An Integrated Multi-layer Approach for Seamless Soft Handoff in Mobile Ad Hoc Networks
2011-01-01
network to showcase how to leverage the IEEE 802.21 Media Independent Handover ( MIH ) framework [3] in our handoff solution. Moreover, to further...to the seamless handoff problem. The architecture leverages the IEEE 802.21 MIH standard to facilitate handover related decisions on multiple...provided by the MIH function (MIHF), the topology control manager dynamically activates/deactivates the wireless interfaces to ensure the network is
Implementation of postoperative handoff protocol
African Journals Online (AJOL)
Background: Standardised handoff protocols have become necessary patient ... improve the perioperative handoff communications from the cardiac operating theatres to the ICU. ..... as you can imagine, there was push-back to the change.
Karagiannis, Georgios; Heijenk, Geert; El Malki, Karim; Soliman, Hesham
2001-01-01
In a system and method for handing off a mobile node in a seamless manner in a wireless access network, procedures are implemented for allowing the mobile node to synchronize the handoff with a base node (e.g., a home agent) and a correspondent node. In this way, a seamless handoff may be achieved,
Handoff mechanisms in LTE networks
Lal, Preeti; Yamini, Vidhu; Mohammed, V. Noor
2017-11-01
In this paper, we have analysed and studied the handoff mechanism in Long Term Evaluation (LTE) network. A LTE network has been defined with a set number of macro-cells, micro-cells and mobile devices. In this handoff mechanism distance and speed has been considered as an important parameters. The speed has been detected using the Gauss Markov Mobility Model, and from that distances have been predicted at different instances. In the handover process, Received Signal Power (RSP) for various users has been calculated with respect to base stations at various time intervals and the path loss between transmitter and receiver. A comparative study between path loss models is done in order to improve the signal power. A detailed study has been done on unnecessary handoff probability and handoff failure probability. Simulation results shows that there is an improvement in performance of the above mentioned parameters in the defined network.
A Location-Aware Vertical Handoff Algorithm for Hybrid Networks
Mehbodniya, Abolfazl; Aissa, Sonia; Chitizadeh, Jalil
2010-01-01
. Horizontal handoff, or generally speaking handoff, is a process which maintains a mobile user's active connection as it moves within a wireless network, whereas vertical handoff (VHO) refers to handover between different types of networks or different network
Ahmad, Zahoor; Hanif, Muhammad
2013-01-01
The development of estimators of population parameters based on two-phase sampling schemes has seen a dramatic increase in the past decade. Various authors have developed estimators of population using either one or two auxiliary variables. The present volume is a comprehensive collection of estimators available in single and two phase sampling. The book covers estimators which utilize information on single, two and multiple auxiliary variables of both quantitative and qualitative nature. Th...
Patient Handoff Education: Are Medical Schools Catching Up?
Davis, Robyn; Davis, Joshua; Berg, Katherine; Berg, Dale; Morgan, Charity J; Russo, Stefani; Riesenberg, Lee Ann
Communication errors during shift-to-shift handoffs are a leading cause of preventable adverse events. Nevertheless, handoff skills are variably taught at medical schools. The authors administered questionnaires on handoffs to interns during orientation. Questions focused on medical school handoff education, experiences, and perceptions. The majority (546/718) reported having some form of education on handoffs during medical school, with 48% indicating this was 1 hour or less. Most respondents (98%) reported that they believe patients experience adverse events because of inadequate handoffs, and more than one third had witnessed a patient safety issue. Results show that medical school graduates are not receiving adequate handoff training. Yet graduates are expected to conduct safe patient handoffs at the start of residency. Given that ineffective handoffs pose a significant patient safety risk, medical school graduates should have a baseline competency in handoff skills. This will require medical schools to develop, implement, and study handoff education.
Improving handoffs in the emergency department.
Cheung, Dickson S; Kelly, John J; Beach, Christopher; Berkeley, Ross P; Bitterman, Robert A; Broida, Robert I; Dalsey, William C; Farley, Heather L; Fuller, Drew C; Garvey, David J; Klauer, Kevin M; McCullough, Lynne B; Patterson, Emily S; Pham, Julius C; Phelan, Michael P; Pines, Jesse M; Schenkel, Stephen M; Tomolo, Anne; Turbiak, Thomas W; Vozenilek, John A; Wears, Robert L; White, Marjorie L
2010-02-01
Patient handoffs at shift change are a ubiquitous and potentially hazardous process in emergency care. As crowding and lengthy evaluations become the standard for an increasing proportion of emergency departments (EDs), the number of patients handed off will likely increase. It is critical now more than ever before to ensure that handoffs supply valid and useful shared understandings between providers at transitions of care. The purpose of this article is to provide the most up-to-date evidence and collective thinking about the process and safety of handoffs between physicians in the ED. It offers perspectives from other disciplines, provides a conceptual framework for handoffs, and categorizes models of existing practices. Legal and risk management issues are also addressed. A proposal for the development of handoff quality measures is outlined. Practical strategies are suggested to improve ED handoffs. Finally, a research agenda is proposed to provide a roadmap to future work that may increase knowledge in this area. Copyright (c) 2009 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.
International Nuclear Information System (INIS)
Olive, J.
1990-01-01
The design, operation and safety of nuclear components requires increasingly accurate knowledge of two-phase flows. This knowledge is also necessary for some studies related to electricity applications. The author presents some concrete examples showing the range of problems and the complexity of the phenomena involved in these types of flows. Then, the basic principles of their numerical modelling are explained, as well as the new tendency to use increasingly local and refined models. The newest computer codes developed at EDF are briefly presented. Experimental studies dealing with twophase flow are also referred to, and their connections to numerical modelling are explained. Emphasis is placed on the major efforts devoted to the development of new test rigs and instrumentation [fr
International Nuclear Information System (INIS)
Hsu, Y.Y.
1974-01-01
The following papers related to two-phase flow are summarized: current assumptions made in two-phase flow modeling; two-phase unsteady blowdown from pipes, flow pattern in Laval nozzle and two-phase flow dynamics; dependence of radial heat and momentum diffusion; transient behavior of the liquid film around the expanding gas slug in a vertical tube; flooding phenomena in BWR fuel bundles; and transient effects in bubble two-phase flow. (U.S.)
Establishing a conceptual framework for handoffs using communication theory.
Mohorek, Matthew; Webb, Travis P
2015-01-01
A significant consequence of the 2003 Accreditation Council for Graduate Medical Education duty hour restrictions has been the dramatic increase in patient care handoffs. Ineffective handoffs have been identified as the third most common cause of medical error. However, research into health care handoffs lacks a unifying foundational structure. We sought to identify a conceptual framework that could be used to critically analyze handoffs. A scholarly review focusing on communication theory as a possible conceptual framework for handoffs was conducted. A PubMed search of published handoff research was also performed, and the literature was analyzed and matched to the most relevant theory for health care handoff models. The Shannon-Weaver Linear Model of Communication was identified as the most appropriate conceptual framework for health care handoffs. The Linear Model describes communication as a linear process. A source encodes a message into a signal, the signal is sent through a channel, and the signal is decoded back into a message at the destination, all in the presence of internal and external noise. The Linear Model identifies 3 separate instances in handoff communication where error occurs: the transmitter (message encoding), channel, and receiver (signal decoding). The Linear Model of Communication is a suitable conceptual framework for handoff research and provides a structured approach for describing handoff variables. We propose the Linear Model should be used as a foundation for further research into interventions to improve health care handoffs. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Analysis of Handoff Mechanisms in Mobile IP
Jayaraj, Maria Nadine Simonel; Issac, Biju; Haldar, Manas Kumar
2011-06-01
One of the most important challenges in mobile Internet Protocol (IP) is to provide service for a mobile node to maintain its connectivity to network when it moves from one domain to another. IP is responsible for routing packets across network. The first major version of IP is the Internet Protocol version 4 (IPv4). It is one of the dominant protocols relevant to wireless network. Later a newer version of IP called the IPv6 was proposed. Mobile IPv6 is mainly introduced for the purpose of mobility. Mobility management enables network to locate roaming nodes in order to deliver packets and maintain connections with them when moving into new domains. Handoff occurs when a mobile node moves from one network to another. It is a key factor of mobility because a mobile node can trigger several handoffs during a session. This paper briefly explains on mobile IP and its handoff issues, along with the drawbacks of mobile IP.
Handoff algorithm for mobile satellite systems with ancillary terrestrial component
Sadek, Mirette
2012-06-01
This paper presents a locally optimal handoff algorithm for integrated satellite/ground communication systems. We derive the handoff decision function and present the results in the form of tradeoff curves between the number of handoffs and the number of link degradation events in a given distance covered by the mobile user. This is a practical receiver-controlled handoff algorithm that optimizes the handoff process from a user perspective based on the received signal strength rather than from a network perspective. © 2012 IEEE.
International Nuclear Information System (INIS)
Delaje, Dzh.
1984-01-01
General hypothesis used to simplify the equations, describing two-phase flows, are considered. Two-component and one-component models of two-phase flow, as well as Zuber and Findlay model for actual volumetric steam content, and Wallis model, describing the given phase rates, are presented. The conclusion is made, that the two-component model, in which values averaged in time are included, is applicable for the solving of three-dimensional tasks for unsteady two-phase flow. At the same time, using the two-component model, including values, averaged in space only one-dimensional tasks for unsteady two-phase flow can be solved
Directory of Open Access Journals (Sweden)
Khalid Qaraqe
2008-10-01
Full Text Available This paper proposes a novel vertical handoff algorithm between WLAN and CDMA networks to enable the integration of these networks. The proposed vertical handoff algorithm assumes a handoff decision process (handoff triggering and network selection. The handoff trigger is decided based on the received signal strength (RSS. To reduce the likelihood of unnecessary false handoffs, the distance criterion is also considered. As a network selection mechanism, based on the wireless channel assignment algorithm, this paper proposes a context-based network selection algorithm and the corresponding communication algorithms between WLAN and CDMA networks. This paper focuses on a handoff triggering criterion which uses both the RSS and distance information, and a network selection method which uses context information such as the dropping probability, blocking probability, GoS (grade of service, and number of handoff attempts. As a decision making criterion, the velocity threshold is determined to optimize the system performance. The optimal velocity threshold is adjusted to assign the available channels to the mobile stations. The optimal velocity threshold is adjusted to assign the available channels to the mobile stations using four handoff strategies. The four handoff strategies are evaluated and compared with each other in terms of GOS. Finally, the proposed scheme is validated by computer simulations.
Directory of Open Access Journals (Sweden)
Kim Jang-Sub
2008-01-01
Full Text Available This paper proposes a novel vertical handoff algorithm between WLAN and CDMA networks to enable the integration of these networks. The proposed vertical handoff algorithm assumes a handoff decision process (handoff triggering and network selection. The handoff trigger is decided based on the received signal strength (RSS. To reduce the likelihood of unnecessary false handoffs, the distance criterion is also considered. As a network selection mechanism, based on the wireless channel assignment algorithm, this paper proposes a context-based network selection algorithm and the corresponding communication algorithms between WLAN and CDMA networks. This paper focuses on a handoff triggering criterion which uses both the RSS and distance information, and a network selection method which uses context information such as the dropping probability, blocking probability, GoS (grade of service, and number of handoff attempts. As a decision making criterion, the velocity threshold is determined to optimize the system performance. The optimal velocity threshold is adjusted to assign the available channels to the mobile stations. The optimal velocity threshold is adjusted to assign the available channels to the mobile stations using four handoff strategies. The four handoff strategies are evaluated and compared with each other in terms of GOS. Finally, the proposed scheme is validated by computer simulations.
Nurses' views of patient handoffs in Japanese hospitals
DEFF Research Database (Denmark)
Gu, Xiuzhu; Andersen, Henning Boje; Madsen, Marlene Dyrløv
2012-01-01
Staff perceptions of risks associated with patient handoffs were investigated in a survey of nurses in 6 Japanese hospitals. A total of 1462 valid responses were collected from nurses with an overall response rate of 74%. Respondents are moderately satisfied with the transfer of information and r...... and responsibility during handoffs. However, the handoff system was identified as immature. Hospital, work setting, and work experience affected nurses' views of handoff quality. Strategies for improving patient handoffs in Japan are proposed.......Staff perceptions of risks associated with patient handoffs were investigated in a survey of nurses in 6 Japanese hospitals. A total of 1462 valid responses were collected from nurses with an overall response rate of 74%. Respondents are moderately satisfied with the transfer of information...
Investigating the Scope of Resident Patient Care Handoffs within Neurosurgery
Babu, Maya A.; Nahed, Brian Vala; Heary, Robert F.
2012-01-01
Introduction: Handoffs are defined as verbal and written communications during patient care transitions. With the passage of recent ACMGE work hour rules further limiting the hours interns can spend in the hospital, many fear that more handoffs will occur, putting patient safety at risk. The issue of handoffs has not been studied in the neurosurgical literature. Methods: A validated, 20-question online-survey was sent to neurosurgical residents in all 98 accredited U.S. neurosurgery programs....
Investigating the scope of resident patient care handoffs within neurosurgery.
Babu, Maya A; Nahed, Brian V; Heary, Robert F
2012-01-01
Handoffs are defined as verbal and written communications during patient care transitions. With the passage of recent ACMGE work hour rules further limiting the hours interns can spend in the hospital, many fear that more handoffs will occur, putting patient safety at risk. The issue of handoffs has not been studied in the neurosurgical literature. A validated, 20-question online-survey was sent to neurosurgical residents in all 98 accredited U.S. neurosurgery programs. Survey results were analyzed using tabulations. 449 surveys were completed yielding a 56% response rate. 63% of neurosurgical residents surveyed had not received formal instruction in what constitutes an effective handoff; 24% believe there is high to moderate variability among their co-residents in terms of the quality of the handoff provided; 55% experience three or more interruptions during handoffs on average. 90% of neurosurgical residents surveyed say that handoff most often occurs in a quiet, private area and 56% report a high level of comfort for knowing the potential acute, critical issues affecting a patient when receiving a handoff. There needs to be more focused education devoted to learning effective patient-care handoffs in neurosurgical training programs. Increasingly, handing off a patient adequately and safely is becoming a required skill of residency.
Investigating the scope of resident patient care handoffs within neurosurgery.
Directory of Open Access Journals (Sweden)
Maya A Babu
Full Text Available INTRODUCTION: Handoffs are defined as verbal and written communications during patient care transitions. With the passage of recent ACMGE work hour rules further limiting the hours interns can spend in the hospital, many fear that more handoffs will occur, putting patient safety at risk. The issue of handoffs has not been studied in the neurosurgical literature. METHODS: A validated, 20-question online-survey was sent to neurosurgical residents in all 98 accredited U.S. neurosurgery programs. Survey results were analyzed using tabulations. RESULTS: 449 surveys were completed yielding a 56% response rate. 63% of neurosurgical residents surveyed had not received formal instruction in what constitutes an effective handoff; 24% believe there is high to moderate variability among their co-residents in terms of the quality of the handoff provided; 55% experience three or more interruptions during handoffs on average. 90% of neurosurgical residents surveyed say that handoff most often occurs in a quiet, private area and 56% report a high level of comfort for knowing the potential acute, critical issues affecting a patient when receiving a handoff. CONCLUSIONS: There needs to be more focused education devoted to learning effective patient-care handoffs in neurosurgical training programs. Increasingly, handing off a patient adequately and safely is becoming a required skill of residency.
Patient Handoffs: Is Cross Cover or Night Shift Better?
Higgins, Alanna; Brannen, Melissa L; Heiman, Heather L; Adler, Mark D
2017-06-01
Studies show singular handoffs between health care providers to be risky. Few describe sequential handoffs or compare handoffs from different provider types. We investigated the transfer of information across 2 handoffs using a piloted survey instrument. We compared cross-cover (every fourth night call) with dedicated night-shift residents. Surveys assessing provider knowledge of hospitalized patients were administered to pediatric residents. Primary teams were surveyed about their handoff upon completion of daytime coverage of a patient. Night-shift or cross-covering residents were surveyed about their handoff of the same patient upon completion of overnight coverage. Pediatric hospitalists rated the consistency of information between the surveys. Absolute difference was calculated between the 2 providers' rating of a patient's (a) complexity and (b) illness severity. Scores were compared across provider type. Fifty-nine complete handoff pairs were obtained. Fourteen and 45 handoff surveys were completed by a cross-covering and a night-shift provider, respectively. There was no significant difference in information consistency between primary and night-shift (median, 4.0; interquartile range [IQR], 3-4) versus primary and cross-covering providers (median, 4.0; IQR, 3-4). There was no significant difference in median patient complexity ratings (night shift, 3.0; IQR, 1-5, versus cross cover, 3.5; IQR, 1-5) or illness severity ratings (night shift, 2.0; IQR, 1-4, versus cross-cover, 3.0; IQR, 1-6) when comparing provider types giving a handoff. We did not find a difference in physicians' transfer of information during 2 handoffs among providers taking traditional call or on night shift. Development of tools to measure handoff consistency is needed.
Directory of Open Access Journals (Sweden)
Christopher J. Smith
2015-01-01
Full Text Available Background Patient care handoffs are a core professional activity that incoming interns are expected to perform without direct supervision upon starting residency, yet training in medical schools is inconsistent. Objective To implement a brief handoff communication workshop for incoming interns and determine whether learner-level determinants were associated with differences in training outcomes. Methods We conducted a one-hour interactive handoff skills workshop for all incoming interns at a Midwestern academic medical center. We performed paired pre/post-intervention assessments of participants' attitudes and ability to perform representative handoff skills. The results were analyzed in aggregate and based upon participants' prior handoff experiences using Wilcoxon signed-rank test. Results Ninety-nine of 108 interns (91.7% completed both pre- and post-surveys. There was significant improvement in all 10 attitude-based questions ( P ≤ 0.014 for all and on the skills assessment (1.07 vs 2.16 on 0–4 point scale, SD 1.25, P ≤ 0.001. Results remained significant regardless of prior training, number of handoffs observed, number of handoffs performed, medical school, or residency discipline. Conclusion A brief interactive workshop for incoming interns can improve participants' confidence and performance of basic handoff skills, regardless of previous training or experience.
Using peers to assess handoffs: a pilot study.
Dine, C Jessica; Wingate, Nicholas; Rosen, Ilene M; Myers, Jennifer S; Lapin, Jennifer; Kogan, Jennifer R; Shea, Judy A
2013-08-01
Handoffs among post-graduate year 1 (PGY1) trainees occur with high frequency. Peer assessment of handoff competence would add a new perspective on how well the handoff information helped them to provide optimal patient care. The goals of this study were to test the feasibility of the approach of an instrument for peer assessment of handoffs by meeting criteria of being able to use technology to capture evaluations in real time, exhibiting strong psychometric properties, and having high PGY1 satisfaction scores. An iPad® application was built for a seven-item handoff instrument. Over a two-month period, post-call PGY1s completed assessments of three co-PGY1s from whom they received handoffs the prior evening. Internal Medicine PGY1s at the University of Pennsylvania. ANOVA was used to explore interperson score differences (validity). Generalizability analyses provided estimates of score precision (reproducibility). PGY1s completed satisfaction surveys about the process. Sixty-two PGY1s (100 %) participated in the study. 59 % of the targeted evaluations were completed. The major limitations were network connectivity and inability to find the post-call trainee. PGY1 scores on the single item of "overall competency" ranged from 4 to 9 with a mean of 7.31 (SD 1.09). Generalizability coefficients approached 0.60 for 10 evaluations per PGY1 for a single rotation and 12 evaluations per PGY1 across multiple rotations. The majority of PGY1s believed that they could adequately assess handoff competence and that the peer assessment process was valuable (70 and 77 %, respectively). Psychometric properties of an instrument for peer assessment of handoffs are encouraging. Obtaining 10 or 12 evaluations per PGY1 allowed for reliable assessment of handoff skills. Peer evaluations of handoffs using mobile technology were feasible, and were well received by PGY1s.
A vertical handoff scheme based on adaptive period
Directory of Open Access Journals (Sweden)
Li Yang
2017-08-01
Full Text Available This paper presents a periodic adaptive vertical handoff scheme.In the phase of handoff initiation,the mobile terminal will adjust the interfaces activating interval to scan the potential new wireless signals according to the Received Signals Strength.In the phase of handoff decision,multiple attribute judgment method are adopted to judge the comprehensive perfomance of each network.The simulation shows that the proposed scheme can discover new wireless networks access the network that has the best comprehensive performance saving consumed power.
International Nuclear Information System (INIS)
Boure, J.A.
1974-12-01
Two-phase flow instabilities are classified according to three criteria: the static or dynamic nature of the phenomenon, the necessity or not of a triggering phenomenon, and the pure or compound character of the phenomenon. Tables give the elementary instability phenomena, and the practical types of instability. Flow oscillations (or dynamic instabilities) share a number of characteristics which are dealt with, they are caused by the dynamic interactions between the flow parameters (flow rate, density, pressure, enthalpy and their distributions). Oscillation types are discussed: pure oscillations are density wave oscillations, acoustic oscillations may also occur, various compound oscillations involve either the density wave or the acoustic wave mechanism, interacting with some of the boundary conditions in the device. The analysis of slow oscillations has been made either by means of a simplified model (prediction of the thresholds) or of computer codes. Numerous computer codes are available [fr
Two phase titanium aluminide alloy
Deevi, Seetharama C.; Liu, C. T.
2001-01-01
A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.
A Novel Process Audit for Standardized Perioperative Handoff Protocols.
Pallekonda, Vinay; Scholl, Adam T; McKelvey, George M; Amhaz, Hassan; Essa, Deanna; Narreddy, Spurthy; Tan, Jens; Templonuevo, Mark; Ramirez, Sasha; Petrovic, Michelle A
2017-11-01
A perioperative handoff protocol provides a standardized delivery of communication during a handoff that occurs from the operating room to the postanestheisa care unit or ICU. The protocol's success is dependent, in part, on its continued proper use over time. A novel process audit was developed to help ensure that a perioperative handoff protocol is used accurately and appropriately over time. The Audit Observation Form is used for the Audit Phase of the process audit, while the Audit Averages Form is used for the Data Analysis Phase. Employing minimal resources and using quantitative methods, the process audit provides the necessary means to evaluate the proper execution of any perioperative handoff protocol. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.
Modeling and Performance Analysis for Cell Access and Handoff Schemes in Two-Tier Cellular Networks
Directory of Open Access Journals (Sweden)
Kyungkoo Jun
2014-01-01
Full Text Available We investigate the effects of handoff on system performance in two-tier cellular networks. Two of the main performance metrics are new call blocking probability and handoff drop rate. We develop analytical models to evaluate the performance of two different handoff schemes. One scheme considers only femto-to-macrocell handoff while the other is bidirectional including macro-to-femtocell handoff. Our model is more elaborate than existing ones which have not considered the mobility of mobile stations. Numerical results show that the bidirectional scheme performs better than the femto-to-macrocell handoff as it achieves lower blocking probability and drop rate.
Two-phase Heating in Flaring Loops
Zhu, Chunming; Qiu, Jiong; Longcope, Dana W.
2018-03-01
We analyze and model a C5.7 two-ribbon solar flare observed by the Solar Dynamics Observatory, Hinode, and GOES on 2011 December 26. The flare is made of many loops formed and heated successively over one and half hours, and their footpoints are brightened in the UV 1600 Å before enhanced soft X-ray and EUV missions are observed in flare loops. Assuming that anchored at each brightened UV pixel is a half flaring loop, we identify more than 6700 half flaring loops, and infer the heating rate of each loop from the UV light curve at the footpoint. In each half loop, the heating rate consists of two phases: intense impulsive heating followed by a low-rate heating that is persistent for more than 20 minutes. Using these heating rates, we simulate the evolution of their coronal temperatures and densities with the model of the “enthalpy-based thermal evolution of loops.” In the model, suppression of thermal conduction is also considered. This model successfully reproduces total soft X-ray and EUV light curves observed in 15 passbands by four instruments GOES, AIA, XRT, and EVE. In this flare, a total energy of 4.9 × 1030 erg is required to heat the corona, around 40% of this energy is in the slow-heating phase. About two-fifths of the total energy used to heat the corona is radiated by the coronal plasmas, and the other three fifth transported to the lower atmosphere by thermal conduction.
A Delphi study to identify the core components of nurse to nurse handoff.
O'Rourke, Jennifer; Abraham, Joanna; Riesenberg, Lee Ann; Matson, Jeff; Lopez, Karen Dunn
2018-03-08
The aim of this study was to identify the core components of nurse-nurse handoffs. Patient handoffs involve a process of passing information, responsibility and control from one caregiver to the next during care transitions. Around the globe, ineffective handoffs have serious consequences resulting in wrong treatments, delays in diagnosis, longer stays, medication errors, patient falls and patient deaths. To date, the core components of nurse-nurse handoff have not been identified. This lack of identification is a significant gap in moving towards a standardized approach for nurse-nurse handoff. Mixed methods design using the Delphi technique. From May 2016 - October 2016, using a series of iterative steps, a panel of handoff experts gave feedback on the nurse-nurse handoff core components and the content in each component to be passed from one nurse to the next during a typical unit-based shift handoff. Consensus was defined as 80% agreement or higher. After three rounds of participant review, 17 handoff experts with backgrounds in clinical nursing practice, academia and handoff research came to consensus on the core components of handoff: patient summary, action plan and nurse-nurse synthesis. This is the first study to identify the core components of nurse-nurse handoff. Subsequent testing of the core components will involve evaluating the handoff approach in a simulated and then actual patient care environment. Our long-term goal is to improve patient safety outcomes by validating an evidence-based handoff framework and handoff curriculum for pre-licensure nursing programmes that strengthen the quality of their handoff communication as they enter clinical practice. © 2018 John Wiley & Sons Ltd.
Changes in medical errors after implementation of a handoff program.
Starmer, Amy J; Spector, Nancy D; Srivastava, Rajendu; West, Daniel C; Rosenbluth, Glenn; Allen, April D; Noble, Elizabeth L; Tse, Lisa L; Dalal, Anuj K; Keohane, Carol A; Lipsitz, Stuart R; Rothschild, Jeffrey M; Wien, Matthew F; Yoon, Catherine S; Zigmont, Katherine R; Wilson, Karen M; O'Toole, Jennifer K; Solan, Lauren G; Aylor, Megan; Bismilla, Zia; Coffey, Maitreya; Mahant, Sanjay; Blankenburg, Rebecca L; Destino, Lauren A; Everhart, Jennifer L; Patel, Shilpa J; Bale, James F; Spackman, Jaime B; Stevenson, Adam T; Calaman, Sharon; Cole, F Sessions; Balmer, Dorene F; Hepps, Jennifer H; Lopreiato, Joseph O; Yu, Clifton E; Sectish, Theodore C; Landrigan, Christopher P
2014-11-06
Miscommunications are a leading cause of serious medical errors. Data from multicenter studies assessing programs designed to improve handoff of information about patient care are lacking. We conducted a prospective intervention study of a resident handoff-improvement program in nine hospitals, measuring rates of medical errors, preventable adverse events, and miscommunications, as well as resident workflow. The intervention included a mnemonic to standardize oral and written handoffs, handoff and communication training, a faculty development and observation program, and a sustainability campaign. Error rates were measured through active surveillance. Handoffs were assessed by means of evaluation of printed handoff documents and audio recordings. Workflow was assessed through time-motion observations. The primary outcome had two components: medical errors and preventable adverse events. In 10,740 patient admissions, the medical-error rate decreased by 23% from the preintervention period to the postintervention period (24.5 vs. 18.8 per 100 admissions, P<0.001), and the rate of preventable adverse events decreased by 30% (4.7 vs. 3.3 events per 100 admissions, P<0.001). The rate of nonpreventable adverse events did not change significantly (3.0 and 2.8 events per 100 admissions, P=0.79). Site-level analyses showed significant error reductions at six of nine sites. Across sites, significant increases were observed in the inclusion of all prespecified key elements in written documents and oral communication during handoff (nine written and five oral elements; P<0.001 for all 14 comparisons). There were no significant changes from the preintervention period to the postintervention period in the duration of oral handoffs (2.4 and 2.5 minutes per patient, respectively; P=0.55) or in resident workflow, including patient-family contact and computer time. Implementation of the handoff program was associated with reductions in medical errors and in preventable adverse events
Implementation of Dynamic Smart Decision Model for Vertical Handoff
Sahni, Nidhi
2010-11-01
International Mobile Telecommunications-Advanced (IMT Advanced), better known as 4G is the next level of evolution in the field of wireless communications. 4G Wireless networks enable users to access information anywhere, anytime, with a seamless connection to a wide range of information and services, and receiving a large volume of information, data, pictures, video and thus increasing the demand for High Bandwidth and Signal Strength. The mobility among various networks is achieved through Vertical Handoff. Vertical handoffs refer to the automatic failover from one technology to another in order to maintain communication. The heterogeneous co-existence of access technologies with largely different characteristics creates a decision problem of determining the "best" available network at "best" time for handoff. In this paper, we implemented the proposed Dynamic and Smart Decision model to decide the "best" network interface and "best" time moment to handoff. The proposed model implementation not only demonstrates the individual user needs but also improve the whole system performance i.e. Quality of Service by reducing the unnecessary handoffs and maintain mobility.
Handoffs causing patient harm: a survey of medical and surgical house staff.
Kitch, Barrett T; Cooper, Jeffrey B; Zapol, Warren M; Marder, Jessica E; Karson, Andrew; Hutter, Matt; Campbell, Eric G
2008-10-01
Communication lapses at the time of patient handoffs are believed to be common, and yet the frequency with which patients are harmed as a result of problematic handoffs is unknown. Resident physicians were surveyed about their handoffpractices and the frequency with which they perceive problems with handoffs lead to patient harm. A survey was conducted in 2006 of all resident physicians in internal medicine and general surgery at Massachusetts General Hospital (MGH) concerning the quality and effects of handoffs during their most recent inpatient rotations. Surveys were sent to 238 eligible residents; 161 responses were obtained (response rate, 67.6%). Fifty-nine percent of residents reported that one or more patients had been harmed during their most recent clinical rotation because of problematic handoffs, and 12% reported that this harm had been major. Overall quality of handoffs was reported to be fair or poor by 31% of residents. A minority of residents (26%) reported that handoffs usually or always took place in a quiet setting, and 37% reported that one or more interruptions during the receipt of handoffs occurred either most of the time or always. Although handoffs have long been recognized as potentially hazardous, further scrutiny of handoffs has followed recent reports that handoffs are often marked by missing, incomplete, or inaccurate information and are associated with adverse events. In this study, reports of harm to patients from problematic handoffs were common among residents in internal medicine and general surgery. Many best-practice recommendations for handoffs are not observed, although the extent to which improvement of these practices could reduce patient harm is not known. MGH has recently launched a handoff-safety educational program, along with other interventions designed to improve the safety and effectiveness of handoffs, for its house staff and clinical leadership.
A Multimetric Approach for Handoff Decision in Heterogeneous Wireless Networks
Kustiawan, I.; Purnama, W.
2018-02-01
Seamless mobility and service continuity anywhere at any time are an important issue in the wireless Internet. This research proposes a scheme to make handoff decisions effectively in heterogeneous wireless networks using a fuzzy system. Our design lies in an inference engine which takes RSS (received signal strength), data rate, network latency, and user preference as strategic determinants. The logic of our engine is realized on a UE (user equipment) side in faster reaction to network dynamics while roaming across different radio access technologies. The fuzzy system handles four metrics jointly to deduce a moderate decision about when to initiate handoff. The performance of our design is evaluated by simulating move-out mobility scenarios. Simulation results show that our scheme outperforms other approaches in terms of reducing unnecessary handoff.
Energy scope of handoff strategies in macro-femtocell environments
Leon, Jaime
2012-06-01
Energy consumption in downlink mode is becoming an important topic as cellular communications grow into a large scale enterprise. The search for high rates keeping energy constraints low has put forward the idea that cells with smaller size may improve not only the capacity of the network, but also reduce the amount of energy that is needed to achieve such capacities. When using heterogeneous networks, users can be encouraged to handoff to a femtocell, that offers better capacity per unit energy spent, by means of different handoff strategies. These strategies may also improve the energy use of the network if the handoff priority is given to both, capacity, and energy use. © 2012 IEEE.
Performance analysis of a handoff scheme for two-tier cellular CDMA networks
Directory of Open Access Journals (Sweden)
Ahmed Hamad
2011-07-01
Full Text Available A two-tier model is used in cellular networks to improve the Quality of Service (QoS, namely to reduce the blocking probability of new calls and the forced termination probability of ongoing calls. One tier, the microcells, is used for slow or stationary users, and the other, the macrocell, is used for high speed users. In Code-Division Multiple-Access (CDMA cellular systems, soft handoffs are supported, which provides ways for further QoS improvement. In this paper, we introduce such a way; namely, a channel borrowing scheme used in conjunction with a First-In-First-Out (FIFO queue in the macrocell tier. A multidimensional Markov chain to model the resulting system is established, and an iterative technique to find the steady-state probability distribution is utilized. This distribution is then used to find the performance measures of interest: new call blocking probability, and forced termination probability.
Group handoff management in low power microcell-femtocell network
Directory of Open Access Journals (Sweden)
Debashis De
2017-02-01
Full Text Available This paper presents an analytical model of group based hand-off management based on bird flocking behavior. In the proposed scheme, a number of mobile devices form a group if these devices move together for a long time duration. Although call delivery or call generation are performed individually, hand-off is performed in a group. Dynamic group formation, group division and group merging methods are proposed in this paper. From the simulation results it is demonstrated that approximately 75%, 65% and 90% reduction in power, cost and latency consumption can be obtained respectively using group hand-off management. Thus the proposed scheme is referred as green, economic and fast hand-off strategy. In this paper instead of a macrocell network, a microcell-femtocell network is considered as the transmission power of a microcell or a femtocell base station is much less than a macrocell base station. Simulation results present that the microcell-femtocell network achieves approximately 25–55% and 35–55% reduction in power transmission, and 50–65% and 15–45% reduction in path loss than only a macrocell network and macrocell-femtocell network respectively. Thus microcell-femtocell network is a power-efficient network.
A Location-Aware Vertical Handoff Algorithm for Hybrid Networks
Mehbodniya, Abolfazl
2010-07-01
One of the main objectives of wireless networking is to provide mobile users with a robust connection to different networks so that they can move freely between heterogeneous networks while running their computing applications with no interruption. Horizontal handoff, or generally speaking handoff, is a process which maintains a mobile user\\'s active connection as it moves within a wireless network, whereas vertical handoff (VHO) refers to handover between different types of networks or different network layers. Optimizing VHO process is an important issue, required to reduce network signalling and mobile device power consumption as well as to improve network quality of service (QoS) and grade of service (GoS). In this paper, a VHO algorithm in multitier (overlay) networks is proposed. This algorithm uses pattern recognition to estimate user\\'s position, and decides on the handoff based on this information. For the pattern recognition algorithm structure, the probabilistic neural network (PNN) which has considerable simplicity and efficiency over existing pattern classifiers is used. Further optimization is proposed to improve the performance of the PNN algorithm. Performance analysis and comparisons with the existing VHO algorithm are provided and demonstrate a significant improvement with the proposed algorithm. Furthermore, incorporating the proposed algorithm, a structure is proposed for VHO from the medium access control (MAC) layer point of view. © 2010 ACADEMY PUBLISHER.
Two-phase flow characteristics in BWRs
International Nuclear Information System (INIS)
Katono, Kenichi; Aoyama, Goro; Nagayoshi, Takuji; Yasuda, Kenichi; Nishida, Koji
2014-01-01
Reliable prediction of two-phase flow characteristics is important for safety and economy improvements of BWR plants. We have been developing two-phase flow measurement tools and techniques for BWR thermal hydraulic conditions, such as a 3D time-averaged X-ray CT system, an ultrasonic liquid film sensor and a wire-mesh sensor. We applied the developed items in experiments using the multi-purpose steam-water test facility known as HUSTLE, which can simulate two-phase thermal-hydraulic conditions in a BWR reactor pressure vessel, and we constructed a detailed instrumentation database. We validated a 3D two-phase flow simulator using the database and developed the reactor internal two-phase flow analysis system. (author)
Year-End Clinic Handoffs: A National Survey of Academic Internal Medicine Programs.
Phillips, Erica; Harris, Christina; Lee, Wei Wei; Pincavage, Amber T; Ouchida, Karin; Miller, Rachel K; Chaudhry, Saima; Arora, Vineet M
2017-06-01
While there has been increasing emphasis and innovation nationwide in training residents in inpatient handoffs, very little is known about the practice and preparation for year-end clinic handoffs of residency outpatient continuity practices. Thus, the latter remains an identified, yet nationally unaddressed, patient safety concern. The 2014 annual Association of Program Directors in Internal Medicine (APDIM) survey included seven items for assessing the current year-end clinic handoff practices of internal medicine residency programs throughout the country. Nationwide survey. All internal medicine program directors registered with APDIM. Descriptive statistics of programs and tools used to formulate a year-end handoff in the ambulatory setting, methods for evaluating the process, patient safety and quality measures incorporated within the process, and barriers to conducting year-end handoffs. Of the 361 APDIM member programs, 214 (59%) completed the Transitions of Care Year-End Clinic Handoffs section of the survey. Only 34% of respondent programs reported having a year-end ambulatory handoff system, and 4% reported assessing residents for competency in this area. The top three barriers to developing a year-end handoff system were insufficient overlap between graduating and incoming residents, inability to schedule patients with new residents in advance, and time constraints for residents, attendings, and support staff. Most internal medicine programs do not have a year-end clinic handoff system in place. Greater attention to clinic handoffs and resident assessment of this care transition is needed.
Characterising physician listening behaviour during hospitalist handoffs using the HEAR checklist.
Greenstein, Elizabeth A; Arora, Vineet M; Staisiunas, Paul G; Banerjee, Stacy S; Farnan, Jeanne M
2013-03-01
The increasing fragmentation of healthcare has resulted in more patient handoffs. Many professional groups, including the Accreditation Council on Graduate Medical Education and the Society of Hospital Medicine, have made recommendations for safe and effective handoffs. Despite the two-way nature of handoff communication, the focus of these efforts has largely been on the person giving information. To observe and characterise the listening behaviours of handoff receivers during hospitalist handoffs. Prospective observational study of shift change and service change handoffs on a non-teaching hospitalist service at a single academic tertiary care institution. The 'HEAR Checklist', a novel tool created based on review of effective listening behaviours, was used by third party observers to characterise active and passive listening behaviours and interruptions during handoffs. In 48 handoffs (25 shift change, 23 service change), active listening behaviours (eg, read-back (17%), note-taking (23%) and reading own copy of the written signout (27%)) occurred less frequently than passive listening behaviours (eg, affirmatory statements (56%) nodding (50%) and eye contact (58%)) (pRead-back occurred only eight times (17%). In 11 handoffs (23%) receivers took notes. Almost all (98%) handoffs were interrupted at least once, most often by side conversations, pagers going off, or clinicians arriving. Handoffs with more patients, such as service change, were associated with more interruptions (r=0.46, plistening behaviours. While passive listening behaviours are common, active listening behaviours that promote memory retention are rare. Handoffs are often interrupted, most commonly by side conversations. Future handoff improvement efforts should focus on augmenting listening and minimising interruptions.
Balhara, Kamna S; Peterson, Susan M; Elabd, Mohamed Moheb; Regan, Linda; Anton, Xavier; Al-Natour, Basil Ali; Hsieh, Yu-Hsiang; Scheulen, James; Stewart de Ramirez, Sarah A
2018-04-01
Standardized handoffs may reduce communication errors, but research on handoff in community and international settings is lacking. Our study at a community hospital in the United Arab Emirates characterizes existing handoff practices for admitted patients from emergency medicine (EM) to internal medicine (IM), develops a standardized handoff tool, and assesses its impact on communication and physician perceptions. EM physicians completed a survey regarding handoff practices and expectations. Trained observers utilized a checklist based on the Systems Engineering Initiative for Patient Safety model to observe 40 handoffs. EM and IM physicians collaboratively developed a written tool encouraging bedside handoff of admitted patients. After the intervention, surveys of EM physicians and 40 observations were subsequently repeated. 77.5% of initial observed handoffs occurred face-to-face, with 42.5% at bedside, and in four different languages. Most survey respondents considered face-to-face handoff ideal. Respondents noted 9-13 patients suffering harm due to handoff in the prior month. After handoff tool implementation, 97.5% of observed handoffs occurred face-to-face (versus 77.5%, p = 0.014), with 82.5% at bedside (versus 42.5%, p face-to-face and bedside handoff, positively impacted workflow, and increased perceptions of safety by EM physicians in an international, non-academic setting. Our three-step approach can be applied towards developing standardized, context-specific inter-specialty handoff in a variety of settings.
Two-phase flow in refrigeration systems
Gu, Junjie; Gan, Zhongxue
2013-01-01
Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b
Two-phased flow component loss data
International Nuclear Information System (INIS)
Fairhurst, C.P.
1983-01-01
Pressure loss measurements were made for valves and orifice plates under horizontal and vertical two-phase, air/water flow. The results displayed similar trends and were successfully correlated using a semi-empirical approach. (author)
Institute of Scientific and Technical Information of China (English)
ZHANG Lei; SONG Tiecheng; WU Ming; BAO Xu; GUO Jie; HU Jing
2015-01-01
In order to meet diff erent delay require-ments of various communication services in Cognitive ra-dio (CR) networks, Secondary users (SUs) are divided into two classes according to the priority of accessing to spec-trum in this paper. Based on the proactive spectrum hand-off scheme, the Preemptive resume priority (PRP) M/G/1 queueing is used to characterize multiple spectrum hand-off s under two diff erent spectrum handoff strategies. The traffic-adaptive spectrum handoff strategy is proposed for graded SUs so as to minimize the average cumulative hand-off delay. Simulation results not only verify that our theo-retical analysis is valid, but also show that the strategy we proposed can reduce the average cumulative handoff delay evidently. The eff ect of service rate on the proposed spec-trum switching point and the admissible access region are provided.
Performance of a cognitive load inventory during simulated handoffs: Evidence for validity.
Young, John Q; Boscardin, Christy K; van Dijk, Savannah M; Abdullah, Ruqayyah; Irby, David M; Sewell, Justin L; Ten Cate, Olle; O'Sullivan, Patricia S
2016-01-01
Advancing patient safety during handoffs remains a public health priority. The application of cognitive load theory offers promise, but is currently limited by the inability to measure cognitive load types. To develop and collect validity evidence for a revised self-report inventory that measures cognitive load types during a handoff. Based on prior published work, input from experts in cognitive load theory and handoffs, and a think-aloud exercise with residents, a revised Cognitive Load Inventory for Handoffs was developed. The Cognitive Load Inventory for Handoffs has items for intrinsic, extraneous, and germane load. Students who were second- and sixth-year students recruited from a Dutch medical school participated in four simulated handoffs (two simple and two complex cases). At the end of each handoff, study participants completed the Cognitive Load Inventory for Handoffs, Paas' Cognitive Load Scale, and one global rating item for intrinsic load, extraneous load, and germane load, respectively. Factor and correlational analyses were performed to collect evidence for validity. Confirmatory factor analysis yielded a single factor that combined intrinsic and germane loads. The extraneous load items performed poorly and were removed from the model. The score from the combined intrinsic and germane load items associated, as predicted by cognitive load theory, with a commonly used measure of overall cognitive load (Pearson's r = 0.83, p load during handoffs may be measured via a self-report measure. Additional work is required to develop an adequate measure of extraneous load.
The Research on Handoff Strategy in Beyond 3G Wireless Networks
Institute of Scientific and Technical Information of China (English)
CUI Hong-yan; TIAN Hui; XU Hai-bo; ZHANG Ping
2006-01-01
One of the major challenges for beyond third generation mobile systems is efficient mobility management. This paper proposes a distributed dynamic management scheme of handoff based on B3G networks. This .scheme can reduce the co.st of update signalling and transmitting packets, and improve the system capability. In this .scheme, the dynamic building network approach is adopted to deduce the update signalling cost. We implement the distributed dynamic management scheme of handoff in a simulation platform and compare its performance with that of general centralized handoff management schemes. Our simulation results indicate that our .scheme is capable of reducing the update handoff latency, and enhancing the performance.
Call Admission Scheme for Multidimensional Traffic Assuming Finite Handoff User
Directory of Open Access Journals (Sweden)
Md. Baitul Al Sadi
2017-01-01
Full Text Available Usually, the number of users within a cell in a mobile cellular network is considered infinite; hence, M/M/n/k model is appropriate for new originated traffic, but the number of ongoing calls around a cell is always finite. Hence, the traffic model of handoff call will be M/M/n/k/N. In this paper, a K-dimensional traffic model of a mobile cellular network is proposed using the combination of limited and unlimited users case. A new call admission scheme (CAS is proposed based on both thinning scheme and fading condition. The fading condition of the wireless channel access to a handoff call is prioritized compared to newly originated calls.
Bandwidth Reservation Using Velocity and Handoff Statistics for Cellular Networks
Institute of Scientific and Technical Information of China (English)
Chuan-Lin Zhang; Kam Yiu Lam; Wei-Jia Jia
2006-01-01
The percentages of blocking and forced termination rates as parameters representing quality of services (QoS)requirements are presented. The relation between the connection statistics of mobile users in a cell and the handoff number and new call number in next duration in each cell is explored. Based on the relation, statistic reservation tactics are raised.The amount of bandwidth for new calls and handoffs of each cell in next period is determined by using the strategy. Using this method can guarantee the communication system suits mobile connection request dynamic. The QoS parameters:forced termination rate and blocking rate can be maintained steadily though they may change with the offered load. Some numerical experiments demonstrate this is a practical method with affordable overhead.
A Literature Survey on Handoff for Mobile IPv6
Zongpu Jia; Gaolei Wang; Ran Zhao
2011-01-01
With the development of network technology, IPv6 will be widely used in the next generation Internet, IPv6 will be used in the next generation Internet, IPv6 could combine mobile networks and fixed wireless networks closely, which brings great convenience to people’s live. The handoff delay of Mobile IPv6 seriously affected the real-time communication service quality, therefore various improvement methods based on the basic Mobile IPv6 protocol are proposed. The working principle of Mob...
A Reliable Handoff Mechanism for Mobile Industrial Wireless Sensor Networks.
Ma, Jian; Yang, Dong; Zhang, Hongke; Gidlund, Mikael
2017-08-04
With the prevalence of low-power wireless devices in industrial applications, concerns about timeliness and reliability are bound to continue despite the best efforts of researchers to design Industrial Wireless Sensor Networks (IWSNs) to improve the performance of monitoring and control systems. As mobile devices have a major role to play in industrial production, IWSNs should support mobility. However, research on mobile IWSNs and practical tests have been limited due to the complicated resource scheduling and rescheduling compared with traditional wireless sensor networks. This paper proposes an effective mechanism to guarantee the performance of handoff, including a mobility-aware scheme, temporary connection and quick registration. The main contribution of this paper is that the proposed mechanism is implemented not only in our testbed but in a real industrial environment. The results indicate that our mechanism not only improves the accuracy of handoff triggering, but also solves the problem of ping-pong effect during handoff. Compared with the WirelessHART standard and the RSSI-based approach, our mechanism facilitates real-time communication while being more reliable, which can help end-to-end packet delivery remain an average of 98.5% in the scenario of mobile IWSNs.
Two phase cooling for superconducting magnets
International Nuclear Information System (INIS)
Eberhard, P.H.; Gibson, G.A.; Green, M.A.; Ross, R.R.; Smits, R.G.
1986-01-01
Comments on the use of two phase helium in a closed circuit tubular cooling system and some results obtained with the TPC superconducting magnet are given. Theoretical arguments and experimental evidence are given against a previously suggested method to determine helium two phase flow regimes. Two methods to reduce pressure in the magnet cooling tubes during quenches are discussed; 1) lowering the density of helium in the magnet cooling tubes and 2) proper location of pressure relief valves. Some techniques used to protect the refrigerator from too much cold return gas are also mentioned
Two phase cooling for superconducting magnets
International Nuclear Information System (INIS)
Eberhard, P.H.; Gibson, G.A.; Green, M.A.; Ross, R.R.; Smits, R.G.; Taylor, J.D.; Watt, R.D.
1986-01-01
Comments on the use of two phase helium in a closed circuit tubular cooling system and some results obtained with the TPC superconducting magnet are given. Theoretical arguments and experimental evidence are given against a previously suggested method to determine helium two phase flow regimes. Two methods to reduce pressure in the magnet cooling tubes during quenches are discussed; (1) lowering the density of helium in the magnet cooling tubes and (2) proper location of pressure relief valves. Some techniques used to protect the refrigerator from too much cold return gas are also mentioned. 10 refs., 1 fig., 5 tabs
Nonlinear dynamics of two-phase flow
International Nuclear Information System (INIS)
Rizwan-uddin
1986-01-01
Unstable flow conditions can occur in a wide variety of laboratory and industry equipment that involve two-phase flow. Instabilities in industrial equipment, which include boiling water reactor (BWR) cores, steam generators, heated channels, cryogenic fluid heaters, heat exchangers, etc., are related to their nonlinear dynamics. These instabilities can be of static (Ledinegg instability) or dynamic (density wave oscillations) type. Determination of regions in parameters space where these instabilities can occur and knowledge of system dynamics in or near these regions is essential for the safe operation of such equipment. Many two-phase flow engineering components can be modeled as heated channels. The set of partial differential equations that describes the dynamics of single- and two-phase flow, for the special case of uniform heat flux along the length of the channel, can be reduced to a set of two coupled ordinary differential equations [in inlet velocity v/sub i/(t) and two-phase residence time tau(t)] involving history integrals: a nonlinear ordinary functional differential equation and an integral equation. Hence, to solve these equations, the dependent variables must be specified for -(nu + tau) ≤ t ≤ 0, where nu is the single-phase residence time. This system of nonlinear equations has been solved analytically using asymptotic expansion series for finite but small perturbations and numerically using finite difference techniques
Two phase transitions in Nuclear Physics
International Nuclear Information System (INIS)
Bes, D.R.
1985-01-01
The status of the art of the problem associated with two phase transitions in the nuclear matter, viz.: the disappearance of the nuclear superfluiditiy with the raising of the rotation velocity and the appearance of an octupolar deformation in the actinide zone, is presented. (L.C.) [pt
Two-phase flow in fractured rock
International Nuclear Information System (INIS)
Davies, P.; Long, J.; Zuidema, P.
1993-11-01
This report gives the results of a three-day workshop on two-phase flow in fractured rock. The workshop focused on two-phase flow processes that are important in geologic disposal of nuclear waste as experienced in a variety of repository settings. The goals and objectives of the workshop were threefold: exchange information; describe the current state of understanding; and identify research needs. The participants were divided into four subgroups. Each group was asked to address a series of two-phase flow processes. The following groups were defined to address these processes: basic flow processes; fracture/matrix interactions; complex flow processes; and coupled processes. For each process, the groups were asked to address these four issues: (1) describe the two-phase flow processes that are important with respect to repository performance; (2) describe how this process relates to the specific driving programmatic issues given above for nuclear waste storage; (3) evaluate the state of understanding for these processes; and (4) suggest additional research to address poorly understood processes relevant to repository performance. The reports from each of the four working groups are given here
Reyes, Juan A.; Greenberg, Larrie; Amdur, Richard; Gehring, James; Lesky, Linda G.
2016-01-01
Continuity is critical for safe patient care and its absence is associated with adverse outcomes. Continuity requires handoffs between physicians, but most published studies of educational interventions to improve handoffs have focused primarily on residents, despite interns expected to being proficient. The AAMC core entrustable activities for…
Effects of the I-PASS Nursing Handoff Bundle on communication quality and workflow.
Starmer, Amy J; Schnock, Kumiko O; Lyons, Aimee; Hehn, Rebecca S; Graham, Dionne A; Keohane, Carol; Landrigan, Christopher P
2017-12-01
Handoff communication errors are a leading source of sentinel events. We sought to determine the impact of a handoff improvement programme for nurses. We conducted a prospective pre-post intervention study on a paediatric intensive care unit in 2011-2012. The I-PASS Nursing Handoff Bundle intervention consisted of educational training, verbal handoff I-PASS mnemonic implementation, and visual materials to provide reinforcement and sustainability. We developed handoff direct observation and time motion workflow assessment tools to measure: (1) quality of the verbal handoff, including interruption frequency and presence of key handoff data elements; and (2) duration of handoff and other workflow activities. I-PASS implementation was associated with improvements in verbal handoff communications, including inclusion of illness severity assessment (37% preintervention vs 67% postintervention, p=0.001), patient summary (81% vs 95%, p=0.05), to do list (35% vs 100%, p<0.001) and an opportunity for the receiving nurse to ask questions (34% vs 73%, p<0.001). Overall, 13/21 (62%) of verbal handoff data elements were more likely to be present following implementation whereas no data elements were less likely present. Implementation was associated with a decrease in interruption frequency pre versus post intervention (67% vs 40% of handoffs with interruptions, p=0.005) without a change in the median handoff duration (18.8 min vs 19.9 min, p=0.48) or changes in time spent in direct or indirect patient care activities. Implementation of the I-PASS Nursing Handoff Bundle was associated with widespread improvements in the verbal handoff process without a negative impact on nursing workflow. Implementation of I-PASS for nurses may therefore have the potential to significantly reduce medical errors and improve patient safety. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted
Face-to-face handoff: improving transfer to the pediatric intensive care unit after cardiac surgery.
