coupled dispersed two-phase flows. Behaviors specifically due to the two-phase character of the flow have been categorized as: suspensions, particle-induced agitation, microstructure and screening mechanisms; hydrodynamic interactions, dispersion and phase distribution; turbulence modulation by particles, droplets or bubbles in dense systems; collective effects in dispersed two-phase flows, clustering and phase distribution; large-scale instabilities and gravity driven dispersed flows; strongly coupled two-phase flows involving reacting flows or phase change. Topic l: suspensions particle-induced agitation microstructure and screening mechanisms hydrodynamic interactions between two very close spheres; normal stresses in sheared suspensions; a critical look at the rheological experiments of R.A. Bagnold; non-equilibrium particle configuration in sedimentation; unsteady screening of the long-range hydrodynamic interactions of settling particles; computer simulations of hydrodynamic interactions among a large collection of sedimenting poly-disperse particles; velocity fluctuations in a dilute suspension of rigid spheres sedimenting between vertical plates: the role of boundaries; screening and induced-agitation in dilute uniform bubbly flows at small and moderate particle Reynolds numbers: some experimental results. Topic 2: hydrodynamic interactions, dispersion and phase distribution: hydrodynamic interactions in a bubble array; A 'NMR scattering technique' for the determination of the structure in a dispersion of non-brownian settling particles; segregation and clustering during thermo-capillary migration of bubbles; kinetic modelling of bubbly flows; velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles; an attempt to simulate screening effects at moderate particle Reynolds numbers using an hybrid formulation; modelling the two-phase

  18. Shearfree Spherically Symmetric Fluid Models

    CERN Document Server

    Sharif, M

    2013-01-01

    We try to find some exact analytical models of spherically symmetric spacetime of collapsing fluid under shearfree condition. We consider two types of solutions: one is to impose a condition on the mass function while the other is to restrict the pressure. We obtain totally of five exact models, and some of them satisfy the Darmois conditions.

  19. Spherical Pendulum, Actions, and Spin

    NARCIS (Netherlands)

    Richter, Peter H.; Dullin, Holger R.; Waalkens, Holger; Wiersig, Jan

    1996-01-01

    The classical and quantum mechanics of a spherical pendulum are worked out, including the dynamics of a suspending frame with moment of inertia θ. The presence of two separatrices in the bifurcation diagram of the energy-momentum mapping has its mathematical expression in the hyperelliptic nature of

  20. Experimental study on steam-water two-phase flow frictional pressure drops in helical coils

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Experiments of steam-water two-phase flow frictional pressure drop in a vertical helical coil were carried out in the high-pressure water test loop of Xi'an jiaotong University,The coil is made of stainless steel tube with an inner diameter of 16mm,the helix diameter measured from tube axis to tube axis is 1.3m,and helix angle of the coil is 3.65°,The experimental conditions are:pressurep=4-18MPa,mass velocity G=400-1400kg/(m2.s),inner wall heat flux q=100-700kW/m2,Based on these data,a correlation for predicting the steam-water two-phase flow frictional pressure drop was derived,it can be used for the design of steam generator of HTGR.

  1. ESTIMATION OF MEAN IN PRESENCE OF MISSING DATA UNDER TWO-PHASE SAMPLING SCHEME

    Directory of Open Access Journals (Sweden)

    Narendra Singh Thakur

    2011-01-01

    Full Text Available To estimate the population mean with imputation i.e. the technique of substitutingmissing data, there are a number of techniques available in literature like Ratio method ofimputation, Compromised method of imputation, Mean method of imputation, Ahmed method ofimputation, F-T method of imputation, and so on. If population mean of auxiliary information isunknown then these methods are not useful and the two-phase sampling is used to obtain thepopulation mean. This paper presents some imputation methods of for missing values in twophasesampling. Two different sampling designs in two-phase sampling are compared underimputed data. The bias and m.s.e of suggested estimators are derived in the form of populationparameters using the concept of large sample approximation. Numerical study is performed overtwo populations using the expressions of bias and m.s.e and efficiency compared with Ahmedestimators.

  2. Two-phase SPH modelling of waves caused by dam break over a movable bed

    Institute of Scientific and Technical Information of China (English)

    Seyedeh Leila RAZAVITOOSI; Seyed Ali AYYOUBZADEH; Alireza VALIZADEH

    2014-01-01

    This paper describes the application of the Smoothed Particle Hydrodynamics (SPH) method for modeling two dimensional waves caused by dam break over a movable bed in two dimensions. The two phase SPH method is developed to solve the Navier-Stokes equations. Both fluid and sediment phases are described by particles as weakly compressible fluids and the incompressibility is achieved by the equation of state. The sediment phase is modeled as a non-Newtonian fluid using three alternative approaches of artificial viscosity and Bingham Model. In this paper, the new formulations for two-phase flows are proposed. The numerical results obtained from the developed SPH model show acceptable accuracy with comparison to experimental data.

  3. Two-phase flow patterns in adiabatic and diabatic corrugated plate gaps

    Science.gov (United States)

    Polzin, A.-E.; Kabelac, S.; de Vries, B.

    2016-09-01

    Correlations for two-phase heat transfer and pressure drop can be improved considerably, when they are adapted to specific flow patterns. As plate heat exchangers find increasing application as evaporators and condensers, there is a need for flow pattern maps for corrugated plate gaps. This contribution presents experimental results on flow pattern investigations for such a plate heat exchanger background, using an adiabatic visualisation setup as well as a diabatic setup. Three characteristic flow patterns were observed in the considered range of two-phase flow: bubbly flow, film flow and slug flow. The occurrence of these flow patterns is a function of mass flux, void fraction, fluid properties and plate geometry. Two different plate geometries having a corrugation angle of 27° and 63°, respectively and two different fluids (water/air and R365mfc liquid/vapor) have been analysed. A flow pattern map using the momentum flux is presented.

  4. Optimal Control of Partially Miscible Two-Phase Flow with Applications to Subsurface CO2 Sequestration

    KAUST Repository

    Simon, Moritz

    2013-01-01

    Motivated by applications in subsurface CO2 sequestration, we investigate constrained optimal control problems with partially miscible two-phase flow in porous media. The objective is, e.g., to maximize the amount of trapped CO2 in an underground reservoir after a fixed period of CO2 injection, where the time-dependent injection rates in multiple wells are used as control parameters. We describe the governing two-phase two-component Darcy flow PDE system and formulate the optimal control problem. For the discretization we use a variant of the BOX method, a locally conservative control-volume FE method. The timestep-wise Lagrangian of the control problem is implemented as a functional in the PDE toolbox Sundance, which is part of the HPC software Trilinos. The resulting MPI parallelized Sundance state and adjoint solvers are linked to the interior point optimization package IPOPT. Finally, we present some numerical results in a heterogeneous model reservoir.

  5. A splitting technique for analytical modelling of two-phase multicomponent flow in porous media

    DEFF Research Database (Denmark)

    Pires, A.P.; Bedrikovetsky, P.G.; Shapiro, Alexander

    2006-01-01

    In this paper we discuss one-dimensional models for two-phase Enhanced Oil Recovery (EOR) floods (oil displacement by gases, polymers, carbonized water, hot water, etc.). The main result presented here is the splitting of the EOR mathematical model into thermodynamical and hydrodynamical parts....... The introduction of a potential associated with one of the conservation laws and its use as a new independent coordinate reduces the number of equations by one. The (n)x(n) conservation law model for two-phase n-component EOR flows in new coordinates is transformed into a reduced (n-1)x(n-1) auxiliary system...... containing just thermodynamical variables (equilibrium fractions of components, sorption isotherms) and one lifting equation containing just hydrodynamical parameters (phase relative permeabilities and viscosities). The algorithm to solve analytically the problem includes solution of the reduced auxiliary...

  6. Thermal test results of the two-phase thermal bus technology demonstration loop

    Science.gov (United States)

    Edelstein, Fred; Liandris, Maria; Rankin, J. Gary

    1987-01-01

    A two-phase heat transport system, the Thermal Bus Technology Demonstrator, has been built and tested for NASA Johnson Space Center for application on Space Station. The loop is a separated two-phase system that uses evaporator flow control valves and liquid condenser flooding to achieve temperature control. Both ambient and thermal vacuum tests have been completed in NASA's Chamber A, initially using Freon-11 and then ammonia as the working fluid. Overall, the tests were quite successful, with the bus achieving all major test objectives, including operation at 19.5 kW and set points at 35 F (1.7 C), 70 F (21.1 C) and 104 F (40.0 C), load sharing, asymmetrical heating and isothermality around the loop. Low plate to vapor temperature drops were obtained for the monogroove cold plate using ammonia and are indicative of the high evaporative film coefficients obtainable with this design.

  7. Design of an ammonia two-phase Prototype Thermal Bus for Space Station

    Science.gov (United States)

    Brown, Richard F.; Gustafson, Eric; Parish, Richard

    1987-07-01

    The feasibility of two-phase heat transport systems for use on Space Station was demonstrated by testing the Thermal Bus Technology Demonstrator (TBTD) as part of the Integrated Two-Phase System Test in NASA-JSC's Thermal Test Bed. Under contract to NASA-JSC, Grumman is currently developing the successor to the TBTD, the Prototype Thermal Bus System (TBS). The TBS design, which uses ammonia as the working fluid, is intended to achieve a higher fidelity level than the TBTD by incorporating both improvements based on TBTD testing and realistic design margins, and by addressing Space Station issues such as redundancy and maintenance. The TBS is currently being fabricated, with testing scheduled for late 1987/early 1988. This paper describes the TBS design which features fully redundant plumbing loops, five evaporators designed to represent different heat acquisition interfaces, 14 condensers which mate with either space radiators or facility heat exchangers, and several modular components.

  8. Modeling the behavior of a two-phase flow apparatus in microgravity

    Science.gov (United States)

    Baker, Eric W.; Tuttle, Ronald F.

    1992-01-01

    There are many unknown parameters in two-phase flow in microgravity environment. The database is incomplete and therefore correlations are unknown. This has prompted theoretical and experimental work in the area. A Phillips Laboratory program is currently exploring this area. The Phillips Laboratory experiment is a closed loop rankine cycle with a boiler, condenser/subcooler, accumulator and a pump. The work reported herein attempts to model the Phillips Laboratory Apparatus using a thermal-hydraulic software modeling system called Sim-Tool, developed by Mainstream Engineering. This work also explores the limitations of software modeling a microgravity environment. Results of this modeling effort indicate that Sim-Tool needs further development in order to correctly predict two-phase flow in a microgravity environment.

  9. Performance Prediction of Two-Phase Geothermal Reservoir using Lumped Parameter Model

    Science.gov (United States)

    Nurlaela, F.; Sutopo

    2016-09-01

    Many studies have been conducted to simulate performance of low-temperature geothermal reservoirs using lumped parameter method. Limited work had been done on applying non-isothermal lumped parameter models to higher temperature geothermal reservoirs. In this study, the lumped parameter method was applied to high-temperature two phase geothermal reservoirs. The model couples both energy and mass balance equations thus can predict temperature, pressure and fluid saturation changes in the reservoir as a result of production, reinjection of water, and/or natural recharge. This method was validated using reservoir simulation results of TOUGH2. As the results, the two phase lumped parameter model simulation without recharge shows good matching, however reservoir model with recharge condition show quite good conformity.

  10. Velocity measurements in the liquid metal flow driven by a two-phase inductor

    CERN Document Server

    Pedcenko, A; Priede, J; Gerbeth, G; Hermann, R

    2013-01-01

    We present the results of velocity measurements obtained by ultrasonic Doppler velocimetry and local potential probes in the flow of GaInSn eutectic melt driven by a two-phase inductor in a cylindrical container. This type of flow is expected in a recent modification to the floating zone technique for the growth of small-diameter single intermetallic compound crystals. We show that the flow structure can be changed from the typical two toroidal vortices to a single vortex by increasing the phase shift between the currents in the two coils from 0 to 90 degrees. The latter configuration is thought to be favourable for the growth of single crystals. The flow is also computed numerically and a reasonable agreement with the experimental results is found. The obtained results may be useful for the design of combined two-phase electromagnetic stirrers and induction heaters for metal or semiconductor melts.

  11. A state-of-the-art report on two-phase critical flow modelling

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Joon; Jang, Won Pyo; Kim, Dong Soo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-09-01

    This report reviews and analyses two-phase, critical flow models. The purposes of the report are (1) to make a knowledge base for the full understanding and best-estimate of two-phase, critical flow, (2) to analyse the model development trend and to derive the direction of further studies. A wide range of critical flow models are reviewed. Each model, in general, predicts critical flow well only within specified conditions. The critical flow models of best-estimate codes are special process model included in the hydrodynamic model. The results of calculations depend on the nodalization, discharge coefficient, and other user`s options. The following topics are recommended for continuing studies: improvement of two-fluid model, development of multidimensional model, data base setup and model error evaluation, and generalization of discharge coefficients. 24 figs., 5 tabs., 80 refs. (Author).

  12. Adaptive moving grid methods for two-phase flow in porous media

    KAUST Repository

    Dong, Hao

    2014-08-01

    In this paper, we present an application of the moving mesh method for approximating numerical solutions of the two-phase flow model in porous media. The numerical schemes combine a mixed finite element method and a finite volume method, which can handle the nonlinearities of the governing equations in an efficient way. The adaptive moving grid method is then used to distribute more grid points near the sharp interfaces, which enables us to obtain accurate numerical solutions with fewer computational resources. The numerical experiments indicate that the proposed moving mesh strategy could be an effective way to approximate two-phase flows in porous media. © 2013 Elsevier B.V. All rights reserved.