Vergales, Jeffrey; Addison, Nancy; Vendittelli, Analise; Nicholson, Evelyn; Carver, D Jeannean; Stemland, Christopher; Hoke, Tracey; Gangemi, James
2015-01-01
The goal was to develop and implement a comprehensive, primarily face-to-face handoff process that begins in the operating room and concludes at the bedside in the intensive care unit (ICU) for pediatric patients undergoing congenital heart surgery. Involving all stakeholders in the planning phase, the framework of the handoff system encompassed a combination of a formalized handoff tool, focused process steps that occurred prior to patient arrival in the ICU, and an emphasis on face-to-face communication at the conclusion of the handoff. The final process was evaluated by the use of observer checklists to examine quality metrics and timing for all patients admitted to the ICU following cardiac surgery. The process was found to improve how various providers view the efficiency of handoff, the ease of asking questions at each step, and the overall capability to improve patient care regardless of overall surgical complexity. © 2014 by the American College of Medical Quality.
An introduction to two-phase flows
International Nuclear Information System (INIS)
Lemonnier, Herve
2006-01-01
This course aims at proposing the necessary background for a rational approach to two-phase flows which are notably present in numerous industrial devices and equipment designed to perform energy transfer or mass transfer. The first part proposes a phenomenological approach to main two-phase flow structures and presents their governing variables. The second part presents some proven measurement techniques. The third part focuses on modelling. It recalls the equation elaboration techniques which are based on basic principles of mechanics and thermodynamics and on the application of different averaging operators to these principles. Some useful models are then presented such as models of pressure loss in a duct. The last chapter addresses some fundamental elements of heat transfers in ebullition and condensation
Apparatus for monitoring two-phase flow
Sheppard, John D.; Tong, Long S.
1977-03-01
A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.
Geometrical automata for two phase flow simulation
International Nuclear Information System (INIS)
Herrero, V.; Guido-Lavalle, G.; Clausse, A.
1996-01-01
An automaton is an entity defined by a mathematical state which changes following iterative rules representing the interaction with the neighborhood. A model of automata for two-phase flow simulation consisting in a field of disks which are allowed to change their radii and move in a plane is presented. The model is more general than the classical cellular automata in two respects: (1) the grid of cellular automata is dismissed in favor of a trajectory generator; and (2) the rules of interaction involve parameters intended to represent some of the most relevant variables governing the actual physical interactions between phases. Computational experiments show that the algorithm captures the essential physics underlying two-phase flow problems such as bubbly-slug pattern transition and void fraction development along tubes. A comparison with experimental data of void fraction profiles is presented, showing excellent agreement. (orig.)
Review of two-phase water hammer
International Nuclear Information System (INIS)
Beuthe, T.G.
1997-01-01
In a thermalhydraulic system like a nuclear power plant, where steam and water mix and are used to transport large amounts of energy, there is a potential to create two-phase water hammer. Large water hammer pressure transients are a threat to piping integrity and represent an important safety concern. Such events may cause unscheduled plant down time. The objective of this review is to provide a summary of the information on two-phase water hammer available in the open literature with particular emphasis on water hammer occurrences in nuclear power plants. Past reviews concentrated on studies concerned with preventing water hammer. The present review focuses on the fundamental experimental, analytical, and modelling studies. The papers discussed here were chosen from searches covering up to July 1993. (author)
Modelling aspects of two phase flow
International Nuclear Information System (INIS)
Mayinger, F.
1977-01-01
In two phase flow scaling is much more limited to very narrowly defined physical phenomena than in single phase fluids. For complex and combined phenomena it can be achieved not by using dimensionless numbers alone but in addition a detailed mathematical description of the physical problem - usually in the form of a computer program - must be available. An important role plays the scaling of the thermodynamic data of the modelling fluid. From a literature survey and from own scaling experiments the conclusion can be drawn that Freon is a quite suitable modelling fluid for scaling steam-water mixtures. However, whithout a theoretical description of the phenomena nondimensional numbers for scaling two phase flow must be handled very carefully. (orig.) [de
Apparatus for monitoring two-phase flow
International Nuclear Information System (INIS)
Sheppard, J.D.; Tong, L.S.
1977-01-01
A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods. 3 claims, 9 figures
Pumped two-phase heat transfer loop
Edelstein, Fred
1988-01-01
A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.
Study of nonequilibrium dispersed two phase flow
International Nuclear Information System (INIS)
Reyes, J.N. Jr.
1986-01-01
Understanding the behavior of liquid droplets in a superheated steam environment is essential to the accurate prediction of nuclear fuel rod surface temperatures during the blowdown and reflood phase of a loss-of-coolant-accident (LOCA). In response to this need, this treatise presents several original and significant contributions to the field of thermofluid physics. The research contained herein presents a statistical derivation of the two-phase mass, momentum, and energy-conservation equations using a droplet continuity equation analogous to that used in the Kinetic Theory of Gases. Unlike the Eulerian volume and time-averaged conservation equations generally used to describe dispersed two-phase flow behavior, this statistical averaging approach results in an additional mass momentum or energy term in each of the respective conservation equations. Further, this study demonstrates that current definitions of the volumetric vapor generation rate used in the mass conservation equation are inappropriate results under certain circumstances. The mass conservation equation derived herein is used to obtain a new definition for the volumetric vapor-generation rate. Last, a simple two phase phenomenological model, based on the statistically averaged conservation equations, is presented and solved analytically. It is shown that the actual quality and vapor temperature, under these circumstances, depend on a single dimensionless group
Review of two-phase instabilities
Energy Technology Data Exchange (ETDEWEB)
Kang, Han Ok; Seo, Han Ok; Kang, Hyung Suk; Cho, Bong Hyun; Lee, Doo Jeong
1997-06-01
KAERI is carrying out a development of the design for a new type of integral reactors. The once-through helical steam generator is important design features. The study on designs and operating conditions which prevent flow instability should precede the introduction of one-through steam generator. Experiments are currently scheduled to understand two-phase instability, evaluate the effect of each design parameter on the critical point, and determine proper inlet throttling for the prevention of instability. This report covers general two-phase instability with review of existing studies on this topics. The general classification of two phase flow instability and the characteristics of each type of instability are first described. Special attention is paid to BWR core flow instability and once-through steam generator instability. The reactivity feedback and the effect of system parameters are treated mainly for BWR. With relation to once-through steam generators, the characteristics of convective heating and dryout point oscillation are first investigated and then the existing experimental studies are summarized. Finally chapter summarized the proposed correlations for instability boundary conditions. (author). 231 refs., 5 tabs., 47 figs
Implementation of mobile ip smooth handoff in wireless networks
International Nuclear Information System (INIS)
Kayastha, M.; Chowdhry, B.S.; Memon, A.R.
2002-01-01
This paper describes implementation of mobile IP services in two separate wireless LANs based on IEEE 802.11b standards, located in two distant buildings of a university campus. The purpose of the project was to achieve smooth hand-off when a mobile node moves between the two LANs. During our experimentation we have identified some of the limitation of IEEE 802.11b that affects mobile 1P smooth hand off. We have also proposed an algorithm to solve this problem when the mobility is within a limited number of separate wireless LANs. (author)
Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media
Chen, J.
2014-06-03
This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow. 2014 Jie Chen et al.
Coupling Two-Phase Fluid Flow with Two-Phase Darcy Flow in Anisotropic Porous Media
Directory of Open Access Journals (Sweden)
Jie Chen
2014-06-01
Full Text Available This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow.
Two-phase flow dynamics in ECC
International Nuclear Information System (INIS)
Albraaten, P.J.
1981-07-01
The present report summarizes the achievements within the project ''Two-phase Systems and ECC''. The results during 1978 - 1980 are accounted for in brief as they have been documented in earlier reports. The results during the first half of 1981 are accounted for in greater detail. They contain a new model for the Basset force and test runs with this model using the test code RISQUE. Furthermore, test runs have been performed with TRAC-PD2 MOD 1. This code was implemented on Edwards Pipe Blowdown experiment (a standard test case) and UC-Berkeley Reflooding experiment (a non-standard test case.) (Auth.)
Two phase cooling for superconducting magnets
International Nuclear Information System (INIS)
Eberhard, P.H.; Gibson, G.A.; Green, M.A.; Ross, R.R.; Smits, R.G.; Taylor, J.D.; Watt, R.D.
1985-08-01
A closed circuit tubular cooling system for superconducting magnets offers advantages of limiting boiloff and containing high pressures during quenches. Proper location of automatic valves to lower pressures and protect the refrigerator in the event of quenches is described. Theoretical arguments and exprimental evidence are given against a previously suggested method to determine He two phase flow regimes. If loss of flow occurs due to some types of refrigeration failure and transfer lines have enough heat leak to warm up, quenches are induced when the flow is restored. Examples are taken from experience with the TPC magnet
Development of a Nursing Handoff Tool: A Web-Based Application to Enhance Patient Safety
Goldsmith, Denise; Boomhower, Marc; Lancaster, Diane R.; Antonelli, Mary; Kenyon, Mary Anne Murphy; Benoit, Angela; Chang, Frank; Dykes, Patricia C.
2010-01-01
Dynamic and complex clinical environments present many challenges for effective communication among health care providers. The omission of accurate, timely, easily accessible vital information by health care providers significantly increases risk of patient harm and can have devastating consequences for patient care. An effective nursing handoff supports the standardized transfer of accurate, timely, critical patient information, as well as continuity of care and treatment, resulting in enhanced patient safety. The Brigham and Women’s/Faulkner Hospital Healthcare Information Technology Innovation Program (HIP) is supporting the development of a web based nursing handoff tool (NHT). The goal of this project is to develop a “proof of concept” handoff application to be evaluated by nurses on the inpatient intermediate care units. The handoff tool would enable nurses to use existing knowledge of evidence-based handoff methodology in their everyday practice to improve patient care and safety. In this paper, we discuss the results of nursing focus groups designed to identify the current state of handoff practice as well as the functional and data element requirements of a web based Nursing Handoff Tool (NHT). PMID:21346980
Microgravity Two-Phase Flow Transition
Parang, M.; Chao, D.
1999-01-01
Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.
International Nuclear Information System (INIS)
Sullivan, J.P.; Houze, R.N.; Buenger, D.E.; Theofanous, T.G.
1981-01-01
Hot film Anemometry and Laser Doppler Velocimetry have been employed in this work to study the turbulence characteristics of Bubbly and Stratified two-phase flows, respectively. Extensive consistency checks were made to establish the reliability and hence the utility of these experimental techniques for the measurement of turbulence in two-phase flows. Buoyancy-driven turbulence in vertical bubbly flows has been identified experimentally and correlated in terms of a shear velocity superposition approach. This approach provides a criterion for the demarcation of the buoyancy-driven turbulence region from the wall shear-generated turbulence region. Our data confirm the roughly isotropic behavior expected for buoyancy-driven turbulence. Upgrading of our experimental system will permit investigations of the wall-shear dominated regime (i.e., isotropy, superposition approach, etc.). The stratified flow data demonstrate clearly that the maximum in the mean velocity profile does not coincide with the zero shear plane, indicating the existence of a negative eddy viscosity region. Previous studies do not take into account this difference and thus they yield incorrect friction factor data in addition to certain puzzling behavior in the upper wall region. The conditioned turbulence data in the wavy region indicate interesting trends and that an appropriate normalization of intensities must take into account the shear velocity at the interfacial (wavy) region
Two Phase Flow Simulation Using Cellular Automata
International Nuclear Information System (INIS)
Marcel, C.P.
2002-01-01
The classical mathematical treatment of two-phase flows is based on the average of the conservation equations for each phase.In this work, a complementary approach to the modeling of these systems based on statistical population balances of aut omata sets is presented.Automata are entities defined by mathematical states that change following iterative rules representing interactions with the neighborhood.A model of automata for two-phase flow simulation is presented.This model consists of fie lds of virtual spheres that change their volumes and move around a certain environment.The model is more general than the classical cellular automata in two respects: the grid of cellular automata is dismissed in favor of a trajectory generator, and the rules of interaction involve parameters representing the actual physical interactions between phases.Automata simulation was used to study unsolved two-phase flow problems involving high heat flux rates. One system described in this work consists of a vertical channel with saturated water at normal pressure heated from the lower surface.The heater causes water to boil and starts the bubble production.We used cellular automata to describe two-phase flows and the interaction with the heater.General rule s for such cellular automata representing bubbles moving in stagnant liquid were used, with special attention to correct modeling of different mechanisms of heat transfer.The results of the model were compared to previous experiments and correlations finding good agreement.One of the most important findings is the confirmation of Kutateladze's idea about a close relation between the start of critical heat flux and a change in the flow's topology.This was analyzed using a control volume located in the upper surface of the heater.A strong decrease in the interfacial surface just before the CHF start was encountered.The automata describe quite well some characteristic parameters such as the shape of the local void fraction in the
Assessing the implementation of a bedside service handoff on an academic hospitalist service.
Wray, Charlie M; Arora, Vineet M; Hedeker, Donald; Meltzer, David O
2018-06-01
Inpatient service handoffs are a vulnerable transition during a patients' hospitalization. We hypothesized that performing the service handoff at the patients' bedside may be one mechanism to more efficiently transfer patient information between physicians, while further integrating the patient into their hospital care. We performed a 6-month prospective study of performing a bedside handoff (BHO) at the service transition on a non-teaching hospitalist service. On a weekly basis, transitioning hospitalists co-rounded at patient's bedsides. Post-handoff surveys assessed for completeness of handoff, communication, missed information, and adverse events. A control group who performed the handoff via email, phone or face-to-face was also surveyed. Chi-square and item-response theory (IRT) analysis assessed for differences between BHO and control groups. Narrative responses were elicited to qualitatively describe the BHO. In total, 21/31 (67%) scheduled BHOs were performed. On average, 4 out of 6 eligible patients experienced a BHO, with a total of 90 patients experiencing a BHO. Of those asked to perform the BHO, 52% stated the service transition took 31-60 min compared to 24% in the control group. Controlling for the nesting of observations within physicians, IRT analysis found that BHO respondents had statistically significant greater odds of: reporting increased patient awareness of the service handoff, more certainty in the plan for each patient, less discovery of missed information, and less time needed to learn about the patient on the first day compared to control methods. Narrative responses described a more patient-centered handoff with improved communication that was time-consuming and often logistically difficult to implement. Despite its time-intensive nature, performing the service handoff at the patient's bedside may lead to a more complete and efficient service transition. Published by Elsevier Inc.
Reyes, Juan A; Greenberg, Larrie; Amdur, Richard; Gehring, James; Lesky, Linda G
2016-03-01
Continuity is critical for safe patient care and its absence is associated with adverse outcomes. Continuity requires handoffs between physicians, but most published studies of educational interventions to improve handoffs have focused primarily on residents, despite interns expected to being proficient. The AAMC core entrustable activities for graduating medical students includes handoffs as a milestone, but no controlled studies with students have assessed the impact of training in handoff skills. The purpose of this study was to assess the impact of an educational intervention to improve third-year medical student handoff skills, the durability of learned skills into the fourth year, and the transfer of skills from the simulated setting to the clinical environment. Trained evaluators used standardized patient cases and an observation tool to assess verbal handoff skills immediately post intervention and during the student's fourth-year acting internship. Students were also observed doing real time sign-outs during their acting internship. Evaluators assessed untrained control students using a standardized case and performing a real-time sign-out. Intervention students mean score demonstrated improvement in handoff skills immediately after the workshop (2.6-3.8; p < 0.0001) that persisted into their fourth year acting internship when compared to baseline performance (3.9-3.5; p = 0.06) and to untrained control students (3.5 vs. 2.5; p < 0.001, d = 1.2). Intervention students evaluated in the clinical setting also scored higher than control students when assessed doing real-time handoffs (3.8 vs. 3.3; p = 0.032, d = 0.71). These findings should be useful to others considering introducing handoff teaching in the undergraduate medical curriculum in preparation for post-graduate medical training. Trial Registration Number NCT02217241.
Modeling of two-phase slug flow
International Nuclear Information System (INIS)
Fabre, J.; Line, A.
1992-01-01
When gas and liquid flow in a pipe, over a range of flow rates, a flow pattern results in which sequences of long bubbles, almost filling the pipe cross section, are successively followed by liquid slugs that may contain small bubbles. This flow pattern, usually called slug flow, is encountered in numerous practical situations, such as in the production of hydrocarbons in wells and their transportation in pipelines; the production of steam and water in geothermal power plants; the boiling and condensation in liquid-vapor systems of thermal power plants; emergency core cooling of nuclear reactors; heat and mass transfer between gas and liquid in chemical reactors. This paper provides a review of two phase slug flow modeling
Two-phase ozonation of chlorinated organics
International Nuclear Information System (INIS)
Bhattacharyya, D.; Freshour, A.; West, D.
1995-01-01
In the last few years the amount of research being conducted in the field of single-phase ozonation has grown extensively. However, traditional aqueous-phase ozonation systems are limited by a lack of selective oxidation potential, low ozone solubility in water, and slow intermediate decomposition rates. Furthermore, ozone may decompose before it can be utilized for pollutant destruction since ozone can be highly unstable in aqueous solutions. Naturally occurring compounds such as NaHCO 3 also affect ozone reactions by inhibiting the formation of OH-free radicals. To compensate for these factors, excess ozone is typically supplied to a reactor. Since ozone generation requires considerable electric power consumption (16 - 24 kWh/kg of O 3 ), attempts to enhance the ozone utilization rate and stability should lead to more efficient application of this process to hazardous waste treatment. To improve the process, ozonation may be more efficiently carried out in a two-phase system consisting of an inert solvent (saturated with O 3 ) contacted with an aqueous phase containing pollutants. The non-aqueous phase must meet the following criteria: (1) non-toxic, (2) very low vapor pressure, (3) high density (for ease of separation), (4) complete insolubility in water, (5) reusability, (6) selective pollutant extractability, (7) high oxidant solubility, and (8) extended O 3 stability. Previously published studies (1) have indicated that a number of fluorinated hydrocarbon compounds fit these criteria. For this project, FC40 (a product of 3M Co.) was chosen due to its low vapor pressure (3 mm Hg) and high specific gravity (1.9). The primary advantages of the FC40 solvent are that it is non-toxic, reusable, has an ozone solubility 10 times that of water, and that 85 % of the ozone remains in the solvent even after 2 hours. This novel two-phase process has been utilized to study the rapid destruction of organic chlorine compounds and organic mixtures
Two-phase flow models in unbounded two-phase critical flows
International Nuclear Information System (INIS)
Celata, G.P.; Cumo, M.; Farello, G.E.
1985-01-01
With reference to a Loss-of-Coolant Accident in Light Water Reactors, an analysis of the unbounded two-phase critical flow (i.e. the issuing two-phase jet) has been accomplished. Considering jets external shape, obtained by means of photographic pictures; pressure profiles inside the jet, obtained by means of a movable ''Pitot;'' and jet phases distribution information, obtained by means of X-rays pictures; a characterization of the flow pattern in the unbounded region of a two-phase critical flow is given. Jets X-ray pictures show the existence of a central high density ''core'' gradually evaporating all around, which gives place to a characteristic ''dartflow'' the length of which depends on stagnation thermodynamic conditions
A multi-attribute vertical handoff scheme for heterogeneous wireless networks
Directory of Open Access Journals (Sweden)
JI Xiaolong
2014-04-01
Full Text Available In order to meet the user demand for different services as well as to mitigate the Ping-pong effect caused by vertical handoff for wireless network,a multi-attribute vertical handoff scheme for heterogeneous wireless network is proposed.In the algorithm,a fuzzy logic method is used to make pre-decision.The optimal handoff target network is selected by a cost function of network which uses an Analytic Hierarchy Process to calculate the weights of SNR,delay,cost and user preference in different business scenarios.Simulation is performed in the environment which is overlapped by WiMAX and UMTS networks.Results show that the proposed approach can effectively reduce the number of handoff and power consumption in a condition to satisfy the user needs.
A questionnaire-based survey on nurse perceptions of patient handoffs in japanese hospitals
DEFF Research Database (Denmark)
Gu, Xiuzhu; Itoh, Kenji; Andersen, Henning Boje
2012-01-01
transfer, responsibility transfer, management goals, environment and handoff system. As an overall trend, Japanese nurses indicated that both information and responsibility for the patient were transferred moderately well within the hospital. They put a higher priority on the goal of patient safety......Patient handoff is a critically important process in healthcare. However, there have been few studies investigated healthcare staff perceptions of its quality and safety. In the present paper, we seek to explore essential characteristics of patient handoff. We discuss critical factors...... and strategies contributing to effective handoffs. A questionnaire survey was conducted in 2011, collecting 1462 valid responses (74% response rate) from nurses in six Japanese hospitals. There were 17 questions, each with reply options on a five-point Likert scale, covering five main aspects: information...
Directory of Open Access Journals (Sweden)
T. Velmurugan
2016-03-01
Full Text Available Heterogeneous wireless networks are an integration of two different networks. For better performance, connections are to be exchanged among the different networks using seamless Vertical Handoff. The evolutionary algorithm of invasive weed optimization algorithm popularly known as the IWO has been used in this paper, to solve the Vertical Handoff (VHO and Horizontal Handoff (HHO problems. This integer coded algorithm is based on the colonizing behavior of weed plants and has been developed to optimize the system load and reduce the battery power consumption of the Mobile Node (MN. Constraints such as Receiver Signal Strength (RSS, battery lifetime, mobility, load and so on are taken into account. Individual as well as a combination of a number of factors are considered during decision process to make it more effective. This paper brings out the novel method of IWO algorithm for decision making during Vertical Handoff. Therefore the proposed VHO decision making algorithm is compared with the existing SSF and OPTG methods.
Structured patient handoff on an internal medicine ward: A cluster randomized control trial.
Tam, Penny; Nijjar, Aman P; Fok, Mark; Little, Chris; Shingina, Alexandra; Bittman, Jesse; Raghavan, Rashmi; Khan, Nadia A
2018-01-01
The effect of a multi-faceted handoff strategy in a high volume internal medicine inpatient setting on process and patient outcomes has not been clearly established. We set out to determine if a multi-faceted handoff intervention consisting of education, standardized handoff procedures, including fixed time and location for face-to-face handoff would result in improved rates of handoff compared with usual practice. We also evaluated resident satisfaction, health resource utilization and clinical outcomes. This was a cluster randomized controlled trial in a large academic tertiary care center with 18 inpatient internal medicine ward teams from January-April 2013. We randomized nine inpatient teams to an intervention where they received an education session standardizing who and how to handoff patients, with practice and feedback from facilitators. The control group of 9 teams continued usual non-standardized handoffs. The primary process outcome was the rate of patients handed over per 1000 patient nights. Other process outcomes included perceptions of inadequate handoff by overnight physicians, resource utilization overnight and hospital length of stay. Clinical outcomes included medical errors, frequency of patients requiring higher level of care overnight, and in-hospital mortality. The intervention group demonstrated a significant increase in the rate of patients handed over to the overnight physician (62.90/1000 person-nights vs. 46.86/1000 person-nights, p = 0.002). There was no significant difference in other process outcomes except resource utilization was increased in the intervention group (26.35/1000 person-days vs. 17.57/1000 person-days, p-value = 0.01). There was no significant difference between groups in medical errors (4.8% vs. 4.1%), need for higher level of care or in hospital mortality. Limitations include a dependence of accurate record keeping by the overnight physician, the possibility of cross-contamination in the handoff process, analysis at
Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media
Chen, J.; Sun, S.; Chen, Z.
2014-01-01
in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition
Starmer, Amy J; Sectish, Theodore C; Simon, Dennis W; Keohane, Carol; McSweeney, Maireade E; Chung, Erica Y; Yoon, Catherine S; Lipsitz, Stuart R; Wassner, Ari J; Harper, Marvin B; Landrigan, Christopher P
2013-12-04
Handoff miscommunications are a leading cause of medical errors. Studies comprehensively assessing handoff improvement programs are lacking. To determine whether introduction of a multifaceted handoff program was associated with reduced rates of medical errors and preventable adverse events, fewer omissions of key data in written handoffs, improved verbal handoffs, and changes in resident-physician workflow. Prospective intervention study of 1255 patient admissions (642 before and 613 after the intervention) involving 84 resident physicians (42 before and 42 after the intervention) from July-September 2009 and November 2009-January 2010 on 2 inpatient units at Boston Children's Hospital. Resident handoff bundle, consisting of standardized communication and handoff training, a verbal mnemonic, and a new team handoff structure. On one unit, a computerized handoff tool linked to the electronic medical record was introduced. The primary outcomes were the rates of medical errors and preventable adverse events measured by daily systematic surveillance. The secondary outcomes were omissions in the printed handoff document and resident time-motion activity. Medical errors decreased from 33.8 per 100 admissions (95% CI, 27.3-40.3) to 18.3 per 100 admissions (95% CI, 14.7-21.9; P < .001), and preventable adverse events decreased from 3.3 per 100 admissions (95% CI, 1.7-4.8) to 1.5 (95% CI, 0.51-2.4) per 100 admissions (P = .04) following the intervention. There were fewer omissions of key handoff elements on printed handoff documents, especially on the unit that received the computerized handoff tool (significant reductions of omissions in 11 of 14 categories with computerized tool; significant reductions in 2 of 14 categories without computerized tool). Physicians spent a greater percentage of time in a 24-hour period at the patient bedside after the intervention (8.3%; 95% CI 7.1%-9.8%) vs 10.6% (95% CI, 9.2%-12.2%; P = .03). The average duration of verbal
Handoff Rate and Coverage Analysis in Multi-tier Heterogeneous Networks
Sadr, Sanam; Adve, Raviraj S.
2015-01-01
This paper analyzes the impact of user mobility in multi-tier heterogeneous networks. We begin by obtaining the handoff rate for a mobile user in an irregular cellular network with the access point locations modeled as a homogeneous Poisson point process. The received signal-to-interference-ratio (SIR) distribution along with a chosen SIR threshold is then used to obtain the probability of coverage. To capture potential connection failures due to mobility, we assume that a fraction of handoff...
Moerk, J. Steven (Inventor); Youngquist, Robert C. (Inventor); Werlink, Rudy J. (Inventor)
1999-01-01
A quality and/or flow meter employs a capacitance probe assembly for measuring the dielectric constant of flow stream, particularly a two-phase flow stream including liquid and gas components.ne dielectric constant of the flow stream varies depending upon the volume ratios of its liquid and gas components, and capacitance measurements can therefore be employed to calculate the quality of the flow, which is defined as the volume ratio of liquid in the flow to the total volume ratio of gas and liquid in the flow. By using two spaced capacitance sensors, and cross-correlating the time varying capacitance values of each, the velocity of the flow stream can also be determined. A microcontroller-based processing circuit is employed to measure the capacitance of the probe sensors.The circuit employs high speed timer and counter circuits to provide a high resolution measurement of the time interval required to charge each capacitor in the probe assembly. In this manner, a high resolution, noise resistant, digital representation of each of capacitance value is obtained without the need for a high resolution A/D converter, or a high frequency oscillator circuit. One embodiment of the probe assembly employs a capacitor with two ground plates which provide symmetry to insure that accurate measurements are made thereby.
Two-phase flux simulations by robots
International Nuclear Information System (INIS)
Barrera, F.D.
1997-01-01
Two-Phase flow systems are studied following the statistical formulation, which takes into account the bubble population balances. This is done by means of automata simulation. Geometrical automata are associated to the dispersed phase, and are represented by discs on the plane, resembling bubbles moving in a fluid environment. Following pre-determined rules, the automata evolve, and useful statistical information about their interaction is obtained. This information is applied in the present work to study the mechanisms that induce bubble coalescence. Models for one and two sized automata are presented. It was found that in the case of the model for one size, the probability of interaction among bubbles and the pair correlation function depends not only on the void fraction, but also on the number of elements of the dispersed phase. A correlation for the collision probability between two bubbles is obtained, and this result was extended to the pair correlation function. For the case of systems with two characteristic sizes, a model was formulated for analyzing the interaction among bubbles of the two groups. The interaction of bubbles for one and two sized systems were related by a symmetry factor, which shows the dependence of the interaction among bubbles with the size distribution. By means of the automata simulation, the phenomena of bubble confinement and screening were characterized. It was found that the first phenomenon is stronger in systems with greater distance among bubbles, and that the second effect increases with void fraction and bubble number. (author)
Constitutive equations for two-phase flows
International Nuclear Information System (INIS)
Boure, J.A.
1974-12-01
The mathematical model of a system of fluids consists of several kinds of equations complemented by boundary and initial conditions. The first kind equations result from the application to the system, of the fundamental conservation laws (mass, momentum, energy). The second kind equations characterize the fluid itself, i.e. its intrinsic properties and in particular its mechanical and thermodynamical behavior. They are the mathematical model of the particular fluid under consideration, the laws they expressed are so called the constitutive equations of the fluid. In practice the constitutive equations cannot be fully stated without reference to the conservation laws. Two classes of model have been distinguished: mixture model and two-fluid models. In mixture models, the mixture is considered as a single fluid. Besides the usual friction factor and heat transfer correlations, a single constitutive law is necessary. In diffusion models, the mixture equation of state is replaced by the phasic equations of state and by three consitutive laws, for phase change mass transfer, drift velocity and thermal non-equilibrium respectively. In the two-fluid models, the two phases are considered separately; two phasic equations of state, two friction factor correlations, two heat transfer correlations and four constitutive laws are included [fr
Numerical calculation of two-phase flows
International Nuclear Information System (INIS)
Travis, J.R.; Harlow, F.H.; Amsden, A.A.
1975-06-01
The theoretical study of time-varying two-phase flow problems in several space dimensions introduces such a complicated set of coupled nonlinear partial differential equations that numerical solution procedures for high-speed computers are required in almost all but the simplest examples. Efficient attainment of realistic solutions for practical problems requires a finite- difference formulation that is simultaneously implicit in the treatment of mass convection, equations of state, and the momentum coupling between phases. Such a method is described, the equations on which it is based are discussed, and its properties are illustrated by means of examples. In particular, the capability for calculating physical instabilities and other time-varying dynamics, at the same time avoiding numerical instability is emphasized. The computer code is applicable to problems in reactor safety analysis, the dynamics of fluidized dust beds, raindrops or aerosol transport, and a variety of similar circumstances, including the effects of phase transitions and the release of latent heat or chemical energy. (U.S.)
Condensation in a two-phase pool
International Nuclear Information System (INIS)
Duffey, R.B.; Hughes, E.D.
1991-01-01
We consider the case of vapor condensation in a liquid pool, when the heat transfer is controlled by heat losses through the walls. The analysis is based on drift flux theory for phase separation in the pool, and determines the two-phase mixture height for the pool. To our knowledge this is the first analytical treatment of this classic problem that gives an explicit result, previous work having established the result for the evaporative case. From conservation of mass and energy in a one-dimensional steady flow, together with a void relation between the liquid and vapor fluxes, we determine the increase in the mixture level from the base level of the pool. It can be seen that the thermal and hydrodynamic influences are separable. Thus, the thermal influence of the wall heat transfer appears through its effect on the condensing length L*, so that at high condensation rates the pool is all liquid, and at low rates overflows (the level swell or foaming effect). Similarly, the phase separation effect hydrodynamically determines the height via the relative velocity of the mixture to the entering flux. We examine some practical applications of this result to level swell in condensing flows, and also examine some limits in ideal cases
Abraham, Joanna; Kannampallil, Thomas; Brenner, Corinne; Lopez, Karen D; Almoosa, Khalid F; Patel, Bela; Patel, Vimla L
2016-02-01
Effective communication during nurse handoffs is instrumental in ensuring safe and quality patient care. Much of the prior research on nurse handoffs has utilized retrospective methods such as interviews, surveys and questionnaires. While extremely useful, an in-depth understanding of the structure and content of conversations, and the inherent relationships within the content is paramount to designing effective nurse handoff interventions. In this paper, we present a methodological framework-Sequential Conversational Analysis (SCA)-a mixed-method approach that integrates qualitative conversational analysis with quantitative sequential pattern analysis. We describe the SCA approach and provide a detailed example as a proof of concept of its use for the analysis of nurse handoff communication in a medical intensive care unit. This novel approach allows us to characterize the conversational structure, clinical content, disruptions in the conversation, and the inherently phasic nature of nurse handoff communication. The characterization of communication patterns highlights the relationships underlying the verbal content of nurse handoffs with specific emphasis on: the interactive nature of conversation, relevance of role-based (incoming, outgoing) communication requirements, clinical content focus on critical patient-related events, and discussion of pending patient management tasks. We also discuss the applicability of the SCA approach as a method for providing in-depth understanding of the dynamics of communication in other settings and domains. Copyright © 2015 Elsevier Inc. All rights reserved.
Patient Handoffs in Obstetrics and Gynecology: A Vital Link in Patient Safety
Directory of Open Access Journals (Sweden)
John Yeh
2009-01-01
Full Text Available Inadequate patient handoffs have been an area of focus for patient safety improvement. Insufficient communication and risks or “shortcuts” taken by staff members during handoffs could negatively affect the safety of patients in a department of obstetrics and gynecology. Other factors that contribute to inadequate handoffs are the caregiver feeling fatigued or stressed, level of urgency, volume of information, language barriers, noise, lighting, ambiguity of describing treatment, not allotting enough time for questions asked, and/or interruptions from other staff members. There have been several methods developed for improving the handoff process, such as the mnemonic devices SBAR, SHARQ, I PASS THE BATON, and the 5 P's. A new method for improving the quality of patient handoffs has been developed and presented in this article. It is a mnemonic device entitled “HANDOFFS”. It covers key aspects of what a handoff process should entail. Teamwork is essential to effective communication, and by using a mnemonic such as this, team members can work together in a more positive and accessible environment that will result in improved patient safety.
Nurse-to-nurse shift handoffs on medical-surgical units: A process within the flow of nursing care.
Ernst, Katherine M; McComb, Sara A; Ley, Cathaleen
2018-03-01
To qualitatively investigate the medical-surgical nurse shift handoff as a process within the workflow of the exchanging nurses. Specifically, this study sought to identify the ideal handoff, ways the handoff deviated from ideal, and subsequent effect on nursing care. The functions as well as information content of the handoff have been studied. However, typical studies look at the handoff as an isolated activity utilising nurse perceptions as the primary measure of quality. Semi-structured focus groups were conducted to discuss nurses' perspectives on ideal handoffs, ways handoffs deviate from the ideal including frequent and significant deviations and the effects on subsequent care. Twenty-one medical-surgical nurses participated in one of five audio-taped focus group sessions. Three sessions were conducted at hospital A; two sessions at unaffiliated hospital B. The general inductive approach was used to analyse verbatim transcripts. Transcript segments relevant for answering the research questions were coded as ideal or not ideal. Conceptual themes were then developed. Two major themes were identified: teams/teamwork and constructing and communicating a shared understanding of the patients' conditions. The importance of nurse preparatory activities was revealed including the incoming nurses reading patients' health records and outgoing nurses rounding on patients. The impact of shared expectations was identified across the team, where teams include, in addition to the two nurses, the electronic health record, other hospital staff and patients/families with a bedside handoff. New potential nurse-centred process and outcome measures were proposed. Evaluating handoffs by their effect on the nursing performance both during and after the handoff offers a new framework to objectively assess handoff effectiveness. The handoff is a process which may significantly affect the incoming nurse's transition into and administration of nursing care. © 2018 John Wiley & Sons
Ostwald ripening in two-phase mixtures
International Nuclear Information System (INIS)
Voorhees, P.W.
1982-01-01
Experimental measurements of the temperature of a rapidly solidified solid-liquid mixture have been made over a range of volume fractions solid 0.23 to 0.95. These experiments demonstrate the viability of measuring the change in interfacial curvature with time via precision thermometry. The experimental measurements also indicate that there is no radical change in interface morphology over a wide range of volume fractions solid. A solution to the multi-particle diffusion problem (MDP) has been constructed through the use of potential theory. The solution to the MDP was used to describe the diffusion field within a coarsening two-phase mixture consisting of dispersed spherical second-phase particles. Since this theory is based upon the MDP, interparticle diffusional interactions are specifically included in the treatment. As a result, the theory yields, for the first time, insights into the influence of the local distribution of curvature on a particle's coarsening rate. The effect of interparticle interactions on the collective behavior of an ensemble of coarsening particles was also investigated. It was found that any arbitrary distribution of particle radii will tend to a specific time independent distribution when the particle radii are scaled by the average particle radius. Furthermore, it was determined that with increasing volume fraction of coarsening phase, these time independent distributions become broader and more symmetric. It was also found that the ripening kinetics, as measured by the growth rate of the average particle size, increases by a factor of five upon increasing the volume fraction of coarsening phase from zero to 0.5
Unpacking the Complexity of Patient Handoffs Through the Lens of Cognitive Load Theory.
Young, John Q; Ten Cate, Olle; O'Sullivan, Patricia S; Irby, David M
2016-01-01
The transfer of a patient from one clinician to another is a high-risk event. Errors are common and lead to patient harm. More effective methods for learning how to give and receive sign-out is an important public health priority. Performing a handoff is a complex task. Trainees must simultaneously apply and integrate clinical, communication, and systems skills into one time-limited and highly constrained activity. The task demands can easily exceed the information-processing capacity of the trainee, resulting in impaired learning and performance. Appreciating the limits of working memory can help identify the challenges that instructional techniques and research must then address. Cognitive load theory (CLT) identifies three types of load that impact working memory: intrinsic (task-essential), extraneous (not essential to task), and germane (learning related). The authors generated a list of factors that affect a trainee's learning and performance of a handoff based on CLT. The list was revised based on feedback from experts in medical education and in handoffs. By consensus, the authors associated each factor with the type of cognitive load it primarily effects. The authors used this analysis to build a conceptual model of handoffs through the lens of CLT. The resulting conceptual model unpacks the complexity of handoffs and identifies testable hypotheses for educational research and instructional design. The model identifies features of a handoff that drive extraneous, intrinsic, and germane load for both the sender and the receiver. The model highlights the importance of reducing extraneous load, matching intrinsic load to the developmental stage of the learner and optimizing germane load. Specific CLT-informed instructional techniques for handoffs are explored. Intrinsic and germane load are especially important to address and include factors such as knowledge of the learner, number of patients, time constraints, clinical uncertainties, overall patient
Vapor Compressor Driven Hybrid Two-Phase Loop, Phase I
National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will demonstrate a vapor compressor driven hybrid two-phase loop technology. The hybrid two-phase loop...
Thermo-fluid dynamics of two-phase flow
Ishii, Mamoru; Ishii, Mamoru; Ishii, M
2006-01-01
Provides a very systematic treatment of two phase flow problems from a theoretical perspectiveProvides an easy to follow treatment of modeling and code devlopemnt of two phase flow related phenomenaCovers new results of two phase flow research such as coverage of fuel cells technology.
Two-phase flow patterns and their relationship to two-phase heat transfer
International Nuclear Information System (INIS)
Hewitt, G.F.
1977-01-01
The objective of this lecture was to discuss the general nature of two phase flows, to define the various regimes of flow and to discuss the influence of these regimes on the heat transfer processes taking place. The methods of regime delineation are briefly described and regime descriptions introduced for both vertical and horizontal flows in tubes. ''Flow regime maps'' have been widely used as an aid to determination of the regime which occurs in a given situation. Some of the more widely used maps are described and the limitations of this approach discussed. There have been many attempts to obtain a better phenomenological description of two phase flow patterns. In this lecture, these attempts will be reviewed in the context of the bubble/plug, plug/churn and churn/annular flow transitions in vertical flow. The latter two transitions are related to the flooding/flow reversal phenomena. For horizontal flows, recent work on the onset of slugging will be reviewed. In flows with evaporation or condensation, the situation is influenced by departures from thermodynamic equilibrium and the types of departure observed are discuss briefly. Flow patterns and their relationships with heat transfer regimes are then reviewed for the case of condensation in horizontal tubes and evaporation in vertical tubes
Gagnier, Joel J; Derosier, Joseph M; Maratt, Joseph D; Hake, Mark E; Bagian, James P
2016-06-01
To develop, implement and test the effect of a handoff tool for orthopaedic trauma residents that reduces adverse events associated with the omission of critical information and the transfer of erroneous information. Components of this project included a literature review, resident surveys and observations, checklist development and refinement, implementation and evaluation of impact on adverse events through a chart review of a prospective cohort compared with a historical control group. Large teaching hospital. Findings of a literature review were presented to orthopaedic residents, epidemiologists, orthopaedic surgeons and patient safety experts in face-to-face meetings, during which we developed and refined the contents of a resident handoff tool. The tool was tested in an orthopaedic trauma service and its impact on adverse events was evaluated through a chart review. The handoff tool was developed and refined during the face-to-face meetings and a pilot implementation. Adverse event data were collected on 127 patients (n = 67 baseline period; n = 60 test period). A handoff tool for use by orthopaedic residents. Adverse events in patients handed off by orthopaedic trauma residents. After controlling for age, gender and comorbidities, testing resulted in fewer events per person (25-27% reduction; P < 0.10). Preliminary evidence suggests that our resident handoff tool may contribute to a decrease in adverse events in orthopaedic patients. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.
Spectrum Handoffs Based on Preemptive Repeat Priority Queue in Cognitive Radio Networks
Directory of Open Access Journals (Sweden)
Xiaolong Yang
2016-07-01
Full Text Available Cognitive radio can significantly improve the spectrum efficiency, and spectrum handoff is considered as an important functionality to guarantee the quality of service (QoS of primary users (PUs and the continuity of data transmission of secondary users (SUs. In this paper, we propose an analytical framework based on a preemptive repeat identical (PRI M/G/1 queuing network model to characterize spectrum handoff behaviors with general service time distribution of both primary and secondary connections, multiple interruptions and transmission delay resulting from the appearance of primary connections. Then, we derive the close-expression of the extended data delivery and the system sojourn time in both staying and changing scenarios. In addition, based on analysis of spectrum handoff behaviors resulting from multiple interruptions caused by the appearance of the primary connections, we investigate the traffic-adaptive policy, by which the considered SU will optimally adjust its handoff spectrum policy. Moreover, we investigate the admissible region and provide the reference for designing the admission control rule for the arriving secondary connection requests. Finally, simulation results verify that our proposed analytical framework is reasonable and can provide the reference for executing the optimal spectrum handoff strategy and designing the admission control rule for the SU in cognitive radio networks.
System identification on two-phase flow stability
International Nuclear Information System (INIS)
Wu Shaorong; Zhang Youjie; Wang Dazhong; Bo Jinghai; Wang Fei
1996-01-01
The theoretical principle, experimental method and results of interrelation analysis identification for the instability of two-phase flow are described. A completely new concept of test technology and method on two-phase flow stability was developed by using he theory of information science on system stability and system identification for two-phase flow stability in thermo-physics field. Application of this method would make it possible to identify instability boundary of two-phase flow under stable operation conditions of two-phase flow system. The experiment was carried out on the thermohydraulic test system HRTL-5. Using reverse repeated pseudo-random sequences of heating power as input signal sources and flow rate as response function in the test, the two-phase flow stability and stability margin of the natural circulation system are investigated. The effectiveness and feasibility of identifying two-phase flow stability by using this system identification method were experimentally demonstrated. Basic data required for mathematics modeling of two-phase flow and analysis of two-phase flow stability were obtained, which are useful for analyzing, monitoring of the system operation condition, and forecasting of two-phase flow stability in engineering system
A review of damping of two-phase flows
International Nuclear Information System (INIS)
Hara, Fumio
1993-01-01
Damping of two-phase flows has been recognized as one of the most unknown parameters in analyzing vibrational characteristics of structures subjected to two-phase flows since it seems to be influenced by many physical parameters involved in the physics of dynamic energy dissipation of a vibrating structure, for example, liquid viscosity, surface tension, flow velocity, mass ratio, frequency, void fraction, flow regime and so forth. This paper deals with a review of scientific works done to date on the damping of two phase flows and discussions about what has been clarified and what has not been known to us, or what kinds of research are needed about two-phase flow damping. The emphasis is put on the definition of two-phase fluid damping, damping measurement techniques, damping characteristics in relation to two phase flow configurations, and damping generation mechanisms
Forced two phase helium cooling of large superconducting magnets
International Nuclear Information System (INIS)
Green, M.A.; Burns, W.A.; Taylor, J.D.
1979-08-01
A major problem shared by all large superconducting magnets is the cryogenic cooling system. Most large magnets are cooled by some variation of the helium bath. Helium bath cooling becomes more and more troublesome as the size of the magnet grows and as geometric constraints come into play. An alternative approach to cooling large magnet systems is the forced flow, two phase helium system. The advantages of two phase cooling in many magnet systems are shown. The design of a two phase helium system, with its control dewar, is presented. The paper discusses pressure drop of a two phase system, stability of a two phase system and the method of cool down of a two phase system. The results of experimental measurements at LBL are discussed. Included are the results of cool down and operation of superconducting solenoids
Warm Handoffs: a Novel Strategy to Improve End-of-Rotation Care Transitions.
Saag, Harry S; Chen, Jingjing; Denson, Joshua L; Jones, Simon; Horwitz, Leora; Cocks, Patrick M
2018-01-01
Hospitalized medical patients undergoing transition of care by house staff teams at the end of a ward rotation are associated with an increased risk of mortality, yet best practices surrounding this transition are lacking. To assess the impact of a warm handoff protocol for end-of-rotation care transitions. A large, university-based internal medicine residency using three different training sites. PGY-2 and PGY-3 internal medicine residents. Implementation of a warm handoff protocol whereby the incoming and outgoing residents meet at the hospital to sign out in-person and jointly round at the bedside on sicker patients using a checklist. An eight-question survey completed by 60 of 99 eligible residents demonstrated that 85% of residents perceived warm handoffs to be safer for patients (p rotation (p rotation care transitions. Additional studies analyzing patient outcomes will be needed to assess the impact of this strategy.
Analysis and study of a handoff scheme with multiple priority strategies
Institute of Scientific and Technical Information of China (English)
李波; 吴成柯; 椋本介士; 福田明
2000-01-01
A handoff scheme with the combination of channel reservation and preemptive priority in integrated voice/data cellular mobile systems is proposed. In the scheme, calls are divided into three different classes: handoff voice calls, originating voice calls, and data calls. An access strategy with the combination of channel reservation and preemptive priority is provided to a handoff voice call. Furthermore, in order to improve the system capacity for the total voice traffic, preemptive priority is also given to partial originating voice calls. The system is modeled by a two-dimensional Markov chain. Both the iteration method and the approximate method are used to calculate and analyze some of the most important performance measures of the system. It is shown that our scheme can provide better quality of services for mobile subscribers.
An 802.11k Compliant Framework for Cooperative Handoff in Wireless Networks
Directory of Open Access Journals (Sweden)
Korakis Thanasis
2009-01-01
Full Text Available Abstract In IEEE 802.11-based wireless networks, the stations (STAs are associated with the available access points (APs and communicate through them. In traditional handoff schemes, the STAs get information about the active APs in their neighborhood by scanning the available channels and listening to transmitted beacons. This paper proposes an 802.11k compliant framework for cooperative handoff where the STAs are informed about the active APs by exchanging information with neighboring STAs. Besides, the APs share useful information that can be used by the STAs in a handoff process. In this way, we minimize the delay of the scanning procedure. We evaluate the performance of our mechanisms through OPNET simulations. We demonstrate that our scheme reduces the scanning delay up to 92%. Consequently, our system is more capable in meeting the needs of QoS-sensitive applications.
Directory of Open Access Journals (Sweden)
Shilian Zheng
2014-08-01
Full Text Available In a dynamic spectrum access network, when a primary user (licensed user reappears on the current channel, cognitive radios (CRs need to vacate the channel and reestablish a communications link on some other channel to avoid interference to primary users, resulting in spectrum handoff. This paper studies the problem of designing target channel visiting order for spectrum handoff to minimize expected spectrum handoff delay. A particle swarm optimization (PSO based algorithm is proposed to solve the problem. Simulation results show that the proposed algorithm performs far better than random target channel visiting scheme. The solutions obtained by PSO are very close to the optimal solution which further validates the effectiveness of the proposed method.
Numerical method for two-phase flow discontinuity propagation calculation
International Nuclear Information System (INIS)
Toumi, I.; Raymond, P.
1989-01-01
In this paper, we present a class of numerical shock-capturing schemes for hyperbolic systems of conservation laws modelling two-phase flow. First, we solve the Riemann problem for a two-phase flow with unequal velocities. Then, we construct two approximate Riemann solvers: an one intermediate-state Riemann solver and a generalized Roe's approximate Riemann solver. We give some numerical results for one-dimensional shock-tube problems and for a standard two-phase flow heat addition problem involving two-phase flow instabilities
Per-energy capacity and handoff strategies in macro-femto cells environment
Leon, Jaime; Bader, Faouzi; Alouini, Mohamed-Slim
2012-01-01
The effect of smaller cells being placed in a heterogenous network can improve the way energy is spent in a system. Handoff strategies, bandwidth allocation and path loss calculations in different scenarios show how this is possible as the size of the cell is decreased. As a result, users can experience the same or better capacities while maximising the capacity per unit energy spent. The per-energy capacity metric is introduced as a suitable handoff strategy that considers the energy spent as an important criterion. © 2012 IEEE.
Per-energy capacity and handoff strategies in macro-femto cells environment
Leon, Jaime
2012-04-01
The effect of smaller cells being placed in a heterogenous network can improve the way energy is spent in a system. Handoff strategies, bandwidth allocation and path loss calculations in different scenarios show how this is possible as the size of the cell is decreased. As a result, users can experience the same or better capacities while maximising the capacity per unit energy spent. The per-energy capacity metric is introduced as a suitable handoff strategy that considers the energy spent as an important criterion. © 2012 IEEE.
Two-phase-flow cooling concept for fusion reactor blankets
International Nuclear Information System (INIS)
Bender, D.J.; Hoffman, M.A.
1977-01-01
The new two-phase heat transfer medium proposed is a mixture of potassium droplets and helium which permits blanket operation at hih temperature and low pressure, while maintaining acceptable pumping power requirements, coolant ducting size, and blanket structure fractions. A two-phase flow model is described. The helium pumping power and the primary heat transfer loop are discussed
Two-phase flow characterisation by nuclear magnetic resonance
International Nuclear Information System (INIS)
Leblond, J.; Javelot, S.; Lebrun, D.; Lebon, L.
1998-01-01
The results presented in this paper demonstrate the performance of the PFGSE-NMR to obtain a complete characterisation of two-phase flows. Different methods are proposed to characterise air-water flows in different regimes: stationary two-phase flows and flows in transient condition. Finally a modified PFGSE is proposed to analyse the turbulence of air-water bubbly flow. (author)
Unsteady State Two Phase Flow Pressure Drop Calculations
Ayatollahi, Shahaboddin
1992-01-01
A method is presented to calculate unsteady state two phase flow in a gas-liquid line based on a quasi-steady state approach. A computer program for numerical solution of this method was prepared. Results of calculations using the computer program are presented for several unsteady state two phase flow systems
A Complex Solar Coronal Jet with Two Phases
Energy Technology Data Exchange (ETDEWEB)
Chen, Jie; Su, Jiangtao; Deng, Yuanyong [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Priest, E. R., E-mail: chenjie@bao.ac.cn [Mathematical Institute, University of St Andrews, North Haugh, St Andrews, KY16 9SS (United Kingdom)
2017-05-01
Jets often occur repeatedly from almost the same location. In this paper, a complex solar jet was observed with two phases to the west of NOAA AR 11513 on 2012 July 2. If it had been observed at only moderate resolution, the two phases and their points of origin would have been regarded as identical. However, at high resolution we find that the two phases merge into one another and the accompanying footpoint brightenings occur at different locations. The phases originate from different magnetic patches rather than being one phase originating from the same patch. Photospheric line of sight (LOS) magnetograms show that the bases of the two phases lie in two different patches of magnetic flux that decrease in size during the occurrence of the two phases. Based on these observations, we suggest that the driving mechanism of the two successive phases is magnetic cancellation of two separate magnetic fragments with an opposite-polarity fragment between them.