  13. Two-phase velocity measurements around cylinders using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Y.A.; Philip, O.G.; Schmidl, W.D. [Texas A& M Univ., College Station, TX (United States)] [and others

    1995-09-01

    The particle Image Velocimetry flow measurement technique was used to study both single-phase flow and two-phase flow across a cylindrical rod inserted in a channel. First, a flow consisting of only a single-phase fluid was studied. The experiment consisted of running a laminar flow over four rods inserted in a channel. The water flow rate was 126 cm{sup 3}/s. Then a two-phase flow was studied. A mixture of water and small air bubbles was used. The water flow rate was 378 cm{sup 3}/s and the air flow rate was approximately 30 cm{sup 3}/s. The data are analyzed to obtain the velocity fields for both experiments. After interpretation of the velocity data, forces acting on a bubble entrained by the vortex were calculated successfully. The lift and drag coefficients were calculated using the velocity measurements and the force data.

  14. A two-phase tabu search approach to scheduling optimization in container terminals

    Institute of Scientific and Technical Information of China (English)

    ZENG Qing-cheng; YANG Zhong-zhen

    2007-01-01

    An optimization model for scheduling of quay cranes (QCs) and yard trailers was proposed to improve the overall efficiency of container terminals. To implement this model, a two-phase tabu search algorithra was designed. In the QCs scheduling phase of the algorithm, a search was performed to determine a good QC unloading operation order. For each QC unloading operation order generated during the QC's scheduling phase, another search was run to obtain a good yard trailer routing for the given QC's unloading order. Using this information, the time required for the operation was estimated,then the time of return to availability of the units was fed back to the QC scheduler. Numerical tests show that the two-phase Tabu Search algorithm searches the solution space efficiently, decreases the empty distance yard trailers must travel, decreases the number of trailers needed, and thereby reduces time and costs and improves the integration and reliability of container terminal operation systems.

  15. Convergence of Discontinuous Galerkin Methods for Incompressible Two-Phase Flow in Heterogeneous Media

    KAUST Repository

    Kou, Jisheng

    2013-01-01

    A class of discontinuous Galerkin methods with interior penalties is presented for incompressible two-phase flow in heterogeneous porous media with capillary pressures. The semidiscrete approximate schemes for fully coupled system of two-phase flow are formulated. In highly heterogeneous permeable media, the saturation is discontinuous due to different capillary pressures, and therefore, the proposed methods incorporate the capillary pressures in the pressure equation instead of saturation equation. By introducing a coupling approach for stability and error estimates instead of the conventional separate analysis for pressure and saturation, the stability of the schemes in space and time and a priori hp error estimates are presented in the L2(H 1) for pressure and in the L∞(L2) and L2(H1) for saturation. Two time discretization schemes are introduced for effectively computing the discrete solutions. © 2013 Societ y for Industrial and Applied Mathematics.

  16. Drop volumes and terminal velocities in aqueous two-phase systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhavasar, P. M.; Jafarabad, K. R.; Pandit, A. B.; Sawant, S. B.; Joshi, J. B. [Bombay Univ. (India). Dept. of Chemical Technology

    1996-12-01

    Two phase aqueous extraction techniques employed in liquid-liquid extraction equipment such as spray columns and plate columns were studied, with particular attention to predicting drop sizes prior to jetting, and their terminal velocity. In the particular system studied, the values obtained by conventional models as found in the literature were considered inapplicable. A generalised model was constructed using video photographic measurements, and a correlation was developed for the terminal velocities of the drops in aqueous two-phase systems. This simplified model was found to be successful in expressing the terminal rise/fall velocities of droplets covering a specific range of Morton numbers (representing physical properties) from 0.00211 to 11050 and Eotvos numbers (representative of drop size) from 0.091 to 288. 22 refs., 6 figs.

  17. Two-phase Cryogenic Avalanche Detector with electroluminescence gap operated in argon doped with nitrogen

    CERN Document Server

    Bondar, A; Dolgov, A; Nosov, V; Shekhtman, L; Shemyakina, E; Sokolov, A

    2016-01-01

    A two-phase Cryogenic Avalanche Detector (CRAD) with electroluminescence (EL) gap, operated in argon doped with a minor (49$\\pm$7 ppm) admixture of nitrogen, has been studied. The EL gap was optically read out using cryogenic PMTs located on the perimeter of the gap. We present the results of the measurements of the N$_2$ content, detector sensitivity to X-ray-induced signals, EL gap yield and electron lifetime in the liquid. The detector sensitivity, at a drift field in liquid Ar of 0.6 kV/cm, was measured to be 9 and 16 photoelectrons recorded at the PMTs per keV of deposited energy at 23 and 88 keV respectively. Such two-phase detectors, with enhanced sensitivity to the S2 (ionization-induced) signal, are relevant in the field of argon detectors for dark matter search and low energy neutrino detection.

  18. Measurement of average density and relative volumes in a dispersed two-phase fluid

    Science.gov (United States)

    Sreepada, Sastry R.; Rippel, Robert R.

    1992-01-01

    An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.

  19. An acoustic-convective splitting-based approach for the Kapila two-phase flow model

    Science.gov (United States)

    ten Eikelder, M. F. P.; Daude, F.; Koren, B.; Tijsseling, A. S.

    2017-02-01

    In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splitting approach. The results are in good agreement with reference results and exact solutions.

  20. Use of two-phase flow heat transfer method in spacecraft thermal system

    Science.gov (United States)

    Hye, A.

    1985-01-01

    In space applications, weight, volume and power are critical parameters. Presently liquid freon is used in the radiator planels of the Space Shuttle to dissipate heat. This requires a large amount of freon, large power for pumps, large volume and weight. Use of two-phase flow method to transfer heat can reduce them significantly. A modified commercial vapor compression refrigerator/freezer was sucessfully flown in STS-4 to study the effect of zero-gravity on the system. The duty cycle was about 5 percent higher in flight as compared to that on earth due to low flow velocity in condenser. The vapor Reynolds number at exit was about 4000 as compared to about 12,000. Efforts are underway to design a refrigerator/freezer using an oil-free compressor for Spacelab Mission 4 scheduled to fly in January 1986. A thermal system can be designed for spacecraft using the two-phase flow to transfer heat economically.

  1. Targeted Delivery by Smart Capsules for Controlling Two-phase Flow in Porous Media

    Science.gov (United States)

    Fan, J.; Weitz, D.

    2015-12-01

    Understanding and controlling two-phase flow in porous media are of particular importance to the relevant industry applications, such as enhanced oil recovery, CO2 sequestration, and groundwater remediation. We develop a variety of smart microcapsules that can deliver and release specific substances to the target location in the porous medium, and therefore change the fluid property or medium geometry at certain locations. In this talk, I will present two types of smart capsules for (a) delivering surfactant to the vicinity of oil-water interface and (b) delivering microgels to the high permeability region and therefore blocking the pore space there, respectively. We also show that flooding these two capsules into porous media effectively reduces the trapped oil and improves the homogeneity of the medium, respectively. Besides of its industrial applications, this technique also opens a new window to study the mechanism of two-phase flow in porous media.

  2. Two-phase dusty fluid flow along a cone with variable properties

    Science.gov (United States)

    Siddiqa, Sadia; Begum, Naheed; Hossain, Md. Anwar; Mustafa, Naeem; Gorla, Rama Subba Reddy

    2016-09-01

    In this paper numerical solutions of a two-phase natural convection dusty fluid flow are presented. The two-phase particulate suspension is investigated along a vertical cone by keeping variable viscosity and thermal conductivity of the carrier phase. Comprehensive flow formations of the gas and particle phases are given with the aim to predict the behavior of heat transport across the heated cone. The influence of (1) air with particles, (2) water with particles and (3) oil with particles are shown on shear stress coefficient and heat transfer coefficient. It is recorded that sufficient increment in heat transport rate can be achieved by loading the dust particles in the air. Further, distribution of velocity and temperature of both the carrier phase and the particle phase are shown graphically for the pure fluid (air, water) as well as for the fluid with particles (air-metal and water-metal particle mixture).

  3. Numerical simulation of oil-water two-phase flow in horizontal pipes

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Michelly Martuchele; Ramirez, Ramiro Gustavo [Federal University of Itajuba (UNIFEI), MG (Brazil)], E-mail: ramirez@unifei.edu.br

    2010-07-01

    The numerical simulation of two phase flow through the CFD techniques have become of great interest due to the complexity of this type of flow. The present work aims to simulate the oil-water two-phase flow in horizontal pipes for stratification analysis of the mixture. In numerical simulations, incompressible flow, isothermal, steady state and laminar flow were considered. Numerical analysis of flow stratification was carried out for horizontal straight and curved pipe. FLUENT was the commercial software employed in the simulation. Three-dimensional mesh generated by ICEM-CFD program was used for numerical simulation. The numerical analysis flow pattern was carried out employing the Eulerian model, considering the drag and lift interphase forces. The simulation results for the horizontal straight pipe were qualitatively validated with experimental data obtained in the Laboratory of Phase Separation of UNIFEI. (author)

  4. Simulation of non-equilibrium two-phase flow in single component fluid systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, Norbert [Scandpower A/S, Kjeller (Norway)

    1996-12-31

    Traditionally, two-phase flow has been modelled by separate correlations for void fraction, pressure drop and flow regimes. A more unified approach, which treats flow regimes as an integral part of the two-fluid model is described in this work. A general, transient simulator for steam-water/inert gas systems has been developed. MONA is based on a full two-fluid, three field, nonequilibrium, nonhomogeneous two-phase flow model. It includes further an extensive heat and mass transfer package. The major contribution for MONA validation comes from the FRIGG loop experiments, covering a wide range of parameters like geometry, flow, subcooling, pressure and heat flux. Both validation against steady state and dynamic experiments has been carried out, the former comprising void fractions, pressure drops as well as natural and forced circulation flow rates while the latter consists of boiling instability analysis. 69 refs., 41 figs., 5 tabs.

  5. Membrane-less micro fuel cell based on two-phase flow

    Science.gov (United States)

    Hashemi, S. M. H.; Neuenschwander, M.; Hadikhani, P.; Modestino, M. A.; Psaltis, D.

    2017-04-01

    Most microfluidic fuel cells use highly soluble fuels and oxidants in streams of liquid electrolytes to overcome the mass transport limitations that result from the low solubility of gaseous reactants such as hydrogen and oxygen. In this work, we address these limitations by implementing controlled two-phase flows of these gases in a set of microchannels electrolytically connected through a narrow gap. Annular flows of the gases reshape the concentration boundary layer over the surface of electrodes and increase the mass-transport limited current density in the system. Our results show that the power density of a two-phase system with hydrogen and oxygen streams is an order of magnitude higher than that of single phase system consisting of liquid electrolytes saturated with the same reactants. The reactor design described here can be employed to boost the performance of MFFCs and put them in a more competitive position compared to membrane based fuel cells.

  6. Cavitation and two-phase flow characteristics of SRPR (Savannah River Plant Reactor) pump. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    The possible head degradation of the SRPR pumps may be attributable to two independent phenomena, one due to the inception of cavitation and the other due to the two-phase flow phenomena. The head degradation due to the appearance of cavitation on the pump blade is hardly likely in the conventional pressurized water reactor (PWR) since the coolant circulating line is highly pressurized so that the cavitation is difficult to occur even at LOCA (loss of coolant accident) conditions. On the other hand, the suction pressure of SRPR pump is order-of-magnitude smaller than that of PWR so that the cavitation phenomena, may prevail, should LOCA occur, depending on the extent of LOCA condition. In this study, therefore, both cavitation phenomena and two-phase flow phenomena were investigated for the SRPR pump by using various analytical tools and the numerical results are presented herein.

  7. An acoustic-convective splitting-based approach for the Kapila two-phase flow model

    Energy Technology Data Exchange (ETDEWEB)

    Eikelder, M.F.P. ten, E-mail: m.f.p.teneikelder@tudelft.nl [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Daude, F. [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); IMSIA, UMR EDF-CNRS-CEA-ENSTA 9219, Université Paris Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau (France); Koren, B.; Tijsseling, A.S. [Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2017-02-15

    In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splitting approach. The results are in good agreement with reference results and exact solutions.

  8. Interfacial structures of confined air-water two-phase bubbly flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-08-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.

  9. Two-Phase Algorithm for Multi-warehouse and Multi-task Based Logistics Delivery

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-wei; MA Fan-yuan

    2005-01-01

    To a scaled logistic company, assigning is an important part of logistic, and further development will make the optimized assigning of multi-warehouse and multi-task possible. This paper provided a two-phase multiwarehouse and multi-task based algorithm which has two phases. In the first phase, it combines sweep algorithm,saving algorithm and virtual task point to present a method. And in the second phase it provides an algorithm for the arrangement of goods loading which is based on the constraints of time-window and attributes of goods and vehicle. It uses the computing results of the first phase to form more detailed delivery scheme based on the constraints of time-window and attributes of vehicle and goods.

  10. Ultrafast synthesis of LTA nanozeolite using a two-phase segmented fluidic microreactor.

    Science.gov (United States)

    Zhou, Jianhai; Jiang, Hao; Xu, Jian; Hu, Jun; Liu, Honglai; Hu, Ying

    2013-08-01

    Fast synthesis of nanosized zeolite is desirable for many industrial applications. An ultrafast synthesis of LTA nanozeolite by the organic-additive-free method in a two-phase segmented fluidic microreactor has been realized. The results reveal that the obtained LTA nanozeolites through microreactor are much smaller and higher crystallinity than those under similar conditions through conventional macroscale batch reactor. By investing various test conditions, such as the crystallization temperature, the flow rate, the microchannel length, and the aging time of gel solution, this two-phase segmented fluidic microreactor system enables us to develop an ultrafast method for nanozeolite production. Particularly, when using a microreactor with the microchannel length of 20 m, it only takes 10 min for the crystallization and no aging process to successfully produce the crystalline LTA nanozeolites at 95 degrees C.