Superplastic flow of two-phase ceramics containing rigid inclusions-zirconia/mullite composites
International Nuclear Information System (INIS)
Yoon, C.K.; Chen, I.W.
1990-01-01
A continuum theory for non-newtonian flow of a two-phase composite containing rigid inclusions is presented. It predicts flow suppression by a factor of (1 - V) q , where V is the volume fraction of the rigid inclusion and q depends on the stress exponent and the inclusion shape. Stress concentrations in the rigid inclusion have also been evaluated. As the stress exponent increases, flow suppression is more pronounced even though stress concentration is less severe. To test this theory, superplastic flow of zirconia/mullite composites, in which zirconia is a soft, non-Newtonian super-plastic matrix and mullite is a rigid phase of various size, shape, and amount, is studied. The continuum theory is found to describe the two-phase superplastic flow reasonably well
Anwar, Farhat; Masud, Mosharrof H.; Latif, Suhaimi A.
2013-12-01
Mobile IPv6 (MIPv6) is one of the pioneer standards that support mobility in IPv6 environment. It has been designed to support different types of technologies for providing seamless communications in next generation network. However, MIPv6 and subsequent standards have some limitations due to its handoff latency. In this paper, a fuzzy logic based mechanism is proposed to reduce the handoff latency of MIPv6 for Layer 2 (L2) by scanning the Access Points (APs) while the Mobile Node (MN) is moving among different APs. Handoff latency occurs when the MN switches from one AP to another in L2. Heterogeneous network is considered in this research in order to reduce the delays in L2. Received Signal Strength Indicator (RSSI) and velocity of the MN are considered as the input of fuzzy logic technique. This technique helps the MN to measure optimum signal quality from APs for the speedy mobile node based on fuzzy logic input rules and makes a list of interfaces. A suitable interface from the list of available interfaces can be selected like WiFi, WiMAX or GSM. Simulation results show 55% handoff latency reduction and 50% packet loss improvement in L2 compared to standard to MIPv6.
International Nuclear Information System (INIS)
Anwar, Farhat; Masud, Mosharrof H; Latif, Suhaimi A
2013-01-01
Mobile IPv6 (MIPv6) is one of the pioneer standards that support mobility in IPv6 environment. It has been designed to support different types of technologies for providing seamless communications in next generation network. However, MIPv6 and subsequent standards have some limitations due to its handoff latency. In this paper, a fuzzy logic based mechanism is proposed to reduce the handoff latency of MIPv6 for Layer 2 (L2) by scanning the Access Points (APs) while the Mobile Node (MN) is moving among different APs. Handoff latency occurs when the MN switches from one AP to another in L2. Heterogeneous network is considered in this research in order to reduce the delays in L2. Received Signal Strength Indicator (RSSI) and velocity of the MN are considered as the input of fuzzy logic technique. This technique helps the MN to measure optimum signal quality from APs for the speedy mobile node based on fuzzy logic input rules and makes a list of interfaces. A suitable interface from the list of available interfaces can be selected like WiFi, WiMAX or GSM. Simulation results show 55% handoff latency reduction and 50% packet loss improvement in L2 compared to standard to MIPv6
Handoff Between a Wireless Local Area Network (WLAN and a Wide Area Network (UMTS
Directory of Open Access Journals (Sweden)
J. Sánchez–García
2009-04-01
Full Text Available With the appearance of wireless data networks with variable coverage, band width and handoff strategies, in addition to the growing need of mobile nodes to freely roam among these networks, the support of an interoperable handoff strategy for hybrid wireless data networks is a requirement that needs to be addressed. The current trend in wireless data networks is to offer multimedia access to mobile users by employing the wireless local area network (WLAN standard IEEE802.11 while the user is located indoors; on the other hand, 3rd generation wireless networks (WAN are being deployed to provide coverage while the user is located outdoors. As a result, the mobile node will require a handoff mechanism to allow the user to roam between WLAN and WAN environments; up to this date several strategies have been proposed (Sattari et al., 2004 and HyoJin, 2007 in the literature, however, none of these have been standardized to date. To support this interoperability, the mobile node must be equipped with configurable wireless inetrfaces to support the handoff between the WLAN and the WAN networks. In this work a new algorithm is proposed to allow a mobile node to roam between a wireless local area network (IEEE802.11 and a WAN base station (UMTS, while employing IP mobility support. The algorithm is implemented in simulation, using the Network Simulator 2.
Practicing Handoffs Early: Applying a Clinical Framework in the Anatomy Laboratory
Lazarus, Michelle D.; Dos Santos, Jason A.; Haidet, Paul M.; Whitcomb, Tiffany L.
2016-01-01
The anatomy laboratory provides an ideal environment for the integration of clinical contexts as the willed-donor is often regarded as a student's "first patient." This study evaluated an innovative approach to peer teaching in the anatomy laboratory using a clinical handoff context. The authors introduced the "Situation,…
Directory of Open Access Journals (Sweden)
Krishan Kumar
2017-01-01
Full Text Available When a mobile network changes its point of attachments in Cognitive Radio (CR vehicular networks, the Mobile Router (MR requires spectrum handoff. Network Mobility (NEMO in CR vehicular networks is concerned with the management of this movement. In future NEMO based CR vehicular networks deployment, multiple radio access networks may coexist in the overlapping areas having different characteristics in terms of multiple attributes. The CR vehicular node may have the capability to make call for two or more types of nonsafety services such as voice, video, and best effort simultaneously. Hence, it becomes difficult for MR to select optimal network for the spectrum handoff. This can be done by performing spectrum handoff using Multiple Attributes Decision Making (MADM methods which is the objective of the paper. The MADM methods such as grey relational analysis and cost based methods are used. The application of MADM methods provides wider and optimum choice among the available networks with quality of service. Numerical results reveal that the proposed scheme is effective for spectrum handoff decision for optimal network selection with reduced complexity in NEMO based CR vehicular networks.
Alghenaimi, Said
2012-01-01
In healthcare institutions, work must continue 24 hours a day, 7 days a week. A team of nurses is needed to provide around-the-clock patient care, and this process requires transfer of patient care responsibilities, a process known as a "handoff." The present study explored the role of electronic health records in structuring handoff…
Directory of Open Access Journals (Sweden)
Lin Ma
2013-11-01
Full Text Available Vehicular communication platforms that provide real-time access to wireless networks have drawn more and more attention in recent years. IEEE 802.11p is the main radio access technology that supports communication for high mobility terminals, however, due to its limited coverage, IEEE 802.11p is usually deployed by coupling with cellular networks to achieve seamless mobility. In a heterogeneous cellular/802.11p network, vehicular communication is characterized by its short time span in association with a wireless local area network (WLAN. Moreover, for the media access control (MAC scheme used for WLAN, the network throughput dramatically decreases with increasing user quantity. In response to these compelling problems, we propose a reinforcement sensor (RFS embedded vertical handoff control strategy to support mobility management. The RFS has online learning capability and can provide optimal handoff decisions in an adaptive fashion without prior knowledge. The algorithm integrates considerations including vehicular mobility, traffic load, handoff latency, and network status. Simulation results verify that the proposed algorithm can adaptively adjust the handoff strategy, allowing users to stay connected to the best network. Furthermore, the algorithm can ensure that RSUs are adequate, thereby guaranteeing a high quality user experience.
Industrial aspects of gas-liquid two-phase flow
International Nuclear Information System (INIS)
Hewitt, G.F.
1977-01-01
The lecture begins by reviewing the various types of plant in which two phase flow occurs. Specifically, boiling plant, condensing plant and pipelines are reviewed, and the various two phase flow problems occurring in them are described. Of course, many other kinds of chemical engineering plant involve two phase flow, but are somewhat outside the scope of this lecture. This would include distillation columns, vapor-liquid separators, absorption towers etc. Other areas of industrial two phase flow which have been omitted for space reasons from this lecture are those concerned with gas/solids, liquid/solid and liquid/liquid flows. There then follows a description of some of the two phase flow processes which are relevant in industrial equipment and where special problems occur. The topics chosen are as follows: (1) pressure drop; (2) horizontal tubes - separation effects non-uniformites in heat transfer coefficient, effect of bends on dryout; (3) multicomponent mixtures - effects in pool boiling, mass transfer effects in condensation and Marangoni effects; (4) flow distribution - manifold problems in single phase flow, separation effects at a single T-junction in two phase flow and distribution in manifolds in two phase flow; (5) instability - oscillatory instability, special forms of instability in cryogenic systems; (6) nucleate boiling - effect of variability of surface, unresolved problems in forced convective nucleate boiling; and (7) shell side flows - flow patterns, cross flow boiling, condensation in cross flow
Modeling two-phase flow in PEM fuel cell channels
Energy Technology Data Exchange (ETDEWEB)
Wang, Yun; Basu, Suman; Wang, Chao-Yang [Electrochemical Engine Center (ECEC), and Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)
2008-05-01
This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M{sup 2} formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels. (author)
Research on one-dimensional two-phase flow
International Nuclear Information System (INIS)
Adachi, Hiromichi
1988-10-01
In Part I the fundamental form of the hydrodynamic basic equations for a one-dimensional two-phase flow (two-fluid model) is described. Discussions are concentrated on the treatment of phase change inertial force terms in the equations of motion and the author's equations of motion which have a remarkable uniqueness on the following three points. (1) To express force balance of unit mass two-phase fluid instead of that of unit volume two-phase fluid. (2) To pick up the unit existing mass and the unit flowing mass as the unit mass of two-phase fluid. (3) To apply the kinetic energy principle instead of the momentum low in the evaluation of steady inertial force term. In these three, the item (1) is for excluding a part of momentum change or kinetic energy change due to mass change of the examined part of fluid, which is independent of force. The item (2) is not to introduce a phenomenological physical model into the evaluation of phase change inertial force term. And the item (3) is for correctly applying the momentum law taking into account the difference of representative velocities between the main flow fluid (vapor phase or liquid phase) and the phase change part of fluid. In Part II, characteristics of various kinds of high speed two-phase flow are clarified theoretically by the basic equations derived. It is demonstrated that the steam-water two-phase critical flow with violent flashing and the airwater two-phase critical flow without phase change can be described with fundamentally the same basic equations. Furthermore, by comparing the experimental data from the two-phase critical discharge test and the theoretical prediction, the two-phase discharge coefficient, C D , for large sharp-edged orifice is determined as the value which is not affected by the experimental facility characteristics, etc. (author)
Regimes of Two-Phase Flow in Short Rectangular Channel
Chinnov, Evgeny A.; Guzanov, Vladimir V.; Cheverda, Vyacheslav; Markovich, Dmitry M.; Kabov, Oleg A.
2009-08-01
Experimental study of two-phase flow in the short rectangular horizontal channel with height 440 μm has been performed. Characteristics of liquid motion inside the channel have been registered and measured by the Laser Induced Fluorescence technique. New information has allowed determining more precisely the characteristics of churn regime and boundaries between different regimes of two-phase flow. It was shown that formation of some two-phase flow regimes and transitions between them are determined by instability of the flow in the lateral parts of the channel.
What types of investors generate the two-phase phenomenon?
Ryu, Doojin
2013-12-01
We examine the two-phase phenomenon described by Plerou, Gopikrishnan, and Stanley (2003) [1] in the KOSPI 200 options market, one of the most liquid options markets in the world. By analysing a unique intraday dataset that contains information about investor type for each trade and quote, we find that the two-phase phenomenon is generated primarily by domestic individual investors, who are generally considered to be uninformed and noisy traders. In contrast, our empirical results indicate that trades by foreign institutions, who are generally considered informed and sophisticated investors, do not exhibit two-phase behaviour.
State of the art: two-phase flow calibration techniques
International Nuclear Information System (INIS)
Stanley, M.L.
1977-01-01
The nuclear community faces a particularly difficult problem relating to the calibration of instrumentation in a two-phase flow steam/water environment. The rationale of the approach to water reactor safety questions in the United States demands that accurate measurements of mass flows in a decompressing two-phase flow be made. An accurate measurement dictates an accurate calibration. This paper addresses three questions relating to the state of the art in two-phase calibration: (1) What do we mean by calibration. (2) What is done now. (3) What should be done
Two-phase-flow models and their limitations
International Nuclear Information System (INIS)
Ishii, M.; Kocamustafaogullari, G.
1982-01-01
An accurate prediction of transient two-phase flow is essential to safety analyses of nuclear reactors under accident conditions. The fluid flow and heat transfer encountered are often extremely complex due to the reactor geometry and occurrence of transient two-phase flow. Recently considerable progresses in understanding and predicting these phenomena have been made by a combination of rigorous model development, advanced computational techniques, and a number of small and large scale supporting experiments. In view of their essential importance, the foundation of various two-phase-flow models and their limitations are discussed in this paper
Thermo-Fluid Dynamics of Two-Phase Flow
Ishii, Mamrou
2011-01-01
"Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part
Strength and fracture of two-phase alloys: a comparison of two alloy systems
International Nuclear Information System (INIS)
Gurland, J.
1978-01-01
The functional roles of the hard and soft constituents in the deformation and fracture of two-phase alloys are discussed on the basis of two commercially important alloy systems, namely spheroidized carbon steels and cemented carbides, WC-Co. A modified rule of mixtures provides a structural approach to the yield and flow strength. Consideration of the fracture toughness is attempted by means of a phenomenological modelling of the fracture process on the microscale. While there are large differences in properties between the two alloys, the deformation and fracture processes show broad smilarities which are associated with the features of the interaction between constituents common to both alloys
Transient two-phase performance of LOFT reactor coolant pumps
International Nuclear Information System (INIS)
Chen, T.H.; Modro, S.M.
1983-01-01
Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed
Two-phase systems. Fundamentals and industrial applications
International Nuclear Information System (INIS)
Woillez, Jacques
2014-01-01
Two-phase flows are omnipresent in industrial processes in different sectors with the behaviour and control of non-mixing mixtures of gas and liquids, of several liquids, of solids and fluids which are present in the production of raw materials, in the environment, in energy production, in chemistry, in pharmaceutical or food industry. The author presents the fundamentals elements which are needed to perform hardware predictive calculations and to understand typical phenomena associated with these flows. The chapters address fluids mechanics (movement equations, Bernoulli equation, load losses, turbulence, heat exchange coefficients, thermodynamics, compressible flows), two-phase systems (characteristic values, modes of appearance of two-phase flows, conduct flows, suspension mechanics, mass transfers, similarity, numerical simulation), the applications (energy production, agitation and mixing, phase separation, sprays), and peculiar phenomena (Marangoni effect, the tea cup effect, entry jets, water hammer effect, sound speed, two-phase pumping, fluidization)
Visual Analysis of Inclusion Dynamics in Two-Phase Flow.
Karch, Grzegorz Karol; Beck, Fabian; Ertl, Moritz; Meister, Christian; Schulte, Kathrin; Weigand, Bernhard; Ertl, Thomas; Sadlo, Filip
2018-05-01
In single-phase flow visualization, research focuses on the analysis of vector field properties. In two-phase flow, in contrast, analysis of the phase components is typically of major interest. So far, visualization research of two-phase flow concentrated on proper interface reconstruction and the analysis thereof. In this paper, we present a novel visualization technique that enables the investigation of complex two-phase flow phenomena with respect to the physics of breakup and coalescence of inclusions. On the one hand, we adapt dimensionless quantities for a localized analysis of phase instability and breakup, and provide detailed inspection of breakup dynamics with emphasis on oscillation and its interplay with rotational motion. On the other hand, we present a parametric tightly linked space-time visualization approach for an effective interactive representation of the overall dynamics. We demonstrate the utility of our approach using several two-phase CFD datasets.
Metrology of two-phase flow: different methods
International Nuclear Information System (INIS)
Delhaye, J.M.; Galaup, J.P.; Reocreux, M.; Ricque, R.
Nine papers are presented concerning different methods of measuring two-phase flow. Some of the methods and equipment discussed include: radiation absorption, electromagnetic flowmeter, anemometry, resistance probes, phase indicating microthermocouples, optical probes, sampling methods, and pitot tubes
Qualitative behaviour of incompressible two-phase flows with phase ...
Indian Academy of Sciences (India)
Jan Prüss
2017-11-07
Nov 7, 2017 ... Qualitative behaviour of incompressible two-phase flows with phase ... Germany. 2Graduate School of Human and Environmental Studies, Kyoto University, ... Note that j is a dummy variable as it can be eliminated from the ...
Two-phase flow patterns in horizontal rectangular minichannel
Directory of Open Access Journals (Sweden)
Ron’shin Fedor
2016-01-01
Full Text Available The two-phase flow in a short horizontal channel of rectangular cross-section of 1 × 19 mm2 has been studied experimentally. Five conventional two-phase flow patterns have been detected (bubble, churn, stratified, annular and jet and transitions between them have been determined. It is shown that a change in the width of the horizontal channels has a substantial effect on the boundaries between the flow regimes.
Refrigeration. Two-Phase Flow. Flow Regimes and Pressure Drop
DEFF Research Database (Denmark)
Knudsen, Hans-Jørgen Høgaard
2002-01-01
The note gives the basic definitions used in two-phase flow. Flow regimes and flow regimes map are introduced. The different contributions to the pressure drop are stated together with an imperical correlation from the litterature.......The note gives the basic definitions used in two-phase flow. Flow regimes and flow regimes map are introduced. The different contributions to the pressure drop are stated together with an imperical correlation from the litterature....
Stochastic modelling of two-phase flows including phase change
International Nuclear Information System (INIS)
Hurisse, O.; Minier, J.P.
2011-01-01
Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models. (authors)
Two-phase cooling fluids; Les fluides frigoporteurs diphasiques
Energy Technology Data Exchange (ETDEWEB)
Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Lyon (France)
1997-12-31
In the framework of the diminution of heat transfer fluid consumption, the concept of indirect refrigerating circuits, using cooling intermediate fluids, is reviewed and the fluids that are currently used in these systems are described. Two-phase cooling fluids advantages over single-phase fluids are presented with their thermophysical characteristics: solid fraction, two-phase mixture enthalpy, thermal and rheological properties, determination of heat and mass transfer characteristics, and cold storage through ice slurry
Review on two-phase flow instabilities in narrow spaces
International Nuclear Information System (INIS)
Tadrist, L.
2007-01-01
Instabilities in two-phase flow have been studied since the 1950s. These phenomena may appear in power generation and heat transfer systems where two-phase flow is involved. Because of thermal management in small size systems, micro-fluidics plays an important role. Typical processes must be considered when the channel hydraulic diameter becomes very small. In this paper, a brief review of two-phase flow instabilities encountered in channels having hydraulic diameters greater than 10 mm are presented. The main instability types are discussed according to the existing experimental results and models. The second part of the paper examines two-phase flow instabilities in narrow spaces. Pool and flow boiling cases are considered. Experiments as well as theoretical models existing in the literature are examined. It was found that several experimental works evidenced these instabilities meanwhile only limited theoretical developments exist in the literature. In the last part of the paper an interpretation of the two-phase flow instabilities linked to narrow spaces are presented. This approach is based on characteristic time scales of the two-phase flow and bubble growth in the capillaries
Contribution to the theory of the two phase blowdown phenomenon
International Nuclear Information System (INIS)
Hutcherson, M.N.
1975-12-01
In order to accurately model the two phase portion of a pressure vessel blowdown, it becomes necessary to understand the bubble growth mechanism within the vessel during the early period of the decompression, the two phase flow behavior within the vessel, and the applicability of the available two phase critical flow models to the blowdown transient. To aid in providing answers to such questions, a small scale, separate effects, isothermal blowdown experiment has been conducted in a small pressure vessel. The tests simulated a full open, double ended, guillotine break in a large diameter, short exhaust duct from the vessel. The vaporization process at the initiation of the decompression is apparently that of thermally dominated bubble growth originating from the surface cavities inside the system. Thermodynamic equilibrium of the remaining fluid within the vessel existed in the latter portion of the decompression. A nonuniform distribution of fluid quality within the vessel was also detected in this experiment. By comparison of the experimental results from this and other similar transient, two phase critical flow studies with steady state, small duct, two phase critical flow data, it is shown that transient, two phase critical flow in large ducts appears to be similar to steady state, two phase critical flow in small ducts. Analytical models have been developed to predict the blowdown characteristics of a system during subcooled decompression, the bubble growth regime of blowdown, and also in the nearly dispersed period of depressurization. This analysis indicates that the system pressure history early in the blowdown is dependent on the internal vessel surface area, the internal vessel volume, and also on the exhaust flow area from the system. This analysis also illustrates that the later period of decompression can be predicted based on thermodynamic equilibrium
Xia, Weiwei; Shen, Lianfeng
We propose two vertical handoff schemes for cellular network and wireless local area network (WLAN) integration: integrated service-based handoff (ISH) and integrated service-based handoff with queue capabilities (ISHQ). Compared with existing handoff schemes in integrated cellular/WLAN networks, the proposed schemes consider a more comprehensive set of system characteristics such as different features of voice and data services, dynamic information about the admitted calls, user mobility and vertical handoffs in two directions. The code division multiple access (CDMA) cellular network and IEEE 802.11e WLAN are taken into account in the proposed schemes. We model the integrated networks by using multi-dimensional Markov chains and the major performance measures are derived for voice and data services. The important system parameters such as thresholds to prioritize handoff voice calls and queue sizes are optimized. Numerical results demonstrate that the proposed ISHQ scheme can maximize the utilization of overall bandwidth resources with the best quality of service (QoS) provisioning for voice and data services.
Fluid-elastic vibration in two-phase cross flow
International Nuclear Information System (INIS)
Sasakawa, T.; Serizawa, A.; Kawara, Z.
2003-01-01
The present work aims at clarifying the mechanisms of fluid elastic vibration of tube bundles in two-phase cross flow. The experiment is conducted using air-water two-phase flow under atmospheric pressure. The test section is a 1.03m long transparent acrylic square duct with 128 x 128 mm 2 cross section, which consists of 3 rod-rows with 5 rods in each row. The rods are 125mm long aluminum rods with 22 mm in diameter (p/D=1.45). The natural frequency of rod vibration is about 30Hz. The result indicated a diversion of observed trend in vibration behavior depending on two-phase flow patterns either bubbly flow or churn flow. Specifically, in churn flow, the fluid elastic vibration has been observed to occur when the frequency in void fraction fluctuation approached to the natural frequency of the rods, but this was not the case in fluid elastic vibration in bubbly flow. This fact suggests the existence of mechanisms closely coupled with two-phase flow structures depending on the flow patterns, that is, static two-phase character-controlled mechanism in bubbly flow and dynamic character- controlled in churn flow
Two-phase flow induced parametric vibrations in structural systems
International Nuclear Information System (INIS)
Hara, Fumio
1980-01-01
This paper is divided into two parts concerning piping systems and a nuclear fuel pin system. The significant experimental results concerning the random vibration induced in an L-shaped pipe by air-water two-phase flow and the theoretical analysis of the vibration are described in the first part. It was clarified for the first time that the parametric excitation due to the periodic changes of system mass, centrifugal force and Coriolis force was the mechanism of exciting the vibration. Moreover, the experimental and theoretical analyses of the mechanism of exciting vibration by air-water two-phase flow in a straight, horizontal pipe were carried out, and the first natural frequency of the piping system was strongly related to the dominant frequency of void signals. The experimental results on the vibration of a nuclear fuel pin model in parallel air-water two-phase flow are reported in the latter part. The relations between vibrational strain variance and two-phase flow velocity or pressure fluctuation, and the frequency characteristics of vibrational strain variance were obtained. The theoretical analysis of the dynamic interaction between air-water two-phase flow and a fuel pin structure, and the vibrational instability of fuel pins in alternate air and water slugs or in large bubble flow are also reported. (Kako, I.)
Experimental investigation two phase flow in direct methanol fuel cells
International Nuclear Information System (INIS)
Mat, M. D.; Kaplan, Y.; Celik, S.; Oeztural, A.
2007-01-01
Direct methanol fuel cells (DMFC) have received many attentions specifically for portable electronic applications since it utilize methanol which is in liquid form in atmospheric condition and high energy density of the methanol. Thus it eliminates the storage problem of hydrogen. It also eliminates humidification requirement of polymeric membrane which is a problem in PEM fuel cells. Some electronic companies introduced DMFC prototypes for portable electronic applications. Presence of carbon dioxide gases due to electrochemical reactions in anode makes the problem a two phase problem. A two phase flow may occur at cathode specifically at high current densities due to the excess water. Presence of gas phase in anode region and liquid phase in cathode region prevents diffusion of fuel and oxygen to the reaction sites thus reduces the performance of the system. Uncontrolled pressure buildup in anode region increases methanol crossover through membrane and adversely effect the performance. Two phase flow in both anode and cathode region is very effective in the performance of DMYC system and a detailed understanding of two phase flow for high performance DMFC systems. Although there are many theoretical and experimental studies available on the DMFC systems in the literature, only few studies consider problem as a two-phase flow problem. In this study, an experimental set up is developed and species distributions on system are measured with a gas chromatograph. System performance characteristics (V-I curves) is measured depending on the process parameters (temperature, fuel ad oxidant flow rates, methanol concentration etc)
Formation and properties of two-phase bulk metallic glasses by spark plasma sintering
Energy Technology Data Exchange (ETDEWEB)
Xie Guoqiang, E-mail: xiegq@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Louzguine-Luzgin, D.V. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Inoue, Akihisa [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)
2011-06-15
Research highlights: > Two-phase bulk metallic glasses with high strength and good soft magnetic properties as well as satisfying large-size requirements were produced by spark plasma sintering. > Effects of sintering temperature on thermal stability, microstructure, mechanical and magnetic properties were investigated. > Densified samples were obtained by the spark plasma sintering at above 773 K. - Abstract: Using a mixture of the gas-atomized Ni{sub 52.5}Nb{sub 10}Zr{sub 15}Ti{sub 15}Pt{sub 7.5} and Fe{sub 73}Si{sub 7}B{sub 17}Nb{sub 3} glassy alloy powders, we produced the two-phase bulk metallic glass (BMG) with high strength and good soft magnetic properties as well as satisfying large-size requirements by the spark plasma sintering (SPS) process. Two kinds of glassy particulates were homogeneously dispersed each other. With an increase in sintering temperature, density of the produced samples increased, and densified samples were obtained by the SPS process at above 773 K. Good bonding state among the Ni- and Fe-based glassy particulates was achieved.
Bergman, Alicia A; Flanagan, Mindy E; Ebright, Patricia R; O'Brien, Colleen M; Frankel, Richard M
2016-02-01
Tools and procedures designed to improve end-of-shift handoffs through standardisation of processes and reliance on technology may miss contextually sensitive information about anticipated events that emerges during face-to-face handoff interactions. Such information, what we refer to as anticipatory management communication (AMC), is necessary to ensure timely and safe patient care, but has been little studied and understood. To investigate AMC and the role it plays in nursing and medicine handoffs. Qualitative thematic analysis based on audio recordings of nurse-to-nurse, medical resident-to-resident and surgical intern-to-intern handoffs. 27 nurse handoff dyads and 18 medical resident and surgical intern handoff dyads at one VA Medical Center. Heads-up information was the most frequent type of AMC across all handoff dyads (N=257; 108 resident and 149 nursing). Indirect instructions AMC was used in a little over half the resident handoff dyads, but occurred in all nursing dyads (292 instances). Direct instructions AMC occurred in roughly equal proportion across all dyads but at a modest frequency (N=45; 28 resident and 17 nursing). Direct (if/then) contingency AMC occurred in resident handoffs more frequently than in nursing handoffs (N=32; 30 resident and 2 nursing). The different frequencies for types of AMC likely reflect differences in how residents and nurses work and disparate professional cultures. But, verbal communication in both groups included important information unlikely to be captured in written handoff tools or the electronic medical record, underscoring the importance of direct communication to ensure safe handoffs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Two-Phase Phenomena In Wet Flue Gas Desulfurization Process
International Nuclear Information System (INIS)
Minzer, U.; Moses, E.J.; Toren, M.; Blumenfeld, Y.
1998-01-01
In order to reduce sulfur oxides discharge, Israel Electric Corporation (IEC) is building a wet Flue Gas Desulfurization (FGD) facility at Rutenberg B power station. The primary objective of IEC is to minimize the occurrence of stack liquid discharge and avoid the discharge of large droplets, in order to prevent acid rain around the stack. Liquid discharge from the stack is the integrated outcome of two-phase processes, which are discussed in this work. In order to estimate droplets discharge the present investigation employs analytical models, empirical tests, and numerical calculations of two-phase phenomena. The two-phase phenomena are coupled and therefore cannot be investigated separately. The present work concerns the application of Computational Fluid Dynamic (CFD) as an engineering complementary tool in the IEC investigation
DISTRIBUTION OF TWO-PHASE FLOW IN A DISTRIBUTOR
Directory of Open Access Journals (Sweden)
AZRIDJAL AZIZ
2012-02-01
Full Text Available The flow configuration and distribution behavior of two-phase flow in a distributor made of acrylic resin have been investigated experimentally. In this study, air and water were used as two-phase flow working fluids. The distributor consists of one inlet and two outlets, which are set as upper and lower, respectively. The flow visualization at the distributor was made by using a high–speed camera. The flow rates of air and water flowing out from the upper and lower outlet branches were measured. Effects of inclination angle of the distributor were investigated. By changing the inclination angle from vertical to horizontal, uneven distributions were also observed. The distribution of two-phase flow through distributor tends even flow distribution on the vertical position and tends uneven distribution on inclined and horizontal positions. It is shown that even distribution could be achieved at high superficial velocities of both air and water.
Mathematical modeling of disperse two-phase flows
Morel, Christophe
2015-01-01
This book develops the theoretical foundations of disperse two-phase flows, which are characterized by the existence of bubbles, droplets or solid particles finely dispersed in a carrier fluid, which can be a liquid or a gas. Chapters clarify many difficult subjects, including modeling of the interfacial area concentration. Basic knowledge of the subjects treated in this book is essential to practitioners of Computational Fluid Dynamics for two-phase flows in a variety of industrial and environmental settings. The author provides a complete derivation of the basic equations, followed by more advanced subjects like turbulence equations for the two phases (continuous and disperse) and multi-size particulate flow modeling. As well as theoretical material, readers will discover chapters concerned with closure relations and numerical issues. Many physical models are presented, covering key subjects including heat and mass transfers between phases, interfacial forces and fluid particles coalescence and breakup, a...
Two-phase flow characteristics analysis code: MINCS
International Nuclear Information System (INIS)
Watanabe, Tadashi; Hirano, Masashi; Akimoto, Masayuki; Tanabe, Fumiya; Kohsaka, Atsuo.
1992-03-01
Two-phase flow characteristics analysis code: MINCS (Modularized and INtegrated Code System) has been developed to provide a computational tool for analyzing two-phase flow phenomena in one-dimensional ducts. In MINCS, nine types of two-phase flow models-from a basic two-fluid nonequilibrium (2V2T) model to a simple homogeneous equilibrium (1V1T) model-can be used under the same numerical solution method. The numerical technique is based on the implicit finite difference method to enhance the numerical stability. The code structure is highly modularized, so that new constitutive relations and correlations can be easily implemented into the code and hence evaluated. A flow pattern can be fixed regardless of flow conditions, and state equations or steam tables can be selected. It is, therefore, easy to calculate physical or numerical benchmark problems. (author)
Behavior of pumps conveying two-phase liquid flow
International Nuclear Information System (INIS)
Grison, Pierre; Lauro, J.-F.
1979-01-01
Determination of the two-phase flow (critical or otherwise) through a pump is an essential requirement for complete description of a loss of primary coolant accident in a PWR plant. Theoretical and experimental research at Electricite de France on this subject is described and problems associated with the introduction of a two-phase fluid (with mass transfer) are discussed, with an attempt to single out new phenomena involved and establish their effect on pump behavior. A complementary experimental investigation is described and the results of tests at pressures and temperatures up to 120 bars and 320 0 C respectively are compared with the theoretical model data [fr
Behavior of pumps conveying two-phase liquid flow
Energy Technology Data Exchange (ETDEWEB)
Grison, P; Lauro, J F [Electricite de France, 78 - Chatou. Direction des Etudes et Recherches
1979-01-01
Determination of the two-phase flow (critical or otherwise) through a pump is an essential requirement for complete description of a loss of primary coolant accident in a PWR plant. Theoretical and experimental research at Electricite de France on this subject is described and problems associated with the introduction of a two-phase fluid (with mass transfer) are discussed, with an attempt to single out new phenomena involved and establish their effect on pump behavior. A complementary experimental investigation is described and the results of tests at pressures and temperatures up to 120 bars and 320/sup 0/C respectively are compared with the theoretical model data.
Dynamic Modeling of Phase Crossings in Two-Phase Flow
DEFF Research Database (Denmark)
Madsen, Søren; Veje, Christian; Willatzen, Morten
2012-01-01
by a high resolution finite difference scheme due to Kurganov and Tadmore. The homogeneous formulation requires a set of thermodynamic relations to cover the entire range from liquid to gas state. This leads a number of numerical challenges since these relations introduce discontinuities in the derivative...... of the variables and are usually very slow to evaluate. To overcome these challenges, we use an interpolation scheme with local refinement. The simulations show that the method handles crossing of the saturation lines for both liquid to two-phase and two-phase to gas regions. Furthermore, a novel result obtained...
Two-phase LMMHD mixer-development experiments
International Nuclear Information System (INIS)
Fabris, G.; Dunn, P.F.; Chow, J.C.F.
1978-01-01
The results of a series of experiments conducted to evaluate the fluid mechanical performance of various two-phase LMMHD mixer designs are presented. The results from both flow visualization studies of the local two-phase flows downstream from various mixer-element configurations and local measurements performed to characterize these flows are presented. A conceptual LMMHD mixer design is described that insures the generation of small bubbles, prevents the formation of gas slugs and separated regions, and favors the stabilization of a homogeneous foam flow
Shock wave of vapor-liquid two-phase flow
Institute of Scientific and Technical Information of China (English)
Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN
2008-01-01
The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.
Two-phase flow model with nonequilibrium and critical flow
International Nuclear Information System (INIS)
Sureau, H.; Houdayer, G.
1976-01-01
The model proposed includes the three conservation equations (mass, momentum, energy) applied to the two phase flows and a fourth partial derivative equation which takes into account the nonequilibriums and describes the mass transfer process. With this model, the two phase critical flow tests performed on the Moby-Dick loop (CENG) with several geometries, are interpreted by a unique law. Extrapolations to industrial dimension problems show that geometry and size effects are different from those obtained with earlier models (Zaloudek, Moody, Fauske) [fr
A void fraction model for annular two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Tandon, T.N.; Gupta, C.P.; Varma, H.K.
1985-01-01
An analytical model has been developed for predicting void fraction in two-phase annular flow. In the analysis, the Lockhart-Martinelli method has been used to calculate two-phase frictional pressure drop and von Karman's universal velocity profile is used to represent the velocity distribution in the annular liquid film. Void fractions predicted by the proposed model are generally in good agreement with a available experimental data. This model appears to be as good as Smith's correlation and better than the Wallis and Zivi correlations for computing void fraction.
Mechanistic multidimensional analysis of horizontal two-phase flows
International Nuclear Information System (INIS)
Tselishcheva, Elena A.; Antal, Steven P.; Podowski, Michael Z.
2010-01-01
The purpose of this paper is to discuss the results of analysis of two-phase flow in horizontal tubes. Two flow situations have been considered: gas/liquid flow in a long straight pipe, and similar flow conditions in a pipe with 90 deg. elbow. The theoretical approach utilizes a multifield modeling concept. A complete three-dimensional two-phase flow model has been implemented in a state-of-the-art computational multiphase fluid dynamics (CMFD) computer code, NPHASE. The overall model has been tested parametrically. Also, the results of NPHASE simulations have been compared against experimental data for a pipe with 90 deg. elbow.
Soft sensing for two-phase flow using an ensemble Kalman filter
Gryzlov, A.; Leskens, M.; Mudde, R.F.
2009-01-01
A new approach for real-time monitoring of horizontal wells, which is based on data assimilation concepts, is presented. Such methodology can be used when the direct measurement of multiphase flow rates is unfeasible or even unavailable. The real-time estimator proposed is an ensemble Kalman filter
A Comparison of Techniques for Camera Selection and Hand-Off in a Video Network
Li, Yiming; Bhanu, Bir
Video networks are becoming increasingly important for solving many real-world problems. Multiple video sensors require collaboration when performing various tasks. One of the most basic tasks is the tracking of objects, which requires mechanisms to select a camera for a certain object and hand-off this object from one camera to another so as to accomplish seamless tracking. In this chapter, we provide a comprehensive comparison of current and emerging camera selection and hand-off techniques. We consider geometry-, statistics-, and game theory-based approaches and provide both theoretical and experimental comparison using centralized and distributed computational models. We provide simulation and experimental results using real data for various scenarios of a large number of cameras and objects for in-depth understanding of strengths and weaknesses of these techniques.
Analysis of handoff strategies in macro-femto cells environment based on per-energy capacity
Leon, Jaime; Bader, Faouzi; Alouini, Mohamed-Slim
2012-01-01
Placing smaller cells in a heterogeneous network can be beneficial in terms of energy because better capacities can be obtained for a given energy constraint. These type of deployments not only highlight the need for appropriate metrics to evaluate how well energy is being spent, but also raise important issues that need to be taken into account when analysing the overall use of energy. In this study, handoff strategies, bandwidth allocation and path loss calculations in different scenarios, illustrate how energy can be consumed in a more efficient way when cell size is decreased. As a result, users can experience higher capacities while spending less energy, depending whether they handoff or not, increasing the overall performance of the network. © 2012 The Institution of Engineering and Technology.
Zrelli, Saber; Okabe, Nobuo; Shinoda, Yoichi
The wireless medium is a key technology for enabling ubiquitous and continuous network connectivity. It is becoming more and more important in our daily life especially with the increasing adoption of networking technologies in many fields such as medical care and transportation systems. Although most wireless technologies nowadays provide satisfying bandwidth and higher speeds, several of these technologies still lack improvements with regard to handoff performance. In this paper, we focus on wireless network technologies that rely on the Extensible Authentication Protocol for mutual authentication between the station and the access network. Such technologies include local area wireless networks (IEEE 802.11) as well as broadband wireless networks (IEEE 802.16). We present a new EAP authentication method based on a three party authentication scheme, namely Kerberos, that considerably shortens handoff delays. Compared to other methods, the proposed method has the advantage of not requiring any changes on the access points, making it readily deployable at reasonable costs.
Energy Technology Data Exchange (ETDEWEB)
Sim, Woo Gun; Dagdan, Banzragch [Hannam Univ., Daejeon (Korea, Republic of)
2017-03-15
Two-phase cross flow exists in many shell-and-tube heat exchangers such as condensers, evaporators, and nuclear steam generators. The drag force acting on a tube bundle subjected to air/water flow is evaluated experimentally. The cylinders subjected to two-phase flow are arranged in a normal square array. The ratio of pitch to diameter is 1.35, and the diameter of the cylinder is 18 mm. The drag force along the flow direction on the tube bundles is measured to calculate the drag coefficient and the two-phase damping ratio. The two-phase damping ratios, given by the analytical model for a homogeneous two-phase flow, are compared with experimental results. The correlation factor between the frictional pressure drop and the hydraulic drag coefficient is determined from the experimental results. The factor is used to calculate the drag force analytically. It is found that with an increase in the mass flux, the drag force, and the drag coefficients are close to the results given by the homogeneous model. The result shows that the damping ratio can be calculated using the homogeneous model for bubbly flow of sufficiently large mass flux.
Directory of Open Access Journals (Sweden)
I Nym Saputra Wahyu Wijaya
2016-01-01
Full Text Available In order to decrease handoff latency and increase the successful of HHO conventional scheme, a development of handover scheme is done in standard protocol WiMAX IEEE 802.16e by adding mobility pattern. The superiority of handover scheme with mobility pattern can reduce handoff latency up to 50%, mean while the weakness of this scheme is a wrong act in determining target base station are often happen. Simulation can not showing the cause of that error. So, we do formal verification in to hard handover model with mobility pattern. In this research, behaviour system is modeled with continuous-time Markov chain (CTMC. The model is foccused to aproximating the influence of mobility pattern in to handoff latency from WiMAX hard handover mechanism. In order to set up a series markov chain models handover system can follow steps, such as: represents the state space, give a number in all transitions, generate the rate transition matrix (infinitesimal generator. Probabilistic model checking in the research are using quantitative properties and qualitative properties. Formal verification concerning properties has relation with handover in WiMAX network showing that 70% from mobile station which doing scanning with mobility pattern are success doing handover. 24% of them doing scanning conventional as a result of wrongness in act determining target base station, so handoff latency which is pictured will bigger than a system that is only use conventional scanning method.
Development of a Nursing Handoff Tool: A Web-Based Application to Enhance Patient Safety
Goldsmith, Denise; Boomhower, Marc; Lancaster, Diane R.; Antonelli, Mary; Kenyon, Mary Anne Murphy; Benoit, Angela; Chang, Frank; Dykes, Patricia C.
2010-01-01
Dynamic and complex clinical environments present many challenges for effective communication among health care providers. The omission of accurate, timely, easily accessible vital information by health care providers significantly increases risk of patient harm and can have devastating consequences for patient care. An effective nursing handoff supports the standardized transfer of accurate, timely, critical patient information, as well as continuity of care and treatment, resulting in enhan...
Nano-optical conveyor belt, part II: Demonstration of handoff between near-field optical traps.
Zheng, Yuxin; Ryan, Jason; Hansen, Paul; Cheng, Yao-Te; Lu, Tsung-Ju; Hesselink, Lambertus
2014-06-11
Optical tweezers have been widely used to manipulate biological and colloidal material, but the diffraction limit of far-field optics makes focused beams unsuitable for manipulating nanoscale objects with dimensions much smaller than the wavelength of light. While plasmonic structures have recently been successful in trapping nanoscale objects with high positioning accuracy, using such structures for manipulation over longer range has remained a significant challenge. In this work, we introduce a conveyor belt design based on a novel plasmonic structure, the resonant C-shaped engraving (CSE). We show how long-range manipulation is made possible by means of handoff between neighboring CSEs, and we present a simple technique for controlling handoff by rotating the polarization of laser illumination. We experimentally demonstrate handoff between a pair of CSEs for polystyrene spheres 200, 390, and 500 nm in diameter. We then extend this technique and demonstrate controlled particle transport down a 4.5 μm long "nano-optical conveyor belt."
Microgravity two-phase flow and heat transfer
Gabriel, Kamiel S
2007-01-01
Advances in understanding the behaviour of multiphase thermal systems could lead to higher efficiency energy production systems, but such advances have been greatly hindered by the strong effect of gravitational acceleration on the flow. This book presents a coverage of various aspects of two-phase flow behaviour in the virtual absence of gravity.
Approximate characteristics for one-dimensional two-phase flows
International Nuclear Information System (INIS)
Sarayloo, A.; Peddleson, J.
1985-01-01
An approximate method for determining the characteristics associated with one-dimensional particulate two-phase flow models is presented. The method is based on iteration and is valid for small particulate volume fractions. The method is applied to several special cases involving incompressible particles suspended in a gas. The influences of certain changes in the physical model are investigated
TWO-PHASE EJECTOR of CARBON DIOXIDE HEAT PUMP CALCULUS
Directory of Open Access Journals (Sweden)
Sit B.M.
2010-12-01
Full Text Available It is presented the calculus of the two-phase ejector for carbon dioxide heat pump. The method of calculus is based on the method elaborated by S.M. Kandil, W.E. Lear, S.A. Sherif, and is modified taking into account entrainment ratio as the input for the calculus.
Stability of equilibria for a two-phase osmosis model
Lippoth, F.; Prokert, G.
2012-01-01
For a two-phase moving boundary problem modelling the motion of a semipermeable membrane by osmotic pressure and surface tension, we prove that the manifold of equilibria is locally exponentially attractive. Our method relies on maximal regularity results for parabolic systems with relaxation type
Numerical simulation of two phase flows in heat exchangers
International Nuclear Information System (INIS)
Grandotto Biettoli, M.
2006-04-01
The report presents globally the works done by the author in the thermohydraulic applied to nuclear reactors flows. It presents the studies done to the numerical simulation of the two phase flows in the steam generators and a finite element method to compute these flows. (author)
Determination of bubble parameters in two-phase flow
International Nuclear Information System (INIS)
Oliveira Lira, C.A.B. de.
1980-01-01
A development of a probe-detector system for measurement of bubble parameters like size, rise velocity and void fraction in two-phase flow is presented. The method uses an electro resistivity probe and a compact electronic circuit has been developed for obtain this purpose. (author)
Thermalhydraulic instability analysis of a two phase natural circulation loop
International Nuclear Information System (INIS)
Sesini, Paula Aida
1998-01-01
This work presents an analysis of a loop operating in natural circulation regime. Experiments were done in a rectangular closed circuit in one and two-phase flows. Numerical analysis were performed initially with the CIRNAT code and afterwards with RELAP5/MOD2. The limitations of CIRNAT were studied and new developments for this code are proposed. (author)
Controlling two-phase flow in microfluidic systems using electrowetting
Gu, H.
2011-01-01
Electrowetting (EW)-based digital microfluidic systems (DMF) and droplet-based two-phase flow microfluidic systems (TPF) with closed channels are the most widely used microfluidic platforms. In general, these two approaches have been considered independently. However, integrating the two
One-dimensional two-phase thermal hydraulics (ENSTA course)
International Nuclear Information System (INIS)
Olive, J.
1995-11-01
This course is part of the ENSTA 3rd year thermal hydraulics program (nuclear power option). Its purpose is to provide the theoretical basis and main physical notions pertaining to two-phase flow, mainly focussed on water-steam flows. The introduction describes the physical specificities of these flows, emphasizing their complexity. The mathematical bases are then presented (partial derivative equations), leading to a one-dimensional type, simplified description. Balances drawn up for a pipe length volume are used to introduce the mass conservation. motion and energy equations for each phase. Various postulates used to simplify two-phase models are presented, culminating in homogeneous model definitions and equations, several common examples of which are given. The model is then applied to the calculation of pressure drops in two-phase flows. This involves presenting the models most frequently used to represent pressure drops by friction or due to pipe irregularities, without giving details (numerical values of parameters). This chapter terminates with a brief description of static and dynamic instabilities in two-phase flows. Finally, heat transfer conditions frequently encountered in liquid-steam flows are described, still in the context of a 1D model. This chapter notably includes reference to under-saturated boiling conditions and the various forms of DNB. The empirical heat transfer laws are not discussed in detail. Additional material is appended, some of which is in the form of corrected exercises. (author). 6 appends
Two-phase flow instrumentation and laser beams
International Nuclear Information System (INIS)
Delhaye, J.M.
1976-01-01
Some methods based on laser techniques in order to place emphasis on the relation between measured quantities and the primary variables entering the general equations of two-phase systems are reviewed and summarized. The case where the bubbles or droplets are so small that they act as individual scattering centers is excluded [fr
Two-phase flow instrumentation research at RPI
International Nuclear Information System (INIS)
Lahey, R.T. Jr.; Krycuk, G.
1979-01-01
Novel instrumentation for the measurement of void fraction and phase velocity was developed. An optical digital interferometer and a dual beam x-ray equipment were designed for detection of voids. Pitot tube measurements were made to understand two-phase flow phenomena in liquid phase velocity
Two Phase Flow Split Model for Parallel Channels | Iloeje | Nigerian ...
African Journals Online (AJOL)
The model and code are capable of handling single and two phase flows, steady states and transients, up to ten parallel flow paths, simple and complicated geometries, including the boilers of fossil steam generators and nuclear power plants. A test calculation has been made with a simplified three-channel system ...
A semi-empirical two phase model for rocks
International Nuclear Information System (INIS)
Fogel, M.B.
1993-01-01
This article presents data from an experiment simulating a spherically symmetric tamped nuclear explosion. A semi-empirical two-phase model of the measured response in tuff is presented. A comparison is made of the computed peak stress and velocity versus scaled range and that measured on several recent tuff events
Two-phase alkali-metal experiments in reduced gravity
International Nuclear Information System (INIS)
Antoniak, Z.I.
1986-06-01
Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity
High speed motion neutron radiography of two-phase flow
International Nuclear Information System (INIS)
Robinson, A.H.; Wang, S.L.
1983-01-01
Current research in the area of two-phase flow utilizes a wide variety of sensing devices, but some limitations exist on the information which can be obtained. Neutron radiography is a feasible alternative to ''see'' the two-phase flow. A system to perform neutron radiographic analysis of dynamic events which occur on the order of several milliseconds has been developed at Oregon State University. Two different methods have been used to radiograph the simulated two-phase flow. These are pulsed, or ''flash'' radiography, and high speed movie neutron radiography. The pulsed method serves as a ''snap-shot'' with an exposure time ranging from 10 to 20 milliseconds. In high speed movie radiography, a scintillator is used to convert neutrons into light which is enhanced by an optical intensifier and then photographed by a high speed camera. Both types of radiography utilize the pulsing capability of the OSU TRIGA reactor. The principle difficulty with this type of neutron radiography is the fogging of the image due to the large amount of scattering in the water. This difficulty can be overcome by using thin regions for the two-phase flow or using heavy water instead of light water. The results obtained in this paper demonstrate the feasibility of using neutron radiography to obtain data in two-phase flow situations. Both movies and flash radiographs have been obtained of air bubbles in water and boiling from a heater element. The neutron radiographs of the boiling element show both nucleate boiling and film boiling. (Auth.)
Modeling and numerical study of two phase flow
International Nuclear Information System (INIS)
Champmartin, A.
2011-01-01
This thesis describes the modelization and the simulation of two-phase systems composed of droplets moving in a gas. The two phases interact with each other and the type of model to consider directly depends on the type of simulations targeted. In the first part, the two phases are considered as fluid and are described using a mixture model with a drift relation (to be able to follow the relative velocity between the two phases and take into account two velocities), the two-phase flows are assumed at the equilibrium in temperature and pressure. This part of the manuscript consists of the derivation of the equations, writing a numerical scheme associated with this set of equations, a study of this scheme and simulations. A mathematical study of this model (hyperbolicity in a simplified framework, linear stability analysis of the system around a steady state) was conducted in a frame where the gas is assumed baro-tropic. The second part is devoted to the modelization of the effect of inelastic collisions on the particles when the time of the simulation is shorter and the droplets can no longer be seen as a fluid. We introduce a model of inelastic collisions for droplets in a spray, leading to a specific Boltzmann kernel. Then, we build caricatures of this kernel of BGK type, in which the behavior of the first moments of the solution of the Boltzmann equation (that is mass, momentum, directional temperatures, variance of the internal energy) are mimicked. The quality of these caricatures is tested numerically at the end. (author) [fr
Multiparticle imaging velocimetry measurements in two-phase flow
International Nuclear Information System (INIS)
Hassan, Y.A.
1998-01-01
The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being extended to determine the velocity fields in two and three-dimensional, two-phase fluid flows. In the past few years, the technique has attracted quite a lot of interest. PIV enables fluid velocities across a region of a flow to be measured at a single instant in time in global domain. This instantaneous velocity profile of a given flow field is determined by digitally recording particle (microspheres or bubbles) images within the flow over multiple successive video frames and then conducting flow pattern identification and analysis of the data. This paper presents instantaneous velocity measurements in various two and three- dimensional, two-phase flow situations. (author)
Study of two-phase underexpanded jets by gas jet
International Nuclear Information System (INIS)
Uchida, Mitsunori; Someya, Satoshi; Okamoto, Koji
2008-01-01
When a heat exchange in a Fast Breeder Reactor cracks, a sodium-water reaction occurs. When a tube cracks, highly pressurized water or steam escapes into the surrounding liquid sodium and a sodium-water reaction occurs forming the disodium oxide. The disodium oxide caught in the steam jet strikes other tubes in the reactor. The struck disodium oxide can then cause these tubes to crack. The release of steam into the liquid sodium media is a two-phase flow involving underexpansion. In this paper qualitative measurement of the underexpanded gas jet which injected into water was carried our for the purpose of analyzing the behavior of the two-phase flow. (author)
Reactor vessel and core two-phase flow ultrasonic densitometer
International Nuclear Information System (INIS)
Arave, A.E.