  11. Metallic and semiconducting carbon nanotubes separation using an aqueous two-phase separation technique: a review

    Science.gov (United States)

    Tang, Malcolm S. Y.; Ng, Eng-Poh; Juan, Joon Ching; Ooi, Chien Wei; Ling, Tau Chuan; Woon, Kai Lin; Loke Show, Pau

    2016-08-01

    It is known that carbon nanotubes show desirable physical and chemical properties with a wide array of potential applications. Nonetheless, their potential has been hampered by the difficulties in acquiring high purity, chiral-specific tubes. Considerable advancement has been made in terms of the purification of carbon nanotubes, for instance chemical oxidation, physical separation, and myriad combinations of physical and chemical methods. The aqueous two-phase separation technique has recently been demonstrated to be able to sort carbon nanotubes based on their chirality. The technique requires low cost polymers and salt, and is able to sort the tubes based on their diameter as well as metallicity. In this review, we aim to provide a review that could stimulate innovative thought on the progress of a carbon nanotubes sorting method using the aqueous two-phase separation method, and present possible future work and an outlook that could enhance the methodology.

  12. MICROGRAVITY EXPERIMENTS OF TWO-PHASE FLOW PATTERNS ABOARD MIR SPACE STATION

    Institute of Scientific and Technical Information of China (English)

    赵建福; 解京昌; 林海; 胡文瑞; A.V. Ivanov; A.Yu. Belyaev

    2001-01-01

    A first experimental study on two-phase flow patterns at a long-term,steady microgravity condition was conducted on board the Russian Space Station "MIR" in August 1999. Carbogal and air are used as the liquid and the gas phase,respectively. Bubble, slug, slug-annular transitional, and annular flows are observed.A new region of annular flow with lower liquid superficial velocity is discovered,and the region of the slug-annular transitionalfiow is wider than that observed by experiments on board the parabolic aircraft. The main patterns are bubble, slug annular transitional and annular flows based on the experiments on board MIR space station. Some influences on the two-phase flow patterns in the present experiments are discussed.

  13. Microstructures and Mechanical Properties of Two-Phase Alloys Based on NbCr(2)

    Energy Technology Data Exchange (ETDEWEB)

    Cady, C.M.; Chen, K.C.; Kotula, P.G.; Mauro, M.E.; Thoma, D.J.

    1998-12-07

    A two-phase, Nb-Cr-Ti alloy (bee+ C15 Laves phase) has been developed using several alloy design methodologies. In effort to understand processing-microstructure-property relationships, diffment processing routes were employed. The resulting microstructure and mechanical properties are discussed and compared. Plasma arc-melted samples served to establish baseline, . . . as-cast properties. In addition, a novel processing technique, involving decomposition of a supersaturated and metastable precursor phase during hot isostatic pressing (HIP), was used to produce a refined, equilibrium two-phase microstructure. Quasi-static compression tests as a ~ function of temperature were performed on both alloy types. Different deformation mechanisms were encountered based upon temperature and microstructure.

  14. Numerical Fractional-Calculus Model for Two-Phase Flow in Fractured Media

    Directory of Open Access Journals (Sweden)

    Wenwen Zhong

    2013-01-01

    Full Text Available Numerical simulation of two-phase flow in fractured porous media is an important topic in the subsurface flow, environmental problems, and petroleum reservoir engineering. The conventional model does not work well in many cases since it lacks the memory property of fracture media. In this paper, we develop a new numerical formulation with fractional time derivative for two-phase flow in fractured porous media. In the proposed formulation, the different fractional time derivatives are applied to fracture and matrix regions since they have different memory properties. We further develop a two-level time discrete method, which uses a large time step for the pressure and a small time step size for the saturation. The pressure equation is solved implicitly in each large time step, while the saturation is updated by an explicit fractional time scheme in each time substep. Finally, the numerical tests are carried out to demonstrate the effectiveness of the proposed numerical model.

  15. Dynamic characteristics of two-phase thermal control system for spacecraft

    Science.gov (United States)

    Malozemov, Vladimir V.; Kudryavtseva, Natal'ya S.; Antonov, Viktor A.; Zagar, Oleg V.; Chernobaev, Nikolaj N.

    1992-07-01

    This paper deals with review of the issues associated with modelling the dynamic processes in the spacecraft two-phase thermal control systems. The work presents the results of modelling the nonstationary conditions of the evaporative and condensation heat exchangers functioning, investigates their response to the characteristic external influences. Disclosed are the results of the computer-aided modelling the two-phase thermal control system with a pump. The dynamic characteristics of the change in the inputs of pressures, temperatures and vapor content of a coolant in various branches of the system, as well as the lengths of the heat transfer zones in the evaporator and condenser under effect of the typical disturbing actions are obtained. The attained transients are analyzed.

  16. Gas-driven subharmonic waves in a vibrated two-phase granular material.

    Science.gov (United States)

    Matas, J-P; Uehara, J; Behringer, R P

    2008-04-01

    Vibrated powders exhibit striking phenomena: subharmonic waves, oscillons, convection, heaping, and even bubbling. We demonstrate novel rectangular profile subharmonic waves for vibrated granular material, that occur uniquely in the two-phase case of grains, and a fluid, such as air. These waves differ substantially from those for the gas-free case, exhibit different dispersion relations, and occur for specific shaking parameters and air pressure, understandable with gas-particle flow models. These waves occur when the gas diffusively penetrates the granular layer in a time comparable to the shaker period. As the pressure is lowered towards P =0, the granular-gas system exhibits a Knudsen regime. This instability provides an opportunity to quantitatively test models of two-phase flow.

  17. Fluid structure interaction solver coupled with volume of fluid method for two-phase flow simulations

    Science.gov (United States)

    Cerroni, D.; Fancellu, L.; Manservisi, S.; Menghini, F.

    2016-06-01

    In this work we propose to study the behavior of a solid elastic object that interacts with a multiphase flow. Fluid structure interaction and multiphase problems are of great interest in engineering and science because of many potential applications. The study of this interaction by coupling a fluid structure interaction (FSI) solver with a multiphase problem could open a large range of possibilities in the investigation of realistic problems. We use a FSI solver based on a monolithic approach, while the two-phase interface advection and reconstruction is computed in the framework of a Volume of Fluid method which is one of the more popular algorithms for two-phase flow problems. The coupling between the FSI and VOF algorithm is efficiently handled with the use of MEDMEM libraries implemented in the computational platform Salome. The numerical results of a dam break problem over a deformable solid are reported in order to show the robustness and stability of this numerical approach.

  18. A continuum theory for two-phase flows of particulate solids: application to Poiseuille flows

    Science.gov (United States)

    Monsorno, Davide; Varsakelis, Christos; Papalexandris, Miltiadis V.

    2015-11-01

    In the first part of this talk, we present a novel two-phase continuum model for incompressible fluid-saturated granular flows. The model accounts for both compaction and shear-induced dilatancy and accommodates correlations for the granular rheology in a thermodynamically consistent way. In the second part of this talk, we exercise this two-phase model in the numerical simulation of a fully-developed Poiseuille flow of a dense suspension. The numerical predictions are shown to compare favorably against experimental measurements and confirm that the model can capture the important characteristics of the flow field, such as segregation and formation of plug zones. Finally, results from parametric studies with respect to the initial concentration, the magnitude of the external forcing and the width of the channel are presented and the role of these physical parameters is quantified. Financial Support has been provided by SEDITRANS, an Initial Training Network of the European Commission's 7th Framework Programme

  19. STUDY OF IDENTIFICATION OF TWO-PHASE FLOW PARAMETERS BY PRESSURE FLUCTUATION ANALYSIS

    Directory of Open Access Journals (Sweden)

    Ondrej Burian

    2016-12-01

    Full Text Available This paper deals with identification of parameters of simple pool boiling in a vertical rectangular channel by analysis of pressure fluctuation. In this work is introduced a small experimental facility about 9 kW power, which was used for simulation of pool boiling phenomena and creation of steam-water volume. Several pressure fluctuations measurements and differential pressure fluctuations measurements at warious were carried out. Main changed parameters were power of heaters and hydraulics resistance of channel internals. Measured pressure data was statistically analysed and compared with goal to find dependencies between parameters of two-phase flow and statistical properties of pressure fluctuation. At the end of this paper are summarized final results and applicability of this method for parameters determination of two phase flow for pool boiling conditions at ambient pressure.

  20. RELAP5 simulation for one and two-phase natural circulation phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Sabundjian, Gaiane; Andrade, Delvonei Alves de; Umbehaun, Pedro Ernesto; Torres, Walmir Maximo; Castro, Alfredo Jose Alvim de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: gdjian@ipen.br; delvonei@ig.com.br; umbehaun@ipen.br; wmtorres@ipen.br; Braz Filho, Francisco A.; Borges, Eduardo Madeira [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados]. E-mails: eduardo@ieav.cta.br; fbraz@ieav.cta.br; Belchior Junior, Antonio; Rocha, Ricardo Takeshi Vieira da [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil)]. E-mails: belchior@bol.com.br; rtvrocha@uol.com.br; Damy, Osvaldo Luiz Almeida; Torres, Eduardo [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica]. E-mails: osvaldo.damy@poli.usp.br; etorres@pac.ind.br

    2007-07-01

    The objective of this paper is to study the natural circulation phenomenon in one and two-phase regime. There has been a crescent interest in the scientific community in the study of the natural circulation. New generation of compact nuclear reactors uses the natural circulation for residual heat removal in case of accident or shutdown. For this study, the modeling and the simulation of the experimental circuit is performed with the RELAP5 code. The experimental circuit is mounted in the Chemical Engineering Department of the University of Sao Paulo. It is presented in this work the theoretical/experimental comparison for one and two-phase flow. These results will be stored in a database to validate RELAP5 calculations. This work was also used to training some users of RELAP5 from IEAv. (author)

  1. Computer code for gas-liquid two-phase vortex motions: GLVM

    Science.gov (United States)

    Yeh, T. T.

    1986-01-01

    A computer program aimed at the phase separation between gas and liquid at zero gravity, induced by vortex motion, is developed. It utilizes an explicit solution method for a set of equations describing rotating gas-liquid flows. The vortex motion is established by a tangential fluid injection. A Lax-Wendroff two-step (McCormack's) numerical scheme is used. The program can be used to study the fluid dynamical behavior of the rotational two-phase fluids in a cylindrical tank. It provides a quick/easy sensitivity test on various parameters and thus provides the guidance for the design and use of actual physical systems for handling two-phase fluids.

  2. DESIGN OF TWO-PHASE SINUSOIDAL POWER CLOCK AND CLOCKED TRANSMISSION GATE ADIABATIC LOGIC CIRCUIT

    Institute of Scientific and Technical Information of China (English)

    Wang Pengjun; Yu Junjun

    2007-01-01

    First the research is conducted on the design of the two-phase sinusoidal power clock generator in this paper. Then the design of the new adiabatic logic circuit adopting the two-phase sinusoidal power clocks-Clocked Transmission Gate Adiabatic Logic (CTGAL) circuit is presented. This circuit makes use of the clocked transmission gates to sample the input signals, then the output loads are charged and discharged in a fully adiabatic manner by using bootstrapped N-Channel Metal Oxide Semiconductor (NMOS) and Complementary Metal Oxide Semiconductor (CMOS) latch structure.Finally, with the parameters of Taiwan Semiconductor Manufacturing Company (TSMC) 0.25 μm CMOS device, the transient energy consumption of CTGAL, Bootstrap Charge-Recovery Logic (BCRL)and Pass-transistor Adiabatic Logic (PAL) including their clock generators is simulated. The simulation result indicates that CTGAL circuit has the characteristic of remarkably low energy consumption.

  3. Two-phase Cryogenic Avalanche Detector with electroluminescence gap operated in argon doped with nitrogen

    Science.gov (United States)

    Bondar, A.; Buzulutskov, A.; Dolgov, A.; Nosov, V.; Shekhtman, L.; Shemyakina, E.; Sokolov, A.

    2017-02-01

    A two-phase Cryogenic Avalanche Detector (CRAD) with electroluminescence (EL) gap, operated in argon doped with a minor (49±7 ppm) admixture of nitrogen, has been studied. The EL gap was optically read out using cryogenic PMTs located on the perimeter of the gap. We present the results of the measurements of the N2 content, detector sensitivity to X-ray-induced signals, EL gap yield and electron lifetime in the liquid. The detector sensitivity, at a drift field in liquid Ar of 0.6 kV/cm, was measured to be 9 and 16 photoelectrons recorded at the PMTs per keV of deposited energy at 23 and 88 keV respectively. Such two-phase detectors, with enhanced sensitivity to the S2 (ionization-induced) signal, are relevant in the field of argon detectors for dark matter search and low energy neutrino detection.

  4. A Batch Arrival Retrial Queue with Two Phases of Service and Bernoulli Vacation Schedule

    Institute of Scientific and Technical Information of China (English)

    Gautam Choudhury; Kandarpa Deka

    2013-01-01

    We consider an MX/G/1 queueing system with two phases of heterogeneous service and Bernoulli vacation schedule which operate under a linear retrial policy.In addition,each individual customer is subject to a control admission policy upon the arrival.This model generalizes both the classical M/G/1 retrial queue with arrivals in batches and a two phase batch arrival queue with a single vacation under Bernoulli vacation schedule.We will carry out an extensive stationary analysis of the system,including existence of the stationary regime,embedded Markov chain,steady state distribution of the server state and number of customer in the retrial group,stochastic decomposition and calculation of the first moment.