1979-01-01
A local ultrasonic density (LUD) detector has been developed by EG and G Idaho, Inc., at the Idaho National Engineering Laboratory (INEL) for the Loss-of-Fluid Test (LOFT) reactor vessel and core two-phase flow density measurements. The principle of operating the sensor is the change in propagation time of a torsional ultrasonic wave in a metal transmission line as a function of the density of the surrounding media. A theoretical physics model is presented which represents the total propagation time as a function of the sensor modulus of elasticity and polar moment of inertia. Separate effects tests and two-phase flow tests have been conducted to characterize the detector. Tests show the detector can perform in a 343 0 C pressurized water reactor environment and measure the average density of the media surrounding the sensor
Stability of interfacial waves in two-phase flows
Energy Technology Data Exchange (ETDEWEB)
Liu, W S [Ontario Hydro, Toronto, ON (Canada)
1996-12-31
The influence of the interfacial pressure and the flow distribution in the one-dimensional two-fluid model on the stability problems of interfacial waves is discussed. With a proper formulation of the interfacial pressure, the following two-phase phenomena can be predicted from the stability and stationary criteria of the interfacial waves: onset of slug flow, stationary hydraulic jump in a stratified flow, flooding in a vertical pipe, and the critical void fraction of a bubbly flow. It can be concluded that the interfacial pressure plays an important role in the interfacial wave propagation of the two-fluid model. The flow distribution parameter may enhance the flow stability range, but only plays a minor role in the two-phase characteristics. (author). 20 refs., 3 tabs., 4 figs.
Non-Darcy behavior of two-phase channel flow.
Xu, Xianmin; Wang, Xiaoping
2014-08-01
We study the macroscopic behavior of two-phase flow in porous media from a phase-field model. A dissipation law is first derived from the phase-field model by homogenization. For simple channel geometry in pore scale, the scaling relation of the averaged dissipation rate with the velocity of the two-phase flow can be explicitly obtained from the model which then gives the force-velocity relation. It is shown that, for the homogeneous channel surface, Dacry's law is still valid with a significantly modified permeability including the contribution from the contact line slip. For the chemically patterned surfaces, the dissipation rate has a non-Darcy linear scaling with the velocity, which is related to a depinning force for the patterned surface. Our result offers a theoretical understanding on the prior observation of non-Darcy behavior for the multiphase flow in either simulations or experiments.
Method and apparatus for monitoring two-phase flow. [PWR
Sheppard, J.D.; Tong, L.S.
1975-12-19
A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.
Macroscopic balance equations for two-phase flow models
International Nuclear Information System (INIS)
Hughes, E.D.
1979-01-01
The macroscopic, or overall, balance equations of mass, momentum, and energy are derived for a two-fluid model of two-phase flows in complex geometries. These equations provide a base for investigating methods of incorporating improved analysis methods into computer programs, such as RETRAN, which are used for transient and steady-state thermal-hydraulic analyses of nuclear steam supply systems. The equations are derived in a very general manner so that three-dimensional, compressible flows can be analysed. The equations obtained supplement the various partial differential equation two-fluid models of two-phase flow which have recently appeared in the literature. The primary objective of the investigation is the macroscopic balance equations. (Auth.)
Numerical simulation for two-phase jet problem
International Nuclear Information System (INIS)
Lee, W.H.; Shah, V.L.
1981-01-01
A computer program TWOP was developed for obtaining the numerical solutions of three-dimensional, transient, two-phase flow system with nonequilibrium and nonhomogeneous conditions. TWOP employs two-fluid model and a set of the conservation equations formulated by Harlow and Amsden along with their Implicit Multi-Field (IMF) numerical technique that allows all degrees of couplings between the two fields. We have further extended the procedure of Harlow and Amsden by incorporating the implicit couplings of phase transition and interfacial heat transfer terms in the energy equations. Numerical results of two tested problems are presented to demonstrate the capabilities of the TWOP code. The first problem is the separation of vapor and liquid, showing that the code can handle the computational difficulties such as liquid packing and sharp interface phenomena. The second problem is the high pressure two-phase jet impinged on vertical plate, demonstrating the important role of the interfacial mass and momentum exchange
Mathematical modeling and the two-phase constitutive equations
International Nuclear Information System (INIS)
Boure, J.A.
1975-01-01
The problems raised by the mathematical modeling of two-phase flows are summarized. The models include several kinds of equations, which cannot be discussed independently, such as the balance equations and the constitutive equations. A review of the various two-phase one-dimensional models proposed to date, and of the constitutive equations they imply, is made. These models are either mixture models or two-fluid models. Due to their potentialities, the two-fluid models are discussed in more detail. To avoid contradictions, the form of the constitutive equations involved in two-fluid models must be sufficiently general. A special form of the two-fluid models, which has particular advantages, is proposed. It involves three mixture balance equations, three balance equations for slip and thermal non-equilibriums, and the necessary constitutive equations [fr
Turbine flow meter response in two-phase flows
International Nuclear Information System (INIS)
Shim, W.J.; Dougherty, T.J.; Cheh, H.Y.
1996-01-01
The purpose of this paper is to suggest a simple method of calibrating turbine flow meters to measure the flow rates of each phase in a two-phase flow. The response of two 50.8 mm (2 inch) turbine flow meters to air-water, two-phase mixtures flowing vertically in a 57 mm I.D. (2.25 inch) polycarbonate tube has been investigated for both upflow and downflow. The flow meters were connected in series with an intervening valve to provide an adjustable pressure difference between them. Void fractions were measured by two gamma densitometers, one upstream of the flow meters and the other downstream. The output signal of the turbine flow meters was found to depend only on the actual volumetric flow rate of the gas, F G , and liquid, F L , at the location of the flow meter
Visualization in cryogenic environment: Application to two-phase studies
Rousset, Bernard; Chatain, Denis; Puech, Laurent; Thibault, Pierre; Viargues, François; Wolf, Pierre-Etienne
2009-10-01
This paper reviews recent technical developments devoted to the study of cryogenic two-phase fluids. These techniques span from simple flow visualization to quantitative measurements of light scattering. It is shown that simple flow pattern configurations are obtained using classical optical tools (CCD cameras, endoscopes), even in most severe environments (high vacuum, high magnetic field). Quantitative measurements include laser velocimetry, particle sizing, and light scattering analysis. In the case of magnetically compensated gravity boiling oxygen, optical access is used to control the poistioning of a bubble subject to buoyancy forces in an experimental cell. Flow visualization on a two-phase superfluid helium pipe-flow, performed as a support of LHC cooldown studies, leads to flow pattern characterization. Visualization includes stratified and atomized flows. Thanks to the low refractive index contrast between the liquid and its vapor, quantitative results on droplet densities can be obtained even in a multiple scattering regime.
Study on flow instabilities in two-phase mixtures
International Nuclear Information System (INIS)
Ishii, M.
1976-03-01
Various mechanisms that can induce flow instabilities in two-phase flow systems are reviewed and their relative importance discussed. In view of their practical importance, the density-wave instabilities have been analyzed in detail based on the one-dimensional two-phase flow formulation. The dynamic response of the system to the inlet flow perturbations has been derived from the model; thus the characteristic equation that predicts the onset of instabilities has been obtained. The effects of various system parameters, such as the heat flux, subcooling, pressure, inlet velocity, inlet orificing, and exit orificing on the stability boundary have been analyzed. In addition to numerical solutions, some simple stability criteria under particular conditions have been obtained. Both results have been compared with various experimental data, and a satisfactory agreement has been demonstrated
Transition from boiling to two-phase forced convection
International Nuclear Information System (INIS)
Maroti, L.
1985-01-01
The paper presents a method for the prediction of the boundary points of the transition region between fully developed boiling and two-phase forced convection. It is shown that the concept for the determination of the onset of fully developed boiling can also be applied for the calculation of the point where the heat transfer is effected again by the forced convection. Similarly, the criterion for the onset of nucleate boiling can be used for the definition of the point where boiling is completely suppressed and pure two-phase forced convection starts. To calculate the heat transfer coefficient for the transition region, an equation is proposed that applies the boundary points and a relaxation function ensuring the smooth transition of the heat transfer coefficient at the boundaries
A new correlation for two-phase critical discharge coefficient
International Nuclear Information System (INIS)
Park, Jong Woon; Chun, Moon Hyun
1989-01-01
A new simple correlation for subcooled and two-phase critical flow discharge coefficient has been developed by stepwise regression technique. The new discharge coefficient has three independent variables and they are length to hydraulic diameter ratio, degree of subcooling, and stagnation temperature. The new discharge coefficient is applied as a multiplier to homogeneous equilibrium model and Abauf's single phase critical mass flux calculation equation. This method has been tested for its accuracy by comparing with experimental data. Results of the comparison show that the agreement between the predictions with new correlation and the experimental data is good for pipes and nozzles with vertical upward flow for subcooled upstream condition and nozzles with horizontal configuration for two-phase upstream condition
Son, Seungsik; Jeong, Jongpil
2014-01-01
In this paper, a mobility-aware Dual Pointer Forwarding scheme (mDPF) is applied in Proxy Mobile IPv6 (PMIPv6) networks. The movement of a Mobile Node (MN) is classified as intra-domain and inter-domain handoff. When the MN moves, this scheme can reduce the high signaling overhead for intra-handoff/inter-handoff, because the Local Mobility Anchor (LMA) and Mobile Access Gateway (MAG) are connected by pointer chains. In other words, a handoff is aware of low mobility between the previously attached MAG (pMAG) and newly attached MAG (nMAG), and another handoff between the previously attached LMA (pLMA) and newly attached LMA (nLMA) is aware of high mobility. Based on these mobility-aware binding updates, the overhead of the packet delivery can be reduced. Also, we analyse the binding update cost and packet delivery cost for route optimization, based on the mathematical analytic model. Analytical results show that our mDPF outperforms the PMIPv6 and the other pointer forwarding schemes, in terms of reducing the total cost of signaling.
Pincavage, Amber T; Lee, Wei Wei; Venable, Laura Ruth; Prochaska, Megan; Staisiunas, Daina D; Beiting, Kimberly J; Czerweic, M K; Oyler, Julie; Vinci, Lisa M; Arora, Vineet M
2015-02-01
Few patient-centered interventions exist to improve year-end residency clinic handoffs. Our purpose was to assess the impact of a patient-centered transition packet and comic on clinic handoff outcomes. The study was conducted at an academic medicine residency clinic. Participants were patients undergoing resident clinic handoff 2011-2013 PROGRAM DESCRIPTION: Two months before the 2012 handoff, patients received a "transition packet" incorporating patient-identified solutions (i.e., a new primary care provider (PCP) welcome letter with photo, certificate of recognition, and visit preparation tool). In 2013, a comic was incorporated to stress the importance of follow-up. Patients were interviewed by phone with response rates of 32 % in 2011, 43 % in 2012 and 36 % in 2013. Most patients who were interviewed were aware of the handoff post-packet (95 %). With the comic, more patients recalled receiving the packet (44 % 2012 vs. 64 % 2013, pcomic was associated with increased packet recall and improved follow-up rates.
Peptide-tagged proteins in aqueous two-phase systems
Nilsson, Anna
2002-01-01
This thesis deals with proteins containing peptide tags for improved partitioning in aqueous two-phase systems. Qualitatively the peptide-tagged protein partitioning could be predicted from peptide data, i.e. partitioning trends found for peptides were also found for the peptide-tagged proteins. However, full effect of the tag as expected from peptide partitioning was not found in the tagged protein. When alkyl-ethylene oxide surfactant was included in a two-polymer system, almost full effect...
Computational methods for two-phase flow and particle transport
Lee, Wen Ho
2013-01-01
This book describes mathematical formulations and computational methods for solving two-phase flow problems with a computer code that calculates thermal hydraulic problems related to light water and fast breeder reactors. The physical model also handles the particle and gas flow problems that arise from coal gasification and fluidized beds. The second part of this book deals with the computational methods for particle transport.
Recent advances in two-phase flow numerics
International Nuclear Information System (INIS)
Mahaffy, J.H.; Macian, R.
1997-01-01
The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques
Recent advances in two-phase flow numerics
Energy Technology Data Exchange (ETDEWEB)
Mahaffy, J.H.; Macian, R. [Pennsylvania State Univ., University Park, PA (United States)
1997-07-01
The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.
Two-phase titration of cerium(3) by permanganate
International Nuclear Information System (INIS)
Lazarev, A.I.; Lazareva, V.I.; Gerko, V.V.
1986-01-01
Reaction of cerium (3) and permanganate was investigated at a room temperature depending on PH, concentrations of pyrophosphate, cerium (3), tetraphenylphosphonium and foreign compounds. Selective method of two-phase titration determination of cerium (3) by permanganate without using silver compounds, preliminary separation of chlorides, nitrates, was developed. The method was tested using alloys based on iron, nickel, REE, copper, cobalt (S r ≤0.008). Correctness is proved with method of standard additives
Laser Doppler measurements in two-phase flows
International Nuclear Information System (INIS)
Durst, F.; Zare, M.
1976-01-01
Basic theory for laser-Doppler velocity measurements of large reflecting or refracting surfaces is provided. It is shown that the Doppler-signals contain information of the velocity and size of the large bodies, and relationships for transforming velocity and radius of curvature of moving spheres are presented. Preliminary experiments verified the analytical findings and demonstrated the applicability of the method to some two-phase flows
Two-phase flow instability and propagation of disturbances
International Nuclear Information System (INIS)
Yadigaroglu, G.
1984-01-01
Various mechanisms of static and dynamic macroinstabilities, appearing in two-phase flows, have been considered. Types of instabilities, conditioned by the form of hydraulic characteristics of the channel and density waves are analyzed in detail. Problems of instabilities in nuclear reactor circuits, in particular problems of instabilities, conditioned by water and steam mixing and vapour condensation, and problems of steam generator operation instability are discussed
Interfacial structures in downward two-phase bubbly flow
International Nuclear Information System (INIS)
Paranjape, S.S.; Kim, S.; Ishii, M.; Kelly, J.
2003-01-01
Downward two-phase flow was studied considering its significance in view of Light Water Reactor Accidents (LWR) such as Loss of Heat Sink (LOHS) by feed water loss or secondary pipe break. The flow studied, was an adiabatic, air-water, co-current, vertically downward two-phase flow. The experimental test sections had internal hydraulic diameters of 25.4 mm and 50.8 mm. Flow regime map was obtained using the characteristic signals obtained from an impedance void meter, employing neural network based identification methodology to minimize the subjective judgment in determining the flow regimes. A four sensor conductivity probe was used to measure the local two phase flow parameters, which characterize the interfacial structures. The local time averaged two-phase flow parameters measured were: void fraction (α), interfacial area concentration (a i ), bubble velocity (v g ), and Sauter mean diameter (D Sm ). The flow conditions were from the bubbly flow regime. The local profiles of these parameters as well as their axial development revealed the nature of the interfacial structures and the bubble interaction mechanisms occurring in the flow. Furthermore, this study provided a good database for the development of the interfacial area transport equation, which dynamically models the changes in the interfacial area along the flow field. An interfacial area transport equation was developed for downward flow based on that developed for the upward flow, with certain modifications in the bubble interaction terms. The area averaged values of the interfacial area concentration were compared with those predicted by the interfacial area transport model. (author)
Remediation in clay using two-phase vacuum extraction
International Nuclear Information System (INIS)
Lindhult, E.C.; Tarsavage, J.M.; Foukaris, K.A.
1995-01-01
Soil and groundwater contamination in a tight clay usually requires costly and/or time consuming remediation, due to the inherently low hydraulic conductivity of the soil. However, Dames and Moore is successfully using an innovative, cost-effective two-phase vacuum extraction (VE) technology at a former gasoline service station. Dramatic decreases in BTEX concentrations in onsite and downgradient monitoring wells are apparent
Phase separation and shape deformation of two-phase membranes
International Nuclear Information System (INIS)
Jiang, Y.; Lookman, T.; Saxena, A.
2000-01-01
Within a coupled-field Ginzburg-Landau model we study analytically phase separation and accompanying shape deformation on a two-phase elastic membrane in simple geometries such as cylinders, spheres, and tori. Using an exact periodic domain wall solution we solve for the shape and phase separating field, and estimate the degree of deformation of the membrane. The results are pertinent to preferential phase separation in regions of differing curvature on a variety of vesicles. (c) 2000 The American Physical Society
Two-phase computer codes for zero-gravity applications
International Nuclear Information System (INIS)
Krotiuk, W.J.
1986-10-01
This paper discusses the problems existing in the development of computer codes which can analyze the thermal-hydraulic behavior of two-phase fluids especially in low gravity nuclear reactors. The important phenomenon affecting fluid flow and heat transfer in reduced gravity is discussed. The applicability of using existing computer codes for space applications is assessed. Recommendations regarding the use of existing earth based fluid flow and heat transfer correlations are made and deficiencies in these correlations are identified
Fluid dynamics of cryogenic two-phase flows
International Nuclear Information System (INIS)
Verfondern, K.; Jahn, W.
2004-01-01
The objective of this study was to examine the flow behavior of a methane hydrate/methane-liquid hydrogen dispersed two-phase fluid through a given design of a moderator chamber for the ESS target system. The calculations under simplified conditions, e.g., taking no account of heat input from outside, have shown that the computer code used, CFX, was able to simulate the behavior of the two-phase flow through the moderator chamber, producing reasonable results up to a certain level of the solid phase fraction, that allowed a continuous flow process through the chamber. Inlet flows with larger solid phase fractions than 40 vol% were found to be a ''problem'' for the computer code. From the computer runs based on fractions between 20 and 40 vol%, it was observed that with increasing solid phase fraction at the inlet, the resulting flow pattern revealed a strong tendency for blockage within the chamber, supported by the ''heavy weight'' of the pellets compared to the carrying liquid. Locations which are prone to the development of such uneven flow behavior are the areas around the turning points in the semispheres and near the exit of the moderator. The considered moderator chamber with horizontal inlet and outlet flow for a solid-liquid two-phase fluid does not seem to be an appropriate design. (orig.)
Instrumentation for localized measurements in two-phase flow conditions
International Nuclear Information System (INIS)
Neff, G.G.; Averill, R.H.; Shurts, S.W.
1979-01-01
Three types of instrumentation that have been developed by EG and G Idaho, Inc., and its predecessor, Aerojet Nuclear company, at the Idaho National Engineering Laboratory to investigate two-phase flow phenomenon in a nuclear reactor at the Loss-of-Fluid Test (LOFT) facility are discussed: (a) a combination drag disc-turbine transducer (DTT), (b) a multibeam nuclear hardened gamma densitometer system, and (c) a conductivity sensitive liquid level transducer (LLT). The DTT obtains data on the complex problem of two-phase flow conditions in the LOFT primary coolant system during a loss-os-coolant experiment (LOCE). The discussion of the DTT describes how a turbine, measuring coolant velocity, and a drag disc, measuring coolant momentum flux, can provide valuable mass flow data. The nuclear hardened gamma densitometer is used to obtain density and flow regime information for two-phase flow in the LOFT primary coolant system during a LOCE. The LLT is used to measure water and steam conditions within the LOFT reactor core during a LOCE. The LLT design and the type of data obtained are described
An objective indicator for two-phase flow pattern transition
International Nuclear Information System (INIS)
Hervieua, E.; Seleghim, P. Jr.
1998-01-01
This work concerns the development of a methodology the objective of which is to characterize and diagnose two-phase flow regime transitions. The approach is based on the fundamental assumption that a transition flow is less stationary than a flow with an established regime. During the first time, the efforts focused on: (1) the design and construction of an experimental loop, allowing to reproduce the main horizontal two-phase flow patterns, in a stable and controlled way; (2) the design and construction of an electrical impedance probe, providing an imaged information of the spatial phase distribution in the pipe; and (3) the systematic study of the joint time-frequency and time-scale analysis methods, which permitted to define an adequate parameter quantifying the unstationarity degree. During the second time, in order to verify the fundamental assumption, a series of experiments were conducted, the objective of which was to demonstrate the correlation between unstationarity and regime transition. The unstationarity degree was quantified by calculating the Gabor's transform time-frequency covariance of the impedance probe signals. Furthermore, the phenomenology of each transition was characterized by the joint moments and entropy. The results clearly show that the regime transitions are correlated with local time-frequency covariance peaks, which demonstrates that these regime transitions are characterized by a loss of stationarity. Consequently, the time-frequency covariance constitutes an objective two-phase flow regime transition indicator. (orig.)
An objective indicator for two-phase flow pattern transition
International Nuclear Information System (INIS)
Hervieu, E.; Seleghim, P. Jr.
1998-01-01
This work concerns the development of a methodology which objective is to characterize and diagnose two-phase flow regime transitions. The approach is based on the fundamental assumption that a transition flow is less stationary than a flow with an established regime. In a first time, the efforts focused on: the design and construction of an experimental loop, allowing to reproduce the main horizontal two-phase flow patterns, in a stable and controlled way; the design and construction of an electrical impedance probe, providing an imaged information of the spatial phase distribution in the pipe; the systematic study of the joint time-frequency and time-scale analysis methods, which permitted to define an adequate parameter quantifying the unstationarity degree. In a second time, in order to verify the fundamental assumption, a series of experiments were conducted, which objective was to demonstrate the correlation between unstationarity and regime transition. The unstationarity degree was quantified by calculating the Gabor's transform time-frequency covariance of the impedance probe signals. Furthermore, the phenomenology of each transition was characterized by the joint moments and entropy. The results clearly show that the regime transitions are correlated with local time-frequency covariance peaks, which demonstrates that these regime transitions are characterized by a loss of stationarity. Consequently, the time-frequency covariance constitutes an objective two-phase flow regime transition indicator. (author)
Random signal tomographical analysis of two-phase flow
International Nuclear Information System (INIS)
Han, P.; Wesser, U.
1990-01-01
This paper reports on radiation tomography which is a useful tool for studying the internal structures of two-phase flow. However, general tomography analysis gives only time-averaged results, hence much information is lost. As a result, it is sometimes difficult to identify the flow regime; for example, the time-averaged picture does not significantly change as an annual flow develops from a slug flow. A two-phase flow diagnostic technique based on random signal tomographical analysis is developed. It extracts more information by studying the statistical variation of the measured signal with time. Local statistical parameters, including mean value, variance, skewness and flatness etc., are reconstructed from the information obtained by a general tomography technique. More important information are provided by the results. Not only the void fraction can be easily calculated, but also the flow pattern can be identified more objectively and more accurately. The experimental setup is introduced. It consisted of a two-phase flow loop, an X-ray system, a fan-like five-beam detector system and a signal acquisition and processing system. In the experiment, for both horizontal and vertical test sections (aluminum and steel tube with Di/Do = 40/45 mm), different flow situations are realized by independently adjusting air and water mass flow. Through a glass tube connected with the test section, some typical flow patterns are visualized and used for comparing with the reconstruction results
Two-phase flow measurement by pulsed neutron activation techniques
International Nuclear Information System (INIS)
Kehler, P.
1978-01-01
The Pulsed Neutron Activation (PNA) technique for measuring the mass flow velocity and the average density of two-phase mixtures is described. PNA equipment can be easily installed at different loops, and PNA techniques are non-intrusive and independent of flow regimes. These features of the PNA technique make it suitable for in-situ measurement of two-phase flows, and for calibration of more conventional two-phase flow measurement devices. Analytic relations governing the various PNA methods are derived. The equipment and procedures used in the first air-water flow measurement by PNA techniques are discussed, and recommendations are made for improvement of future tests. In the present test, the mass flow velocity was determined with an accuracy of 2 percent, and average densities were measured down to 0.08 g/cm 3 with an accuracy of 0.04 g/cm 3 . Both the accuracy of the mass flow velocity measurement and the lower limit of the density measurement are functions of the injected activity and of the total number of counts. By using a stronger neutron source and a larger number of detectors, the measurable density can be decreased by a factor of 12 to .007 g/cm 3 for 12.5 cm pipes, and to even lower ranges for larger pipes
Cold water injection into two-phase mixtures
International Nuclear Information System (INIS)
1989-07-01
This report presents the results of a review of the international literature regarding the dynamic loadings associated with the injection of cold water into two-phase mixtures. The review placed emphasis on waterhammer in nuclear power plants. Waterhammmer incidence data were reviewed for information related to thermalhydraulic conditions, underlying causes and consequential damage. Condensation induced waterhammer was found to be the most significant consequence of injecting cold water into a two-phase system. Several severe waterhammer incidents have been attributed to slug formation and steam bubble collapse under conditions of stratified steam and cold water flows. These phenomena are complex and not well understood. The current body of experimental and analytical knowledge is not large enough to establish maps of expected regimes of condensation induced waterhammer. The Electric Power Research Institute, in the United States, has undertaken a major research and development programme to develop the knowledge base for this area. The limited models and data currently available show that mechanical parameters are as important as thermodynamic conditions for the initiation of condensation induced waterhammer. Examples of bounds for avoiding two-phase waterhammer are given. These bounds are system specific and depend upon parameters such as pump capacity, pipe length and pipe orientation
Characterization of horizontal air–water two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Kong, Ran; Kim, Seungjin, E-mail: skim@psu.edu
2017-02-15
Highlights: • A visualization study is performed to develop flow regime map in horizontal flow. • Database in horizontal bubbly flow is extended using a local conductivity probe. • Frictional pressure drop analysis is performed in horizontal bubbly flow. • Drift flux analysis is performed in horizontal bubbly flow. - Abstract: This paper presents experimental studies performed to characterize horizontal air–water two-phase flow in a round pipe with an inner diameter of 3.81 cm. A detailed flow visualization study is performed using a high-speed video camera in a wide range of two-phase flow conditions to verify previous flow regime maps. Two-phase flows are classified into bubbly, plug, slug, stratified, stratified-wavy, and annular flow regimes. While the transition boundaries identified in the present study compare well with the existing ones (Mandhane et al., 1974) in general, some discrepancies are observed for bubbly-to-plug/slug, and plug-to-slug transition boundaries. Based on the new transition boundaries, three additional test conditions are determined in horizontal bubbly flow to extend the database by Talley et al. (2015a). Various local two-phase flow parameters including void fraction, interfacial area concentration, bubble velocity, and bubble Sauter mean diameter are obtained. The effects of increasing gas flow rate on void fraction, bubble Sauter mean diameter, and bubble velocity are discussed. Bubbles begin to coalesce near the gas–liquid layer instead of in the highly packed region when gas flow rate increases. Using all the current experimental data, two-phase frictional pressure loss analysis is performed using the Lockhart–Martinelli method. It is found that the coefficient C = 24 yields the best agreement with the data with the minimum average difference. Moreover, drift flux analysis is performed to predict void-weighted area-averaged bubble velocity and area-averaged void fraction. Based on the current database, functional
The Condensation effect on the two-phase flow stability
International Nuclear Information System (INIS)
Abdou Mohamed, Hesham Nagah
2005-01-01
A one-dimensional analytical model has been developed to be used for the linear analysis of density-wave oscillations in a parallel heated channel and a natural circulation loop.The heater and the riser sections are divided into a single-phase and a two-phase region.The two-phase region is represented by the drift-flux model. The model accounts for aphasic slip and subcooled boiling.The localized friction at the heater and the riser exit is treated considering the two-phase mixture.Also the effects of the condensation in the riser and the change in the system pressure have been studied.The exact equation for the heated channel and the total loop pressure drop is perturbed around the steady state.he stability characteristics of the heated channel and the loop are investigated using the Root finding method criterion.The results are summarized on instability maps in the plane of subcooled boiling number vs. phase change number (i.e., inlet subcooling vs. heater heat flux).The predictions of the model are compared with experimental results published in open literature. The results show that, the treatment effect of localized friction in two-phase mixtures stabilizes the system and improves the agreement of the calculations with the experimental results.For a parallel heated channel, the results indicate a more stable system with high inlet restriction, low outlet restriction, and high inlet velocity. And for a natural circulation loop, an increase in the inlet restriction broadened the range of the continuous circulation mode and stabilized the system, a decrease in the exit restriction or the liquid charging level shifted to the right the range of the continuous circulation mode and stabilized the system and an increase in the riser condensation shifted to the right the range of the continuous circulation mode and stabilized the system.The results show that the model agrees well with the available experimental data. In particular, the results show the significance of
Dynamics of two-phase interfaces and surface tensions: A density-functional theory perspective
Yatsyshin, Petr; Sibley, David N.; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim
2016-11-01
Classical density functional theory (DFT) is a statistical mechanical framework for the description of fluids at the nanoscale, where the inhomogeneity of the fluid structure needs to be carefully accounted for. By expressing the grand free-energy of the fluid as a functional of the one-body density, DFT offers a theoretically consistent and computationally accessible way to obtain two-phase interfaces and respective interfacial tensions in a ternary solid-liquid-gas system. The dynamic version of DFT (DDFT) can be rigorously derived from the Smoluchowsky picture of the dynamics of colloidal particles in a solvent. It is generally agreed that DDFT can capture the diffusion-driven evolution of many soft-matter systems. In this context, we use DDFT to investigate the dynamic behaviour of two-phase interfaces in both equilibrium and dynamic wetting and discuss the possibility of defining a time-dependent surface tension, which still remains in debate. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031 and from the Engineering and Physical Sciences Research Council of the UK via Grants No. EP/L027186 and EP/L020564.
International Nuclear Information System (INIS)
Yonomoto, Taisuke; Tasaka, Kanji
1988-01-01
A theoretical and experimental study was conducted to understand two-phase flow discharged from a stratified two-phase region through a small break. This problem is important for an analysis of a small break loss-of-coolant accident (LOCA) in a light water reactor (LWR). The present theoretical results show that a break quality is a function of h/h b , where h is the elevation difference between a bulk water level in the upstream region and break and b the suffix for entrainment initiation. This result is consistent with existing eperimental results in literature. An air-water experiment was also conducted changing a break orientation as an experimental parameter to develop and assess the model. Comparisons between the model and the experimental results show that the present model can satisfactorily predict the flow rate and the quality at the break without using any adjusting constant when liquid entrainment occurs in a stratified two-phase region. When gas entrainment occurs, the experimental data are correlated well by using a single empirical constant. (author)
Two-phase flow in volatile oil reservoir using two-phase pseudo-pressure well test method
Energy Technology Data Exchange (ETDEWEB)
Sharifi, M.; Ahmadi, M. [Calgary Univ., AB (Canada)
2009-09-15
A study was conducted to better understand the behaviour of volatile oil reservoirs. Retrograde condensation occurs in gas-condensate reservoirs when the flowing bottomhole pressure (BHP) lowers below the dewpoint pressure, thus creating 4 regions in the reservoir with different liquid saturations. Similarly, when the BHP of volatile oil reservoirs falls below the bubblepoint pressure, two phases are created in the region around the wellbore, and a single phase (oil) appears in regions away from the well. In turn, higher gas saturation causes the oil relative permeability to decrease towards the near-wellbore region. Reservoir compositional simulations were used in this study to predict the fluid behaviour below the bubblepoint. The flowing bottomhole pressure was then exported to a well test package to diagnose the occurrence of different mobility regions. The study also investigated the use of a two-phase pseudo-pressure method on volatile and highly volatile oil reservoirs. It was concluded that this method can successfully predict the true permeability and mechanical skin. It can also distinguish between mechanical skin and condensate bank skin. As such, the two-phase pseudo-pressure method is particularly useful for developing after-drilling well treatment and enhanced oil recovery process designs. However, accurate relative permeability and PVT data must be available for reliable interpretation of the well test in volatile oil reservoirs. 18 refs., 3 tabs., 9 figs.
Measurement of Two-Phase Flow Characteristics Under Microgravity Conditions
Keshock, E. G.; Lin, C. S.; Edwards, L. G.; Knapp, J.; Harrison, M. E.; Xhang, X.
1999-01-01
This paper describes the technical approach and initial results of a test program for studying two-phase annular flow under the simulated microgravity conditions of KC-135 aircraft flights. A helical coil flow channel orientation was utilized in order to circumvent the restrictions normally associated with drop tower or aircraft flight tests with respect to two-phase flow, namely spatial restrictions preventing channel lengths of sufficient size to accurately measure pressure drops. Additionally, the helical coil geometry is of interest in itself, considering that operating in a microgravity environment vastly simplifies the two-phase flows occurring in coiled flow channels under 1-g conditions for virtually any orientation. Pressure drop measurements were made across four stainless steel coil test sections, having a range of inside tube diameters (0.95 to 1.9 cm), coil diameters (25 - 50 cm), and length-to-diameter ratios (380 - 720). High-speed video photographic flow observations were made in the transparent straight sections immediately preceding and following the coil test sections. A transparent coil of tygon tubing of 1.9 cm inside diameter was also used to obtain flow visualization information within the coil itself. Initial test data has been obtained from one set of KC-135 flight tests, along with benchmark ground tests. Preliminary results appear to indicate that accurate pressure drop data is obtainable using a helical coil geometry that may be related to straight channel flow behavior. Also, video photographic results appear to indicate that the observed slug-annular flow regime transitions agree quite reasonably with the Dukler microgravity map.
Developing two-phase flow modelling concepts for rock fractures
Energy Technology Data Exchange (ETDEWEB)
Keto, V. (Fortum Nuclear Services Oy, Espoo (Finland))
2010-01-15
The Finnish nuclear waste disposal company, Posiva Oy, is planning an underground repository for spent nuclear fuel to be constructed on the island of Olkiluoto on the south-west coast of Finland. One element of the site investigations conducted at Olkiluoto is the excavation of the underground rock characterisation facility (ONKALO) that will be extended to the final disposal depth (approximately -400 m). The bedrock around the excavated tunnel volume is fully saturated with groundwater, which water commonly contains a mixture of dissolved gases. These gases remain dissolved due to the high hydrostatic pressure. During tunnel excavation work the natural hydrostatic pressure field is disturbed and the water pressure will decrease close to the atmospheric pressure in the immediate vicinity of the tunnel. During this pressure drop two-phase flow conditions (combined flow of both water and gas) may develop in the vicinity of the underground opening, as the dissolved gas is exsoluted under the low pressure (the term exsolution refers here to release of the dissolved gas molecules from the water phase into a separate gas phase). This report steers towards concept development for numerical two-phase flow modeling for fractured rock. The focus is on the description of gas phase formation process under disturbed hydraulic conditions by exsolution of dissolved gases from groundwater, and on understanding the effects of a possibly formed gas phase on groundwater flow conditions in rock fractures. A mathematical model of three mutually coupled nonlinear partial differential equations for two-phase flow is presented and corresponding constitutional relationships are introduced and discussed. Illustrative numerical simulations are performed in a simplified setting using COMSOL Multiphysics 3.5a - software package. Shortcomings and conceptual problems are discussed. (orig.)
Developing two-phase flow modelling concepts for rock fractures
International Nuclear Information System (INIS)
Keto, V.
2010-01-01
The Finnish nuclear waste disposal company, Posiva Oy, is planning an underground repository for spent nuclear fuel to be constructed on the island of Olkiluoto on the south-west coast of Finland. One element of the site investigations conducted at Olkiluoto is the excavation of the underground rock characterisation facility (ONKALO) that will be extended to the final disposal depth (approximately -400 m). The bedrock around the excavated tunnel volume is fully saturated with groundwater, which water commonly contains a mixture of dissolved gases. These gases remain dissolved due to the high hydrostatic pressure. During tunnel excavation work the natural hydrostatic pressure field is disturbed and the water pressure will decrease close to the atmospheric pressure in the immediate vicinity of the tunnel. During this pressure drop two-phase flow conditions (combined flow of both water and gas) may develop in the vicinity of the underground opening, as the dissolved gas is exsoluted under the low pressure (the term exsolution refers here to release of the dissolved gas molecules from the water phase into a separate gas phase). This report steers towards concept development for numerical two-phase flow modeling for fractured rock. The focus is on the description of gas phase formation process under disturbed hydraulic conditions by exsolution of dissolved gases from groundwater, and on understanding the effects of a possibly formed gas phase on groundwater flow conditions in rock fractures. A mathematical model of three mutually coupled nonlinear partial differential equations for two-phase flow is presented and corresponding constitutional relationships are introduced and discussed. Illustrative numerical simulations are performed in a simplified setting using COMSOL Multiphysics 3.5a - software package. Shortcomings and conceptual problems are discussed. (orig.)
Two-phase exchangers with small temperature differences
International Nuclear Information System (INIS)
Moracchioli, R.; Marie, G.; Lallee, J. de.
1976-01-01
The possibility in using heat available at low temperature level is shown (industrial wastes, solar energy, geothermal energy, heat power from seas). Special emphasis is put on the importance of heat exchangers that commonly should be evaporators and condensors working with small temperature differences (20 to 100 deg C). The expansion of the so-called ''new'' energies or recovery processes will depend on the physical performance of exchangers (Rankine two-phase cycles) and cost of the elementary exchange interfaces and assembling technics [fr
Flow patterns in vertical two-phase flow
International Nuclear Information System (INIS)
McQuillan, K.W.; Whalley, P.B.
1985-01-01
This paper is concerned with the flow patterns which occur in upwards gas-liquid two-phase flow in vertical tubes. The basic flow patterns are described and the use of flow patter maps is discussed. The transition between plug flow and churn flow is modelled under the assumption that flooding of the falling liquid film limits the stability of plug flow. The resulting equation is combined with other flow pattern transition equations to produce theoretical flow pattern maps, which are then tested against experimental flow pattern data. Encouraging agreement is obtained
Two-phase flow measurement based on oblique laser scattering
Vendruscolo, Tiago P.; Fischer, Robert; Martelli, Cícero; Rodrigues, Rômulo L. P.; Morales, Rigoberto E. M.; da Silva, Marco J.
2015-07-01
Multiphase flow measurements play a crucial role in monitoring productions processes in many industries. To guarantee the safety of processes involving multiphase flows, it is important to detect changes in the flow conditions before they can cause damage, often in fractions of seconds. Here we demonstrate how the scattering pattern of a laser beam passing a two-phase flow under an oblique angle to the flow direction can be used to detect derivations from the desired flow conditions in microseconds. Applying machine-learning techniques to signals obtained from three photo-detectors we achieve a compact, versatile, low-cost sensor design for safety applications.
Flooding and flow reversal of two-phase annular flow
International Nuclear Information System (INIS)
Asahi, Y.
1978-01-01
The flooding and flow reversal conditions of two-phase annular flow are mathematically defined in terms of a characteristic function representing a force balance. Sufficiently below the flooding point in counter-current flow, the interface is smooth and the characteristic equation reduces to the Nusselt relationship. Just below flooding point and above the flow reversal point in cocurrent flow, the interface is 'wavy', so that the interfacial shear effect plays an important role. The theoretical analysis is compared with experimental results by others. It is suggested that the various length effects which have been experimentally observed may be accounted for by the spatial variation of the droplet entrainment. (Auth.)
A study of critical two-phase flow models
International Nuclear Information System (INIS)
Siikonen, T.
1982-01-01
The existing computer codes use different boundary conditions in the calculation of critical two-phase flow. In the present study these boundary conditions are compared. It is shown that the boundary condition should be determined from the hydraulic model used in the computer code. The use of a correlation, which is not based on the hydraulic model used, leads often to bad results. Usually a good agreement with data is obtained in the calculation as far as the critical mass flux is concerned, but the agreement is not so good in the pressure profiles. The reason is suggested to be mainly in inadequate modeling of non-equilibrium effects. (orig.)
Design and construction of two phases flow meter
International Nuclear Information System (INIS)
Nor Paiza Mohamad Hasan
2002-01-01
This paper deals with design of the gamma ray correlometer and flow loop system for measuring the velocity between two parallel cross-sections of a pipeline. In the laboratory, the radioisotope source and detector were collimated by brass with small beam slit respectively. The flow loop system consists of transparent pipeline, adjustable frequency pump and water container. As a result, when the construction of the flow loop and correlometer is completed, the velocity of two phases flow can be measured by the cross-correlation techniques. (Author)
Experimental and numerical investigation on two-phase flow instabilities
Energy Technology Data Exchange (ETDEWEB)
Ruspini, Leonardo Carlos
2013-03-01
Two-phase flow instabilities are experimentally and numerically studied within this thesis. In particular, the phenomena called Ledinegg instability, density wave oscillations and pressure drop oscillations are investigated. The most important investigations regarding the occurrence of two-phase flow instabilities are reviewed. An extensive description of the main contributions in the experimental and analytical research is presented. In addition, a critical discussion and recommendations for future investigations are presented. A numerical framework using a hp-adaptive method is developed in order to solve the conservation equations modelling general thermo-hydraulic systems. A natural convection problem is analysed numerically in order to test the numerical solver. Moreover, the description of an adaptive strategy to solve thermo-hydraulic problems is presented. In the second part of this dissertation, a homogeneous model is used to study Ledinegg, density wave and pressure drop oscillations phenomena numerically. The dynamic characteristics of the Ledinegg (flow excursion) phenomenon are analysed through the simulation of several transient examples. In addition, density wave instabilities in boiling and condensing systems are investigated. The effects of several parameters, such as the fluid inertia and compressibility volumes, on the stability limits of Ledinegg and density wave instabilities are studied, showing a strong influence of these parameters. Moreover, the phenomenon called pressure drop oscillations is numerically investigated. A discussion of the physical representation of several models is presented with reference to the obtained numerical results. Finally, the influence of different parameters on these phenomena is analysed. In the last part, an experimental investigation of these phenomena is presented. The designing methodology used for the construction of the experimental facility is described. Several simulations and a non
Laser doppler anemometry in single- and two-phase flows
International Nuclear Information System (INIS)
Durst, F.
1976-01-01
The present report gives an introduction into laser-Doppler anemometry and tries to explain the basic physical principles of this measuring technique. Moire fringe patterns are used in order to visually model LDA-signals and to explain the basic difference in optical systems. It is pointed out that LDA measurements in highly turbulent flows and in two-phase flows should be attempted with direction sensitive instruments only. Some of the optical systems developed by the author and his collaborators are introduced and their functioning in measurements is demonstrated. These measurements embrace investigations in a number of single-phase flows including flames. (orig.) [de
Current capabilities of transient two-phase flow instruments
International Nuclear Information System (INIS)
Solbrig, C.W.; Kondic, N.N.
1979-01-01
The measurement of two phase flow phenomena in transient conditions representative of a Loss-of-Coolant Accident requires the use of sophisticated instruments and the further development of other instruments. Measurements made in large size pipes are often flow regime dependent. The flow regimes encountered depend upon the system geometry, transient effects, heat transfer, etc. The geometries in which these measurements must be made, the instruments which are currently used, new instruments being developed, the facilities used to calibrate these instruments, and the improvements which must be made to measurement capabilities are described
Modulating patterns of two-phase flow with electric fields.
Liu, Dingsheng; Hakimi, Bejan; Volny, Michael; Rolfs, Joelle; Anand, Robbyn K; Turecek, Frantisek; Chiu, Daniel T
2014-07-01
This paper describes the use of electro-hydrodynamic actuation to control the transition between three major flow patterns of an aqueous-oil Newtonian flow in a microchannel: droplets, beads-on-a-string (BOAS), and multi-stream laminar flow. We observed interesting transitional flow patterns between droplets and BOAS as the electric field was modulated. The ability to control flow patterns of a two-phase fluid in a microchannel adds to the microfluidic tool box and improves our understanding of this interesting fluid behavior.
Dynamic modelling for two-phase flow systems
International Nuclear Information System (INIS)
Guerra, M.A.
1991-06-01
Several models for two-phase flow have been studied, developing a thermal-hydraulic analysis code with one of these models. The program calculates, for one-dimensional cases with variable flow area, the transient behaviour of system process variables, when the boundary conditions (heat flux, flow rate, enthalpy and pressure) are functions of time. The modular structure of the code, eases the program growth. In fact, the present work is the basis for a general purpose accident and transient analysis code in nuclear reactors. Code verification has been made against RETRAN-02 results. Satisfactory results have been achieved with the present version of the code. (Author) [es
Research on boiling and two-phase flow
International Nuclear Information System (INIS)
Marinsek, Z.; Gaspersic, B.; Pavselj, D.; Tomsic, M.
1977-01-01
Report consists of three contributions. Experimental apparatus with pressure chamber (up to 25 bar and 250 deg C) was constructed including optical bubble detection device, and test measurements of mutual influence of boiling bubbles from two adjacent nucleation sites were performed; for analyses, a computer programme package for coincidence analyses of events was made, including data acquisition hardware. Two-phase pressure drop in subcooled Vertical annular water flow was measured, for pressures up to 10 bar, mass velocity 500 to 760 kg/m 2 s and vapour quality 0 to .01. Results agree fairly well with Martinelli-Nelson model
Virtual mass effects in two-phase flow. Topical report
International Nuclear Information System (INIS)
Cheng, L.Y.; Drew, D.A.; Lahey, R.T. Jr.
1978-03-01
The effect of virtual mass on phase separation during the acceleration of a two-phase mixture was studied. Virtual mass can be regarded as an induced inertia on the dispersed phase which is accelerating relative to the continuous phase, and it was found that the virtual mass acceleration is objective, implying an invariance with respect to reference frame. An objective form of the virtual acceleration was derived and required parameters were determined for limiting cases. Analyses determined that experiments on single bubble nozzle/diffuser flow cannot readily discriminate between various virtual mass acceleration models
A real two-phase submarine debris flow and tsunami
International Nuclear Information System (INIS)
Pudasaini, Shiva P.; Miller, Stephen A.
2012-01-01
The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the
Interfacial area measurements in two-phase flow
International Nuclear Information System (INIS)
Veteau, J.-M.
1979-08-01
A thorough understanding of two-phase flow requires the accurate measurement of the time-averaged interfacial area per unit volume (also called the time-averaged integral specific area). The so-called 'specific area' can be estimated by several techniques described in the literature. These different methods are reviewed and the flow conditions which lead to a rigourous determination of the time-averaged integral specific area are clearly established. The probe technique, involving local measurements seems very attractive because of its large range of application [fr
A real two-phase submarine debris flow and tsunami
Energy Technology Data Exchange (ETDEWEB)
Pudasaini, Shiva P.; Miller, Stephen A. [Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn Nussallee 8, D-53115, Bonn (Germany)
2012-09-26
The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the
Heat transfer in two-phase flow of helium
International Nuclear Information System (INIS)
Subbotin, V.I.; Deev, V.I.; Solodovnikov, V.V.; Arkhipov, V.V.
1986-01-01
The results of experimental study of heat transfer in two-phase helium flow are presented. The effect of operating parameters (pressure, mass velocity, heat flux and quality) on boiling heat transfer intensity was investigated. A significant influence of boiling process prehistory on heat transfer coefficients was demonstrated. On the basis of experimental data obtained three typical regimes of flow boiling heat transfer were found. Analogy of heat transfer in flow boiling and pool boiling of helium and noncryogenic liquids was established. Correlations were developed which are in close agreement with available heat transfer data
Two-phase flow boiling pressure drop in small channels
International Nuclear Information System (INIS)
Sardeshpande, Madhavi V.; Shastri, Parikshit; Ranade, Vivek V.
2016-01-01
Highlights: • Study of typical 19 mm steam generator tube has been undertaken in detail. • Study of two phase flow boiling pressure drop, flow instability and identification of flow regimes using pressure fluctuations is the main focus of present work. • Effect of heat and mass flux on pressure drop and void fraction was studied. • Flow regimes identified from pressure fluctuations data using FFT plots. • Homogeneous model predicted pressure drop well in agreement. - Abstract: Two-phase flow boiling in small channels finds a variety of applications in power and process industries. Heat transfer, boiling flow regimes, flow instabilities, pressure drop and dry out are some of the key issues related to two-phase flow boiling in channels. In this work, the focus is on pressure drop in two-phase flow boiling in tubes of 19 mm diameter. These tubes are typically used in steam generators. Relatively limited experimental database is available on 19 mm ID tube. Therefore, in the present work, the experimental set-up is designed for studying flow boiling in 19 mm ID tube in such a way that any of the different flow regimes occurring in a steam generator tube (from pre-heating of sub-cooled water to dry-out) can be investigated by varying inlet conditions. The reported results cover a reasonable range of heat and mass flux conditions such as 9–27 kW/m 2 and 2.9–5.9 kg/m 2 s respectively. In this paper, various existing correlations are assessed against experimental data for the pressure drop in a single, vertical channel during flow boiling of water at near-atmospheric pressure. A special feature of these experiments is that time-dependent pressures are measured at four locations along the channel. The steady-state pressure drop is estimated and the identification of boiling flow regimes is done with transient characteristics using time series analysis. Experimental data and corresponding results are compared with the reported correlations. The results will be
Numerical simulation of two phase flows in heat exchangers
International Nuclear Information System (INIS)
Grandotto Biettoli, M.
2006-04-01
The author gives an overview of his research activity since 1981. He first gives a detailed presentation of properties and equations of two-phase flows in heat exchangers, and of their mathematical and numerical investigation: semi-local equations (mass conservation, momentum conservation and energy conservation), homogenized conservation equations (mass, momentum and enthalpy conservation, boundary conditions), equation closures, discretization, resolution algorithm, computational aspects and applications. Then, he reports the works performed in the field of turbulent flows, hyperbolic methods, low Mach methods, the Neptune project, and parallel computing
Description of web-enhanced virtual character simulation system to standardize patient hand-offs.
Filichia, Lori; Halan, Shivashankar; Blackwelder, Ethan; Rossen, Brent; Lok, Benjamin; Korndorffer, James; Cendan, Juan
2011-04-01
The 80-h work week has increased discontinuity of patient care resulting in reports of increased medication errors and preventable adverse events. Graduate medical programs are addressing these shortcomings in a number of ways. We have developed a computer simulation platform called the Virtual People Factory (VPF), which allows us to capture and simulate the dialogue between a real user and a virtual character. We have converted the system to reflect a physician in the process of "checking-out" a patient to a covering physician. The responses are tracked and matched to educator-defined information termed "discoveries." Our proof of concept represented a typical post-operative patient with tachycardia. The system is web enabled. So far, 26 resident users at two institutions have completed the module. The critical discovery of tachycardia was identified by 62% of users. Residents spend 85% of the time asking intraoperative, postoperative, and past medical history questions. The system improves over time such that there is a near-doubling of questions that yield appropriate answers between users 13 and 22. Users who identified the virtual patient's underlying tachycardia expressed more concern and were more likely to order further testing for the patient in a post-module questionnaire (P = 0.13 and 0.08, respectively, NS). The VPF system can capture unique details about the hand-off interchange. The system improves with sequential users such that better matching of questions and answers occurs within the initial 25 users allowing rapid development of new modules. A catalog of hand-off modules could be easily developed. Wide-scale web-based deployment was uncomplicated. Identification of the critical findings appropriately translated to user concern for the patient though our series was too small to reach significance. Performance metrics based on the identification of critical discoveries could be used to assess readiness of the user to carry off a successful hand-off
A systematic review of nurses' inter-shift handoff reports in acute care hospitals.
Poletick, Eilleen B; Holly, Cheryl
2010-01-01
An inter-shift nursing handoff report is the exchange of patient care information for evidence-based nursing and midwifery from one nurse to another, and is a universal procedure used in hospitals to promote continuity of care. The objective of this review was to appraise and synthesize the best available qualitative evidence pertaining to the nursing handoff report at the time of shift change and make recommendations that can enhance the transfer of information between and among nurses, and by extension, improve patient care. The review considered qualitative studies that drew on the experiences of nurses at the time of inter-shift nursing handoff in acute care hospitals, and included designs such as phenomenology, grounded theory, narrative analysis, action research, ethnographic or cultural studies. The search strategy sought to find both published and unpublished research papers. An initial search of the Joanna Briggs Institute for Evidence-Based Nursing and Midwifery, the Cochrane Library, and PubMed's Clinical Inquiry/Find Systematic Review database was conducted. Following this, an extensive three stage search was conducted using PubMed, CINAHL, HealthStar, ScienceDirect, Dissertation Abstracts International, DARE, PsycINFO, BioMedCentral, TRIP, Pre-CINAHL, PsycARTICLES, Psychology and Behavioural Sciences Collection, ISI Current Contents, Science.gov, Web of Science/Web of Knowledge, Scirus.com website. Included was a hand search of reference lists of identified papers to capture all pertinent material as well as a search of relevant world wide websites and search engines, such as Google Scholar and the Virginia Henderson Library of Sigma Theta Tau International. Each paper was assessed independently, by two reviewers for methodological quality prior to inclusion in the review using the critical appraisal instrument QARI (Qualitative Assessment and Review Instrument) developed by the Joanna Briggs Institute for Evidence Based Nursing and Midwifery. A total
A Novel Reliability Enhanced Handoff Method in Future Wireless Heterogeneous Networks
Directory of Open Access Journals (Sweden)
Wang YuPeng
2016-01-01
Full Text Available As the demand increases, future networks will follow the trends of network variety and service flexibility, which requires heterogeneous type of network deployment and reliable communication method. In practice, most communication failure happens due to the bad radio link quality, i.e., high-speed users suffers a lot on the problem of radio link failure, which causes the problem of communication interrupt and radio link recovery. To make the communication more reliable, especially for the high mobility users, we propose a novel communication handoff mechanism to reduce the occurrence of service interrupt. Based on computer simulation, we find that the reliability on the service is greatly improved.