  5. Two-Phase Reactions in Microdroplets without the Use of Phase-Transfer Catalysts.

    Science.gov (United States)

    Yan, Xin; Cheng, Heyong; Zare, Richard N

    2017-02-22

    Many important chemical transformations occur in two-phase reactions, which are widely used in chemical, pharmaceutical, and polymer manufacturing. We present an efficient method for performing two-phase reactions in microdroplets sheared by sheath gas without using a phase-transfer catalyst. This avoids disadvantages such as thermal instability, high cost, and, especially, the need to separate and recycle the catalysts. We show that various alcohols can be oxidized to the corresponding aldehydes and ketones within milliseconds in moderate to good yields (50-75 %). The scale-up of the present method was achieved at an isolated rate of 1.2 mg min(-1) for the synthesis of 4-nitrobenzylaldehyde from 4-nitrobenzyl alcohol in the presence of sodium hypochlorite. The biphasic nature of this process, which avoids use of a phase-transfer catalyst, greatly enhances synthetic effectiveness.

  6. Well-posed Euler model of shock-induced two-phase flow in bubbly liquid

    Science.gov (United States)

    Tukhvatullina, R. R.; Frolov, S. M.

    2017-07-01

    A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.

  7. Monte Carlo simulation of a two-phase flow in an unsaturated porous media

    Directory of Open Access Journals (Sweden)

    Xu Peng

    2012-01-01

    Full Text Available Relative permeability is a significant transport property which describes the simultaneous flow of immiscible fluids in porous media. A pore-scale physical model is developed for the two-phase immiscible flow in an unsaturated porous media according to the statistically fractal scaling laws of natural porous media, and a predictive calculation of two-phase relative permeability is presented by Monte Carlo simulation. The tortuosity is introduced to characterize the highly irregular and convoluted property of capillary pathways for fluid flow through a porous medium. The computed relative permeabilities are compared with empirical formulas and experimental measurements to validate the current model. The effect of fractal dimensions and saturation on the relative permeabilities is also discussed

  8. Experimental study of two-phase water flow in vertical thin rectangular channels

    Science.gov (United States)

    Wright, Christopher T.; O'Brien, James E.; Anderson, Elgin A.

    2001-11-01

    An experimental heat transfer study of two-phase water flow in vertical thin rectangular channels with side vents is conducted. A multiple, heated channel configuration with up- and down-flow conditions is investigated. Parallel heated and unheated flow channels test the effects of cross flow on the onset of nucleate boiling (ONB) and critical heat flux (CHF). The test apparatus provides pressure and substrate temperature data and visual data of the boiling regimes and side-vent flow patterns. The objectives are to determine the two-phase, heat and mass transfer characteristics between adjacent channels as permitted by side-vent cross flow. These data will help develop ONB and CHF correlations for flow geometries typical of plate-type nuclear reactors and heat exchangers. Fundamentally, the data shows how the geometry, flow conditions, and channel configurations affect the heat transfer characteristics of interior channel flows, essential in understanding the ONB and CHF phenomena.

  9. Numerical simulation of air-water two-phase flow over stepped spillways

    Institute of Scientific and Technical Information of China (English)

    CHENG; Xiangju; CHEN; Yongcan

    2006-01-01

    Stepped spillways for significant energy dissipation along the chute have gained interest and popularity among researchers and dam engineers. Due to the complexity of air-water two-phase flow over stepped spillways, the finite volume computational fluid dynamics module of the FLUENT software was used to simulate the main characteristics of the flow. Adopting the RNG k-ε turbulence model, the mixture flow model for air-water two-phase flow was used to simulate the flow field over stepped spillway with the PISO arithmetic technique. The numerical result successfully reproduced the complex flow over a stepped spillway of an experiment case, including the interaction between entrained air bubbles and cavity recirculation in the skimming flow regime, velocity distribution and the pressure profiles on the step surface as well. The result is helpful for understanding the detailed information about energy dissipation over stepped spillways.

  10. Effect of grain size reduction on high temperature oxidation ofbinary two-phase alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of grain size reduction on the high temperature oxidation of binary two-phase alloys was discussed based on the recent research progress. The results show that for those two-phase alloys with coarse grain prepared by the conventional methods, complex oxide scales are easily formed after oxidation under high oxygen pressure or under oxygen pressure below the stability limit of the less reactive component oxides. On the contrary, for the nano-sized alloys, an exclusive external oxidation of the most reactive component usually occurs during oxidation in air or pure oxygen even for much lower content of the most reactive component. So the gain size reduction is not always beneficial to improve the oxidation resistance of the materials, but exhibits different effects depending mainly on the protective feature of the scales. The transition mechanisms between the different oxidation modes are discussed with respect to the thermodynamic and dynamic aspects.

  11. Bioproduction of benzaldehyde in a solid-liquid two-phase partitioning bioreactor using Pichia pastoris.

    Science.gov (United States)

    Jain, Ashu N; Khan, Tanya R; Daugulis, Andrew J

    2010-11-01

    The bioproduction of benzaldehyde from benzyl alcohol using Pichia pastoris was examined in a solid-liquid two-phase partitioning bioreactor (TPPB) to reduce substrate and product inhibition. Rational polymer selection identified Elvax 40W as an effective sequestering phase, possessing partition coefficients for benzyl alcohol and benzaldehyde of 3.5 and 35.4, respectively. The use of Elvax 40W increased the overall mass of benzaldehyde produced by approx. 300% in a 5 l bioreactor, relative to a single phase biotransformation. The two-phase system had a molar yield of 0.99, indicating that only minor losses occurred. These results provide a promising starting point for solid-liquid TPPBs to enhance benzaldehyde production, and suggest that multiple, targeted polymers may provide relief for transformations characterized by multiple inhibitory substrates/product/by-products.

  12. On the Field of a Stationary Charged Spherical Source

    Directory of Open Access Journals (Sweden)

    Stavroulakis N.

    2009-04-01

    Full Text Available The equations of gravitation related to the field of a spherical charged source imply the existence of an interdependence between gravitation and electricity [5]. The present paper deals with the joint action of gravitation and electricity in the case of a stationary charged spherical source. Let m and " be respectively the mass and the charge of the source, and let k be the gravitational constant. Then the equations of gravitation need specific discussion according as j " j m p k (source strongly charged. In any case the curvature radius of the sphere bounding the matter possesses a strictly positive greatest lower hound, so that the source is necessarily an extended object. Pointwise sources do not exist. In particular, charged black holes do not exist.

  13. On modeling shape memory polymers as elastic two-phase composite materials

    OpenAIRE

    Gilormini, Pierre; Diani, Julie

    2012-01-01

    International audience; A model has been proposed recently, which describes the experimentally observed mechanical behavior of some shape memory polymers. It considers a purely thermoelastic behavior, without strain rate effects, and assumes essentially that the polymer can be considered as a two-phase composite, with glassy and rubbery phases having volume fractions that depend on temperature only. Since a uniform stress hypothesis was used in the original formulation, with an inconsistency ...