Lattice Boltzmann model for simulating immiscible two-phase flows
International Nuclear Information System (INIS)
Reis, T; Phillips, T N
2007-01-01
The lattice Boltzmann equation is often promoted as a numerical simulation tool that is particularly suitable for predicting the flow of complex fluids. This paper develops a two-dimensional 9-velocity (D2Q9) lattice Boltzmann model for immiscible binary fluids with variable viscosities and density ratio using a single relaxation time for each fluid. In the macroscopic limit, this model is shown to recover the Navier-Stokes equations for two-phase flows. This is achieved by constructing a two-phase component of the collision operator that induces the appropriate surface tension term in the macroscopic equations. A theoretical expression for surface tension is determined. The validity of this analysis is confirmed by comparing numerical and theoretical predictions of surface tension as a function of density. The model is also shown to predict Laplace's law for surface tension and Poiseuille flow of layered immiscible binary fluids. The spinodal decomposition of two fluids of equal density but different viscosity is then studied. At equilibrium, the system comprises one large low viscosity bubble enclosed by the more viscous fluid in agreement with theoretical arguments of Renardy and Joseph (1993 Fundamentals of Two-Fluid Dynamics (New York: Springer)). Two other simulations, namely the non-equilibrium rod rest and the coalescence of two bubbles, are performed to show that this model can be used to simulate two fluids with a large density ratio
Experimental study of two-phase natural circulation circuit
Energy Technology Data Exchange (ETDEWEB)
Lemos, Wanderley Freitas; Su, Jian, E-mail: wlemos@lasme.coppe.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose Luiz Horacio, E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), RIo de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental
2012-07-01
This paper reports an experimental study on the behavior of fluid flow in natural circulation under single-and two-phase flow conditions. The natural circulation circuit was designed based on concepts of similarity and scale in proportion to the actual operating conditions of a nuclear reactor. This test equipment has similar performance to the passive system for removal of residual heat presents in Advanced Pressurized Water Reactors (A PWR). The experiment was carried out by supplying water to primary and secondary circuits, as well as electrical power resistors installed inside the heater. Power controller has available to adjust the values for supply of electrical power resistors, in order to simulate conditions of decay of power from the nuclear reactor in steady state. Data acquisition system allows the measurement and control of the temperature at different points by means of thermocouples installed at several points along the circuit. The behavior of the phenomenon of natural circulation was monitored by a software with graphical interface, showing the evolution of temperature measurement points and the results stored in digital format spreadsheets. Besides, the natural circulation flow rate was measured by a flowmeter installed on the hot leg. A flow visualization technique was used the for identifying vertical flow regimes of two-phase natural circulation. Finally, the Reynolds Number was calculated for the establishment of a friction factor correlation dependent on the scale geometrical length, height and diameter of the pipe. (author)
Reduced order modeling of flashing two-phase jets
Energy Technology Data Exchange (ETDEWEB)
Gurecky, William, E-mail: william.gurecky@utexas.edu; Schneider, Erich, E-mail: eschneider@mail.utexas.edu; Ballew, Davis, E-mail: davisballew@utexas.edu
2015-12-01
Highlights: • Accident simulation requires ability to quickly predict two-phase flashing jet's damage potential. • A reduced order modeling methodology informed by experimental or computational data is described. • Zone of influence volumes are calculated for jets of various upstream thermodynamic conditions. - Abstract: In the event of a Loss of Coolant Accident (LOCA) in a pressurized water reactor, the escaping coolant produces a highly energetic flashing jet with the potential to damage surrounding structures. In LOCA analysis, the goal is often to evaluate many break scenarios in a Monte Carlo style simulation to evaluate the resilience of a reactor design. Therefore, in order to quickly predict the damage potential of flashing jets, it is of interest to develop a reduced order model that relates the damage potential of a jet to the pressure and temperature upstream of the break and the distance from the break to a given object upon which the jet is impinging. This work presents framework for producing a Reduced Order Model (ROM) that may be informed by measured data, Computational Fluid Dynamics (CFD) simulations, or a combination of both. The model is constructed by performing regression analysis on the pressure field data, allowing the impingement pressure to be quickly reconstructed for any given upstream thermodynamic condition within the range of input data. The model is applicable to both free and fully impinging two-phase flashing jets.
Analytical study of solids-gas two phase flow
International Nuclear Information System (INIS)
Hosaka, Minoru
1977-01-01
Fundamental studies were made on the hydrodynamics of solids-gas two-phase suspension flow, in which very small solid particles are mixed in a gas flow to enhance the heat transfer characteristics of gas cooled high temperature reactors. Especially, the pressure drop due to friction and the density distribution of solid particles are theoretically analyzed. The friction pressure drop of two-phase flow was analyzed based on the analytical result of the single-phase friction pressure drop. The calculated values of solid/gas friction factor as a function of solid/gas mass loading are compared with experimental results. Comparisons are made for Various combinations of Reynolds number and particle size. As for the particle density distribution, some factors affecting the non-uniformity of distribution were considered. The minimum of energy dispersion was obtained with the variational principle. The suspension density of particles was obtained as a function of relative distance from wall and was compared with experimental results. It is concluded that the distribution is much affected by the particle size and that the smaller particles are apt to gather near the wall. (Aoki, K.)
Droplets formation and merging in two-phase flow microfluidics.
Gu, Hao; Duits, Michel H G; Mugele, Frieder
2011-01-01
Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.
CFD Simulations of Pb-Bi Two-Phase Flow
International Nuclear Information System (INIS)
Dostal, Vaclav; Zelezny, Vaclav; Zacha, Pavel
2008-01-01
In a Pb-Bi cooled direct contact steam generation fast reactor water is injected directly above the core, the produced steam is separated at the top and is send to the turbine. Neither the direct contact phenomenon nor the two-phase flow simulations in CFD have been thoroughly described yet. A first attempt in simulating such two-phase flow in 2D using the CFD code Fluent is presented in this paper. The volume of fluid explicit model was used. Other important simulation parameters were: pressure velocity relation PISO, discretization scheme body force weighted for pressure, second order upwind for momentum and CISCAM for void fraction. Boundary conditions were mass flow inlet (Pb-Bi 0 kg/s and steam 0.07 kg/s) and pressure outlet. The effect of mesh size (0.5 mm and 0.2 mm cells) was investigated as well as the effect of the turbulent model. It was found that using a fine mesh is very important in order to achieve larger bubbles and the turbulent model (k-ε realizable) is necessary to properly model the slug flow. The fine mesh and unsteady conditions resulted in computationally intense problem. This may pose difficulties in 3D simulations of the real experiments. (authors)
Numerical calculation of two-phase turbulent jets
Energy Technology Data Exchange (ETDEWEB)
Saif, A.A.
1995-05-01
Two-phase turbulent round jets were numerically simulated using a multidimensional two-phase CFD code based on the two-fluid model. The turbulence phenomena were treated with the standard k-{epsilon} model. It was modified to take into account the additional dissipation of turbulent kinetic energy by the dispersed phase. Within the context of the two-fluid model it is more appropriate and physically justified to treat the diffusion by an interfacial force in the momentum equation. In this work, the diffusion force and the additional dissipation effect by the dispersed phase were modeled starting from the classical turbulent energy spectrum analysis. A cut-off frequency was proposed to decrease the dissipation effect by the dispersed phase when large size particles are introduced in the flow. The cut-off frequency combined with the bubble-induced turbulence effect allows for an increase in turbulence for large particles. Additional care was taken in choosing the right kind of experimental data from the literature so that a good separate effect test was possible for their models. The models predicted the experimental data very closely and they were general enough to predict extreme limit cases: water-bubble and air-droplet jets.
Computer simulation of two-phase flow in nuclear reactors
International Nuclear Information System (INIS)
Wulff, W.
1993-01-01
Two-phase flow models dominate the requirements of economic resources for the development and use of computer codes which serve to analyze thermohydraulic transients in nuclear power plants. An attempt is made to reduce the effort of analyzing reactor transients by combining purpose-oriented modelling with advanced computing techniques. Six principles are presented on mathematical modeling and the selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited than the two-fluid model for the analysis of two-phase flow in nuclear reactors, because of the latter's closure problems. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost. (orig.)
Experimental study of two-phase natural circulation circuit
International Nuclear Information System (INIS)
Lemos, Wanderley Freitas; Su, Jian; Faccini, Jose Luiz Horacio
2012-01-01
This paper reports an experimental study on the behavior of fluid flow in natural circulation under single-and two-phase flow conditions. The natural circulation circuit was designed based on concepts of similarity and scale in proportion to the actual operating conditions of a nuclear reactor. This test equipment has similar performance to the passive system for removal of residual heat presents in Advanced Pressurized Water Reactors (A PWR). The experiment was carried out by supplying water to primary and secondary circuits, as well as electrical power resistors installed inside the heater. Power controller has available to adjust the values for supply of electrical power resistors, in order to simulate conditions of decay of power from the nuclear reactor in steady state. Data acquisition system allows the measurement and control of the temperature at different points by means of thermocouples installed at several points along the circuit. The behavior of the phenomenon of natural circulation was monitored by a software with graphical interface, showing the evolution of temperature measurement points and the results stored in digital format spreadsheets. Besides, the natural circulation flow rate was measured by a flowmeter installed on the hot leg. A flow visualization technique was used the for identifying vertical flow regimes of two-phase natural circulation. Finally, the Reynolds Number was calculated for the establishment of a friction factor correlation dependent on the scale geometrical length, height and diameter of the pipe. (author)
Two-phase flow in a diverging nozzle
International Nuclear Information System (INIS)
Wadle, M.
1986-05-01
Stationary two-phase flow experiments were performed with steam-water and air-water mixtures in a well-instrumented horizontal diverging nozzle. The test section consisted of a constant diameter tube, the friction-section, followed by an expansion, the diffusor, which has a tanh-contour and finally another constant diameter tube. The diameter ratio sigma=D1/D2 is 16/80. For the steam-water experiments the flow parameters were: 0 2 and for air-water mixtures (0 2 ). The initial conditions were varied to achieve subcritical and critical mass flow rates. A new model for the pressure recovery in an abrupt expansion is presented. It is based on the superficial velocity concept and agrees well with the steam-water and the water-air experimental data as well as with the experiments of other authors. The experiments were also calculated with the two-phase code DUESE. The Drift-Flux models in this code as well as the constitutive correlations and their empirical constants could be tested. It is shown, that a 1D Drift-Flux code can handle the highly transient flow in the diffusor if the proper drift model is used. In a 1D simulation it is only necessary that the computational flow area is expanded to its full width within an axial length which is equivalent to the real contour. (orig./GL) [de
Droplets Formation and Merging in Two-Phase Flow Microfluidics
Directory of Open Access Journals (Sweden)
Hao Gu
2011-04-01
Full Text Available Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i the emulsification step should lead to a very well controlled drop size (distribution; and (ii the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.
Digital video image processing applications to two phase flow measurements
International Nuclear Information System (INIS)
Biscos, Y.; Bismes, F.; Hebrard, P.; Lavergne, G.
1987-01-01
Liquid spraying is common in various fields (combustion, cooling of hot surfaces, spray drying,...). For two phase flows modeling, it is necessary to test elementary laws (vaporizing drops, equation of motion of drops or bubbles, heat transfer..). For example, the knowledge of the laws related to the behavior of vaporizing liquid drop in a hot airstream and impinging drops on a hot surface is important for two phase flow modeling. In order to test these different laws in elementary cases, the authors developed different measurement techniques, associating video and microcomputers. The test section (built in perpex or glass) is illuminated with a thin sheet of light generated by a 15mW He-Ne laser and appropriate optical arrangement. Drops, bubbles or liquid film are observed at right angle by a video camera synchronised with a microcomputer either directly or with an optical device (lens, telescope, microscope) providing sufficient magnification. Digitizing the video picture in real time associated with an appropriate numerical treatment allows to obtain, in a non interfering way, a lot of informations relative to the pulverisation and the vaporization as function of space and time (drop size distribution; Sauter mean diameter as function of main flow parameters: air velocity, surface tension, temperature; isoconcentration curves, size evolution relative to vaporizing drops, film thickness evolution spreading on a hot surface...)
The PDF method for Lagrangian two-phase flow simulations
International Nuclear Information System (INIS)
Minier, J.P.; Pozorski, J.
1996-04-01
A recent turbulence model put forward by Pope (1991) in the context of PDF modelling has been used. In this approach, the one-point joint velocity-dissipation pdf equation is solved by simulating the instantaneous behaviour of a large number of Lagrangian fluid particles. Closure of the evolution equations of these Lagrangian particles is based on stochastic models and more specifically on diffusion processes. Such models are of direct use for two-phase flow modelling where the so-called fluid seen by discrete inclusions has to be modelled. Full Lagrangian simulations have been performed for shear-flows. It is emphasized that this approach gives far more information than traditional turbulence closures (such as the K-ε model) and therefore can be very useful for situations involving complex physics. It is also believed that the present model represents the first step towards a complete Lagrangian-Lagrangian model for dispersed two-phase flow problems. (authors). 21 refs., 6 figs
Studying Suspended Sediment Mechanism with Two-Phase PIV
Matinpour, H.; Atkinson, J. F.; Bennett, S. J.; Guala, M.
2017-12-01
Suspended sediment transport affects soil erosion, agriculture and water resources quality. Turbulent diffusion is the most primary force to maintain sediments in suspension. Although extensive previous literature have been studying the interactions between turbulent motion and suspended sediment, mechanism of sediments in suspension is still poorly understood. In this study, we investigate suspension of sediments as two distinct phases: one phase of sediments and another phase of fluid with turbulent motions. We designed and deployed a state-of-the-art two-phase PIV measurement technique to discriminate these two phases and acquire velocities of each phase separately and simultaneously. The technique that we have developed is employing a computer-vision based method, which enables us to discriminate sediment particles from fluid tracer particles based on two thresholds, dissimilar particle sizes and different particle intensities. Results indicate that fluid turbulence decreases in the presence of suspended sediments. Obtaining only sediment phase consecutive images enable us to compute fluctuation sediment concentration. This result enlightens understanding of complex interaction between the fluctuation velocities and the fluctuation of associated mass and compares turbulent viscosity with turbulent eddy diffusivity experimentally.
Investigation of Power Losses of Two-Stage Two-Phase Converter with Two-Phase Motor
Directory of Open Access Journals (Sweden)
Michal Prazenica
2011-01-01
Full Text Available The paper deals with determination of losses of two-stage power electronic system with two-phase variable orthogonal output. The simulation is focused on the investigation of losses in the converter during one period in steady-state operation. Modeling and simulation of two matrix converters with R-L load is shown in the paper. The simulation results confirm a very good time-waveform of the phase current and the system seems to be suitable for low-cost application in automotive/aerospace industries and in application with high frequency voltage sources.
Two-phase flow induced vibrations in CANDU steam generators
International Nuclear Information System (INIS)
Gidi, A.
2009-01-01
The U-Bend region of nuclear steam generators tube bundles have suffered from two-phase cross flow induced vibrations. Tubes in this region have experienced high amplitude vibrations leading to catastrophic failures. Turbulent buffeting and fluid-elastic instability has been identified as the main causes. Previous investigations have focused on flow regime and two-phase flow damping ratio. However, tube bundles in steam generators have vapour generated on the surface of the tubes, which might affect the flow regime, void fraction distribution, turbulent intensity levels and tube-flow interaction, all of which have the potential to change the tube vibration response. A cantilevered tube bundle made of electric cartridges heaters was built and tested in a Freon-11 flow loop at McMaster University. Tubes were arranged in a parallel triangular configuration. The bundle was exposed to two-phase cross flows consisting of different combinations of void from two sources, void generated upstream of the bundle and void generated at the surface of the tubes. Tube tip vibration response was measured optically and void fraction was measured by gamma densitometry technique. It was found that tube vibration amplitude in the transverse direction was reduced by a factor of eight for void fraction generated at the tube surfaces only, when compared to the upstream only void generation case. The main explanation for this effect is a reduction in the correlation length of the turbulent buffeting forcing function. Theoretical calculations of the tube vibration response due to turbulent buffeting under the same experimental conditions predicted a similar reduction in tube amplitude. The void fraction for the fluid-elastic instability threshold in the presence of tube bundle void fraction generation was higher than that for the upstream void fraction generation case. The first explanation of this difference is the level of turbulent buffeting forces the tube bundle was exposed to
Mixed convection in a two-phase flow cooling loop
International Nuclear Information System (INIS)
Janssens-Maenhout, G.; Daubner, M.; Knebel, J.U.
2002-03-01
This report summarizes the numerical simulations using the CFD code CFX4.1 which has additional models for subcooled flow boiling phenomena and the interfacial forces. The improved CFX4.1 code can be applied to the design of boiling induced mixed convection cooling loops in a defined parameter range. The experimental part describes the geysering experiments and the instability effects on the two-phase natural circulation flow. An experimentally validated flow pattern map in the Phase Change Number - Subcooling Number (N PCh - N Sub ) diagram defines the operational range in which flow instabilities such as geysering can be expected. One important perspective of this combined experimental/numerical work, which is in the field of two-phase flow, is its application to the development of accelerator driven systems (ADS). The main objective on an ADS is its potential to transmute minor actinides and long-lived fission products, thus participating in closing the fuel cycle. The development of an ADS is an important issue within the Euratom Fifth FP on Partitioning and Transmutation. One concept of an ADS, which is investigated in more detail within the ''preliminary design study of an experimental ADS'' Project (PDS-XADS) of the Euratom Fifth FP, is the XADS lead-bismuth cooled Experimental ADS of ANSALDO. An essential feature of this concept is the natural circulation of the primary coolant within the reactor pool. The natural circulation, which is driven by the density differences between the blanket and the heat exchanger, is enhanced by the injection of the nitrogen cover gas through spargers located in a riser part just above the blanket. This so-called gas-lift pump system has not been investigated in more detail nor has this gas-lift pump system been numerically/experimentally confirmed. The knowledge gained within the SUCO Programe, i.e. the modelling of the interfacial forces, the experimental work on flow instabilities and the modelling of the interfacial area
Mixed convection in a two-phase flow cooling loop
Energy Technology Data Exchange (ETDEWEB)
Janssens-Maenhout, G.; Daubner, M.; Knebel, J.U.
2002-03-01
This report summarizes the numerical simulations using the CFD code CFX4.1 which has additional models for subcooled flow boiling phenomena and the interfacial forces. The improved CFX4.1 code can be applied to the design of boiling induced mixed convection cooling loops in a defined parameter range. The experimental part describes the geysering experiments and the instability effects on the two-phase natural circulation flow. An experimentally validated flow pattern map in the Phase Change Number - Subcooling Number (N{sub PCh} - N{sub Sub}) diagram defines the operational range in which flow instabilities such as geysering can be expected. One important perspective of this combined experimental/numerical work, which is in the field of two-phase flow, is its application to the development of accelerator driven systems (ADS). The main objective on an ADS is its potential to transmute minor actinides and long-lived fission products, thus participating in closing the fuel cycle. The development of an ADS is an important issue within the Euratom Fifth FP on Partitioning and Transmutation. One concept of an ADS, which is investigated in more detail within the ''preliminary design study of an experimental ADS'' Project (PDS-XADS) of the Euratom Fifth FP, is the XADS lead-bismuth cooled Experimental ADS of ANSALDO. An essential feature of this concept is the natural circulation of the primary coolant within the reactor pool. The natural circulation, which is driven by the density differences between the blanket and the heat exchanger, is enhanced by the injection of the nitrogen cover gas through spargers located in a riser part just above the blanket. This so-called gas-lift pump system has not been investigated in more detail nor has this gas-lift pump system been numerically/experimentally confirmed. The knowledge gained within the SUCO Programe, i.e. the modelling of the interfacial forces, the experimental work on flow instabilities and the
Modelo AHP-VIKOR para handoff espectral en redes de radio cognitiva
Directory of Open Access Journals (Sweden)
César Hernández
2015-07-01
Full Text Available This paper proposed a hybrid algorithm for spectrum allocation in cognitive radio networks based on two algorithms, analytical hierarchical process (AHP and multi-criteria optimization and compromise solution (VIKOR, for improving the performance of mobility spectrum of secondary users in cognitive radio networks. To evaluate the level of performance of the proposed algorithm, a comparative analysis between the proposed AHP-VIKOR, Grey Relational Analysis (GRA and a random allocation of spectrum (Random algorithm, is performed. The first two algorithms work with the same decision criteria: probability of channel availability, estimated time availability, signal-to-interference-plus-noise ratio and bandwidth. Unlike related work, benchmarking was validated through a trace of real spectral occupation data, captured in the GSM frequency band, which models the actual behavior of licensed users. For performance evaluation five metric were used, handoff failed average cumulative number, handoff average cumulative number, average bandwidth, delay and throughput average cumulative. The results of the comparative analysis with the other two algorithms show that the AHP-VIKOR algorithm proposed provides the best performance in spectral mobility.
ESR imaging investigations of two-phase systems.
Herrmann, Werner; Stösser, Reinhard; Borchert, Hans-Hubert
2007-06-01
The possibilities of electron spin resonance (ESR) and electron spin resonance imaging (ESRI) for investigating the properties of the spin probes TEMPO and TEMPOL in two-phase systems have been examined in the systems water/n-octanol, Miglyol/Miglyol, and Precirol/Miglyol. Phases and regions of the phase boundary could be mapped successfully by means of the isotropic hyperfine coupling constants, and, moreover, the quantification of rotational and lateral diffusion of the spin probes was possible. For the quantitative treatment of the micropolarity, a simplified empirical model was established on the basis of the Nernst distribution and the experimentally determined isotropic hyperfine coupling constants. The model does not only describe the summarized micropolarities of coexisting phases, but also the region of the phase boundary, where solvent molecules of different polarities and tendencies to form hydrogen bonds compete to interact with the NO group of the spin probe. Copyright 2007 John Wiley & Sons, Ltd.
Characterization of the two-phase Taylor Couette flow
International Nuclear Information System (INIS)
Mehel A; Gabillet B; Djeridi H
2005-01-01
The focus of the present study concerns the effects of a dispersed phase on the structure of a quasi periodic Couette Taylor flow. The two phase flow patterns are investigated experimentally for the Taylor number Ta=780. Small bubbles (0.035 times as small as the gap) are generated by agitation of the upper free surface. Larger bubbles (0.15 times as small as the gap) are produced by injection at the bottom of the apparatus associated with a pressure drop. Void fraction, bubble size and velocity are measured, as well as the azimuthal and axial velocity components of the liquid. A premature transition to turbulence is pointed out and discussed according to the bubble size and their localization in the gap. (authors)
Response of two-phase droplets to intense electromagnetic radiation
Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.
1993-01-01
The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.
Two-phase flow in beds of spherical particles
International Nuclear Information System (INIS)
Schulenberg, T.; Mueller, U.
1984-02-01
A refined model for two-phase flow in beds of uniform spherical particles is presented. It includes the influence of interfacial drag forces between liquid and gas, which are important in beds of coarse particles, and an incrase of porosity due to vapour channels or similiar irreversible bed disturbances, which occur in beds of fine particles. The model is based on the momentum equations for separated flow, which are closed with empirical relations for wall shear stress and interfacial drag. To improve this model it is applied to volumetrically heated beds on a adiabatic bottom, which are saturated and superimposed with a boiling liquid. In case of fine particles only an impermeable bottom is considered, whereas in case of coarse particles also beds on a permeable support are discussed. (orig.) [de
Particle clustering within a two-phase turbulent pipe jet
Lau, Timothy; Nathan, Graham
2016-11-01
A comprehensive study of the influence of Stokes number on the instantaneous distributions of particles within a well-characterised, two-phase, turbulent pipe jet in a weak co-flow was performed. The experiments utilised particles with a narrow size distribution, resulting in a truly mono-disperse particle-laden jet. The jet Reynolds number, based on the pipe diameter, was in the range 10000 developed technique. The results show that particle clustering is significantly influenced by the exit Stokes number. Particle clustering was found to be significant for 0 . 3 financial contributions by the Australian Research Council (Grant No. DP120102961) and the Australian Renewable Energy Agency (Grant No. USO034).
Unsteady interfacial coupling of two-phase flow models
International Nuclear Information System (INIS)
Hurisse, O.
2006-01-01
The primary coolant circuit in a nuclear power plant contains several distinct components (vessel, core, pipes,...). For all components, specific codes based on the discretization of partial differential equations have already been developed. In order to obtain simulations for the whole circuit, the interfacial coupling of these codes is required. The approach examined within this work consists in coupling codes by providing unsteady information through the coupling interface. The numerical technique relies on the use of an interface model, which is combined with the basic strategy that was introduced by Greenberg and Leroux in order to compute approximations of steady solutions of non-homogeneous hyperbolic systems. Three different coupling cases have been examined: (i) the coupling of a one-dimensional Euler system with a two-dimensional Euler system; (ii) the coupling of two distinct homogeneous two-phase flow models; (iii) the coupling of a four-equation homogeneous model with the standard two-fluid model. (author)
Mathematical model of two-phase flow in accelerator channel
Directory of Open Access Journals (Sweden)
О.Ф. Нікулін
2010-01-01
Full Text Available The problem of two-phase flow composed of energy-carrier phase (Newtonian liquid and solid fine-dispersed phase (particles in counter jet mill accelerator channel is considered. The mathematical model bases goes on the supposition that the phases interact with each other like independent substances by means of aerodynamics’ forces in conditions of adiabatic flow. The mathematical model in the form of system of differential equations of order 11 is represented. Derivations of equations by base physical principles for cross-section-averaged quantity are produced. The mathematical model can be used for estimation of any kinematic and thermodynamic flow characteristics for purposely parameters optimization problem solving and transfer functions determination, that take place in counter jet mill accelerator channel design.
Two-phase titration of cerium(III) by permanganate
International Nuclear Information System (INIS)
Lazarev, A.I.; Lazareva, V.I.; Gerko, V.V.
1987-01-01
This paper presents a method for the two-phase titrimetric determination of cerium(III) with permanganate which does not require an expenditure of sugar and preliminary removal of chlorides and nitrates. The interaction of cerium(III) with permanganate at room temperature was studied as a function of the pH, the concentration of pyrophosphate, tetraphenylphosphonium (TPP), permanganate, and extraneous compounds, the rate of titration, and the time of stay of the solution in air before titration. The investigations were conducted according to the following methodology: water, solution of cerium(III) pyrophosphate, and TPP were introduced into an Erlenmeyer flask with a side branch near the bottom for clearer observation of the color of the chloroform phase. The authors established the given pH value, poured the water into a volume of 50 ml, and added chloroform. The result was titrated with permanganate solutions of various concentrations until a violet color appeared in the chloroform phase
Interfacial shear modeling in two-phase annular flow
International Nuclear Information System (INIS)
Kumar, R.; Edwards, D.P.
1996-11-01
A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment
Experiments in polydisperse two-phase turbulent flows
International Nuclear Information System (INIS)
Bachalo, W.D.; Houser, M.J.
1985-01-01
Aspects of turbulent two-phase flow measurements obtained with a laser Doppler velocimeter that was modified to also obtain particle size were investigated. Simultaneous measurements of the particle size and velocity allowed the determination of the lag characteristics of particles over a range of sizes. Relatively large particles were found to respond well to the turbulent fluctuations in low speed flows. Measurements of sprays were obtained at various points throughout the spray plume. Velocity measurements for each drop size class were obtained and revealed the relative velocity relaxation with downstream distance. The evolution of the rms velocities for each size class was also examined. Difficulties associated with seeding polydispersions to obtain gas phase turbulence data were discussed. Several approaches for mitigating the errors due to seed particle concentration bias were reviewed
Interfacial shear modeling in two-phase annular flow
International Nuclear Information System (INIS)
Kumar, R.; Edwards, D.P.
1996-07-01
A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment
Numerical modeling of two-phase transonic flow
Czech Academy of Sciences Publication Activity Database
Halama, Jan; Benkhaldoun, F.; Fořt, Jaroslav
2010-01-01
Roč. 80, č. 88 (2010), s. 1624-1635 ISSN 0378-4754 Grant - others:GA ČR(CZ) GA201/08/0012 Program:GA Institutional research plan: CEZ:AV0Z20760514 Keywords : two - phase flow * condensation * fractional step method Subject RIV: BK - Fluid Dynamics Impact factor: 0.812, year: 2010 http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V0T-4VNK68X-2-R&_cdi=5655&_user=640952&_pii=S0378475409000421&_origin=search&_coverDate=04%2F30%2F2010&_sk=999199991&view=c&wchp=dGLzVlb-zSkWb&md5=5ba607428fac339a3e5f67035d3996d0&ie=/sdarticle.pdf
Two-phase flow instabilities in a vertical annular channel
Energy Technology Data Exchange (ETDEWEB)
Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)
1995-09-01
An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.
Dynamics Coefficient for Two-Phase Soil Model
Directory of Open Access Journals (Sweden)
Wrana Bogumił
2015-02-01
Full Text Available The paper investigates a description of energy dissipation within saturated soils-diffusion of pore-water. Soils are assumed to be two-phase poro-elastic materials, the grain skeleton of which exhibits no irreversible behavior or structural hysteretic damping. Description of motion and deformation of soil is introduced as a system of equations consisting of governing dynamic consolidation equations based on Biot theory. Selected constitutive and kinematic relations for small strains and rotation are used. This paper derives a closed form of analytical solution that characterizes the energy dissipation during steady-state vibrations of nearly and fully saturated poro-elastic columns. Moreover, the paper examines the influence of various physical factors on the fundamental period, maximum amplitude and the fraction of critical damping of the Biot column. Also the so-called dynamic coefficient which shows amplification or attenuation of dynamic response is considered.
Two-phase flow experiments through intergranular stress corrosion cracks
International Nuclear Information System (INIS)
Collier, R.P.; Norris, D.M.
1984-01-01
Experimental studies of critical two-phase water flow, through simulated and actual intergranular stress corrosion cracks, were performed to obtain data to evaluate a leak flow rate model and investigate acoustic transducer effectiveness in detecting and sizing leaks. The experimental program included a parametric study of the effects of crack geometry, fluid stagnation pressure and temperature, and crack surface roughness on leak flow rate. In addition, leak detection, location, and leak size estimation capabilities of several different acoustic transducers were evaluated as functions of leak rate and transducer position. This paper presents flow rate data for several different cracks and fluid conditions. It also presents the minimum flows rate detected with the acoustic sensors and a relationship between acoustic signal strength and leak flow rate
Two-Phase Algorithm for Optimal Camera Placement
Directory of Open Access Journals (Sweden)
Jun-Woo Ahn
2016-01-01
Full Text Available As markers for visual sensor networks have become larger, interest in the optimal camera placement problem has continued to increase. The most featured solution for the optimal camera placement problem is based on binary integer programming (BIP. Due to the NP-hard characteristic of the optimal camera placement problem, however, it is difficult to find a solution for a complex, real-world problem using BIP. Many approximation algorithms have been developed to solve this problem. In this paper, a two-phase algorithm is proposed as an approximation algorithm based on BIP that can solve the optimal camera placement problem for a placement space larger than in current studies. This study solves the problem in three-dimensional space for a real-world structure.
Study on hydrodynamic crisis of two-phase flow
International Nuclear Information System (INIS)
Nigmatulin, B.I.; Ivandaev, A.I.
1977-01-01
The phenomenon of hydrodynamic crisis (locking) of a two-phase flow is investigated. A model of a disperseannular flow with an effective monodisperse nucleus is used for describing the motion of a mixture under near-critical conditions. Main differential equations of a flow in a channel are given; in particular, the differential laws of variation of the effective diameters of drops in the nucleus as a result of mass exchange between the mixture components are singled out. Questions of concretization of the model are discussed. The conditions for the attainment of the maximum rate of flow of the gas through the channel are studied, as well as the effect of the flow prehistory on the formation of critical conditions in the outlet cross-section
Study on hydrodynamic crisis of two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Nigmatulin, B I; Ivandaev, A I [Moskovskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Mekhaniki
1977-01-01
The phenomenon of hydrodynamic crisis (locking) of a two-phase flow is investigated. A model of a disperse annular flow with an effective monodisperse nucleus is used for describing the motion of a mixture under near-critical conditions. Main differential equations of a flow in a channel are given; in particular, the differential laws of variation of the effective diameters of drops in the nucleus as a result of mass exchange between the mixture components are singled out. Questions of concretization of the model are discussed. The conditions for the attainment of the maximum rate of flow of the gas through the channel are studied, as well as the effect of the flow prehistory on the formation of critical conditions in the outlet cross-section.
Gulping phenomena in transient countercurrent two-phase flow
International Nuclear Information System (INIS)
Tehrani, Ali A.K.
2001-04-01
Apart from previous work on countercurrent gas-liquid flow, transient tank drainage through horizontal off-take pipes is described, including experimental procedure, flow pattern on observations and countercurrent flow limitation results. A separate chapter is devoted to countercurrent two-phase flow in a pressurised water reactor hot-leg scaled model. Results concerning low head flooding, high head and loss of bowl flooding, transient draining of the steam generator and pressure variation and bubble detachment are presented. The following subjects are covered as well: draining of sealed tanks of vertical pipes, unsteady draining of closed vessel via vertical tube, unsteady filling of a closed vessel via vertical tube from a constant head reservoir. Practical significance of the results obtained is discussed
Sputtering of two-phase AgxCuγ alloys
International Nuclear Information System (INIS)
Bibic, N.; Milosavljevic, M.; Perusko, D.; Wilson, I.H.
1992-01-01
Elemental sputtering yields from two phase AgCu alloys were measured for 20, 40 and 50 at % Ag. Argon ion bombardment energies were in the range 35-55 keV and the ion dose was 1 x 10 19 ions cm -2 . The sputtering yield for silver was found to be considerably below what was expected by simple selective sputtering of a two component alloy. Analysis by electron probe X-ray microanalysis and scanning electron microscopy of the eroded surface indicated that surface diffusion of copper from copper rich grains and geometrical constraints in the dense cone forest on Cu/Ag eutectic regions combine to reduce the sputtering yield for silver. (author)
Measurement of two-phase flow momentum with force transducers
International Nuclear Information System (INIS)
Hardy, J.E.; Smith, J.E.
1990-01-01
Two strain-gage-based drag transducers were developed to measure two-phase flow in simulated pressurized water reactor (PWR) test facilities. One transducer, a drag body (DB), was designed to measure the bidirectional average momentum flux passing through an end box. The second drag sensor, a break through detector (BTD), was designed to sense liquid downflow from the upper plenum to the core region. After prototype sensors passed numerous acceptance tests, transducers were fabricated and installed in two experimental test facilities, one in Japan and one in West Germany. High-quality data were extracted from both the DBs and BTDs for a variety of loss-of-coolant accident (LOCA) scenarios. The information collected from these sensors has added to the understanding of the thermohydraulic phenomena that occur during the refill/reflood stage of a LOCA in a PWR. 9 refs., 15 figs
Flooding in counter-current two-phase flow
International Nuclear Information System (INIS)
Ragland, W.A.; Ganic, E.N.
1982-01-01
Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding
Modeling two-phase ferroelectric composites by sequential laminates
International Nuclear Information System (INIS)
Idiart, Martín I
2014-01-01
Theoretical estimates are given for the overall dissipative response of two-phase ferroelectric composites with complex particulate microstructures under arbitrary loading histories. The ferroelectric behavior of the constituent phases is described via a stored energy density and a dissipation potential in accordance with the theory of generalized standard materials. An implicit time-discretization scheme is used to generate a variational representation of the overall response in terms of a single incremental potential. Estimates are then generated by constructing sequentially laminated microgeometries of particulate type whose overall incremental potential can be computed exactly. Because they are realizable, by construction, these estimates are guaranteed to conform with any material constraints, to satisfy all pertinent bounds and to exhibit the required convexity properties with no duality gap. Predictions for representative composite and porous systems are reported and discussed in the light of existing experimental data. (paper)
Two-phase flow and heat transfer under low gravity
Frost, W.
1981-01-01
Spacelab experiment to investigate two-phase flow patterns under gravity uses a water-air mixture experiment. Air and water are circulated through the system. The quality or the mixture or air-water is controlled. Photographs of the test section are made and at the same time pressure drop across the test section is measured. The data establishes a flow regime map under reduced gravity conditions with corresponding pressure drop correlations. The test section is also equipped with an electrical resistance heater in order to allow a flow boiling experiment to be carried out using Freon II. High-speed photographs of the test section are used to determine flow patterns. The temperature gradient and pressure drop along the duct can be measured. Thus, quality change can be measured, and heat transfer calculated.
Characteristics of two-phase flows in large diameter channels
Energy Technology Data Exchange (ETDEWEB)
Schlegel, J.P., E-mail: schlegelj@mst.edu [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, 301 W 14th St., Rolla, MO 65401 (United States); Hibiki, T.; Ishii, M. [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907 (United States)
2016-12-15
Two-phase flows in large diameter channels have a great deal of importance in a wide variety of industrial applications. Nuclear systems, petroleum refineries, and chemical processes make extensive use of larger systems. Flows in such channels have very different properties from flows in smaller channels which are typically used in experimental research. In this paper, the various differences between flows in large and small channels are highlighted using the results of previous experimental and analytical research. This review is followed by a review of recent experiments in and model development for flows in large diameter channels performed by the authors. The topics of these research efforts range from void fraction and interfacial area concentration measurement to flow regime identification and modeling, drift-flux modeling for high void fraction conditions, and evaluation of interfacial area transport models for large diameter channels.
Flooding in counter-current two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Ragland, W.A.; Ganic, E.N.
1982-01-01
Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding.
The pdf approach to turbulent polydispersed two-phase flows
Minier, Jean-Pierre; Peirano, Eric
2001-10-01
The purpose of this paper is to develop a probabilistic approach to turbulent polydispersed two-phase flows. The two-phase flows considered are composed of a continuous phase, which is a turbulent fluid, and a dispersed phase, which represents an ensemble of discrete particles (solid particles, droplets or bubbles). Gathering the difficulties of turbulent flows and of particle motion, the challenge is to work out a general modelling approach that meets three requirements: to treat accurately the physically relevant phenomena, to provide enough information to address issues of complex physics (combustion, polydispersed particle flows, …) and to remain tractable for general non-homogeneous flows. The present probabilistic approach models the statistical dynamics of the system and consists in simulating the joint probability density function (pdf) of a number of fluid and discrete particle properties. A new point is that both the fluid and the particles are included in the pdf description. The derivation of the joint pdf model for the fluid and for the discrete particles is worked out in several steps. The mathematical properties of stochastic processes are first recalled. The various hierarchies of pdf descriptions are detailed and the physical principles that are used in the construction of the models are explained. The Lagrangian one-particle probabilistic description is developed first for the fluid alone, then for the discrete particles and finally for the joint fluid and particle turbulent systems. In the case of the probabilistic description for the fluid alone or for the discrete particles alone, numerical computations are presented and discussed to illustrate how the method works in practice and the kind of information that can be extracted from it. Comments on the current modelling state and propositions for future investigations which try to link the present work with other ideas in physics are made at the end of the paper.
Ductile fracture of two-phase welds under 77K
International Nuclear Information System (INIS)
Yushchenko, K.A.; Voronin, S.A.; Pustovit, A.I.; Shavel', A.V.
1984-01-01
The effect of the type of welding and fillers on crack resistance of welded joints high-strength steel EhP810 and its various compounds with steels EhP666, 08Kh18N10T has been studied. For the welding of steel EhP810 with steels EhP810, EhP666, 08Kh18N10T electron-beam, automatic, argon tungsten arc with non-consumable electrode with various fillers, as well as argon metal-arc welding with consumable electrode, were used. It is shown, that for a joint, made by electron-beam welding, parameters σsub(u), Ksub(IcJ), KCV are higher than for a joint of a similar phase structure made using filler wire EhP659-VI. It is explained by the fact, that during electron-beam welding joint metal refining takes place, which removes gases. In welded joints of chP810 steel, having joints with austenitic structure, characteristic of crack resistance Ssub(c) increases by more than 0.2 mm in contrast to two-phase joints, which conventional yield strength at 77 K exceeds 1000 MPa. It is worth mentioning, that for other classes of steels formation of two-phase structure of joint increases welded joint resistance to brittle fracture. It is possible to obtain the required structure of joint with assigned level of resistance to brittle fracture by means of the use of different fillers, optimum and welding procedure, regulaing the part of the basic metal in joint content
Flashing liquid jets and two-phase droplet dispersion
International Nuclear Information System (INIS)
Cleary, Vincent; Bowen, Phil; Witlox, Henk
2007-01-01
The large-scale release of a liquid contained at upstream conditions above its local atmospheric boiling point is a scenario often given consideration in process industry risk analysis. Current-hazard quantification software often employs simplistic equilibrium two-phase approaches. Scaled water experiments have been carried out measuring droplet velocity and droplet size distributions for a range of exit orifice aspect ratios (L/d) and conditions representing low to high superheat. 2D Phase-Doppler Anemometry has been utilised to characterise droplet kinematics and spray quality. Droplet size correlations have been developed for non-flashing, the transition between non-flashing and flashing, and fully flashing jets. Using high-speed shadowography, transition between regimes is defined in terms of criteria identified in the external flow structure. An overview companion paper provides a wider overview of the problem and reports implementation of these correlations into consequence models and subsequent validation. The fluid utilised throughout is water, hence droplet correlations are developed in non-dimensional form to allow extrapolation to other fluids through similarity scaling, although verification of model performance for other fluids is required in future studies. Data is reduced via non-dimensionalisation in terms of the Weber number and Jakob number, essentially representing the fluid mechanics and thermodynamics of the system, respectively. A droplet-size distribution correlation has also been developed, conveniently presented as a volume undersize distribution based on the Rosin-Rammler distribution. Separate correlations are provided for sub-cooled mechanical break-up and fully flashing jets. This form of correlation facilitates rapid estimates of likely mass rainout quantities, as well as full distribution information for more rigorous two-phase thermodynamic modelling in the future
Construction of the two-phase critical flow test facility
International Nuclear Information System (INIS)
Chung, C. H.; Chang, S. K.; Park, H. S.; Min, K. H.; Choi, N. H.; Kim, C. H.; Lee, S. H.; Kim, H. C.; Chang, M. H.
2002-03-01
The two-phase critical test loop facility has been constructed in the KAERI engineering laboratory for the simulation of small break loss of coolant accident entrained with non-condensible gas of SMART. The test facility can operate at 12 MPa of pressure and 0 to 60 C of sub-cooling with 0.5 kg/s of non- condensible gas injection into break flow, and simulate up to 20 mm of pipe break. Main components of the test facility were arranged such that the pressure vessel containing coolant, a test section simulating break and a suppression tank inter-connected with pipings were installed vertically. As quick opening valve opens, high pressure/temperature coolant flows through the test section forming critical two-phase flow into the suppression tank. The pressure vessel was connected to two high pressure N2 gas tanks through a control valve to control pressure in the pressure vessel. Another N2 gas tank was also connected to the test section for the non-condensible gas injection. The test facility operation was performed on computers supported with PLC systems installed in the control room, and test data such as temperature, break flow rate, pressure drop across test section, gas injection flow rate were all together gathered in the data acquisition system for further data analysis. This test facility was classified as a safety related high pressure gas facility in law. Thus the loop design documentation was reviewed, and inspected during construction of the test loop by the regulatory body. And the regulatory body issued permission for the operation of the test facility
Psychological distress through immigration: the two-phase temporal pattern?
Ritsner, M; Ponizovsky, A
1999-01-01
A large community sample, cross-sectional and in part longitudinal design, and comparison groups was used to determine the timing of psychological distress among immigrants. A total of 2,378 adult immigrants from the former Soviet Union to Israel completed the self-administered questionnaire Talbieh Brief Distress Inventory. The aggregate levels of distress and six psychological symptoms--obsessiveness, hostility, interpersonal sensitivity, depression, anxiety, and paranoid ideation--were compared at 20 intervals covering 1 to 60 months after resettlement. The level of psychological distress was significantly higher in the immigrants than that of Israeli natives but not in the potential immigrant controls. A two-phase temporal pattern of development of psychological distress was revealed consisting of escalation and reduction phases. The escalation phase was characterized by an increase in distress levels until the 27th month after arrival (a peak) and the reduction phase led to a decline returning to normal levels. The 1-month prevalence rate was 15.6% for the total sample, and for highly distressed subjects it reached 24% at the 27th month after arrival, and it declined to 4% at the 44th month. The time pattern of distress shared males and females, married and divorced/widowed (but not singles), as well as subjects of all age groups (except for immigrants in their forties). The two-phase pattern of distress obtained according to cross-sectional data was indirectly confirmed through a longitudinal way. Claims of early euphoric or distress-free period followed by mental health crisis frequently referred to in the literature on migration was not supported by this study.
Two-phase flow heat transfer in nuclear reactor systems
International Nuclear Information System (INIS)
Koncar, Bostjan; Krepper, Eckhard; Bestion, Dominique; Song, Chul-Hwa; Hassan, Yassin A.
2013-01-01
Complete text of publication follows: Heat transfer and phase change phenomena in two-phase flows are often encountered in nuclear reactor systems and are therefore of paramount importance for their optimal design and safe operation.The complex phenomena observed especially during transient operation of nuclear reactor systems necessitate extensive theoretical and experimental investigations. This special issue brings seven research articles of high quality. Though small in number, they cover a wide range of topics, presenting high complexity and diversity of heat transfer phenomena in two-phase flow. In the last decades a vast amount of research has been devoted to theoretical work and computational simulations, yet the experimental work remains indispensable for understanding of two-phase flow phenomena and for model validation purposes. This is reflected also in this issue, where only one article is purely experimental, while three of them deal with theoretical modelling and the remaining three with numerical simulations. The experimental investigation of the critical heat flux (CHF) phenomena by means of photographic study is presented in the paper of J. Park et al. They have used a high-speed camera system to observe the transient boiling characteristics on a thin horizontal cylinder submerged in a pool of water or highly wetting liquid. Experiments show that the initial boiling process is strongly affected by the properties and wettability of the liquid. The authors have stressed the importance of the local scale observation leading to better understanding of the transient CHF phenomena. In the article of G. Espinosa-Paredes et al. a theoretical work concerning the derivation of transport equations for two-phase flow is presented. The author proposes a novel approach based on derivation of nonlocal volume averaged equations which contain new terms related to nonlocal transport effects. These non-local terms act as coupling elements between the phenomena
Drachsler, Hendrik; Kicken, Wendy; Van der Klink, Marcel; Stoyanov, Slavi; Boshuizen, Els
2011-01-01
Drachsler, H., Kicken, W., Van der Klink, M., Stoyanov, S., & Boshuizen, H. P. A. (2011, 21 March). The Handover project: Improving the continuity of patient care through identification and implementation of novel patient handoff processes in Europe. Presentation at Learning Networks meeting,
International Nuclear Information System (INIS)
Briola, Stefano; Di Marco, Paolo; Gabbrielli, Roberto
2017-01-01
A novel Combined Cooling, Heating and Power (CCHP) cycle, operating with two-phase devices for the compression and expansion processes and a single-component wet working fluid, is proposed. A detailed sensitivity analysis of the novel CCHP cycle has been investigated in order to evaluate, in terms of energy performance indicators, its potentiality to serve typical trigenerative tertiary and industrial end-users with different fixed operating temperatures. In general, the novel CCHP cycle is characterized by higher energy performance indicators than a separated energy production system. The comparison between the novel CCHP cycle and several commercialized CCHP systems has been performed in the case studies related to tertiary and industrial end-users. The novel CCHP cycle shows a trigenerative capability in wide ranges of the end-users demands without surplus or deficit of the electric or thermal powers. Furthermore, the maximum allowable capital cost of the whole novel CCHP plant (BEPCC), that will assure the profitability of the investment, is calculated in the tertiary and industrial end-users case studies. For the tertiary end-user, the capital costs of the commercialized CCHP are between the minimum and maximum BEPCC values. On the contrary, for the industrial end-user, they are lower than the minimum and maximum BEPCC values. - Highlights: • Novel CCHP cycle with two-phase expanders and compressors has been conceived. • Novel CCHP cycle has higher performances than a separated energy production system. • Novel CCHP cycle satisfies the user demands in wide ranges without surplus/deficit. • Tertiary user: novel CCHP cycle is competitive against marketed CCHP systems. • Industrial user: novel CCHP cycle is not competitive against marketed CCHP systems.
Palma, JP; Sharek, PJ; Longhurst, CA
2016-01-01
Objective To evaluate the impact of integrating a handoff tool into the electronic medical record (EMR) on sign-out accuracy, satisfaction and workflow in a neonatal intensive care unit (NICU). Study Design Prospective surveys of neonatal care providers in an academic children’s hospital 1 month before and 6 months following EMR integration of a standalone Microsoft Access neonatal handoff tool. Result Providers perceived sign-out information to be somewhat or very accurate at a rate of 78% with the standalone handoff tool and 91% with the EMR-integrated tool (P < 0.01). Before integration of neonatal sign-out into the EMR, 35% of providers were satisfied with the process of updating sign-out information and 71% were satisfied with the printed sign-out document; following EMR integration, 92% of providers were satisfied with the process of updating sign-out information (P < 0.01) and 98% were satisfied with the printed sign-out document (P < 0.01). Neonatal care providers reported spending a median of 11 to 15 min/day updating the standalone sign-out and 16 to 20 min/day updating the EMR-integrated sign-out (P = 0.026). The median percentage of total sign-out preparation time dedicated to transcribing information from the EMR was 25 to 49% before and <25% after EMR integration of the handoff tool (P < 0.01). Conclusion Integration of a NICU-specific handoff tool into an EMR resulted in improvements in perceived sign-out accuracy, provider satisfaction and at least one aspect of workflow. PMID:21273990
Enhanced mixing in two-phase Taylor-Couette flows
International Nuclear Information System (INIS)
Dherbecourt, Diane
2015-01-01
In the scope of the nuclear fuel reprocessing, Taylor-Couette flows between two concentric cylinders (the inner one in rotation and the outer one at rest) are used at laboratory scale to study the performances of new liquid/liquid extraction processes. Separation performances are strongly related to the mixing efficiency, the quantification of the latter is therefore of prime importance. A previous Ph.D. work has related the mixing properties to the hydrodynamics parameters in single-phase flow, using both experimental and numerical investigations. The Reynolds number, flow state and vortices height (axial wavelength) impacts were thus highlighted. This Ph.D. work extends the previous study to two-phase configurations. For experimental simplification, and to avoid droplets coalescence or breakage, spherical solid particles of PMMA from 800 μm to 1500 μm diameter are used to model rigid droplets. These beads are suspended in an aqueous solution of dimethyl sulfoxide (DMSO) and potassium Thiocyanate (KSCN). The experimental setup uses coupled Particle Image Velocimetry (PIV) and Planar Laser-Induced Fluorescence (PLIF) to access simultaneously the hydrodynamic and the mixing properties. Although the two phases are carefully chosen to match in density and refractive index, these precautions are not sufficient to ensure a good measurement quality, and a second PLIF channel is added to increase the precision of the mixing quantification. The classical PLIF channel monitors the evolution of Rhodamine WT concentration, while the additional PLIF channel is used to map a Fluorescein dye, which is homogeneously concentrated inside the gap. This way, a dynamic mask of the bead positions can be created and used to correct the Rhodamine WT raw images. Thanks to this experimental setup, a parametric study of the particles size and concentration is achieved. A double effect of the dispersed phase is evidenced. On one hand, the particles affect the flow hydrodynamic properties
Creep of Two-Phase Microstructures for Microelectronic Applications
Energy Technology Data Exchange (ETDEWEB)
Reynolds, Heidi Linch [Univ. of California, Berkeley, CA (United States)
1998-12-01
The mechanical properties of low-melting temperature alloys are highly influenced by their creep behavior. This study investigates the dominant mechanisms that control creep behavior of two-phase, low-melting temperature alloys as a function of microstructure. The alloy systems selected for study were In-Ag and Sn-Bi because their eutectic compositions represent distinctly different microstructure.” The In-Ag eutectic contains a discontinuous phase while the Sn-Bi eutectic consists of two continuous phases. In addition, this work generates useful engineering data on Pb-free alloys with a joint specimen geometry that simulates microstructure found in microelectronic applications. The use of joint test specimens allows for observations regarding the practical attainability of superplastic microstructure in real solder joints by varying the cooling rate. Steady-state creep properties of In-Ag eutectic, Sn-Bi eutectic, Sn-xBi solid-solution and pure Bi joints have been measured using constant load tests at temperatures ranging from O°C to 90°C. Constitutive equations are derived to describe the steady-state creep behavior for In-Ageutectic solder joints and Sn-xBi solid-solution joints. The data are well represented by an equation of the form proposed by Dom: a power-law equation applies to each independent creep mechanism. Rate-controlling creep mechanisms, as a function of applied shear stress, test temperature, and joint microstructure, are discussed. Literature data on the steady-state creep properties of Sn-Bi eutectic are reviewed and compared with the Sn-xBi solid-solution and pure Bi joint data measured in the current study. The role of constituent phases in controlling eutectic creep behavior is discussed for both alloy systems. In general, for continuous, two-phase microstructure, where each phase exhibits significantly different creep behavior, the harder or more creep resistant phase will dominate the creep behavior in a lamellar microstructure. If a
The pressure effects on two-phase anaerobic digestion
International Nuclear Information System (INIS)
Chen, Yuling; Rößler, Benjamin; Zielonka, Simon; Lemmer, Andreas; Wonneberger, Anna-Maria; Jungbluth, Thomas
2014-01-01
Highlights: • The pressure effect on anaerobic digestion up to 9 bar was examined. • Increasing pressure decreased pH value in the anaerobic filter. • Increasing pressure increased methane content. • Increasing pressure decreased specific methane yield slightly. • The pressurized methane reactor was very stable and performed well. - Abstract: Two-phase pressurized anaerobic digestion is a novel process aimed at facilitating injection of the produced biogas into the natural gas grid by integrating the fermentative biogas production and upgrading it to substitute natural gas. In order to understand the mechanisms, knowledge of pressure effects on anaerobic digestion is required. To examine the effects of pressure on the anaerobic digestion process, a two-phase anaerobic digestion system was built up in laboratory scale, including three acidogenesis-leach-bed-reactors and one pressure-resistant anaerobic filter. Four different pressure levels (the absolute pressure of 1 bar, 3 bar, 6 bar and 9 bar) were applied to the methane reactor in sequence, with the organic loading rate maintained at approximately 5.1 kgCOD m −3 d −1 . Gas production, gas quality, pH value, volatile fatty acids, alcohol, ammonium-nitrogen, chemical oxygen demand (COD) and alkaline buffer capacity were analyzed. No additional caustic chemicals were added for pH adjustment throughout the experiment. With the pressure increasing from 1.07 bar to 8.91 bar, the pH value decreased from 7.2 to 6.5, the methane content increased from 66% to 75%, and the specific methane yield was slightly reduced from 0.33 l N g −1 COD to 0.31 l N g −1 COD. There was almost no acid-accumulation during the entire experiment. The average COD-degradation grade was always more than 93%, and the average alkaline buffering capacity (VFA/TIC ratio) did not exceed 0.2 at any pressure level. The anaerobic filter showed a very stable performance, regardless of the pressure variation
Statistical descriptions of polydisperse turbulent two-phase flows
Energy Technology Data Exchange (ETDEWEB)
Minier, Jean-Pierre, E-mail: jean-pierre.minier@edf.fr
2016-12-15
Disperse two-phase flows are flows containing two non-miscible phases where one phase is present as a set of discrete elements dispersed in the second one. These discrete elements, or ‘particles’, can be droplets, bubbles or solid particles having different sizes. This situation encompasses a wide range of phenomena, from nano-particles and colloids sensitive to the molecular fluctuations of the carrier fluid to inertia particles transported by the large-scale motions of turbulent flows and, depending on the phenomenon studied, a broad spectrum of approaches have been developed. The aim of the present article is to analyze statistical models of particles in turbulent flows by addressing this issue as the extension of the classical formulations operating at a molecular or meso-molecular level of description. It has a three-fold purpose: (1) to bring out the thread of continuity between models for discrete particles in turbulent flows (above the hydrodynamical level of description) and classical mesoscopic formulations of statistical physics (below the hydrodynamical level); (2) to reveal the specific challenges met by statistical models in turbulence; (3) to establish a methodology for modeling particle dynamics in random media with non-zero space and time correlations. The presentation is therefore centered on organizing the different approaches, establishing links and clarifying physical foundations. The analysis of disperse two-phase flow models is developed by discussing: first, approaches of classical statistical physics; then, by considering models for single-phase turbulent flows; and, finally, by addressing current formulations for discrete particles in turbulent flows. This brings out that particle-based models do not cease to exist above the hydrodynamical level and offer great interest when combined with proper stochastic formulations to account for the lack of equilibrium distributions and scale separation. In the course of this study, general
Biogasification of solid wastes by two-phase anaerobic fermentation
International Nuclear Information System (INIS)
Ghosh, S.; Vieitez, E.R.; Liu, T.; Kato, Y.
1997-01-01
Municipal, industrial and agricultural solid wastes, and biomass deposits, cause large-scale pollution of land and water. Gaseous products of waste decomposition pollute the air and contribute to global warming. This paper describes the development of a two-phase fermentation system that alleviates methanogenic inhibition encountered with high-solids feed, accelerates methane fermentation of the solid bed, and captures methane (renewable energy) for captive use to reduce global warming. The innovative system consisted of a solid bed reactor packed with simulated solid waste at a density of 160 kg/m 3 and operated with recirculation of the percolated culture (bioleachate) through the bed. A rapid onset of solids hydrolysis, acidification, denitrification and hydrogen gas formation was observed under these operating conditions. However, these fermentative reactions stopped at a total fatty acids concentration of 13,000 mg/l (as acetic) at pH 5, with a reactor head-gas composition of 75 percent carbon dioxide, 20 percent nitrogen, 2 percent hydrogen and 3 percent methane. Fermentation inhibition was alleviated by moving the bioleachate to a separate methane-phase fermenter, and recycling methanogenic effluents at pH 7 to the solid bed. Coupled operation of the two reactors promoted methanogenic conversion of the high-solids feed. (author)
Two phases of the anyon gas and broken T symmetry
International Nuclear Information System (INIS)
Canright, G.S.; Rojo, A.G.
1991-01-01
This paper reports the first exact finite-temperature study of anyons. The authors' method is an extension to finite T of earlier numerical work with small numbers of anyons on a lattice. We study the spontaneous magnetization M 0 (T), since the signature has been identified as a key signature of broken T symmetry for anyon models. Our results confirm the two-phase picture suggested by earlier work: The authors find a low-temperature regime where M 0 is very small or zero, and a high-temperature regime where M 0 is of O(0.1 μ B ) per particle. In the high-temperature regime the authors can obtain an excellent estimate of M 0 (T) in the thermodynamic limit (which we call M 0 ∞ ). since our finite-size results extrapolate smoothly with little scatter. The authors' values for M 0 ∞ can then be compared with the results of μSR experiments on high-temperature superconductors, which set an upper experimental bound on the internal fields from such moments. The authors find that M 0 ∞ in a bulk material of many planes will almost certainly give a signal well above this threshold if (and only if) the planes are ordered ferromagnetically. In the antiferromagnetic case (which is strongly favored energetically) the signal from M 0 ∞ is probably undetectable. Finally, we estimate the transition temperature T c from our finite-size studies, obtaining a value on the order of a few hundred Kelvins
System for recording and displaying two-phase flow topographies
International Nuclear Information System (INIS)
Cary, C.N.; Block, J.A.
1979-01-01
A system of hardware and software has been developed and used to record and display in various forms details of the countercurrent flow topographies occurring in a scaled Pressurized Water Reactor downcomer annulus. An array of 288 conductivity sensors was mounted in a 1/15 scale PWR annulus. At each moment in time, the state of each probe indicates the presence or absence of water in this immediate vicinity. An electronic data acquisition system records the states of all probes 108 times per second on magnetic tape; software routines retrieve the data and reconstruct visual analogs of the flow topographies. The instantaneous two-phase state of the annulus at each instant can be displayed on a hard copy plotter or on a CRT screen. By synchronizing a camera drive with the CRT display, 16mm films have been made recreating the flow process at full speed and at various slow motion rates. All data obtained are stored in computer files in numerical form and can be subjected to various types of quantitative analysis to assist in advanced code development and verification
A turbulent two-phase flow model for nebula flows
International Nuclear Information System (INIS)
Champney, J.M.; Cuzzi, J.N.
1990-01-01
A new and very efficient turbulent two-phase flow numericaly model is described to analyze the environment of a protoplanetary nebula at a stage prior to the formation of planets. Focus is on settling processes of dust particles in flattened gaseous nebulae. The model employs a perturbation technique to improve the accuracy of the numerical simulations of such flows where small variations of physical quantities occur over large distance ranges. The particles are allowed to be diffused by gas turbulence in addition to settling under gravity. Their diffusion coefficients is related to the gas turbulent viscosity by the non-dimensional Schmidt number. The gas turbulent viscosity is determined by the means of the eddy viscosity hypothesis that assumes the Reynolds stress tensor proportional to the mean strain rate tensor. Zero- and two-equation turbulence models are employed. Modeling assumptions are detailed and discussed. The numerical model is shown to reproduce an existing analytical solution for the settling process of particles in an inviscid nebula. Results of nebula flows are presented taking into account turbulence effects of nebula flows. Diffusion processes are found to control the settling of particles. 24 refs
Passive Two-Phase Cooling of Automotive Power Electronics: Preprint
Energy Technology Data Exchange (ETDEWEB)
Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.
2014-08-01
Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.
Transient boiling in two-phase helium natural circulation loops
Furci, H.; Baudouy, B.; Four, A.; Meuris, C.
2014-01-01
Two-phase helium natural circulation loops are used for cooling large superconducting magnets, as CMS for LHC. During normal operation or in the case of incidents, transients are exerted on the cooling system. Here a cooling system of this type is studied experimentally. Sudden power changes are operated on a vertical-heated-section natural convection loop, simulating a fast increase of heat deposition on magnet cooling pipes. Mass flow rate, heated section wall temperature and pressure drop variations are measured as a function of time, to assess the time behavior concerning the boiling regime according to the values of power injected on the heated section. The boiling curves and critical heat flux (CHF) values have been obtained in steady state. Temperature evolution has been observed in order to explore the operating ranges where heat transfer is deteriorated. Premature film boiling has been observed during transients on the heated section in some power ranges, even at appreciably lower values than the CHF. A way of attenuating these undesired temperature excursions has been identified through the application of high enough initial heating power.
Two-phase flow characteristics of HFC and HCFC fluid
International Nuclear Information System (INIS)
Ueno, T.; Matsuda, K.; Kusakabe, T.
1998-01-01
Some two-phase flow characteristics of HFC and HCFC fluid have been investigated experimentally. Fluids used in this experiment are HCFC22 (hereinafter called 'R22'), HCFC123 (hereinafter called 'R123') and Mixture of HFC fluid (hereinafter called 'R407C'). The fluid R407C are mixture of HFC32, HFC134a and HFC125, and their concentrations are 23wt%, 52wt% and 25wt%, respectively. This paper presents main flow parameters such as void fraction, interfacial velocities, bubble diameter distribution and pressure drop multiplier, which can characterize flow behavior. The void fractions and interfacial velocities were measured at some local positions in the single pipe using the bi-optical probe(hereinafter called 'BOP'). The procedure to calculate the void fraction from the void signals obtained by BOP were adopted the so-called slice method. The effects of slice levels on the void fraction were discussed taking into account bubble diameter. The new correlation of slice level as the function of void fraction has been proposed. The area-averaged void fractions obtained from BOP's void signals using new correlation were compared with void fractions obtained from pressure drops. The area-averaged interfacial velocities were also compared with the superficial gas velocities. It was concluded that the accuracy of BOP measurements are 5% for void fraction and less than 8.5% for interfacial velocity
Two-phase flow field simulation of horizontal steam generators
Energy Technology Data Exchange (ETDEWEB)
Rabiee, Ataollah; Kamalinia, Amir Hossein; Hadad, Kamal [School of Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)
2017-02-15
The analysis of steam generators as an interface between primary and secondary circuits in light water nuclear power plants is crucial in terms of safety and design issues. VVER-1000 nuclear power plants use horizontal steam generators which demand a detailed thermal hydraulics investigation in order to predict their behavior during normal and transient operational conditions. Two phase flow field simulation on adjacent tube bundles is important in obtaining logical numerical results. However, the complexity of the tube bundles, due to geometry and arrangement, makes it complicated. Employment of porous media is suggested to simplify numerical modeling. This study presents the use of porous media to simulate the tube bundles within a general-purpose computational fluid dynamics code. Solved governing equations are generalized phase continuity, momentum, and energy equations. Boundary conditions, as one of the main challenges in this numerical analysis, are optimized. The model has been verified and tuned by simple two-dimensional geometry. It is shown that the obtained vapor volume fraction near the cold and hot collectors predict the experimental results more accurately than in previous studies.
Entrainment in vertical annular two-phase flow
International Nuclear Information System (INIS)
Sawant, Pravin; Ishii, Mamoru; Mori, Michitsugu
2009-01-01
Prediction of amount of entrained droplets or entrainment fraction in annular two-phase flow is essential for the estimation of dryout condition and analysis of post dryout heat transfer in light water nuclear reactors and steam boilers. In this study, air-water and organic fluid (Freon-113) annular flow entrainment experiments have been carried out in 9.4 and 10.2 mm diameter test sections, respectively. Both the experiments covered three distinct pressure conditions and wide range of liquid and gas flow conditions. The organic fluid experiments simulated high pressure steam-water annular flow conditions. In each of the experiments, measurements of entrainment fraction, droplet entrainment rate and droplet deposition rate have been performed by using a liquid film extraction method. A simple, explicit and non-dimensional correlation developed by Sawant et al. (2008a) for the prediction of entrainment fraction is further improved in this study in order to account for the existence of critical gas and liquid flow rates below which no entrainment is possible. Additionally, a new correlation is proposed for the estimation of minimum liquid film flow rate at the maximum entrainment fraction condition. The improved correlation successfully predicted the newly collected air-water and Freon-113 entrainment fraction data. Furthermore, the correlations satisfactorily compared with the air-water, helium-water and air-genklene experimental data measured by Willetts (1987). (author)
A two-phase model of aquifer heterogeneity
International Nuclear Information System (INIS)
Moltyaner, G.L.
1994-11-01
A two-phase model of a fluid-saturated geologic medium is developed with groundwater velocity (rather than the hydraulic conductivity) as the primary model parameter. The model describes the groundwater flow, contaminant transport processes, and geologic medium structure at the local-scale of a continuum representation and relates structure to processes quantitatively. In this model, the heterogeneity of a geologic medium is characterized either in terms of the spatial variability in the bulk (local-scale) fluid density and sediment density, or in terms of variability in the local-scale porosity and effective grain diameter. The local-scale continuity equations resulting from these properties are derived for both phases. The effective grain diameter is employed to quantify the geologic structure. Velocity is employed to quantify the transport process. Since structure controls process, a high correlation is observed between the effective grain diameter and velocity. The observed correlation leads to a new formulation of Darcy's law without invoking the concept of a fictitious (Darcy's) velocity. The local-scale groundwater flow equation is developed on the basis of the new formulation. (author). 16 refs., 4 figs
Experimental investigation of a two-phase nozzle flow
International Nuclear Information System (INIS)
Kedziur, F.; John, H.; Loeffel, R.; Reimann, J.
1980-07-01
Stationary two-phase flow experiments with a convergent nozzle are performed. The experimental results are appropriate to validate advanced computer codes, which are applied to the blowdown-phase of a loss-of-coolant accident (LOCA). The steam-water experiments present a broad variety of initial conditions: the pressure varies between 2 and 13 MPa, the void fraction between 0 (subcooled) and about 80%, a great number of critical as well as subcritical experiments with different flow pattern is investigated. Additional air-water experiments serve for the separation of phase transition effects. The transient acceleration of the fluid in the LOCA-case is simulated by a local acceleration in the experiment. The layout of the nozzle and the applied measurement technique allow for a separate testing of blowdown-relevant, physical models and the determination of empirical model parameters, respectively. The measured quantities are essentially the mass flow rate, quality, axial pressure and temperature profiles as well as axial and radial density/void profiles obtained by a γ-ray absorption device. Moreover, impedance probes and a pitot probe are used. Observed phenomena like a flow contraction, radial pressure and void profiles as well as the appearance of two chocking locations are described, because their examination is rather instructive about the refinement of a program. The experimental facilities as well as the data of 36 characteristic experiments are documented. (orig.) [de
Dielectric barrier discharge in a two-phase mixture
Energy Technology Data Exchange (ETDEWEB)
Ye Qizheng; Zhang Ting; Lu Fei; Li Jin; He Zhenghao; Lin Fuchang [College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)
2008-01-21
This paper reports the experimental investigation of the dielectric barrier discharge in which the gap area is filled with a two-phase mixture (TPM), air and solid particles. We found that there are two kinds of discharges in the TPM. One is the surface discharge generated on the surface of the solid particles and the other is the filament discharge generated in the air void. For the case of low volume fraction of solid particles, the surface discharge starts to occur when the applied voltage is higher than the onset voltage. At a further voltage increase, the filament discharge takes place at the same time. For the case of high volume fraction, such as the packed-bed reactor, only the surface discharge exists. Under the condition of the same volume fraction, the larger the diameter of the solid particles, the lower the surface discharge onset voltage. As a conclusion, we think that the plasma reactor using the form of low volume fraction of solid particles may be a better choice for waste-gas treatment enhanced by catalysts.
Abnormal breakdown characteristic in a two-phase mixture
International Nuclear Information System (INIS)
Ye Qizheng; Li Jin; Lu Fei
2006-01-01
A two-phase mixture (TPM) is a mixture of gas and macroparticles of high concentration. Based on Townsend's theory, a new cell-iterative model in analytical form for the breakdown mechanism in TPM is presented. Compared with the original cell-iterative model in our previous paper, the obstructive factor of the macroparticles that influences the electron avalanche propagation is considered, except for the macroparticles distorting the electrical field and capture of the electrons. The cell attractive parameter k is presented according to the classical continuum theory for field charging. The modified Paschen law for a TPM is presented to calculate the breakdown voltage. The breakdown voltage of the TPM, U TPM , increases gradually with an increase in the macroparticle number density (m). The voltage U TPM is lower than that of the pure gas at low m values and larger at high m values. With a decrease of the macroparticle volume fraction and the dielectric mismatch, the voltage U TPM increases gradually at low m values and decreases gradually at high m values. The voltage U TPM at pd 200 cm Torr is lower than that at pd = 760 cm Torr for low m values and larger for high m values. This kind of abnormal breakdown characteristic in the TPM occurs in the case of high macroparticle volume fraction. On the other hand, the minimum of the TPM's Paschen curve increases with increase in m. It provides the possibility and the conditions of greatly increasing the breakdown voltage in a nearly uniform field
A two-phase full-wave superconducting rectifier
International Nuclear Information System (INIS)
Ariga, T.; Ishiyama, A.
1989-01-01
A two-phase full-wave superconducting rectifier has been developed as a small cryogenic power supply of superconducting magnets for magnetically levitation trains. Those magnets are operated in the persistent current mode. However, small ohmic loss caused at resistive joints and ac loss induced by the vibration of the train cannot be avoided. Therefore, the low-power cryogenic power supply is required to compensate for the reduction in magnet current. The presented superconducting rectifier consists of two identical full-wave rectifiers connected in series. Main components of each rectifier are a troidal shape superconducting set-up transformer and two thermally controlled switches. The test results using a 47.5 mH load magnet at 0.2 Hz and 0.5 Hz operations are described. To estimate the characteristics of the superconducting rectifier, the authors have developed a simulation code. From the experiments and the simulations, the transfer efficiency is examined. Furthermore, the optimal design of thermally controlled switches based on the finite element analysis is also discussed
Acceleration of a two-phase flow by boiling, (3)
International Nuclear Information System (INIS)
Mori, Yasuo; Hijikata, Kunio; Iwata, Shoichiro
1976-01-01
Acceleration of two-component, two-phase flow has been studied, and a method using the volume expansion by boiling for accelerating fluid has been investigated. In this study, the phenomena of atomizing and boiling were separated, and the liquid with low boiling point was injected into water at lower than the saturation temperature, and was atomized. Then, this was mixed with high temperature liquid and was boiled. The uniform buffle flow was produced, and the phenomena were observed with a high speed camera. The process of acceleration and the acceleration performance were compared with the results of theoretical analysis described in the second report. The experiment was carried out with liquid R113, and at first, the mechanism of atomizing was studied. The atomizing was caused when the relative velocity between R113 and water was more than 4 m/s irrespective of water velocity. The distribution of the diameter of fine liquid drops was almost normal distribution. When the fine drops of R113 were mixed with the high temperature water, bubbles were produced, and the production rate showed definite dependence on the degree of overheating. The flow of bubbles was uniform. However, some of R113 did not become bubbles. The efficiency of acceleration was 1.0 which was independent of the degree of overheating. A further problem is to reduce the quantity of the liquid which does not boil. (Kato, T.)
Two phase flow problems in power station boilers
International Nuclear Information System (INIS)
Firman, E.C.
1974-01-01
The paper outlines some of the waterside thermal and hydrodynamic phenomena relating to design and operation of large boilers in central power stations. The associated programme of work is described with an outline of some results already obtained. By way of introduction, the principal features of conventional and nuclear drum boilers and once-through nuclear heat exchangers are described in so far as they pertain to this area of work. This is followed by discussion of the relevant physical phenomena and problems which arise. For example, the problem of steam entrainment from the drum into the tubes connecting it to the furnace wall tubes is related to its effects on circulation and possible mechanisms of tube failure. Other problems concern the transient associated with start-up or low load operation of plant. The requirement for improved mathematical representation of steady and dynamic performance is mentioned together with the corresponding need for data on heat transfer, pressure loss, hydrodynamic stability, consequences of deposits, etc. The paper concludes with reference to the work being carried out within the C.E.G.B. in relation to the above problems. The facilities employed and the specific studies being made on them are described: these range from field trials on operational boilers to small scale laboratory investigations of underlying two phase flow mechanisms and include high pressure water rigs and a freon rig for simulation studies
Numerical methods for two-phase flow with contact lines
Energy Technology Data Exchange (ETDEWEB)
Walker, Clauido
2012-07-01
This thesis focuses on numerical methods for two-phase flows, and especially flows with a moving contact line. Moving contact lines occur where the interface between two fluids is in contact with a solid wall. At the location where both fluids and the wall meet, the common continuum descriptions for fluids are not longer valid, since the dynamics around such a contact line are governed by interactions at the molecular level. Therefore the standard numerical continuum models have to be adjusted to handle moving contact lines. In the main part of the thesis a method to manipulate the position and the velocity of a contact line in a two-phase solver, is described. The Navier-Stokes equations are discretized using an explicit finite difference method on a staggered grid. The position of the interface is tracked with the level set method and the discontinuities at the interface are treated in a sharp manner with the ghost fluid method. The contact line is tracked explicitly and its dynamics can be described by an arbitrary function. The key part of the procedure is to enforce a coupling between the contact line and the Navier-Stokes equations as well as the level set method. Results for different contact line models are presented and it is demonstrated that they are in agreement with analytical solutions or results reported in the literature.The presented Navier-Stokes solver is applied as a part in a multiscale method to simulate capillary driven flows. A relation between the contact angle and the contact line velocity is computed by a phase field model resolving the micro scale dynamics in the region around the contact line. The relation of the microscale model is then used to prescribe the dynamics of the contact line in the macro scale solver. This approach allows to exploit the scale separation between the contact line dynamics and the bulk flow. Therefore coarser meshes can be applied for the macro scale flow solver compared to global phase field simulations
Numerical flow analyses of a two-phase hydraulic coupling
Energy Technology Data Exchange (ETDEWEB)
Hur, N.; Kwak, M.; Moshfeghi, M. [Sogang University, Seoul (Korea, Republic of); Chang, C.-S.; Kang, N.-W. [VS Engineering, Seoul (Korea, Republic of)
2017-05-15
We investigated flow characteristics in a hydraulic coupling at different charged water conditions and speed ratios. Hence, simulations were performed for three-dimensional two-phase flow by using the VOF method. The realizable k-ε turbulence model was adopted. To resolve the interaction of passing blades of the primary and secondary wheels, simulations were conducted in the unsteady framework using a sliding grid technique. The results show that the water-air distribution inside the wheel is strongly dependent upon both amount of charged water and speed ratio. Generally, air is accumulated in the center of the wheel, forming a toroidal shape wrapped by the circulating water. The results also show that at high speed ratios, the solid-body-like rotation causes dry areas on the periphery of the wheels and, hence, considerably decreases the circulating flow rate and the transmitted torque. Furthermore, the momentum transfer was investigated through the concept of a mass flux triangle based on the local velocity multiplied by the local mixture density instead of the velocity triangle commonly used in a single-phase turbomachine analysis. Also, the mass fluxes along the radius of the coupling in the partially charged and fully charged cases were found to be completely different. It is shown that the flow rate at the interfacial plane and also the transmitted torque are closely related and are strongly dependent upon both the amount of charged water and speed ratio. Finally, a conceptual categorization together with two comprehensive maps was provided for the torque transmission and also circulating flow rates. These two maps in turn exhibit valuable engineering information and can serve as bases for an optimal design of a hydraulic coupling.
Simulation of two-phase flows by domain decomposition
International Nuclear Information System (INIS)
Dao, T.H.
2013-01-01
This thesis deals with numerical simulations of compressible fluid flows by implicit finite volume methods. Firstly, we studied and implemented an implicit version of the Roe scheme for compressible single-phase and two-phase flows. Thanks to Newton method for solving nonlinear systems, our schemes are conservative. Unfortunately, the resolution of nonlinear systems is very expensive. It is therefore essential to use an efficient algorithm to solve these systems. For large size matrices, we often use iterative methods whose convergence depends on the spectrum. We have studied the spectrum of the linear system and proposed a strategy, called Scaling, to improve the condition number of the matrix. Combined with the classical ILU pre-conditioner, our strategy has reduced significantly the GMRES iterations for local systems and the computation time. We also show some satisfactory results for low Mach-number flows using the implicit centered scheme. We then studied and implemented a domain decomposition method for compressible fluid flows. We have proposed a new interface variable which makes the Schur complement method easy to build and allows us to treat diffusion terms. Using GMRES iterative solver rather than Richardson for the interface system also provides a better performance compared to other methods. We can also decompose the computational domain into any number of sub-domains. Moreover, the Scaling strategy for the interface system has improved the condition number of the matrix and reduced the number of GMRES iterations. In comparison with the classical distributed computing, we have shown that our method is more robust and efficient. (author) [fr
Abnormal breakdown characteristic in a two-phase mixture
Energy Technology Data Exchange (ETDEWEB)
Ye Qizheng; Li Jin; Lu Fei [College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China)
2006-05-21
A two-phase mixture (TPM) is a mixture of gas and macroparticles of high concentration. Based on Townsend's theory, a new cell-iterative model in analytical form for the breakdown mechanism in TPM is presented. Compared with the original cell-iterative model in our previous paper, the obstructive factor of the macroparticles that influences the electron avalanche propagation is considered, except for the macroparticles distorting the electrical field and capture of the electrons. The cell attractive parameter k is presented according to the classical continuum theory for field charging. The modified Paschen law for a TPM is presented to calculate the breakdown voltage. The breakdown voltage of the TPM, U{sub TPM}, increases gradually with an increase in the macroparticle number density (m). The voltage U{sub TPM} is lower than that of the pure gas at low m values and larger at high m values. With a decrease of the macroparticle volume fraction and the dielectric mismatch, the voltage U{sub TPM} increases gradually at low m values and decreases gradually at high m values. The voltage U{sub TPM} at pd 200 cm Torr is lower than that at pd = 760 cm Torr for low m values and larger for high m values. This kind of abnormal breakdown characteristic in the TPM occurs in the case of high macroparticle volume fraction. On the other hand, the minimum of the TPM's Paschen curve increases with increase in m. It provides the possibility and the conditions of greatly increasing the breakdown voltage in a nearly uniform field.
Development of two-phase Flow Model, 'SOBOIL', for Sodium
International Nuclear Information System (INIS)
Hahn, Do Hee; Chang, Won Pyo; Kim, In Chul; Kwon, Young Min; Lee, Yong Bum
2000-03-01
The objective of this research is to develop a sodium two-phase flow analysis model, 'SOBOIL', for the assessment of the initial stage of the KALIMER HCDA (Hypotherical Core Disruptive Accident). The 'SOBOIL' is basically similar to the multi-bubble slug ejection model used in SAS2A[1]. When a bubble is formed within the liquid slug, the bubble fills the whole cross section of the coolant channel except for a film left on the cladding or on the structure. Up to nine bubbles, separated by the liquid slugs, are allowed in the channel at any time. Each liquid slug flow rate in the model is performed in 2 steps. In the first step, the preliminary flow rate in the liquid slug is calculated neglecting the effect of changes in the vapor bubble pressures over the time step. The temperature and pressure distributions, and interface velocity at the interface between the liquid slug and vapor bubble are also calculated during this process. The new vapor temperature and pressure are then determined from the balance between the net energy transferred into the vapor and the change of the vapor energy. The liquid flow is finally calculated considering the change of the vapor pressure over a time step and the calculation is repeated until specified elapsed time is met. Continuous effort, therefore, must be made on the examination and improvement for the model to become reliable. To this end, much interest must be concentrated in the relevant international collaborations for access to a reference model or test data for the verification
Two-phase transformation of lepidocrocite to maghemite
Dekkers, M. J.; Gapeev, A. K.; Gendler, T. S.; Gribov, S. K.; Shcherbakov, V. P.
2003-04-01
A detailed investigation of CRM acquired at different stages of the transformation lepidocrocite -> maghemite -> hematite is carried out. Apparently, at least two-stage lepidocrocite maghemite transformation was revealed from: a) the two-peak Ms(T) curve; b) the observation of constricted hysteresis loops appearing after annealing fresh lepidocrocite samples at elevated temperatures; c) continuous monitoring (for 500 hrs) of CRM acquisition at elevated temperatures. For the latter two sets of CRM acquisition experiments at 12 temperatures from 175C to 550C in the presence of 0.1 mT magnetic field were performed: 1) with fine dispersed natural lepidocrocite grains in a kaolin matrix (about 1 volume % of lepidocrocite), 2) for lepidocrocite peaces 3x3x3 mm in size. In both cases the CRM was detected already at 175C after 1 day of annealing. Note that this temperature is lower than the temperature of the TGA peak of the lepidocrocite -> maghemite transformation. Mossbauer spectra obtained from the peaces after annealing at 225C during 6 and 14 hours, respectively, revealed significantly different patterns. Unexpectadly, fine dispersed maghemite grains formed due the lepidocrocite dehydration in the first peace (6 hrs of annealing) occurred to be more ordered than those of from the second peace. The samples are subjected to the X-ray analysis in an attempt to clarify the observed difference. The observed phenomena can be explained by the two-phase conception of the transformation lepidocrocite -> maghemite. First the precipitation of small superparamagnetic particles of maghemite takes place growing with time. Second, these grains coalesce with each other resulting in appearance of the antiphase boundaries decreasing the susceptibility, slowing down the process of CRM acquisition and generating the constricted hysteresis loops. The work is supported by INTAS 99-1273.
Design of handoff procedures for broadband wireless access IEEE 802.16 based networks
Directory of Open Access Journals (Sweden)
V. Rangel–Licea
2008-01-01
Full Text Available IEEE 802.16 is a protocol for fixed broad band wire less access that is currently trying to add mobility among mobile users in the standard. However, mobility adds some technical barriers that should be solved first, this is the case of HO "handoff" (change of connection between two base stations "BS" by a mobile user. In this paper, the problem of HO in IEEE 802.16 is approached try ing to maintain the quality of service (QoS of mobile users. A mechanism for changing connection during HO is pre sented. A simulation model based on OPNET MODELER1 was developed to evaluate the performance of the proposed HO mechanism. Finally, this paper demonstrates that it is possible to implement a seam less HO mech a nism over IEEE 802.16 even for users with de manding applications such as voice over IP.
Martin, Shannon K; Farnan, Jeanne M; McConville, John F; Arora, Vineet M
2015-06-01
Written communication skills are integral to patient care handoffs. Residency programs require feasible assessment tools that provide timely formative and summative feedback, ideally linked to the Accreditation Council for Graduate Medical Education Milestones. We describe the use of 1 such tool-UPDATED-to assess written handoff communication skills in internal medicine interns. During 2012-2013, the authors piloted a structured practice audit at 1 academic institution to audit written sign-outs completed by 45 interns, using the UPDATED tool, which scores 7 aspects of sign-out communication linked to milestones. Intern sign-outs were audited by trained faculty members throughout the year. Results were incorporated into intern performance reviews and Clinical Competency Committees. A total of 136 sign-outs were audited (averaging 3.1 audits per intern). In the first trimester, 14 interns (31%) had satisfactory audit results. Five interns (11%) had critical deficiencies and received immediate feedback, and the remaining 26 (58%) were assigned future audits due to missing audits or unsatisfactory scores. In the second trimester, 21 interns (68%) had satisfactory results, 1 had critical deficiencies, and 9 (29%) required future audits. Nine of the 10 remaining interns in the final trimester had satisfactory audits. Faculty time was estimated at 10 to 15 minutes per sign-out audited. The UPDATED audit is a milestone-based tool that can be used to assess written sign-out communication skills in internal medicine residency programs. Future work is planned to adapt the tool for use by senior supervisory residents to appraise sign-outs in real time.
Interfacial Instability in Two-Phase Flow: Manipulating Coalescence and Condensation
National Aeronautics and Space Administration — Two-phase flow under microgravity conditions presents a number of technical challenges ( and ). Life support and habitation depend on systems that use two-phase flow...
Stratified steady and unsteady two-phase flows between two parallel plates
International Nuclear Information System (INIS)
Sim, Woo Gun
2006-01-01
To understand fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. Stratified steady and unsteady two-phase flows between two parallel plates have been studied to investigate the general characteristics of the flow related to flow-induced vibration. Based on the spectral collocation method, a numerical approach has been developed for the unsteady two-phase flow. The method is validated by comparing numerical result to analytical one given for a simple harmonic two-phase flow. The flow parameters for the steady two-phase flow, such as void fraction and two-phase frictional multiplier, are evaluated. The dynamic characteristics of the unsteady two-phase flow, including the void fraction effect on the complex unsteady pressure, are illustrated
A two-phase model of plantar tissue: a step toward prediction of diabetic foot ulceration.
Sciumè, G; Boso, D P; Gray, W G; Cobelli, C; Schrefler, B A
2014-11-01
A new computational model, based on the thermodynamically constrained averaging theory, has been recently proposed to predict tumor initiation and proliferation. A similar mathematical approach is proposed here as an aid in diabetic ulcer prevention. The common aspects at the continuum level are the macroscopic balance equations governing the flow of the fluid phase, diffusion of chemical species, tissue mechanics, and some of the constitutive equations. The soft plantar tissue is modeled as a two-phase system: a solid phase consisting of the tissue cells and their extracellular matrix, and a fluid one (interstitial fluid and dissolved chemical species). The solid phase may become necrotic depending on the stress level and on the oxygen availability in the tissue. Actually, in diabetic patients, peripheral vascular disease impacts tissue necrosis; this is considered in the model via the introduction of an effective diffusion coefficient that governs transport of nutrients within the microvasculature. The governing equations of the mathematical model are discretized in space by the finite element method and in time domain using the θ-Wilson Method. While the full mathematical model is developed in this paper, the example is limited to the simulation of several gait cycles of a healthy foot. Copyright © 2014 John Wiley & Sons, Ltd.
Two-phase flow structure in large diameter pipes
International Nuclear Information System (INIS)
Smith, T.R.; Schlegel, J.P.; Hibiki, T.; Ishii, M.
2012-01-01
Highlights: ► Local profiles of various quantities measured in large diameter pipe. ► Database for interfacial area in large pipes extended to churn-turbulent flow. ► Flow regime map confirms previous models for flow regime transitions. ► Data will be useful in developing interfacial area transport models for large pipes. - Abstract: Flow in large pipes is important in a wide variety of applications. In the nuclear industry in particular, understanding of flow in large diameter pipes is essential in predicting the behavior of reactor systems. This is especially true of natural circulation Boiling Water Reactor (BWR) designs, where a large-diameter chimney above the core provides the gravity head to drive circulation of the coolant through the reactor. The behavior of such reactors during transients and during normal operation will be predicted using advanced thermal–hydraulics analysis codes utilizing the two-fluid model. Essential to accurate two-fluid model calculations is reliable and accurate computation of the interfacial transfer terms. These interfacial transfer terms can be expressed as the product of one term describing the potential driving the transfer and a second term describing the available surface area for transfer, or interfacial area concentration. Currently, the interfacial area is predicted using flow regime dependent empirical correlations; however the interfacial area concentration is best computed through the use of the one-dimensional interfacial area transport equation (IATE). To facilitate the development of IATE source and sink term models in large-diameter pipes a fundamental understanding of the structure of the two-phase flow is essential. This understanding is improved through measurement of the local void fraction, interfacial area concentration and gas velocity profiles in pipes with diameters of 0.102 m and 0.152 m under a wide variety of flow conditions. Additionally, flow regime identification has been performed to
Experimental CFD grade data for stratified two-phase flows
Energy Technology Data Exchange (ETDEWEB)
Vallee, Christophe, E-mail: c.vallee@fzd.d [Forschungszentrum Dresden-Rossendorf e.V., Institute of Safety Research, D-01314 Dresden (Germany); Lucas, Dirk; Beyer, Matthias; Pietruske, Heiko; Schuetz, Peter; Carl, Helmar [Forschungszentrum Dresden-Rossendorf e.V., Institute of Safety Research, D-01314 Dresden (Germany)
2010-09-15
Stratified two-phase flows were investigated at two test facilities with horizontal test-sections. For both, rectangular channel cross-sections were chosen to provide optimal observation possibilities for the application of optical measurement techniques. In order to show the local flow structure, high-speed video observation was applied, which delivers the high-resolution in space and time needed for CFD code validation. The first investigations were performed in the Horizontal Air/Water Channel (HAWAC), which is made of acrylic glass and allows the investigation of air/water co-current flows at atmospheric pressure and room temperature. At the channel inlet, a special device was designed for well-defined and adjustable inlet boundary conditions. For the quantitative analysis of the optical measurements performed at the HAWAC, an algorithm was developed to recognise the stratified interface in the camera frames. This allows to make statistical treatments for comparison with CFD calculation results. As an example, the unstable wave growth leading to slug flow is shown from the test-section inlet. Moreover, the hydraulic jump as the quasi-stationary discontinuous transition between super- and subcritical flow was investigated in this closed channel. The structure of the hydraulic jump over time is revealed by the calculation of the probability density of the water level. A series of experiments show that the hydraulic jump profile and its position from the inlet vary substantially with the inlet boundary conditions due to the momentum exchange between the phases. The second channel is built in the pressure chamber of the TOPFLOW test facility, which is used to perform air/water and steam/water experiments at pressures of up to 5.0 MPa and temperatures of up to 264 {sup o}C, but under pressure equilibrium with the vessel inside. In the present experiment, the test-section represents a flat model of the hot leg of the German Konvoi pressurised water reactor scaled at
Experimental CFD grade data for stratified two-phase flows
International Nuclear Information System (INIS)
Vallee, Christophe; Lucas, Dirk; Beyer, Matthias; Pietruske, Heiko; Schuetz, Peter; Carl, Helmar
2010-01-01
Stratified two-phase flows were investigated at two test facilities with horizontal test-sections. For both, rectangular channel cross-sections were chosen to provide optimal observation possibilities for the application of optical measurement techniques. In order to show the local flow structure, high-speed video observation was applied, which delivers the high-resolution in space and time needed for CFD code validation. The first investigations were performed in the Horizontal Air/Water Channel (HAWAC), which is made of acrylic glass and allows the investigation of air/water co-current flows at atmospheric pressure and room temperature. At the channel inlet, a special device was designed for well-defined and adjustable inlet boundary conditions. For the quantitative analysis of the optical measurements performed at the HAWAC, an algorithm was developed to recognise the stratified interface in the camera frames. This allows to make statistical treatments for comparison with CFD calculation results. As an example, the unstable wave growth leading to slug flow is shown from the test-section inlet. Moreover, the hydraulic jump as the quasi-stationary discontinuous transition between super- and subcritical flow was investigated in this closed channel. The structure of the hydraulic jump over time is revealed by the calculation of the probability density of the water level. A series of experiments show that the hydraulic jump profile and its position from the inlet vary substantially with the inlet boundary conditions due to the momentum exchange between the phases. The second channel is built in the pressure chamber of the TOPFLOW test facility, which is used to perform air/water and steam/water experiments at pressures of up to 5.0 MPa and temperatures of up to 264 o C, but under pressure equilibrium with the vessel inside. In the present experiment, the test-section represents a flat model of the hot leg of the German Konvoi pressurised water reactor scaled at 1
Features of two-phase flow in a microchannel of 0.05×20 mm
Ronshin, Fedor
2017-10-01
We have studied the two-phase flow in a microchannel with cross-section of 0.05×20 mm2. The following two-phase flow regimes have been registered: jet, bubble, stratified, annular, and churn ones. The main features of flow regimes in this channel such as formation of liquid droplets in all two-phase flows have been distinguished.
Rolling effects on two-phase flow pattern and void fraction
International Nuclear Information System (INIS)
Yan Changqi; Yu Kaiqiu; Luan Feng; Cao Xiaxin
2008-01-01
The experimental and theoretical study was carried out for the upward gas-liquid two-phase explained reasonably through the analysis of slip ratio of two-phase flow and theoretical analysis using momentum equation of two-phase flow separating model. (authors)
Measurement of two phase flow properties using the nuclear reactor instruments
International Nuclear Information System (INIS)
Albrecht, R.W.; Washington Univ., Seattle; Crowe, R.D.; Dailey, D.J.; Kosaly, G.; Damborg, M.J.
1982-01-01
A procedure is introduced for characterizing one dimensional, two phase flow in terms of three properties; propagation, structure, and dynamics. It is shown that all of these properties can be measured by analyzing the response of the reactor neutron field to a two phase flow perturbation. Therefore, a nuclear reactor can be regarded as a two phase flow instrument. (author)
International Nuclear Information System (INIS)
D'Ambrosio, Giancarlo; Giudice, Gian F.; Raidal, Martti
2003-01-01
We study 'soft leptogenesis', a new mechanism of leptogenesis which does not require flavour mixing among the right-handed neutrinos. Supersymmetry soft-breaking terms give a small mass splitting between the CP-even and CP-odd right-handed sneutrino states of a single generation and provide a CP-violating phase sufficient to generate a lepton asymmetry. The mechanism is successful if the lepton-violating soft bilinear coupling is unconventionally (but not unnaturally) small. The values of the right-handed neutrino masses predicted by soft leptogenesis can be low enough to evade the cosmological gravitino problem
Masters, Dylan E; O'Brien, Bridget C; Chou, Calvin L
2013-10-01
As third-year medical students rotate between clerkships, they experience multiple transitions across workplace cultures and shifting learning expectations. The authors explored clerkship transitions from the students' perspective by examining the advice they passed on to their peers in preparation for new clerkships. Seventy-one students from three Veterans Affairs-based clerkship rotations at the University of California, San Francisco, School of Medicine participated in a peer-to-peer handoff session from 2008 to 2011. In the handoff session, they gave tips for optimizing performance to students starting the clerkship they had just completed. The authors transcribed student comments from four handoff sessions and used qualitative content analysis to identify and compare advice across clerkships. Students shared advice about workplace culture, content learning, logistics, and work-life balance. Common themes included expectations of the rotation, workplace norms, specific tasks, learning opportunities, and learning strategies. Comments about patient care and work-life balance were rare. Students emphasized different themes for each clerkship; for example, for some clerkships, students commented heavily on tasks and content learning, while in another students focused on workplace culture and exam preparation. These findings characterize the transitions that third-year students undergo as they rotate into new clinical training environments. Students emphasized different aspects of each clerkship in the advice they passed to their peers, and their comments often describe informal norms or opportunities that official clerkship orientations may not address. Peer-to-peer handoffs may help ease transitions between clerkships with dissimilar cultures and expectations.
Directory of Open Access Journals (Sweden)
Waqas Khalid
2018-05-01
Full Text Available Fifth-generation (5G heterogeneous network deployment poses new challenges for 5G-based cognitive radio networks (5G-CRNs as the primary user (PU is required to be more active because of the small cells, random user arrival, and spectrum handoff. Interweave CRNs (I-CRNs improve spectrum utilization by allowing opportunistic spectrum access (OSA for secondary users (SUs. The sum utilization of spectrum, i.e., joint utilization of spectrum by the SU and PU, depends on the spatial and temporal variations of PU activities, sensing outcomes, transmitting conditions, and spectrum handoff. In this study, we formulate and analyze the sum utilization of spectrum with different sets of channels under different PU and SU co-existing network topologies. We consider realistic multi-channel scenarios for the SU, with each channel licensed to a PU. The SU, aided by spectrum handoff, is authorized to utilize the channels on the basis of sensing outcomes and PU interruptions. The numerical evaluation of the proposed work is presented under different network and sensing parameters. Moreover, the sum utilization gain is investigated to analyze the sensitivities of different sensing parameters. It is demonstrated that different sets of channels, PU activities, and sensing outcomes have a significant impact on the sum utilization of spectrum associated with a specific network topology.
Challenges in modeling unstable two-phase flow experiments in porous micromodels
Meheust, Y.; Ferrari, A.; Jimenez-Martinez, J.; Le Borgne, T.; Lunati, I.
2014-12-01
The simulation of unstable invasion patterns in porous media flow is challenging since small perturbations tend to grow in time, so that slight differences in geometry or initial conditions potentially give rise to significantly different solutions. Here we present a detailed comparison of pore scale simulations and experiments of unstable primary drainage in porous micromodels. The porous medium consists of a Hele-Shaw cell containing cylindrical obstacles. Two experimental flow cells have been constructed by soft lithography, with different degrees of heterogeneity in the grain size distribution. To model two-phase flow at the pore scale, we solve Navier-Stokes equations for mass and momentum conservation in the discretized pore space and employ the Volume of Fluid (VOF) method to track the evolution of the interface. During drainage, if the defending fluid is the most viscous, viscous forces destabilize the interface, giving rise to the formation of preferential flow paths, in the form of a branched fingering structure. We test different numerical models (a 2D vertical integrated model and a full 3D model) and different initial conditions, studying their impact on the simulated spatial distributions of the fluid phases. Although due to the unstable nature of the invasion, small discrepancies between the experimental setup and the numerical model can result in different fluids patterns (see figure), simulations show a satisfactory agreement with the structures observed experimentally. To estimate the ability of the numerical approach to reproduce unstable displacement, we compare several quantities in both the statistical and deterministic sense. We demonstrate the impact of three main sources of uncertainty : i) the uncertainty on the pore space geometry, ii) the interface initialization and ii) three dimensional effects [1]. Simulations in weakly heterogeneous geometries are found to be more challenging because uncertainties on pore neck widths are on the same
Foster-Hunt, Tara; Parush, Avi; Ellis, Jacqueline; Thomas, Margot; Rashotte, Judy
2015-06-01
Patient hand-offs involve the exchange of critical information. Ineffective hand-offs can result in reduced patient safety by leading to wrong treatment, delayed diagnoses or other outcomes that can negatively affect the healthcare system. The objectives of this study were to uncover the structure of the information conveyed during patient hand-offs and look for principles characterising the organisation of the information. With an observational study approach, data was gathered during the morning and evening nursing change of shift hand-offs in a Paediatric Intensive Care Unit. Content analysis identified a common meta-structure used for information transfer that contained categories with varying degrees of information integration and the repetition of high consequence information. Differences were found in the organisation of the hand-off structures, and these varied as a function of nursing experience. The findings are discussed in terms of the potential benefits of computerised tools which utilise standardised structure for information transfer and the implications for future education and critical care skill acquisition. Copyright © 2014 Elsevier Ltd. All rights reserved.
Features of two-phase flow in a microchannel of 0.05×20 mm
Directory of Open Access Journals (Sweden)
Ronshin Fedor
2017-01-01
Full Text Available We have studied the two-phase flow in a microchannel with cross-section of 0.05×20 mm2. The following two-phase flow regimes have been registered: jet, bubble, stratified, annular, and churn ones. The main features of flow regimes in this channel such as formation of liquid droplets in all two-phase flows have been distinguished.
Two-Phase Annular Flow in Helical Coil Flow Channels in a Reduced Gravity Environment
Keshock, Edward G.; Lin, Chin S.
1996-01-01
A brief review of both single- and two-phase flow studies in curved and coiled flow geometries is first presented. Some of the complexities of two-phase liquid-vapor flow in curved and coiled geometries are discussed, and serve as an introduction to the advantages of observing such flows under a low-gravity environment. The studies proposed -- annular two-phase air-water flow in helical coil flow channels are described. Objectives of the studies are summarized.
Achievable Throughput-Based MAC Layer Handoff in IEEE 802.11 Wireless Local Area Networks
Directory of Open Access Journals (Sweden)
Wu Haitao
2009-01-01
Full Text Available We propose a MAC layer handoff mechanism for IEEE 802.11 Wireless Local Area Networks (WLAN to give benefit to bandwidth-greedy applications at STAs. The proposed mechanism determines an optimal AP with the maximum achievable throughput rather than the best signal condition by estimating the AP's bandwidth with a new on-the-fly measurement method, Transient Frame Capture (TFC, and predicting the actual throughput could be achieved at STAs. Since the TFC is employed based on the promiscuous mode of WLAN NIC, STAs can avoid the service degradation through the current associated AP. In addition, the proposed mechanism is a client-only solution which does not require any modification of network protocol on APs. To evaluate the performance of the proposed mechanism, we develop an analytic model to estimate reliable and accurate bandwidth of the AP and demonstrate through testbed measurement with various experimental study methods. We also validate the fairness of the proposed mechanism through simulation studies.
Characteristics of low-mass-velocity vertical gas-liquid two-phase flow
International Nuclear Information System (INIS)
Adachi, Hiromichi; Abe, Yutaka; Kimura, Ko-ji
1995-01-01
In the present paper, characteristics of low mass velocity two-phase flow was analyzed based on a concept that pressure energy of two-phase flow is converted into acceleration work, gravitational work and frictional work, and the pressure energy consumption rate should be minimum at the stable two-phase flow condition. Experimental data for vertical upward air-water two-phase flow at atmospheric pressure was used to verify this concept and the turbulent model used in this method is optimized with the data. (author)
Models for assessing the relative phase velocity in a two-phase flow. Status report
International Nuclear Information System (INIS)
Schaffrath, A.; Ringel, H.
2000-06-01
The knowledge of slip or drift flux in two phase flow is necessary for several technical processes (e.g. two phase pressure losses, heat and mass transfer in steam generators and condensers, dwell period in chemical reactors, moderation effectiveness of two phase coolant in BWR). In the following the most important models for two phase flow with different phase velocities (e.g. slip or drift models, analogy between pressure loss and steam quality, ε - ε models and models for the calculation of void distribution in reposing fluids) are classified, described and worked up for a further comparison with own experimental data. (orig.)
Whitesides, George M
2018-04-09
This description of "soft robotics" is not intended to be a conventional review, in the sense of a comprehensive technical summary of a developing field. Rather, its objective is to describe soft robotics as a new field-one that offers opportunities to chemists and materials scientists who like to make "things" and to work with macroscopic objects that move and exert force. It will give one (personal) view of what soft actuators and robots are, and how this class of soft devices fits into the more highly developed field of conventional "hard" robotics. It will also suggest how and why soft robotics is more than simply a minor technical "tweak" on hard robotics and propose a unique role for chemistry, and materials science, in this field. Soft robotics is, at its core, intellectually and technologically different from hard robotics, both because it has different objectives and uses and because it relies on the properties of materials to assume many of the roles played by sensors, actuators, and controllers in hard robotics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Skotheim, Jan; Mahadevan, Laksminarayanan
2004-11-01
We study the lubrication of fluid-immersed soft interfaces and show that elastic deformation couples tangential and normal forces and thus generates lift. We consider materials that deform easily, due to either geometry (e.g a shell) or constitutive properties (e.g. a gel or a rubber), so that the effects of pressure and temperature on the fluid properties may be neglected. Four different system geometries are considered: a rigid cylinder moving tangentially to a soft layer coating a rigid substrate; a soft cylinder moving tangentially to a rigid substrate; a cylindrical shell moving tangentially to a rigid substrate; and finally a journal bearing coated with a thin soft layer, which being a conforming contact allows us to gauge the influence of contact geometry. In addition, for the particular case of a soft layer coating a rigid substrate we consider both elastic and poroelastic material responses. Finally, we consider the role of contact geometry in the context of the journal bearing, a conforming contact. For all these cases we find the same generic behavior: there is an optimal combination of geometric and material parameters that maximizes the dimensionless normal force as a function of the softness.