  14. Two-phase flow modelling of sediment suspension in the Ems/Dollard estuary

    Science.gov (United States)

    Xu, Chunyang; Dong, Ping

    2017-05-01

    Understanding and quantifying mud suspension and sediment transport processes are of great importance for effective exploitation and sustainable management of estuarine environments. Event-based predictive models are widely used to identify the key interactions and mechanisms that govern the dynamics involved and to provide the essential parameterisation for assessing the long-term morphodynamic evolution of the estuaries. This study develops a one-dimensional-vertical (1DV) Reynolds averaged two-phase model for cohesive sediments resuspension driven by tidal flows. To capture the time-dependent flocculation process more accurately, a new drag force closure which relates empirically to settling velocity of mud flocs with suspended sediment concentration (SSC) is incorporated into the two-phase model. The model is then applied to simulate mud suspension in the Ems/Dollard estuary during two periods (June and August 1996) of tidal forcing. Numerical predictions of bed shear stresses and sediment concentrations at different elevations above the bed are compared with measured variations. The results confirm the importance of including flocculation effects in calculating the settling velocity of mud flocs and demonstrates the sensitivity of prediction with the settling velocity in terms of flocs concentration. Although the two-phase modelling approach can in principle better capture the essential interactions between fluid and sediment phases, its practical advantages over the simpler single phase approach cannot be confirmed for the data periods simulated, partly because the overall suspended sediment concentration measured is rather low and the interaction between the two phases is weak and also because the uncertainties in the relationship between the settling velocity and flocs concentration.

  15. Heat pipes et two-phase loops for spacecraft applications. ESA programmes

    Energy Technology Data Exchange (ETDEWEB)

    Supper, W. [European Space Agency / ESTEC. Thermal control and life support division (France)

    1996-12-31

    This document is a series of transparencies presenting the current and future applications of heat pipes in spacecraft and the activities in the field of capillary pumped two-phase loops: thermal tests, high-efficiency low pressure drop condensers, theoretical understanding of evaporator function, optimization of liquid and vapor flows, trade-off between low and high conductivity wicks, development of high capillary capacity wicks etc.. (J.S.)

  16. A Heat Transfer Investigation of Liquid and Two-Phase Methane

    Science.gov (United States)

    VanNoord, Jonathan

    2010-01-01

    A heat transfer investigation was conducted for liquid and two-phase methane. The tests were conducted at the NASA Glenn Research Center Heated Tube Facility (HTF) using resistively heated tube sections to simulate conditions encountered in regeneratively cooled rocket engines. This testing is part of NASA s Propulsion and Cryogenics Advanced Development (PCAD) project. Nontoxic propellants, such as liquid oxygen/liquid methane (LO2/LCH4), offer potential benefits in both performance and safety over equivalently sized hypergolic propulsion systems in spacecraft applications. Regeneratively cooled thrust chambers are one solution for high performance, robust LO2/LCH4 engines, but cooling data on methane is limited. Several test runs were conducted using three different diameter Inconel 600 tubes, with nominal inner diameters of 0.0225-, 0.054-, and 0.075-in. The mass flow rate was varied from 0.005 to 0.07 lbm/sec. As the current focus of the PCAD project is on pressure fed engines for LO2/LCH4, the average test section outlet pressures were targeted to be 200 psia or 500 psia. The heat flux was incrementally increased for each test condition while the test section wall temperatures were monitored. A maximum average heat flux of 6.2 Btu/in.2 sec was achieved and, at times, the temperatures of the test sections reached in excess of 1800 R. The primary objective of the tests was to produce heat transfer correlations for methane in the liquid and two-phase regime. For two-phase flow testing, the critical heat flux values were determined where the fluid transitions from nucleate boiling to film boiling. A secondary goal of the testing was to measure system pressure drops in the two-phase regime.

  17. A two-phase free boundary problem for a nonlinear diffusion-convection equation

    Energy Technology Data Exchange (ETDEWEB)

    De Lillo, S; Lupo, G [Dipartimento di Matematica e Informatica, Universita degli Studi di Perugia, Via Vanvitelli 1, 06123 Perugia (Italy)], E-mail: silvana.delillo@pg.infn.it

    2008-04-11

    A two-phase free boundary problem associated with a diffusion-convection equation is considered. The problem is reduced to a system of nonlinear integral equations, which admits a unique solution for small times. The system admits an explicit two-component solution corresponding to a two-component shock wave of the Burgers equation. The stability of such a solution is also discussed.

  18. Modelling of two-phase flow based on separation of the flow according to velocity

    Energy Technology Data Exchange (ETDEWEB)

    Narumo, T. [VTT Energy, Espoo (Finland). Nuclear Energy

    1997-12-31

    The thesis concentrates on the development work of a physical one-dimensional two-fluid model that is based on Separation of the Flow According to Velocity (SFAV). The conventional way to model one-dimensional two-phase flow is to derive conservation equations for mass, momentum and energy over the regions occupied by the phases. In the SFAV approach, the two-phase mixture is divided into two subflows, with as distinct average velocities as possible, and momentum conservation equations are derived over their domains. Mass and energy conservation are treated equally with the conventional model because they are distributed very accurately according to the phases, but momentum fluctuations follow better the flow velocity. Submodels for non-uniform transverse profile of velocity and density, slip between the phases within each subflow and turbulence between the subflows have been derived. The model system is hyperbolic in any sensible flow conditions over the whole range of void fraction. Thus, it can be solved with accurate numerical methods utilizing the characteristics. The characteristics agree well with the used experimental data on two-phase flow wave phenomena Furthermore, the characteristics of the SFAV model are as well in accordance with their physical counterparts as of the best virtual-mass models that are typically optimized for special flow regimes like bubbly flow. The SFAV model has proved to be applicable in describing two-phase flow physically correctly because both the dynamics and steady-state behaviour of the model has been considered and found to agree well with experimental data This makes the SFAV model especially suitable for the calculation of fast transients, taking place in versatile form e.g. in nuclear reactors. 45 refs. The thesis includes also five previous publications by author.

  19. The characteristic finite difference fractional steps methods for compressible two-phase displacement problem

    Institute of Scientific and Technical Information of China (English)

    袁益让

    1999-01-01

    For compressible two-phase displacement problem, a kind of characteristic finite difference fractional steps schemes is put forward and thick and thin grids are used to form a complete set. Some techniques, such as piecewise biquadratic interpolation, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L~2 norm are derived to determine the error in the approximate solution.

  20. Homogenization of. beta. -solid solution during fast heating of two-phase titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gridnev, V.N.; Zhuravlev, A.F.; Zhuravlev, B.F.; Ivasishin, O.M.; Markovskij, P.E. (AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)

    1985-01-01

    Using model alloy Ti-10%Mo as an example the homogenization of high-temperature ..beta..-phase during fast heating has been studied by calculational and experimental methods. The effect of heating rate and the initial structure disoersion on the homogenization is shown. A method is suggested for evaluation of the concentration state of ..beta..-solid solution depleted parts of commercial two-phase titanium alloys. The method has been used to study the homogenization process.