Parallel two-phase-flow-induced vibrations in fuel pin model
International Nuclear Information System (INIS)
Hara, Fumio; Yamashita, Tadashi
1978-01-01
This paper reports the experimental results of vibrations of a fuel pin model -herein meaning the essential form of a fuel pin from the standpoint of vibration- in a parallel air-and-water two-phase flow. The essential part of the experimental apparatus consisted of a flat elastic strip made of stainless steel, both ends of which were firmly supported in a circular channel conveying the two-phase fluid. Vibrational strain of the fuel pin model, pressure fluctuation of the two-phase flow and two-phase-flow void signals were measured. Statistical measures such as power spectral density, variance and correlation function were calculated. The authors obtained (1) the relation between variance of vibrational strain and two-phase-flow velocity, (2) the relation between variance of vibrational strain and two-phase-flow pressure fluctuation, (3) frequency characteristics of variance of vibrational strain against the dominant frequency of the two-phase-flow pressure fluctuation, and (4) frequency characteristics of variance of vibrational strain against the dominant frequency of two-phase-flow void signals. The authors conclude that there exist two kinds of excitation mechanisms in vibrations of a fuel pin model inserted in a parallel air-and-water two-phase flow; namely, (1) parametric excitation, which occurs when the fundamental natural frequency of the fuel pin model is related to the dominant travelling frequency of water slugs in the two-phase flow by the ratio 1/2, 1/1, 3/2 and so on; and (2) vibrational resonance, which occurs when the fundamental frequency coincides with the dominant frequency of the two-phase-flow pressure fluctuation. (auth.)
Zhao, Ming-fu; Hu, Xin-Yu; Shao, Yun; Luo, Bin-bin; Wang, Xin
2008-10-01
This article analyses nowadays in common use of football robots in China, intended to improve the football robots' hardware platform system's capability, and designed a football robot which based on DSP core controller, and combined Fuzzy-PID control algorithm. The experiment showed, because of the advantages of DSP, such as quickly operation, various of interfaces, low power dissipation etc. It has great improvement on the football robot's performance of movement, controlling precision, real-time performance.
2018-01-01
Set IV is a new addition to the previous Sets I, II and III. It contains 23 invited chapters from international specialists on the topics of numerical modeling of pulsating heat pipes and of slug flows with evaporation; lattice Boltzmann modeling of pool boiling; fundamentals of boiling in microchannels and microfin tubes, CO2 and nanofluids; testing and modeling of micro-two-phase cooling systems for electronics; and various special topics (flow separation in microfluidics, two-phase sensors, wetting of anisotropic surfaces, ultra-compact heat exchangers, etc.). The invited authors are leading university researchers and well-known engineers from leading corporate research laboratories (ABB, IBM, Nokia Bell Labs). Numerous "must read" chapters are also included here for the two-phase community. Set IV constitutes a "must have" engineering and research reference together with previous Sets I, II and III for thermal engineering researchers and practitioners.
Chiaramonte, Francis; Motil, Brian; McQuillen, John
2014-01-01
The Two-phase Heat Transfer International Topical Team consists of researchers and members from various space agencies including ESA, JAXA, CSA, and RSA. This presentation included descriptions various fluid experiments either being conducted by or planned by NASA for the International Space Station in the areas of two-phase flow, flow boiling, capillary flow, and crygenic fluid storage.
Analytic approximations for the elastic moduli of two-phase materials
DEFF Research Database (Denmark)
Zhang, Z. J.; Zhu, Y. K.; Zhang, P.
2017-01-01
Based on the models of series and parallel connections of the two phases in a composite, analytic approximations are derived for the elastic constants (Young's modulus, shear modulus, and Poisson's ratio) of elastically isotropic two-phase composites containing second phases of various volume...
Strong enhancement of streaming current power by application of two phase flow
Xie, Yanbo; Sherwood, John D.; Shui, Lingling; van den Berg, Albert; Eijkel, Jan C.T.
2011-01-01
We show that the performance of a streaming-potential based microfluidic energy conversion system can be strongly en-hanced by the use of two phase flow. In single-phase systems, the internal conduction current induced by the streaming poten-tial limits the output power, while in a two-phase system
Numerical simulation for gas-liquid two-phase flow in pipe networks
International Nuclear Information System (INIS)
Li Xiaoyan; Kuang Bo; Zhou Guoliang; Xu Jijun
1998-01-01
The complex pipe network characters can not directly presented in single phase flow, gas-liquid two phase flow pressure drop and void rate change model. Apply fluid network theory and computer numerical simulation technology to phase flow pipe networks carried out simulate and compute. Simulate result shows that flow resistance distribution is non-linear in two phase pipe network
Mass flow rate measurements in two-phase mixtrues with stagnation probes
International Nuclear Information System (INIS)
Fincke, J.R.; Deason, V.A.
1979-01-01
Applications of stagnation probes to the measurement of mass flow rate in two-phase flows are discussed. Descriptions of several stagnation devices, which have been evaluated at the Idaho National Engineering Laboratory, are presented along with modeling techniques and two-phase flow data
Effects of Particles Collision on Separating Gas–Particle Two-Phase Turbulent Flows
Sihao, L. V.; Yang, Weihua; Li, Xiangli; Li, Guohui
2013-01-01
A second-order moment two-phase turbulence model incorporating a particle temperature model based on the kinetic theory of granular flow is applied to investigate the effects of particles collision on separating gas–particle two-phase turbulent
Symmetrical components and power analysis for a two-phase microgrid system
DEFF Research Database (Denmark)
Alibeik, M.; Santos Jr., E. C. dos; Blaabjerg, Frede
2014-01-01
This paper presents a mathematical model for the symmetrical components and power analysis of a new microgrid system consisting of three wires and two voltages in quadrature, which is designated as a two-phase microgrid. The two-phase microgrid presents the following advantages: 1) constant power...
Modeling and Performance of a Self-Excited Two-Phase Reluctance ...
African Journals Online (AJOL)
A self-excited two-phase reluctance generator (SETPRG) with balanced stator winding is presented. A unique balanced two-phase stator winding was designed with emphasis on obtaining a stator MMF waveform with minimum space harmonics. Then a mathematical model by which the dynamic behavior of the generator ...
Design and development of drag-disc flowmeter for measurement of transient two-phase flow
International Nuclear Information System (INIS)
Sreenivas Rao, G.; Kukreja, V.; Dolas, P.K.; Venkat Raj, V.
1990-01-01
Experiments have been carried out to test the suitability of drag-disc flowmeter for measuring two-phase flow. Calibration tests carried out under single-phase and two-phase flow conditions have confirmed the suitability of the drag-disc flowmeter. The experimental work and the results obtained are presented and discussed in the paper. (author). 3 refs., 6 figs
Numerical simulation and experimental verification of a flat two-phase thermosyphon
International Nuclear Information System (INIS)
Zhang Ming; Liu Zhongliang; Ma Guoyuan; Cheng Shuiyuan
2009-01-01
The flat two-phase thermosyphon is placed between the heat source and the heat sink, which can achieve the uniform heat flux distribution and improve the performance of heat sink. In this paper, a two-dimensional heat and mass transfer model for a disk-shaped flat two-phase thermosyphon is developed. By solving the equations of continuity, momentum and energy numerically, the vapor velocity and temperature distributions of the flat two-phase thermosyphon are obtained. An analysis is also carried out on the ability of flat two-phase thermosyphon to spread heat and remove hot spots. In order to observe boiling and condensation phenomena, a transparent flat two-phase thermosyphon is manufactured and studied experimentally. The experimental results are compared with numerical results, which verify the physical and mathematical model of the flat two-phase thermosyphon. In order to study the main factors affecting the axial thermal resistance of two-phase thermosyphon, the temperatures inside the flat two-phase thermosyphon are measured and analyzed
The potential of cloud point system as a novel two-phase partitioning system for biotransformation.
Wang, Zhilong
2007-05-01
Although the extractive biotransformation in two-phase partitioning systems have been studied extensively, such as the water-organic solvent two-phase system, the aqueous two-phase system, the reverse micelle system, and the room temperature ionic liquid, etc., this has not yet resulted in a widespread industrial application. Based on the discussion of the main obstacles, an exploitation of a cloud point system, which has already been applied in a separation field known as a cloud point extraction, as a novel two-phase partitioning system for biotransformation, is reviewed by analysis of some topical examples. At the end of the review, the process control and downstream processing in the application of the novel two-phase partitioning system for biotransformation are also briefly discussed.
Operation of a forced two phase cooling system on a large superconducting magnet
International Nuclear Information System (INIS)
Green, M.A.; Burns, W.A.; Eberhard, P.H.; Gibson, G.H.; Pripstein, M.; Ross, R.R.; Smits, R.G.; Taylor, J.D.; Van Slyke, H.
1980-05-01
This paper describes the operation of a forced two phase cooling system on a two meter diameter superconducting solenoid. The magnet is a thin high current density superconducting solenoid which is cooled by forced two phase helium in tubes around the coil. The magnet, which is 2.18 meters in diameter and 3.4 meters long, has a cold mass of 1700 kg. The two phase cooling system contains less than 300 liters of liquid helium, most of which is contained in a control dewar. This paper describes the operating characteristics of the LBL two phase forced cooling system during cooldown and warm up. The paper presents experimental data on operations of the magnet using either a helium pump or the refrigerator compressor to circulate two phase helium through the superconducting coil cooling tubes
Two phase flow measurement and visualization using Wire Mesh Sensors (WMS)
International Nuclear Information System (INIS)
Rajalakshmi, R.; Robin, Roshini; Rama Rao, A.
2016-01-01
Two phase flow behavior studies have gained importance in nuclear power plants to enhance fuel performance and safety. In this paper, taking into consideration low cost, high space-time resolution and instantaneous mapping, electrical sensors such as wire mesh sensors (WMS) is proposed for measurement of void distribution and its visualization. The sensor works on the conductivity principle and by measuring the variations in conductivity values of the two phases, the flow distributions can be identified. This paper describes the conceptual design of the WMS for two phase void measurements, Mathematical modeling of the sensor for data evaluation, modeling of the sensor geometry and FEM simulation studies for optimizing sensor geometry and excitation parameters, CFD two phase flows simulations, development of suitable algorithm and programming for two phase visualization and void distribution studies, prototype sensor fabrication and testing
Phenomenological studies of two-phase flow processes for nuclear waste isolation
International Nuclear Information System (INIS)
Pruess, K.; Finsterle, S.; Persoff, P.; Oldenburg, C.
1994-01-01
The US civilian radioactive waste management program is unique in its focus on a site in the unsaturated zone, at Yucca Mountain, Nevada. Two-phase flow phenomena can also play an important role in repositories beneath the water table where gas is generated by corrosion, hydrolysis, and biological degradation of the waste packages. An integrated program has been initiated to enhance our understanding of two-phase flow behavior in fractured rock masses. The studies include two-phase (gas-liquid) flow experiments in laboratory specimens of natural rock fractures, analysis and modeling of heterogeneity and instability effects in two-phase flow, and design and interpretation of field experiments by means of numerical simulation. We present results that identify important aspects of two-phase flow behavior on different space and time scales which are relevant to nuclear waste disposal in both unsaturated and saturated formations
Peng, Yan; Chen, Guoxing; Sun, Jianliang; Shi, Baodong
2018-04-01
The microscopic deformation of Ti-6Al-4V titanium alloy shows great inhomogeneity due to its duplex-microstructure that consists of two phases. In order to study the deformation behaviors of the constituent phases, the 2D FE model based on the realistic microstructure is established by MSC.Marc nonlinear FE software, and the tensile simulation is carried out. The simulated global stress-strain response is confirmed by the tensile testing result. Then the strain and stress distribution in the constituent phases and their evolution with the increase of the global strain are analyzed. The results show that the strain and stress partitioning between the two phases are considerable, most of the strain is concentrated in soft primary α phase, while hard transformed β matrix undertakes most of the stress. Under the global strain of 0.05, the deformation bands in the direction of 45° to the stretch direction and the local stress in primary α phase near to the interface between the two phases are observed, and they become more significant when the global strain increases to 0.1. The strain and stress concentration factors of the two phases are obviously different at different macroscopic deformation stages, but they almost tend to be stable finally.
A New Concept of Two-Stage Multi-Element Resonant-/Cyclo-Converter for Two-Phase IM/SM Motor
Directory of Open Access Journals (Sweden)
Mahmud Ali Rzig Abdalmula
2013-01-01
Full Text Available The paper deals with a new concept of power electronic two-phase system with two-stage DC/AC/AC converter and two-phase IM/PMSM motor. The proposed system consisting of two-stage converter comprises: input resonant boost converter with AC output, two-phase half-bridge cyclo-converter commutated by HF AC input voltage, and induction or synchronous motor. Such a system with AC interlink, as a whole unit, has better properties as a 3-phase reference VSI inverter: higher efficiency due to soft switching of both converter stages, higher switching frequency, smaller dimensions and weight with lesser number of power semiconductor switches and better price. In comparison with currently used conventional system configurations the proposed system features a good efficiency of electronic converters and also has a good torque overloading of two-phase AC induction or synchronous motors. Design of two-stage multi-element resonant converter and results of simulation experiments are presented in the paper.
DEFF Research Database (Denmark)
Søndergaard, Morten; Markussen, Thomas; Wetton, Barnabas
2012-01-01
Soft Clouding is a blended concept, which describes the aim of a collaborative and transdisciplinary project. The concept is a metaphor implying a blend of cognitive, embodied interaction and semantic web. Furthermore, it is a metaphor describing our attempt of curating a new semantics of sound...... archiving. The Soft Clouding Project is part of LARM - a major infrastructure combining research in and access to sound and radio archives in Denmark. In 2012 the LARM infrastructure will consist of more than 1 million hours of radio, combined with metadata who describes the content. The idea is to analyse...... the concept of ‘infrastructure’ and ‘interface’ on a creative play with the fundamentals of LARM (and any sound archive situation combining many kinds and layers of data and sources). This paper will present and discuss the Soft clouding project from the perspective of the three practices and competencies...
Fluid-elastic force measurements acting on a tube bundle in two-phase cross flow
International Nuclear Information System (INIS)
Inada, Fumio; Kawamura, Koji; Yasuo, Akira
1996-01-01
Fluid-elastic force acting on a square tube bundle of P/D = 1.47 in air-water two-phase cross flow was measured to investigate the characteristics and to clarify whether the fluid elastic vibration characteristics could be expressed using two-phase mixture characteristics. Measured fluid elastic forces were separated into fluid-elastic force coefficients such as added mass, added stiffness, and added damping coefficient. The added damping coefficient was separated into a two-phase damping and a flow-dependent component as in previous research (Carlucci, 1981 and 1983; Pettigrew, 1994). These coefficients were nondimensionalized with two-phase mixture characteristics such as void fraction, mixture density and mixture velocity, which were obtained using the drift-flux model with consideration given to the model. The result was compared with the result obtained with the homogeneous model. It was found that fluid-elastic force coefficients could be expressed with two-phase flow mixture characteristics very well in the experimental result, and that better result can be derived using the slip model as compared to the homogeneous model. Added two-phase flow, which could be expressed as a function of void fraction, where two-phase damping was nondimensionalized with the relative velocity between the gas and liquid phases used as a reference velocity. Using these, the added stiffness coefficient and flow-dependent component of damping could be expressed very well as a function of nondimensional mixture velocity
Two-phase aqueous micellar systems: an alternative method for protein purification
Directory of Open Access Journals (Sweden)
Rangel-Yagui C. O.
2004-01-01
Full Text Available Two-phase aqueous micellar systems can be exploited in separation science for the extraction/purification of desired biomolecules. This article reviews recent experimental and theoretical work by Blankschtein and co-workers on the use of two-phase aqueous micellar systems for the separation of hydrophilic proteins. The experimental partitioning behavior of the enzyme glucose-6-phosphate dehydrogenase (G6PD in two-phase aqueous micellar systems is also reviewed and new results are presented. Specifically, we discuss very recent work on the purification of G6PD using: i a two-phase aqueous micellar system composed of the nonionic surfactant n-decyl tetra(ethylene oxide (C10E4, and (ii a two-phase aqueous mixed micellar system composed of C10E4 and the cationic surfactant decyltrimethylammonium bromide (C10TAB. Our results indicate that the two-phase aqueous mixed (C10E4/C10TAB micellar system can improve significantly the partitioning behavior of G6PD relative to that observed in the two-phase aqueous C10E4 micellar system.
Soft electronics for soft robotics
Kramer, Rebecca K.
2015-05-01
As advanced as modern machines are, the building blocks have changed little since the industrial revolution, leading to rigid, bulky, and complex devices. Future machines will include electromechanical systems that are soft and elastically deformable, lending them to applications such as soft robotics, wearable/implantable devices, sensory skins, and energy storage and transport systems. One key step toward the realization of soft systems is the development of stretchable electronics that remain functional even when subject to high strains. Liquid-metal traces embedded in elastic polymers present a unique opportunity to retain the function of rigid metal conductors while leveraging the deformable properties of liquid-elastomer composites. However, in order to achieve the potential benefits of liquid-metal, scalable processing and manufacturing methods must be identified.
Pressure distribution over tube surfaces of tube bundle subjected to two phase cross flow
International Nuclear Information System (INIS)
Sim, Woo Gun
2013-01-01
Two phase vapor liquid flows exist in many shell and tube heat exchangers such as condensers, evaporators and nuclear steam generators. To understand the fluid dynamic forces acting on a structure subjected to a two phase flow, it is essential to obtain detailed information about the characteristics of a two phase flow. The characteristics of a two phase flow and the flow parameters were introduced, and then, an experiment was performed to evaluate the pressure loss in the tube bundles and the fluid dynamic force acting on the cylinder owing to the pressure distribution. A two phase flow was pre mixed at the entrance of the test section, and the experiments were undertaken using a normal triangular array of cylinders subjected to a two phase cross flow. The pressure loss along the flow direction in the tube bundles was measured to calculate the two phase friction multiplier, and the multiplier was compared with the analytical value. Furthermore, the circular distributions of the pressure on the cylinders were measured. Based on the distribution and the fundamental theory of two phase flow, the effects of the void fraction and mass flux per unit area on the pressure coefficient and the drag coefficient were evaluated. The drag coefficient was calculated by integrating the measured pressure coefficient and the drag coefficient were evaluated. The drag coefficient was calculated by integrating the measured pressure on the tube by a numerical method. It was found that for low mass fluxes, the measured two phase friction multipliers agree well with the analytical results, and good agreement for the effect of the void fraction on the drag coefficients, as calculated by the measured pressure distributions, is shown qualitatively, as compared to the existing experimental results
Summary on experimental methods for statistical transient analysis of two-phase gas-liquid flow
International Nuclear Information System (INIS)
Delhaye, J.M.; Jones, O.C. Jr.
1976-06-01
Much work has been done in the study of two-phase gas-liquid flows. Although it has been recognized superficially that such flows are not homogeneous in general, little attention has been paid to the inherent discreteness of the two-phase systems. Only relatively recently have fluctuating characteristics of two-phase flows been studied in detail. As a result, new experimental devices and techniques have been developed for use in measuring quantities previously ignored. This report reviews and summarizes most of these methods in an effort to emphasize the importance of the fluctuating nature of these flows and as a guide to further research in this field
Two-phase flow and cross-mixing measurements in a rod bundle
International Nuclear Information System (INIS)
Yloenen, A.; Prasser, H.-M.
2011-01-01
The wire-mesh sensor technique has been used for the first time to study two-phase flow and liquid mixing in a rod bundle. A dedicated test facility (SUBFLOW) was constructed at Paul Scherrer Institut (PSI) in a co-operation with the Swiss Federal Institute of Technology (ETH Zurich). Simultaneous injection of salt water as tracer and air bubbles can be used to quantify the enhancement of liquid mixing in two-phase flow when the results are compared with the single-phase mixing experiment with the same test parameters. The second aspect in the current experiments is the two-phase flow in bundle geometry. (author)
A study of water hammer phenomena in a one-component two-phase bubbly flow
International Nuclear Information System (INIS)
Fujii, Terushige; Akagawa, Koji
2000-01-01
Water hammer phenomena caused by a rapid valve closure, that is, shock phenomena in two-phase flows, are an important problem for the safety assessment of a hypothetical LOCA. This paper presents the results of experimental and analytical studies of the water hammer phenomena in a one-component tow-phase bubbly flow. In order to clarify the characteristics of water hammer phenomena, experiments for a one-component two-phase flow of Freon R-113 were conducted and a numerical simulation of pressure transients was developed. An overall picture of the water hammer phenomena in a one-component two-phase flow is presented an discussed. (author)
Two-phase flow measurements with advanced instrumented spool pieces and local conductivity probes
International Nuclear Information System (INIS)
Turnage, K.G.; Davis, C.E.
1979-01-01
A series of two-phase, air-water and steam-water tests performed with instrumented spool pieces and with conductivity probes obtained from Atomic Energy of Canada, Ltd. is described. The behavior of the three-beam densitometer, turbine meter, and drag flowmeter is discussed in terms of two-phase models. Application of some two-phase mass flow models to the recorded spool piece data is made and preliminary results are shown. Velocity and void fraction information derived from the conductivity probes is presented and compared to velocities and void fractions obtained using the spool piece instrumentation
International Nuclear Information System (INIS)
Sauter, H.; Meyder, R.; Philipp, P.; Samstag, M.
1995-01-01
The NOVA program was continued with turbulent, vertical, upward two-phase flow experiments. The development of a local gas distribution along the test section was visualized by X-ray tomography. (orig.)
Falabella, Steven; Meyer, Glenn A; Tang, Vincent; Guethlein, Gary
2014-06-10
A two-phase mixed media insulator having a dielectric fluid filling the interstices between macro-sized dielectric beads packed into a confined volume, so that the packed dielectric beads inhibit electro-hydrodynamically driven current flows of the dielectric liquid and thereby increase the resistivity and breakdown strength of the two-phase insulator over the dielectric liquid alone. In addition, an electrical apparatus incorporates the two-phase mixed media insulator to insulate between electrical components of different electrical potentials. And a method of electrically insulating between electrical components of different electrical potentials fills a confined volume between the electrical components with the two-phase dielectric composite, so that the macro dielectric beads are packed in the confined volume and interstices formed between the macro dielectric beads are filled with the dielectric liquid.
Ross, Michelle; Wakefield, Jon
2015-10-01
Two-phase study designs are appealing since they allow for the oversampling of rare sub-populations which improves efficiency. In this paper we describe a Bayesian hierarchical model for the analysis of two-phase data. Such a model is particularly appealing in a spatial setting in which random effects are introduced to model between-area variability. In such a situation, one may be interested in estimating regression coefficients or, in the context of small area estimation, in reconstructing the population totals by strata. The efficiency gains of the two-phase sampling scheme are compared to standard approaches using 2011 birth data from the research triangle area of North Carolina. We show that the proposed method can overcome small sample difficulties and improve on existing techniques. We conclude that the two-phase design is an attractive approach for small area estimation.
Non-local two phase flow momentum transport in S BWR
International Nuclear Information System (INIS)
Espinosa P, G.; Salinas M, L.; Vazquez R, A.
2015-09-01
The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)
Reversible, on-demand generation of aqueous two-phase microdroplets
Collier, Charles Patrick; Retterer, Scott Thomas; Boreyko, Jonathan Barton; Mruetusatorn, Prachya
2017-08-15
The present invention provides methods of on-demand, reversible generation of aqueous two-phase microdroplets core-shell microbeads, microparticle preparations comprising the core-shell microbeads, and drug delivery formulation comprising the microparticle preparations. Because these aqueous microdroplets have volumes comparable to those of cells, they provide an approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Hence, the present methods generate femtoliter aqueous two-phase droplets within a microfluidic oil channel using gated pressure pulses to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phase transitions between single-phase, two-phase, and core-shell microbead states are obtained via evaporation-induced dehydration and water rehydration.
Prediction of two-phase choked-flow through safety valves
International Nuclear Information System (INIS)
Arnulfo, G; Bertani, C; De Salve, M
2014-01-01
Different models of two-phase choked flow through safety valves are applied in order to evaluate their capabilities of prediction in different thermal-hydraulic conditions. Experimental data available in the literature for two-phase fluid and subcooled liquid upstream the safety valve have been compared with the models predictions. Both flashing flows and non-flashing flows of liquid and incondensable gases have been considered. The present paper shows that for flashing flows good predictions are obtained by using the two-phase valve discharge coefficient defined by Lenzing and multiplying it by the critical flow rate in an ideal nozzle evaluated by either Omega Method or the Homogeneous Non-equilibrium Direct Integration. In case of non-flashing flows of water and air, Leung/Darby formulation of the two-phase valve discharge coefficient together with the Omega Method is more suitable to the prediction of flow rate.
Single and two-phase flow pressure drop for CANFLEX bundle
Energy Technology Data Exchange (ETDEWEB)
Park, Joo Hwan; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G R; Bullock, D E [Atomic Energy of Canada Limited, Ontario (Canada)
1999-12-31
Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-134a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLEX bundle is found to be about 20% higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within {+-} 5% error. 11 refs., 5 figs. (Author)
A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries
Dong, S.; Wang, X.
2016-01-01
Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909
Identification of two-phase flow regimes by time-series modeling
International Nuclear Information System (INIS)
King, C.H.; Ouyang, M.S.; Pei, B.S.
1987-01-01
The identification of two-phase flow patterns in pipes or ducts is important to the design and operation of thermal-hydraulic systems, especially in the nuclear reactor cores of boiling water reactors or in the steam generators of pressurized water reactors. Basically, two-phase flow shows some fluctuating characteristics even at steady-state conditions. These fluctuating characteristics can be analyzed by statistical methods for obtaining flow signatures. There have been a number of experimental studies conducted that are concerned with the statistical properties of void fraction or pressure pulsation in two-phase flow. In this study, the authors propose a new technique of identifying the patterns of air-water two-phase flow in a vertical pipe. This technique is based on analyzing the statistic characteristics of the pressure signals of the test loop by time-series modeling
A New Appraoch to Modeling Immiscible Two-phase Flow in Porous Media
DEFF Research Database (Denmark)
Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan
In this work we present a systematic literature review regarding the macroscopic approaches to modeling immiscible two-phase flow in porous media, the formulation process of the incorporate PDE based on Film Model(viscous coupling), the calculation of saturation profile around the transition zone...... to modeling immiscible two-phase flow in porous media. The suggested approach to immiscible two-phase flow in porous media describes the dispersed mesoscopic fluids’ interfaces which are highly influenced by the injected interfacial energy and the local interfacial energy capacity. It reveals a new...... possibility of modeling two-phase flow through energy balance. The saturation profile generated through the suggested approach is different from those through other approaches....
Development of One Dimensional Hyperbolic Coupled Solver for Two-Phase Flows
International Nuclear Information System (INIS)
Kim, Eoi Jin; Kim, Jong Tae; Jeong, Jae June
2008-08-01
The purpose of this study is a code development for one dimensional two-phase two-fluid flows. In this study, the computations of two-phase flow were performed by using the Roe scheme which is one of the upwind schemes. The upwind scheme is widely used in the computational fluid dynamics because it can capture discontinuities clearly such as a shock. And this scheme is applicable to multi-phase flows by the extension methods which were developed by Toumi, Stadtke, etc. In this study, the extended Roe upwind scheme by Toumi for two-phase flow was implemented in the one-dimensional code. The scheme was applied to a shock tube problem and a water faucet problem. This numerical method seems efficient for non oscillating solutions of two phase flow problems, and also capable for capturing discontinuities
Development of One Dimensional Hyperbolic Coupled Solver for Two-Phase Flows
Energy Technology Data Exchange (ETDEWEB)
Kim, Eoi Jin; Kim, Jong Tae; Jeong, Jae June
2008-08-15
The purpose of this study is a code development for one dimensional two-phase two-fluid flows. In this study, the computations of two-phase flow were performed by using the Roe scheme which is one of the upwind schemes. The upwind scheme is widely used in the computational fluid dynamics because it can capture discontinuities clearly such as a shock. And this scheme is applicable to multi-phase flows by the extension methods which were developed by Toumi, Stadtke, etc. In this study, the extended Roe upwind scheme by Toumi for two-phase flow was implemented in the one-dimensional code. The scheme was applied to a shock tube problem and a water faucet problem. This numerical method seems efficient for non oscillating solutions of two phase flow problems, and also capable for capturing discontinuities.
Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow
International Nuclear Information System (INIS)
Wu, Hao; Dong, Feng
2014-01-01
Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model
Development of an Enhanced Two-Phase Production System at the Geysers Geothermal Field; FINAL
International Nuclear Information System (INIS)
Steven Enedy
2001-01-01
A method was developed to enhance geothermal steam production from two-phase wells at THE Geysers Geothermal Field. The beneficial result was increased geothermal production that was easily and economically delivered to the power plant
A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces
Shao, Sihong; Qian, Tiezheng
2012-01-01
We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager
Single and two-phase flow pressure drop for CANFLEX bundle
Energy Technology Data Exchange (ETDEWEB)
Park, Joo Hwan; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G. R.; Bullock, D. E. [Atomic Energy of Canada Limited, Ontario (Canada)
1998-12-31
Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-134a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLEX bundle is found to be about 20% higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within {+-} 5% error. 11 refs., 5 figs. (Author)
Non-local two phase flow momentum transport in S BWR
Energy Technology Data Exchange (ETDEWEB)
Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)
2015-09-15
The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)
Two-phase flow boiling in small channels: A brief review
Indian Academy of Sciences (India)
fer coefficients, reduced inventory requirements, low capital cost etc. ... lot of work has been done to understand the fundamental aspects of two-phase flow and ... occurrence would facilitate optimal and safe operation of the involved systems.
Numerical simulation of multi-dimensional two-phase flow based on flux vector splitting
Energy Technology Data Exchange (ETDEWEB)
Staedtke, H.; Franchello, G.; Worth, B. [Joint Research Centre - Ispra Establishment (Italy)
1995-09-01
This paper describes a new approach to the numerical simulation of transient, multidimensional two-phase flow. The development is based on a fully hyperbolic two-fluid model of two-phase flow using separated conservation equations for the two phases. Features of the new model include the existence of real eigenvalues, and a complete set of independent eigenvectors which can be expressed algebraically in terms of the major dependent flow parameters. This facilitates the application of numerical techniques specifically developed for high speed single-phase gas flows which combine signal propagation along characteristic lines with the conservation property with respect to mass, momentum and energy. Advantages of the new model for the numerical simulation of one- and two- dimensional two-phase flow are discussed.
A new treatment of capillarity to improve the stability of IMPES two-phase flow formulation
Kou, Jisheng; Sun, Shuyu
2010-01-01
In this paper, we present an efficient numerical method for two-phase immiscible flow in porous media with different capillarity pressures. In highly heterogeneous permeable media, the saturation is discontinuous due to different capillary pressure
Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces
International Nuclear Information System (INIS)
Cheung, F.B.; Epstein, M.
1985-01-01
The behavior of a two-phase gas bubble-liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 45 0 to 135 0 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined. The predicted boundary layer thickness is found to be in good agreement with the experimental results. The calculated axial liquid velocity and the void fraction in the two-phase region are also presented along with the observed flow behavior
Vanderbilt, Allison A; Pappada, Scott M; Stein, Howard; Harper, David; Papadimos, Thomas J
2017-01-01
Hospitals have struggled for years regarding the handoff process of communicating patient information from one health care professional to another. Ineffective handoff communication is recognized as a serious patient safety risk within the health care community. It is essential to take communication into consideration when examining the safety of neonates who require immediate medical attention after birth; effective communication is vital for positive patient outcomes, especially with neonates in a delivery room setting. Teamwork and effective communication across the health care continuum are essential for providing efficient, quality care that leads to favorable patient outcomes. Interprofessional simulation and team training can benefit health care professionals by improving interprofessional competence, defined as one's knowledge of other professionals including an understanding of their training and skillsets, and role clarity. Interprofessional teams that include members with specialization in obstetrics, gynecology, and neonatology have the potential to considerably benefit from training effective handoff and communication practices that would ensure the safety of the neonate upon birth. We must strive to provide the most comprehensive systematic, standardized, interprofessional handoff communication training sessions for such teams, through Graduate Medical Education and Continuing Medical Education that will meet the needs across the educational continuum.
Directory of Open Access Journals (Sweden)
Ionut BOSOANCA
2011-01-01
Full Text Available Because the increasingly development and use of wireless networks and mobile technologies, was implemented the idea that users of mobile terminals must have access in different wireless networks simultaneously. Therefore one of the main interest points of Next Generation Wireless Networks (NGWNs, refers to the ability to support wireless network access equipment to ensure a high rate of services between different wireless networks. To solve these problems it was necessary to have decision algorithms to decide for each user of mobile terminal, which is the best network at some point, for a service or a specific application that the user needs. Therefore to make these things, different algorithms use the vertical handoff technique. Below are presented a series of algorithms based on vertical handoff technique with a classification of the different existing vertical handoff decision strategies, which tries to solve these issues of wireless network selection at a given time for a specific application of an user. Based on our synthesis on vertical handoff decision strategies given below, we build our strategy based on solutions presented below, taking the most interesting aspect of each one.
Manodham, Thavisak; Loyola, Luis; Miki, Tetsuya
IEEE 802.11 wirelesses LANs (WLANs) have been rapidly deployed in enterprises, public areas, and households. Voice-over-IP (VoIP) and similar applications are now commonly used in mobile devices over wireless networks. Recent works have improved the quality of service (QoS) offering higher data rates to support various kinds of real-time applications. However, besides the need for higher data rates, seamless handoff and load balancing among APs are key issues that must be addressed in order to continue supporting real-time services across wireless LANs and providing fair services to all users. In this paper, we introduce a novel access point (AP) with two transceivers that improves network efficiency by supporting seamless handoff and traffic load balancing in a wireless network. In our proposed scheme, the novel AP uses the second transceiver to scan and find neighboring STAs in the transmission range and then sends the results to neighboring APs, which compare and analyze whether or not the STA should perform a handoff. The initial results from our simulations show that the novel AP module is more effective than the conventional scheme and a related work in terms of providing a handoff process with low latency and sharing traffic load with neighbor APs.
Experimental and analytical study of two-phase pressure drops during evaporation in horizontal tubes
Moreno Quibén, Jesús; Thome, John Richard
2007-01-01
Two-phase flow of gases and liquids or vapors and liquids in pipes, channels, equipment, etc. is frequently encountered in industry and has been studied intensively for many years. The reliable prediction of pressure drop in two-phase flow is thereby an important aim. Because of the complexity of these types of flow, empirical or semiempirical relationships are only of limited reliability and pressure drops predicted using leading methods may differ by up to 100%. In order to improve predicti...
Personal view of educating two-phase flow and human resource development as a nuclear engineer
International Nuclear Information System (INIS)
Hotta, Akitoshi
2010-01-01
As an engineer who has devoted himself in the nuclear industry for almost three decades, the author gave a personal view on educating two-phase flow and developing human resources. An expected role of universities in on-going discussions of collaboration among industry-government-academia is introduced. Reformation of two-phase flow education is discussed from two extreme viewpoints, the basic structure of physics and the practical system analysis. (author)
Experimental investigation on passive heat transfer by long closed two-phase thermosiphons
Energy Technology Data Exchange (ETDEWEB)
Grass, Claudia; Kulenovic, Rudi; Starflinger, Joerg [Stuttgart Univ. (Germany). Inst. fuer Kernenergetik und Energiesysteme (IKE)
2017-07-15
The removal of decay heat from spent fuel pools is presently realized by active cooling systems. In case of a station black out, a passive heat removal based on closed two-phase thermosiphons can contribute to the power plant safety. In this paper, the basic laboratory setup for closed two-phase thermosiphons and first experimental results are presented. Depending on the driving temperature difference and the heat input, steady-state and pulsating operation of the thermosiphons are investigated.
Two-phase interfacial area and flow regime modeling in FLOWTRAN-TF code
International Nuclear Information System (INIS)
Smith, F.G. III; Lee, S.Y.; Flach, G.P.; Hamm, L.L.
1992-01-01
FLOWTRAN-TF is a new two-component, two-phase thermal-hydraulics code to capture the detailed assembly behavior associated with loss-of-coolant accident analyses in multichannel assemblies of the SRS reactors. The local interfacial area of the two-phase mixture is computed by summing the interfacial areas contributed by each of three flow regimes. For smooth flow regime transitions, the code uses an interpolation technique in terms of component void fraction for each basic flow regime
Water property lookup table (sanwat) for use with the two-phase computational code shaft
International Nuclear Information System (INIS)
Sherman, M.P.; Eaton, R.R.
1980-10-01
A lookup table for water thermodynamic and transport properties (SANWAT) has been constructed for use with the two-phase computational code, SHAFT. The table, which uses density and specific internal energy as independent variables, covers the liquid, two-phase, and vapor regions. The liquid properties of water are contained in a separate subtable in order to obtain high accuracy for this nearly incompressible region that is frequently encountered in studies of the characteristics of nuclear-waste repositories
Treatment technologies of liquid and solid wastes from two-phase olive oil mills
Borja Padilla, Rafael; Raposo Bejines, Francisco; Rincón, Bárbara
2006-01-01
Over the last 10 years the manufacture of olive oil has undergone important evolutionary changes in the equipment used for the separation of olive oil from the remaining components. The latest development has been the introduction of a two-phase centrifugation process in which a horizontally-mounted centrifuge is used for a primary separation of the olive oil fraction from the vegetable solid material and vegetation water. Therefore, the new two-phase olive oil mills produce three ident...
Treatment technologies of liquid and solid wastes from two-phase olive oil mills
Rincón, Bárbara; Raposo, Francisco; Borja, Rafael
2006-01-01
Over the last 10 years the manufacture of olive oil has undergone important evolutionary changes in the equipment used for the separation of olive oil from the remaining components. The latest development has been the introduction of a two-phase centrifugation process in which a horizontally-mounted centrifuge is used for a primary separation of the olive oil fraction from the vegetable solid material and vegetation water. Therefore, the new two-phase olive oil mills produce three identifiabl...
Bioconversion of apigenin-7-O-β-glucoside in aqueous two-phase system
Directory of Open Access Journals (Sweden)
Ilić Sanja M.
2005-01-01
Full Text Available The study is concerned with the conversion of apigenin-7-O-β-glucoside into apigenin in polyethylene glycol 6000 / dextran 20000 aqueous two-phase system by β-glucosidase. Apigenin was separated from apigenin-7-O-β-glucoside and β-glucosidase by their partition into opposite phases. In 14% PEG / 22.5% DEX aqueous two-phase system obtained yield of apigenin in top phase was 108%.
Estimation of the sugar cane cultivated area from LANDSAT images using the two phase sampling method
Parada, N. D. J. (Principal Investigator); Cappelletti, C. A.; Mendonca, F. J.; Lee, D. C. L.; Shimabukuro, Y. E.
1982-01-01
A two phase sampling method and the optimal sampling segment dimensions for the estimation of sugar cane cultivated area were developed. This technique employs visual interpretations of LANDSAT images and panchromatic aerial photographs considered as the ground truth. The estimates, as a mean value of 100 simulated samples, represent 99.3% of the true value with a CV of approximately 1%; the relative efficiency of the two phase design was 157% when compared with a one phase aerial photographs sample.
Determination of drift-flux velocity as a function of two-phase flow patterns
International Nuclear Information System (INIS)
Austregesilo Filho, H.
1986-01-01
A method is suggested for the calculation of drift-flux velocity as a function of two-phase flow patterns determined analytically. This model can be introduced in computer codes for thermal hydraulic analyses based mainly on homogeneous assumptions, in order to achieve a more realis tic description of two-phase flow phenomena, which is needed for the simulation of accidents in nuclear power plants for which phase separation effects are dominant, e.g., small break accidents. (Author) [pt
Measurement of local two-phase flow parameters of nanofluids using conductivity double-sensor probe.
Park, Yu Sun; Chang, Soon Heung
2011-04-04
A two-phase flow experiment using air and water-based γ-Al2O3 nanofluid was conducted to observe the basic hydraulic phenomenon of nanofluids. The local two-phase flow parameters were measured with a conductivity double-sensor two-phase void meter. The void fraction, interfacial velocity, interfacial area concentration, and mean bubble diameter were evaluated, and all of those results using the nanofluid were compared with the corresponding results for pure water. The void fraction distribution was flattened in the nanofluid case more than it was in the pure water case. The higher interfacial area concentration resulted in a smaller mean bubble diameter in the case of the nanofluid. This was the first attempt to measure the local two-phase flow parameters of nanofluids using a conductivity double-sensor two-phase void meter. Throughout this experimental study, the differences in the internal two-phase flow structure of the nanofluid were identified. In addition, the heat transfer enhancement of the nanofluid can be resulted from the increase of the interfacial area concentration which means the available area of the heat and mass transfer.
Numerical study for two phase flow in the near nozzle region of turbine combustors
International Nuclear Information System (INIS)
Pervez, K.; Mushtaq, S.
1999-01-01
In the present study flow conditions in the near nozzle region of the combustion chamber have been investigated. There exists two-phase flow in this region. The overall performance and pollutant formation in the combustion chamber have been investigated. There exists two-phase flow in this region. The overall performance and pollutant formation in the combustion zone largely depends on the spray field in the near nozzle region the studies are conducted to determined the effects of multi jets on the flow pattern in the near nozzle region The phase doppler particle analyzer (PDPA) has been used to measure the velocities and sizes of the droplets. The flow field of two-phase liquid drop-air jets is formed from three injectors arranged in t line. Furthermore the two-phase flow field has been analyzed numerically also. The numerical analysis consists of two computational models, namely (i) 3 non-evaporating two-phase jets, (II) 3 evaporating two phase jets. The Eulerian-Eulerian approach in incorporated in both the numerical models. Since the flow is turbulent, a two-equation model (k-Epsilon) is implemented in the numerical analysis. Numerical solution of the conservation equation is obtained using PHOENICS computer code. Boundary conditions are provided from the experimental measurements. Numerical domain for the two models of the analysis starts at some distance (about 10 diameters of the injector orifice) where the atomization process is complete and droplet size and velocity could be measured experimentally. (author)
Application of non-equilibrium thermodynamics to two-phase flows with a change of phase
International Nuclear Information System (INIS)
Delhaye, J.M.
1969-01-01
In this report we use the methods of non-equilibrium thermodynamics in two-phase flows. This paper follows a prior one in which we have studied the conservation laws and derived the general equations of two-phase flow. In the first part the basic ideas of thermodynamics of irreversible systems are given. We follow the classical point of view. The second part is concerned with the derivation of a closed set of equations for the two phase elementary volume model. In this model we assume that the elementary volume contains two phases and that it is possible to define a volumetric local concentration. To obtain the entropy balance we can choose either the reversibility of the barycentric motion or the reversibility of each phase. We adopt the last assumption and our derivation is the same as this of I.Prigogine and P. Mazur about the hydrodynamics of liquid helium. The scope of this work is not to find a general solution to the problems of two phase flows but to obtain a new set of equations which may be used to explain some characteristic phenomena of two-phase flow such as wave propagation or critical states. (author) [fr
International Nuclear Information System (INIS)
Boucker, M.; Laviaville, J.; Martin, A.; Bechaud, C.; Bestion, D.; Coste, P.
2004-01-01
The objective of this communication is to present some preliminary applications to pressurized thermal shock (PTS) investigations of the CFD (Computational Fluid Dynamics) two-phase flow solver of the new NEPTUNE thermal-hydraulics platform. In the framework of plant life extension, the Reactor Pressure Vessel (RPV) integrity is a major concern, and an important part of RPV integrity assessment is related to PTS analysis. In the case where the cold legs are partially filled with steam, it becomes a two-phase problem and new important effects occur, such as condensation due to the Emergency Core Cooling (ECC) injections of sub-cooled water. Thus, an advanced prediction of RPV thermal loading during these transients requires sophisticated two-phase, local scale, 3-dimensional codes. In that purpose, a program has been set up to extend the capabilities of the NEPTUNE two-phase CFD solver. A simple set of turbulence and condensation model for free surface steam-water flow has been tested in simulation of an ECC high pressure injection representing facility, using a full 3-dimensional mesh and the new NEPTUNE solver. Encouraging results have been obtained but it should be noticed that several sources of error can compensate for one another. Nevertheless, the computation presented here allows to be reasonable confident in the use of two-phase CFD in order to carry out refined analysis of two-phase PTS scenarios within the next years
Directory of Open Access Journals (Sweden)
Vanderbilt AA
2017-06-01
Full Text Available Allison A Vanderbilt,1 Scott M Pappada,2 Howard Stein,3 David Harper,4 Thomas J Papadimos5 1Department of Family Medicine, 2Department of Anesthesiology, College of Medicine and Life Sciences, University of Toledo, 3Department of Pediatrics, ProMedica Toledo Children’s Hospital, 4Department of Obstetrics and Gynecology, ProMedica Toledo Hospital, 5Department of Anesthesiology, College of Medicine and the Life Sciences, University of Toledo, Toledo, OH, USA Abstract: Hospitals have struggled for years regarding the handoff process of communicating patient information from one health care professional to another. Ineffective handoff communication is recognized as a serious patient safety risk within the health care community. It is essential to take communication into consideration when examining the safety of neonates who require immediate medical attention after birth; effective communication is vital for positive patient outcomes, especially with neonates in a delivery room setting. Teamwork and effective communication across the health care continuum are essential for providing efficient, quality care that leads to favorable patient outcomes. Interprofessional simulation and team training can benefit health care professionals by improving interprofessional competence, defined as one’s knowledge of other professionals including an understanding of their training and skillsets, and role clarity. Interprofessional teams that include members with specialization in obstetrics, gynecology, and neonatology have the potential to considerably benefit from training effective handoff and communication practices that would ensure the safety of the neonate upon birth. We must strive to provide the most comprehensive systematic, standardized, interprofessional handoff communication training sessions for such teams, through Graduate Medical Education and Continuing Medical Education that will meet the needs across the educational continuum. Keywords
Interaction between local parameters of two-phase flow and random forces on a cylinder
International Nuclear Information System (INIS)
Sylviane Pascal-Ribot; Yves Blanchet; Franck Baj; Phillippe Piteau
2005-01-01
Full text of publication follows: In the frame of assessments of steam generator tube bundle vibrations, a study was conducted in order to investigate the effects of an air/water flow on turbulent buffeting forces induced on a cylinder. The main purpose is to relate the physical parameters characterizing an air/water two-phase crossflow with the structural loading of a fixed cylindrical tube. In this first approach, the experiments are carried out in a rectangular acrylic test section supplied with a vertical upward bubbly flow. This flow is transversally impeded by a fixed rigid 12,15 mm diameter cylinder. Different turbulence grids are used in order to modify two-phase characteristics such as bubble diameter, void fraction profile, fluctuation parameters. Preliminarily, a dimensional analysis of fluid-structure interaction under two-phase turbulent solicitations has enabled to identify a list of physically relevant variables which must be measured to evaluate the random forces. The meaning of these relevant parameters as well as the effect of flow patterns are discussed. Direct measurements of two-phase flow parameters are performed simultaneously with measurements of forces exerted on the cylinder. The main descriptive parameters of a two-phase flow are measured using a bi-optical probe, in particular void fraction profiles, interfacial velocities, bubble diameters, void fraction fluctuations. In the same time, the magnitude of random forces caused by two-phase flow is measured with a force transducer. A thorough analysis of the experimental data is then undertaken in order to correlate physical two-phase mechanisms with the random forces exerted on the cylinder. The hypotheses made while applying the dimensional analysis are verified and their pertinence is discussed. Finally, physical parameters involved in random buffeting forces applied on a transverse tube are proposed to scale the spectral magnitude of these forces and comparisons with other authors
Rossiter, Jonathan; Iida, Fumiya; Cianchetti, Matteo; Margheri, Laura
2017-01-01
This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 – 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.
Lawrason Hughes, Amy; Murray, Nicole; Valdez, Tulio A; Kelly, Raeanne; Kavanagh, Katherine
2014-01-01
National attention has focused on the importance of handoffs in medicine. Our practice during airway patient handoffs is to communicate a patient-specific emergency plan for airway reestablishment; patients who are not intubatable by standard means are at higher risk for failure. There is currently no standard classification system describing airway risk in tracheotomized patients. To introduce and assess the interrater reliability of a simple airway risk classification system, the Connecticut Airway Risk Evaluation (CARE) system. We created a novel classification system, the CARE system, based on ease of intubation and the need for ventilation: group 1, easily intubatable; group 2, intubatable with special equipment and/or maneuvers; group 3, not intubatable. A "v" was appended to any group number to indicate the need for mechanical ventilation. We performed a retrospective medical chart review of patients aged 0 to 18 years who were undergoing tracheotomy at our tertiary care pediatric hospital between January 2000 and April 2011. INTERVENTIONS Each patient's medical history, including airway disease and means of intubation, was reviewed by 4 raters. Patient airways were separately rated as CARE groups 1, 2, or 3, each group with or without a v appended, as appropriate, based on the available information. After the patients were assigned to an airway group by each of the 4 raters, the interrater reliability was calculated to determine the ease of use of the rating system. We identified complete data for 155 of 169 patients (92%), resulting in a total of 620 ratings. Based on the patient's ease of intubation, raters categorized tracheotomized patients into group 1 (70%, 432 of 620); group 2 (25%, 157 of 620); or group 3 (5%, 29 of 620), each with a v appended if appropriate. The interrater reliability was κ = 0.95. We propose an airway risk classification system for tracheotomized patients, CARE, that has high interrater reliability and is easy to use and
Inlet effects on vertical-downward air–water two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Qiao, Shouxu; Mena, Daniel; Kim, Seungjin, E-mail: skim@psu.edu
2017-02-15
Highlights: • Inlet effects on two-phase flow parameters in vertical-downward flow are studied. • Flow regimes in the vertical-downward two-phase flow are defined. • Vertical-downward flow regime maps for three inlet configurations are developed. • Frictional pressure loss analysis for three different inlets is performed. • Database of local two-phase flow parameters for each inlet configuration. - Abstract: This paper focuses on investigating the geometric effects of inlets on global and local two-phase flow parameters in vertical-downward air–water two-phase flow. Flow visualization, frictional pressure loss analysis, and local experiments are performed in a test facility constructed from 50.8 mm inner diameter acrylic pipes. Three types of inlets of interest are studied: (1) two-phase flow injector without a flow straightener (Type A), (2) two-phase flow injector with a flow straightener (Type B), and (3) injection through a horizontal-to-vertical-downward 90° vertical elbow (Type C). A detailed flow visualization study is performed to characterize flow regimes including bubbly, slug, churn-turbulent, and annular flow. Flow regime maps for each inlet are developed and compared to identify the effects of each inlet. Frictional pressure loss analysis shows that the Lockhart–Martinelli method is capable of correlating the frictional loss data acquired for Type B and Type C inlets with a coefficient value of C = 25, but additional data may be needed to model the Type A inlet. Local two-phase flow parameters measured by a four-sensor conductivity probe in four bubbly and near bubbly flow conditions are analyzed. It is observed that vertical-downward two-phase flow has a characteristic center-peaked void profile as opposed to a wall-peaked profile as seen in vertical-upward flow. Furthermore, it is shown that the Type A inlet results in the most pronounced center-peaked void fraction profile, due to the coring phenomenon. Type B and Type C inlets
International Nuclear Information System (INIS)
Cacuci, D.G.
1984-07-01
This report presents a self-contained mathematical formalism for deterministic sensitivity analysis of two-phase flow systems, a detailed application to sensitivity analysis of the homogeneous equilibrium model of two-phase flow, and a representative application to sensitivity analysis of a model (simulating pump-trip-type accidents in BWRs) where a transition between single phase and two phase occurs. The rigor and generality of this sensitivity analysis formalism stem from the use of Gateaux (G-) differentials. This report highlights the major aspects of deterministic (forward and adjoint) sensitivity analysis, including derivation of the forward sensitivity equations, derivation of sensitivity expressions in terms of adjoint functions, explicit construction of the adjoint system satisfied by these adjoint functions, determination of the characteristics of this adjoint system, and demonstration that these characteristics are the same as those of the original quasilinear two-phase flow equations. This proves that whenever the original two-phase flow problem is solvable, the adjoint system is also solvable and, in principle, the same numerical methods can be used to solve both the original and adjoint equations
Experiments of steady state head and torque of centrifugal pumps in two-phase flow
International Nuclear Information System (INIS)
Minato, Akihiko; Tominaga, Kenji.
1988-01-01
Circulation pump behavior has large effect on coolant discharge flow rate in case of reactor pipe break. Experiment of two-phase pump performance was conducted as a joint study of Japanese BWR user utilities and makers. Two-phase head and torque of three centrifugal pumps in high temperature and high pressure (around 6 MPa) steam/water were measured. Head was decreased from single-phase characteristics when gas was mixed in liquid flow in condition with normal flow and normal rotation directions. When flow rate was large enough, two-phase head was about the same as single-phase one in reversal flow conditions. Two-phase head was smoothly increased as flowing steam volumetic concentration increased when flow rate was small and flow direction was reversal. Changes of torque with gas concentration were correspondent to those of head. This suggested that changes of interaction between flow and impellers due to phase slip effected on torque which caused head differences between single- and two-phase flows. Dependence of dimensionless head and torque of three test pumps on steam concentration were almost the same as each other. (author)
Complex network analysis in inclined oil–water two-phase flow
International Nuclear Information System (INIS)
Zhong-Ke, Gao; Ning-De, Jin
2009-01-01
Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling many complex natural and artificial systems. Oil–water two-phase flow is one of the most complex systems. In this paper, we use complex networks to study the inclined oil–water two-phase flow. Two different complex network construction methods are proposed to build two types of networks, i.e. the flow pattern complex network (FPCN) and fluid dynamic complex network (FDCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K-means clustering, useful and interesting results are found which can be used for identifying three inclined oil–water flow patterns. To investigate the dynamic characteristics of the inclined oil–water two-phase flow, we construct 48 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of the inclined oil–water two-phase flow. In this paper, from a new perspective, we not only introduce a complex network theory into the study of the oil–water two-phase flow but also indicate that the complex network may be a powerful tool for exploring nonlinear time series in practice. (general)
International Nuclear Information System (INIS)
Gao Zhong-Ke; Hu Li-Dan; Jin Ning-De
2013-01-01
We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas—liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitative characterization of the dynamic flow behavior in the transitions among different gas—liquid flow patterns. (general)
Thermodynamic analysis of the two-phase ejector air-conditioning system for buses
International Nuclear Information System (INIS)
Ünal, Şaban; Yilmaz, Tuncay
2015-01-01
Air-conditioning compressors of the buses are usually operated with the power taken from the engine of the buses. Therefore, an improvement in the air-conditioning system will reduce the fuel consumption of the buses. The improvement in the coefficient of performance (COP) of the air-conditioning system can be provided by using the two-phase ejector as an expansion valve in the air-conditioning system. In this study, the thermodynamic analysis of bus air-conditioning system enhanced with a two-phase ejector and two evaporators is performed. Thermodynamic analysis is made assuming that the mixing process in ejector occurs at constant cross-sectional area and constant pressure. The increase rate in the COP with respect to conventional system is analyzed in terms of the subcooling, condenser and evaporator temperatures. The analysis shows that COP improvement of the system by using the two phase ejector as an expansion device is 15% depending on design parameters of the existing bus air-conditioning system. - Highlights: • Thermodynamic analysis of the two-phase ejector refrigeration system. • Analysis of the COP increase rate of bus air-conditioning system. • Analysis of the entrainment ratio of the two-phase ejector refrigeration system
DSMC simulation of two-phase plume flow with UV radiation
Energy Technology Data Exchange (ETDEWEB)
Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073 (China)
2014-12-09
Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.
Experimental study on local resistance of two-phase flow through spacer grid with rod bundle
International Nuclear Information System (INIS)
Yan Chaoxing; Yan Changqi; Sun Licheng; Tian Qiwei
2015-01-01
The experimental study on local resistance of single-phase and two-phase flows through a spacer grid in a vertical channel with 3 × 3 rod bundle was carried out under the normal temperature and pressure. For the case of single-phase flow, the liquid Reynolds number covered the range of 290-18 007. For the case of two-phase flow, the ranges of gas and liquid superficial velocities were 0.013-3.763 m/s and 0.076-1.792 m/s, respectively. A correlation for predicting local resistance of single-phase flow was given based on experimental results. Eight classical two-phase viscosity formulae for homogeneous model were evaluated against the experimental data of two-phase flow. The results show that Dukler model predicts the experimental data well in the range of Re 1 < 9000 while McAdams correlation is the best one for Re 1 ≥ 9000. For all experimental data, Dukler model provides the best prediction with the mean relative error of 29.03%. A new correlation is fitted for the range of Re 1 < 9000 by considering mass quality, two- phase Reynolds number and liquid and gas densities, resulting in a good agreement with the experimental data. (authors)
Present status of numerical analysis on transient two-phase flow
International Nuclear Information System (INIS)
Akimoto, Masayuki; Hirano, Masashi; Nariai, Hideki.
1987-01-01
The Special Committee for Numerical Analysis of Thermal Flow has recently been established under the Japan Atomic Energy Association. Here, some methods currently used for numerical analysis of transient two-phase flow are described citing some information given in the first report of the above-mentioned committee. Many analytical models for transient two-phase flow have been proposed, each of which is designed to describe a flow by using differential equations associated with conservation of mass, momentum and energy in a continuous two-phase flow system together with constructive equations that represent transportation of mass, momentum and energy though a gas-liquid interface or between a liquid flow and the channel wall. The author has developed an analysis code, called MINCS, that serves for systematic examination of conservation equation and constructive equations for two-phase flow models. A one-dimensional, non-equilibrium two-liquid flow model that is used as the basic model for the code is described. Actual procedures for numerical analysis is shown and some problems concerning transient two-phase analysis are described. (Nogami, K.)
On the use of nuclear magnetic resonance to characterize vertical two-phase bubbly flows
International Nuclear Information System (INIS)
Lemonnier, H.; Jullien, P.
2011-01-01
Research highlights: → We provide a complete theory of the PGSE measurement in single and two-phase flow. → Friction velocity can be directly determinated from measured velocity distributions. → Fast determination of moments shorten PGSE process with small loss of accuracy. → Turbulent diffusion measurements agree well with known trends and existing models. → We think NMR can be a tool to benchmark thermal anemometry in two-phase flow. - Abstract: Since the pioneering work of who showed that NMR can be used to measure accurately the mean liquid velocity and void fraction in two-phase pipe flow, it has been shown that NMR signal can also characterize the turbulent eddy diffusivity and velocity fluctuations. In this paper we provide an in depth validation of these statements together with a clarification of the nature of the mean velocity that is actually measured by NMR PFGSE sequence. The analysis shows that the velocity gradient at the wall is finely space-resolved and allows the determination of the friction velocity in single-phase flows. Next turbulent diffusion measurements in two-phase flows are presented, analyzed and compared to existing data and models. It is believed that NMR velocity measurement is sufficiently understood that it can be utilized to benchmark thermal anemometry in two-phase flows. Theoretical results presented in this paper also show how this can be undertaken.
Measurement of void fraction and bubble size distribution in two-phase flow system
International Nuclear Information System (INIS)
Huahun, G.
1987-01-01
The importance of study two phase flow parameter and microstructure has appeared increasingly, with the development of two-phase flow discipline. In the paper, the measurement methods of several important microstructure parameter in a two phase flow vertical channel have been studied. Using conductance probe the two phase flow pattern and the average void fraction have been measured previously by the authors. This paper concerns microstructure of the bubble size distribution and local void fraction. The authors studied the methods of measuring bubble velocity, size distribution and local void fraction using double conductance probes and a set of apparatus. Based on our experiments and Yoshihiro work, a formula of calculated local void fraction has been deduced by using the statistical characteristics of bubbles in two phase flow and the relation between calculated bubble size and voltage has been determined. Finally the authors checked by using photograph and fast valve, which is classical but reliable. The results are the same with what has been studied before
Post Analysis of Two Phase Natural Circulation Mass Flow Rate for CE-PECS
Energy Technology Data Exchange (ETDEWEB)
Park, R. J.; Ha, K. S.; Rhee, B. W.; Kim, H. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
The coolant in the inclined channel absorbs the decay heat and sensible heat transferred from the corium through the structure of the core catcher body and flows up to the pool as a two phase mixture. On the other hand, some of the pool water will flow into the inlet of the downcomer piping, and will flow into the inclined cooling channel of the core catcher by gravity. The engineered cooling channel is designed to provide effective long-term cooling and stabilization of the corium mixture in the core catcher body while facilitating steam venting. To maintain the integrity of the ex-vessel core catcher, however, it is required that the coolant be circulated at a rate along the inclined cooling channel sufficient to avoid CHF (Critical Heat Flux) on the heating surface of the cooling channel. In this study, post simulations of two phase natural circulation in the CEPECS have been performed to evaluate two phase flow characteristics and the natural circulation mass flow rate in the flow channel using the RELAP5/MOD3 computer code. Post simulations of two phase natural circulation in the CE-PECS have been conducted to evaluate two phase flow characteristics and the natural circulation mass flow rate in the flow channel using the RELAP5/MOD3 computer code. The RELAP5/MOD3 results have shown that the water circulation mass flow rate is approximately 8.7 kg/s in the base case.
Zero-G two phase flow regime modeling in adiabatic flow
International Nuclear Information System (INIS)
Reinarts, T.R.; Best, F.R.; Wheeler, M.; Miller, K.M.
1993-01-01
Two-phase flow, thermal management systems are currently being considered as an alternative to conventional, single phase systems for future space missions because of their potential to reduce overall system mass, size, and pumping power requirements. Knowledge of flow regime transitions, heat transfer characteristics, and pressure drop correlations is necessary to design and develop two-phase systems. This work is concerned with microgravity, two-phase flow regime analysis. The data come from a recent sets of experiments. The experiments were funded by NASA Johnson Space Center (JSC) and conducted by NASA JSC with Texas A ampersand M University. The experiment was on loan to NASA JSC from Foster-Miller, Inc., who constructed it with funding from the Air Force Phillips Laboratory. The experiment used R12 as the working fluid. A Foster-Miller two phase pump was used to circulate the two phase mixture and allow separate measurements of the vapor and liquid flow streams. The experimental package was flown 19 times for 577 parabolas aboard the NASA KC-135 aircraft which simulates zero-G conditions by its parabolic flight trajectory. Test conditions included bubbly, slug and annular flow regimes in 0-G. The superficial velocities of liquid and vapor have been obtained from the measured flow rates and are presented along with the observed flow regimes and several flow regime transition predictions. None of the predictions completely describe the transitions as indicated by the data
Post Analysis of Two Phase Natural Circulation Mass Flow Rate for CE-PECS
International Nuclear Information System (INIS)
Park, R. J.; Ha, K. S.; Rhee, B. W.; Kim, H. Y.
2015-01-01
The coolant in the inclined channel absorbs the decay heat and sensible heat transferred from the corium through the structure of the core catcher body and flows up to the pool as a two phase mixture. On the other hand, some of the pool water will flow into the inlet of the downcomer piping, and will flow into the inclined cooling channel of the core catcher by gravity. The engineered cooling channel is designed to provide effective long-term cooling and stabilization of the corium mixture in the core catcher body while facilitating steam venting. To maintain the integrity of the ex-vessel core catcher, however, it is required that the coolant be circulated at a rate along the inclined cooling channel sufficient to avoid CHF (Critical Heat Flux) on the heating surface of the cooling channel. In this study, post simulations of two phase natural circulation in the CEPECS have been performed to evaluate two phase flow characteristics and the natural circulation mass flow rate in the flow channel using the RELAP5/MOD3 computer code. Post simulations of two phase natural circulation in the CE-PECS have been conducted to evaluate two phase flow characteristics and the natural circulation mass flow rate in the flow channel using the RELAP5/MOD3 computer code. The RELAP5/MOD3 results have shown that the water circulation mass flow rate is approximately 8.7 kg/s in the base case
An Experimental Study of Two-Phase Pulse Flushing Technology in Water Distribution Systems
Directory of Open Access Journals (Sweden)
Zhaozhao Tang
2017-12-01
Full Text Available The deterioration of drinking water during distribution process is caused by many factors. The microorganisms and substances peeling off from the “growth-ring” make the secondary pollution in drinking water distribution systems. To reduce the secondary pollution, two-phase pulse flushing technology is introduced to quickly remove the “growth-ring”. In this study, experiment is undertaken for investigating the efficiency of the two-phase pulse flushing and finding the best setting combination. A case study is undertaken to compare the efficiencies between the two-phase pulse and the single-phase flushing. The best setting combination of the two-phase pulse flushing is at the frequency 4 s–6 s (air inflow time is 4 s and air cut off time is 6 s and the round air inflow nozzle is set at the bottom of the pipe. Two-phase pulse flushing technology can save 95% of water and 6 h 40 min flushing time.
DSMC simulation of two-phase plume flow with UV radiation
Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling
2014-12-01
Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.
Application of two-phase flow for cooling of hybrid microchannel PV cells: A comparative study
International Nuclear Information System (INIS)
Valeh-e-Sheyda, Peyvand; Rahimi, Masoud; Karimi, Ebrahim; Asadi, Masomeh
2013-01-01
Highlights: ► Showing cooling potential of gas–liquid two-phase flow in microchannels for PV cell. ► Introducing the concept of using slug flow in microchannels for cooling of PV cells. ► In single-phase flow, increasing the liquid flow rate enhances the PV power. ► Showing that in two-phase flow the output power related the fluid flow regime. ► By coupling PV and microchannel an increase up to 38% in output power was observed. - Abstract: This paper reports the experimental data from performance of two-phase flows in a small hybrid microchannel solar cell. Using air and water as two-phase fluid, the experiments were conducted at indoor condition in an array of rectangular microchannels with a hydraulic diameter of 0.667 mm. The gas superficial velocity ranges were between 0 and 3.27 m s −1 while liquid flow rate was 0.04 m s −1 . The performance analysis of the PV cell at slug and transitional slug/annular flow regimes are the focus of this study. The influence of two-phase working fluid on PV cell cooling was compared with single-phase. In addition, the great potential of slug flow for heat removal enhancement in PV/T panel was investigated. The obtained data showed the proposed hybrid system could substantially increases the output power of PV solar cells
Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces
International Nuclear Information System (INIS)
Brauner, N.; Rovinsky, J.; Maron, D.M.
1995-01-01
The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the 'flow monograms' describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the 'interface monograms', whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system 'operational monogram'. The 'operational monogram' enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop
Magnitude and sign correlations in conductance fluctuations of horizontal oil water two-phase flow
International Nuclear Information System (INIS)
Zhu, L; Jin, N D; Gao, Z K; Zong, Y B; Zhai, L S; Wang, Z Y
2012-01-01
In experiment we firstly define five typical horizontal oil-water flow patterns. Then we introduce an approach for analyzing signals by decomposing the original signals increment into magnitude and sign series and exploring their scaling properties. We characterize the nonlinear and linear properties of horizontal oil-water two-phase flow, which relate to magnitude and sign series respectively. We find that the joint distribution of different scaling exponents can effectively identify flow patterns, and the detrended fluctuation analysis (DFA) on magnitude and sign series can represent typical horizontal oil-water two-phase flow dynamics characteristics. The results indicate that the magnitude and sign decomposition method can be a helpful tool for characterizing complex dynamics of horizontal oil-water two-phase flow.
Encyclopedia of two-phase heat transfer and flow II special topics and applications
Kim, Jungho
2015-01-01
The aim of the two–set series is to present a very detailed and up–to–date reference for researchers and practicing engineers in the fields of mechanical, refrigeration, chemical, nuclear and electronics engineering on the important topic of two-phase heat transfer and two-phase flow. The scope of the first set of 4 volumes presents the fundamentals of the two-phase flows and heat transfer mechanisms, and describes in detail the most important prediction methods, while the scope of the second set of 4 volumes presents numerous special topics and numerous applications, also including numerical simulation methods. Practicing engineers will find extensive coverage to applications involving: multi-microchannel evaporator cold plates for electronics cooling, boiling on enhanced tubes and tube bundles, flow pattern based methods for predicting boiling and condensation inside horizontal tubes, pressure drop methods for singularies (U-bends and contractions), boiling in multiport tubes, and boiling and condens...
Encyclopedia of two-phase heat transfer and flow I fundamentals and methods
2015-01-01
The aim of the two–set series is to present a very detailed and up–to–date reference for researchers and practicing engineers in the fields of mechanical, refrigeration, chemical, nuclear and electronics engineering on the important topic of two-phase heat transfer and two-phase flow. The scope of the first set of 4 volumes presents the fundamentals of the two-phase flows and heat transfer mechanisms, and describes in detail the most important prediction methods, while the scope of the second set of 4 volumes presents numerous special topics and numerous applications, also including numerical simulation methods. Practicing engineers will find extensive coverage to applications involving: multi-microchannel evaporator cold plates for electronics cooling, boiling on enhanced tubes and tube bundles, flow pattern based methods for predicting boiling and condensation inside horizontal tubes, pressure drop methods for singularies (U-bends and contractions), boiling in multiport tubes, and boiling and condens...
Entropy analysis on non-equilibrium two-phase flow models
International Nuclear Information System (INIS)
Karwat, H.; Ruan, Y.Q.
1995-01-01
A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships
Visualization of two-phase flow in metallic pipes using neutron radiographic technique
International Nuclear Information System (INIS)
Luiz, L.C.; Crispim, V.R.
2007-01-01
The study of two-phase flow is a matter of great interest both for the engineering and oil industries. The production of oil and natural gas involves the transportation of fluids in their liquid and gaseous states, respectively, to the processing plant for refinement. The forecasting of two-phase flow in oil pipes is of the utmost important yet an extremely difficult task. With the development of the electronic imaging system, installed in J-9 irradiation channel of the IEN/CNEN Argonauta Reactor, it is possible to visualize the different types of two phase air-water flows in small-diameter metallic pipes. After developing the captured image the liquid-gas drift flux correlation as well as the void fraction in relation to the injected air outflow for a fixed water outflow can be obtained. (author)
Steady state flow analysis of two-phase natural circulation in multiple parallel channel loop
International Nuclear Information System (INIS)
Bhusare, V.H.; Bagul, R.K.; Joshi, J.B.; Nayak, A.K.; Kannan, Umasankari; Pilkhwal, D.S.; Vijayan, P.K.
2016-01-01
Highlights: • Liquid circulation velocity increases with increasing superficial gas velocity. • Total two-phase pressure drop decreases with increasing superficial gas velocity. • Channels with larger driving force have maximum circulation velocities. • Good agreement between experimental and model predictions. - Abstract: In this work, steady state flow analysis has been carried out experimentally in order to estimate the liquid circulation velocities and two-phase pressure drop in air–water multichannel circulating loop. Experiments were performed in 15 channel circulating loop. Single phase and two-phase pressure drops in the channels have been measured experimentally and have been compared with theoretical model of Joshi et al. (1990). Experimental measurements show good agreement with model.
Effects of two-phase flow in a model for nitramine deflagration
International Nuclear Information System (INIS)
Li, S.C.; Williams, F.A.; Margolis, S.B.
1990-01-01
Methods of asymptotic analysis are employed to extend an earlier model for the deflagration of nitramines to account for the presence of bubbles and droplets in a two-phase layer at the propellant surface during combustion. Two zones are identified in the two-phase region: one, at higher liquid volume fractions, maintains evaporative equilibrium, whereas the other, at lower liquid volume fractions, exhibits nonequilibrium vaporization. By introducing the most reasonable estimates for two-phase behavior of nitramines, the steady burning rates are found to be close to those obtained for models with a sharp liquid-gas interface. Good agreement with measured burning rates and pressure and temperature sensitivities are achieved through reasonable approximations concerning overall chemical-kinetic parameters
Numerical analysis of critical two-phase flow in a convergent-divergent nozzle
International Nuclear Information System (INIS)
Romstedt, P.; Werner, W.
1985-01-01
The numerical calculation of critical two-phase flow in a convergent-divergent nozzle is complicated by a singularity of the fluid flow equations at the unknown critical point. This paper describes a method which is able to calculate critical state and its location without any additional assumptions. The critical state is identified by its mathematical properties: characteristics and solvability of linear systems with singular matrix. Because the numerically evaluable mathematical properties are only necessary conditions for the existence of critical flow, some physical ''compatibility-criteria'' (flow velocity equals two-phase sonic velocity, critical flow is independent of downstream flow state variations) are used as a substitute for mathematically sufficient conditions. Numerical results are shown for the critical flow in a LOBI nozzle; the two-phase flow is described by a model with equal phase velocities and thermodynamic non-equilibrium
Two-Phase Equilibrium Properties in Charged Topological Dilaton AdS Black Holes
Directory of Open Access Journals (Sweden)
Hui-Hua Zhao
2016-01-01
Full Text Available We discuss phase transition of the charged topological dilaton AdS black holes by Maxwell equal area law. The two phases involved in the phase transition could coexist and we depict the coexistence region in P-v diagrams. The two-phase equilibrium curves in P-T diagrams are plotted, the Clapeyron equation for the black hole is derived, and the latent heat of isothermal phase transition is investigated. We also analyze the parameters of the black hole that could have an effect on the two-phase coexistence. The results show that the black holes may go through a small-large phase transition similar to that of a usual nongravity thermodynamic system.
Measurement of pressure fluctuation in gas-liquid two-phase vortex street
International Nuclear Information System (INIS)
Sun Zhiqiang; Sang Wenhui; Zhang Hongjian
2009-01-01
The pressure fluctuation in the wake is an important parameter to characterize the shedding process of gas-liquid two-phase Karman vortex street. This paper investigated such pressure fluctuations in a horizontal pipe using air and water as the tested fluid media. The dynamic signal representing the pressure fluctuation was acquired by the duct-wall differential pressure method. Results show that in the wake of the gas-liquid two-phase Karman vortex street, the frequency of the pressure fluctuation is linear with the Reynolds number when the volume void fraction is within the range of 18%. Moreover, the mean amplitude of the pressure fluctuation decreases with the volume void fraction, and the mean amplitude is larger at higher water flowrates under the same volume void fraction. These findings contribute to an in-depth understanding of the gas-liquid two-phase Karman vortex street.
Analysis of phase dynamics in two-phase flow using latticegas automata
International Nuclear Information System (INIS)
Ohashi, H.; Hashimoto, Y.; Tsumaya, A.; Chen, Y.; Akiyama, M.
1998-01-01
In this paper, we describe lattice gas automaton models appropriate for two-phase flow simulation and their applications to study various phase dynamics of two-fluid mixtures. Several algorithms are added to the original immiscible Lattice Gas model to adjust surface tension and to introduce density difference between two fluids. Surface tension is controlled by the collision rules an difference in density is due to nonlocal forces between automaton particles. We simulate the relative motion of the dispersed phase in another continuous fluid. Deformation and disintegration of rising drops are reproduced. The interaction between multiple drops is also observed in calculations. Furutre, we obtain the transition of the two-phase flow pattern from bubbly, slug to annular flow. Density difference of two phase is one of the key ingredients to generate the annular flow pattern
Magnetic liquid metal two-phase flow research. Phase 1. Final report
International Nuclear Information System (INIS)
Graves, R.D.
1983-04-01
The Phase I research demonstrates the feasibility of the magnetic liquid metal (MLM) two-phase flow concept. A dispersion analysis is presented based on a complete set of two-phase-flow equations augmented to include stresses due to magnetic polarization of the fluid. The analysis shows that the stability of the MLM two-phase flow is determined by the magnetic Mach number, the slip ratio, geometry of the flow relative to the applied magnetic field, and by the voidage dependence of the interfacial forces. Results of a set of experiments concerned with magnetic effects on the dynamics of single bubble motion in an aqueous-based, viscous, conducting magnetic fluid are presented. Predictions in the theoretical literature are qualitatively verified using a bench-top experimental apparatus. In particular, applied magnetic fields are seen to lead to reduced bubble size at fixed generating orifice pressure
Measurement of Liquid-Metal Two-Phase Flow with a Dynamic Neutron Radiography
International Nuclear Information System (INIS)
Cha, J. E.; Lim, I. C.; Kim, H. R.; Kim, C. M.; Nam, H. Y.; Saito, Y.
2005-01-01
The dynamic neutron radiography(DNR) has complementary characteristics to X-ray radiography and is suitable to visualization and measurement of a multi-phase flow research in a metallic duct and liquid metal flow. The flow-field information of liquid metal system is very important for the safety analysis of fast breeder reactor and the design of the spallation target of accelerator driven system. A DNR technique was applied to visualize the flow field in the gas-liquid metal two-phase flow with the HANARO-beam facility. The lead bismuth eutectic and the nitrogen gas were used to construct the two-phase flow field in the natural circulation U-channel. The two-phase flow images in the riser were taken at various combinations of the liquid flow and gas flow with high frame-rate neutron radiography at 1000 fps
Multivariate recurrence network analysis for characterizing horizontal oil-water two-phase flow.
Gao, Zhong-Ke; Zhang, Xin-Wang; Jin, Ning-De; Marwan, Norbert; Kurths, Jürgen
2013-09-01
Characterizing complex patterns arising from horizontal oil-water two-phase flows is a contemporary and challenging problem of paramount importance. We design a new multisector conductance sensor and systematically carry out horizontal oil-water two-phase flow experiments for measuring multivariate signals of different flow patterns. We then infer multivariate recurrence networks from these experimental data and investigate local cross-network properties for each constructed network. Our results demonstrate that a cross-clustering coefficient from a multivariate recurrence network is very sensitive to transitions among different flow patterns and recovers quantitative insights into the flow behavior underlying horizontal oil-water flows. These properties render multivariate recurrence networks particularly powerful for investigating a horizontal oil-water two-phase flow system and its complex interacting components from a network perspective.
High-velocity two-phase flow two-dimensional modeling
International Nuclear Information System (INIS)
Mathes, R.; Alemany, A.; Thilbault, J.P.
1995-01-01
The two-phase flow in the nozzle of a LMMHD (liquid metal magnetohydrodynamic) converter has been studied numerically and experimentally. A two-dimensional model for two-phase flow has been developed including the viscous terms (dragging and turbulence) and the interfacial mass, momentum and energy transfer between the phases. The numerical results were obtained by a finite volume method based on the SIMPLE algorithm. They have been verified by an experimental facility using air-water as a simulation pair and a phase Doppler particle analyzer for velocity and droplet size measurement. The numerical simulation of a lithium-cesium high-temperature pair showed that a nearly homogeneous and isothermal expansion of the two phases is possible with small pressure losses and high kinetic efficiencies. In the throat region a careful profiling is necessary to reduce the inertial effects on the liquid velocity field
Two-phase air-water stratified flow measurement using ultrasonic techniques
International Nuclear Information System (INIS)
Fan, Shiwei; Yan, Tinghu; Yeung, Hoi
2014-01-01
In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable
Numerical simulation of the two-phase flows in a hydraulic coupling by solving VOF model
International Nuclear Information System (INIS)
Luo, Y; Zuo, Z G; Liu, S H; Fan, H G; Zhuge, W L
2013-01-01
The flow in a partially filled hydraulic coupling is essentially a gas-liquid two-phase flow, in which the distribution of two phases has significant influence on its characteristics. The interfaces between the air and the liquid, and the circulating flows inside the hydraulic coupling can be simulated by solving the VOF two-phase model. In this paper, PISO algorithm and RNG k–ε turbulence model were employed to simulate the phase distribution and the flow field in a hydraulic coupling with 80% liquid fill. The results indicate that the flow forms a circulating movement on the torus section with decreasing speed ratio. In the pump impeller, the air phase mostly accumulates on the suction side of the blades, while liquid on the pressure side; in turbine runner, air locates in the middle of the flow passage. Flow separations appear near the blades and the enclosing boundaries of the hydraulic coupling
Three layer model analysis on two-phase critical flow through a converging nozzle
International Nuclear Information System (INIS)
Ochi, J.; Ayukawa, K.
1991-01-01
A three layer model is proposed for a two-phase critical flow through a converging nozzle in this paper. Most previous analyses of the two phase flow have been based on a homogeneous or a separated flow model as the conservation equations. These results were found to have large deviations from the actual measurements for two phase critical flows. The presented model is based on the assumption that a flow consists of three layers with a mixing region between gas and liquid phase layers. The effect of gas and liquid fraction occupied in the mixing layer was made clear from the numerical results. The measurements of the critical flow rate and the pressure profiles through a converging nozzle were made with air-water flow. The calculated results of these models are discussed in comparison with the experimental data for the flow rates and the pressure distributions under critical conditions
Three-dimensional two-phase mass transport model for direct methanol fuel cells
International Nuclear Information System (INIS)
Yang, W.W.; Zhao, T.S.; Xu, C.
2007-01-01
A three-dimensional (3D) steady-state model for liquid feed direct methanol fuel cells (DMFC) is presented in this paper. This 3D mass transport model is formed by integrating five sub-models, including a modified drift-flux model for the anode flow field, a two-phase mass transport model for the porous anode, a single-phase model for the polymer electrolyte membrane, a two-phase mass transport model for the porous cathode, and a homogeneous mist-flow model for the cathode flow field. The two-phase mass transport models take account the effect of non-equilibrium evaporation/ condensation at the gas-liquid interface. A 3D computer code is then developed based on the integrated model. After being validated against the experimental data reported in the literature, the code was used to investigate numerically transport behaviors at the DMFC anode and their effects on cell performance
Film boiling from spheres in single- and two-phase flow
International Nuclear Information System (INIS)
Liu, C.; Theofanous, T.G.; Yuen, W.W.
1992-01-01
Experimental data on film boiling heat transfer from single, inductively heated, spheres in single- and two-phase flow (saturated water and steam, respectively) are presented. In the single-phase-flow experiments water velocities ranged from 0.1 to 2.0 m/s; in the two-phase-flow experiments superficial water and steam velocities covered 0.1 to 0.6 m/s and 4 to 10 m/s, respectively. All experiments were run at atmospheric pressure and with sphere temperatures from 900C down to quenching. Limited interpretations of the single-phase- flow data are possible, but the two-phase-flow data are new and unique
Phase separation and pressure drop of two-phase flow in vertical manifolds
International Nuclear Information System (INIS)
Zetzmann, K.
1982-01-01
The splitting of a two-phase mass flow in a tube manifold results in a separation between liquid and gas phase. A study is presented of the phase distribution and the related two-phase pressure drop for vertical manifolds in the technically relevant geometry and flow parameter region of an air-water-flow. At the outlet changes in the gas/fluid-radio are observed which are proportional to this ratio at the inlet. The separation characteristic strongly depends on the massflow through the junction. Empirical equations are given to calculate the separation. Measuring the pressure drop at main- and secondary tube of the manifold the additional pressure drop can be obtained. If these results are related with the dynamic pressure at the inlet, two-phase resistance coefficients can be deduced, which may be tested by empirical relations. (orig.) [de
Void fraction fluctuations in two-phase gas-liquid flow
International Nuclear Information System (INIS)
Ulbrich, R.
1987-01-01
Designs of the apparatus in which two-phase gas-liquid flow occurs are usually based on the mean value of parameters such as pressure drop and void fraction. The flow of two-phase mixtures generally presents a very complicated flow structure, both in terms of the unsteady formation on the interfacial area and in terms of the fluctuations of the velocity, pressure and other variables within the flow. When the gas void fraction is near 0 or 1 / bubble or dispersed flow regimes / then oscillations of void fraction are very small. The intermittent flow such as plug and slug/ froth is characterized by alternately flow portions of liquid and gas. It influences the change of void fractions in time. The results of experimental research of gas void fraction fluctuations in two-phase adiabatic gas-liquid flow in a vertical pipe are presented
Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces
International Nuclear Information System (INIS)
Cheung, F.B.; Epstein, M.
1985-01-01
The behavior of a two-phase gas bubble liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 45 0 to 135 0 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined
Analysis of forced convective transient boiling by homogeneous model of two-phase flow
International Nuclear Information System (INIS)
Kataoka, Isao
1985-01-01
Transient forced convective boiling is of practical importance in relation to the accident analysis of nuclear reactor etc. For large length-to-diameter ratio, the transient boiling characteristics are predicted by transient two-phase flow calculations. Based on homogeneous model of two-phase flow, the transient forced convective boiling for power and flow transients are analysed. Analytical expressions of various parameters of transient two-phase flow have been obtained for several simple cases of power and flow transients. Based on these results, heat flux, velocity and time at transient CHF condition are predicted analytically for step and exponential power increases, and step, exponential and linear velocity decreases. The effects of various parameters on heat flux, velocity and time at transient CHF condition have been clarified. Numerical approach combined with analytical method is proposed for more complicated cases. Solution method for pressure transient are also described. (author)
Analysis of data obtained in two-phase flow tests of primary heat transport pumps
International Nuclear Information System (INIS)
Currie, T.C.
1986-06-01
This report analyzes data obtained in two-phase flow tests of primary heat transport pumps performed during the period 1980-1983. Phenomena which have been known to cause pump-induced flow oscillations in pressurized piping systems under two-phase conditions are reviewed and the data analyzed to determine whether any of the identified phenomena could have been responsible for the instabilities observed in those tests. Tentative explanations for the most severe instabilities are given based on those analyses. It is shown that suction pipe geometry probably plays an important role in promoting instabilities, so additional experiments to investigate the effect of suction pipe geometry on the stability of flow in a closed pipe loop under two-phase conditions are recommended
Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces
Energy Technology Data Exchange (ETDEWEB)
Brauner, N.; Rovinsky, J.; Maron, D.M. [Tel-Aviv Univ. (Israel)
1995-09-01
The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the `flow monograms` describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the `interface monograms`, whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system `operational monogram`. The `operational monogram` enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop.
Entropy analysis on non-equilibrium two-phase flow models
Energy Technology Data Exchange (ETDEWEB)
Karwat, H.; Ruan, Y.Q. [Technische Universitaet Muenchen, Garching (Germany)
1995-09-01
A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.
Moving Boudary Models for Dynamic Simulations of Two-phase Flows
DEFF Research Database (Denmark)
Jensen, Jakob Munch; Tummelscheit, H.
2002-01-01
. The Dymola Modelica translator can automatically reduce the DAE index and thus makes efficient simulation possible. Usually the flow entering a dry-expansion evaporator in a refrigeration system is two-phase, and there is thus no liquid region. The general MB model has a number of special cases where only...... model is used. The overall robustness and the simplicity of the MB model, makes it well suited for open loop as well as closed loop simulations of two-phase flows. Simulation results for an evaporator in a refrigeration system are shown. The open loop system is simulated both with the reduced MB...... but is less complex. The reduced MB-model is well suited for control purposes both for determining control parameters and for model based control strategies and examples of a controlled refrigeration system are shown. The general MB model divides the flow into three regions (liquid, two-phase and vapor...
The questions of liquid metal two-phase flow modelling in the FBR core channels
International Nuclear Information System (INIS)
Martsiniouk, D.Ye.; Sorokin, A.P.
2000-01-01
The two-fluid model representation for calculations of two-phase flow characteristics in the FBR fuel pin bundles with liquid metal cooling is presented and analysed. Two conservation equations systems of the mass, momentum and energy have been written for each phase. Components accounted the mass-, momentum- and heat transfer throughout the interface occur in the macro-field equations after the averaging procedure realisation. The pattern map and correlations for two-fluid model in vertical liquid metal flows are presented. The description of processes interphase mass- and heat exchange and interphase friction is determined by the two-phase flow regime. The opportunity of the liquid metal two-phase flow regime definition is analysed. (author)
Geometric effects of 90-degree vertical elbows on local two-phase flow parameters
International Nuclear Information System (INIS)
Yadav, M.; Worosz, T.; Kim, S.
2011-01-01
This study presents the geometric effects of 90-degree vertical elbows on the development of the local two-phase flow parameters. A multi-sensor conductivity probe is used to measure local two-phase flow parameters. It is found that immediately downstream of the vertical-upward elbow, the bubbles have a bimodal distribution along the horizontal radius of the pipe cross-section causing a dual-peak in the profiles of local void fraction and local interfacial area concentration. Immediately downstream of the vertical-downward elbow it is observed that the bubbles tend to migrate towards the inside of the elbow's curvature. The axial transport of void fraction and interfacial area concentration indicates that the elbows promote bubble disintegration. Preliminary predictions are obtained from group-one interfacial area transport equation (IATE) model for vertical-upward and vertical-downward two-phase flow. (author)
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume I. Chapters 1-5)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume IV. Chapters 15-19)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume II. Chapters 6-10)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume III. Chapters 11-14)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
International Nuclear Information System (INIS)
Hubert, Olivier; Lazreg, Said
2017-01-01
A growing interest of automotive industry in the use of high performance steels is observed. These materials are obtained thanks to complex manufacturing processes whose parameters fluctuations lead to strong variations of microstructure and mechanical properties. The on-line magnetic non-destructive monitoring is a relevant response to this problem but it requires fast models sensitive to different parameters of the forming process. The plastic deformation is one of these important parameters. Indeed, ferromagnetic materials are known to be sensitive to stress application and especially to plastic strains. In this paper, a macroscopic approach using the kinematic hardening is proposed to model this behavior, considering a plastic strained material as a two phase system. Relationship between kinematic hardening and residual stress is defined in this framework. Since stress fields are multiaxial, an uniaxial equivalent stress is calculated and introduced inside the so-called magneto-mechanical multidomain modeling to represent the effect of plastic strain. The modeling approach is complemented by many experiments involving magnetic and magnetostrictive measurements. They are carried out with or without applied stress, using a dual-phase steel deformed at different levels. The main interest of this material is that the mechanically hard phase, soft phase and the kinematic hardening can be clearly identified thanks to simple experiments. It is shown how this model can be extended to single phase materials.
Energy Technology Data Exchange (ETDEWEB)
Hubert, Olivier, E-mail: olivier.hubert@lmt.ens-cachan.fr; Lazreg, Said
2017-02-15
A growing interest of automotive industry in the use of high performance steels is observed. These materials are obtained thanks to complex manufacturing processes whose parameters fluctuations lead to strong variations of microstructure and mechanical properties. The on-line magnetic non-destructive monitoring is a relevant response to this problem but it requires fast models sensitive to different parameters of the forming process. The plastic deformation is one of these important parameters. Indeed, ferromagnetic materials are known to be sensitive to stress application and especially to plastic strains. In this paper, a macroscopic approach using the kinematic hardening is proposed to model this behavior, considering a plastic strained material as a two phase system. Relationship between kinematic hardening and residual stress is defined in this framework. Since stress fields are multiaxial, an uniaxial equivalent stress is calculated and introduced inside the so-called magneto-mechanical multidomain modeling to represent the effect of plastic strain. The modeling approach is complemented by many experiments involving magnetic and magnetostrictive measurements. They are carried out with or without applied stress, using a dual-phase steel deformed at different levels. The main interest of this material is that the mechanically hard phase, soft phase and the kinematic hardening can be clearly identified thanks to simple experiments. It is shown how this model can be extended to single phase materials.
Direct numerical simulation of reactor two-phase flows enabled by high-performance computing
Energy Technology Data Exchange (ETDEWEB)
Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.; Feng, Jinyong; Gouws, Andre; Li, Mengnan; Bolotnov, Igor A.
2018-04-01
Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent research progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.
Determination of production-shipment policy using a two-phase algebraic approach
Directory of Open Access Journals (Sweden)
Huei-Hsin Chang
2012-04-01
Full Text Available The optimal production-shipment policy for end products using mathematicalmodeling and a two-phase algebraic approach is investigated. A manufacturing systemwith a random defective rate, a rework process, and multiple deliveries is studied with thepurpose of deriving the optimal replenishment lot size and shipment policy that minimisestotal production-delivery costs. The conventional method uses differential calculus on thesystem cost function to determine the economic lot size and optimal number of shipmentsfor such an integrated vendor-buyer system, whereas the proposed two-phase algebraicapproach is a straightforward method that enables practitioners who may not havesufficient knowledge of calculus to manage real-world systems more effectively.
Investigation of Two-Phase Flow in Short Horizontal Mini Channel Height of 1 MM
Directory of Open Access Journals (Sweden)
Ron’shin Fedor
2016-01-01
Full Text Available The experiments with two-phase flow in the short horizontal rectangular minichannel with the height of 1 mm and width of 29 mm have been carried out using water and gas nitrogen. The five two-phase flow patterns have been recognized in the minichannel: churn, stratified, annular, bubble, and jet. These regimes are plotted on a graph and the boundaries between them determine precisely. The height of a horizontal minichannels has a significant role on boundaries between the flow regimes.
Investigation on two-phase flow instability in steam generator of integrated nuclear reactor
Institute of Scientific and Technical Information of China (English)
无
1996-01-01
In the pressure range of 3-18MPa,high pressure steam-water two-phase flow density wave instability in vertical upward parallel pipes with inner diameter of 12mm is studied experimentally.The oscillation curves of two-phase flow instability and the effects of several parameters on the oscillation threshold of the system are obtained.Based on the small pertubation linearization method and the stability principles of automatic control system,a mathematical model is developed to predict the characteristics of density wave instability threshold.The predictions of the model are in good agreement with the experimental results.
Analyses of liquid-gas two-phase flow in fermentation tanks
International Nuclear Information System (INIS)
Toi, Takashi; Serizawa, Akimi; Takahashi, Osamu; Kawara, Zensaku; Gofuku, Akio; Kataoka, Isao.
1993-01-01
The understanding of two-phase flow is one of the important problems for both design and safety analyses of various engineering systems. For example, the flow conditions in beer fermentation tanks have an influence on the quality of production and productivity of tank. In this study, a two-dimensional numerical calculation code based on the one-pressure two-fluid model is developed to understand the circulation structure of low quality liquid-gas two-phase flows induced by bubble plume in a tank. (author)
Preliminary Two-Phase Terry Turbine Nozzle Models for RCIC Off-Design Operation Conditions
Energy Technology Data Exchange (ETDEWEB)
Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, James [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2017-06-12
This report presents the effort to extend the single-phase analytical Terry turbine model to cover two-phase off-design conditions. The work includes: (1) adding well-established two-phase choking models – the Isentropic Homogenous Equilibrium Model (IHEM) and Moody’s model, and (2) theoretical development and implementation of a two-phase nozzle expansion model. The two choking models provide bounding cases for the two-phase choking mass flow rate. The new two-phase Terry turbine model uses the choking models to calculate the mass flow rate, the critical pressure at the nozzle throat, and steam quality. In the divergent stage, we only consider the vapor phase with a similar model for the single-phase case by assuming that the liquid phase would slip along the wall with a much slower speed and will not contribute the impulse on the rotor. We also modify the stagnation conditions according to two-phase choking conditions at the throat and the cross-section areas for steam flow at the nozzle throat and at the nozzle exit. The new two-phase Terry turbine model was benchmarked with the same steam nozzle test as for the single-phase model. Better agreement with the experimental data is observed than from the single-phase model. We also repeated the Terry turbine nozzle benchmark work against the Sandia CFD simulation results with the two-phase model for the pure steam inlet nozzle case. The RCIC start-up tests were simulated and compared with the single-phase model. Similar results are obtained. Finally, we designed a new RCIC system test case to simulate the self-regulated Terry turbine behavior observed in Fukushima accidents. In this test, a period inlet condition for the steam quality varying from 1 to 0 is applied. For the high quality inlet period, the RCIC system behaves just like the normal operation condition with a high pump injection flow rate and a nominal steam release rate through the turbine, with the net addition of water to the primary system; for
On the peculiarities of LDA method in two-phase flows with high concentrations of particles
Poplavski, S. V.; Boiko, V. M.; Nesterov, A. U.
2016-10-01
Popular applications of laser Doppler anemometry (LDA) in gas dynamics are reviewed. It is shown that the most popular method cannot be used in supersonic flows and two-phase flows with high concentrations of particles. A new approach to implementation of the known LDA method based on direct spectral analysis, which offers better prospects for such problems, is presented. It is demonstrated that the method is suitable for gas-liquid jets. Owing to the progress in laser engineering, digital recording of spectra, and computer processing of data, the method is implemented at a higher technical level and provides new prospects of diagnostics of high-velocity dense two-phase flows.
Two-phase coolant pump model of pressurized light water nuclear reactors
International Nuclear Information System (INIS)
Santos, G.A. dos; Freitas, R.L.
1990-01-01
The two-phase coolant pump model of pressurized light water nuclear reactors is an important point for the loss of primary coolant accident analysis. The homologous curves set up the complete performance of the pump and are input for accidents analysis thermal-hydraulic codes. This work propose a mathematical model able to predict the two-phase homologous curves where it was incorporated geometric and operational pump condition. The results were compared with the experimental tests data from literature and it has showed a good agreement. (author)
A phenomenological model of two-phase (air/fuel droplet developing and breakup
Directory of Open Access Journals (Sweden)
Pavlović Radomir R.
2013-01-01
Full Text Available Effervescent atomization namely the air-filled liquid atomization comprehends certain complex two-phase phenomenon that are difficult to be modeled. Just a few researchers have found the mathematical expressions for description of the complex atomization model of the two-phase mixture air/diesel fuel. In the following review, developing model of twophase (air/fuel droplet of Cummins spray pump-injector is shown. The assumption of the same diameters of the droplet and the opening of the atomizer is made, while the air/fuel mass ratio inside the droplet varies.
Local wettability reversal during steady-state two-phase flow in porous media.
Sinha, Santanu; Grøva, Morten; Ødegården, Torgeir Bryge; Skjetne, Erik; Hansen, Alex
2011-09-01
We study the effect of local wettability reversal on remobilizing immobile fluid clusters in steady-state two-phase flow in porous media. We consider a two-dimensional network model for a porous medium and introduce a wettability alteration mechanism. A qualitative change in the steady-state flow patterns, destabilizing the percolating and trapped clusters, is observed as the system wettability is varied. When capillary forces are strong, a finite wettability alteration is necessary to move the system from a single-phase to a two-phase flow regime. When both phases are mobile, we find a linear relationship between fractional flow and wettability alteration.
Two-phase flow stability structure in a natural circulation system
Energy Technology Data Exchange (ETDEWEB)
Zhou, Zhiwei [Nuclear Engineering Laboratory Zurich (Switzerland)
1995-09-01
The present study reports a numerical analysis of two-phase flow stability structures in a natural circulation system with two parallel, heated channels. The numerical model is derived, based on the Galerkin moving nodal method. This analysis is related to some design options applicable to integral heating reactors with a slightly-boiling operation mode, and is also of general interest to similar facilities. The options include: (1) Symmetric heating and throttling; (2) Asymmetric heating and symmetric throttling; (3) Asymmetric heating and throttling. The oscillation modes for these variants are discussed. Comparisons with the data from the INET two-phase flow stability experiment have qualitatively validated the present analysis.
Investigation of the propagation characteristics in turbulent dispersed two-phase flow
International Nuclear Information System (INIS)
Sami, S.M.
1980-01-01
The propagation characteristics of turbulent dispersed two-phase flows have been studied experimentally using the Pitot tube associated with a conical hot-film anemometer. It is found that the mixture velocity increases with decreasing volumetric mixing ratio of the air and water. The void fraction distribution shows homogeneity across the test section in the special case of fully developed boundary layer two-phase flow. An expression is obtained which relates the local mixture velocity to the local void fraction, gas and liquid densities, and volumetric gas-liquid ratio
Lagrangian analysis of two-phase hydrodynamic and nuclear-coupled density-wave oscillations
International Nuclear Information System (INIS)
Lahey, R.T. Jr.; Yadigaroglu, G.
1974-01-01
The mathematical technique known as the ''method of characteristics'' has been used to construct an exact, analytical solution to predict the onset of density-wave oscillations in diabatic two-phase systems, such as Boiling Water Nuclear Reactors (BWR's). Specifically, heater wall dynamics, boiling boundary dynamics and nuclear kinetics have been accounted for in this analysis. Emphasis is placed on giving the reader a clear physical understanding of the phenomena of two-phase density-wave oscillations. Explanations are presented in terms of block diagram logic, and phasor representations of the various pressure drop perturbations are given. (U.S.)
Analysis of two-phase flow induced vibrations in perpendiculary supported U-type piping systems
International Nuclear Information System (INIS)
Hiramatsu, Tsutomu; Komura, Yoshiaki; Ito, Atsushi.
1984-01-01
The perpose of this analysis is to predict the vibration level of a pipe conveying a two-phase flowing fluid. Experiments were carried out with a perpendiculary supported U-type piping system, conveying an air-water two-phase flow in a steady state condition. Fluctuation signals are observed by a void signal sensor, and power spectral densities and probability density functions are obtained from the void signals. Theoretical studies using FEM and an estimation of the exciting forces from the PSD of void signals, provided a good predictional estimation of vibration responses of the piping system. (author)
Numerical simulation analysis of four-stage mutation of solid-liquid two-phase grinding
Li, Junye; Liu, Yang; Hou, Jikun; Hu, Jinglei; Zhang, Hengfu; Wu, Guiling
2018-03-01
In order to explore the numerical simulation of solid-liquid two-phase abrasive grain polishing and abrupt change tube, in this paper, the fourth order abrupt change tube was selected as the research object, using the fluid mechanics software to simulate,based on the theory of solid-liquid two-phase flow dynamics, study on the mechanism of AFM micromachining a workpiece during polishing.Analysis at different inlet pressures, the dynamic pressure distribution pipe mutant fourth order abrasive flow field, turbulence intensity, discuss the influence of the inlet pressure of different abrasive flow polishing effect.
Silva. EDF two-phase 1D annular model of a CFB boiler furnace
Energy Technology Data Exchange (ETDEWEB)
Montat, D.; Fauquet, Ph. [Electricite de France (EDF), 78 - Chatou (France). Researckh and Development Div.; Lafanechere, L.; Bursi, J.M. [Electricite de France (EDF) (France). Construction Div.
1997-01-01
SILVA computer code is used for the modelling of the thermal-hydraulics and of the combustion of a coal-fired CFBC solid loop. In a first step, only the furnace is considered. The model is based on a 1D annular two phases description of the hydrodynamics. The model is based on particle mass balances and pressure drop calculations. A basic combustion model is incorporated into this model. The coal combustion is divided in two phases, the combustion of volatile matter and the heterogeneous combustion. The model has been developed within LEGO software and can be included into the global model of the solid loop developed by EDF. (author) 26 refs.
International Nuclear Information System (INIS)
Beyer, M.; Carl, H.; Schuetz, H.; Pietruske, H.; Lenk, S.
2004-07-01
The Forschungszentrum Rossendorf (FZR) e. V. is constructing a new large-scale test facility, TOPFLOW, for thermalhydraulic single effect tests. The acronym stands for transient two phase flow test facility. It will mainly be used for the investigation of generic and applied steady state and transient two phase flow phenomena and the development and validation of models of computational fluid dynamic (CFD) codes. The manual of the test facility must always be available for the staff in the control room and is restricted condition during operation of personnel and also reconstruction of the facility. (orig./GL)
Development of a large-scale general purpose two-phase flow analysis code
International Nuclear Information System (INIS)
Terasaka, Haruo; Shimizu, Sensuke
2001-01-01
A general purpose three-dimensional two-phase flow analysis code has been developed for solving large-scale problems in industrial fields. The code uses a two-fluid model to describe the conservation equations for two-phase flow in order to be applicable to various phenomena. Complicated geometrical conditions are modeled by FAVOR method in structured grid systems, and the discretization equations are solved by a modified SIMPLEST scheme. To reduce computing time a matrix solver for the pressure correction equation is parallelized with OpenMP. Results of numerical examples show that the accurate solutions can be obtained efficiently and stably. (author)
International Nuclear Information System (INIS)
Han Bin; Tong Yunxian; Wu Shaorong
1992-11-01
It is a classical method by using analysis of differential pressure fluctuation signal to identify two-phase flow pattern. The method which uses trait peak in the frequency-domain will result confusion between bubble flow and intermittent flow due to the influence of gas speed. Considering the spatial geometric significance of two-phase slow patterns and using the differential pressure gauge as a sensor, the Strouhal number 'Sr' is taken as the basis for distinguishing flow patterns. Using Strouhal number 'Sr' to identify flow pattern has clear physical meaning. The experimental results using the spatial analytical technique to measure the flow pattern are also given
An algebraic stress/flux model for two-phase turbulent flow
International Nuclear Information System (INIS)
Kumar, R.
1995-12-01
An algebraic stress model (ASM) for turbulent Reynolds stress and a flux model for turbulent heat flux are proposed for two-phase bubbly and slug flows. These mathematical models are derived from the two-phase transport equations for Reynolds stress and turbulent heat flux, and provide C μ , a turbulent constant which defines the level of eddy viscosity, as a function of the interfacial terms. These models also include the effect of heat transfer. When the interfacial drag terms and the interfacial momentum transfer terms are absent, the model reduces to a single-phase model used in the literature
Replication Variance Estimation under Two-phase Sampling in the Presence of Non-response
Directory of Open Access Journals (Sweden)
Muqaddas Javed
2014-09-01
Full Text Available Kim and Yu (2011 discussed replication variance estimator for two-phase stratified sampling. In this paper estimators for mean have been proposed in two-phase stratified sampling for different situation of existence of non-response at first phase and second phase. The expressions of variances of these estimators have been derived. Furthermore, replication-based jackknife variance estimators of these variances have also been derived. Simulation study has been conducted to investigate the performance of the suggested estimators.